mirror of
https://github.com/Richard-Sti/csiborgtools.git
synced 2024-12-22 23:48:02 +00:00
c748c87e45
* simplify Planck catalogue * add MCXC and base survey * Add 2MPP classes * move match to MCXC to Planck * add halo catalogue * rm comment * rm unused imports * Move conversion to box * add min mass * Run on all simulations * rm old function * add combined catalogue * add halo positions * add knn neighbors * set to 5 sims for testing * add docstring * Switch to neighbours in a catalogue * rename io to read * fix indentation * rename to read * io -> read * add import * add RealisationMatcher * io -> read * add docstrings * add search_sim_indiices * update todo * keep make_cat at 10 for now * update nb
3633 lines
346 KiB
Text
3633 lines
346 KiB
Text
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 160,
|
|
"id": "5a38ed25",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2022-11-22T09:56:42.956157Z",
|
|
"start_time": "2022-11-22T09:56:41.999024Z"
|
|
}
|
|
},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"The autoreload extension is already loaded. To reload it, use:\n",
|
|
" %reload_ext autoreload\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"import numpy as np\n",
|
|
"%matplotlib notebook\n",
|
|
"import matplotlib.pyplot as plt\n",
|
|
"try:\n",
|
|
" import csiborgtools\n",
|
|
"except ModuleNotFoundError:\n",
|
|
" import sys\n",
|
|
" sys.path.append(\"../\")\n",
|
|
" import csiborgtools\n",
|
|
"import utils\n",
|
|
"%load_ext autoreload\n",
|
|
"%autoreload 2\n",
|
|
"\n",
|
|
"import joblib\n",
|
|
"from os.path import join\n",
|
|
"\n",
|
|
"from scipy.interpolate import interp1d"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 163,
|
|
"id": "fa492543",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2022-11-22T09:57:21.730075Z",
|
|
"start_time": "2022-11-22T09:57:21.281306Z"
|
|
}
|
|
},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"'/mnt/extraspace/hdesmond/ramses_out_7636'"
|
|
]
|
|
},
|
|
"execution_count": 163,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"sim = 7636\n",
|
|
"\n",
|
|
"csiborgtools.read.get_sim_path(sim)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 162,
|
|
"id": "95759c3e",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2022-11-22T09:57:00.423419Z",
|
|
"start_time": "2022-11-22T09:57:00.337146Z"
|
|
}
|
|
},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"7636"
|
|
]
|
|
},
|
|
"execution_count": 162,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "b3c4c223",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "464b91b3",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 2,
|
|
"id": "2c98d50d",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2022-11-21T19:32:19.115273Z",
|
|
"start_time": "2022-11-21T19:29:12.079733Z"
|
|
},
|
|
"scrolled": true
|
|
},
|
|
"outputs": [
|
|
{
|
|
"name": "stderr",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 10/10 [03:06<00:00, 18.69s/it]\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"cat = csiborgtools.read.CombinedHaloCatalogue()\n",
|
|
"# cat = csiborgtools.io.HaloCatalogue(7444, 951)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 3,
|
|
"id": "72f406e5",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2022-11-21T19:35:07.774766Z",
|
|
"start_time": "2022-11-21T19:35:07.088097Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"matcher = csiborgtools.match.RealisationsMatcher(cat)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 4,
|
|
"id": "e165bef2",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2022-11-21T19:35:30.136090Z",
|
|
"start_time": "2022-11-21T19:35:09.690538Z"
|
|
},
|
|
"scrolled": false
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"n = 0\n",
|
|
"match = matcher.cross_knn_position_single(n, 10)\n",
|
|
"# x.shape"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 125,
|
|
"id": "47c34662",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2022-11-21T20:29:04.785499Z",
|
|
"start_time": "2022-11-21T20:29:04.046235Z"
|
|
}
|
|
},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"application/javascript": [
|
|
"/* Put everything inside the global mpl namespace */\n",
|
|
"/* global mpl */\n",
|
|
"window.mpl = {};\n",
|
|
"\n",
|
|
"mpl.get_websocket_type = function () {\n",
|
|
" if (typeof WebSocket !== 'undefined') {\n",
|
|
" return WebSocket;\n",
|
|
" } else if (typeof MozWebSocket !== 'undefined') {\n",
|
|
" return MozWebSocket;\n",
|
|
" } else {\n",
|
|
" alert(\n",
|
|
" 'Your browser does not have WebSocket support. ' +\n",
|
|
" 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
|
|
" 'Firefox 4 and 5 are also supported but you ' +\n",
|
|
" 'have to enable WebSockets in about:config.'\n",
|
|
" );\n",
|
|
" }\n",
|
|
"};\n",
|
|
"\n",
|
|
"mpl.figure = function (figure_id, websocket, ondownload, parent_element) {\n",
|
|
" this.id = figure_id;\n",
|
|
"\n",
|
|
" this.ws = websocket;\n",
|
|
"\n",
|
|
" this.supports_binary = this.ws.binaryType !== undefined;\n",
|
|
"\n",
|
|
" if (!this.supports_binary) {\n",
|
|
" var warnings = document.getElementById('mpl-warnings');\n",
|
|
" if (warnings) {\n",
|
|
" warnings.style.display = 'block';\n",
|
|
" warnings.textContent =\n",
|
|
" 'This browser does not support binary websocket messages. ' +\n",
|
|
" 'Performance may be slow.';\n",
|
|
" }\n",
|
|
" }\n",
|
|
"\n",
|
|
" this.imageObj = new Image();\n",
|
|
"\n",
|
|
" this.context = undefined;\n",
|
|
" this.message = undefined;\n",
|
|
" this.canvas = undefined;\n",
|
|
" this.rubberband_canvas = undefined;\n",
|
|
" this.rubberband_context = undefined;\n",
|
|
" this.format_dropdown = undefined;\n",
|
|
"\n",
|
|
" this.image_mode = 'full';\n",
|
|
"\n",
|
|
" this.root = document.createElement('div');\n",
|
|
" this.root.setAttribute('style', 'display: inline-block');\n",
|
|
" this._root_extra_style(this.root);\n",
|
|
"\n",
|
|
" parent_element.appendChild(this.root);\n",
|
|
"\n",
|
|
" this._init_header(this);\n",
|
|
" this._init_canvas(this);\n",
|
|
" this._init_toolbar(this);\n",
|
|
"\n",
|
|
" var fig = this;\n",
|
|
"\n",
|
|
" this.waiting = false;\n",
|
|
"\n",
|
|
" this.ws.onopen = function () {\n",
|
|
" fig.send_message('supports_binary', { value: fig.supports_binary });\n",
|
|
" fig.send_message('send_image_mode', {});\n",
|
|
" if (fig.ratio !== 1) {\n",
|
|
" fig.send_message('set_device_pixel_ratio', {\n",
|
|
" device_pixel_ratio: fig.ratio,\n",
|
|
" });\n",
|
|
" }\n",
|
|
" fig.send_message('refresh', {});\n",
|
|
" };\n",
|
|
"\n",
|
|
" this.imageObj.onload = function () {\n",
|
|
" if (fig.image_mode === 'full') {\n",
|
|
" // Full images could contain transparency (where diff images\n",
|
|
" // almost always do), so we need to clear the canvas so that\n",
|
|
" // there is no ghosting.\n",
|
|
" fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
|
|
" }\n",
|
|
" fig.context.drawImage(fig.imageObj, 0, 0);\n",
|
|
" };\n",
|
|
"\n",
|
|
" this.imageObj.onunload = function () {\n",
|
|
" fig.ws.close();\n",
|
|
" };\n",
|
|
"\n",
|
|
" this.ws.onmessage = this._make_on_message_function(this);\n",
|
|
"\n",
|
|
" this.ondownload = ondownload;\n",
|
|
"};\n",
|
|
"\n",
|
|
"mpl.figure.prototype._init_header = function () {\n",
|
|
" var titlebar = document.createElement('div');\n",
|
|
" titlebar.classList =\n",
|
|
" 'ui-dialog-titlebar ui-widget-header ui-corner-all ui-helper-clearfix';\n",
|
|
" var titletext = document.createElement('div');\n",
|
|
" titletext.classList = 'ui-dialog-title';\n",
|
|
" titletext.setAttribute(\n",
|
|
" 'style',\n",
|
|
" 'width: 100%; text-align: center; padding: 3px;'\n",
|
|
" );\n",
|
|
" titlebar.appendChild(titletext);\n",
|
|
" this.root.appendChild(titlebar);\n",
|
|
" this.header = titletext;\n",
|
|
"};\n",
|
|
"\n",
|
|
"mpl.figure.prototype._canvas_extra_style = function (_canvas_div) {};\n",
|
|
"\n",
|
|
"mpl.figure.prototype._root_extra_style = function (_canvas_div) {};\n",
|
|
"\n",
|
|
"mpl.figure.prototype._init_canvas = function () {\n",
|
|
" var fig = this;\n",
|
|
"\n",
|
|
" var canvas_div = (this.canvas_div = document.createElement('div'));\n",
|
|
" canvas_div.setAttribute(\n",
|
|
" 'style',\n",
|
|
" 'border: 1px solid #ddd;' +\n",
|
|
" 'box-sizing: content-box;' +\n",
|
|
" 'clear: both;' +\n",
|
|
" 'min-height: 1px;' +\n",
|
|
" 'min-width: 1px;' +\n",
|
|
" 'outline: 0;' +\n",
|
|
" 'overflow: hidden;' +\n",
|
|
" 'position: relative;' +\n",
|
|
" 'resize: both;'\n",
|
|
" );\n",
|
|
"\n",
|
|
" function on_keyboard_event_closure(name) {\n",
|
|
" return function (event) {\n",
|
|
" return fig.key_event(event, name);\n",
|
|
" };\n",
|
|
" }\n",
|
|
"\n",
|
|
" canvas_div.addEventListener(\n",
|
|
" 'keydown',\n",
|
|
" on_keyboard_event_closure('key_press')\n",
|
|
" );\n",
|
|
" canvas_div.addEventListener(\n",
|
|
" 'keyup',\n",
|
|
" on_keyboard_event_closure('key_release')\n",
|
|
" );\n",
|
|
"\n",
|
|
" this._canvas_extra_style(canvas_div);\n",
|
|
" this.root.appendChild(canvas_div);\n",
|
|
"\n",
|
|
" var canvas = (this.canvas = document.createElement('canvas'));\n",
|
|
" canvas.classList.add('mpl-canvas');\n",
|
|
" canvas.setAttribute('style', 'box-sizing: content-box;');\n",
|
|
"\n",
|
|
" this.context = canvas.getContext('2d');\n",
|
|
"\n",
|
|
" var backingStore =\n",
|
|
" this.context.backingStorePixelRatio ||\n",
|
|
" this.context.webkitBackingStorePixelRatio ||\n",
|
|
" this.context.mozBackingStorePixelRatio ||\n",
|
|
" this.context.msBackingStorePixelRatio ||\n",
|
|
" this.context.oBackingStorePixelRatio ||\n",
|
|
" this.context.backingStorePixelRatio ||\n",
|
|
" 1;\n",
|
|
"\n",
|
|
" this.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
|
|
"\n",
|
|
" var rubberband_canvas = (this.rubberband_canvas = document.createElement(\n",
|
|
" 'canvas'\n",
|
|
" ));\n",
|
|
" rubberband_canvas.setAttribute(\n",
|
|
" 'style',\n",
|
|
" 'box-sizing: content-box; position: absolute; left: 0; top: 0; z-index: 1;'\n",
|
|
" );\n",
|
|
"\n",
|
|
" // Apply a ponyfill if ResizeObserver is not implemented by browser.\n",
|
|
" if (this.ResizeObserver === undefined) {\n",
|
|
" if (window.ResizeObserver !== undefined) {\n",
|
|
" this.ResizeObserver = window.ResizeObserver;\n",
|
|
" } else {\n",
|
|
" var obs = _JSXTOOLS_RESIZE_OBSERVER({});\n",
|
|
" this.ResizeObserver = obs.ResizeObserver;\n",
|
|
" }\n",
|
|
" }\n",
|
|
"\n",
|
|
" this.resizeObserverInstance = new this.ResizeObserver(function (entries) {\n",
|
|
" var nentries = entries.length;\n",
|
|
" for (var i = 0; i < nentries; i++) {\n",
|
|
" var entry = entries[i];\n",
|
|
" var width, height;\n",
|
|
" if (entry.contentBoxSize) {\n",
|
|
" if (entry.contentBoxSize instanceof Array) {\n",
|
|
" // Chrome 84 implements new version of spec.\n",
|
|
" width = entry.contentBoxSize[0].inlineSize;\n",
|
|
" height = entry.contentBoxSize[0].blockSize;\n",
|
|
" } else {\n",
|
|
" // Firefox implements old version of spec.\n",
|
|
" width = entry.contentBoxSize.inlineSize;\n",
|
|
" height = entry.contentBoxSize.blockSize;\n",
|
|
" }\n",
|
|
" } else {\n",
|
|
" // Chrome <84 implements even older version of spec.\n",
|
|
" width = entry.contentRect.width;\n",
|
|
" height = entry.contentRect.height;\n",
|
|
" }\n",
|
|
"\n",
|
|
" // Keep the size of the canvas and rubber band canvas in sync with\n",
|
|
" // the canvas container.\n",
|
|
" if (entry.devicePixelContentBoxSize) {\n",
|
|
" // Chrome 84 implements new version of spec.\n",
|
|
" canvas.setAttribute(\n",
|
|
" 'width',\n",
|
|
" entry.devicePixelContentBoxSize[0].inlineSize\n",
|
|
" );\n",
|
|
" canvas.setAttribute(\n",
|
|
" 'height',\n",
|
|
" entry.devicePixelContentBoxSize[0].blockSize\n",
|
|
" );\n",
|
|
" } else {\n",
|
|
" canvas.setAttribute('width', width * fig.ratio);\n",
|
|
" canvas.setAttribute('height', height * fig.ratio);\n",
|
|
" }\n",
|
|
" canvas.setAttribute(\n",
|
|
" 'style',\n",
|
|
" 'width: ' + width + 'px; height: ' + height + 'px;'\n",
|
|
" );\n",
|
|
"\n",
|
|
" rubberband_canvas.setAttribute('width', width);\n",
|
|
" rubberband_canvas.setAttribute('height', height);\n",
|
|
"\n",
|
|
" // And update the size in Python. We ignore the initial 0/0 size\n",
|
|
" // that occurs as the element is placed into the DOM, which should\n",
|
|
" // otherwise not happen due to the minimum size styling.\n",
|
|
" if (fig.ws.readyState == 1 && width != 0 && height != 0) {\n",
|
|
" fig.request_resize(width, height);\n",
|
|
" }\n",
|
|
" }\n",
|
|
" });\n",
|
|
" this.resizeObserverInstance.observe(canvas_div);\n",
|
|
"\n",
|
|
" function on_mouse_event_closure(name) {\n",
|
|
" return function (event) {\n",
|
|
" return fig.mouse_event(event, name);\n",
|
|
" };\n",
|
|
" }\n",
|
|
"\n",
|
|
" rubberband_canvas.addEventListener(\n",
|
|
" 'mousedown',\n",
|
|
" on_mouse_event_closure('button_press')\n",
|
|
" );\n",
|
|
" rubberband_canvas.addEventListener(\n",
|
|
" 'mouseup',\n",
|
|
" on_mouse_event_closure('button_release')\n",
|
|
" );\n",
|
|
" rubberband_canvas.addEventListener(\n",
|
|
" 'dblclick',\n",
|
|
" on_mouse_event_closure('dblclick')\n",
|
|
" );\n",
|
|
" // Throttle sequential mouse events to 1 every 20ms.\n",
|
|
" rubberband_canvas.addEventListener(\n",
|
|
" 'mousemove',\n",
|
|
" on_mouse_event_closure('motion_notify')\n",
|
|
" );\n",
|
|
"\n",
|
|
" rubberband_canvas.addEventListener(\n",
|
|
" 'mouseenter',\n",
|
|
" on_mouse_event_closure('figure_enter')\n",
|
|
" );\n",
|
|
" rubberband_canvas.addEventListener(\n",
|
|
" 'mouseleave',\n",
|
|
" on_mouse_event_closure('figure_leave')\n",
|
|
" );\n",
|
|
"\n",
|
|
" canvas_div.addEventListener('wheel', function (event) {\n",
|
|
" if (event.deltaY < 0) {\n",
|
|
" event.step = 1;\n",
|
|
" } else {\n",
|
|
" event.step = -1;\n",
|
|
" }\n",
|
|
" on_mouse_event_closure('scroll')(event);\n",
|
|
" });\n",
|
|
"\n",
|
|
" canvas_div.appendChild(canvas);\n",
|
|
" canvas_div.appendChild(rubberband_canvas);\n",
|
|
"\n",
|
|
" this.rubberband_context = rubberband_canvas.getContext('2d');\n",
|
|
" this.rubberband_context.strokeStyle = '#000000';\n",
|
|
"\n",
|
|
" this._resize_canvas = function (width, height, forward) {\n",
|
|
" if (forward) {\n",
|
|
" canvas_div.style.width = width + 'px';\n",
|
|
" canvas_div.style.height = height + 'px';\n",
|
|
" }\n",
|
|
" };\n",
|
|
"\n",
|
|
" // Disable right mouse context menu.\n",
|
|
" this.rubberband_canvas.addEventListener('contextmenu', function (_e) {\n",
|
|
" event.preventDefault();\n",
|
|
" return false;\n",
|
|
" });\n",
|
|
"\n",
|
|
" function set_focus() {\n",
|
|
" canvas.focus();\n",
|
|
" canvas_div.focus();\n",
|
|
" }\n",
|
|
"\n",
|
|
" window.setTimeout(set_focus, 100);\n",
|
|
"};\n",
|
|
"\n",
|
|
"mpl.figure.prototype._init_toolbar = function () {\n",
|
|
" var fig = this;\n",
|
|
"\n",
|
|
" var toolbar = document.createElement('div');\n",
|
|
" toolbar.classList = 'mpl-toolbar';\n",
|
|
" this.root.appendChild(toolbar);\n",
|
|
"\n",
|
|
" function on_click_closure(name) {\n",
|
|
" return function (_event) {\n",
|
|
" return fig.toolbar_button_onclick(name);\n",
|
|
" };\n",
|
|
" }\n",
|
|
"\n",
|
|
" function on_mouseover_closure(tooltip) {\n",
|
|
" return function (event) {\n",
|
|
" if (!event.currentTarget.disabled) {\n",
|
|
" return fig.toolbar_button_onmouseover(tooltip);\n",
|
|
" }\n",
|
|
" };\n",
|
|
" }\n",
|
|
"\n",
|
|
" fig.buttons = {};\n",
|
|
" var buttonGroup = document.createElement('div');\n",
|
|
" buttonGroup.classList = 'mpl-button-group';\n",
|
|
" for (var toolbar_ind in mpl.toolbar_items) {\n",
|
|
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
|
|
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
|
|
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
|
|
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
|
|
"\n",
|
|
" if (!name) {\n",
|
|
" /* Instead of a spacer, we start a new button group. */\n",
|
|
" if (buttonGroup.hasChildNodes()) {\n",
|
|
" toolbar.appendChild(buttonGroup);\n",
|
|
" }\n",
|
|
" buttonGroup = document.createElement('div');\n",
|
|
" buttonGroup.classList = 'mpl-button-group';\n",
|
|
" continue;\n",
|
|
" }\n",
|
|
"\n",
|
|
" var button = (fig.buttons[name] = document.createElement('button'));\n",
|
|
" button.classList = 'mpl-widget';\n",
|
|
" button.setAttribute('role', 'button');\n",
|
|
" button.setAttribute('aria-disabled', 'false');\n",
|
|
" button.addEventListener('click', on_click_closure(method_name));\n",
|
|
" button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n",
|
|
"\n",
|
|
" var icon_img = document.createElement('img');\n",
|
|
" icon_img.src = '_images/' + image + '.png';\n",
|
|
" icon_img.srcset = '_images/' + image + '_large.png 2x';\n",
|
|
" icon_img.alt = tooltip;\n",
|
|
" button.appendChild(icon_img);\n",
|
|
"\n",
|
|
" buttonGroup.appendChild(button);\n",
|
|
" }\n",
|
|
"\n",
|
|
" if (buttonGroup.hasChildNodes()) {\n",
|
|
" toolbar.appendChild(buttonGroup);\n",
|
|
" }\n",
|
|
"\n",
|
|
" var fmt_picker = document.createElement('select');\n",
|
|
" fmt_picker.classList = 'mpl-widget';\n",
|
|
" toolbar.appendChild(fmt_picker);\n",
|
|
" this.format_dropdown = fmt_picker;\n",
|
|
"\n",
|
|
" for (var ind in mpl.extensions) {\n",
|
|
" var fmt = mpl.extensions[ind];\n",
|
|
" var option = document.createElement('option');\n",
|
|
" option.selected = fmt === mpl.default_extension;\n",
|
|
" option.innerHTML = fmt;\n",
|
|
" fmt_picker.appendChild(option);\n",
|
|
" }\n",
|
|
"\n",
|
|
" var status_bar = document.createElement('span');\n",
|
|
" status_bar.classList = 'mpl-message';\n",
|
|
" toolbar.appendChild(status_bar);\n",
|
|
" this.message = status_bar;\n",
|
|
"};\n",
|
|
"\n",
|
|
"mpl.figure.prototype.request_resize = function (x_pixels, y_pixels) {\n",
|
|
" // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
|
|
" // which will in turn request a refresh of the image.\n",
|
|
" this.send_message('resize', { width: x_pixels, height: y_pixels });\n",
|
|
"};\n",
|
|
"\n",
|
|
"mpl.figure.prototype.send_message = function (type, properties) {\n",
|
|
" properties['type'] = type;\n",
|
|
" properties['figure_id'] = this.id;\n",
|
|
" this.ws.send(JSON.stringify(properties));\n",
|
|
"};\n",
|
|
"\n",
|
|
"mpl.figure.prototype.send_draw_message = function () {\n",
|
|
" if (!this.waiting) {\n",
|
|
" this.waiting = true;\n",
|
|
" this.ws.send(JSON.stringify({ type: 'draw', figure_id: this.id }));\n",
|
|
" }\n",
|
|
"};\n",
|
|
"\n",
|
|
"mpl.figure.prototype.handle_save = function (fig, _msg) {\n",
|
|
" var format_dropdown = fig.format_dropdown;\n",
|
|
" var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
|
|
" fig.ondownload(fig, format);\n",
|
|
"};\n",
|
|
"\n",
|
|
"mpl.figure.prototype.handle_resize = function (fig, msg) {\n",
|
|
" var size = msg['size'];\n",
|
|
" if (size[0] !== fig.canvas.width || size[1] !== fig.canvas.height) {\n",
|
|
" fig._resize_canvas(size[0], size[1], msg['forward']);\n",
|
|
" fig.send_message('refresh', {});\n",
|
|
" }\n",
|
|
"};\n",
|
|
"\n",
|
|
"mpl.figure.prototype.handle_rubberband = function (fig, msg) {\n",
|
|
" var x0 = msg['x0'] / fig.ratio;\n",
|
|
" var y0 = (fig.canvas.height - msg['y0']) / fig.ratio;\n",
|
|
" var x1 = msg['x1'] / fig.ratio;\n",
|
|
" var y1 = (fig.canvas.height - msg['y1']) / fig.ratio;\n",
|
|
" x0 = Math.floor(x0) + 0.5;\n",
|
|
" y0 = Math.floor(y0) + 0.5;\n",
|
|
" x1 = Math.floor(x1) + 0.5;\n",
|
|
" y1 = Math.floor(y1) + 0.5;\n",
|
|
" var min_x = Math.min(x0, x1);\n",
|
|
" var min_y = Math.min(y0, y1);\n",
|
|
" var width = Math.abs(x1 - x0);\n",
|
|
" var height = Math.abs(y1 - y0);\n",
|
|
"\n",
|
|
" fig.rubberband_context.clearRect(\n",
|
|
" 0,\n",
|
|
" 0,\n",
|
|
" fig.canvas.width / fig.ratio,\n",
|
|
" fig.canvas.height / fig.ratio\n",
|
|
" );\n",
|
|
"\n",
|
|
" fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
|
|
"};\n",
|
|
"\n",
|
|
"mpl.figure.prototype.handle_figure_label = function (fig, msg) {\n",
|
|
" // Updates the figure title.\n",
|
|
" fig.header.textContent = msg['label'];\n",
|
|
"};\n",
|
|
"\n",
|
|
"mpl.figure.prototype.handle_cursor = function (fig, msg) {\n",
|
|
" fig.rubberband_canvas.style.cursor = msg['cursor'];\n",
|
|
"};\n",
|
|
"\n",
|
|
"mpl.figure.prototype.handle_message = function (fig, msg) {\n",
|
|
" fig.message.textContent = msg['message'];\n",
|
|
"};\n",
|
|
"\n",
|
|
"mpl.figure.prototype.handle_draw = function (fig, _msg) {\n",
|
|
" // Request the server to send over a new figure.\n",
|
|
" fig.send_draw_message();\n",
|
|
"};\n",
|
|
"\n",
|
|
"mpl.figure.prototype.handle_image_mode = function (fig, msg) {\n",
|
|
" fig.image_mode = msg['mode'];\n",
|
|
"};\n",
|
|
"\n",
|
|
"mpl.figure.prototype.handle_history_buttons = function (fig, msg) {\n",
|
|
" for (var key in msg) {\n",
|
|
" if (!(key in fig.buttons)) {\n",
|
|
" continue;\n",
|
|
" }\n",
|
|
" fig.buttons[key].disabled = !msg[key];\n",
|
|
" fig.buttons[key].setAttribute('aria-disabled', !msg[key]);\n",
|
|
" }\n",
|
|
"};\n",
|
|
"\n",
|
|
"mpl.figure.prototype.handle_navigate_mode = function (fig, msg) {\n",
|
|
" if (msg['mode'] === 'PAN') {\n",
|
|
" fig.buttons['Pan'].classList.add('active');\n",
|
|
" fig.buttons['Zoom'].classList.remove('active');\n",
|
|
" } else if (msg['mode'] === 'ZOOM') {\n",
|
|
" fig.buttons['Pan'].classList.remove('active');\n",
|
|
" fig.buttons['Zoom'].classList.add('active');\n",
|
|
" } else {\n",
|
|
" fig.buttons['Pan'].classList.remove('active');\n",
|
|
" fig.buttons['Zoom'].classList.remove('active');\n",
|
|
" }\n",
|
|
"};\n",
|
|
"\n",
|
|
"mpl.figure.prototype.updated_canvas_event = function () {\n",
|
|
" // Called whenever the canvas gets updated.\n",
|
|
" this.send_message('ack', {});\n",
|
|
"};\n",
|
|
"\n",
|
|
"// A function to construct a web socket function for onmessage handling.\n",
|
|
"// Called in the figure constructor.\n",
|
|
"mpl.figure.prototype._make_on_message_function = function (fig) {\n",
|
|
" return function socket_on_message(evt) {\n",
|
|
" if (evt.data instanceof Blob) {\n",
|
|
" var img = evt.data;\n",
|
|
" if (img.type !== 'image/png') {\n",
|
|
" /* FIXME: We get \"Resource interpreted as Image but\n",
|
|
" * transferred with MIME type text/plain:\" errors on\n",
|
|
" * Chrome. But how to set the MIME type? It doesn't seem\n",
|
|
" * to be part of the websocket stream */\n",
|
|
" img.type = 'image/png';\n",
|
|
" }\n",
|
|
"\n",
|
|
" /* Free the memory for the previous frames */\n",
|
|
" if (fig.imageObj.src) {\n",
|
|
" (window.URL || window.webkitURL).revokeObjectURL(\n",
|
|
" fig.imageObj.src\n",
|
|
" );\n",
|
|
" }\n",
|
|
"\n",
|
|
" fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
|
|
" img\n",
|
|
" );\n",
|
|
" fig.updated_canvas_event();\n",
|
|
" fig.waiting = false;\n",
|
|
" return;\n",
|
|
" } else if (\n",
|
|
" typeof evt.data === 'string' &&\n",
|
|
" evt.data.slice(0, 21) === 'data:image/png;base64'\n",
|
|
" ) {\n",
|
|
" fig.imageObj.src = evt.data;\n",
|
|
" fig.updated_canvas_event();\n",
|
|
" fig.waiting = false;\n",
|
|
" return;\n",
|
|
" }\n",
|
|
"\n",
|
|
" var msg = JSON.parse(evt.data);\n",
|
|
" var msg_type = msg['type'];\n",
|
|
"\n",
|
|
" // Call the \"handle_{type}\" callback, which takes\n",
|
|
" // the figure and JSON message as its only arguments.\n",
|
|
" try {\n",
|
|
" var callback = fig['handle_' + msg_type];\n",
|
|
" } catch (e) {\n",
|
|
" console.log(\n",
|
|
" \"No handler for the '\" + msg_type + \"' message type: \",\n",
|
|
" msg\n",
|
|
" );\n",
|
|
" return;\n",
|
|
" }\n",
|
|
"\n",
|
|
" if (callback) {\n",
|
|
" try {\n",
|
|
" // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
|
|
" callback(fig, msg);\n",
|
|
" } catch (e) {\n",
|
|
" console.log(\n",
|
|
" \"Exception inside the 'handler_\" + msg_type + \"' callback:\",\n",
|
|
" e,\n",
|
|
" e.stack,\n",
|
|
" msg\n",
|
|
" );\n",
|
|
" }\n",
|
|
" }\n",
|
|
" };\n",
|
|
"};\n",
|
|
"\n",
|
|
"// from https://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
|
|
"mpl.findpos = function (e) {\n",
|
|
" //this section is from http://www.quirksmode.org/js/events_properties.html\n",
|
|
" var targ;\n",
|
|
" if (!e) {\n",
|
|
" e = window.event;\n",
|
|
" }\n",
|
|
" if (e.target) {\n",
|
|
" targ = e.target;\n",
|
|
" } else if (e.srcElement) {\n",
|
|
" targ = e.srcElement;\n",
|
|
" }\n",
|
|
" if (targ.nodeType === 3) {\n",
|
|
" // defeat Safari bug\n",
|
|
" targ = targ.parentNode;\n",
|
|
" }\n",
|
|
"\n",
|
|
" // pageX,Y are the mouse positions relative to the document\n",
|
|
" var boundingRect = targ.getBoundingClientRect();\n",
|
|
" var x = e.pageX - (boundingRect.left + document.body.scrollLeft);\n",
|
|
" var y = e.pageY - (boundingRect.top + document.body.scrollTop);\n",
|
|
"\n",
|
|
" return { x: x, y: y };\n",
|
|
"};\n",
|
|
"\n",
|
|
"/*\n",
|
|
" * return a copy of an object with only non-object keys\n",
|
|
" * we need this to avoid circular references\n",
|
|
" * https://stackoverflow.com/a/24161582/3208463\n",
|
|
" */\n",
|
|
"function simpleKeys(original) {\n",
|
|
" return Object.keys(original).reduce(function (obj, key) {\n",
|
|
" if (typeof original[key] !== 'object') {\n",
|
|
" obj[key] = original[key];\n",
|
|
" }\n",
|
|
" return obj;\n",
|
|
" }, {});\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.mouse_event = function (event, name) {\n",
|
|
" var canvas_pos = mpl.findpos(event);\n",
|
|
"\n",
|
|
" if (name === 'button_press') {\n",
|
|
" this.canvas.focus();\n",
|
|
" this.canvas_div.focus();\n",
|
|
" }\n",
|
|
"\n",
|
|
" var x = canvas_pos.x * this.ratio;\n",
|
|
" var y = canvas_pos.y * this.ratio;\n",
|
|
"\n",
|
|
" this.send_message(name, {\n",
|
|
" x: x,\n",
|
|
" y: y,\n",
|
|
" button: event.button,\n",
|
|
" step: event.step,\n",
|
|
" guiEvent: simpleKeys(event),\n",
|
|
" });\n",
|
|
"\n",
|
|
" /* This prevents the web browser from automatically changing to\n",
|
|
" * the text insertion cursor when the button is pressed. We want\n",
|
|
" * to control all of the cursor setting manually through the\n",
|
|
" * 'cursor' event from matplotlib */\n",
|
|
" event.preventDefault();\n",
|
|
" return false;\n",
|
|
"};\n",
|
|
"\n",
|
|
"mpl.figure.prototype._key_event_extra = function (_event, _name) {\n",
|
|
" // Handle any extra behaviour associated with a key event\n",
|
|
"};\n",
|
|
"\n",
|
|
"mpl.figure.prototype.key_event = function (event, name) {\n",
|
|
" // Prevent repeat events\n",
|
|
" if (name === 'key_press') {\n",
|
|
" if (event.key === this._key) {\n",
|
|
" return;\n",
|
|
" } else {\n",
|
|
" this._key = event.key;\n",
|
|
" }\n",
|
|
" }\n",
|
|
" if (name === 'key_release') {\n",
|
|
" this._key = null;\n",
|
|
" }\n",
|
|
"\n",
|
|
" var value = '';\n",
|
|
" if (event.ctrlKey && event.key !== 'Control') {\n",
|
|
" value += 'ctrl+';\n",
|
|
" }\n",
|
|
" else if (event.altKey && event.key !== 'Alt') {\n",
|
|
" value += 'alt+';\n",
|
|
" }\n",
|
|
" else if (event.shiftKey && event.key !== 'Shift') {\n",
|
|
" value += 'shift+';\n",
|
|
" }\n",
|
|
"\n",
|
|
" value += 'k' + event.key;\n",
|
|
"\n",
|
|
" this._key_event_extra(event, name);\n",
|
|
"\n",
|
|
" this.send_message(name, { key: value, guiEvent: simpleKeys(event) });\n",
|
|
" return false;\n",
|
|
"};\n",
|
|
"\n",
|
|
"mpl.figure.prototype.toolbar_button_onclick = function (name) {\n",
|
|
" if (name === 'download') {\n",
|
|
" this.handle_save(this, null);\n",
|
|
" } else {\n",
|
|
" this.send_message('toolbar_button', { name: name });\n",
|
|
" }\n",
|
|
"};\n",
|
|
"\n",
|
|
"mpl.figure.prototype.toolbar_button_onmouseover = function (tooltip) {\n",
|
|
" this.message.textContent = tooltip;\n",
|
|
"};\n",
|
|
"\n",
|
|
"///////////////// REMAINING CONTENT GENERATED BY embed_js.py /////////////////\n",
|
|
"// prettier-ignore\n",
|
|
"var _JSXTOOLS_RESIZE_OBSERVER=function(A){var t,i=new WeakMap,n=new WeakMap,a=new WeakMap,r=new WeakMap,o=new Set;function s(e){if(!(this instanceof s))throw new TypeError(\"Constructor requires 'new' operator\");i.set(this,e)}function h(){throw new TypeError(\"Function is not a constructor\")}function c(e,t,i,n){e=0 in arguments?Number(arguments[0]):0,t=1 in arguments?Number(arguments[1]):0,i=2 in arguments?Number(arguments[2]):0,n=3 in arguments?Number(arguments[3]):0,this.right=(this.x=this.left=e)+(this.width=i),this.bottom=(this.y=this.top=t)+(this.height=n),Object.freeze(this)}function d(){t=requestAnimationFrame(d);var s=new WeakMap,p=new Set;o.forEach((function(t){r.get(t).forEach((function(i){var r=t instanceof window.SVGElement,o=a.get(t),d=r?0:parseFloat(o.paddingTop),f=r?0:parseFloat(o.paddingRight),l=r?0:parseFloat(o.paddingBottom),u=r?0:parseFloat(o.paddingLeft),g=r?0:parseFloat(o.borderTopWidth),m=r?0:parseFloat(o.borderRightWidth),w=r?0:parseFloat(o.borderBottomWidth),b=u+f,F=d+l,v=(r?0:parseFloat(o.borderLeftWidth))+m,W=g+w,y=r?0:t.offsetHeight-W-t.clientHeight,E=r?0:t.offsetWidth-v-t.clientWidth,R=b+v,z=F+W,M=r?t.width:parseFloat(o.width)-R-E,O=r?t.height:parseFloat(o.height)-z-y;if(n.has(t)){var k=n.get(t);if(k[0]===M&&k[1]===O)return}n.set(t,[M,O]);var S=Object.create(h.prototype);S.target=t,S.contentRect=new c(u,d,M,O),s.has(i)||(s.set(i,[]),p.add(i)),s.get(i).push(S)}))})),p.forEach((function(e){i.get(e).call(e,s.get(e),e)}))}return s.prototype.observe=function(i){if(i instanceof window.Element){r.has(i)||(r.set(i,new Set),o.add(i),a.set(i,window.getComputedStyle(i)));var n=r.get(i);n.has(this)||n.add(this),cancelAnimationFrame(t),t=requestAnimationFrame(d)}},s.prototype.unobserve=function(i){if(i instanceof window.Element&&r.has(i)){var n=r.get(i);n.has(this)&&(n.delete(this),n.size||(r.delete(i),o.delete(i))),n.size||r.delete(i),o.size||cancelAnimationFrame(t)}},A.DOMRectReadOnly=c,A.ResizeObserver=s,A.ResizeObserverEntry=h,A}; // eslint-disable-line\n",
|
|
"mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Left button pans, Right button zooms\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-arrows\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\\nx/y fixes axis\", \"fa fa-square-o\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o\", \"download\"]];\n",
|
|
"\n",
|
|
"mpl.extensions = [\"eps\", \"jpeg\", \"pgf\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\", \"webp\"];\n",
|
|
"\n",
|
|
"mpl.default_extension = \"png\";/* global mpl */\n",
|
|
"\n",
|
|
"var comm_websocket_adapter = function (comm) {\n",
|
|
" // Create a \"websocket\"-like object which calls the given IPython comm\n",
|
|
" // object with the appropriate methods. Currently this is a non binary\n",
|
|
" // socket, so there is still some room for performance tuning.\n",
|
|
" var ws = {};\n",
|
|
"\n",
|
|
" ws.binaryType = comm.kernel.ws.binaryType;\n",
|
|
" ws.readyState = comm.kernel.ws.readyState;\n",
|
|
" function updateReadyState(_event) {\n",
|
|
" if (comm.kernel.ws) {\n",
|
|
" ws.readyState = comm.kernel.ws.readyState;\n",
|
|
" } else {\n",
|
|
" ws.readyState = 3; // Closed state.\n",
|
|
" }\n",
|
|
" }\n",
|
|
" comm.kernel.ws.addEventListener('open', updateReadyState);\n",
|
|
" comm.kernel.ws.addEventListener('close', updateReadyState);\n",
|
|
" comm.kernel.ws.addEventListener('error', updateReadyState);\n",
|
|
"\n",
|
|
" ws.close = function () {\n",
|
|
" comm.close();\n",
|
|
" };\n",
|
|
" ws.send = function (m) {\n",
|
|
" //console.log('sending', m);\n",
|
|
" comm.send(m);\n",
|
|
" };\n",
|
|
" // Register the callback with on_msg.\n",
|
|
" comm.on_msg(function (msg) {\n",
|
|
" //console.log('receiving', msg['content']['data'], msg);\n",
|
|
" var data = msg['content']['data'];\n",
|
|
" if (data['blob'] !== undefined) {\n",
|
|
" data = {\n",
|
|
" data: new Blob(msg['buffers'], { type: data['blob'] }),\n",
|
|
" };\n",
|
|
" }\n",
|
|
" // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
|
|
" ws.onmessage(data);\n",
|
|
" });\n",
|
|
" return ws;\n",
|
|
"};\n",
|
|
"\n",
|
|
"mpl.mpl_figure_comm = function (comm, msg) {\n",
|
|
" // This is the function which gets called when the mpl process\n",
|
|
" // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
|
|
"\n",
|
|
" var id = msg.content.data.id;\n",
|
|
" // Get hold of the div created by the display call when the Comm\n",
|
|
" // socket was opened in Python.\n",
|
|
" var element = document.getElementById(id);\n",
|
|
" var ws_proxy = comm_websocket_adapter(comm);\n",
|
|
"\n",
|
|
" function ondownload(figure, _format) {\n",
|
|
" window.open(figure.canvas.toDataURL());\n",
|
|
" }\n",
|
|
"\n",
|
|
" var fig = new mpl.figure(id, ws_proxy, ondownload, element);\n",
|
|
"\n",
|
|
" // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
|
|
" // web socket which is closed, not our websocket->open comm proxy.\n",
|
|
" ws_proxy.onopen();\n",
|
|
"\n",
|
|
" fig.parent_element = element;\n",
|
|
" fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
|
|
" if (!fig.cell_info) {\n",
|
|
" console.error('Failed to find cell for figure', id, fig);\n",
|
|
" return;\n",
|
|
" }\n",
|
|
" fig.cell_info[0].output_area.element.on(\n",
|
|
" 'cleared',\n",
|
|
" { fig: fig },\n",
|
|
" fig._remove_fig_handler\n",
|
|
" );\n",
|
|
"};\n",
|
|
"\n",
|
|
"mpl.figure.prototype.handle_close = function (fig, msg) {\n",
|
|
" var width = fig.canvas.width / fig.ratio;\n",
|
|
" fig.cell_info[0].output_area.element.off(\n",
|
|
" 'cleared',\n",
|
|
" fig._remove_fig_handler\n",
|
|
" );\n",
|
|
" fig.resizeObserverInstance.unobserve(fig.canvas_div);\n",
|
|
"\n",
|
|
" // Update the output cell to use the data from the current canvas.\n",
|
|
" fig.push_to_output();\n",
|
|
" var dataURL = fig.canvas.toDataURL();\n",
|
|
" // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
|
|
" // the notebook keyboard shortcuts fail.\n",
|
|
" IPython.keyboard_manager.enable();\n",
|
|
" fig.parent_element.innerHTML =\n",
|
|
" '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
|
|
" fig.close_ws(fig, msg);\n",
|
|
"};\n",
|
|
"\n",
|
|
"mpl.figure.prototype.close_ws = function (fig, msg) {\n",
|
|
" fig.send_message('closing', msg);\n",
|
|
" // fig.ws.close()\n",
|
|
"};\n",
|
|
"\n",
|
|
"mpl.figure.prototype.push_to_output = function (_remove_interactive) {\n",
|
|
" // Turn the data on the canvas into data in the output cell.\n",
|
|
" var width = this.canvas.width / this.ratio;\n",
|
|
" var dataURL = this.canvas.toDataURL();\n",
|
|
" this.cell_info[1]['text/html'] =\n",
|
|
" '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
|
|
"};\n",
|
|
"\n",
|
|
"mpl.figure.prototype.updated_canvas_event = function () {\n",
|
|
" // Tell IPython that the notebook contents must change.\n",
|
|
" IPython.notebook.set_dirty(true);\n",
|
|
" this.send_message('ack', {});\n",
|
|
" var fig = this;\n",
|
|
" // Wait a second, then push the new image to the DOM so\n",
|
|
" // that it is saved nicely (might be nice to debounce this).\n",
|
|
" setTimeout(function () {\n",
|
|
" fig.push_to_output();\n",
|
|
" }, 1000);\n",
|
|
"};\n",
|
|
"\n",
|
|
"mpl.figure.prototype._init_toolbar = function () {\n",
|
|
" var fig = this;\n",
|
|
"\n",
|
|
" var toolbar = document.createElement('div');\n",
|
|
" toolbar.classList = 'btn-toolbar';\n",
|
|
" this.root.appendChild(toolbar);\n",
|
|
"\n",
|
|
" function on_click_closure(name) {\n",
|
|
" return function (_event) {\n",
|
|
" return fig.toolbar_button_onclick(name);\n",
|
|
" };\n",
|
|
" }\n",
|
|
"\n",
|
|
" function on_mouseover_closure(tooltip) {\n",
|
|
" return function (event) {\n",
|
|
" if (!event.currentTarget.disabled) {\n",
|
|
" return fig.toolbar_button_onmouseover(tooltip);\n",
|
|
" }\n",
|
|
" };\n",
|
|
" }\n",
|
|
"\n",
|
|
" fig.buttons = {};\n",
|
|
" var buttonGroup = document.createElement('div');\n",
|
|
" buttonGroup.classList = 'btn-group';\n",
|
|
" var button;\n",
|
|
" for (var toolbar_ind in mpl.toolbar_items) {\n",
|
|
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
|
|
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
|
|
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
|
|
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
|
|
"\n",
|
|
" if (!name) {\n",
|
|
" /* Instead of a spacer, we start a new button group. */\n",
|
|
" if (buttonGroup.hasChildNodes()) {\n",
|
|
" toolbar.appendChild(buttonGroup);\n",
|
|
" }\n",
|
|
" buttonGroup = document.createElement('div');\n",
|
|
" buttonGroup.classList = 'btn-group';\n",
|
|
" continue;\n",
|
|
" }\n",
|
|
"\n",
|
|
" button = fig.buttons[name] = document.createElement('button');\n",
|
|
" button.classList = 'btn btn-default';\n",
|
|
" button.href = '#';\n",
|
|
" button.title = name;\n",
|
|
" button.innerHTML = '<i class=\"fa ' + image + ' fa-lg\"></i>';\n",
|
|
" button.addEventListener('click', on_click_closure(method_name));\n",
|
|
" button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n",
|
|
" buttonGroup.appendChild(button);\n",
|
|
" }\n",
|
|
"\n",
|
|
" if (buttonGroup.hasChildNodes()) {\n",
|
|
" toolbar.appendChild(buttonGroup);\n",
|
|
" }\n",
|
|
"\n",
|
|
" // Add the status bar.\n",
|
|
" var status_bar = document.createElement('span');\n",
|
|
" status_bar.classList = 'mpl-message pull-right';\n",
|
|
" toolbar.appendChild(status_bar);\n",
|
|
" this.message = status_bar;\n",
|
|
"\n",
|
|
" // Add the close button to the window.\n",
|
|
" var buttongrp = document.createElement('div');\n",
|
|
" buttongrp.classList = 'btn-group inline pull-right';\n",
|
|
" button = document.createElement('button');\n",
|
|
" button.classList = 'btn btn-mini btn-primary';\n",
|
|
" button.href = '#';\n",
|
|
" button.title = 'Stop Interaction';\n",
|
|
" button.innerHTML = '<i class=\"fa fa-power-off icon-remove icon-large\"></i>';\n",
|
|
" button.addEventListener('click', function (_evt) {\n",
|
|
" fig.handle_close(fig, {});\n",
|
|
" });\n",
|
|
" button.addEventListener(\n",
|
|
" 'mouseover',\n",
|
|
" on_mouseover_closure('Stop Interaction')\n",
|
|
" );\n",
|
|
" buttongrp.appendChild(button);\n",
|
|
" var titlebar = this.root.querySelector('.ui-dialog-titlebar');\n",
|
|
" titlebar.insertBefore(buttongrp, titlebar.firstChild);\n",
|
|
"};\n",
|
|
"\n",
|
|
"mpl.figure.prototype._remove_fig_handler = function (event) {\n",
|
|
" var fig = event.data.fig;\n",
|
|
" if (event.target !== this) {\n",
|
|
" // Ignore bubbled events from children.\n",
|
|
" return;\n",
|
|
" }\n",
|
|
" fig.close_ws(fig, {});\n",
|
|
"};\n",
|
|
"\n",
|
|
"mpl.figure.prototype._root_extra_style = function (el) {\n",
|
|
" el.style.boxSizing = 'content-box'; // override notebook setting of border-box.\n",
|
|
"};\n",
|
|
"\n",
|
|
"mpl.figure.prototype._canvas_extra_style = function (el) {\n",
|
|
" // this is important to make the div 'focusable\n",
|
|
" el.setAttribute('tabindex', 0);\n",
|
|
" // reach out to IPython and tell the keyboard manager to turn it's self\n",
|
|
" // off when our div gets focus\n",
|
|
"\n",
|
|
" // location in version 3\n",
|
|
" if (IPython.notebook.keyboard_manager) {\n",
|
|
" IPython.notebook.keyboard_manager.register_events(el);\n",
|
|
" } else {\n",
|
|
" // location in version 2\n",
|
|
" IPython.keyboard_manager.register_events(el);\n",
|
|
" }\n",
|
|
"};\n",
|
|
"\n",
|
|
"mpl.figure.prototype._key_event_extra = function (event, _name) {\n",
|
|
" // Check for shift+enter\n",
|
|
" if (event.shiftKey && event.which === 13) {\n",
|
|
" this.canvas_div.blur();\n",
|
|
" // select the cell after this one\n",
|
|
" var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n",
|
|
" IPython.notebook.select(index + 1);\n",
|
|
" }\n",
|
|
"};\n",
|
|
"\n",
|
|
"mpl.figure.prototype.handle_save = function (fig, _msg) {\n",
|
|
" fig.ondownload(fig, null);\n",
|
|
"};\n",
|
|
"\n",
|
|
"mpl.find_output_cell = function (html_output) {\n",
|
|
" // Return the cell and output element which can be found *uniquely* in the notebook.\n",
|
|
" // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
|
|
" // IPython event is triggered only after the cells have been serialised, which for\n",
|
|
" // our purposes (turning an active figure into a static one), is too late.\n",
|
|
" var cells = IPython.notebook.get_cells();\n",
|
|
" var ncells = cells.length;\n",
|
|
" for (var i = 0; i < ncells; i++) {\n",
|
|
" var cell = cells[i];\n",
|
|
" if (cell.cell_type === 'code') {\n",
|
|
" for (var j = 0; j < cell.output_area.outputs.length; j++) {\n",
|
|
" var data = cell.output_area.outputs[j];\n",
|
|
" if (data.data) {\n",
|
|
" // IPython >= 3 moved mimebundle to data attribute of output\n",
|
|
" data = data.data;\n",
|
|
" }\n",
|
|
" if (data['text/html'] === html_output) {\n",
|
|
" return [cell, data, j];\n",
|
|
" }\n",
|
|
" }\n",
|
|
" }\n",
|
|
" }\n",
|
|
"};\n",
|
|
"\n",
|
|
"// Register the function which deals with the matplotlib target/channel.\n",
|
|
"// The kernel may be null if the page has been refreshed.\n",
|
|
"if (IPython.notebook.kernel !== null) {\n",
|
|
" IPython.notebook.kernel.comm_manager.register_target(\n",
|
|
" 'matplotlib',\n",
|
|
" mpl.mpl_figure_comm\n",
|
|
" );\n",
|
|
"}\n"
|
|
],
|
|
"text/plain": [
|
|
"<IPython.core.display.Javascript object>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"<img src=\"\" width=\"640\">"
|
|
],
|
|
"text/plain": [
|
|
"<IPython.core.display.HTML object>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"q = np.linspace(0, 100, 10000)\n",
|
|
"ps = np.percentile(cat[n][\"m200\"], q)\n",
|
|
"f = interp1d(q, np.log10(ps))\n",
|
|
"\n",
|
|
"pcuts = [99.99, 95., 65.]\n",
|
|
"\n",
|
|
"\n",
|
|
"colors = plt.rcParams['axes.prop_cycle'].by_key()['color']\n",
|
|
"plt.figure()\n",
|
|
"plt.plot(ps, q)\n",
|
|
"\n",
|
|
"for i, pcut in enumerate(pcuts):\n",
|
|
" N = int((100 - pcut) / 100 * cat[n][\"m200\"].size)\n",
|
|
" plt.axvline(10**float(f(pcut)), ls=\"--\", c=colors[i + 1],\n",
|
|
" label=r\"${}^{{\\rm th}} percentile, {}$\".format(pcut, N), lw=1)\n",
|
|
" plt.axhline(pcut, c=colors[i + 1], ls=\"--\", lw=1)\n",
|
|
"plt.xscale(\"log\")\n",
|
|
"plt.legend()\n",
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 157,
|
|
"id": "de2a2714",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2022-11-21T20:30:43.637731Z",
|
|
"start_time": "2022-11-21T20:30:43.589062Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"ids = np.where(cat[n][\"m200\"] > 10**f(pcuts[2]))[0]\n",
|
|
"ids = np.random.choice(ids, size=3)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 159,
|
|
"id": "2ab2af25",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2022-11-21T20:30:54.506179Z",
|
|
"start_time": "2022-11-21T20:30:53.801870Z"
|
|
}
|
|
},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"application/javascript": [
|
|
"/* Put everything inside the global mpl namespace */\n",
|
|
"/* global mpl */\n",
|
|
"window.mpl = {};\n",
|
|
"\n",
|
|
"mpl.get_websocket_type = function () {\n",
|
|
" if (typeof WebSocket !== 'undefined') {\n",
|
|
" return WebSocket;\n",
|
|
" } else if (typeof MozWebSocket !== 'undefined') {\n",
|
|
" return MozWebSocket;\n",
|
|
" } else {\n",
|
|
" alert(\n",
|
|
" 'Your browser does not have WebSocket support. ' +\n",
|
|
" 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
|
|
" 'Firefox 4 and 5 are also supported but you ' +\n",
|
|
" 'have to enable WebSockets in about:config.'\n",
|
|
" );\n",
|
|
" }\n",
|
|
"};\n",
|
|
"\n",
|
|
"mpl.figure = function (figure_id, websocket, ondownload, parent_element) {\n",
|
|
" this.id = figure_id;\n",
|
|
"\n",
|
|
" this.ws = websocket;\n",
|
|
"\n",
|
|
" this.supports_binary = this.ws.binaryType !== undefined;\n",
|
|
"\n",
|
|
" if (!this.supports_binary) {\n",
|
|
" var warnings = document.getElementById('mpl-warnings');\n",
|
|
" if (warnings) {\n",
|
|
" warnings.style.display = 'block';\n",
|
|
" warnings.textContent =\n",
|
|
" 'This browser does not support binary websocket messages. ' +\n",
|
|
" 'Performance may be slow.';\n",
|
|
" }\n",
|
|
" }\n",
|
|
"\n",
|
|
" this.imageObj = new Image();\n",
|
|
"\n",
|
|
" this.context = undefined;\n",
|
|
" this.message = undefined;\n",
|
|
" this.canvas = undefined;\n",
|
|
" this.rubberband_canvas = undefined;\n",
|
|
" this.rubberband_context = undefined;\n",
|
|
" this.format_dropdown = undefined;\n",
|
|
"\n",
|
|
" this.image_mode = 'full';\n",
|
|
"\n",
|
|
" this.root = document.createElement('div');\n",
|
|
" this.root.setAttribute('style', 'display: inline-block');\n",
|
|
" this._root_extra_style(this.root);\n",
|
|
"\n",
|
|
" parent_element.appendChild(this.root);\n",
|
|
"\n",
|
|
" this._init_header(this);\n",
|
|
" this._init_canvas(this);\n",
|
|
" this._init_toolbar(this);\n",
|
|
"\n",
|
|
" var fig = this;\n",
|
|
"\n",
|
|
" this.waiting = false;\n",
|
|
"\n",
|
|
" this.ws.onopen = function () {\n",
|
|
" fig.send_message('supports_binary', { value: fig.supports_binary });\n",
|
|
" fig.send_message('send_image_mode', {});\n",
|
|
" if (fig.ratio !== 1) {\n",
|
|
" fig.send_message('set_device_pixel_ratio', {\n",
|
|
" device_pixel_ratio: fig.ratio,\n",
|
|
" });\n",
|
|
" }\n",
|
|
" fig.send_message('refresh', {});\n",
|
|
" };\n",
|
|
"\n",
|
|
" this.imageObj.onload = function () {\n",
|
|
" if (fig.image_mode === 'full') {\n",
|
|
" // Full images could contain transparency (where diff images\n",
|
|
" // almost always do), so we need to clear the canvas so that\n",
|
|
" // there is no ghosting.\n",
|
|
" fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
|
|
" }\n",
|
|
" fig.context.drawImage(fig.imageObj, 0, 0);\n",
|
|
" };\n",
|
|
"\n",
|
|
" this.imageObj.onunload = function () {\n",
|
|
" fig.ws.close();\n",
|
|
" };\n",
|
|
"\n",
|
|
" this.ws.onmessage = this._make_on_message_function(this);\n",
|
|
"\n",
|
|
" this.ondownload = ondownload;\n",
|
|
"};\n",
|
|
"\n",
|
|
"mpl.figure.prototype._init_header = function () {\n",
|
|
" var titlebar = document.createElement('div');\n",
|
|
" titlebar.classList =\n",
|
|
" 'ui-dialog-titlebar ui-widget-header ui-corner-all ui-helper-clearfix';\n",
|
|
" var titletext = document.createElement('div');\n",
|
|
" titletext.classList = 'ui-dialog-title';\n",
|
|
" titletext.setAttribute(\n",
|
|
" 'style',\n",
|
|
" 'width: 100%; text-align: center; padding: 3px;'\n",
|
|
" );\n",
|
|
" titlebar.appendChild(titletext);\n",
|
|
" this.root.appendChild(titlebar);\n",
|
|
" this.header = titletext;\n",
|
|
"};\n",
|
|
"\n",
|
|
"mpl.figure.prototype._canvas_extra_style = function (_canvas_div) {};\n",
|
|
"\n",
|
|
"mpl.figure.prototype._root_extra_style = function (_canvas_div) {};\n",
|
|
"\n",
|
|
"mpl.figure.prototype._init_canvas = function () {\n",
|
|
" var fig = this;\n",
|
|
"\n",
|
|
" var canvas_div = (this.canvas_div = document.createElement('div'));\n",
|
|
" canvas_div.setAttribute(\n",
|
|
" 'style',\n",
|
|
" 'border: 1px solid #ddd;' +\n",
|
|
" 'box-sizing: content-box;' +\n",
|
|
" 'clear: both;' +\n",
|
|
" 'min-height: 1px;' +\n",
|
|
" 'min-width: 1px;' +\n",
|
|
" 'outline: 0;' +\n",
|
|
" 'overflow: hidden;' +\n",
|
|
" 'position: relative;' +\n",
|
|
" 'resize: both;'\n",
|
|
" );\n",
|
|
"\n",
|
|
" function on_keyboard_event_closure(name) {\n",
|
|
" return function (event) {\n",
|
|
" return fig.key_event(event, name);\n",
|
|
" };\n",
|
|
" }\n",
|
|
"\n",
|
|
" canvas_div.addEventListener(\n",
|
|
" 'keydown',\n",
|
|
" on_keyboard_event_closure('key_press')\n",
|
|
" );\n",
|
|
" canvas_div.addEventListener(\n",
|
|
" 'keyup',\n",
|
|
" on_keyboard_event_closure('key_release')\n",
|
|
" );\n",
|
|
"\n",
|
|
" this._canvas_extra_style(canvas_div);\n",
|
|
" this.root.appendChild(canvas_div);\n",
|
|
"\n",
|
|
" var canvas = (this.canvas = document.createElement('canvas'));\n",
|
|
" canvas.classList.add('mpl-canvas');\n",
|
|
" canvas.setAttribute('style', 'box-sizing: content-box;');\n",
|
|
"\n",
|
|
" this.context = canvas.getContext('2d');\n",
|
|
"\n",
|
|
" var backingStore =\n",
|
|
" this.context.backingStorePixelRatio ||\n",
|
|
" this.context.webkitBackingStorePixelRatio ||\n",
|
|
" this.context.mozBackingStorePixelRatio ||\n",
|
|
" this.context.msBackingStorePixelRatio ||\n",
|
|
" this.context.oBackingStorePixelRatio ||\n",
|
|
" this.context.backingStorePixelRatio ||\n",
|
|
" 1;\n",
|
|
"\n",
|
|
" this.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
|
|
"\n",
|
|
" var rubberband_canvas = (this.rubberband_canvas = document.createElement(\n",
|
|
" 'canvas'\n",
|
|
" ));\n",
|
|
" rubberband_canvas.setAttribute(\n",
|
|
" 'style',\n",
|
|
" 'box-sizing: content-box; position: absolute; left: 0; top: 0; z-index: 1;'\n",
|
|
" );\n",
|
|
"\n",
|
|
" // Apply a ponyfill if ResizeObserver is not implemented by browser.\n",
|
|
" if (this.ResizeObserver === undefined) {\n",
|
|
" if (window.ResizeObserver !== undefined) {\n",
|
|
" this.ResizeObserver = window.ResizeObserver;\n",
|
|
" } else {\n",
|
|
" var obs = _JSXTOOLS_RESIZE_OBSERVER({});\n",
|
|
" this.ResizeObserver = obs.ResizeObserver;\n",
|
|
" }\n",
|
|
" }\n",
|
|
"\n",
|
|
" this.resizeObserverInstance = new this.ResizeObserver(function (entries) {\n",
|
|
" var nentries = entries.length;\n",
|
|
" for (var i = 0; i < nentries; i++) {\n",
|
|
" var entry = entries[i];\n",
|
|
" var width, height;\n",
|
|
" if (entry.contentBoxSize) {\n",
|
|
" if (entry.contentBoxSize instanceof Array) {\n",
|
|
" // Chrome 84 implements new version of spec.\n",
|
|
" width = entry.contentBoxSize[0].inlineSize;\n",
|
|
" height = entry.contentBoxSize[0].blockSize;\n",
|
|
" } else {\n",
|
|
" // Firefox implements old version of spec.\n",
|
|
" width = entry.contentBoxSize.inlineSize;\n",
|
|
" height = entry.contentBoxSize.blockSize;\n",
|
|
" }\n",
|
|
" } else {\n",
|
|
" // Chrome <84 implements even older version of spec.\n",
|
|
" width = entry.contentRect.width;\n",
|
|
" height = entry.contentRect.height;\n",
|
|
" }\n",
|
|
"\n",
|
|
" // Keep the size of the canvas and rubber band canvas in sync with\n",
|
|
" // the canvas container.\n",
|
|
" if (entry.devicePixelContentBoxSize) {\n",
|
|
" // Chrome 84 implements new version of spec.\n",
|
|
" canvas.setAttribute(\n",
|
|
" 'width',\n",
|
|
" entry.devicePixelContentBoxSize[0].inlineSize\n",
|
|
" );\n",
|
|
" canvas.setAttribute(\n",
|
|
" 'height',\n",
|
|
" entry.devicePixelContentBoxSize[0].blockSize\n",
|
|
" );\n",
|
|
" } else {\n",
|
|
" canvas.setAttribute('width', width * fig.ratio);\n",
|
|
" canvas.setAttribute('height', height * fig.ratio);\n",
|
|
" }\n",
|
|
" canvas.setAttribute(\n",
|
|
" 'style',\n",
|
|
" 'width: ' + width + 'px; height: ' + height + 'px;'\n",
|
|
" );\n",
|
|
"\n",
|
|
" rubberband_canvas.setAttribute('width', width);\n",
|
|
" rubberband_canvas.setAttribute('height', height);\n",
|
|
"\n",
|
|
" // And update the size in Python. We ignore the initial 0/0 size\n",
|
|
" // that occurs as the element is placed into the DOM, which should\n",
|
|
" // otherwise not happen due to the minimum size styling.\n",
|
|
" if (fig.ws.readyState == 1 && width != 0 && height != 0) {\n",
|
|
" fig.request_resize(width, height);\n",
|
|
" }\n",
|
|
" }\n",
|
|
" });\n",
|
|
" this.resizeObserverInstance.observe(canvas_div);\n",
|
|
"\n",
|
|
" function on_mouse_event_closure(name) {\n",
|
|
" return function (event) {\n",
|
|
" return fig.mouse_event(event, name);\n",
|
|
" };\n",
|
|
" }\n",
|
|
"\n",
|
|
" rubberband_canvas.addEventListener(\n",
|
|
" 'mousedown',\n",
|
|
" on_mouse_event_closure('button_press')\n",
|
|
" );\n",
|
|
" rubberband_canvas.addEventListener(\n",
|
|
" 'mouseup',\n",
|
|
" on_mouse_event_closure('button_release')\n",
|
|
" );\n",
|
|
" rubberband_canvas.addEventListener(\n",
|
|
" 'dblclick',\n",
|
|
" on_mouse_event_closure('dblclick')\n",
|
|
" );\n",
|
|
" // Throttle sequential mouse events to 1 every 20ms.\n",
|
|
" rubberband_canvas.addEventListener(\n",
|
|
" 'mousemove',\n",
|
|
" on_mouse_event_closure('motion_notify')\n",
|
|
" );\n",
|
|
"\n",
|
|
" rubberband_canvas.addEventListener(\n",
|
|
" 'mouseenter',\n",
|
|
" on_mouse_event_closure('figure_enter')\n",
|
|
" );\n",
|
|
" rubberband_canvas.addEventListener(\n",
|
|
" 'mouseleave',\n",
|
|
" on_mouse_event_closure('figure_leave')\n",
|
|
" );\n",
|
|
"\n",
|
|
" canvas_div.addEventListener('wheel', function (event) {\n",
|
|
" if (event.deltaY < 0) {\n",
|
|
" event.step = 1;\n",
|
|
" } else {\n",
|
|
" event.step = -1;\n",
|
|
" }\n",
|
|
" on_mouse_event_closure('scroll')(event);\n",
|
|
" });\n",
|
|
"\n",
|
|
" canvas_div.appendChild(canvas);\n",
|
|
" canvas_div.appendChild(rubberband_canvas);\n",
|
|
"\n",
|
|
" this.rubberband_context = rubberband_canvas.getContext('2d');\n",
|
|
" this.rubberband_context.strokeStyle = '#000000';\n",
|
|
"\n",
|
|
" this._resize_canvas = function (width, height, forward) {\n",
|
|
" if (forward) {\n",
|
|
" canvas_div.style.width = width + 'px';\n",
|
|
" canvas_div.style.height = height + 'px';\n",
|
|
" }\n",
|
|
" };\n",
|
|
"\n",
|
|
" // Disable right mouse context menu.\n",
|
|
" this.rubberband_canvas.addEventListener('contextmenu', function (_e) {\n",
|
|
" event.preventDefault();\n",
|
|
" return false;\n",
|
|
" });\n",
|
|
"\n",
|
|
" function set_focus() {\n",
|
|
" canvas.focus();\n",
|
|
" canvas_div.focus();\n",
|
|
" }\n",
|
|
"\n",
|
|
" window.setTimeout(set_focus, 100);\n",
|
|
"};\n",
|
|
"\n",
|
|
"mpl.figure.prototype._init_toolbar = function () {\n",
|
|
" var fig = this;\n",
|
|
"\n",
|
|
" var toolbar = document.createElement('div');\n",
|
|
" toolbar.classList = 'mpl-toolbar';\n",
|
|
" this.root.appendChild(toolbar);\n",
|
|
"\n",
|
|
" function on_click_closure(name) {\n",
|
|
" return function (_event) {\n",
|
|
" return fig.toolbar_button_onclick(name);\n",
|
|
" };\n",
|
|
" }\n",
|
|
"\n",
|
|
" function on_mouseover_closure(tooltip) {\n",
|
|
" return function (event) {\n",
|
|
" if (!event.currentTarget.disabled) {\n",
|
|
" return fig.toolbar_button_onmouseover(tooltip);\n",
|
|
" }\n",
|
|
" };\n",
|
|
" }\n",
|
|
"\n",
|
|
" fig.buttons = {};\n",
|
|
" var buttonGroup = document.createElement('div');\n",
|
|
" buttonGroup.classList = 'mpl-button-group';\n",
|
|
" for (var toolbar_ind in mpl.toolbar_items) {\n",
|
|
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
|
|
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
|
|
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
|
|
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
|
|
"\n",
|
|
" if (!name) {\n",
|
|
" /* Instead of a spacer, we start a new button group. */\n",
|
|
" if (buttonGroup.hasChildNodes()) {\n",
|
|
" toolbar.appendChild(buttonGroup);\n",
|
|
" }\n",
|
|
" buttonGroup = document.createElement('div');\n",
|
|
" buttonGroup.classList = 'mpl-button-group';\n",
|
|
" continue;\n",
|
|
" }\n",
|
|
"\n",
|
|
" var button = (fig.buttons[name] = document.createElement('button'));\n",
|
|
" button.classList = 'mpl-widget';\n",
|
|
" button.setAttribute('role', 'button');\n",
|
|
" button.setAttribute('aria-disabled', 'false');\n",
|
|
" button.addEventListener('click', on_click_closure(method_name));\n",
|
|
" button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n",
|
|
"\n",
|
|
" var icon_img = document.createElement('img');\n",
|
|
" icon_img.src = '_images/' + image + '.png';\n",
|
|
" icon_img.srcset = '_images/' + image + '_large.png 2x';\n",
|
|
" icon_img.alt = tooltip;\n",
|
|
" button.appendChild(icon_img);\n",
|
|
"\n",
|
|
" buttonGroup.appendChild(button);\n",
|
|
" }\n",
|
|
"\n",
|
|
" if (buttonGroup.hasChildNodes()) {\n",
|
|
" toolbar.appendChild(buttonGroup);\n",
|
|
" }\n",
|
|
"\n",
|
|
" var fmt_picker = document.createElement('select');\n",
|
|
" fmt_picker.classList = 'mpl-widget';\n",
|
|
" toolbar.appendChild(fmt_picker);\n",
|
|
" this.format_dropdown = fmt_picker;\n",
|
|
"\n",
|
|
" for (var ind in mpl.extensions) {\n",
|
|
" var fmt = mpl.extensions[ind];\n",
|
|
" var option = document.createElement('option');\n",
|
|
" option.selected = fmt === mpl.default_extension;\n",
|
|
" option.innerHTML = fmt;\n",
|
|
" fmt_picker.appendChild(option);\n",
|
|
" }\n",
|
|
"\n",
|
|
" var status_bar = document.createElement('span');\n",
|
|
" status_bar.classList = 'mpl-message';\n",
|
|
" toolbar.appendChild(status_bar);\n",
|
|
" this.message = status_bar;\n",
|
|
"};\n",
|
|
"\n",
|
|
"mpl.figure.prototype.request_resize = function (x_pixels, y_pixels) {\n",
|
|
" // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
|
|
" // which will in turn request a refresh of the image.\n",
|
|
" this.send_message('resize', { width: x_pixels, height: y_pixels });\n",
|
|
"};\n",
|
|
"\n",
|
|
"mpl.figure.prototype.send_message = function (type, properties) {\n",
|
|
" properties['type'] = type;\n",
|
|
" properties['figure_id'] = this.id;\n",
|
|
" this.ws.send(JSON.stringify(properties));\n",
|
|
"};\n",
|
|
"\n",
|
|
"mpl.figure.prototype.send_draw_message = function () {\n",
|
|
" if (!this.waiting) {\n",
|
|
" this.waiting = true;\n",
|
|
" this.ws.send(JSON.stringify({ type: 'draw', figure_id: this.id }));\n",
|
|
" }\n",
|
|
"};\n",
|
|
"\n",
|
|
"mpl.figure.prototype.handle_save = function (fig, _msg) {\n",
|
|
" var format_dropdown = fig.format_dropdown;\n",
|
|
" var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
|
|
" fig.ondownload(fig, format);\n",
|
|
"};\n",
|
|
"\n",
|
|
"mpl.figure.prototype.handle_resize = function (fig, msg) {\n",
|
|
" var size = msg['size'];\n",
|
|
" if (size[0] !== fig.canvas.width || size[1] !== fig.canvas.height) {\n",
|
|
" fig._resize_canvas(size[0], size[1], msg['forward']);\n",
|
|
" fig.send_message('refresh', {});\n",
|
|
" }\n",
|
|
"};\n",
|
|
"\n",
|
|
"mpl.figure.prototype.handle_rubberband = function (fig, msg) {\n",
|
|
" var x0 = msg['x0'] / fig.ratio;\n",
|
|
" var y0 = (fig.canvas.height - msg['y0']) / fig.ratio;\n",
|
|
" var x1 = msg['x1'] / fig.ratio;\n",
|
|
" var y1 = (fig.canvas.height - msg['y1']) / fig.ratio;\n",
|
|
" x0 = Math.floor(x0) + 0.5;\n",
|
|
" y0 = Math.floor(y0) + 0.5;\n",
|
|
" x1 = Math.floor(x1) + 0.5;\n",
|
|
" y1 = Math.floor(y1) + 0.5;\n",
|
|
" var min_x = Math.min(x0, x1);\n",
|
|
" var min_y = Math.min(y0, y1);\n",
|
|
" var width = Math.abs(x1 - x0);\n",
|
|
" var height = Math.abs(y1 - y0);\n",
|
|
"\n",
|
|
" fig.rubberband_context.clearRect(\n",
|
|
" 0,\n",
|
|
" 0,\n",
|
|
" fig.canvas.width / fig.ratio,\n",
|
|
" fig.canvas.height / fig.ratio\n",
|
|
" );\n",
|
|
"\n",
|
|
" fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
|
|
"};\n",
|
|
"\n",
|
|
"mpl.figure.prototype.handle_figure_label = function (fig, msg) {\n",
|
|
" // Updates the figure title.\n",
|
|
" fig.header.textContent = msg['label'];\n",
|
|
"};\n",
|
|
"\n",
|
|
"mpl.figure.prototype.handle_cursor = function (fig, msg) {\n",
|
|
" fig.rubberband_canvas.style.cursor = msg['cursor'];\n",
|
|
"};\n",
|
|
"\n",
|
|
"mpl.figure.prototype.handle_message = function (fig, msg) {\n",
|
|
" fig.message.textContent = msg['message'];\n",
|
|
"};\n",
|
|
"\n",
|
|
"mpl.figure.prototype.handle_draw = function (fig, _msg) {\n",
|
|
" // Request the server to send over a new figure.\n",
|
|
" fig.send_draw_message();\n",
|
|
"};\n",
|
|
"\n",
|
|
"mpl.figure.prototype.handle_image_mode = function (fig, msg) {\n",
|
|
" fig.image_mode = msg['mode'];\n",
|
|
"};\n",
|
|
"\n",
|
|
"mpl.figure.prototype.handle_history_buttons = function (fig, msg) {\n",
|
|
" for (var key in msg) {\n",
|
|
" if (!(key in fig.buttons)) {\n",
|
|
" continue;\n",
|
|
" }\n",
|
|
" fig.buttons[key].disabled = !msg[key];\n",
|
|
" fig.buttons[key].setAttribute('aria-disabled', !msg[key]);\n",
|
|
" }\n",
|
|
"};\n",
|
|
"\n",
|
|
"mpl.figure.prototype.handle_navigate_mode = function (fig, msg) {\n",
|
|
" if (msg['mode'] === 'PAN') {\n",
|
|
" fig.buttons['Pan'].classList.add('active');\n",
|
|
" fig.buttons['Zoom'].classList.remove('active');\n",
|
|
" } else if (msg['mode'] === 'ZOOM') {\n",
|
|
" fig.buttons['Pan'].classList.remove('active');\n",
|
|
" fig.buttons['Zoom'].classList.add('active');\n",
|
|
" } else {\n",
|
|
" fig.buttons['Pan'].classList.remove('active');\n",
|
|
" fig.buttons['Zoom'].classList.remove('active');\n",
|
|
" }\n",
|
|
"};\n",
|
|
"\n",
|
|
"mpl.figure.prototype.updated_canvas_event = function () {\n",
|
|
" // Called whenever the canvas gets updated.\n",
|
|
" this.send_message('ack', {});\n",
|
|
"};\n",
|
|
"\n",
|
|
"// A function to construct a web socket function for onmessage handling.\n",
|
|
"// Called in the figure constructor.\n",
|
|
"mpl.figure.prototype._make_on_message_function = function (fig) {\n",
|
|
" return function socket_on_message(evt) {\n",
|
|
" if (evt.data instanceof Blob) {\n",
|
|
" var img = evt.data;\n",
|
|
" if (img.type !== 'image/png') {\n",
|
|
" /* FIXME: We get \"Resource interpreted as Image but\n",
|
|
" * transferred with MIME type text/plain:\" errors on\n",
|
|
" * Chrome. But how to set the MIME type? It doesn't seem\n",
|
|
" * to be part of the websocket stream */\n",
|
|
" img.type = 'image/png';\n",
|
|
" }\n",
|
|
"\n",
|
|
" /* Free the memory for the previous frames */\n",
|
|
" if (fig.imageObj.src) {\n",
|
|
" (window.URL || window.webkitURL).revokeObjectURL(\n",
|
|
" fig.imageObj.src\n",
|
|
" );\n",
|
|
" }\n",
|
|
"\n",
|
|
" fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
|
|
" img\n",
|
|
" );\n",
|
|
" fig.updated_canvas_event();\n",
|
|
" fig.waiting = false;\n",
|
|
" return;\n",
|
|
" } else if (\n",
|
|
" typeof evt.data === 'string' &&\n",
|
|
" evt.data.slice(0, 21) === 'data:image/png;base64'\n",
|
|
" ) {\n",
|
|
" fig.imageObj.src = evt.data;\n",
|
|
" fig.updated_canvas_event();\n",
|
|
" fig.waiting = false;\n",
|
|
" return;\n",
|
|
" }\n",
|
|
"\n",
|
|
" var msg = JSON.parse(evt.data);\n",
|
|
" var msg_type = msg['type'];\n",
|
|
"\n",
|
|
" // Call the \"handle_{type}\" callback, which takes\n",
|
|
" // the figure and JSON message as its only arguments.\n",
|
|
" try {\n",
|
|
" var callback = fig['handle_' + msg_type];\n",
|
|
" } catch (e) {\n",
|
|
" console.log(\n",
|
|
" \"No handler for the '\" + msg_type + \"' message type: \",\n",
|
|
" msg\n",
|
|
" );\n",
|
|
" return;\n",
|
|
" }\n",
|
|
"\n",
|
|
" if (callback) {\n",
|
|
" try {\n",
|
|
" // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
|
|
" callback(fig, msg);\n",
|
|
" } catch (e) {\n",
|
|
" console.log(\n",
|
|
" \"Exception inside the 'handler_\" + msg_type + \"' callback:\",\n",
|
|
" e,\n",
|
|
" e.stack,\n",
|
|
" msg\n",
|
|
" );\n",
|
|
" }\n",
|
|
" }\n",
|
|
" };\n",
|
|
"};\n",
|
|
"\n",
|
|
"// from https://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
|
|
"mpl.findpos = function (e) {\n",
|
|
" //this section is from http://www.quirksmode.org/js/events_properties.html\n",
|
|
" var targ;\n",
|
|
" if (!e) {\n",
|
|
" e = window.event;\n",
|
|
" }\n",
|
|
" if (e.target) {\n",
|
|
" targ = e.target;\n",
|
|
" } else if (e.srcElement) {\n",
|
|
" targ = e.srcElement;\n",
|
|
" }\n",
|
|
" if (targ.nodeType === 3) {\n",
|
|
" // defeat Safari bug\n",
|
|
" targ = targ.parentNode;\n",
|
|
" }\n",
|
|
"\n",
|
|
" // pageX,Y are the mouse positions relative to the document\n",
|
|
" var boundingRect = targ.getBoundingClientRect();\n",
|
|
" var x = e.pageX - (boundingRect.left + document.body.scrollLeft);\n",
|
|
" var y = e.pageY - (boundingRect.top + document.body.scrollTop);\n",
|
|
"\n",
|
|
" return { x: x, y: y };\n",
|
|
"};\n",
|
|
"\n",
|
|
"/*\n",
|
|
" * return a copy of an object with only non-object keys\n",
|
|
" * we need this to avoid circular references\n",
|
|
" * https://stackoverflow.com/a/24161582/3208463\n",
|
|
" */\n",
|
|
"function simpleKeys(original) {\n",
|
|
" return Object.keys(original).reduce(function (obj, key) {\n",
|
|
" if (typeof original[key] !== 'object') {\n",
|
|
" obj[key] = original[key];\n",
|
|
" }\n",
|
|
" return obj;\n",
|
|
" }, {});\n",
|
|
"}\n",
|
|
"\n",
|
|
"mpl.figure.prototype.mouse_event = function (event, name) {\n",
|
|
" var canvas_pos = mpl.findpos(event);\n",
|
|
"\n",
|
|
" if (name === 'button_press') {\n",
|
|
" this.canvas.focus();\n",
|
|
" this.canvas_div.focus();\n",
|
|
" }\n",
|
|
"\n",
|
|
" var x = canvas_pos.x * this.ratio;\n",
|
|
" var y = canvas_pos.y * this.ratio;\n",
|
|
"\n",
|
|
" this.send_message(name, {\n",
|
|
" x: x,\n",
|
|
" y: y,\n",
|
|
" button: event.button,\n",
|
|
" step: event.step,\n",
|
|
" guiEvent: simpleKeys(event),\n",
|
|
" });\n",
|
|
"\n",
|
|
" /* This prevents the web browser from automatically changing to\n",
|
|
" * the text insertion cursor when the button is pressed. We want\n",
|
|
" * to control all of the cursor setting manually through the\n",
|
|
" * 'cursor' event from matplotlib */\n",
|
|
" event.preventDefault();\n",
|
|
" return false;\n",
|
|
"};\n",
|
|
"\n",
|
|
"mpl.figure.prototype._key_event_extra = function (_event, _name) {\n",
|
|
" // Handle any extra behaviour associated with a key event\n",
|
|
"};\n",
|
|
"\n",
|
|
"mpl.figure.prototype.key_event = function (event, name) {\n",
|
|
" // Prevent repeat events\n",
|
|
" if (name === 'key_press') {\n",
|
|
" if (event.key === this._key) {\n",
|
|
" return;\n",
|
|
" } else {\n",
|
|
" this._key = event.key;\n",
|
|
" }\n",
|
|
" }\n",
|
|
" if (name === 'key_release') {\n",
|
|
" this._key = null;\n",
|
|
" }\n",
|
|
"\n",
|
|
" var value = '';\n",
|
|
" if (event.ctrlKey && event.key !== 'Control') {\n",
|
|
" value += 'ctrl+';\n",
|
|
" }\n",
|
|
" else if (event.altKey && event.key !== 'Alt') {\n",
|
|
" value += 'alt+';\n",
|
|
" }\n",
|
|
" else if (event.shiftKey && event.key !== 'Shift') {\n",
|
|
" value += 'shift+';\n",
|
|
" }\n",
|
|
"\n",
|
|
" value += 'k' + event.key;\n",
|
|
"\n",
|
|
" this._key_event_extra(event, name);\n",
|
|
"\n",
|
|
" this.send_message(name, { key: value, guiEvent: simpleKeys(event) });\n",
|
|
" return false;\n",
|
|
"};\n",
|
|
"\n",
|
|
"mpl.figure.prototype.toolbar_button_onclick = function (name) {\n",
|
|
" if (name === 'download') {\n",
|
|
" this.handle_save(this, null);\n",
|
|
" } else {\n",
|
|
" this.send_message('toolbar_button', { name: name });\n",
|
|
" }\n",
|
|
"};\n",
|
|
"\n",
|
|
"mpl.figure.prototype.toolbar_button_onmouseover = function (tooltip) {\n",
|
|
" this.message.textContent = tooltip;\n",
|
|
"};\n",
|
|
"\n",
|
|
"///////////////// REMAINING CONTENT GENERATED BY embed_js.py /////////////////\n",
|
|
"// prettier-ignore\n",
|
|
"var _JSXTOOLS_RESIZE_OBSERVER=function(A){var t,i=new WeakMap,n=new WeakMap,a=new WeakMap,r=new WeakMap,o=new Set;function s(e){if(!(this instanceof s))throw new TypeError(\"Constructor requires 'new' operator\");i.set(this,e)}function h(){throw new TypeError(\"Function is not a constructor\")}function c(e,t,i,n){e=0 in arguments?Number(arguments[0]):0,t=1 in arguments?Number(arguments[1]):0,i=2 in arguments?Number(arguments[2]):0,n=3 in arguments?Number(arguments[3]):0,this.right=(this.x=this.left=e)+(this.width=i),this.bottom=(this.y=this.top=t)+(this.height=n),Object.freeze(this)}function d(){t=requestAnimationFrame(d);var s=new WeakMap,p=new Set;o.forEach((function(t){r.get(t).forEach((function(i){var r=t instanceof window.SVGElement,o=a.get(t),d=r?0:parseFloat(o.paddingTop),f=r?0:parseFloat(o.paddingRight),l=r?0:parseFloat(o.paddingBottom),u=r?0:parseFloat(o.paddingLeft),g=r?0:parseFloat(o.borderTopWidth),m=r?0:parseFloat(o.borderRightWidth),w=r?0:parseFloat(o.borderBottomWidth),b=u+f,F=d+l,v=(r?0:parseFloat(o.borderLeftWidth))+m,W=g+w,y=r?0:t.offsetHeight-W-t.clientHeight,E=r?0:t.offsetWidth-v-t.clientWidth,R=b+v,z=F+W,M=r?t.width:parseFloat(o.width)-R-E,O=r?t.height:parseFloat(o.height)-z-y;if(n.has(t)){var k=n.get(t);if(k[0]===M&&k[1]===O)return}n.set(t,[M,O]);var S=Object.create(h.prototype);S.target=t,S.contentRect=new c(u,d,M,O),s.has(i)||(s.set(i,[]),p.add(i)),s.get(i).push(S)}))})),p.forEach((function(e){i.get(e).call(e,s.get(e),e)}))}return s.prototype.observe=function(i){if(i instanceof window.Element){r.has(i)||(r.set(i,new Set),o.add(i),a.set(i,window.getComputedStyle(i)));var n=r.get(i);n.has(this)||n.add(this),cancelAnimationFrame(t),t=requestAnimationFrame(d)}},s.prototype.unobserve=function(i){if(i instanceof window.Element&&r.has(i)){var n=r.get(i);n.has(this)&&(n.delete(this),n.size||(r.delete(i),o.delete(i))),n.size||r.delete(i),o.size||cancelAnimationFrame(t)}},A.DOMRectReadOnly=c,A.ResizeObserver=s,A.ResizeObserverEntry=h,A}; // eslint-disable-line\n",
|
|
"mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Left button pans, Right button zooms\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-arrows\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\\nx/y fixes axis\", \"fa fa-square-o\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o\", \"download\"]];\n",
|
|
"\n",
|
|
"mpl.extensions = [\"eps\", \"jpeg\", \"pgf\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\", \"webp\"];\n",
|
|
"\n",
|
|
"mpl.default_extension = \"png\";/* global mpl */\n",
|
|
"\n",
|
|
"var comm_websocket_adapter = function (comm) {\n",
|
|
" // Create a \"websocket\"-like object which calls the given IPython comm\n",
|
|
" // object with the appropriate methods. Currently this is a non binary\n",
|
|
" // socket, so there is still some room for performance tuning.\n",
|
|
" var ws = {};\n",
|
|
"\n",
|
|
" ws.binaryType = comm.kernel.ws.binaryType;\n",
|
|
" ws.readyState = comm.kernel.ws.readyState;\n",
|
|
" function updateReadyState(_event) {\n",
|
|
" if (comm.kernel.ws) {\n",
|
|
" ws.readyState = comm.kernel.ws.readyState;\n",
|
|
" } else {\n",
|
|
" ws.readyState = 3; // Closed state.\n",
|
|
" }\n",
|
|
" }\n",
|
|
" comm.kernel.ws.addEventListener('open', updateReadyState);\n",
|
|
" comm.kernel.ws.addEventListener('close', updateReadyState);\n",
|
|
" comm.kernel.ws.addEventListener('error', updateReadyState);\n",
|
|
"\n",
|
|
" ws.close = function () {\n",
|
|
" comm.close();\n",
|
|
" };\n",
|
|
" ws.send = function (m) {\n",
|
|
" //console.log('sending', m);\n",
|
|
" comm.send(m);\n",
|
|
" };\n",
|
|
" // Register the callback with on_msg.\n",
|
|
" comm.on_msg(function (msg) {\n",
|
|
" //console.log('receiving', msg['content']['data'], msg);\n",
|
|
" var data = msg['content']['data'];\n",
|
|
" if (data['blob'] !== undefined) {\n",
|
|
" data = {\n",
|
|
" data: new Blob(msg['buffers'], { type: data['blob'] }),\n",
|
|
" };\n",
|
|
" }\n",
|
|
" // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
|
|
" ws.onmessage(data);\n",
|
|
" });\n",
|
|
" return ws;\n",
|
|
"};\n",
|
|
"\n",
|
|
"mpl.mpl_figure_comm = function (comm, msg) {\n",
|
|
" // This is the function which gets called when the mpl process\n",
|
|
" // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
|
|
"\n",
|
|
" var id = msg.content.data.id;\n",
|
|
" // Get hold of the div created by the display call when the Comm\n",
|
|
" // socket was opened in Python.\n",
|
|
" var element = document.getElementById(id);\n",
|
|
" var ws_proxy = comm_websocket_adapter(comm);\n",
|
|
"\n",
|
|
" function ondownload(figure, _format) {\n",
|
|
" window.open(figure.canvas.toDataURL());\n",
|
|
" }\n",
|
|
"\n",
|
|
" var fig = new mpl.figure(id, ws_proxy, ondownload, element);\n",
|
|
"\n",
|
|
" // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
|
|
" // web socket which is closed, not our websocket->open comm proxy.\n",
|
|
" ws_proxy.onopen();\n",
|
|
"\n",
|
|
" fig.parent_element = element;\n",
|
|
" fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
|
|
" if (!fig.cell_info) {\n",
|
|
" console.error('Failed to find cell for figure', id, fig);\n",
|
|
" return;\n",
|
|
" }\n",
|
|
" fig.cell_info[0].output_area.element.on(\n",
|
|
" 'cleared',\n",
|
|
" { fig: fig },\n",
|
|
" fig._remove_fig_handler\n",
|
|
" );\n",
|
|
"};\n",
|
|
"\n",
|
|
"mpl.figure.prototype.handle_close = function (fig, msg) {\n",
|
|
" var width = fig.canvas.width / fig.ratio;\n",
|
|
" fig.cell_info[0].output_area.element.off(\n",
|
|
" 'cleared',\n",
|
|
" fig._remove_fig_handler\n",
|
|
" );\n",
|
|
" fig.resizeObserverInstance.unobserve(fig.canvas_div);\n",
|
|
"\n",
|
|
" // Update the output cell to use the data from the current canvas.\n",
|
|
" fig.push_to_output();\n",
|
|
" var dataURL = fig.canvas.toDataURL();\n",
|
|
" // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
|
|
" // the notebook keyboard shortcuts fail.\n",
|
|
" IPython.keyboard_manager.enable();\n",
|
|
" fig.parent_element.innerHTML =\n",
|
|
" '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
|
|
" fig.close_ws(fig, msg);\n",
|
|
"};\n",
|
|
"\n",
|
|
"mpl.figure.prototype.close_ws = function (fig, msg) {\n",
|
|
" fig.send_message('closing', msg);\n",
|
|
" // fig.ws.close()\n",
|
|
"};\n",
|
|
"\n",
|
|
"mpl.figure.prototype.push_to_output = function (_remove_interactive) {\n",
|
|
" // Turn the data on the canvas into data in the output cell.\n",
|
|
" var width = this.canvas.width / this.ratio;\n",
|
|
" var dataURL = this.canvas.toDataURL();\n",
|
|
" this.cell_info[1]['text/html'] =\n",
|
|
" '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
|
|
"};\n",
|
|
"\n",
|
|
"mpl.figure.prototype.updated_canvas_event = function () {\n",
|
|
" // Tell IPython that the notebook contents must change.\n",
|
|
" IPython.notebook.set_dirty(true);\n",
|
|
" this.send_message('ack', {});\n",
|
|
" var fig = this;\n",
|
|
" // Wait a second, then push the new image to the DOM so\n",
|
|
" // that it is saved nicely (might be nice to debounce this).\n",
|
|
" setTimeout(function () {\n",
|
|
" fig.push_to_output();\n",
|
|
" }, 1000);\n",
|
|
"};\n",
|
|
"\n",
|
|
"mpl.figure.prototype._init_toolbar = function () {\n",
|
|
" var fig = this;\n",
|
|
"\n",
|
|
" var toolbar = document.createElement('div');\n",
|
|
" toolbar.classList = 'btn-toolbar';\n",
|
|
" this.root.appendChild(toolbar);\n",
|
|
"\n",
|
|
" function on_click_closure(name) {\n",
|
|
" return function (_event) {\n",
|
|
" return fig.toolbar_button_onclick(name);\n",
|
|
" };\n",
|
|
" }\n",
|
|
"\n",
|
|
" function on_mouseover_closure(tooltip) {\n",
|
|
" return function (event) {\n",
|
|
" if (!event.currentTarget.disabled) {\n",
|
|
" return fig.toolbar_button_onmouseover(tooltip);\n",
|
|
" }\n",
|
|
" };\n",
|
|
" }\n",
|
|
"\n",
|
|
" fig.buttons = {};\n",
|
|
" var buttonGroup = document.createElement('div');\n",
|
|
" buttonGroup.classList = 'btn-group';\n",
|
|
" var button;\n",
|
|
" for (var toolbar_ind in mpl.toolbar_items) {\n",
|
|
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
|
|
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
|
|
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
|
|
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
|
|
"\n",
|
|
" if (!name) {\n",
|
|
" /* Instead of a spacer, we start a new button group. */\n",
|
|
" if (buttonGroup.hasChildNodes()) {\n",
|
|
" toolbar.appendChild(buttonGroup);\n",
|
|
" }\n",
|
|
" buttonGroup = document.createElement('div');\n",
|
|
" buttonGroup.classList = 'btn-group';\n",
|
|
" continue;\n",
|
|
" }\n",
|
|
"\n",
|
|
" button = fig.buttons[name] = document.createElement('button');\n",
|
|
" button.classList = 'btn btn-default';\n",
|
|
" button.href = '#';\n",
|
|
" button.title = name;\n",
|
|
" button.innerHTML = '<i class=\"fa ' + image + ' fa-lg\"></i>';\n",
|
|
" button.addEventListener('click', on_click_closure(method_name));\n",
|
|
" button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n",
|
|
" buttonGroup.appendChild(button);\n",
|
|
" }\n",
|
|
"\n",
|
|
" if (buttonGroup.hasChildNodes()) {\n",
|
|
" toolbar.appendChild(buttonGroup);\n",
|
|
" }\n",
|
|
"\n",
|
|
" // Add the status bar.\n",
|
|
" var status_bar = document.createElement('span');\n",
|
|
" status_bar.classList = 'mpl-message pull-right';\n",
|
|
" toolbar.appendChild(status_bar);\n",
|
|
" this.message = status_bar;\n",
|
|
"\n",
|
|
" // Add the close button to the window.\n",
|
|
" var buttongrp = document.createElement('div');\n",
|
|
" buttongrp.classList = 'btn-group inline pull-right';\n",
|
|
" button = document.createElement('button');\n",
|
|
" button.classList = 'btn btn-mini btn-primary';\n",
|
|
" button.href = '#';\n",
|
|
" button.title = 'Stop Interaction';\n",
|
|
" button.innerHTML = '<i class=\"fa fa-power-off icon-remove icon-large\"></i>';\n",
|
|
" button.addEventListener('click', function (_evt) {\n",
|
|
" fig.handle_close(fig, {});\n",
|
|
" });\n",
|
|
" button.addEventListener(\n",
|
|
" 'mouseover',\n",
|
|
" on_mouseover_closure('Stop Interaction')\n",
|
|
" );\n",
|
|
" buttongrp.appendChild(button);\n",
|
|
" var titlebar = this.root.querySelector('.ui-dialog-titlebar');\n",
|
|
" titlebar.insertBefore(buttongrp, titlebar.firstChild);\n",
|
|
"};\n",
|
|
"\n",
|
|
"mpl.figure.prototype._remove_fig_handler = function (event) {\n",
|
|
" var fig = event.data.fig;\n",
|
|
" if (event.target !== this) {\n",
|
|
" // Ignore bubbled events from children.\n",
|
|
" return;\n",
|
|
" }\n",
|
|
" fig.close_ws(fig, {});\n",
|
|
"};\n",
|
|
"\n",
|
|
"mpl.figure.prototype._root_extra_style = function (el) {\n",
|
|
" el.style.boxSizing = 'content-box'; // override notebook setting of border-box.\n",
|
|
"};\n",
|
|
"\n",
|
|
"mpl.figure.prototype._canvas_extra_style = function (el) {\n",
|
|
" // this is important to make the div 'focusable\n",
|
|
" el.setAttribute('tabindex', 0);\n",
|
|
" // reach out to IPython and tell the keyboard manager to turn it's self\n",
|
|
" // off when our div gets focus\n",
|
|
"\n",
|
|
" // location in version 3\n",
|
|
" if (IPython.notebook.keyboard_manager) {\n",
|
|
" IPython.notebook.keyboard_manager.register_events(el);\n",
|
|
" } else {\n",
|
|
" // location in version 2\n",
|
|
" IPython.keyboard_manager.register_events(el);\n",
|
|
" }\n",
|
|
"};\n",
|
|
"\n",
|
|
"mpl.figure.prototype._key_event_extra = function (event, _name) {\n",
|
|
" // Check for shift+enter\n",
|
|
" if (event.shiftKey && event.which === 13) {\n",
|
|
" this.canvas_div.blur();\n",
|
|
" // select the cell after this one\n",
|
|
" var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n",
|
|
" IPython.notebook.select(index + 1);\n",
|
|
" }\n",
|
|
"};\n",
|
|
"\n",
|
|
"mpl.figure.prototype.handle_save = function (fig, _msg) {\n",
|
|
" fig.ondownload(fig, null);\n",
|
|
"};\n",
|
|
"\n",
|
|
"mpl.find_output_cell = function (html_output) {\n",
|
|
" // Return the cell and output element which can be found *uniquely* in the notebook.\n",
|
|
" // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
|
|
" // IPython event is triggered only after the cells have been serialised, which for\n",
|
|
" // our purposes (turning an active figure into a static one), is too late.\n",
|
|
" var cells = IPython.notebook.get_cells();\n",
|
|
" var ncells = cells.length;\n",
|
|
" for (var i = 0; i < ncells; i++) {\n",
|
|
" var cell = cells[i];\n",
|
|
" if (cell.cell_type === 'code') {\n",
|
|
" for (var j = 0; j < cell.output_area.outputs.length; j++) {\n",
|
|
" var data = cell.output_area.outputs[j];\n",
|
|
" if (data.data) {\n",
|
|
" // IPython >= 3 moved mimebundle to data attribute of output\n",
|
|
" data = data.data;\n",
|
|
" }\n",
|
|
" if (data['text/html'] === html_output) {\n",
|
|
" return [cell, data, j];\n",
|
|
" }\n",
|
|
" }\n",
|
|
" }\n",
|
|
" }\n",
|
|
"};\n",
|
|
"\n",
|
|
"// Register the function which deals with the matplotlib target/channel.\n",
|
|
"// The kernel may be null if the page has been refreshed.\n",
|
|
"if (IPython.notebook.kernel !== null) {\n",
|
|
" IPython.notebook.kernel.comm_manager.register_target(\n",
|
|
" 'matplotlib',\n",
|
|
" mpl.mpl_figure_comm\n",
|
|
" );\n",
|
|
"}\n"
|
|
],
|
|
"text/plain": [
|
|
"<IPython.core.display.Javascript object>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"<img src=\"\" width=\"900\">"
|
|
],
|
|
"text/plain": [
|
|
"<IPython.core.display.HTML object>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"fig, axs = plt.subplots(ncols=3, figsize=(9, 3), sharey=True, sharex=True)\n",
|
|
"fig.subplots_adjust(wspace=0)\n",
|
|
"for m, k in enumerate(ids):\n",
|
|
" r200 = cat[n][\"r200\"][k]\n",
|
|
" m200 = cat[n][\"m200\"][k]\n",
|
|
" \n",
|
|
" axs[m].set_title(r\"$\\log M_{{200c}} / M_\\odot = {:.3f}$\".format(np.log10(m200)))\n",
|
|
" for i, j in enumerate(matcher.search_sim_indices(n)):\n",
|
|
" indxs, dist = match[i]\n",
|
|
" indxs = indxs[k]\n",
|
|
" dist = dist[k]\n",
|
|
"\n",
|
|
" dlogmass = np.abs(np.log10(cat[j][\"m200\"][indxs] / m200))\n",
|
|
" axs[m].scatter(dist / r200, dlogmass)\n",
|
|
" \n",
|
|
" \n",
|
|
"for i in range(3):\n",
|
|
" axs[i].set_xlabel(r\"$\\Delta r_i / R_{200c}$\")\n",
|
|
"axs[0].set_ylabel(r\"$|\\log \\dfrac{M_i}{M_{200c}}|$\")\n",
|
|
"plt.tight_layout(w_pad=0)\n",
|
|
"# plt.savefig(\"../plots/lowest_massive.png\", dpi=450)\n",
|
|
"fig.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "f0f59246",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "a25c7146",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "e2930abd",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2022-11-21T10:56:11.296860Z",
|
|
"start_time": "2022-11-21T10:56:10.813212Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"plt.figure()\n",
|
|
"for k in range(cat.N-1):\n",
|
|
" plt.scatter(x[k, :, 1], x[k, :, 2])\n",
|
|
"\n",
|
|
" \n",
|
|
"plt.xlabel(r\"$\\Delta r_i / R_{200c}$\")\n",
|
|
"plt.ylabel(r\"$|\\log \\dfrac{M_i}{M_{200c}}|$\")\n",
|
|
"plt.savefig(\"../plots/example.png\", dpi=450)\n",
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "5101f569",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2022-11-21T10:36:59.128848Z",
|
|
"start_time": "2022-11-21T10:36:58.543085Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"x[:, 0, 2]"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "6794c154",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "aa252ad3",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2022-11-21T07:38:33.029175Z",
|
|
"start_time": "2022-11-21T07:38:32.649968Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"cat.cross_knn_position(0, 0)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "8dc14292",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "9f7cd638",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "d655f5de",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "9894fd1a",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "41c21c3c",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2022-11-21T07:05:14.278302Z",
|
|
"start_time": "2022-11-21T07:05:14.249214Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"x = cat.positions[6, :].reshape(-1, 3)\n",
|
|
"\n",
|
|
"\n",
|
|
"# x = np.asarray([0., 0., 0.]).reshape(-1, 3)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "440c00a3",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2022-11-21T07:07:55.025995Z",
|
|
"start_time": "2022-11-21T07:07:54.988489Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"cat.knn_position(x, 5)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "6c510eca",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "c59341c0",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2022-11-21T06:55:17.697688Z",
|
|
"start_time": "2022-11-21T06:55:17.667672Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"dist, knns = cat.knn_position([5, 9], 5)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "004c5a79",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2022-11-21T06:55:40.505297Z",
|
|
"start_time": "2022-11-21T06:55:40.475623Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"dist"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "efcc87ac",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2022-11-21T06:55:47.645798Z",
|
|
"start_time": "2022-11-21T06:55:47.615986Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"knns"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "9bf75953",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2022-11-21T06:27:19.883364Z",
|
|
"start_time": "2022-11-21T06:27:19.435813Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"model = NearestNeighbors()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "3e751553",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2022-11-21T06:27:38.874030Z",
|
|
"start_time": "2022-11-21T06:27:38.663757Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"model.fit(cat[0].positions)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "a8cb2bcf",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2022-11-21T06:37:19.127300Z",
|
|
"start_time": "2022-11-21T06:37:18.905607Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"p = cat[0].positions[:2, :].reshape(-1, 3)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "ae96df81",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2022-11-21T06:37:19.354558Z",
|
|
"start_time": "2022-11-21T06:37:19.324845Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"p"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "1e7b3655",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2022-11-21T06:37:20.172812Z",
|
|
"start_time": "2022-11-21T06:37:20.141347Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"model.kneighbors(p, n_neighbors=2)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "6d3bcb85",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "307f3b62",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "a885af97",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2022-11-20T16:47:33.606111Z",
|
|
"start_time": "2022-11-20T16:47:29.246847Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"cat = csiborgtools.io.HaloCatalogue(9844, 1016, minimum_m500=0)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "2b73c9bc",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2022-11-20T16:47:52.218696Z",
|
|
"start_time": "2022-11-20T16:47:52.097392Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"cat[\"dec\"].size"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "bd76ed7a",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "22abdd5c",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2022-11-20T15:15:05.423239Z",
|
|
"start_time": "2022-11-20T15:15:05.366755Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"planck = csiborgtools.io.PlanckClusters(\"../data/HFI_PCCS_SZ-union_R2.08.fits\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "20855f15",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2022-11-20T15:15:05.479763Z",
|
|
"start_time": "2022-11-20T15:15:05.425076Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"mcxc = csiborgtools.io.MCXCClusters(\"../data/mcxc.fits\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "60e7d566",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2022-11-20T15:15:38.743815Z",
|
|
"start_time": "2022-11-20T15:15:38.663202Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"planck.match_to_mcxc(mcxc)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "2941d725",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2022-11-20T14:36:05.559176Z",
|
|
"start_time": "2022-11-20T14:36:05.143516Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"planck[\"MSZ\"]"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "6347d993",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "43293c40",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2022-11-20T14:34:56.350019Z",
|
|
"start_time": "2022-11-20T14:34:56.292284Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"planck.data.dtype.names"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "509d4fbb",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2022-11-20T17:00:49.100716Z",
|
|
"start_time": "2022-11-20T17:00:48.529803Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"csiborgtools.io.get_csiborg_ids(\"/mnt/extraspace/hdesmond\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "f39874e4",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2022-11-20T12:48:39.888076Z",
|
|
"start_time": "2022-11-20T12:48:39.824849Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"from astropy.cosmology import FlatLambdaCDM, z_at_value\n",
|
|
"from astropy import units"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "d243cc59",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2022-11-20T12:48:50.480986Z",
|
|
"start_time": "2022-11-20T12:48:46.442880Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"Nsim = 9844\n",
|
|
"Nsnap = 1016\n",
|
|
"# data, box = utils.load_processed(Nsim, Nsnap)\n",
|
|
"data, box = utils.load_processed(Nsim, Nsnap)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "344e6b96",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2022-11-20T12:49:41.830512Z",
|
|
"start_time": "2022-11-20T12:49:41.793552Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"X = np.vstack([data[\"peak_{}\".format(p)] for p in (\"x\", \"y\", \"z\")]).T"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "d8bb7dce",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2022-11-20T12:51:00.688105Z",
|
|
"start_time": "2022-11-20T12:51:00.262736Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"from sklearn.neighbors import NearestNeighbors"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "71026a85",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2022-11-20T12:51:22.817846Z",
|
|
"start_time": "2022-11-20T12:51:22.762451Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"neighbors = NearestNeighbors()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "3ca4a7b7",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2022-11-20T12:51:52.857117Z",
|
|
"start_time": "2022-11-20T12:51:52.659741Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"neighbors.fit(X)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "6e5ec9c8",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2022-11-20T12:52:50.459988Z",
|
|
"start_time": "2022-11-20T12:52:50.429353Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"p = X[0, :]\n",
|
|
"\n",
|
|
"neighbors.kneighbors(p.reshape(-1,3))"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "304d53aa",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2022-11-20T12:52:31.826535Z",
|
|
"start_time": "2022-11-20T12:52:31.796380Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "a65dac24",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2022-11-20T12:49:09.617079Z",
|
|
"start_time": "2022-11-20T12:49:09.416602Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"data[\"peak_y\"]"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "45b638ac",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "26c64abc",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "07bc45e2",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2022-11-18T15:18:08.182242Z",
|
|
"start_time": "2022-11-18T15:18:08.106196Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"zcosmo = box.box2cosmoredshift(data[\"dist\"])\n",
|
|
"z"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "adf5dbb6",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2022-11-18T15:20:26.613020Z",
|
|
"start_time": "2022-11-18T15:20:25.738527Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"zpec = box.box2pecredshift(*[data[p] for p in [\"vx\", \"vy\", \"vz\", \"peak_x\", \"peak_y\", \"peak_z\"]])\n",
|
|
"zobs = box.box2obsredshift(*[data[p] for p in [\"vx\", \"vy\", \"vz\", \"peak_x\", \"peak_y\", \"peak_z\"]])"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "841bd579",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2022-11-18T15:26:30.294302Z",
|
|
"start_time": "2022-11-18T15:26:29.051227Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"m = zcosmo < 0.05\n",
|
|
"\n",
|
|
"plt.figure()\n",
|
|
"\n",
|
|
"# plt.scatter(zcosmo[m], zcosmo[m] - zobs[m], s=0.05)\n",
|
|
"plt.scatter(zcosmo[m], zpec[m], s=0.05, rasterized=True)\n",
|
|
"t = np.linspace(0, zcosmo[m].max())\n",
|
|
"\n",
|
|
"plt.axhline(0, c=\"red\", ls=\"--\")\n",
|
|
"\n",
|
|
"plt.xlabel(r\"$z_{\\rm cosmo}$\")\n",
|
|
"plt.ylabel(r\"$z_{\\rm pec}$\")\n",
|
|
"plt.tight_layout()\n",
|
|
"plt.savefig(\"../plots/redshift.png\", dpi=450)\n",
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "b4f27150",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "842b2a29",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "1540f703",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "990e9b54",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "72c00ec7",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2022-11-18T13:52:31.564378Z",
|
|
"start_time": "2022-11-18T13:52:31.208987Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"data[\"\"]"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "41d9b43b",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "da80d88a",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "a0cfe3e9",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "cced3507",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2022-11-18T10:38:41.921571Z",
|
|
"start_time": "2022-11-18T10:38:41.546722Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"cosmo = FlatLambdaCDM(H0=70, Om0=0.3, Ob0=0.05)\n",
|
|
"\n",
|
|
"cosmo.comoving_distance()\n",
|
|
"\n",
|
|
"x = 10000 * units.Mpc\n",
|
|
"\n",
|
|
"z_at_value(cosmo.comoving_distance, x)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "efe4bae7",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2022-11-18T10:54:22.472019Z",
|
|
"start_time": "2022-11-18T10:54:21.945010Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"from astropy import constants"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "3b3868ec",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2022-11-18T10:54:45.746052Z",
|
|
"start_time": "2022-11-18T10:54:45.700198Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"constants.c.value * 1e-8"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "b4a75a77",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2022-11-14T16:10:20.623153Z",
|
|
"start_time": "2022-11-14T16:10:20.196639Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"n_sims = csiborgtools.io.get_csiborg_ids(\"/mnt/extraspace/hdesmond\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "90c6750f",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2022-11-14T16:12:35.876806Z",
|
|
"start_time": "2022-11-14T16:12:35.846171Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"np.where(n_sims == 7660)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "2dc01da8",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2022-11-14T16:15:52.261474Z",
|
|
"start_time": "2022-11-14T16:15:50.624885Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"for n_sim in n_sims:\n",
|
|
" simpath = csiborgtools.io.get_sim_path(n_sim)\n",
|
|
" maxsnap = csiborgtools.io.get_maximum_snapshot(simpath)\n",
|
|
" box = csiborgtools.units.BoxUnits(maxsnap, simpath)\n",
|
|
" print(maxsnap, box._aexp)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "192853c4",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "0c145fbc",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "f21964e5",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "84ea4faf",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2022-11-14T16:00:41.737065Z",
|
|
"start_time": "2022-11-14T16:00:40.928532Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"simpath = csiborgtools.io.get_sim_path(7660)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "13268041",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2022-11-14T16:00:41.805562Z",
|
|
"start_time": "2022-11-14T16:00:41.739425Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"simpath"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "c2d53934",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2022-11-14T16:01:06.640894Z",
|
|
"start_time": "2022-11-14T16:01:06.230907Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"box = csiborgtools.units.BoxUnits(999, simpath)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "345a01d3",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2022-11-14T16:01:51.638849Z",
|
|
"start_time": "2022-11-14T16:01:51.185358Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"box._aexp\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "61ec5596",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "14d2b61d",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "a7e78419",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2022-11-10T06:40:31.103185Z",
|
|
"start_time": "2022-11-10T06:40:30.996113Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"planck = utils.load_planck2015(200)\n",
|
|
"mcxc = utils.load_mcxc(200)\n",
|
|
"\n",
|
|
"indxs = csiborgtools.io.match_planck_to_mcxc(planck, mcxc)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "185c6c03",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2022-11-10T07:36:22.652521Z",
|
|
"start_time": "2022-11-10T07:36:14.980728Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"groups = utils.load_2mpp_groups()\n",
|
|
"\n",
|
|
"Nsim = 9844\n",
|
|
"Nsnap = 1016\n",
|
|
"\n",
|
|
"data = utils.load_processed(Nsim, Nsnap)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "272befd5",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "b15427bb",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2022-11-10T07:38:28.598904Z",
|
|
"start_time": "2022-11-10T07:38:28.427656Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"plt.figure()\n",
|
|
"\n",
|
|
"m = data[\"m500\"] > 1e13\n",
|
|
"plt.scatter(data[\"ra\"][m], data[\"dec\"][m], label=\"CSiBORG\", s=3)\n",
|
|
"plt.scatter(groups[\"RA\"], groups[\"DEC\"], label=\"2M++ galaxy groups\", s=3, marker=\"x\")\n",
|
|
"\n",
|
|
"\n",
|
|
"\n",
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "2489d85e",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "2442bec3",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2022-11-09T21:43:04.928922Z",
|
|
"start_time": "2022-11-09T21:43:04.521323Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "7af8a421",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2022-11-09T21:46:29.948541Z",
|
|
"start_time": "2022-11-09T21:46:28.979688Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"RAcoma = (12 + 59/60 + 48.7 / 60**2) * 15\n",
|
|
"DECcoma = 27 + 58 / 60 + 50 / 60**2\n",
|
|
"\n",
|
|
"\n",
|
|
"RAvirgo = (12 + 27 / 60) * 15\n",
|
|
"DECvirgo = 12 + 43/60\n",
|
|
"\n",
|
|
"\n",
|
|
"\n",
|
|
"plt.figure()\n",
|
|
"\n",
|
|
"\n",
|
|
"plt.scatter(mcxc[\"RAdeg\"], mcxc[\"DEdeg\"], label=\"MCXC\")\n",
|
|
"plt.scatter(planck[\"RA\"], planck[\"DEC\"], label=\"Plank\",s=8, c=\"red\")\n",
|
|
"\n",
|
|
"plt.scatter(RAcoma, DECcoma, label=\"Coma\", s=30, marker=\"x\")\n",
|
|
"plt.scatter(RAvirgo, DECvirgo, label=\"Virgo\", s=30, marker=\"x\")\n",
|
|
"\n",
|
|
"plt.legend(framealpha=0.5)\n",
|
|
"plt.xlabel(\"RA\")\n",
|
|
"plt.ylabel(\"DEC\")\n",
|
|
"plt.title(\"Clusters below 200 Mpc\")\n",
|
|
"plt.savefig(\"../plots/clusters_radec.png\", dpi=450)\n",
|
|
"\n",
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "01f5c4b3",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "1b0a0f9e",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "d6ef387a",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2022-11-09T21:40:24.392358Z",
|
|
"start_time": "2022-11-09T21:40:23.480949Z"
|
|
},
|
|
"scrolled": false
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"plt.figure()\n",
|
|
"\n",
|
|
"plt.scatter(mcxc[\"COMDIST\"], mcxc[\"M500\"], label=\"MCXC\")\n",
|
|
"# yerr = np.vstack([planck[\"MSZ\"] - planck[\"MSZ_ERR_LOW\"],\n",
|
|
"# planck[\"MSZ_ERR_UP\"] - planck[\"MSZ\"]])\n",
|
|
"yerr = np.vstack([planck[\"MSZ_ERR_LOW\"], planck[\"MSZ_ERR_UP\"]])\n",
|
|
"plt.errorbar(planck[\"COMDIST\"], planck[\"MSZ\"], yerr, label=\"Plank\", fmt=\" \", capsize=3, color=\"red\")\n",
|
|
"\n",
|
|
"plt.yscale(\"log\")\n",
|
|
"plt.legend()\n",
|
|
"plt.title(\"Clusters below 200 Mpc\")\n",
|
|
"plt.xlabel(r\"$D_{\\rm c} / \\mathrm{Mpc}$\")\n",
|
|
"plt.ylabel(r\"$M_{\\rm 500c} / M_\\odot$\")\n",
|
|
"# plt.savefig(\"../plots/clusters_mass_dist.png\", dpi=450)\n",
|
|
"\n",
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "d7e113a8",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2022-11-09T15:59:03.390824Z",
|
|
"start_time": "2022-11-09T15:59:02.962263Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"d[\"RAdeg\"]"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "e7ae386e",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "9fa1dc0e",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "22cb8bfd",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2022-11-09T15:56:10.087582Z",
|
|
"start_time": "2022-11-09T15:56:10.062895Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"d.dtype.names"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "84639e39",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2022-11-09T15:56:47.929058Z",
|
|
"start_time": "2022-11-09T15:56:47.737531Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"d[\"Cat\"]"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "d4a98c60",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2022-11-09T15:55:12.287185Z",
|
|
"start_time": "2022-11-09T15:55:12.124019Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"type(d[\"MCXC\"])"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "b32906be",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2022-11-09T15:55:49.218385Z",
|
|
"start_time": "2022-11-09T15:55:49.099991Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"np.asanyarray([\"aasdasdaasdasdasdad\", \"bsdfadadfasddsgasdg\"]).dtype"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "be1920a5",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "2c173e6a",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2022-11-09T15:54:17.529059Z",
|
|
"start_time": "2022-11-09T15:54:17.220209Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"d[\"MCXC\"]"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "40c7ab70",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "5284fc28",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2022-11-09T15:47:57.986432Z",
|
|
"start_time": "2022-11-09T15:47:57.575714Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"plt.figure()\n",
|
|
"# plt.scatter(d[\"RAdeg\"], d[\"DEdeg\"], s=1)\n",
|
|
"plt.scatter(d[\"z\"], d[\"M500\"], s=1)\n",
|
|
"\n",
|
|
"plt.yscale(\"log\")\n",
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "7cfb2a1d",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "b01c6134",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "267eb013",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2022-11-06T10:20:27.266576Z",
|
|
"start_time": "2022-11-06T10:20:24.523404Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"Nsim = 9844\n",
|
|
"Nsnap = 1016\n",
|
|
"\n",
|
|
"data = utils.load_processed(Nsim, Nsnap)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "f8c6d928",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2022-11-06T10:24:20.697506Z",
|
|
"start_time": "2022-11-06T10:24:19.631208Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"bins = np.arange(11.8, 15.4, 0.2)\n",
|
|
"\n",
|
|
"\n",
|
|
"plt.figure()\n",
|
|
"x, mu, std = csiborgtools.match.number_density(data, \"m200\", bins, 200, True)\n",
|
|
"plt.errorbar(x, mu, std, capsize=4, label=r\"$M_{200c}$\")\n",
|
|
"\n",
|
|
"x, mu, std = csiborgtools.match.number_density(data, \"m500\", bins, 200, True)\n",
|
|
"plt.errorbar(x, mu, std, capsize=4, label=r\"$M_{500c}$\")\n",
|
|
"\n",
|
|
"x, mu, std = csiborgtools.match.number_density(data, \"totpartmass\", bins, 200, True)\n",
|
|
"plt.errorbar(x, mu, std, capsize=4, label=r\"$M_{\\rm tot}$\")\n",
|
|
"\n",
|
|
"x, mu, std = csiborgtools.match.number_density(data, \"mass_mmain\", bins, 200, True)\n",
|
|
"plt.errorbar(x, mu, std, capsize=4, label=r\"$M_{\\rm mmain}$\")\n",
|
|
"\n",
|
|
"plt.legend()\n",
|
|
"\n",
|
|
"plt.yscale(\"log\")\n",
|
|
"plt.xscale(\"log\")\n",
|
|
"\n",
|
|
"plt.ylabel(r\"$\\phi / (\\mathrm{Mpc}^{-3})~\\mathrm{dex}$\")\n",
|
|
"plt.xlabel(r\"$M_{\\rm x}$\")\n",
|
|
"plt.tight_layout()\n",
|
|
"plt.savefig(\"../plots/HMF.png\", dpi=450)\n",
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "985d46c9",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2022-11-06T10:20:46.078113Z",
|
|
"start_time": "2022-11-06T10:20:44.524929Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"nfw = csiborgtools.fits.NFWProfile()\n",
|
|
"m200_nfw = nfw.enclosed_mass(data[\"r200\"], data[\"Rs\"], data[\"rho0\"])\n",
|
|
"\n",
|
|
"\n",
|
|
"\n",
|
|
"plt.figure()\n",
|
|
"\n",
|
|
"plt.scatter(data[\"m200\"], m200_nfw, s=1)\n",
|
|
"t = np.linspace(1e11, 1e15)\n",
|
|
"plt.plot(t, t, c=\"red\", ls=\"--\", lw=1.5)\n",
|
|
"plt.xscale(\"log\")\n",
|
|
"plt.yscale(\"log\")\n",
|
|
"\n",
|
|
"plt.xlabel(r\"$M_{200c}$\")\n",
|
|
"plt.ylabel(r\"$M_{\\mathrm{NFW}, 200c}$\")\n",
|
|
"plt.tight_layout()\n",
|
|
"plt.savefig(\"../plots/enclosed_vs_nfw.png\", dpi=450)\n",
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "8923ca86",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "6eb8ba93",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2022-11-06T10:22:19.498275Z",
|
|
"start_time": "2022-11-06T10:22:17.953025Z"
|
|
},
|
|
"scrolled": false
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"logm200 = np.log10(data[\"m200\"])\n",
|
|
"conc = data[\"conc\"]\n",
|
|
"\n",
|
|
"N = 10\n",
|
|
"bins = np.linspace(logm200.min(), logm200.max(), N)\n",
|
|
"x = [0.5*(bins[i] + bins[i + 1]) for i in range(N-1)]\n",
|
|
"y = np.full((N - 1, 3), np.nan)\n",
|
|
"for i in range(N - 1):\n",
|
|
" mask = (logm200 >= bins[i]) & (logm200 < bins[i + 1]) & np.isfinite(conc)\n",
|
|
" y[i, :] = np.percentile(conc[mask], [14, 50, 84])\n",
|
|
"\n",
|
|
"\n",
|
|
" \n",
|
|
" \n",
|
|
"fig, axs = plt.subplots(nrows=2, sharex=True, figsize=(6.4, 6.4 * 1))\n",
|
|
"fig.subplots_adjust(hspace=0)\n",
|
|
"axs[0].plot(x, y[:, 1], c=\"red\", marker=\"o\")\n",
|
|
"axs[0].fill_between(x, y[:, 0], y[:, 2], color=\"red\", alpha=0.25)\n",
|
|
"axs[1].hist(logm200, bins=\"auto\", log=True)\n",
|
|
"\n",
|
|
"for b in bins:\n",
|
|
" for i in range(2):\n",
|
|
" axs[i].axvline(b, c=\"orange\", lw=0.5)\n",
|
|
"\n",
|
|
"axs[0].set_ylim(2, 10)\n",
|
|
"axs[1].set_xlabel(r\"$M_{200c}$\")\n",
|
|
"axs[0].set_ylabel(r\"$c_{200c}$\")\n",
|
|
"axs[1].set_ylabel(r\"Counts\")\n",
|
|
"\n",
|
|
"plt.tight_layout(h_pad=0)\n",
|
|
"plt.savefig(\"../plots/mass_concentration.png\", dpi=450)\n",
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "be26cbcc",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "venv_galomatch",
|
|
"language": "python",
|
|
"name": "venv_galomatch"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.8.0"
|
|
},
|
|
"vscode": {
|
|
"interpreter": {
|
|
"hash": "f29d02a8350410abc2a9fb79641689d10bf7ab64afc03ec87ca3cf6ed2daa499"
|
|
}
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 5
|
|
}
|