More debugging. Temporarily disabled phase shifting
This commit is contained in:
parent
7662ea98d4
commit
8f582707da
4 changed files with 51 additions and 17 deletions
|
@ -9,6 +9,7 @@ def fourier_analysis(borg_vol):
|
|||
def half_pixel_shift(borg):
|
||||
|
||||
dhat,L,N = fourier_analysis(borg)
|
||||
return dhat, L
|
||||
|
||||
ik = np.fft.fftfreq(N,d=L/N)*2*np.pi
|
||||
phi = 0.5*L/N*(ik[:,None,None]+ik[None,:,None]+ik[None,None,:(N/2+1)])
|
||||
|
|
|
@ -50,7 +50,7 @@ def compute_ref_power(L, N, cosmo, bins=10, range=(0,1), func='HU_WIGGLES'):
|
|||
|
||||
return bin_power(p.compute(k)*cosmo['h']**3, L, bins=bins, range=range)
|
||||
|
||||
def run_generation(input_borg, a_borg, a_ic, **cosmo):
|
||||
def run_generation(input_borg, a_borg, a_ic, cosmo, supersample=1, do_lpt2=True):
|
||||
""" Generate particles and velocities from a BORG snapshot. Returns a tuple of
|
||||
(positions,velocities,N,BoxSize,scale_factor)."""
|
||||
|
||||
|
@ -61,10 +61,10 @@ def run_generation(input_borg, a_borg, a_ic, **cosmo):
|
|||
|
||||
density_hat, L = ba.half_pixel_shift(borg_vol)
|
||||
|
||||
lpt = LagrangianPerturbation(density_hat, L, fourier=True)
|
||||
lpt = LagrangianPerturbation(density_hat, L, fourier=True, supersample=supersample)
|
||||
|
||||
# Generate grid
|
||||
posq = gen_posgrid(N, L)
|
||||
posq = gen_posgrid(N*supersample, L)
|
||||
vel= []
|
||||
posx = []
|
||||
|
||||
|
@ -73,11 +73,15 @@ def run_generation(input_borg, a_borg, a_ic, **cosmo):
|
|||
D1_0 = D1/cgrowth.D(a_borg)
|
||||
velmul = cgrowth.compute_velmul(a_ic)*D1_0
|
||||
|
||||
D2 = 3./7 * D1**2
|
||||
D2 = -3./7 * D1_0**2
|
||||
|
||||
for j in xrange(3):
|
||||
# Generate psi_j (displacement along j)
|
||||
print("LPT1 axis=%d" % j)
|
||||
psi = D1_0*lpt.lpt1(j).flatten()
|
||||
if do_lpt2:
|
||||
print("LPT2 axis=%d" % j)
|
||||
psi += D2 * lpt.lpt2(j).flatten()
|
||||
# Generate posx
|
||||
posx.append(((posq[j] + psi)%L).astype(np.float32))
|
||||
# Generate vel
|
||||
|
|
|
@ -42,13 +42,29 @@ class CosmoGrowth(object):
|
|||
|
||||
class LagrangianPerturbation(object):
|
||||
|
||||
def __init__(self,density,L, fourier=False):
|
||||
def __init__(self,density,L, fourier=False, supersample=1):
|
||||
|
||||
self.L = L
|
||||
self.N = density.shape[0]
|
||||
self.dhat = np.fft.rfftn(density)*(L/self.N)**3 if not fourier else density
|
||||
if supersample > 1:
|
||||
self.upgrade_sampling(supersample)
|
||||
self.ik = np.fft.fftfreq(self.N, d=L/self.N)*2*np.pi
|
||||
self.cache = weakref.WeakValueDictionary()
|
||||
self.cache = {}#weakref.WeakValueDictionary()
|
||||
|
||||
def upgrade_sampling(self, supersample):
|
||||
N2 = self.N * supersample
|
||||
N = self.N
|
||||
dhat_new = np.zeros((N2, N2, N2/2+1), dtype=np.complex128)
|
||||
|
||||
hN = N/2
|
||||
dhat_new[:hN, :hN, :hN+1] = self.dhat[:hN, :hN, :]
|
||||
dhat_new[:hN, (N2-hN):N2, :hN+1] = self.dhat[:hN, hN:, :]
|
||||
dhat_new[(N2-hN):N2, (N2-hN):N2, :hN+1] = self.dhat[hN:, hN:, :]
|
||||
dhat_new[(N2-hN):N2, :hN, :hN+1] = self.dhat[hN:, :hN, :]
|
||||
|
||||
self.dhat = dhat_new
|
||||
self.N = N2
|
||||
|
||||
def _gradient(self, phi, direction):
|
||||
return np.fft.irfftn(self._kdir(direction)*1j*phi)*(self.N/self.L)**3
|
||||
|
@ -85,15 +101,16 @@ class LagrangianPerturbation(object):
|
|||
k2[0,0,0] = 1
|
||||
|
||||
if 'lpt2_potential' not in self.cache:
|
||||
div_phi2 = np.zeros((N,N,N), dtype=np.float64)
|
||||
print("Rebuilding potential...")
|
||||
div_phi2 = np.zeros((self.N,self.N,self.N), dtype=np.float64)
|
||||
for j in xrange(3):
|
||||
q = np.fft.irfftn( build_dir(ik, j)**2*self.dhat / k2 )
|
||||
q = np.fft.irfftn( self._kdir(j)**2*self.dhat / k2 )
|
||||
for i in xrange(j+1, 3):
|
||||
div_phi2 += q * np.fft.irfftn( build_dir(ik, i)**2*self.dhat / k2 )
|
||||
div_phi2 -= (np.fft.irfftn( build_dir(ik, j)*build_dir(ik, i)*self.dhat / k2 ))**2
|
||||
div_phi2 += q * np.fft.irfftn( self._kdir(i)**2*self.dhat / k2 )
|
||||
div_phi2 -= (np.fft.irfftn( self._kdir(j)*self._kdir(i)*self.dhat / k2 ))**2
|
||||
|
||||
div_phi2 *= (self.N/self.L)**3
|
||||
phi2_hat = np.fft.rfftn(div_phi2) * ((L/N)**3) / k2
|
||||
div_phi2 *= (self.N/self.L)**6
|
||||
phi2_hat = np.fft.rfftn(div_phi2) * ((self.L/self.N)**3) / k2
|
||||
self.cache['lpt2_potential'] = phi2_hat
|
||||
del div_phi2
|
||||
else:
|
||||
|
|
|
@ -1,3 +1,4 @@
|
|||
import numpy as np
|
||||
import cosmotool as ct
|
||||
import borgicgen as bic
|
||||
|
||||
|
@ -7,12 +8,23 @@ cosmo['omega_k_0'] = 0
|
|||
cosmo['omega_B_0']=0.049
|
||||
cosmo['SIGMA8']=0.8344
|
||||
|
||||
zstart=0
|
||||
TestCase=True
|
||||
zstart=10
|
||||
astart=1/(1.+zstart)
|
||||
|
||||
pos,_,density,N,L,_ = bic.run_generation("initial_condition_borg.dat", 0.001, astart, **cosmo)
|
||||
if TestCase:
|
||||
pos,_,density,N,L,_ = bic.run_generation("initial_condition_borg.dat", 0.001, astart, cosmo, supersample=1, do_lpt2=True)
|
||||
|
||||
dcic = ct.cicParticles(pos, L, N)
|
||||
dcic = ct.cicParticles(pos, L, N)
|
||||
dcic /= np.average(np.average(np.average(dcic, axis=0), axis=0), axis=0)
|
||||
dcic -= 1
|
||||
|
||||
#if __name__=="__main__":
|
||||
# bic.write_icfiles(*bic.run_generation("initial_condition_borg.dat", 0.001, astart, **cosmo), **cosmo)
|
||||
dcic_hat = np.fft.rfftn(dcic)*(L/N)**3
|
||||
|
||||
Pcic, bcic = bic.bin_power(np.abs(dcic_hat)**2/L**3, L, bins=50)
|
||||
|
||||
borg_evolved = ct.read_borg_vol("final_density_1380.dat")
|
||||
|
||||
if __name__=="__main__":
|
||||
if not TestCase:
|
||||
bic.write_icfiles(*bic.run_generation("initial_condition_borg.dat", 0.001, astart, cosmo, do_lpt2=True), **cosmo)
|
||||
|
|
Loading…
Reference in a new issue