Fix PYFFTW usage. Use numexpr
This commit is contained in:
parent
815c0b616a
commit
de1bda366a
3 changed files with 15 additions and 12 deletions
|
@ -96,7 +96,7 @@ def run_generation(input_borg, a_borg, a_ic, cosmo, supersample=1, do_lpt2=True,
|
|||
print("velmul=%lg" % (cosmo['h']*velmul))
|
||||
|
||||
lpt.cube.dhat = lpt.dhat
|
||||
density = lpt.cube.irfft()
|
||||
density = lpt.cube.irfft()
|
||||
density *= (cgrowth.D(1)/cgrowth.D(a_borg))
|
||||
|
||||
return posx,vel,density,N*supersample,L,a_ic,cosmo
|
||||
|
|
|
@ -1,3 +1,4 @@
|
|||
import numexpr as ne
|
||||
import multiprocessing
|
||||
import pyfftw
|
||||
import weakref
|
||||
|
@ -13,14 +14,14 @@ class CubeFT(object):
|
|||
self.max_cpu = multiprocessing.cpu_count() if max_cpu < 0 else max_cpu
|
||||
self._dhat = pyfftw.n_byte_align_empty((self.N,self.N,self.N/2+1), self.align, dtype='complex64')
|
||||
self._density = pyfftw.n_byte_align_empty((self.N,self.N,self.N), self.align, dtype='float32')
|
||||
self.irfft = pyfftw.FFTW(self._dhat, self._density, axes=(0,1,2), direction='FFTW_BACKWARD', threads=self.max_cpu, normalize_idft=False)
|
||||
self.rfft = pyfftw.FFTW(self._density, self._dhat, axes=(0,1,2), threads=self.max_cpu, normalize_idft=False)
|
||||
self._irfft = pyfftw.FFTW(self._dhat, self._density, axes=(0,1,2), direction='FFTW_BACKWARD', threads=self.max_cpu, normalize_idft=False)
|
||||
self._rfft = pyfftw.FFTW(self._density, self._dhat, axes=(0,1,2), threads=self.max_cpu, normalize_idft=False)
|
||||
|
||||
def rfft(self):
|
||||
return self.rfft()*(self.L/self.N)**3
|
||||
return ne.evaluate('c*a', local_dict={'c':self._rfft(normalise_idft=False),'a':(self.L/self.N)**3})
|
||||
|
||||
def irfft(self):
|
||||
return self.irfft()/self.L**3
|
||||
return ne.evaluate('c*a', local_dict={'c':self._irfft(normalise_idft=False),'a':(1/self.L)**3})
|
||||
|
||||
def get_dhat(self):
|
||||
return self._dhat
|
||||
|
@ -152,16 +153,18 @@ class LagrangianPerturbation(object):
|
|||
k2 = self._get_k2()
|
||||
k2[0,0,0] = 1
|
||||
|
||||
potgen0 = lambda i: ne.evaluate('kdir**2*d/k2',local_dict={'kdir':self._kdir(i),'d':self.dhat,'k2':k2} )
|
||||
potgen = lambda i,j: ne.evaluate('kdir0*kdir1*d/k2',local_dict={'kdir0':self._kdir(i),'kdir1':self._kdir(j),'d':self.dhat,'k2':k2} )
|
||||
|
||||
if 'lpt2_potential' not in self.cache:
|
||||
print("Rebuilding potential...")
|
||||
div_phi2 = np.zeros((self.N,self.N,self.N), dtype=np.float64)
|
||||
for j in xrange(3):
|
||||
q = self._do_irfft( self._kdir(j)**2*self.dhat / k2 ).copy()
|
||||
q = self._do_irfft( potgen0(j) ).copy()
|
||||
for i in xrange(j+1, 3):
|
||||
div_phi2 += q * self._do_irfft( self._kdir(i)**2*self.dhat / k2 )
|
||||
div_phi2 -= (self._do_irfft(self._kdir(j)*self._kdir(i)*self.dhat / k2 ) )**2
|
||||
div_phi2 += q * self._do_irfft( potgen0(i) )
|
||||
div_phi2 -= self._do_irfft(potgen(i,j))**2
|
||||
|
||||
div_phi2 *= 1/self.L**6
|
||||
phi2_hat = -self._do_rfft(div_phi2) / k2
|
||||
#self.cache['lpt2_potential'] = phi2_hat
|
||||
del div_phi2
|
||||
|
|
|
@ -12,8 +12,8 @@ cosmo['SIGMA8']=0.8344
|
|||
cosmo['ns']=0.9624
|
||||
N0=256
|
||||
|
||||
doSimulation=True
|
||||
simShift=True
|
||||
doSimulation=False
|
||||
simShift=False
|
||||
|
||||
snap_id=int(sys.argv[1])
|
||||
astart=1/100.
|
||||
|
@ -37,7 +37,7 @@ if doSimulation:
|
|||
dsim_hat = np.fft.rfftn(dsim)*(L/N0)**3
|
||||
Psim, bsim = bic.bin_power(np.abs(dsim_hat)**2/L**3, L, range=(0,1.), bins=150)
|
||||
|
||||
pos,_,density,N,L,_,_ = bic.run_generation("initial_density_2588.dat", 0.001, astart, cosmo, supersample=2, do_lpt2=True)
|
||||
pos,_,density,N,L,_,_ = bic.run_generation("initial_density_988.dat", 0.001, astart, cosmo, supersample=1, do_lpt2=True)
|
||||
|
||||
dcic = ct.cicParticles(pos, L, N0)
|
||||
dcic /= np.average(np.average(np.average(dcic, axis=0), axis=0), axis=0)
|
||||
|
|
Loading…
Reference in a new issue