More debugging. Temporarily disabled phase shifting

This commit is contained in:
Guilhem Lavaux 2014-06-03 12:35:58 +02:00
parent 7662ea98d4
commit 8f582707da
4 changed files with 51 additions and 17 deletions

View file

@ -9,6 +9,7 @@ def fourier_analysis(borg_vol):
def half_pixel_shift(borg):
dhat,L,N = fourier_analysis(borg)
return dhat, L
ik = np.fft.fftfreq(N,d=L/N)*2*np.pi
phi = 0.5*L/N*(ik[:,None,None]+ik[None,:,None]+ik[None,None,:(N/2+1)])

View file

@ -50,7 +50,7 @@ def compute_ref_power(L, N, cosmo, bins=10, range=(0,1), func='HU_WIGGLES'):
return bin_power(p.compute(k)*cosmo['h']**3, L, bins=bins, range=range)
def run_generation(input_borg, a_borg, a_ic, **cosmo):
def run_generation(input_borg, a_borg, a_ic, cosmo, supersample=1, do_lpt2=True):
""" Generate particles and velocities from a BORG snapshot. Returns a tuple of
(positions,velocities,N,BoxSize,scale_factor)."""
@ -61,10 +61,10 @@ def run_generation(input_borg, a_borg, a_ic, **cosmo):
density_hat, L = ba.half_pixel_shift(borg_vol)
lpt = LagrangianPerturbation(density_hat, L, fourier=True)
lpt = LagrangianPerturbation(density_hat, L, fourier=True, supersample=supersample)
# Generate grid
posq = gen_posgrid(N, L)
posq = gen_posgrid(N*supersample, L)
vel= []
posx = []
@ -73,11 +73,15 @@ def run_generation(input_borg, a_borg, a_ic, **cosmo):
D1_0 = D1/cgrowth.D(a_borg)
velmul = cgrowth.compute_velmul(a_ic)*D1_0
D2 = 3./7 * D1**2
D2 = -3./7 * D1_0**2
for j in xrange(3):
# Generate psi_j (displacement along j)
print("LPT1 axis=%d" % j)
psi = D1_0*lpt.lpt1(j).flatten()
if do_lpt2:
print("LPT2 axis=%d" % j)
psi += D2 * lpt.lpt2(j).flatten()
# Generate posx
posx.append(((posq[j] + psi)%L).astype(np.float32))
# Generate vel

View file

@ -42,13 +42,29 @@ class CosmoGrowth(object):
class LagrangianPerturbation(object):
def __init__(self,density,L, fourier=False):
def __init__(self,density,L, fourier=False, supersample=1):
self.L = L
self.N = density.shape[0]
self.dhat = np.fft.rfftn(density)*(L/self.N)**3 if not fourier else density
if supersample > 1:
self.upgrade_sampling(supersample)
self.ik = np.fft.fftfreq(self.N, d=L/self.N)*2*np.pi
self.cache = weakref.WeakValueDictionary()
self.cache = {}#weakref.WeakValueDictionary()
def upgrade_sampling(self, supersample):
N2 = self.N * supersample
N = self.N
dhat_new = np.zeros((N2, N2, N2/2+1), dtype=np.complex128)
hN = N/2
dhat_new[:hN, :hN, :hN+1] = self.dhat[:hN, :hN, :]
dhat_new[:hN, (N2-hN):N2, :hN+1] = self.dhat[:hN, hN:, :]
dhat_new[(N2-hN):N2, (N2-hN):N2, :hN+1] = self.dhat[hN:, hN:, :]
dhat_new[(N2-hN):N2, :hN, :hN+1] = self.dhat[hN:, :hN, :]
self.dhat = dhat_new
self.N = N2
def _gradient(self, phi, direction):
return np.fft.irfftn(self._kdir(direction)*1j*phi)*(self.N/self.L)**3
@ -85,15 +101,16 @@ class LagrangianPerturbation(object):
k2[0,0,0] = 1
if 'lpt2_potential' not in self.cache:
div_phi2 = np.zeros((N,N,N), dtype=np.float64)
print("Rebuilding potential...")
div_phi2 = np.zeros((self.N,self.N,self.N), dtype=np.float64)
for j in xrange(3):
q = np.fft.irfftn( build_dir(ik, j)**2*self.dhat / k2 )
q = np.fft.irfftn( self._kdir(j)**2*self.dhat / k2 )
for i in xrange(j+1, 3):
div_phi2 += q * np.fft.irfftn( build_dir(ik, i)**2*self.dhat / k2 )
div_phi2 -= (np.fft.irfftn( build_dir(ik, j)*build_dir(ik, i)*self.dhat / k2 ))**2
div_phi2 += q * np.fft.irfftn( self._kdir(i)**2*self.dhat / k2 )
div_phi2 -= (np.fft.irfftn( self._kdir(j)*self._kdir(i)*self.dhat / k2 ))**2
div_phi2 *= (self.N/self.L)**3
phi2_hat = np.fft.rfftn(div_phi2) * ((L/N)**3) / k2
div_phi2 *= (self.N/self.L)**6
phi2_hat = np.fft.rfftn(div_phi2) * ((self.L/self.N)**3) / k2
self.cache['lpt2_potential'] = phi2_hat
del div_phi2
else:

View file

@ -1,3 +1,4 @@
import numpy as np
import cosmotool as ct
import borgicgen as bic
@ -7,12 +8,23 @@ cosmo['omega_k_0'] = 0
cosmo['omega_B_0']=0.049
cosmo['SIGMA8']=0.8344
zstart=0
TestCase=True
zstart=10
astart=1/(1.+zstart)
pos,_,density,N,L,_ = bic.run_generation("initial_condition_borg.dat", 0.001, astart, **cosmo)
if TestCase:
pos,_,density,N,L,_ = bic.run_generation("initial_condition_borg.dat", 0.001, astart, cosmo, supersample=1, do_lpt2=True)
dcic = ct.cicParticles(pos, L, N)
dcic = ct.cicParticles(pos, L, N)
dcic /= np.average(np.average(np.average(dcic, axis=0), axis=0), axis=0)
dcic -= 1
#if __name__=="__main__":
# bic.write_icfiles(*bic.run_generation("initial_condition_borg.dat", 0.001, astart, **cosmo), **cosmo)
dcic_hat = np.fft.rfftn(dcic)*(L/N)**3
Pcic, bcic = bic.bin_power(np.abs(dcic_hat)**2/L**3, L, bins=50)
borg_evolved = ct.read_borg_vol("final_density_1380.dat")
if __name__=="__main__":
if not TestCase:
bic.write_icfiles(*bic.run_generation("initial_condition_borg.dat", 0.001, astart, cosmo, do_lpt2=True), **cosmo)