Updated icgen to support padded phases from BORG

This commit is contained in:
Guilhem Lavaux 2014-11-07 15:33:26 +01:00
parent 09998c39f4
commit c5ad407b20
4 changed files with 90 additions and 53 deletions

View file

@ -53,7 +53,65 @@ def compute_ref_power(L, N, cosmo, bins=10, range=(0,1), func='HU_WIGGLES'):
return bin_power(p.compute(k)*cosmo['h']**3, L, bins=bins, range=range)
def run_generation(input_borg, a_borg, a_ic, cosmo, supersample=1, do_lpt2=True, shiftPixel=False, psi_instead=False, needvel=True):
def do_supergenerate(density, density_out=None, mulfac=None,zero_fill=False,Pk=None,L=None,h=None):
N = density.shape[0]
if density_out is None:
assert mulfac is not None
Ns = mulfac*N
density_out = np.zeros((Ns,Ns,Ns/2+1), dtype=np.complex128)
density_out[:] = np.nan
elif mulfac is None:
mulfac = density_out.shape[0] / N
Ns = density_out.shape[0]
assert (density_out.shape[0] % N) == 0
assert len(density_out.shape) == 3
assert density_out.shape[0] == density_out.shape[1]
assert density_out.shape[2] == (density_out.shape[0]/2+1)
hN = N/2
density_out[:hN, :hN, :hN+1] = density[:hN, :hN, :]
density_out[:hN, (Ns-hN):Ns, :hN+1] = density[:hN, hN:, :]
density_out[(Ns-hN):Ns, (Ns-hN):Ns, :hN+1] = density[hN:, hN:, :]
density_out[(Ns-hN):Ns, :hN, :hN+1] = density[hN:, :hN, :]
if mulfac > 1:
cond=np.isnan(density_out)
if zero_fill:
density_out[cond] = 0
else:
if Pk is not None:
assert L is not None and h is not None
@ct.timeit_quiet
def build_Pk():
ik = np.fft.fftfreq(Ns, d=L/Ns)*2*np.pi
k = ne.evaluate('sqrt(kx**2 + ky**2 + kz**2)', {'kx':ik[:,None,None], 'ky':ik[None,:,None], 'kz':ik[None,None,:(Ns/2+1)]})
return Pk.compute(k)*(h*L)**3
print np.where(np.isnan(density_out))[0].size
Nz = np.count_nonzero(cond)
amplitude = np.sqrt(build_Pk()[cond]/2) if Pk is not None else (1.0/np.sqrt(2))
density_out.real[cond] = np.random.randn(Nz) * amplitude
density_out.imag[cond] = np.random.randn(Nz) * amplitude
print np.where(np.isnan(density_out))[0].size
# Now we have to fix the Nyquist plane
hNs = Ns/2
nyquist = density_out[:, :, hNs]
Nplane = nyquist.size
nyquist.flat[:Nplane/2] = np.sqrt(2.0)*nyquist.flat[Nplane:Nplane/2:-1].conj()
return density_out
@ct.timeit_quiet
def run_generation(input_borg, a_borg, a_ic, cosmo, supersample=1, supergenerate=1, do_lpt2=True, shiftPixel=False, psi_instead=False, needvel=True, func='HU_WIGGLES'):
""" Generate particles and velocities from a BORG snapshot. Returns a tuple of
(positions,velocities,N,BoxSize,scale_factor)."""
@ -64,17 +122,27 @@ def run_generation(input_borg, a_borg, a_ic, cosmo, supersample=1, do_lpt2=True,
density, L = ba.half_pixel_shift(borg_vol, doshift=shiftPixel)
lpt = LagrangianPerturbation(density, L, fourier=True, supersample=supersample)
# Generate grid
posq = gen_posgrid(N*supersample, L)
vel= []
posx = []
# Compute LPT scaling coefficient
D1 = cgrowth.D(a_ic)
D1_0 = D1/cgrowth.D(a_borg)
Dborg = cgrowth.D(a_borg)/cgrowth.D(1.0)
print "D1_0=%lg" % D1_0
if supergenerate>1:
print("Doing supergeneration (factor=%d)" % supergenerate)
p = ct.CosmologyPower(**cosmo)
p.setFunction(func)
p.normalize(cosmo['SIGMA8']*Dborg)
density = do_supergenerate(density,mulfac=supergenerate,Pk=p,L=L,h=cosmo['h'])
lpt = LagrangianPerturbation(density, L, fourier=True, supersample=supersample)
# Generate grid
posq = gen_posgrid(N*supergenerate, L)
vel= []
posx = []
velmul = cgrowth.compute_velmul(a_ic) if not psi_instead else 1
D2 = -3./7 * D1_0**2
@ -100,7 +168,7 @@ def run_generation(input_borg, a_borg, a_ic, cosmo, supersample=1, do_lpt2=True,
density = lpt.cube.irfft()
density *= (cgrowth.D(1)/cgrowth.D(a_borg))
return posx,vel,density,N*supersample,L,a_ic,cosmo
return posx,vel,density,N*supergenerate*supersample,L,a_ic,cosmo
@ct.timeit_quiet
@ -127,39 +195,7 @@ def whitify(density, L, cosmo, supergenerate=1, zero_fill=False, func='HU_WIGGLE
Ns = N*supergenerate
density_hat_super = np.zeros((Ns,Ns,Ns/2+1), dtype=np.complex128)
density_hat_super[:] = np.nan
# Copy density hat in place
hN = N/2
density_hat_super[:hN, :hN, :hN+1] = density_hat[:hN, :hN, :]
density_hat_super[:hN, (Ns-hN):Ns, :hN+1] = density_hat[:hN, hN:, :]
density_hat_super[(Ns-hN):Ns, (Ns-hN):Ns, :hN+1] = density_hat[hN:, hN:, :]
density_hat_super[(Ns-hN):Ns, :hN, :hN+1] = density_hat[hN:, :hN, :]
# The moved nyquist place is untouched (so loss of "noise") to keep the structure
# now we just add some noise term
if supergenerate > 1:
cond=np.isnan(density_hat_super)
if zero_fill:
density_hat_super[cond] = 0
else:
print np.where(np.isnan(density_hat_super))[0].size
Nz = np.count_nonzero(cond)
density_hat_super.real[cond] = np.random.randn(Nz)
density_hat_super.imag[cond] = np.random.randn(Nz)
density_hat_super[cond] /= np.sqrt(2.0)
print np.where(np.isnan(density_hat_super))[0].size
# Now we have to fix the Nyquist plane
hNs = Ns/2
nyquist = density_hat_super[:, :, hNs]
Nplane = nyquist.size
nyquist.flat[:Nplane/2] = np.sqrt(2.0)*nyquist.flat[Nplane:Nplane/2:-1].conj()
print np.where(np.isnan(density_hat_super))[0].size
density_hat_super = do_supergenerate(density_hat, mulfac=supergenerate)
cube = CubeFT(L, Ns)
cube.dhat = density_hat_super

View file

@ -116,7 +116,7 @@ class LagrangianPerturbation(object):
def _gradient(self, phi, direction):
ne.evaluate('phi_hat * i * kv / (kx**2 + ky**2 + kz**2)', out=self.cube.dhat,
local_dict={'i':-1j, 'phi_hat':phi, 'kv':self._kdir(direction),
'kx':self._kx, 'ky':self._ky, 'kz':self._kz}
'kx':self._kx, 'ky':self._ky, 'kz':self._kz},casting='unsafe')
# self.cube.dhat = self._kdir(direction)*1j*phi
self.cube.dhat[0,0,0] = 0
return self.cube.irfft()
@ -159,8 +159,10 @@ class LagrangianPerturbation(object):
# k2 = self._get_k2()
# k2[0,0,0] = 1
potgen0 = lambda i: ne.evaluate('kdir**2*d/k2',out=self.cube.dhat,local_dict={'kdir':self._kdir(i),'d':self.dhat,'k2':k2} )
potgen = lambda i,j: ne.evaluate('kdir0*kdir1*d/k2',out=self.cube.dhat,local_dict={'kdir0':self._kdir(i),'kdir1':self._kdir(j),'d':self.dhat,'k2':k2} )
inv_k2 = ne.evaluate('1/(kx**2+ky**2+kz**2)', {'kx':self._kdir(0),'ky':self._kdir(1),'kz':self._kdir(2)})
inv_k2[0,0,0]=0
potgen0 = lambda i: ne.evaluate('kdir**2*d*ik2',out=self.cube.dhat,local_dict={'kdir':self._kdir(i),'d':self.dhat,'ik2':inv_k2}, casting='unsafe' )
potgen = lambda i,j: ne.evaluate('kdir0*kdir1*d*ik2',out=self.cube.dhat,local_dict={'kdir0':self._kdir(i),'kdir1':self._kdir(j),'d':self.dhat,'ik2':inv_k2}, casting='unsafe' )
if 'lpt2_potential' not in self.cache:
print("Rebuilding potential...")
@ -169,7 +171,7 @@ class LagrangianPerturbation(object):
q = self._do_irfft( potgen0(j) ).copy()
for i in xrange(j+1, 3):
ne.evaluate('div + q * pot', out=div_phi2,
local_dict={'q':q,'pot':self._do_irfft( potgen0(i), copy=False ) }
local_dict={'div':div_phi2, 'q':q,'pot':self._do_irfft( potgen0(i), copy=False ) }
)
ne.evaluate('div - pot**2',out=div_phi2,
local_dict={'div':div_phi2,'pot':self._do_irfft(potgen(i,j), copy=False) }

View file

@ -14,11 +14,11 @@ cosmo['omega_B_0']=0.049
cosmo['SIGMA8']=0.8344
cosmo['ns']=0.9624
supergen=8
zstart=50
supergen=4
zstart=99
astart=1/(1.+zstart)
halfPixelShift=False
zero_fill=False
if __name__=="__main__":
bic.write_icfiles(*bic.run_generation("initial_density_1872.dat", 0.001, astart, cosmo, supersample=1, shiftPixel=halfPixelShift, do_lpt2=False), supergenerate=supergen, zero_fill=zero_fill)
bic.write_icfiles(*bic.run_generation("initial_density_1872.dat", 0.001, astart, cosmo, supersample=1, shiftPixel=halfPixelShift, do_lpt2=False, supergenerate=supergen), supergenerate=1, zero_fill=zero_fill)

View file

@ -37,7 +37,7 @@ if doSimulation:
dsim_hat = np.fft.rfftn(dsim)*(L/N0)**3
Psim, bsim = bic.bin_power(np.abs(dsim_hat)**2/L**3, L, range=(0,1.), bins=150)
pos,_,density,N,L,_,_ = bic.run_generation("initial_density_988.dat", 0.001, astart, cosmo, supersample=1, do_lpt2=True)
pos,_,density,N,L,_,_ = bic.run_generation("initial_density_1872.dat", 0.001, astart, cosmo, supersample=1, do_lpt2=False, supergenerate=2)
dcic = ct.cicParticles(pos, L, N0)
dcic /= np.average(np.average(np.average(dcic, axis=0), axis=0), axis=0)
@ -46,17 +46,16 @@ dcic -= 1
dcic_hat = np.fft.rfftn(dcic)*(L/N0)**3
dens_hat = np.fft.rfftn(density)*(L/N0)**3
Pcic, bcic = bic.bin_power(np.abs(dcic_hat)**2/L**3, L, range=(0,1.), bins=150)
Pdens, bdens = bic.bin_power(np.abs(dens_hat)**2/L**3, L, range=(0,1.), bins=150)
Pcic, bcic = bic.bin_power(np.abs(dcic_hat)**2/L**3, L, range=(0,4.), bins=150)
Pdens, bdens = bic.bin_power(np.abs(dens_hat)**2/L**3, L, range=(0,4.), bins=150)
cgrowth = cg.CosmoGrowth(**cosmo)
D1 = cgrowth.D(astart)
D1_0 = D1/cgrowth.D(1)#0.001)
Pref, bref = bic.compute_ref_power(L, N0, cosmo, range=(0,1.), bins=150)
Pref, bref = bic.compute_ref_power(L, N0, cosmo, range=(0,4.), bins=150)
Pcic /= D1_0**2
Pdens /= D1_0**2
#borg_evolved = ct.read_borg_vol("final_density_1380.dat")
#dborg_hat = np.fft.rfftn(borg_evolved.density)*L**3/borg_evolved.density.size