Updated icgen to support padded phases from BORG
This commit is contained in:
parent
09998c39f4
commit
c5ad407b20
@ -53,7 +53,65 @@ def compute_ref_power(L, N, cosmo, bins=10, range=(0,1), func='HU_WIGGLES'):
|
||||
|
||||
return bin_power(p.compute(k)*cosmo['h']**3, L, bins=bins, range=range)
|
||||
|
||||
def run_generation(input_borg, a_borg, a_ic, cosmo, supersample=1, do_lpt2=True, shiftPixel=False, psi_instead=False, needvel=True):
|
||||
|
||||
def do_supergenerate(density, density_out=None, mulfac=None,zero_fill=False,Pk=None,L=None,h=None):
|
||||
|
||||
N = density.shape[0]
|
||||
|
||||
if density_out is None:
|
||||
assert mulfac is not None
|
||||
Ns = mulfac*N
|
||||
density_out = np.zeros((Ns,Ns,Ns/2+1), dtype=np.complex128)
|
||||
density_out[:] = np.nan
|
||||
elif mulfac is None:
|
||||
mulfac = density_out.shape[0] / N
|
||||
Ns = density_out.shape[0]
|
||||
assert (density_out.shape[0] % N) == 0
|
||||
|
||||
assert len(density_out.shape) == 3
|
||||
assert density_out.shape[0] == density_out.shape[1]
|
||||
assert density_out.shape[2] == (density_out.shape[0]/2+1)
|
||||
|
||||
hN = N/2
|
||||
density_out[:hN, :hN, :hN+1] = density[:hN, :hN, :]
|
||||
density_out[:hN, (Ns-hN):Ns, :hN+1] = density[:hN, hN:, :]
|
||||
density_out[(Ns-hN):Ns, (Ns-hN):Ns, :hN+1] = density[hN:, hN:, :]
|
||||
density_out[(Ns-hN):Ns, :hN, :hN+1] = density[hN:, :hN, :]
|
||||
|
||||
if mulfac > 1:
|
||||
|
||||
cond=np.isnan(density_out)
|
||||
if zero_fill:
|
||||
density_out[cond] = 0
|
||||
else:
|
||||
|
||||
if Pk is not None:
|
||||
assert L is not None and h is not None
|
||||
|
||||
@ct.timeit_quiet
|
||||
def build_Pk():
|
||||
ik = np.fft.fftfreq(Ns, d=L/Ns)*2*np.pi
|
||||
k = ne.evaluate('sqrt(kx**2 + ky**2 + kz**2)', {'kx':ik[:,None,None], 'ky':ik[None,:,None], 'kz':ik[None,None,:(Ns/2+1)]})
|
||||
return Pk.compute(k)*(h*L)**3
|
||||
|
||||
print np.where(np.isnan(density_out))[0].size
|
||||
Nz = np.count_nonzero(cond)
|
||||
amplitude = np.sqrt(build_Pk()[cond]/2) if Pk is not None else (1.0/np.sqrt(2))
|
||||
density_out.real[cond] = np.random.randn(Nz) * amplitude
|
||||
density_out.imag[cond] = np.random.randn(Nz) * amplitude
|
||||
print np.where(np.isnan(density_out))[0].size
|
||||
|
||||
# Now we have to fix the Nyquist plane
|
||||
hNs = Ns/2
|
||||
nyquist = density_out[:, :, hNs]
|
||||
Nplane = nyquist.size
|
||||
nyquist.flat[:Nplane/2] = np.sqrt(2.0)*nyquist.flat[Nplane:Nplane/2:-1].conj()
|
||||
|
||||
|
||||
return density_out
|
||||
|
||||
@ct.timeit_quiet
|
||||
def run_generation(input_borg, a_borg, a_ic, cosmo, supersample=1, supergenerate=1, do_lpt2=True, shiftPixel=False, psi_instead=False, needvel=True, func='HU_WIGGLES'):
|
||||
""" Generate particles and velocities from a BORG snapshot. Returns a tuple of
|
||||
(positions,velocities,N,BoxSize,scale_factor)."""
|
||||
|
||||
@ -64,17 +122,27 @@ def run_generation(input_borg, a_borg, a_ic, cosmo, supersample=1, do_lpt2=True,
|
||||
|
||||
density, L = ba.half_pixel_shift(borg_vol, doshift=shiftPixel)
|
||||
|
||||
lpt = LagrangianPerturbation(density, L, fourier=True, supersample=supersample)
|
||||
|
||||
# Generate grid
|
||||
posq = gen_posgrid(N*supersample, L)
|
||||
vel= []
|
||||
posx = []
|
||||
|
||||
# Compute LPT scaling coefficient
|
||||
D1 = cgrowth.D(a_ic)
|
||||
D1_0 = D1/cgrowth.D(a_borg)
|
||||
Dborg = cgrowth.D(a_borg)/cgrowth.D(1.0)
|
||||
print "D1_0=%lg" % D1_0
|
||||
|
||||
if supergenerate>1:
|
||||
print("Doing supergeneration (factor=%d)" % supergenerate)
|
||||
p = ct.CosmologyPower(**cosmo)
|
||||
p.setFunction(func)
|
||||
p.normalize(cosmo['SIGMA8']*Dborg)
|
||||
density = do_supergenerate(density,mulfac=supergenerate,Pk=p,L=L,h=cosmo['h'])
|
||||
|
||||
lpt = LagrangianPerturbation(density, L, fourier=True, supersample=supersample)
|
||||
|
||||
# Generate grid
|
||||
posq = gen_posgrid(N*supergenerate, L)
|
||||
vel= []
|
||||
posx = []
|
||||
|
||||
velmul = cgrowth.compute_velmul(a_ic) if not psi_instead else 1
|
||||
|
||||
D2 = -3./7 * D1_0**2
|
||||
@ -100,7 +168,7 @@ def run_generation(input_borg, a_borg, a_ic, cosmo, supersample=1, do_lpt2=True,
|
||||
density = lpt.cube.irfft()
|
||||
density *= (cgrowth.D(1)/cgrowth.D(a_borg))
|
||||
|
||||
return posx,vel,density,N*supersample,L,a_ic,cosmo
|
||||
return posx,vel,density,N*supergenerate*supersample,L,a_ic,cosmo
|
||||
|
||||
|
||||
@ct.timeit_quiet
|
||||
@ -127,39 +195,7 @@ def whitify(density, L, cosmo, supergenerate=1, zero_fill=False, func='HU_WIGGLE
|
||||
|
||||
Ns = N*supergenerate
|
||||
|
||||
density_hat_super = np.zeros((Ns,Ns,Ns/2+1), dtype=np.complex128)
|
||||
density_hat_super[:] = np.nan
|
||||
# Copy density hat in place
|
||||
|
||||
hN = N/2
|
||||
density_hat_super[:hN, :hN, :hN+1] = density_hat[:hN, :hN, :]
|
||||
density_hat_super[:hN, (Ns-hN):Ns, :hN+1] = density_hat[:hN, hN:, :]
|
||||
density_hat_super[(Ns-hN):Ns, (Ns-hN):Ns, :hN+1] = density_hat[hN:, hN:, :]
|
||||
density_hat_super[(Ns-hN):Ns, :hN, :hN+1] = density_hat[hN:, :hN, :]
|
||||
|
||||
# The moved nyquist place is untouched (so loss of "noise") to keep the structure
|
||||
# now we just add some noise term
|
||||
if supergenerate > 1:
|
||||
|
||||
cond=np.isnan(density_hat_super)
|
||||
if zero_fill:
|
||||
density_hat_super[cond] = 0
|
||||
else:
|
||||
|
||||
print np.where(np.isnan(density_hat_super))[0].size
|
||||
Nz = np.count_nonzero(cond)
|
||||
density_hat_super.real[cond] = np.random.randn(Nz)
|
||||
density_hat_super.imag[cond] = np.random.randn(Nz)
|
||||
density_hat_super[cond] /= np.sqrt(2.0)
|
||||
print np.where(np.isnan(density_hat_super))[0].size
|
||||
|
||||
# Now we have to fix the Nyquist plane
|
||||
hNs = Ns/2
|
||||
nyquist = density_hat_super[:, :, hNs]
|
||||
Nplane = nyquist.size
|
||||
nyquist.flat[:Nplane/2] = np.sqrt(2.0)*nyquist.flat[Nplane:Nplane/2:-1].conj()
|
||||
|
||||
print np.where(np.isnan(density_hat_super))[0].size
|
||||
density_hat_super = do_supergenerate(density_hat, mulfac=supergenerate)
|
||||
|
||||
cube = CubeFT(L, Ns)
|
||||
cube.dhat = density_hat_super
|
||||
|
@ -116,7 +116,7 @@ class LagrangianPerturbation(object):
|
||||
def _gradient(self, phi, direction):
|
||||
ne.evaluate('phi_hat * i * kv / (kx**2 + ky**2 + kz**2)', out=self.cube.dhat,
|
||||
local_dict={'i':-1j, 'phi_hat':phi, 'kv':self._kdir(direction),
|
||||
'kx':self._kx, 'ky':self._ky, 'kz':self._kz}
|
||||
'kx':self._kx, 'ky':self._ky, 'kz':self._kz},casting='unsafe')
|
||||
# self.cube.dhat = self._kdir(direction)*1j*phi
|
||||
self.cube.dhat[0,0,0] = 0
|
||||
return self.cube.irfft()
|
||||
@ -159,8 +159,10 @@ class LagrangianPerturbation(object):
|
||||
# k2 = self._get_k2()
|
||||
# k2[0,0,0] = 1
|
||||
|
||||
potgen0 = lambda i: ne.evaluate('kdir**2*d/k2',out=self.cube.dhat,local_dict={'kdir':self._kdir(i),'d':self.dhat,'k2':k2} )
|
||||
potgen = lambda i,j: ne.evaluate('kdir0*kdir1*d/k2',out=self.cube.dhat,local_dict={'kdir0':self._kdir(i),'kdir1':self._kdir(j),'d':self.dhat,'k2':k2} )
|
||||
inv_k2 = ne.evaluate('1/(kx**2+ky**2+kz**2)', {'kx':self._kdir(0),'ky':self._kdir(1),'kz':self._kdir(2)})
|
||||
inv_k2[0,0,0]=0
|
||||
potgen0 = lambda i: ne.evaluate('kdir**2*d*ik2',out=self.cube.dhat,local_dict={'kdir':self._kdir(i),'d':self.dhat,'ik2':inv_k2}, casting='unsafe' )
|
||||
potgen = lambda i,j: ne.evaluate('kdir0*kdir1*d*ik2',out=self.cube.dhat,local_dict={'kdir0':self._kdir(i),'kdir1':self._kdir(j),'d':self.dhat,'ik2':inv_k2}, casting='unsafe' )
|
||||
|
||||
if 'lpt2_potential' not in self.cache:
|
||||
print("Rebuilding potential...")
|
||||
@ -169,7 +171,7 @@ class LagrangianPerturbation(object):
|
||||
q = self._do_irfft( potgen0(j) ).copy()
|
||||
for i in xrange(j+1, 3):
|
||||
ne.evaluate('div + q * pot', out=div_phi2,
|
||||
local_dict={'q':q,'pot':self._do_irfft( potgen0(i), copy=False ) }
|
||||
local_dict={'div':div_phi2, 'q':q,'pot':self._do_irfft( potgen0(i), copy=False ) }
|
||||
)
|
||||
ne.evaluate('div - pot**2',out=div_phi2,
|
||||
local_dict={'div':div_phi2,'pot':self._do_irfft(potgen(i,j), copy=False) }
|
||||
|
@ -14,11 +14,11 @@ cosmo['omega_B_0']=0.049
|
||||
cosmo['SIGMA8']=0.8344
|
||||
cosmo['ns']=0.9624
|
||||
|
||||
supergen=8
|
||||
zstart=50
|
||||
supergen=4
|
||||
zstart=99
|
||||
astart=1/(1.+zstart)
|
||||
halfPixelShift=False
|
||||
zero_fill=False
|
||||
|
||||
if __name__=="__main__":
|
||||
bic.write_icfiles(*bic.run_generation("initial_density_1872.dat", 0.001, astart, cosmo, supersample=1, shiftPixel=halfPixelShift, do_lpt2=False), supergenerate=supergen, zero_fill=zero_fill)
|
||||
bic.write_icfiles(*bic.run_generation("initial_density_1872.dat", 0.001, astart, cosmo, supersample=1, shiftPixel=halfPixelShift, do_lpt2=False, supergenerate=supergen), supergenerate=1, zero_fill=zero_fill)
|
||||
|
@ -37,7 +37,7 @@ if doSimulation:
|
||||
dsim_hat = np.fft.rfftn(dsim)*(L/N0)**3
|
||||
Psim, bsim = bic.bin_power(np.abs(dsim_hat)**2/L**3, L, range=(0,1.), bins=150)
|
||||
|
||||
pos,_,density,N,L,_,_ = bic.run_generation("initial_density_988.dat", 0.001, astart, cosmo, supersample=1, do_lpt2=True)
|
||||
pos,_,density,N,L,_,_ = bic.run_generation("initial_density_1872.dat", 0.001, astart, cosmo, supersample=1, do_lpt2=False, supergenerate=2)
|
||||
|
||||
dcic = ct.cicParticles(pos, L, N0)
|
||||
dcic /= np.average(np.average(np.average(dcic, axis=0), axis=0), axis=0)
|
||||
@ -46,17 +46,16 @@ dcic -= 1
|
||||
dcic_hat = np.fft.rfftn(dcic)*(L/N0)**3
|
||||
dens_hat = np.fft.rfftn(density)*(L/N0)**3
|
||||
|
||||
Pcic, bcic = bic.bin_power(np.abs(dcic_hat)**2/L**3, L, range=(0,1.), bins=150)
|
||||
Pdens, bdens = bic.bin_power(np.abs(dens_hat)**2/L**3, L, range=(0,1.), bins=150)
|
||||
Pcic, bcic = bic.bin_power(np.abs(dcic_hat)**2/L**3, L, range=(0,4.), bins=150)
|
||||
Pdens, bdens = bic.bin_power(np.abs(dens_hat)**2/L**3, L, range=(0,4.), bins=150)
|
||||
|
||||
cgrowth = cg.CosmoGrowth(**cosmo)
|
||||
D1 = cgrowth.D(astart)
|
||||
D1_0 = D1/cgrowth.D(1)#0.001)
|
||||
|
||||
Pref, bref = bic.compute_ref_power(L, N0, cosmo, range=(0,1.), bins=150)
|
||||
Pref, bref = bic.compute_ref_power(L, N0, cosmo, range=(0,4.), bins=150)
|
||||
|
||||
Pcic /= D1_0**2
|
||||
Pdens /= D1_0**2
|
||||
|
||||
#borg_evolved = ct.read_borg_vol("final_density_1380.dat")
|
||||
#dborg_hat = np.fft.rfftn(borg_evolved.density)*L**3/borg_evolved.density.size
|
||||
|
Loading…
Reference in New Issue
Block a user