mirror of
https://github.com/Richard-Sti/csiborgtools.git
synced 2024-12-22 11:58:02 +00:00
New filesystem, basic neighbours calculation (#10)
* simplify Planck catalogue * add MCXC and base survey * Add 2MPP classes * move match to MCXC to Planck * add halo catalogue * rm comment * rm unused imports * Move conversion to box * add min mass * Run on all simulations * rm old function * add combined catalogue * add halo positions * add knn neighbors * set to 5 sims for testing * add docstring * Switch to neighbours in a catalogue * rename io to read * fix indentation * rename to read * io -> read * add import * add RealisationMatcher * io -> read * add docstrings * add search_sim_indiices * update todo * keep make_cat at 10 for now * update nb
This commit is contained in:
parent
f5bf04c46e
commit
c748c87e45
17 changed files with 3515 additions and 549 deletions
|
@ -1,10 +1,9 @@
|
|||
# CSiBORG tools
|
||||
|
||||
## :scroll: Short-term TODO
|
||||
- [x] Add the X-ray clusters
|
||||
- [x] Match the X-ray clusters to Planck
|
||||
- [ ] Calculate catalogues for all realisations.
|
||||
- [ ] Find the distribution of particles in the first snapshot
|
||||
- [ ] Implement Max's halo matching
|
||||
- [ ] Implement a custom model for matchin galaxies to halos.
|
||||
|
||||
|
||||
## :hourglass: Long-term TODO
|
||||
|
|
|
@ -13,4 +13,4 @@
|
|||
# with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
||||
|
||||
from csiborgtools import (io, match, utils, units, fits) # noqa
|
||||
from csiborgtools import (read, match, utils, units, fits) # noqa
|
||||
|
|
|
@ -22,7 +22,7 @@ from os import remove
|
|||
from warnings import warn
|
||||
from os.path import join
|
||||
from tqdm import trange
|
||||
from ..io import nparts_to_start_ind
|
||||
from ..read import nparts_to_start_ind
|
||||
|
||||
|
||||
def clump_with_particles(particle_clumps, clumps):
|
||||
|
|
|
@ -1,263 +0,0 @@
|
|||
# Copyright (C) 2022 Richard Stiskalek
|
||||
# This program is free software; you can redistribute it and/or modify it
|
||||
# under the terms of the GNU General Public License as published by the
|
||||
# Free Software Foundation; either version 3 of the License, or (at your
|
||||
# option) any later version.
|
||||
#
|
||||
# This program is distributed in the hope that it will be useful, but
|
||||
# WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
|
||||
# Public License for more details.
|
||||
#
|
||||
# You should have received a copy of the GNU General Public License along
|
||||
# with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
||||
"""
|
||||
Scripts to read in observation.
|
||||
"""
|
||||
|
||||
import numpy
|
||||
from astropy.io import fits
|
||||
from astropy.coordinates import SkyCoord
|
||||
from astropy import units as u
|
||||
from ..utils import (add_columns, cols_to_structured)
|
||||
|
||||
F64 = numpy.float64
|
||||
|
||||
|
||||
def read_planck2015(fpath, cosmo, max_comdist=None):
|
||||
r"""
|
||||
Read the Planck 2nd Sunyaev-Zeldovich source catalogue [1]. The following
|
||||
is performed:
|
||||
- removes clusters without a redshift estimate,
|
||||
- calculates the comoving distance with the provided cosmology.
|
||||
- Converts `MSZ` from units of :math:`1e14 M_\odot` to :math:`M_\odot`
|
||||
|
||||
Parameters
|
||||
----------
|
||||
fpath : str
|
||||
Path to the source catalogue.
|
||||
cosmo : `astropy.cosmology` object
|
||||
The cosmology to calculate cluster comoving distance from redshift and
|
||||
convert their mass.
|
||||
max_comdist : float, optional
|
||||
Maximum comoving distance threshold in units of :math:`\mathrm{Mpc}`.
|
||||
By default `None` and no threshold is applied.
|
||||
|
||||
Returns
|
||||
-------
|
||||
out : structured array
|
||||
The catalogue structured array.
|
||||
|
||||
References
|
||||
----------
|
||||
[1] https://heasarc.gsfc.nasa.gov/W3Browse/all/plancksz2.html
|
||||
"""
|
||||
data = fits.open(fpath)[1].data
|
||||
hdata = 0.7
|
||||
# Convert FITS to a structured array
|
||||
out = numpy.full(data.size, numpy.nan, dtype=data.dtype.descr)
|
||||
for name in out.dtype.names:
|
||||
out[name] = data[name]
|
||||
# Take only clusters with redshifts
|
||||
out = out[out["REDSHIFT"] >= 0]
|
||||
# Add comoving distance
|
||||
dist = cosmo.comoving_distance(out["REDSHIFT"]).value
|
||||
out = add_columns(out, dist, "COMDIST")
|
||||
# Convert masses
|
||||
for par in ("MSZ", "MSZ_ERR_UP", "MSZ_ERR_LOW"):
|
||||
out[par] *= 1e14
|
||||
out[par] *= (hdata / cosmo.h)**2
|
||||
# Distance threshold
|
||||
if max_comdist is not None:
|
||||
out = out[out["COMDIST"] < max_comdist]
|
||||
|
||||
return out
|
||||
|
||||
|
||||
def read_mcxc(fpath, cosmo, max_comdist=None):
|
||||
r"""
|
||||
Read the MCXC Meta-Catalog of X-Ray Detected Clusters of Galaxies
|
||||
catalogue [1], with data description at [2] and download at [3].
|
||||
|
||||
Note
|
||||
----
|
||||
The exact mass conversion has non-trivial dependence on :math:`H(z)`, see
|
||||
[1] for more details. However, this should be negligible.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
fpath : str
|
||||
Path to the source catalogue obtained from [3]. Expected to be the fits
|
||||
file.
|
||||
cosmo : `astropy.cosmology` object
|
||||
The cosmology to calculate cluster comoving distance from redshift and
|
||||
convert their mass.
|
||||
max_comdist : float, optional
|
||||
Maximum comoving distance threshold in units of :math:`\mathrm{Mpc}`.
|
||||
By default `None` and no threshold is applied.
|
||||
|
||||
Returns
|
||||
-------
|
||||
out : structured array
|
||||
The catalogue structured array.
|
||||
|
||||
References
|
||||
----------
|
||||
[1] The MCXC: a meta-catalogue of x-ray detected clusters of galaxies
|
||||
(2011); Piffaretti, R. ; Arnaud, M. ; Pratt, G. W. ; Pointecouteau,
|
||||
E. ; Melin, J. -B.
|
||||
[2] https://heasarc.gsfc.nasa.gov/W3Browse/rosat/mcxc.html
|
||||
[3] https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/534/A109#/article
|
||||
"""
|
||||
data = fits.open(fpath)[1].data
|
||||
hdata = 0.7 # Little h of the catalogue
|
||||
|
||||
cols = [("RAdeg", F64), ("DEdeg", F64), ("z", F64),
|
||||
("L500", F64), ("M500", F64), ("R500", F64)]
|
||||
out = cols_to_structured(data.size, cols)
|
||||
for col in cols:
|
||||
par = col[0]
|
||||
out[par] = data[par]
|
||||
# Get little h units to match the cosmology
|
||||
out["L500"] *= (hdata / cosmo.h)**2
|
||||
out["M500"] *= (hdata / cosmo.h)**2
|
||||
# Get the 10s back in
|
||||
out["L500"] *= 1e44 # ergs/s
|
||||
out["M500"] *= 1e14 # Msun
|
||||
|
||||
dist = cosmo.comoving_distance(data["z"]).value
|
||||
out = add_columns(out, dist, "COMDIST")
|
||||
out = add_columns(out, data["MCXC"], "name")
|
||||
|
||||
if max_comdist is not None:
|
||||
out = out[out["COMDIST"] < max_comdist]
|
||||
|
||||
return out
|
||||
|
||||
|
||||
def read_2mpp(fpath, dist_cosmo):
|
||||
"""
|
||||
Read in the 2M++ galaxy redshift catalogue [1], with the catalogue at [2].
|
||||
Removes fake galaxies used to fill the zone of avoidance. Note that in
|
||||
principle additional care should be taken for calculating the distance
|
||||
to objects [3]. Currently calculated from the CMB redshift, so some
|
||||
distance estimates may be negative..
|
||||
|
||||
Parameters
|
||||
----------
|
||||
fpath : str
|
||||
File path to the catalogue.
|
||||
cosmo : `astropy.cosmology` object
|
||||
The cosmology to calculate distance from redshift.
|
||||
|
||||
Returns
|
||||
-------
|
||||
out : structured array
|
||||
The catalogue.
|
||||
|
||||
References
|
||||
----------
|
||||
[1] The 2M++ galaxy redshift catalogue; Lavaux, Guilhem, Hudson, Michael J.
|
||||
[2] https://cdsarc.cds.unistra.fr/viz-bin/cat/J/MNRAS/416/2840#/article
|
||||
[3] Improving NASA/IPAC Extragalactic Database Redshift Calculations
|
||||
(2021); Anthony Carr and Tamara Davis
|
||||
"""
|
||||
from scipy.constants import c
|
||||
# Read the catalogue and select non-fake galaxies
|
||||
cat = numpy.genfromtxt(fpath, delimiter="|", )
|
||||
cat = cat[cat[:, 12] == 0, :]
|
||||
|
||||
cols = [("RA", F64), ("DEC", F64), ("Ksmag", F64), ("ZCMB", F64),
|
||||
("DIST", F64)]
|
||||
out = cols_to_structured(cat.shape[0], cols)
|
||||
out["RA"] = cat[:, 1]
|
||||
out["DEC"] = cat[:, 2]
|
||||
out["Ksmag"] = cat[:, 5]
|
||||
out["ZCMB"] = cat[:, 7] / (c * 1e-3)
|
||||
out["DIST"] = cat[:, 7] / dist_cosmo.H0
|
||||
return out
|
||||
|
||||
|
||||
def read_2mpp_groups(fpath, dist_cosmo):
|
||||
"""
|
||||
Read in the 2M++ galaxy group catalogue [1], with the catalogue at [2].
|
||||
Note that the same caveats apply to the distance calculation as in
|
||||
py:function:`read_2mpp`. See that function for more details.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
fpath : str
|
||||
File path to the catalogue.
|
||||
cosmo : `astropy.cosmology` object
|
||||
The cosmology to calculate distance from redshift.
|
||||
|
||||
Returns
|
||||
-------
|
||||
out : structured array
|
||||
The catalogue.
|
||||
|
||||
References
|
||||
----------
|
||||
[1] The 2M++ galaxy redshift catalogue; Lavaux, Guilhem, Hudson, Michael J.
|
||||
[2] https://cdsarc.cds.unistra.fr/viz-bin/cat/J/MNRAS/416/2840#/article
|
||||
[3] Improving NASA/IPAC Extragalactic Database Redshift Calculations
|
||||
(2021); Anthony Carr and Tamara Davis
|
||||
"""
|
||||
cat = numpy.genfromtxt(fpath, delimiter="|", )
|
||||
|
||||
cols = [("RA", F64), ("DEC", F64), ("K2mag", F64), ("Rich", numpy.int64),
|
||||
("dist", F64), ("sigma", F64)]
|
||||
out = cols_to_structured(cat.shape[0], cols)
|
||||
|
||||
out["K2mag"] = cat[:, 3]
|
||||
out["Rich"] = cat[:, 4]
|
||||
out["sigma"] = cat[:, 7]
|
||||
out["dist"] = cat[:, 6] / dist_cosmo.H0
|
||||
|
||||
# Convert galactic coordinates to RA, dec
|
||||
glon = cat[:, 1]
|
||||
glat = cat[:, 2]
|
||||
coords = SkyCoord(l=glon*u.degree, b=glat*u.degree, frame='galactic')
|
||||
coords = coords.transform_to("icrs")
|
||||
out["RA"] = coords.ra
|
||||
out["DEC"] = coords.dec
|
||||
|
||||
return out
|
||||
|
||||
|
||||
def match_planck_to_mcxc(planck, mcxc):
|
||||
"""
|
||||
Return the MCXC catalogue indices of the Planck catalogue detections. Finds
|
||||
the index of the quoted Planck MCXC counterpart in the MCXC array. If not
|
||||
found throws an error. For this reason it may be better to make sure the
|
||||
MCXC catalogue reaches further.
|
||||
|
||||
|
||||
Parameters
|
||||
----------
|
||||
planck : structured array
|
||||
The Planck cluster array.
|
||||
mcxc : structured array
|
||||
The MCXC cluster array.
|
||||
|
||||
Returns
|
||||
-------
|
||||
indxs : 1-dimensional array
|
||||
The array of MCXC indices to match the Planck array. If no counterpart
|
||||
is found returns `numpy.nan`.
|
||||
"""
|
||||
# Planck MCXC need to be decoded to str
|
||||
planck_names = [name.decode() for name in planck["MCXC"]]
|
||||
mcxc_names = [name for name in mcxc["name"]]
|
||||
|
||||
indxs = [numpy.nan] * len(planck_names)
|
||||
for i, name in enumerate(planck_names):
|
||||
if name == "":
|
||||
continue
|
||||
if name in mcxc_names:
|
||||
indxs[i] = mcxc_names.index(name)
|
||||
else:
|
||||
raise ValueError("Planck MCXC identifies `{}` not found in the "
|
||||
"MCXC catalogue.".format(name))
|
||||
return indxs
|
|
@ -13,6 +13,6 @@
|
|||
# with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
||||
|
||||
from .match import brute_spatial_separation # noqa
|
||||
from .match import (brute_spatial_separation, RealisationsMatcher) # noqa
|
||||
from .num_density import (binned_counts, number_density) # noqa
|
||||
# from .correlation import (get_randoms_sphere, sphere_angular_tpcf) # noqa
|
||||
|
|
|
@ -16,6 +16,7 @@
|
|||
import numpy
|
||||
from tqdm import tqdm
|
||||
from astropy.coordinates import SkyCoord
|
||||
from ..read import CombinedHaloCatalogue
|
||||
|
||||
|
||||
def brute_spatial_separation(c1, c2, angular=False, N=None, verbose=False):
|
||||
|
@ -65,3 +66,130 @@ def brute_spatial_separation(c1, c2, angular=False, N=None, verbose=False):
|
|||
sep[i, :] = dist[sort]
|
||||
|
||||
return sep, indxs
|
||||
|
||||
|
||||
class RealisationsMatcher:
|
||||
"""
|
||||
A tool to match halos between IC realisations. Looks for halos 3D space
|
||||
neighbours in all remaining IC realisations that are within some mass
|
||||
range of it.
|
||||
|
||||
|
||||
Parameters
|
||||
----------
|
||||
cats : :py:class`csiborgtools.read.CombinedHaloCatalogue`
|
||||
Combined halo catalogue to search.
|
||||
"""
|
||||
_cats = None
|
||||
|
||||
def __init__(self, cats):
|
||||
self.cats = cats
|
||||
|
||||
@property
|
||||
def cats(self):
|
||||
"""
|
||||
Combined catalogues.
|
||||
|
||||
Returns
|
||||
-------
|
||||
cats : :py:class`csiborgtools.read.CombinedHaloCatalogue`
|
||||
Combined halo catalogue.
|
||||
"""
|
||||
return self._cats
|
||||
|
||||
@cats.setter
|
||||
def cats(self, cats):
|
||||
"""
|
||||
Sets `cats`, ensures that this is a `CombinedHaloCatalogue` object.
|
||||
"""
|
||||
if not isinstance(cats, CombinedHaloCatalogue):
|
||||
raise TypeError("`cats` must be of type `CombinedHaloCatalogue`.")
|
||||
self._cats = cats
|
||||
|
||||
def search_sim_indices(self, n_sim):
|
||||
"""
|
||||
Return indices of all other IC realisations but of `n_sim`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
n_sim : int
|
||||
IC realisation index of `self.cats` to be skipped.
|
||||
|
||||
Returns
|
||||
-------
|
||||
indxs : list of int
|
||||
The remaining IC indices.
|
||||
"""
|
||||
return [i for i in range(self.cats.N) if i != n_sim]
|
||||
|
||||
def cross_knn_position_single(self, n_sim, nmult=5, dlogmass=2):
|
||||
r"""
|
||||
Find all neighbours within :math:`n_{\rm mult} R_{200c}` of halos in
|
||||
the `nsim`th simulation. Also enforces that the neighbours'
|
||||
:math:`\log M_{200c}` be within `dlogmass` dex.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
n_sim : int
|
||||
Index of an IC realisation in `self.cats` whose halos' neighbours
|
||||
in the remaining simulations to search for.
|
||||
nmult : float or int, optional
|
||||
Multiple of :math:`R_{200c}` within which to return neighbours. By
|
||||
default 5.
|
||||
dlogmass : float, optional
|
||||
Tolerance on mass logarithmic mass difference. By default 2 dex.
|
||||
|
||||
Returns
|
||||
-------
|
||||
matches : composite array
|
||||
Array, indices are `(n_sims - 1, 2, n_halos, n_matches)`. The
|
||||
2nd axis is `index` of the neighbouring halo in its catalogue and
|
||||
`dist`, which is the 3D distance to the halo whose neighbours are
|
||||
searched.
|
||||
"""
|
||||
# R200c, M200c and positions of halos in `n_sim` IC realisation
|
||||
r200 = self.cats[n_sim]["r200"]
|
||||
logm200 = numpy.log10(self.cats[n_sim]["m200"])
|
||||
pos = self.cats[n_sim].positions
|
||||
|
||||
matches = [None] * (self.cats.N - 1)
|
||||
# Search for neighbours in the other simulations
|
||||
for count, i in enumerate(self.search_sim_indices(n_sim)):
|
||||
dist, indxs = self.cats[i].radius_neigbours(pos, r200 * nmult)
|
||||
# Get rid of neighbors whose mass is too off
|
||||
for j, indx in enumerate(indxs):
|
||||
match_logm200 = numpy.log10(self.cats[i][indx]["m200"])
|
||||
mask = numpy.abs(match_logm200 - logm200[j]) < dlogmass
|
||||
dist[j] = dist[j][mask]
|
||||
indxs[j] = indx[mask]
|
||||
# Append as a composite array
|
||||
matches[count] = numpy.asarray([indxs, dist], dtype=object)
|
||||
|
||||
return numpy.asarray(matches, dtype=object)
|
||||
|
||||
def cross_knn_position_all(self, nmult=5, dlogmass=2):
|
||||
r"""
|
||||
Find all neighbours within :math:`n_{\rm mult} R_{200c}` of halos in
|
||||
all simulations listed in `self.cats`. Also enforces that the
|
||||
neighbours' :math:`\log M_{200c}` be within `dlogmass` dex.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
nmult : float or int, optional
|
||||
Multiple of :math:`R_{200c}` within which to return neighbours. By
|
||||
default 5.
|
||||
dlogmass : float, optional
|
||||
Tolerance on mass logarithmic mass difference. By default 2 dex.
|
||||
|
||||
Returns
|
||||
-------
|
||||
matches : list of composite arrays
|
||||
List whose length is `n_sims`. For description of its elements see
|
||||
`self.cross_knn_position_single(...)`.
|
||||
"""
|
||||
N = self.cats.N # Number of catalogues
|
||||
matches = [None] * N
|
||||
# Loop over each catalogue
|
||||
for i in range(N):
|
||||
matches[i] = self.cross_knn_position_single(i, nmult, dlogmass)
|
||||
return matches
|
||||
|
|
|
@ -17,7 +17,7 @@ from .readsim import (get_csiborg_ids, get_sim_path, get_snapshots, # noqa
|
|||
get_snapshot_path, get_maximum_snapshot, read_info, nparts_to_start_ind, # noqa
|
||||
open_particle, open_unbinding, read_particle, # noqa
|
||||
drop_zero_indx, # noqa
|
||||
read_clumpid, read_clumps, read_mmain, # noqa
|
||||
merge_mmain_to_clumps) # noqa
|
||||
from .readobs import (read_planck2015, read_mcxc, read_2mpp, read_2mpp_groups, match_planck_to_mcxc) # noqa
|
||||
read_clumpid, read_clumps, read_mmain) # noqa
|
||||
from .make_cat import (HaloCatalogue, CombinedHaloCatalogue) # noqa
|
||||
from .readobs import (PlanckClusters, MCXCClusters, TwoMPPGalaxies, TwoMPPGroups) # noqa
|
||||
from .outsim import (dump_split, combine_splits) # noqa
|
331
csiborgtools/read/make_cat.py
Normal file
331
csiborgtools/read/make_cat.py
Normal file
|
@ -0,0 +1,331 @@
|
|||
# Copyright (C) 2022 Richard Stiskalek, Harry Desmond
|
||||
# This program is free software; you can redistribute it and/or modify it
|
||||
# under the terms of the GNU General Public License as published by the
|
||||
# Free Software Foundation; either version 3 of the License, or (at your
|
||||
# option) any later version.
|
||||
#
|
||||
# This program is distributed in the hope that it will be useful, but
|
||||
# WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
|
||||
# Public License for more details.
|
||||
#
|
||||
# You should have received a copy of the GNU General Public License along
|
||||
# with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
||||
"""
|
||||
Functions to read in the particle and clump files.
|
||||
"""
|
||||
|
||||
import numpy
|
||||
from os.path import join
|
||||
from tqdm import trange
|
||||
from sklearn.neighbors import NearestNeighbors
|
||||
from .readsim import (get_sim_path, read_mmain, get_csiborg_ids,
|
||||
get_maximum_snapshot)
|
||||
from ..utils import (flip_cols, add_columns)
|
||||
from ..units import (BoxUnits, cartesian_to_radec)
|
||||
|
||||
|
||||
class HaloCatalogue:
|
||||
r"""
|
||||
Processed halo catalogue, the data should be calculated in `run_fit_halos`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
n_sim: int
|
||||
Initial condition index.
|
||||
n_snap: int
|
||||
Snapshot index.
|
||||
minimum_m500 : float, optional
|
||||
The minimum :math:`M_{rm 500c} / M_\odot` mass. By default no
|
||||
threshold.
|
||||
dumpdir : str, optional
|
||||
Path to where files from `run_fit_halos` are stored. By default
|
||||
`/mnt/extraspace/rstiskalek/csiborg/`.
|
||||
mmain_path : str, optional
|
||||
Path to where mmain files are stored. By default
|
||||
`/mnt/zfsusers/hdesmond/Mmain`.
|
||||
"""
|
||||
_box = None
|
||||
_n_sim = None
|
||||
_n_snap = None
|
||||
_data = None
|
||||
_knn = None
|
||||
_positions = None
|
||||
|
||||
def __init__(self, n_sim, n_snap, minimum_m500=None,
|
||||
dumpdir="/mnt/extraspace/rstiskalek/csiborg/",
|
||||
mmain_path="/mnt/zfsusers/hdesmond/Mmain"):
|
||||
self._box = BoxUnits(n_snap, get_sim_path(n_sim))
|
||||
minimum_m500 = 0 if minimum_m500 is None else minimum_m500
|
||||
self._set_data(n_sim, n_snap, dumpdir, mmain_path, minimum_m500)
|
||||
self._nsim = n_sim
|
||||
self._nsnap = n_snap
|
||||
# Initialise the KNN
|
||||
knn = NearestNeighbors()
|
||||
knn.fit(self.positions)
|
||||
self._knn = knn
|
||||
|
||||
@property
|
||||
def data(self):
|
||||
"""
|
||||
Halo catalogue.
|
||||
|
||||
Returns
|
||||
-------
|
||||
cat : structured array
|
||||
Catalogue.
|
||||
"""
|
||||
if self._data is None:
|
||||
raise ValueError("`data` is not set!")
|
||||
return self._data
|
||||
|
||||
@property
|
||||
def box(self):
|
||||
"""
|
||||
Box object, useful for change of units.
|
||||
|
||||
Returns
|
||||
-------
|
||||
box : :py:class:`csiborgtools.units.BoxUnits`
|
||||
The box object.
|
||||
"""
|
||||
return self._box
|
||||
|
||||
@property
|
||||
def cosmo(self):
|
||||
"""
|
||||
The box cosmology.
|
||||
|
||||
Returns
|
||||
-------
|
||||
cosmo : `astropy` cosmology object
|
||||
Box cosmology.
|
||||
"""
|
||||
return self.box.cosmo
|
||||
|
||||
@property
|
||||
def n_snap(self):
|
||||
"""
|
||||
The snapshot ID.
|
||||
|
||||
Returns
|
||||
-------
|
||||
n_snap : int
|
||||
Snapshot ID.
|
||||
"""
|
||||
return self._n_snap
|
||||
|
||||
@property
|
||||
def n_sim(self):
|
||||
"""
|
||||
The initiali condition (IC) realisation ID.
|
||||
|
||||
Returns
|
||||
-------
|
||||
n_sim : int
|
||||
The IC ID.
|
||||
"""
|
||||
return self._n_sim
|
||||
|
||||
def _set_data(self, n_sim, n_snap, dumpdir, mmain_path, minimum_m500):
|
||||
"""
|
||||
Loads the data, merges with mmain, does various coordinate transforms.
|
||||
"""
|
||||
# Load the processed data
|
||||
fname = "ramses_out_{}_{}.npy".format(
|
||||
str(n_sim).zfill(5), str(n_snap).zfill(5))
|
||||
data = numpy.load(join(dumpdir, fname))
|
||||
|
||||
# Load the mmain file and add it to the data
|
||||
mmain = read_mmain(n_sim, mmain_path)
|
||||
data = self.merge_mmain_to_clumps(data, mmain)
|
||||
flip_cols(data, "peak_x", "peak_z")
|
||||
|
||||
# Cut on number of particles and finite m200
|
||||
data = data[(data["npart"] > 100) & numpy.isfinite(data["m200"])]
|
||||
|
||||
# Unit conversion
|
||||
convert_cols = ["m200", "m500", "totpartmass", "mass_mmain",
|
||||
"r200", "r500", "Rs", "rho0",
|
||||
"peak_x", "peak_y", "peak_z"]
|
||||
data = self.box.convert_from_boxunits(data, convert_cols)
|
||||
|
||||
# Cut on mass. Note that this is in Msun
|
||||
data = data[data["m500"] > minimum_m500]
|
||||
|
||||
# Now calculate spherical coordinates
|
||||
d, ra, dec = cartesian_to_radec(data)
|
||||
data = add_columns(data, [d, ra, dec], ["dist", "ra", "dec"])
|
||||
|
||||
# Pre-allocate the positions array
|
||||
self._positions = numpy.vstack(
|
||||
[data["peak_{}".format(p)] for p in ("x", "y", "z")]).T
|
||||
|
||||
self._data = data
|
||||
|
||||
def merge_mmain_to_clumps(self, clumps, mmain):
|
||||
"""
|
||||
Merge columns from the `mmain` files to the `clump` file, matches them
|
||||
by their halo index while assuming that the indices `index` in both
|
||||
arrays are sorted.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
clumps : structured array
|
||||
Clumps structured array.
|
||||
mmain : structured array
|
||||
Parent halo array whose information is to be merged into `clumps`.
|
||||
|
||||
Returns
|
||||
-------
|
||||
out : structured array
|
||||
Array with added columns.
|
||||
"""
|
||||
X = numpy.full((clumps.size, 2), numpy.nan)
|
||||
# Mask of which clumps have a mmain index
|
||||
mask = numpy.isin(clumps["index"], mmain["index"])
|
||||
|
||||
X[mask, 0] = mmain["mass_cl"]
|
||||
X[mask, 1] = mmain["sub_frac"]
|
||||
return add_columns(clumps, X, ["mass_mmain", "sub_frac"])
|
||||
|
||||
@property
|
||||
def positions(self):
|
||||
"""
|
||||
3D positions of halos.
|
||||
|
||||
Returns
|
||||
-------
|
||||
X : 2-dimensional array
|
||||
Array of shape `(n_halos, 3)`, where the latter axis represents
|
||||
`x`, `y` and `z`.
|
||||
"""
|
||||
return self._positions
|
||||
|
||||
def radius_neigbours(self, X, radius):
|
||||
"""
|
||||
Return sorted nearest neigbours within `radius` or `X`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
X : 2-dimensional array
|
||||
Array of shape `(n_queries, 3)`, where the latter axis represents
|
||||
`x`, `y` and `z`.
|
||||
radius : float
|
||||
Limiting distance of neighbours.
|
||||
|
||||
Returns
|
||||
-------
|
||||
dist : list of 1-dimensional arrays
|
||||
List of length `n_queries` whose elements are arrays of distances
|
||||
to the nearest neighbours.
|
||||
knns : list of 1-dimensional arrays
|
||||
List of length `n_queries` whose elements are arrays of indices of
|
||||
nearest neighbours in this catalogue.
|
||||
"""
|
||||
if not (X.ndim == 2 and X.shape[1] == 3):
|
||||
raise TypeError("`X` must be an array of shape `(n_samples, 3)`.")
|
||||
# Query the KNN
|
||||
return self._knn.radius_neighbors(X, radius, sort_results=True)
|
||||
|
||||
@property
|
||||
def keys(self):
|
||||
"""Catalogue keys."""
|
||||
return self.data.dtype.names
|
||||
|
||||
def __getitem__(self, key):
|
||||
return self._data[key]
|
||||
|
||||
|
||||
class CombinedHaloCatalogue:
|
||||
r"""
|
||||
A combined halo catalogue, containing `HaloCatalogue` for each IC
|
||||
realisation at the latest redshift.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
minimum_m500 : float, optional
|
||||
The minimum :math:`M_{rm 500c} / M_\odot` mass. By default no
|
||||
threshold.
|
||||
dumpdir : str, optional
|
||||
Path to where files from `run_fit_halos` are stored. By default
|
||||
`/mnt/extraspace/rstiskalek/csiborg/`.
|
||||
mmain_path : str, optional
|
||||
Path to where mmain files are stored. By default
|
||||
`/mnt/zfsusers/hdesmond/Mmain`.
|
||||
verbose : bool, optional
|
||||
Verbosity flag for reading the catalogues.
|
||||
"""
|
||||
_n_sims = None
|
||||
_n_snaps = None
|
||||
_cats = None
|
||||
|
||||
def __init__(self, minimum_m500=None,
|
||||
dumpdir="/mnt/extraspace/rstiskalek/csiborg/",
|
||||
mmain_path="/mnt/zfsusers/hdesmond/Mmain", verbose=True):
|
||||
# Read simulations and their maximum snapshots
|
||||
# NOTE remove this later and take all cats
|
||||
self._n_sims = get_csiborg_ids("/mnt/extraspace/hdesmond")[:10]
|
||||
n_snaps = [get_maximum_snapshot(get_sim_path(i)) for i in self._n_sims]
|
||||
self._n_snaps = numpy.asanyarray(n_snaps)
|
||||
|
||||
cats = [None] * self.N
|
||||
for i in trange(self.N) if verbose else range(self.N):
|
||||
cats[i] = HaloCatalogue(self._n_sims[i], self._n_snaps[i],
|
||||
minimum_m500, dumpdir, mmain_path)
|
||||
self._cats = cats
|
||||
|
||||
@property
|
||||
def N(self):
|
||||
"""
|
||||
Number of IC realisations in this combined catalogue.
|
||||
|
||||
Returns
|
||||
-------
|
||||
N : int
|
||||
Number of catalogues.
|
||||
"""
|
||||
return len(self.n_sims)
|
||||
|
||||
@property
|
||||
def n_sims(self):
|
||||
"""
|
||||
IC realisations CSiBORG identifiers.
|
||||
|
||||
Returns
|
||||
-------
|
||||
ids : 1-dimensional array
|
||||
Array of IDs.
|
||||
"""
|
||||
return self._n_sims
|
||||
|
||||
@property
|
||||
def n_snaps(self):
|
||||
"""
|
||||
Snapshot numbers corresponding to `self.n_sims`.
|
||||
|
||||
Returns
|
||||
-------
|
||||
n_snaps : 1-dimensional array
|
||||
Array of snapshot numbers.
|
||||
"""
|
||||
return self._n_snaps
|
||||
|
||||
@property
|
||||
def cats(self):
|
||||
"""
|
||||
Catalogues associated with this object.
|
||||
|
||||
Returns
|
||||
-------
|
||||
cats : list of `HaloCatalogue`
|
||||
Catalogues.
|
||||
"""
|
||||
return self._cats
|
||||
|
||||
def __getitem__(self, n):
|
||||
if n > self.N:
|
||||
raise ValueError("Catalogue count is {}, requested catalogue {}."
|
||||
.format(self.N, n))
|
||||
return self.cats[n]
|
300
csiborgtools/read/readobs.py
Normal file
300
csiborgtools/read/readobs.py
Normal file
|
@ -0,0 +1,300 @@
|
|||
# Copyright (C) 2022 Richard Stiskalek
|
||||
# This program is free software; you can redistribute it and/or modify it
|
||||
# under the terms of the GNU General Public License as published by the
|
||||
# Free Software Foundation; either version 3 of the License, or (at your
|
||||
# option) any later version.
|
||||
#
|
||||
# This program is distributed in the hope that it will be useful, but
|
||||
# WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
|
||||
# Public License for more details.
|
||||
#
|
||||
# You should have received a copy of the GNU General Public License along
|
||||
# with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
||||
"""
|
||||
Scripts to read in observation.
|
||||
"""
|
||||
|
||||
import numpy
|
||||
from astropy.io import fits
|
||||
from astropy.coordinates import SkyCoord
|
||||
from astropy.cosmology import FlatLambdaCDM
|
||||
from astropy import units as u
|
||||
from ..utils import (add_columns, cols_to_structured)
|
||||
|
||||
F64 = numpy.float64
|
||||
|
||||
|
||||
class BaseSurvey:
|
||||
"""
|
||||
Base survey class with some methods that are common to all survey classes.
|
||||
"""
|
||||
_data = None
|
||||
_cosmo = None
|
||||
|
||||
@property
|
||||
def data(self):
|
||||
"""
|
||||
Cluster catalogue.
|
||||
|
||||
Returns
|
||||
-------
|
||||
cat : structured array
|
||||
Catalogue.
|
||||
"""
|
||||
if self._data is None:
|
||||
raise ValueError("`data` is not set!")
|
||||
return self._data
|
||||
|
||||
@property
|
||||
def cosmo(self):
|
||||
"""Desired cosmology."""
|
||||
if self._cosmo is None:
|
||||
raise ValueError("`cosmo` is not set!")
|
||||
return self._cosmo
|
||||
|
||||
@property
|
||||
def keys(self):
|
||||
"""Catalogue keys."""
|
||||
return self.data.dtype.names
|
||||
|
||||
def __getitem__(self, key):
|
||||
return self._data[key]
|
||||
|
||||
|
||||
class PlanckClusters(BaseSurvey):
|
||||
r"""
|
||||
Planck 2nd Sunyaev-Zeldovich source catalogue [1]. Automatically removes
|
||||
clusters without a redshift estimate.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
fpath : str
|
||||
Path to the source catalogue.
|
||||
cosmo : `astropy.cosmology` object, optional
|
||||
Cosmology to convert masses (particularly :math:`H_0`). By default
|
||||
`FlatLambdaCDM(H0=70.5, Om0=0.307, Tcmb0=2.728)`.
|
||||
max_redshift: float, optional
|
||||
Maximum cluster redshift. By default `None` and no selection is
|
||||
performed.
|
||||
|
||||
References
|
||||
----------
|
||||
[1] https://heasarc.gsfc.nasa.gov/W3Browse/all/plancksz2.html
|
||||
"""
|
||||
_hdata = 0.7 # little h value of the data
|
||||
|
||||
def __init__(self, fpath, cosmo=None, max_redshift=None):
|
||||
if cosmo is None:
|
||||
self._cosmo = FlatLambdaCDM(H0=70.5, Om0=0.307, Tcmb0=2.728)
|
||||
else:
|
||||
self._cosmo = cosmo
|
||||
self.set_data(fpath, max_redshift)
|
||||
|
||||
def set_data(self, fpath, max_redshift=None):
|
||||
"""
|
||||
Set the catalogue, loads it and applies a maximum redshift cut.
|
||||
"""
|
||||
cat = fits.open(fpath)[1].data
|
||||
# Convert FITS to a structured array
|
||||
data = numpy.full(cat.size, numpy.nan, dtype=cat.dtype.descr)
|
||||
for name in cat.dtype.names:
|
||||
data[name] = cat[name]
|
||||
# Take only clusters with redshifts
|
||||
data = data[data["REDSHIFT"] >= 0]
|
||||
# Convert masses
|
||||
for par in ("MSZ", "MSZ_ERR_UP", "MSZ_ERR_LOW"):
|
||||
data[par] *= 1e14
|
||||
data[par] *= (self._hdata / self.cosmo.h)**2
|
||||
# Redshift cut
|
||||
if max_redshift is not None:
|
||||
data = data["REDSHIFT" <= max_redshift]
|
||||
self._data = data
|
||||
|
||||
def match_to_mcxc(self, mcxc):
|
||||
"""
|
||||
Return the MCXC catalogue indices of the Planck catalogue detections.
|
||||
Finds the index of the quoted Planck MCXC counterpart in the MCXC
|
||||
array. If not found throws an error. For this reason it may be better
|
||||
to make sure the MCXC catalogue reaches further.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
mcxc : :py:class`MCXCClusters`
|
||||
MCXC cluster object.
|
||||
|
||||
Returns
|
||||
-------
|
||||
indxs : list of int
|
||||
Array of MCXC indices to match the Planck array. If no counterpart
|
||||
is found returns `numpy.nan`.
|
||||
"""
|
||||
if not isinstance(mcxc, MCXCClusters):
|
||||
raise TypeError("`mcxc` must be `MCXCClusters` type.")
|
||||
|
||||
# Planck MCXC need to be decoded to str
|
||||
planck_names = [name.decode() for name in self["MCXC"]]
|
||||
mcxc_names = [name for name in mcxc["name"]]
|
||||
|
||||
indxs = [numpy.nan] * len(planck_names)
|
||||
for i, name in enumerate(planck_names):
|
||||
if name == "":
|
||||
continue
|
||||
if name in mcxc_names:
|
||||
indxs[i] = mcxc_names.index(name)
|
||||
else:
|
||||
raise ValueError("Planck MCXC identifier `{}` not found in "
|
||||
"the MCXC catalogue.".format(name))
|
||||
return indxs
|
||||
|
||||
|
||||
class MCXCClusters(BaseSurvey):
|
||||
r"""
|
||||
MCXC Meta-Catalog of X-Ray Detected Clusters of Galaxies catalogue [1],
|
||||
with data description at [2] and download at [3].
|
||||
|
||||
Note
|
||||
----
|
||||
The exact mass conversion has non-trivial dependence on :math:`H(z)`, see
|
||||
[1] for more details. However, this should be negligible.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
fpath : str
|
||||
Path to the source catalogue obtained from [3]. Expected to be the fits
|
||||
file.
|
||||
cosmo : `astropy.cosmology` object, optional
|
||||
The cosmology to to convert cluster masses (to first order). By default
|
||||
`FlatLambdaCDM(H0=70.5, Om0=0.307, Tcmb0=2.728)`.
|
||||
max_redshift: float, optional
|
||||
Maximum cluster redshift. By default `None` and no selection is
|
||||
performed.
|
||||
|
||||
References
|
||||
----------
|
||||
[1] The MCXC: a meta-catalogue of x-ray detected clusters of galaxies
|
||||
(2011); Piffaretti, R. ; Arnaud, M. ; Pratt, G. W. ; Pointecouteau,
|
||||
E. ; Melin, J. -B.
|
||||
[2] https://heasarc.gsfc.nasa.gov/W3Browse/rosat/mcxc.html
|
||||
[3] https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/534/A109#/article
|
||||
"""
|
||||
_hdata = 0.7 # Little h of the catalogue
|
||||
|
||||
def __init__(self, fpath, cosmo=None, max_redshift=None):
|
||||
if cosmo is None:
|
||||
self._cosmo = FlatLambdaCDM(H0=70.5, Om0=0.307, Tcmb0=2.728)
|
||||
else:
|
||||
self._cosmo = cosmo
|
||||
self._set_data(fpath, max_redshift)
|
||||
|
||||
def _set_data(self, fpath, max_redshift):
|
||||
"""
|
||||
Set the catalogue, loads it and applies a maximum redshift cut.
|
||||
"""
|
||||
cat = fits.open(fpath)[1].data
|
||||
# Pre-allocate array and extract selected variables
|
||||
cols = [("RAdeg", F64), ("DEdeg", F64), ("z", F64),
|
||||
("L500", F64), ("M500", F64), ("R500", F64)]
|
||||
data = cols_to_structured(cat.size, cols)
|
||||
for col in cols:
|
||||
par = col[0]
|
||||
data[par] = cat[par]
|
||||
# Add the cluster names
|
||||
data = add_columns(data, cat["MCXC"], "name")
|
||||
|
||||
# Get little h units to match the cosmology
|
||||
data["L500"] *= (self._hdata / self.cosmo.h)**2
|
||||
data["M500"] *= (self._hdata / self.cosmo.h)**2
|
||||
# Get the 10s back in
|
||||
data["L500"] *= 1e44 # ergs/s
|
||||
data["M500"] *= 1e14 # Msun
|
||||
|
||||
if max_redshift is not None:
|
||||
data = data["z" <= max_redshift]
|
||||
|
||||
self._data = data
|
||||
|
||||
|
||||
class TwoMPPGalaxies(BaseSurvey):
|
||||
"""
|
||||
The 2M++ galaxy redshift catalogue [1], with the catalogue at [2].
|
||||
Removes fake galaxies used to fill the zone of avoidance. Note that the
|
||||
stated redshift is in the CMB frame.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
fpath : str
|
||||
File path to the catalogue.
|
||||
|
||||
References
|
||||
----------
|
||||
[1] The 2M++ galaxy redshift catalogue; Lavaux, Guilhem, Hudson, Michael J.
|
||||
[2] https://cdsarc.cds.unistra.fr/viz-bin/cat/J/MNRAS/416/2840#/article
|
||||
[3] Improving NASA/IPAC Extragalactic Database Redshift Calculations
|
||||
(2021); Anthony Carr and Tamara Davis
|
||||
"""
|
||||
|
||||
def __init__(self, fpath):
|
||||
self._set_data(fpath)
|
||||
|
||||
def _set_data(self, fpath):
|
||||
"""
|
||||
Set the catalogue
|
||||
"""
|
||||
from scipy.constants import c
|
||||
# Read the catalogue and select non-fake galaxies
|
||||
cat = numpy.genfromtxt(fpath, delimiter="|", )
|
||||
cat = cat[cat[:, 12] == 0, :]
|
||||
# Pre=allocate array and fillt it
|
||||
cols = [("RA", F64), ("DEC", F64), ("Ksmag", F64), ("ZCMB", F64),
|
||||
("DIST", F64)]
|
||||
data = cols_to_structured(cat.shape[0], cols)
|
||||
data["RA"] = cat[:, 1]
|
||||
data["DEC"] = cat[:, 2]
|
||||
data["Ksmag"] = cat[:, 5]
|
||||
data["ZCMB"] = cat[:, 7] / (c * 1e-3)
|
||||
self._data = data
|
||||
|
||||
|
||||
class TwoMPPGroups(BaseSurvey):
|
||||
"""
|
||||
The 2M++ galaxy group catalogue [1], with the catalogue at [2].
|
||||
|
||||
Parameters
|
||||
----------
|
||||
fpath : str
|
||||
File path to the catalogue.
|
||||
|
||||
References
|
||||
----------
|
||||
[1] The 2M++ galaxy redshift catalogue; Lavaux, Guilhem, Hudson, Michael J.
|
||||
[2] https://cdsarc.cds.unistra.fr/viz-bin/cat/J/MNRAS/416/2840#/article
|
||||
[3] Improving NASA/IPAC Extragalactic Database Redshift Calculations
|
||||
(2021); Anthony Carr and Tamara Davis
|
||||
"""
|
||||
|
||||
def __init__(self, fpath):
|
||||
self._set_data(fpath)
|
||||
|
||||
def _set_data(self, fpath):
|
||||
"""
|
||||
Set the catalogue
|
||||
"""
|
||||
cat = numpy.genfromtxt(fpath, delimiter="|", )
|
||||
# Pre-allocate and fill the array
|
||||
cols = [("RA", F64), ("DEC", F64), ("K2mag", F64),
|
||||
("Rich", numpy.int64), ("sigma", F64)]
|
||||
data = cols_to_structured(cat.shape[0], cols)
|
||||
data["K2mag"] = cat[:, 3]
|
||||
data["Rich"] = cat[:, 4]
|
||||
data["sigma"] = cat[:, 7]
|
||||
|
||||
# Convert galactic coordinates to RA, dec
|
||||
glon = data[:, 1]
|
||||
glat = data[:, 2]
|
||||
coords = SkyCoord(l=glon*u.degree, b=glat*u.degree, frame='galactic')
|
||||
coords = coords.transform_to("icrs")
|
||||
data["RA"] = coords.ra
|
||||
data["DEC"] = coords.dec
|
||||
self._data = data
|
|
@ -22,8 +22,7 @@ from os import listdir
|
|||
from os.path import (join, isfile)
|
||||
from glob import glob
|
||||
from tqdm import tqdm
|
||||
|
||||
from ..utils import (cols_to_structured, add_columns)
|
||||
from ..utils import cols_to_structured
|
||||
|
||||
|
||||
F16 = numpy.float16
|
||||
|
@ -512,30 +511,3 @@ def read_mmain(n, srcdir, fname="Mmain_{}.npy"):
|
|||
out[name] = arr[:, i]
|
||||
|
||||
return out
|
||||
|
||||
|
||||
def merge_mmain_to_clumps(clumps, mmain):
|
||||
"""
|
||||
Merge columns from the `mmain` files to the `clump` file, matches them
|
||||
by their halo index while assuming that the indices `index` in both arrays
|
||||
are sorted.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
clumps : structured array
|
||||
Clumps structured array.
|
||||
mmain : structured array
|
||||
Parent halo array whose information is to be merged into `clumps`.
|
||||
|
||||
Returns
|
||||
-------
|
||||
out : structured array
|
||||
Array with added columns.
|
||||
"""
|
||||
X = numpy.full((clumps.size, 2), numpy.nan)
|
||||
# Mask of which clumps have a mmain index
|
||||
mask = numpy.isin(clumps["index"], mmain["index"])
|
||||
|
||||
X[mask, 0] = mmain["mass_cl"]
|
||||
X[mask, 1] = mmain["sub_frac"]
|
||||
return add_columns(clumps, X, ["mass_mmain", "sub_frac"])
|
|
@ -14,4 +14,4 @@
|
|||
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
||||
|
||||
from .transforms import cartesian_to_radec # noqa
|
||||
from .box_units import (BoxUnits, convert_from_boxunits) # noqa
|
||||
from .box_units import (BoxUnits) # noqa
|
||||
|
|
|
@ -20,7 +20,7 @@ import numpy
|
|||
from scipy.interpolate import interp1d
|
||||
from astropy.cosmology import LambdaCDM
|
||||
from astropy import (constants, units)
|
||||
from ..io import read_info
|
||||
from ..read import read_info
|
||||
|
||||
|
||||
# Map of unit conversions
|
||||
|
@ -329,65 +329,59 @@ class BoxUnits:
|
|||
return (density / self._unit_d * self._Msuncgs
|
||||
/ (units.Mpc.to(units.cm))**3)
|
||||
|
||||
def convert_from_boxunits(self, data, names):
|
||||
r"""
|
||||
Convert columns named `names` in array `data` from box units to
|
||||
physical units, such that
|
||||
- length -> :math:`Mpc`,
|
||||
- mass -> :math:`M_\odot`,
|
||||
- density -> :math:`M_\odot / \mathrm{Mpc}^3`.
|
||||
|
||||
def convert_from_boxunits(data, names, boxunits):
|
||||
r"""
|
||||
Convert columns named `names` in array `data` from box units to physical
|
||||
units, such that
|
||||
- length -> :math:`Mpc`,
|
||||
- mass -> :math:`M_\odot`,
|
||||
- density -> :math:`M_\odot / \mathrm{Mpc}^3`.
|
||||
Any other conversions are currently not implemented. Note that the array
|
||||
is passed by reference and directly modified, even though it is also
|
||||
explicitly returned. Additionally centres the box coordinates on the
|
||||
observer, if they are being transformed.
|
||||
Any other conversions are currently not implemented. Note that the
|
||||
array is passed by reference and directly modified, even though it is
|
||||
also explicitly returned. Additionally centres the box coordinates on
|
||||
the observer, if they are being transformed.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
data : structured array
|
||||
Input array.
|
||||
names : list of str
|
||||
Columns to be converted.
|
||||
boxunits : `BoxUnits`
|
||||
Box units class of the simulation and snapshot.
|
||||
Parameters
|
||||
----------
|
||||
data : structured array
|
||||
Input array.
|
||||
names : list of str
|
||||
Columns to be converted.
|
||||
|
||||
Returns
|
||||
-------
|
||||
data : structured array
|
||||
Input array with converted columns.
|
||||
"""
|
||||
if not isinstance(boxunits, BoxUnits):
|
||||
raise TypeError("`boxunits` must be of type `{}`. Currently `{}`."
|
||||
.format(BoxUnits, type(boxunits)))
|
||||
names = [names] if isinstance(names, str) else names
|
||||
Returns
|
||||
-------
|
||||
data : structured array
|
||||
Input array with converted columns.
|
||||
"""
|
||||
names = [names] if isinstance(names, str) else names
|
||||
|
||||
# Shortcut for the transform functions
|
||||
transforms = {
|
||||
"length": boxunits.box2mpc,
|
||||
"mass": boxunits.box2solarmass,
|
||||
"density": boxunits.box2dens
|
||||
}
|
||||
# Shortcut for the transform functions
|
||||
transforms = {
|
||||
"length": self.box2mpc,
|
||||
"mass": self.box2solarmass,
|
||||
"density": self.box2dens
|
||||
}
|
||||
|
||||
for name in names:
|
||||
# Check that the name is even in the array
|
||||
if name not in data.dtype.names:
|
||||
raise ValueError("Name `{}` is not in `data` array.".format(name))
|
||||
for name in names:
|
||||
# Check that the name is even in the array
|
||||
if name not in data.dtype.names:
|
||||
raise ValueError("Name `{}` not in `data` array.".format(name))
|
||||
|
||||
# Convert
|
||||
found = False
|
||||
for unittype, suppnames in CONV_NAME.items():
|
||||
if name in suppnames:
|
||||
data[name] = transforms[unittype](data[name])
|
||||
found = True
|
||||
continue
|
||||
# If nothing found
|
||||
if not found:
|
||||
raise NotImplementedError(
|
||||
"Conversion of `{}` is not defined.".format(name))
|
||||
# Convert
|
||||
found = False
|
||||
for unittype, suppnames in CONV_NAME.items():
|
||||
if name in suppnames:
|
||||
data[name] = transforms[unittype](data[name])
|
||||
found = True
|
||||
continue
|
||||
# If nothing found
|
||||
if not found:
|
||||
raise NotImplementedError(
|
||||
"Conversion of `{}` is not defined.".format(name))
|
||||
|
||||
# Center at the observer
|
||||
if name in ["peak_x", "peak_y", "peak_z"]:
|
||||
data[name] -= transforms["length"](0.5)
|
||||
data[name] -= (0.5)
|
||||
# Center at the observer
|
||||
if name in ["peak_x", "peak_y", "peak_z"]:
|
||||
data[name] -= transforms["length"](0.5)
|
||||
|
||||
return data
|
||||
return data
|
||||
|
|
File diff suppressed because one or more lines are too long
|
@ -32,9 +32,6 @@ import utils
|
|||
F64 = numpy.float64
|
||||
I64 = numpy.int64
|
||||
|
||||
# Simulations and their snapshot to analyze
|
||||
Nsims = [9844]
|
||||
Nsnap = 1016
|
||||
|
||||
# Get MPI things
|
||||
comm = MPI.COMM_WORLD
|
||||
|
@ -50,68 +47,76 @@ cols_collect = [("npart", I64), ("totpartmass", F64), ("Rs", F64),
|
|||
("rmax", F64), ("r200", F64), ("r500", F64),
|
||||
("m200", F64), ("m500", F64)]
|
||||
|
||||
# NOTE later loop over sims too
|
||||
Nsim = Nsims[0]
|
||||
simpath = csiborgtools.io.get_sim_path(Nsim)
|
||||
box = csiborgtools.units.BoxUnits(Nsnap, simpath)
|
||||
Nsims = csiborgtools.read.get_csiborg_ids("/mnt/extraspace/hdesmond")
|
||||
for i, Nsim in enumerate(Nsims):
|
||||
if rank == 0:
|
||||
print("{}: calculating {}th simulation.".format(datetime.now(), i))
|
||||
|
||||
jobs = csiborgtools.fits.split_jobs(utils.Nsplits, nproc)[rank]
|
||||
for icount, Nsplit in enumerate(jobs):
|
||||
print("{}: rank {} working {} / {} jobs.".format(datetime.now(), rank,
|
||||
icount + 1, len(jobs)))
|
||||
parts, part_clumps, clumps = csiborgtools.fits.load_split_particles(
|
||||
Nsplit, loaddir, Nsim, Nsnap, remove_split=False)
|
||||
simpath = csiborgtools.read.get_sim_path(Nsim)
|
||||
Nsnap = csiborgtools.read.get_maximum_snapshot(simpath)
|
||||
box = csiborgtools.units.BoxUnits(Nsnap, simpath)
|
||||
|
||||
N = clumps.size
|
||||
cols = [("index", I64), ("npart", I64), ("totpartmass", F64),
|
||||
("Rs", F64), ("rho0", F64), ("conc", F64),
|
||||
("vx", F64), ("vy", F64), ("vz", F64),
|
||||
("rmin", F64), ("rmax", F64),
|
||||
("r200", F64), ("r500", F64), ("m200", F64), ("m500", F64)]
|
||||
out = csiborgtools.utils.cols_to_structured(N, cols)
|
||||
out["index"] = clumps["index"]
|
||||
jobs = csiborgtools.fits.split_jobs(utils.Nsplits, nproc)[rank]
|
||||
for Nsplit in jobs:
|
||||
parts, part_clumps, clumps = csiborgtools.fits.load_split_particles(
|
||||
Nsplit, loaddir, Nsim, Nsnap, remove_split=False)
|
||||
|
||||
for n in range(N):
|
||||
# Pick clump and its particles
|
||||
xs = csiborgtools.fits.pick_single_clump(n, parts, part_clumps, clumps)
|
||||
clump = csiborgtools.fits.Clump.from_arrays(*xs, rhoc=box.box_rhoc)
|
||||
out["npart"][n] = clump.Npart
|
||||
out["rmin"][n] = clump.rmin
|
||||
out["rmax"][n] = clump.rmax
|
||||
out["totpartmass"][n] = clump.total_particle_mass
|
||||
out["vx"] = numpy.average(clump.vel[:, 0], weights=clump.m)
|
||||
out["vy"] = numpy.average(clump.vel[:, 1], weights=clump.m)
|
||||
out["vz"] = numpy.average(clump.vel[:, 2], weights=clump.m)
|
||||
N = clumps.size
|
||||
cols = [("index", I64), ("npart", I64), ("totpartmass", F64),
|
||||
("Rs", F64), ("rho0", F64), ("conc", F64),
|
||||
("vx", F64), ("vy", F64), ("vz", F64),
|
||||
("rmin", F64), ("rmax", F64),
|
||||
("r200", F64), ("r500", F64), ("m200", F64), ("m500", F64)]
|
||||
out = csiborgtools.utils.cols_to_structured(N, cols)
|
||||
out["index"] = clumps["index"]
|
||||
|
||||
# Spherical overdensity radii and masses
|
||||
rs, ms = clump.spherical_overdensity_mass([200, 500])
|
||||
out["r200"][n] = rs[0]
|
||||
out["r500"][n] = rs[1]
|
||||
out["m200"][n] = ms[0]
|
||||
out["m500"][n] = ms[1]
|
||||
for n in range(N):
|
||||
# Pick clump and its particles
|
||||
xs = csiborgtools.fits.pick_single_clump(n, parts, part_clumps,
|
||||
clumps)
|
||||
clump = csiborgtools.fits.Clump.from_arrays(*xs, rhoc=box.box_rhoc)
|
||||
out["npart"][n] = clump.Npart
|
||||
out["rmin"][n] = clump.rmin
|
||||
out["rmax"][n] = clump.rmax
|
||||
out["totpartmass"][n] = clump.total_particle_mass
|
||||
out["vx"] = numpy.average(clump.vel[:, 0], weights=clump.m)
|
||||
out["vy"] = numpy.average(clump.vel[:, 1], weights=clump.m)
|
||||
out["vz"] = numpy.average(clump.vel[:, 2], weights=clump.m)
|
||||
|
||||
# NFW profile fit
|
||||
if clump.Npart > 10 and numpy.isfinite(out["r200"][n]):
|
||||
nfwpost = csiborgtools.fits.NFWPosterior(clump)
|
||||
logRs, __ = nfwpost.maxpost_logRs()
|
||||
Rs = 10**logRs
|
||||
if not numpy.isnan(logRs):
|
||||
out["Rs"][n] = Rs
|
||||
out["rho0"][n] = nfwpost.rho0_from_Rs(Rs)
|
||||
out["conc"][n] = out["r200"][n] / Rs
|
||||
# Spherical overdensity radii and masses
|
||||
rs, ms = clump.spherical_overdensity_mass([200, 500])
|
||||
out["r200"][n] = rs[0]
|
||||
out["r500"][n] = rs[1]
|
||||
out["m200"][n] = ms[0]
|
||||
out["m500"][n] = ms[1]
|
||||
|
||||
csiborgtools.io.dump_split(out, Nsplit, Nsim, Nsnap, dumpdir)
|
||||
# NFW profile fit
|
||||
if clump.Npart > 10 and numpy.isfinite(out["r200"][n]):
|
||||
nfwpost = csiborgtools.fits.NFWPosterior(clump)
|
||||
logRs, __ = nfwpost.maxpost_logRs()
|
||||
Rs = 10**logRs
|
||||
if not numpy.isnan(logRs):
|
||||
out["Rs"][n] = Rs
|
||||
out["rho0"][n] = nfwpost.rho0_from_Rs(Rs)
|
||||
out["conc"][n] = out["r200"][n] / Rs
|
||||
|
||||
csiborgtools.read.dump_split(out, Nsplit, Nsim, Nsnap, dumpdir)
|
||||
|
||||
# Wait until all jobs finished before moving to another simulation
|
||||
comm.Barrier()
|
||||
|
||||
# Use the rank 0 to combine outputs for this CSiBORG realisation
|
||||
if rank == 0:
|
||||
print("Collecting results!")
|
||||
out_collected = csiborgtools.read.combine_splits(
|
||||
utils.Nsplits, Nsim, Nsnap, utils.dumpdir, cols_collect,
|
||||
remove_splits=True, verbose=False)
|
||||
fname = join(utils.dumpdir, "ramses_out_{}_{}.npy"
|
||||
.format(str(Nsim).zfill(5), str(Nsnap).zfill(5)))
|
||||
print("Saving results to `{}`.".format(fname))
|
||||
numpy.save(fname, out_collected)
|
||||
|
||||
comm.Barrier()
|
||||
|
||||
# Force all ranks to wait
|
||||
comm.Barrier()
|
||||
# Use the rank 0 to combine outputs for this CSiBORG realisation
|
||||
if rank == 0:
|
||||
print("Collecting results!")
|
||||
out_collected = csiborgtools.io.combine_splits(
|
||||
utils.Nsplits, Nsim, Nsnap, utils.dumpdir, cols_collect,
|
||||
remove_splits=True, verbose=False)
|
||||
fname = join(utils.dumpdir, "ramses_out_{}_{}.npy"
|
||||
.format(str(Nsim).zfill(5), str(Nsnap).zfill(5)))
|
||||
print("Saving results to `{}`.".format(fname))
|
||||
numpy.save(fname, out_collected)
|
||||
print("All finished! See ya!")
|
||||
|
|
|
@ -34,7 +34,7 @@ comm = MPI.COMM_WORLD
|
|||
rank = comm.Get_rank()
|
||||
nproc = comm.Get_size()
|
||||
|
||||
Nsims = csiborgtools.io.get_csiborg_ids("/mnt/extraspace/hdesmond")
|
||||
Nsims = csiborgtools.read.get_csiborg_ids("/mnt/extraspace/hdesmond")
|
||||
partcols = ["x", "y", "z", "vx", "vy", "vz", "M", "level"]
|
||||
dumpdir = join(utils.dumpdir, "temp")
|
||||
|
||||
|
@ -43,16 +43,16 @@ for icount, sim_index in enumerate(jobs):
|
|||
print("{}: rank {} working {} / {} jobs.".format(datetime.now(), rank,
|
||||
icount + 1, len(jobs)))
|
||||
Nsim = Nsims[sim_index]
|
||||
simpath = csiborgtools.io.get_sim_path(Nsim)
|
||||
Nsnap = csiborgtools.io.get_maximum_snapshot(simpath)
|
||||
simpath = csiborgtools.read.get_sim_path(Nsim)
|
||||
Nsnap = csiborgtools.read.get_maximum_snapshot(simpath)
|
||||
# Load the clumps, particles' clump IDs and particles.
|
||||
clumps = csiborgtools.io.read_clumps(Nsnap, simpath)
|
||||
particle_clumps = csiborgtools.io.read_clumpid(Nsnap, simpath,
|
||||
verbose=False)
|
||||
particles = csiborgtools.io.read_particle(partcols, Nsnap, simpath,
|
||||
verbose=False)
|
||||
clumps = csiborgtools.read.read_clumps(Nsnap, simpath)
|
||||
particle_clumps = csiborgtools.read.read_clumpid(Nsnap, simpath,
|
||||
verbose=False)
|
||||
particles = csiborgtools.read.read_particle(partcols, Nsnap, simpath,
|
||||
verbose=False)
|
||||
# Drop all particles whose clump index is 0 (not assigned to any halo)
|
||||
particle_clumps, particles = csiborgtools.io.drop_zero_indx(
|
||||
particle_clumps, particles = csiborgtools.read.drop_zero_indx(
|
||||
particle_clumps, particles)
|
||||
# Dump it!
|
||||
csiborgtools.fits.dump_split_particles(particles, particle_clumps, clumps,
|
||||
|
|
|
@ -16,16 +16,14 @@
|
|||
Notebook utility functions.
|
||||
"""
|
||||
|
||||
# import numpy
|
||||
# from os.path import join
|
||||
|
||||
import numpy
|
||||
from os.path import join
|
||||
from astropy.cosmology import FlatLambdaCDM
|
||||
|
||||
try:
|
||||
import csiborgtools
|
||||
except ModuleNotFoundError:
|
||||
import sys
|
||||
sys.path.append("../")
|
||||
# try:
|
||||
# import csiborgtools
|
||||
# except ModuleNotFoundError:
|
||||
# import sys
|
||||
# sys.path.append("../")
|
||||
|
||||
|
||||
Nsplits = 200
|
||||
|
@ -42,52 +40,3 @@ _virgo = {"RA": (12 + 27 / 60) * 15,
|
|||
"COMDIST": 16.5}
|
||||
|
||||
specific_clusters = {"Coma": _coma, "Virgo": _virgo}
|
||||
|
||||
|
||||
def load_processed(Nsim, Nsnap):
|
||||
simpath = csiborgtools.io.get_sim_path(Nsim)
|
||||
outfname = join(
|
||||
dumpdir, "ramses_out_{}_{}.npy".format(str(Nsim).zfill(5),
|
||||
str(Nsnap).zfill(5)))
|
||||
data = numpy.load(outfname)
|
||||
# Add mmain
|
||||
mmain = csiborgtools.io.read_mmain(Nsim, "/mnt/zfsusers/hdesmond/Mmain")
|
||||
data = csiborgtools.io.merge_mmain_to_clumps(data, mmain)
|
||||
csiborgtools.utils.flip_cols(data, "peak_x", "peak_z")
|
||||
# Cut on numbre of particles and finite m200
|
||||
data = data[(data["npart"] > 100) & numpy.isfinite(data["m200"])]
|
||||
|
||||
# Do unit conversion
|
||||
boxunits = csiborgtools.units.BoxUnits(Nsnap, simpath)
|
||||
convert_cols = ["m200", "m500", "totpartmass", "mass_mmain",
|
||||
"r200", "r500", "Rs", "rho0", "peak_x", "peak_y", "peak_z"]
|
||||
data = csiborgtools.units.convert_from_boxunits(
|
||||
data, convert_cols, boxunits)
|
||||
# Now calculate spherical coordinates
|
||||
d, ra, dec = csiborgtools.units.cartesian_to_radec(data)
|
||||
data = csiborgtools.utils.add_columns(
|
||||
data, [d, ra, dec], ["dist", "ra", "dec"])
|
||||
return data, boxunits
|
||||
|
||||
|
||||
def load_planck2015(max_comdist=214):
|
||||
cosmo = FlatLambdaCDM(H0=70.5, Om0=0.307, Tcmb0=2.728)
|
||||
fpath = "../data/HFI_PCCS_SZ-union_R2.08.fits"
|
||||
return csiborgtools.io.read_planck2015(fpath, cosmo, max_comdist)
|
||||
|
||||
|
||||
def load_mcxc(max_comdist=214):
|
||||
cosmo = FlatLambdaCDM(H0=70.5, Om0=0.307, Tcmb0=2.728)
|
||||
fpath = ("../data/mcxc.fits")
|
||||
return csiborgtools.io.read_mcxc(fpath, cosmo, max_comdist)
|
||||
|
||||
|
||||
def load_2mpp():
|
||||
cosmo = FlatLambdaCDM(H0=70.5, Om0=0.307, Tcmb0=2.728)
|
||||
return csiborgtools.io.read_2mpp("../data/2M++_galaxy_catalog.dat", cosmo)
|
||||
|
||||
|
||||
def load_2mpp_groups():
|
||||
cosmo = FlatLambdaCDM(H0=70.5, Om0=0.307, Tcmb0=2.728)
|
||||
return csiborgtools.io.read_2mpp_groups(
|
||||
"../data/../data/2M++_group_catalog.dat", cosmo)
|
||||
|
|
Loading…
Reference in a new issue