cosmotool/python_sample/icgen/borgicgen.py

229 lines
7.2 KiB
Python
Raw Normal View History

2014-06-01 18:07:44 +02:00
import cosmotool as ct
import numpy as np
import cosmolopy as cpy
from cosmogrowth import *
import borgadaptor as ba
2015-01-22 19:16:46 +01:00
@ct.timeit
def gen_posgrid(N, L, delta=1, dtype=np.float32):
2014-06-01 18:07:44 +02:00
""" Generate an ordered lagrangian grid"""
2015-01-22 19:16:46 +01:00
ix = (np.arange(N)*(L/N*delta)).astype(dtype)
2014-06-01 18:07:44 +02:00
x = ix[:,None,None].repeat(N, axis=1).repeat(N, axis=2)
y = ix[None,:,None].repeat(N, axis=0).repeat(N, axis=2)
z = ix[None,None,:].repeat(N, axis=0).repeat(N, axis=1)
2014-06-04 13:57:17 +02:00
return x.reshape((x.size,)), y.reshape((y.size,)), z.reshape((z.size,))
2014-06-01 18:07:44 +02:00
def bin_power(P, L, bins=20, range=(0,1.), dev=False):
N = P.shape[0]
ik = np.fft.fftfreq(N, d=L/N)*2*np.pi
k = np.sqrt(ik[:,None,None]**2 + ik[None,:,None]**2 + ik[None,None,:(N/2+1)]**2)
H,b = np.histogram(k, bins=bins, range=range)
Hw,b = np.histogram(k, bins=bins, weights=P, range=range)
if dev:
return Hw/(H-1), 0.5*(b[1:]+b[0:bins]), 1.0/np.sqrt(H)
else:
return Hw/(H-1), 0.5*(b[1:]+b[0:bins])
def compute_power_from_borg(input_borg, a_borg, cosmo, bins=10, range=(0,1)):
borg_vol = ct.read_borg_vol(input_borg)
N = borg_vol.density.shape[0]
cgrowth = CosmoGrowth(**cosmo)
D1 = cgrowth.D(1)
D1_0 = D1/cgrowth.D(a_borg)
print("D1_0=%lg" % D1_0)
density_hat, L = ba.half_pixel_shift(borg_vol)
return bin_power(D1_0**2*np.abs(density_hat)**2/L**3, L, bins=bins, range=range)
def compute_ref_power(L, N, cosmo, bins=10, range=(0,1), func='HU_WIGGLES'):
ik = np.fft.fftfreq(N, d=L/N)*2*np.pi
k = np.sqrt(ik[:,None,None]**2 + ik[None,:,None]**2 + ik[None,None,:(N/2+1)]**2)
p = ct.CosmologyPower(**cosmo)
p.setFunction(func)
p.normalize(cosmo['SIGMA8'])
return bin_power(p.compute(k)*cosmo['h']**3, L, bins=bins, range=range)
def do_supergenerate(density, density_out=None, mulfac=None,zero_fill=False,Pk=None,L=None,h=None):
N = density.shape[0]
if density_out is None:
assert mulfac is not None
Ns = mulfac*N
density_out = np.zeros((Ns,Ns,Ns/2+1), dtype=np.complex128)
density_out[:] = np.nan
elif mulfac is None:
mulfac = density_out.shape[0] / N
Ns = density_out.shape[0]
assert (density_out.shape[0] % N) == 0
assert len(density_out.shape) == 3
assert density_out.shape[0] == density_out.shape[1]
assert density_out.shape[2] == (density_out.shape[0]/2+1)
hN = N/2
density_out[:hN, :hN, :hN+1] = density[:hN, :hN, :]
density_out[:hN, (Ns-hN):Ns, :hN+1] = density[:hN, hN:, :]
density_out[(Ns-hN):Ns, (Ns-hN):Ns, :hN+1] = density[hN:, hN:, :]
density_out[(Ns-hN):Ns, :hN, :hN+1] = density[hN:, :hN, :]
if mulfac > 1:
cond=np.isnan(density_out)
if zero_fill:
density_out[cond] = 0
else:
if Pk is not None:
assert L is not None and h is not None
@ct.timeit_quiet
def build_Pk():
ik = np.fft.fftfreq(Ns, d=L/Ns)*2*np.pi
k = ne.evaluate('sqrt(kx**2 + ky**2 + kz**2)', {'kx':ik[:,None,None], 'ky':ik[None,:,None], 'kz':ik[None,None,:(Ns/2+1)]})
return Pk.compute(k)*L**3
print np.where(np.isnan(density_out))[0].size
Nz = np.count_nonzero(cond)
amplitude = np.sqrt(build_Pk()[cond]/2) if Pk is not None else (1.0/np.sqrt(2))
density_out.real[cond] = np.random.randn(Nz) * amplitude
density_out.imag[cond] = np.random.randn(Nz) * amplitude
print np.where(np.isnan(density_out))[0].size
# Now we have to fix the Nyquist plane
hNs = Ns/2
nyquist = density_out[:, :, hNs]
Nplane = nyquist.size
nyquist.flat[:Nplane/2] = np.sqrt(2.0)*nyquist.flat[Nplane:Nplane/2:-1].conj()
return density_out
@ct.timeit_quiet
def run_generation(input_borg, a_borg, a_ic, cosmo, supersample=1, supergenerate=1, do_lpt2=True, shiftPixel=False, psi_instead=False, needvel=True, func='HU_WIGGLES'):
2014-06-01 18:07:44 +02:00
""" Generate particles and velocities from a BORG snapshot. Returns a tuple of
(positions,velocities,N,BoxSize,scale_factor)."""
borg_vol = ct.read_borg_vol(input_borg)
N = borg_vol.density.shape[0]
cgrowth = CosmoGrowth(**cosmo)
density, L = ba.half_pixel_shift(borg_vol, doshift=shiftPixel)
2014-06-01 18:07:44 +02:00
# Compute LPT scaling coefficient
D1 = cgrowth.D(a_ic)
D1_0 = D1/cgrowth.D(a_borg)
Dborg = cgrowth.D(a_borg)/cgrowth.D(1.0)
print "D1_0=%lg" % D1_0
if supergenerate>1:
print("Doing supergeneration (factor=%d)" % supergenerate)
p = ct.CosmologyPower(**cosmo)
p.setFunction(func)
p.normalize(cosmo['SIGMA8']*Dborg)
density = do_supergenerate(density,mulfac=supergenerate,Pk=p,L=L,h=cosmo['h'])
lpt = LagrangianPerturbation(-density, L, fourier=True, supersample=supersample)
2014-06-01 18:07:44 +02:00
# Generate grid
2015-09-29 16:34:46 +02:00
posq = gen_posgrid(N*supersample, L)
2014-06-01 18:07:44 +02:00
vel= []
posx = []
2014-07-03 15:37:37 +02:00
velmul = cgrowth.compute_velmul(a_ic) if not psi_instead else 1
2014-06-01 18:07:44 +02:00
D2 = -3./7 * D1_0**2
2014-06-01 18:07:44 +02:00
2015-01-22 19:16:46 +01:00
if do_lpt2:
psi2 = lpt.lpt2('all')
2014-06-01 18:07:44 +02:00
for j in xrange(3):
# Generate psi_j (displacement along j)
print("LPT1 axis=%d" % j)
2014-06-04 13:57:17 +02:00
psi = D1_0*lpt.lpt1(j)
psi = psi.reshape((psi.size,))
if do_lpt2:
print("LPT2 axis=%d" % j)
2015-01-22 19:16:46 +01:00
psi += D2 * psi2[j].reshape((psi2[j].size,))
2014-06-01 18:07:44 +02:00
# Generate posx
posx.append(((posq[j] + psi)%L).astype(np.float32))
# Generate vel
if needvel:
vel.append((psi*velmul).astype(np.float32))
2014-06-01 18:07:44 +02:00
2014-06-03 18:50:04 +02:00
print("velmul=%lg" % (cosmo['h']*velmul))
2014-07-03 15:36:58 +02:00
lpt.cube.dhat = lpt.dhat
2014-07-04 16:53:17 +02:00
density = lpt.cube.irfft()
2014-07-03 15:36:58 +02:00
density *= (cgrowth.D(1)/cgrowth.D(a_borg))
return posx,vel,density,N*supergenerate*supersample,L,a_ic,cosmo
@ct.timeit_quiet
2014-07-18 15:54:12 +02:00
def whitify(density, L, cosmo, supergenerate=1, zero_fill=False, func='HU_WIGGLES'):
N = density.shape[0]
p = ct.CosmologyPower(**cosmo)
p.setFunction(func)
p.normalize(cosmo['SIGMA8'])
@ct.timeit_quiet
def build_Pk():
ik = np.fft.fftfreq(N, d=L/N)*2*np.pi
k = np.sqrt(ik[:,None,None]**2 + ik[None,:,None]**2 + ik[None,None,:(N/2+1)]**2)
2015-04-29 10:32:25 +02:00
return p.compute(k)*L**3
Pk = build_Pk()
Pk[0,0,0]=1
2014-07-04 13:11:38 +02:00
cube = CubeFT(L, N)
2014-07-03 15:36:58 +02:00
cube.density = density
density_hat = cube.rfft()
density_hat /= np.sqrt(Pk)
Ns = N*supergenerate
density_hat_super = do_supergenerate(density_hat, mulfac=supergenerate)
cube = CubeFT(L, Ns)
2014-07-03 15:36:58 +02:00
cube.dhat = density_hat_super
return np.fft.irfftn(density_hat_super)*Ns**1.5
def write_icfiles(*generated_ic, **kwargs):
"""Write the initial conditions from the tuple returned by run_generation"""
2014-07-18 15:54:12 +02:00
supergenerate=kwargs.get('supergenerate', 1)
zero_fill=kwargs.get('zero_fill', False)
posx,vel,density,N,L,a_ic,cosmo = generated_ic
2014-07-03 15:37:37 +02:00
ct.simpleWriteGadget("Data/borg.gad", posx, velocities=vel, boxsize=L, Hubble=cosmo['h'], Omega_M=cosmo['omega_M_0'], time=a_ic)
2014-09-23 11:54:44 +02:00
for i,c in enumerate(["z","y","x"]):
2014-07-03 15:37:37 +02:00
ct.writeGrafic("Data/ic_velc%s" % c, vel[i].reshape((N,N,N)), L, a_ic, **cosmo)
2014-07-03 15:37:37 +02:00
ct.writeGrafic("Data/ic_deltab", density, L, a_ic, **cosmo)
2014-07-18 15:54:12 +02:00
ct.writeWhitePhase("Data/white.dat", whitify(density, L, cosmo, supergenerate=supergenerate,zero_fill=zero_fill))
2014-07-03 15:37:37 +02:00
with file("Data/white_params", mode="w") as f:
f.write("4\n%lg, %lg, %lg\n" % (cosmo['omega_M_0'], cosmo['omega_lambda_0'], 100*cosmo['h']))
f.write("%lg\n%lg\n-%lg\n0,0\n" % (cosmo['omega_B_0'],cosmo['ns'],cosmo['SIGMA8']))
f.write("-%lg\n1\n0\n\n\n\n\n" % L)
f.write("2\n\n0\nwhite.dat\n0\npadding_white.dat\n")