2273 lines
664 KiB
Text
2273 lines
664 KiB
Text
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "340c92c6",
|
|
"metadata": {},
|
|
"source": [
|
|
"Tristan Hoellinger<br/>\n",
|
|
"Institut d'Astrophysique de Paris</br>\n",
|
|
"tristan.hoellinger@iap.fr"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "94047ef1",
|
|
"metadata": {},
|
|
"source": [
|
|
"# P3M force diagnostic"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "cd240b53",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Set up the environment and parameters"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 1,
|
|
"id": "1dfed55e",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# pyright: reportWildcardImportFromLibrary=false\n",
|
|
"from wip3m import *"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 2,
|
|
"id": "aea2278a",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"workdir = ROOT_PATH\n",
|
|
"output_path = OUTPUT_PATH\n",
|
|
"\n",
|
|
"L = 64 # Box size in Mpc/h\n",
|
|
"N = 32 # Density grid size\n",
|
|
"Np = 32 # Number of dark matter particles per spatial dimension\n",
|
|
"Npm = 64 # PM grid size\n",
|
|
"n_Tiles = 8 # Make sure Npm/n_Tiles >= 6\n",
|
|
"\n",
|
|
"go_beyond_Nyquist_ss = True # for the summary statistics\n",
|
|
"\n",
|
|
"force = True\n",
|
|
"force_hard = True\n",
|
|
"run_id = \"forcediag8\"\n",
|
|
"\n",
|
|
"# Good set of parameters for the force diagnostic\n",
|
|
"# nPairsForceDiagnostic_spm = nPairsForceDiagnostic_p3m = 3\n",
|
|
"# nBinsForceDiagnostic = 30\n",
|
|
"# maxTrialsForceDiagnostic = int(1e9)\n",
|
|
"\n",
|
|
"# Faster force diagnostic\n",
|
|
"nPairsForceDiagnostic_spm = nPairsForceDiagnostic_p3m = 3\n",
|
|
"nBinsForceDiagnostic = 20\n",
|
|
"maxTrialsForceDiagnostic = int(1e8)\n",
|
|
"\n",
|
|
"# Simulation parameters\n",
|
|
"# nsteps_spm = 200\n",
|
|
"# nsteps_p3m = 200\n",
|
|
"nsteps_spm = 20\n",
|
|
"nsteps_p3m = 20"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "28a4e070",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Automatic reloading of modules\n",
|
|
"%load_ext autoreload\n",
|
|
"%autoreload 2\n",
|
|
"\n",
|
|
"from os.path import isfile\n",
|
|
"from pathlib import Path\n",
|
|
"import numpy as np\n",
|
|
"\n",
|
|
"from pysbmy import pySbmy\n",
|
|
"from pysbmy.power import PowerSpectrum\n",
|
|
"from pysbmy.field import read_field\n",
|
|
"\n",
|
|
"from wip3m.tools import get_k_max, generate_sim_params, generate_white_noise_Field\n",
|
|
"from wip3m.params import params_planck_kmax_missing, cosmo_small_to_full_dict, z2a, BASELINE_SEEDPHASE\n",
|
|
"from wip3m.plot_utils import * # type: ignore"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "3f0eaa51",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"k_max = 2.721\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"corner = 0.0\n",
|
|
"RedshiftLPT = 19.0\n",
|
|
"RedshiftFCs = 0.0\n",
|
|
"ai = z2a(RedshiftLPT)\n",
|
|
"af = z2a(RedshiftFCs)\n",
|
|
"k_max = get_k_max(L, N) # k_max in h/Mpc\n",
|
|
"print(f\"k_max = {k_max}\")\n",
|
|
"cosmo = params_planck_kmax_missing.copy()\n",
|
|
"cosmo[\"k_max\"] = k_max\n",
|
|
"\n",
|
|
"wd = workdir + run_id + \"/\"\n",
|
|
"simdir = output_path + run_id + \"/\"\n",
|
|
"logdir = simdir + \"logs/\"\n",
|
|
"if force_hard:\n",
|
|
" import shutil\n",
|
|
" if Path(simdir).exists():\n",
|
|
" shutil.rmtree(simdir)\n",
|
|
" if Path(wd).exists():\n",
|
|
" shutil.rmtree(wd)\n",
|
|
"Path(wd).mkdir(parents=True, exist_ok=True)\n",
|
|
"Path(logdir).mkdir(parents=True, exist_ok=True)\n",
|
|
"\n",
|
|
"input_white_noise_file = simdir + \"input_white_noise.h5\"\n",
|
|
"input_seed_phase_file = simdir + \"seed\"\n",
|
|
"ICs_path = simdir + \"initial_density.h5\"\n",
|
|
"simpath = simdir\n",
|
|
"\n",
|
|
"# Path to the input matter power spectrum (generated later)\n",
|
|
"input_power_file = simdir + \"input_power.h5\"\n",
|
|
"\n",
|
|
"# Paths the the force diagnostic CSVs\n",
|
|
"OutputForceDiagnostic_spm = simdir + \"force_diagnostic_spm.txt\"\n",
|
|
"OutputForceDiagnostic_p3m = simdir + \"force_diagnostic_p3m.txt\""
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "4f013d1f",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Generate the parameter files"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "88742aca",
|
|
"metadata": {},
|
|
"source": [
|
|
"The first preparatory step is to generate all the parameter files required for all the simulations.\n",
|
|
"\n",
|
|
"To this end we use the `generate_sim_params` function defined in `params.py`."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 5,
|
|
"id": "dd3f8a0c",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"common_params = {\n",
|
|
" \"Np\": Np,\n",
|
|
" \"N\": N,\n",
|
|
" \"L\": L,\n",
|
|
" \"corner0\": corner,\n",
|
|
" \"corner1\": corner,\n",
|
|
" \"corner2\": corner,\n",
|
|
" \"h\": cosmo[\"h\"],\n",
|
|
" \"Omega_m\": cosmo[\"Omega_m\"],\n",
|
|
" \"Omega_b\": cosmo[\"Omega_b\"],\n",
|
|
" \"n_s\": cosmo[\"n_s\"],\n",
|
|
" \"sigma8\": cosmo[\"sigma8\"],\n",
|
|
"}\n",
|
|
"\n",
|
|
"lpt_params = common_params.copy()\n",
|
|
"lpt_params[\"method\"] = \"lpt\"\n",
|
|
"lpt_params[\"InputPowerSpectrum\"] = input_power_file\n",
|
|
"lpt_params[\"ICsMode\"] = 1\n",
|
|
"lpt_params[\"InputWhiteNoise\"] = input_white_noise_file\n",
|
|
"\n",
|
|
"spm_params = common_params.copy()\n",
|
|
"spm_params[\"method\"] = \"spm\"\n",
|
|
"spm_params[\"EvolutionMode\"] = 5\n",
|
|
"spm_params[\"TimeStepDistribution\"] = 0\n",
|
|
"spm_params[\"ai\"] = ai\n",
|
|
"spm_params[\"af\"] = af\n",
|
|
"spm_params[\"RedshiftLPT\"] = RedshiftLPT\n",
|
|
"spm_params[\"RedshiftFCs\"] = RedshiftFCs\n",
|
|
"spm_params[\"Npm\"] = Npm\n",
|
|
"spm_params[\"nsteps\"] = nsteps_spm\n",
|
|
"spm_params[\"n_Tiles\"] = n_Tiles\n",
|
|
"spm_params[\"RunForceDiagnostic\"] = True\n",
|
|
"spm_params[\"nPairsForceDiagnostic\"] = nPairsForceDiagnostic_spm\n",
|
|
"spm_params[\"nBinsForceDiagnostic\"] = nBinsForceDiagnostic\n",
|
|
"spm_params[\"OutputForceDiagnostic\"] = OutputForceDiagnostic_spm\n",
|
|
"spm_params[\"maxTrialsForceDiagnostic\"] = maxTrialsForceDiagnostic\n",
|
|
"\n",
|
|
"p3m_params = common_params.copy()\n",
|
|
"p3m_params[\"method\"] = \"p3m\"\n",
|
|
"p3m_params[\"EvolutionMode\"] = 4\n",
|
|
"p3m_params[\"TimeStepDistribution\"] = 0\n",
|
|
"p3m_params[\"ai\"] = ai\n",
|
|
"p3m_params[\"af\"] = af\n",
|
|
"p3m_params[\"RedshiftLPT\"] = RedshiftLPT\n",
|
|
"p3m_params[\"RedshiftFCs\"] = RedshiftFCs\n",
|
|
"p3m_params[\"Npm\"] = Npm\n",
|
|
"p3m_params[\"nsteps\"] = nsteps_p3m\n",
|
|
"p3m_params[\"n_Tiles\"] = n_Tiles\n",
|
|
"p3m_params[\"RunForceDiagnostic\"] = True\n",
|
|
"p3m_params[\"nPairsForceDiagnostic\"] = nPairsForceDiagnostic_p3m\n",
|
|
"p3m_params[\"nBinsForceDiagnostic\"] = nBinsForceDiagnostic\n",
|
|
"p3m_params[\"OutputForceDiagnostic\"] = OutputForceDiagnostic_p3m\n",
|
|
"p3m_params[\"maxTrialsForceDiagnostic\"] = maxTrialsForceDiagnostic"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 6,
|
|
"id": "1d617059",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"[17:40:12|\u001b[1;36mINFO \u001b[00m]|\u001b[38;5;147m(wip3m.tools)\u001b[00m Generating parameter file...\n",
|
|
"[17:40:12|\u001b[38;5;113mSTATUS \u001b[00m]|Writing parameter file in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/forcediag8/example_lpt.sbmy'...\n",
|
|
"[17:40:12|\u001b[38;5;113mSTATUS \u001b[00m]|Writing parameter file in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/forcediag8/example_lpt.sbmy' done.\n",
|
|
"[17:40:12|\u001b[1;36mINFO \u001b[00m]|\u001b[38;5;147m(wip3m.tools)\u001b[00m Parameter file written to /Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/forcediag8/example_lpt.sbmy\n",
|
|
"SPM nsteps = 20:\n",
|
|
"[17:40:12|\u001b[1;36mINFO \u001b[00m]|\u001b[38;5;147m(wip3m.tools)\u001b[00m Time-stepping distribution file: /Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/forcediag8/nsteps20_ts_spm.h5\n",
|
|
"[17:40:12|\u001b[38;5;113mSTATUS \u001b[00m]|Write timestepping configuration in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/forcediag8/nsteps20_ts_spm.h5'...\n",
|
|
"[17:40:12|\u001b[38;5;113mSTATUS \u001b[00m]|Write timestepping configuration in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/forcediag8/nsteps20_ts_spm.h5' done.\n",
|
|
"[17:40:12|\u001b[38;5;113mSTATUS \u001b[00m]|Read timestepping configuration in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/forcediag8/nsteps20_ts_spm.h5'...\n",
|
|
"[17:40:12|\u001b[38;5;113mSTATUS \u001b[00m]|Read timestepping configuration in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/forcediag8/nsteps20_ts_spm.h5' done.\n",
|
|
"[17:40:13|\u001b[1;36mINFO \u001b[00m]|\u001b[38;5;147m(wip3m.tools)\u001b[00m Generating parameter file...\n",
|
|
"[17:40:13|\u001b[38;5;113mSTATUS \u001b[00m]|Writing parameter file in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/forcediag8/nsteps20_example_spm.sbmy'...\n",
|
|
"[17:40:13|\u001b[38;5;113mSTATUS \u001b[00m]|Writing parameter file in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/forcediag8/nsteps20_example_spm.sbmy' done.\n",
|
|
"[17:40:13|\u001b[1;36mINFO \u001b[00m]|\u001b[38;5;147m(wip3m.tools)\u001b[00m Parameter file written to /Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/forcediag8/nsteps20_example_spm.sbmy\n",
|
|
"P3M nsteps = 20:\n",
|
|
"[17:40:13|\u001b[1;36mINFO \u001b[00m]|\u001b[38;5;147m(wip3m.tools)\u001b[00m Time-stepping distribution file: /Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/forcediag8/nsteps20_ts_p3m.h5\n",
|
|
"[17:40:13|\u001b[38;5;113mSTATUS \u001b[00m]|Write timestepping configuration in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/forcediag8/nsteps20_ts_p3m.h5'...\n",
|
|
"[17:40:13|\u001b[38;5;113mSTATUS \u001b[00m]|Write timestepping configuration in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/forcediag8/nsteps20_ts_p3m.h5' done.\n",
|
|
"[17:40:13|\u001b[38;5;113mSTATUS \u001b[00m]|Read timestepping configuration in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/forcediag8/nsteps20_ts_p3m.h5'...\n",
|
|
"[17:40:13|\u001b[38;5;113mSTATUS \u001b[00m]|Read timestepping configuration in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/forcediag8/nsteps20_ts_p3m.h5' done.\n",
|
|
"[17:40:13|\u001b[1;36mINFO \u001b[00m]|\u001b[38;5;147m(wip3m.tools)\u001b[00m Generating parameter file...\n",
|
|
"[17:40:13|\u001b[38;5;113mSTATUS \u001b[00m]|Writing parameter file in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/forcediag8/nsteps20_example_p3m.sbmy'...\n",
|
|
"[17:40:13|\u001b[38;5;113mSTATUS \u001b[00m]|Writing parameter file in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/forcediag8/nsteps20_example_p3m.sbmy' done.\n",
|
|
"[17:40:13|\u001b[1;36mINFO \u001b[00m]|\u001b[38;5;147m(wip3m.tools)\u001b[00m Parameter file written to /Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/forcediag8/nsteps20_example_p3m.sbmy\n"
|
|
]
|
|
},
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAb0AAACMCAYAAADof3f4AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAANTFJREFUeJztnQdcFMcXx390aSJFQEUsIMauiBpr7D3RRI3GHluCGnv9xxIr2MXeeyyxxBrR2LvG3jsxCqLY6Qrc//MGD++ou8cdnNz7fj77udu93XdvZmfnzbx5M2ukUCgUYBiGYRgDwDi7FWAYhmGYrIKNHsMwDGMwsNFjGIZhDAY2egzDMIzBwEaPYRiGMRjY6DEMwzAGAxs9hmEYxmBgo8cwDMMYDKb4jElISEBISAhsbW1hZGSU3eowDMMw2QStsxIeHo78+fPD2Ng4Zxo9MngFCxbMbjUYhmEYPeHx48dwc3PLmUaPenjKRObOnVtjOcW/KI7Qp6Gwz2uPpQeWpnrOo6UmSIg0gbF1PAr1jNf4v7Qhh3XRrRzWRbdyWBfdytEnXaTwaKkpEiKNYZXbDB3HV4OmvHv3TnSClHYhRxo9pUuTDF5mjJ6yK2xsYgxHe8dUz3luEYeED8YwtkiAo73m2aYNOayLbuWwLrqVw7roVo4+6SKFMIt4xH8wgqWFWabqcSUZDXVxIAvDMAxjMLDRYxiGYQwGNnoMwzCMwcBGj2EYhjEYPutAFl3y5+o/sWnxJrwKewWPEh74pmQfuNuWTPP8K2evYNOiTbh77S5ePn+JCUsnoEajGrL+8/d5v+N44HH89+A/WOSyQKmKpdBrZC+4e7hLlrFj7Q7sXLsToU9CxX5hr8Lo3L8zqtSpgsywfv56LJ2yFK26tULf3/pKvm7VzFVYPXu12rGCHgWx5vAaWf8fFhqGJX5LcO7wOcREx6BA4QIYPn04ipcrLllGu2rt8OzJsxTHW3RugQETB0iSER8fj9WzVuPvP//Gq+ev4OTihEZtGqFTv06y54pGRURhxfQVOLHvBF6/eI1ipYuJvP2i3BcalzOaq7Ry5krsWb8HEe8iUNqnNAZOHgjAVZacY3uPYde6XeL3d2/eYenepfAs5SlLn7gPcVg+bTnOHj6Lp/89hbWtNbxreKNO3m7IDWfJulAZOrTrEMJCwmBqZgqvMl7oPqw7jOAlK02qzBw5E7t+34XWtX1Ru3hryTL8B/lj35Z9arIqfVUJP/pMlq3Lo3uPRJmmc+Pj4lGoWCF0qjIGeYxdJcup414n1fS1rNILDWu0kSQjOjIaS/yXiHL47vU75CuYD9/9+B2KoWmqsqXqRnUnpe/8sfOiLJatUhb9xveDW5G0pxNkBdzTS4VDOw9h4YSF6DKgC5bsWSKM3tytIxEe/TrNa2KiYuBR0gP9J/bX+H+pELXs0hLzt8/HtN+nIS4uDsM6DkN0VLRkGXld86LniJ5YvGcxFu1ehArVKmBUj1EIuhOksV63r9zGrvW7ULREUY2uJ8O79fzWpG3u1rmyrg9/E45fvvsFpqam8F/jj1UHV8F3tC9s7GxkyVm0a5GaHtN/ny6O125WW7KMDQs3iIYFPbyrD60WjZKNizZi28ptkMu0YdNw/vh5jJw9Eiv+XgGfmj4Y0n6IMPCalrONCxN1Geg3EAt2LkAuq1yiDH2Iey9LDv1eulJpkb70SE8ONU7uXb8nGgSL/1qM8UvG4/HDx1i0fYwsXdyKuqH/+P5Yvn855mydA9eCriJN4VFvZMlRQg3Lm5duigaLnPQoqVy7slo5Gj13tGw5wf8Go1+rfqIBOGvTLCzbt0zkk5mpmSw5qnrQNmz6MBjBCOWL1pQsY/74+Th35Bx+DfhVlOlW3VshYEwArt4/lWYeZCSXGl+je44WjZ2Jyydiyd4lcCngIsq3nPpMF3BPLxU2L9uMZj80Q5Pvm4j9QX6DcGLXGZy+HYjGedumeg31pDLbm5q6dqra/ogZI/BthW9FS6pclXKSZFRroD7PpcewHqLnRw95keJFZOtErcBJ/SZhiP8QrJ27FppgYmoCB2cHaAoZGud8zhg+Y3jSsXzu+WTLyeOYR21//YL1yF8oP8p9KS1viRvnb6B6w+qoWq+q2KcK+ODOg6JhIIfYmFjRm5q4bGLSve06qCtOHTgl7lf3od1llzOqaLYs34JOv3RCjYaJLe6Rs0biu4rf4cr9k/B2qydJDtGwVUPxGfo40WOQFunJscltg+nrExsWSvpP6A/fr33xKvwZnGzyStKlfsv6avu9R/fGXxv/QnDYQ3g5Osh6BqlBMWfMHPGsjfxxpKz0KDEzN0ulPMfJkkM9YPr9519/TjpG3otbt+KQECFdTnI9Tu4/CS/3cnDKnZ/WrJIk48aFG2jUuhHKVy0v9r/u8LXoBf8begelXdP2VqUn90nQE9y8eFM05pT1DnkcWlVshUM7Don6Nbvgnl4yPrz/IIxMxRoV1ebxfeHujaBnN7NUl8jwSPGZO49mc1fIFUe9Vmpxl/IupZGM2aNm48u6X6JizU/5IZfgoGC09mmN9tXbY2K/iXgWnNLFmB6n/j6F4mWL47effxONgJ5NemL3+t3I7H0mF2WTtk1kuSVL+ZTCxZMXRY+FuH/zPq7/c120/uVA7qyE+ASYW5irHSe39rV/rkETqFVNLiXVskuGp0T5EngYkrVlNy0i30WKnoilhbxeuup9o3tvndsabnk9ZC9b6DfAD21/aqtRA1DJ5TOXRTnsXLszZv1vFt6+fitbjzOHzoge7NCOQ4Us3298hXsxM9C9J7nVSic21qVSqmIp8YxRg4AaTpdOXRJGq0RhzZ95uk+EavmmepQaDJqWb23BPb1kvH31VlRG9k72asdtrewR+iKxossK6MGY99s8MSYj9wF9ePsh+rTsg/ex72FpbSncSuRilAsZTHJPkVtQU0pUKCF6aOTGIb//mtlr0L91f9ECtLKxkiQj5HEIdqzbgTY92qBD3w6iVzV37FwxvtO4TWON9KIKhsYZGreWd3373u0RFR6FLnW6iMUMqKxQr6zBtw1kyaG0U2Wzds5aFPIsJFYDohYwtY6pxa9ppUckL7u0/+5e2q75rOJ9zHss9lsMny/qwNLcOqknIoXTB05jfN/xiI2OhaOzo3BNK47YqfWKMmLDgg0wMTER49KaQo2bmo1rCk9DyKMQLJuyDCM6j0DfurMl9yHevHgjPCikT7eh3fDTyJ+Ee3FMrzHo32YaPO0raKQbjTVaWVuhfLEaQIz06/qN74cZI2bg+8rfC68MGafB/oPhHlxWVv6qQnEI5M6kOIDBfoOFm33Lsi0Iexom6oHshI2enhIwKgBBd4Nkj38RBYsWxLLAZaJSP/bXMTH4PvuP2bIM3/OQ58Lo0tiieS713ogcVN0fNDZasnxJEVByePdhNGsnzcWhSFCInl7P4T3FPgV80BgluWA0NXp/bfoLVWpXgZNrynGd9Diy+wgObD+AUXNHify8f+M+5o+bD0cXR9m6kOtx6tCpaFO5jTCgXqW9ULdFXeFpyGlQUMu43uPE93b1+wGJHQHJlK9WXpRpapTu3rBbyBrYfA6skfoKSsm5c/UOtq7cKsboM7M4fd1v6iZ9L/pFUbF1qNkBd4tdgZejj+QGLVGtYTXRkCMoSIjcjCeu7IZnbc2M3t4/9qL+t/VhZmouozkB/LnqT9y6dAuTlk+Ci5sLrp69ioDRAejZxF5ympJDDdJxi8eJcetvyn4jyjd5IKg+oN5kdsJGLxl2DnbiBlE0nSrhUa+R21LzcSk5UIE7ffA0AjYHIG++xHEPOZALQdlbIGNBPaOtK7aK1ptUqOKlPOjV9FMgA/Vq6IGgyNb99/eLVrNcKPiEordC/g2RfA217CmyTRXaP773ODSBIlsvnriIcUsSK2E5LJq0CD/0/iGp8qNKj9y1ND4o1+jRPaJ7TAP71Hskw0mVuSbjlYRD3sTySfeNZCmhfQdrzYKQtGnwQoNDMXPjTISssUaCTKNnaWUp8ou2kt4l0bFWR5y8FoiGpTpIuv7auWuih9W2alu18rw1eDEOnd+GiT+tgybQmDDVGWFvQuAlzf6K86lHVbiYeiPU3dMd525e1UgPei4fP3iMMfPH4MPf8saWl01dJrxBynFqapyS2/7Amc3waqSZ0VPWPcrGN5UBGlMnNy4dz07Y6KViMCgkmsZtlOG31DK7898l1CrZUqf/TS0gGmQ/EXgCs/6YpXHll5pcpY9dKt7VvYULUpUpg6cItwVV+poYPILcOuQWavBdA1njaPRAq/Lk4RPRKtWEwD8CxQNYtW7iQy4Hcq8lf20J7VNvVFOoQqeNolT/OfaPcHdpApUXMnxUdpXTC2hc+NblW+hUvzmy0+DRGBFFKdrZ2yEkWdCHJlB+x8VLL9MNWjVIMS5NEaDe7vVQpai8MTBVyF1HYf521g6y6hialpKiTAc9gUNuF409F1RveZb0xK2/42Tdn7gPcamW6QSFnP5i2tC4sjJ9d6/eRbch3ZCdsNFLBXI5+A/2F4WIggAoIi72Qwy+LN4o3cqcwpCVPH38VLi+bPPYCt+21KCRgzsOiog+8s3TPDCCBu0pwEEKS/2XonKdynDJ74KoyCgc3H4Ql09fThEZKmXMKflYIvnlc9vnljXGuHDiQlStXxWuBVzx4tkLMeeKetL1WnyKJJRyP/p+2xfr5q1DneZ1RCVOwQyD/AdBLtSACdwcKKLVqLUtF0rLurnr4JzfGUW8iuDejXsi2lcZ6SuHc0fPAYpEdzSVnUWTF4lGRXqyMipnrbu3FuOE1CMiI0jzAJ2cnVDOs7raOE9Gcmhu3vPg5+KeETR3lHgbmRu2cJIkh3roY38eK8aFJ6+cLHpWVKbfRsbBMt4O5jDJUAaVN8rv6g2qi0hFcm9uX7MdYc/C4F2nlqy8IYOriomZCXJbO8AlD72eLCFjXfLkFnNOazWpJRoXwY+CsXjyYpHXJQr7yMpfCqYZ32e8mLtG04poTI8idwe0niErTcqGzdE9R+E7ylejMlPuy3LCg0F1DO3T1Kn9W/fjuxqfIks1kUtDAdS4pGfl4Z2HYrikeqPqqFSrErITNnqpQK4rerioghaT00t6oG+rychtRa25hDTHDAa2pUnAiSwYv0B8UuU6YuYISf9LoerEwO8/ySEoEESq6+z1y9fwG+gnKheaDEzuNzJ4PrU0d1NkBmoJT+w7UVSi5NYpU6mMmIeYfPpAelCreMKSCWJQfE3AGjF5ts/YPrKDR4gLJy4IdyRFbWoCDfqTIaExV3Ib0lwvCvGmBQA0iWSkQAiKmrO1s0WtprVEUAyNh6RFRuWsnW87REdHY8bIGcKtVManDKasnYKIXerjPBnJoWg+6tkrmdB3gvhsWrUTmpbtKklO14FdhRyiZ+Oe6vn49Qx8YVc2QxmDJg8SPaKxW8aKKEkyPLQgwZwtc6A4Ulgt0EIbz2B6Mijk/sGtByJghPKWXMg0t5J6Ls/Wy8tfCoYhebToAwVlUaAXjYE53iotO00UcEbeHBoPlpumETNHYMy8MeLZoqlJ9JySB4Um/5eObA5FYgC5RnIpYGXBhAWJ7nZnRzENhuYiZjdGiuweVcwE9P4kOzs7vH37NlOvpCjgVgAhwSFwdHXElnNbUj3nVgDNnzGGsU0CSvTXvK2gDTmsi27lsC66lcO66FaOPukihdsB8YiPMIKVnRl+nPJpUr2u7AHP02MYhmEMBjZ6DMMwjMEg2+jVrl0bAwakvjhv165d0bKltAjHf//9V8yXuXz5MrKVhHjg47qExvFxifupnGP8McZafKZ2jsT/yrQc1kW3clgX3cphXXQrR590IRLikefpNTg/OCY+U8hR+R/Ev9f8f7KrpxcQEIBVq1bhs+HmTmB2aRhFJa4QYB7zDl/+0RNO/55OOoW+0zGLmHCxT5/Jz5GCNuSwLoaTJn3SJSemSZ90yelpKv/XKJQ8MkN8qspR/k71LiHq4dmlE+vlz8Xo0SBinjzSo/KyFcrYPzoD79QnSVtEvkSpg/7ihtBG3+lYWudIQRtyWBfDSZM+6ZIT06RPuhhqmoqeW5Xq73j3NLFe1qHhy7TR27NnjzB2v//+ewr3Js2Jmjp1Kjw9PWFhYQF3d3dMmjQpzcWRu3Xrhi+++AL//Zc4J0hnUBc6kFbsTwxctTQFrMwSP5ULFHmeWiI2go6ZIhamRjHiM+mc00thHBsJ4w8xaW+xkfA8nUk52pCRE3XJiWnSJ11yYpr0SRcDSZMqyv2C17an+J/E+vjjZILAETpzdcqeskBjeuXLl8fs2bOxfv16/Pzzz+KzefPmwui9efMG27cnJmj48OFYunQpZs2ahRo1auDp06e4ffs2evToIcb0ihQpgkuXLqFEiRL44YcfxLF9+/Yhb97Ul96KjY0Vm2qIasGCBeVPWQg6DqzOnhUqGIZhmJSsez4PHZ1VXlDdZTdQpKb+TFmYP38+evfujV27dgmDl5zw8HAxxkc9vS5dusDDw0MYPjJ4qkRERKBZs2YICwvD4cOH0zR4hJ+fn0iUciODpxER6b/aZnFccwz70BPnE9TfzJweUQoLFI5ZLzb6rgnakKFvclgX3cphXXQrR5900ZacqGzUJU5hDL8P7fDj+6GIVphnqp7WFI1mHG7ZsgXPnz/HyZMnUalS6kvK3Lp1S/TK6tVLf7kp6uG5ubnh0KFDsLS0TPfckSNHYtCgQSl6erKxUV8WrMaKCDyLUMDFxggnutngQLw3/lF8gWrGN+ED9RXvt78Yi5ZOnxYqjmq7BvEFv0TU+3hg6iVxLLz/ZcSbJy6xZPL4DKw2pVytIzU54S6VMi1DW7qkJUefdOH85fw1pPz93NNEmBolYEv8V3gJO9xXFEAZoyBsfTEJ0Ql2MDeOQnr1dLYavQoVKuDixYtYsWIFfHx8Un1VR0YGTEnTpk2xbt06nD59GnXrpr6MjhIaF6Qt0xSqBtCbhWnQFAph6JSQs/eOItGQetnEANGUtk8e4E8330jIsCreHDA2gcn7T4u82to4w8r8Y9bS7yr/la6cOEXmZWhLl7Tk6JMunL+cv4aUv595mpR4GT/B6QQ7Uc+WQRBaOf0KdRL/R9TTOkAj9ya5KskVuWPHDvzyyy+pnlOsWDFh+A4ePJiuLF9fX/j7++Obb77B0aNHkSUYmwCNlesKqhvsZ3DAO1jDxEiBok1Tn4+YdE1j/0RZH3GwNhdb2v+VsRxtyNCpHH3SRQM5+qRLqnL0SRcN5OiTLqnK0SddDDRNxY2eiG93EgqmHeqS7H/0JpDlzp07Yr9t27ZiP3kgy7hx48S4Hv1WvXp1MW5348YNdO/eXS2QRSlv9OjR2Lt3rxj7y5K1NykslqI4VaYtxNq646r3JITYV0SL8gUSz9k7FAgP/XRd7gKJN6XkN/L+K7NyWBfdymFddCuHddGtHH3SJR051yv5I8ShMspEnUO+4+r1r0b/I9ceKGTy1VdfKfr375+0f/PmTYWzs7Ni0KBBii5duihatGiR9Ft8fLxi4sSJikKFCinMzMwU7u7uismTJ4vfgoKCRHzqpUuXks6fMWOGwtbWVnHy5ElJurx9+1bIoE+NiY9TKB4eUyiubk78pP3kRL9VKMbmTtzu7E/9HCloQw7rols5rItu5bAuupWjT7pIkSOl/pWIVHsge0zvyJEjavs03eDZs9SjbOhFhL/++qvYklO4cOEUr42nIBXVQJUsgbrQGYXFqnazC1fTvNutDTmsi27lsC66lcO66FaOPukiRY6U+lfL8Pv0krHs+EPY5jJFw5KusFf6qo1MgGINP31PhZgP8eiy4pz4vrpbZeQyS+W8DORoQ0aWytEnXSTI0SddJMnRJ10kyNEnXSTJ0SddDCxNx++F4crjN2hcOh88nT8FEmYFbPRUSEhQYMb+u4j+EA+fwg6fjJ5ZLqDD5vSvVShwNuhV0vdUyUCONmRkqRx90kWCHH3SRZIcfdJFghx90kWSHH3SRVty9EmXdOQsOx6Eo3fDRB2b1UaPXy2kwpPX0cLgmZsao5CDVXarwzAMkyMp7morPu+GJi5qnZWw0VPhzrPEG+CZ1wamJpw1DMMwusDLxVatzs1KuGZX4e7HG6BshSTxPhKYlC9xo++aog05rItu5bAuupXDuuhWjj7pko6c4kqjFxqeIqBR1/CYngp0A1RbIWp8SLZEjqZoQw7rols5rItu5bAuupWjT7qkIYfG8Wghr9dRH/Ai4j3y2mphpS2JcE8vlZ6el0vWDqwyDMMYEpbmJklxE8p6N6vgnt5HPsQn4EFYRNo9PQlYphaymw0y9E0O66JbOayLbuXoky7akmOpB7pQPfvvyyjcDg1HdU8nZBVs9D5iamyEkyPq4m5oBArkkbZYtipW5qa4NaFxpnTQhgx9k8O66FYO66JbOfqki7bkWOmJLoMbFseQRsVR2NEaWQkbvY/QmyKcbXOJjWEYhtEtKQIGswge02MYhmEMBu7pfWT+4fuIiI1DK2+3lCsEGBkDhWp8+p7Gkjy+6y6I7ws7VkxjSZ705WhDRpbK0SddJMjRJ10kydEnXSTI0SddJMnRJ10MNE0rTwbhRsg7DGlYHK52WeNlY6P3ka0XnuDhi0hU93BKafTMLIEf96R7PS3Dc/hOWNL3VMlAjjZkZKkcfdJFghx90kWSHH3SRYIcfdJFkhx90kVbcvRJFwlyNp57LCaoNyuTL8uMHrs3P7ZY/n2ZOHHSy5WnKzAMw2QFXq5ZvzKLVowevUh2wIC03jIO8cJYChS5fPly0rGTJ0+iTJkyMDMzQ8uWLZFdxCcosO1iMBIUgI2FKRyszDWWo+Tsw1dq+1kpQ9/ksC66lcO66FaOPumiLTnxeqRLsY9etYO3nuH0g5ca66LTN6dn9Db11IiPjxdvTXdycoKpaaJHtUqVKvDy8oKfnx9sbGzEtfTGdVXDqOs3pwdef4pxu27i6duYpGP57HJh7NclxSsvkqDlc2aXSfw+4Bpgbp1CztidN/DsXazGcrQhI8vl6JMunL+cvzk4f3NimgKvP8XIbdfEqizpytCyPdC5e/P9+/cwMTGBq6trksEjHjx4gLp168LNzQ158uRBVkMZ7rvuoprBI0Lfxojj9LsaUS8TtzTkqN58uXK0ISPb5OiTLmnI0SddZMvRJ13SkKNPusiWo0+6GFCaAj/KUDV46crQIrKNXmRkJDp37ix6Z/ny5cOMGTNSvBF9woQJ4hyytr169VJzbyq/v3z5Et26dRPfV61ahXHjxuHKlStiX3lMV1AXmnp4qXVxxfvmAdGKCY/5gKj3cYh6H48ohUXiRt/FsTjxO52XGTnakJF9cvRJF85fzt+cl785MU3hGcggqH7WlatTtnuzd+/e2LNnD1asWAFnZ2f873//w9GjR4UBIxclGb3Xr19jzJgxSWN11NMrUqQILl26JMbxyNVZvHhxjB8/Hm3bthVd0tGjRyMwMBAHDhwQ19AxS0v1lVFiY2PFptqdLViwoGz3JvmOf1h6Rk6yGYZhGB1SK8oUx6zikvY39PwSVT0cte7elDVlISIiAsuXL8e6detQr149cWz16tXCRakKuS0HDx6ctE+9OyVKVyf15khB+k5Qz5Hcn8r91KDxP+oRZpbn4eouTYZhGCZ7KfbBBMcQp/N6WpbRo3E4GqOjIBQlDg4Ootemio+PD3TByJEjMWjQoBQ9PbkkX2oseHFPxEe+gom1Awr8tDTpeN8mgGc+ozTl3H+qwLy9n/a7v7WAjcIIEUYKLLeLlSRHGzL0TQ7rYjhp0iddOE2fR5rupyEjxkjd6airJSF1Mjnd2lo3C4haWFiILbNULuIgooRo0FT4oePeQ/EhVnwqcbAxgndhSxgbp10AvAsrYG8djdeRiTfLDEYwhxHMVM7JSI42ZOibHNbFcNKkT7pwmj6PNHmnIUNpMukqmqhO9XS2B7J4eHiIeXVnz55NOkbjd3fv3s20Iubm5mJqQ1ZgYmwkwmKJtG5v+xrm6d58gn7vUDP9eX0ZydGGDH2Tw7roVg7rols5+qSLtuR8LroYffyk+pnq6Ww3ejTu1r17dwwdOhSHDh3C9evX0bVrVxgbZ37mAwXABAUFiQjPFy9eqAWs6AKaB7Kwo3eKpW+oldK3sQV8PKR1guk8Ot/e2khjOdqQoW9yWBfDSZM+6cJp+rx1cbXLJeplTebp6Sx6k4JZfH19sW3bNtja2oqAFYrmVE5OJ+NFq7OortBCgSzK6E06j6C5eXQ+GU2CjFyHDh1w8OBBvHnzBitXrkz6TVeT0wkKi3XNnx8vnoXCLq8jtv2zOcPWTmokJChwY3Y8jKONkWCZgFIDTGTL0YYMfZPDuuhWDuuiWzn6pIu25CTomS43AxJgFGUEUxtT9JhaU+Menk6iN5W9vbVr14pNCfX8UovUVEKGMLltJcOmCo3VbdmyBVkNZbC5aWJP1dQkseutCXQdXZ+QCTnakKFvclgX3cphXXQrR5900ZYcY33TxRiggS1zEyOduTRV4bcsSOTP1X9i0+JNeBX2Ch4lPNBvfD+UKF9C8vVXzl7BpkWbcPfaXbx8/hITlk5AjUYfX7khkd/n/Y7jgcfx34P/YJHLAqUqlkKvkb3g7uEuS86OtTuwc+1OhD4JFfuFvQqjc//OqFLnU1SuXNbPX4+lU5aiVbdW6PtbX8nXrZq5Cqtnr1Y7VtCjINYcXiNbh7DQMCzxW4Jzh88hJjoGBQoXwPDpw1G8nHp0cXq0q9YOz548S3G8RecWGDAx7fVlVaGx6dWzVuPvP//Gq+ev4OTihEZtGqFTv05iqo4coiKisGL6CpzYdwKvX7xGsdLFRP5+Ue4LjcsaNUBXzlyJPev3IOJdBEr7lMbAyQPJuSRLzrG9x7Br3S7x+7s377B0L0U+F5YsI+5DHJZPW46zh8/i6X9PYW1rDe8a3ug1ohf5gmTpQuXo0K5DCAsJg6mZKbzKeKH7sO4wgpcsOarMHDkTu37fhda1fVG7eGvJMvwH+WPfln1qsip9VQk/+kyWrcuje49EmaZz4+PiUahYIXSqMgZ5jF0lyajjXifVtH1bqyfqlWgnWZfoyGgs8V8iyuG71++Qr2A+fPfjdyiGprLSRPUnpef8sfOi7JWtUhbNPfrA0Ux+FL6m8FsWJHBo5yEsnLAQXQZ0wZI9S4TRG9ZxmKiEpBITFQOPkh7oP7G/xnpQgWrZpSXmb5+Pab9PQ1xcnNAjOipalpy8rnnRc0RPLN6zGIt2L0KFahUwqscoBN0J0kiv21duY9f6XShaoqhG15PR3Xp+a9I2d+tc2TLC34Tjl+9+EXM9/df4Y9XBVfAd7QsbO3lvzVi0a5GaLtN/ny6O125WW7KMDQs3iIYFNYxWH1otGiYbF23EtpXbZKdr2rBpOH/8PEbOHokVf6+AT00fDGk/RBh4TcvaxoWJugz0G4gFOxcgl1UuUY4+qEQvS5FDv5euVFqkTxNdqGFy7/o90RhY/NdijF8yHo8fPsav3X+VnSa3om7oP74/lu9fjjlb58C1oKtIU3jUG42eQ2pc3rx0UzRY5OpCVK5dWa0cjZ47Wrac4H+D0a9VP9EInLVpFpbtWybyyszUTLIMVR1oGzZ9mGh4VShWU5Yu88fPx7kj5/BrwK+iTLfq3goBYwJw9f4pyXKosTW652jRwJm4fCKW7F0ClwIuCNg8DLEf5NVhmYF7ehLYvGwzmv3QDE2+byL2B/kNwtlDZ7F3016079NekgzqRWWmJ0VMXTtVbX/EjBH4tsK3olVVrko5yXKqNaimtt9jWA/R86OHvEjxIrJ0ohbgpH6TMMR/CNbO/eTyloOJqQkcnDMXnkyGxjmfM4bPGJ50LJ+7/MHwPI7qPYz1C9Yjf6H8KPel9Py9cf4Gqjesjqr1qop9qoAP7jwoGgdyiI2JFb2picsmJt3froO64tSBU+J+dR/aXXZZo4pny/It6PRLJ9RomNgCHzlrJL6r+B2u3D8Jb7d6kuQQDVs1FJ+hjxM9BnJ1scltg+nrExsVSvpP6A/fr33x6svnSb0ZKbrUb1lfbb/36N74a+NfCA57CC9HB1nPITUo5oyZI563kT+OlJUmJWbmZqmU6ThZcqgXTL///OvPScfIe3HrVhwSIqTJSK7Dyf0nUb5qeTjlyZckQ4qcGxduoFHrRuJa4usOX4te8L+hd1DatYYkOU+CnuDmxZui8aasZ8jDcOTPVrhw/xDqO2XN23a4p5cBH95/EEalYo2KSccoWpXcMDcu3shW3SLDE98BmDuPZkE8Slcc9WSp1V3Ku5Ts62ePmo0v636JijU/5Y9cgoOC0dqnNdpXb4+J/SbiWXBK92JGnPr7FIqXLY7ffv5NNAR6NumJ3et3I7P3nlyUTdo2keWWLOVTChdPXhS9FuL+zfu4/s910fqXA7mzEuITYG6hHt5Nru1r/1yDJlArm1xMquWZjA+56h+G3ER2E/kuUuS1pYV1pu4b3Xvr3NZwy+sh69qEhAT4DfBD25/aym4AqnL5zGVRDjvX7oxZ/5uFt6/fytbjzKEzogc7tONQIcv3G1/hXtQUuu9nDp1B03bqLkkp0FAKPWPUIKCG06VTl4QRK1G4oqz7QqiWZ6pLzUzM8CD0OrIK7ullwNtXb0XFY+9kr3ac9mlsLbugh2Leb/PEeIwmD+fD2w/Rp2UfvI99D0trS+FaIjejHMhYknuKXIKaUqJCCdE7IxcOjQGsmb0G/Vv3F61BKxsryXJCHodgx7odaNOjDTr07SB6VXPHzhXjO43bNNZIN6pgaNyhcWt517fv3R5R4VHoUqcLjE2MRfmhXlmDbxvIkkPpp8pm7Zy1KORZCPZ57XFoxyHRWqYWv6YVH5FaeX53T7q7Xhe8j3mPxX6LUbdFXWH0EtQX4M+Q0wdOY3zf8YiNjoWjs6NwTSuO2Kn1aDJiw4INYqlEGpvWFGrc1GxcU3gaQh6FYNmUZRjReQT61p0tuZ/x5sUb4UUhfboN7YafRv4k3Itjeo1B/zbT4GlfQbZeNM5oZW2FWo1r4cFiedeSq37GiBn4vvL3wjNDxmqw/2C4B5eVnL8Ue0DuTBr7H+w3WLjVtyzbgtcRYXgblVguswI2ep8pAaMCEHQ3SKPxL6Jg0YJYFrhMVOrH/jomBt9n/zFbsuF7HvJcGF0aWzTPpdmLdwlVVwiNlZYsX1IEkxzefRjN2jWTLEeRoBA9vZ7De4p9CvigMUpywWhq9P7a9Beq1K4CJ9eU4zrpcWT3ERzYfgCj5o4S+Xn/xn3MHzcfji6OsnUh1+PUoVPRpnIbYUC9SnsJo0Deh5wEBbWM6524ru7ASQPx3wr5MspXKy/KNDVUd2/YLeQNbD4H1pC2aPGdq3ewdeVWMW4vN+BIlbrf1E36XvSLomLrULMD7ha7Ai9HH8mNWqJaw2qiIUd4lvIUbsYTV3bDs7Z8o7f3j72o/239j8+ruqs1I/5c9SduXbqFScsnwcXNBVfPXkXA6AD0bGIvOU3UAB23eJwYp/6m7DeiPJPHoVSRylDE6f7lsUl6ZNk/fabYOdiJm5M8aIX2HfLqZpmcjKDCdvrgaQRsDkDefHk1kkFjDsreAhkL6hltXbFVtN6kQJUu5UGvpp+CGKhHQw8DRbruv79ftJjlQoEnbkXcEPJviKzrqGVPkW2q0P7xvcehCRTZevHERYxbIn+B80WTFuGH3j8kVX5U6ZHLlsYH5Ro9ukd0nylYiXqPZDipMtdkvJJQllm6dyRLrTxbaxaIpC2DFxocipkbZ4ooTrmVMmFpZSnyi7aS3iXRsVZHnLwWiIalOki6/tq5a6KH1bZqW7UyvTV4MQ6d34aJP62DJtCYMNUjYW9C4CXxpQF0PvWoChdTb4S6e7rj3M2rsnWg5/Lxg8cYM3+M7GtpbHnZ1GXCG6Qcp6YGKrntD5zZDK9G0tdaprpG2dim+05j6D9W9kVBB/UoW13CRk+CcaDwZxqjUYbeUiuM9r/t8m2W6kK+dBpgPxF4ArP+mKVxxZeWbKXPXQre1b2FC1KVKYOnCBcGVfiaGDyCXDrkEmrwnTxXII2j0UOtypOHT0SrVBMC/wgUD2TVuokPuRzIvZZ8lSLap96oplCFThtFqf5z7B/h7tIEKjNk+Kj8Us9BOTZ86/ItdKrfHNll8Gh8iCIU7ezttCab8jsuXnqZbtCqQYqxaYoA9XavhypFE4PYNCHsaZgI87ezdpBV79C0lBRlOugJHHK7aOS1oHrMs2TiPZd7j2hLrUwnKBJ7pHKhcWRleh49u4tm3j8iq2CjJwFyL/gP9heFhgb8KfqNQnMbf99YVmVOIchKnj5+KtxetnlshZ9batDIwR0HRTQf+eZpDhhBA/YU3CCVpf5LUblOZbjkd0FUZBQObj+Iy6cvp4gOzWi8KflYIvnoc9vnljXGuHDiQlStXxWuBVzx4tkLMd+Ketb1WnyKIpR6j/p+2xfr5q1DneZ1RCVOwQyD/D+9lUMq1KgJ3BwootWotS0XSs+6uevgnN8ZRbyK4N6NeyICWBn9K4dzR8+JN2uSO5rKz6LJi0TDIj1ZGZW11t1bi3FC6hGREaR5gE7OTijnWR2IkS6H5uY9D34u7htBY9xxz+NgCyfkscmToQzqnY/9eawYF568crLoVSnLdFy8JYzxqUynJ4fKHOV39QbVRbQiuTe3r9mOsGdh8K5TS1beJDe6JmYmyG3tAJc8NI8sIWNd8uQW805rNaklGhfBj4KxePJikdclCvvIyl8KphnfZ7yYy0bTimhMjyJ3B7SeIateoUbN0T1H4TvKV+MyQ9HL5MGgeob2afrU/q378V2Nn2XJIdc/NSbp2Xh456EYIinnWQ0lCurmzTypwUZPAuSmogeJKmQxOb2kB6asnSLLvUnjBQPb0gTgRBaMXyA+qWIdMXOEJBkUpk4M/P6THIICQeS4zV6/fA2/gX6igiFXErnfyOD51Mq6gqfaCp7Yd6KoQMmlU6ZSGTEPMfnUgYygVvGEJRPEIPmagDVi8myfsX1kB48QF05cEO5IitrUBBr0J0NC467kNqS5XhTiTQsAaBLNSIEQFDVna2eLWk1riaAYGh/RtKy1822H6OhozBg5Q7iZyviUEeU5Ypf5x2pdmhyK5qPevZIJfSeIzyYVO+Nr504Zyug6sKuQQfRsnDgWq2TA99PVgjXSkzNo8iDRIxq7ZayIkiTDQwsSzNkyB4ojhdUCLbTxHKYng0LwH9x6IIJGKG/JhUxzK7sN6YZn6+XlLwXDkDxa+IGCsijYi8bEHG+VTkqTlPRQwBl5cmgsOC0ykjNm3hjxbNH0JHpWyYNCk/9LRzaHIlK6HApWWzBhQaJ73dlRTHupbNweyLppevLX3tQntLH2JlHArQBCgkPg6OqILec0XwrtVgDNnzGGsU0CSvQ3zTYZ+iaHddGtHNZFt3L0SRdtybmlR7rcDohHfIQRrOzM8OMU9UnzurAHPE+PYRiGMRjY6DEMwzAGAxs9hmEYxmBgo8cwDMMYDGz0GIZhGIOBjR7DMAxjMLDRYxiGYQyGz3pyunKKIc3PyAzKxV1pRYiXr19qLCc61gQJ701gHBuPl6/js02GvslhXXQrh3XRrRx90kVbcqL1SJeoWFMkvDeGUaxZpupy5bUZTT3/rCenP3nyBAULZt1r5hmGYRj95vHjx3Bzc8uZRo96aCEhIbC1tc3Uq0AY6S0pamRQocrMCjiMdDjPsx7O888zv8mUhYeHI3/+/CkWx84x7k1KWHoWndENVDC5MshaOM+zHs7zzy+/aRmyjOBAFoZhGMZgYKPHMAzDGAxs9BjJWFhYYOzYseKTyRo4z7MezvOcnd+fdSALwzAMw8iBe3oMwzCMwcBGj2EYhjEY2OgxDMMwBgMbPYZhGMZgYKNn4MyfPx+FCxdGrly5UKVKFZw7dy7Nc5cuXYqaNWvC3t5ebPXr109xfteuXcXqOKpb48aNsyAlOTPPV61alSI/6TpVKBZtzJgxyJcvHywtLcV9uXfvXhakJOfld+3atVPkN23NmjVLOofLePocO3YMX3/9tVgZhfJm+/btGVwBHDlyBN7e3iKC09PTU5T7zNzH9GCjZ8Bs2rQJgwYNEuHCFy9eRLly5dCoUSM8f/48zYL5ww8/4PDhwzh9+rRYOqhhw4YIDg5WO48qgKdPnyZtGzZsyKIU5bw8J2iVCtX8fPTokdrvU6dOxZw5c7Bo0SKcPXsW1tbWQmZMTAwMHbn5vW3bNrW8vn79OkxMTNCmTRu187iMp01kZKTIZzJSUggKChKNijp16uDy5csYMGAAevTogX379mXquUkTmrLAGCaVK1dW9OnTJ2k/Pj5ekT9/foWfn5+k6+Pi4hS2traK1atXJx3r0qWLokWLFjrR1xDzfOXKlQo7O7s05SUkJChcXV0V06ZNSzr25s0bhYWFhWLDhg0KQyezZXzWrFmijEdERCQd4zIuHTIxf/75Z7rnDBs2TFGqVCm1Y23btlU0atRIa/dRFe7pGSjv37/HhQsXhCtMdS1T2qdenBSioqLw4cMHODg4pOgROjs7o3jx4vD19cXLl5q/riknoWmeR0REoFChQqJn3aJFC9y4cUOtlRwaGqomk9YfJPeP1PuYU9FGGV++fDnatWsnes+qcBnXHnQvVO8RQb045T3Sxn1UhY2egfLixQvEx8fDxcVF7TjtUyUqheHDhwu/vWphJLfPmjVrcPDgQUyZMgVHjx5FkyZNxH8ZOprkOVWqK1aswI4dO7Bu3TrxZpFq1aqJ12oRyusycx9zKpkt4zRmRO5NcrWpwmVcu9C9SO0e0dsXoqOjtVJX5Zi3LDDZh7+/PzZu3ChavKqBFdQqVlKmTBmULVsWHh4e4rx69eplk7afL1WrVhWbEjJ4JUqUwOLFizFhwoRs1S2nQ708KsOVK1dWO85l/POGe3oGipOTkxigf/bsmdpx2nd1dU332unTpwujt3//fvHAp0fRokXFf92/fx+GTmbyXImZmRkqVKiQlJ/K6zIjM6eSmfymYAxq1HXv3j3D/+EynjnoXqR2jyiAi6KRtfHcqMJGz0AxNzdHxYoVhYtGCbnOaF+1Z5EcihSkHkZgYCB8fHwy/B9yw9F4B4XTGzqa5rkq5Oa5du1aUn4WKVJEPPiqMsktRFGcUmXmVDKT35s3b0ZsbCw6duyY4f9wGc8cdC9U7xHx999/J90jbTw3asgOfWFyDBs3bhRRfqtWrVLcvHlT0atXL0WePHkUoaGh4vdOnTopRowYkXS+v7+/wtzcXLFlyxbF06dPk7bw8HDxO30OGTJEcfr0aUVQUJDiwIEDCm9vb0WxYsUUMTEx2ZbOzznPx40bp9i3b5/iwYMHigsXLijatWunyJUrl+LGjRtq94Vk7NixQ3H16lURWVikSBFFdHS0wtCRm99KatSoISIIk8NlPGMojy5duiQ2MjEzZ84U3x89eiR+p/ymfFfy8OFDhZWVlWLo0KGKW7duKebPn68wMTFRBAYGSr6PcmCjZ+DMnTtX4e7uLowZhQWfOXMm6bevvvpKhGcrKVSokCjEybexY8eK36OiohQNGzZU5M2bV2FmZibO79mzp0YFMycjJ88HDBiQdK6Li4uiadOmiosXL6aYtjB69GjxO1UM9erVU9y5cydL05RT8pu4ffu2KNf79+9PIYvLeMYcPnw41XpCmc/0Sfme/Jry5cuLe1S0aFExVUfOfZQDv1qIYRiGMRh4TI9hGIYxGNjoMQzDMAYDGz2GYRjGYGCjxzAMwxgMbPQYhmEYg4GNHsMwDGMwsNFjGIZhDAY2egzDMIzBwEaPYRiGMRjY6DEMwzAGAxs9hvmMGTt2rHinG73Zm16qSW/xprfZMwyTOvwSWYb5TPm4YLx4oWyBAgVw8+ZNdOnSRbzjkIwfwzAp4QWnGSYH0b59ezg7O2P27NnZrQrD6CXs3mSYz5RHjx6hT58+KF26NOzt7WFjY4M//vgDbm5u2a0aw+gtbPQY5jMkLCwMlSpVEm/snjlzJk6cOIFTp07B2NgY5cqVy271GEZv4TE9hvkM2bVrF+Lj47FhwwYYGRmJY/PmzRNBLOXLl89u9RhGb2GjxzCfIY6Ojnj37h127tyJkiVLCiPo5+cnAlry5s2b3eoxjN7CgSwM8xmSkJCA3r17Y/369bC0tETHjh0RExMjxvl2796d3eoxjN7CRo9hGIYxGDiQhWEYhjEY2OgxDMMwBgMbPYZhGMZgYKPHMAzDGAxs9BiGYRiDgY0ewzAMYzCw0WMYhmEMBjZ6DMMwjMHARo9hGIYxGNjoMQzDMAYDGz2GYRjGYGCjxzAMw8BQ+D/maY4QR2ov7QAAAABJRU5ErkJggg==",
|
|
"text/plain": [
|
|
"<Figure size 500x100 with 1 Axes>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAb0AAACMCAYAAADof3f4AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAANTFJREFUeJztnQdcFMcXx390aSJFQEUsIMauiBpr7D3RRI3GHluCGnv9xxIr2MXeeyyxxBrR2LvG3jsxCqLY6Qrc//MGD++ou8cdnNz7fj77udu93XdvZmfnzbx5M2ukUCgUYBiGYRgDwDi7FWAYhmGYrIKNHsMwDGMwsNFjGIZhDAY2egzDMIzBwEaPYRiGMRjY6DEMwzAGAxs9hmEYxmBgo8cwDMMYDKb4jElISEBISAhsbW1hZGSU3eowDMMw2QStsxIeHo78+fPD2Ng4Zxo9MngFCxbMbjUYhmEYPeHx48dwc3PLmUaPenjKRObOnVtjOcW/KI7Qp6Gwz2uPpQeWpnrOo6UmSIg0gbF1PAr1jNf4v7Qhh3XRrRzWRbdyWBfdytEnXaTwaKkpEiKNYZXbDB3HV4OmvHv3TnSClHYhRxo9pUuTDF5mjJ6yK2xsYgxHe8dUz3luEYeED8YwtkiAo73m2aYNOayLbuWwLrqVw7roVo4+6SKFMIt4xH8wgqWFWabqcSUZDXVxIAvDMAxjMLDRYxiGYQwGNnoMwzCMwcBGj2EYhjEYPutAFl3y5+o/sWnxJrwKewWPEh74pmQfuNuWTPP8K2evYNOiTbh77S5ePn+JCUsnoEajGrL+8/d5v+N44HH89+A/WOSyQKmKpdBrZC+4e7hLlrFj7Q7sXLsToU9CxX5hr8Lo3L8zqtSpgsywfv56LJ2yFK26tULf3/pKvm7VzFVYPXu12rGCHgWx5vAaWf8fFhqGJX5LcO7wOcREx6BA4QIYPn04ipcrLllGu2rt8OzJsxTHW3RugQETB0iSER8fj9WzVuPvP//Gq+ev4OTihEZtGqFTv06y54pGRURhxfQVOLHvBF6/eI1ipYuJvP2i3BcalzOaq7Ry5krsWb8HEe8iUNqnNAZOHgjAVZacY3uPYde6XeL3d2/eYenepfAs5SlLn7gPcVg+bTnOHj6Lp/89hbWtNbxreKNO3m7IDWfJulAZOrTrEMJCwmBqZgqvMl7oPqw7jOAlK02qzBw5E7t+34XWtX1Ru3hryTL8B/lj35Z9arIqfVUJP/pMlq3Lo3uPRJmmc+Pj4lGoWCF0qjIGeYxdJcup414n1fS1rNILDWu0kSQjOjIaS/yXiHL47vU75CuYD9/9+B2KoWmqsqXqRnUnpe/8sfOiLJatUhb9xveDW5G0pxNkBdzTS4VDOw9h4YSF6DKgC5bsWSKM3tytIxEe/TrNa2KiYuBR0gP9J/bX+H+pELXs0hLzt8/HtN+nIS4uDsM6DkN0VLRkGXld86LniJ5YvGcxFu1ehArVKmBUj1EIuhOksV63r9zGrvW7ULREUY2uJ8O79fzWpG3u1rmyrg9/E45fvvsFpqam8F/jj1UHV8F3tC9s7GxkyVm0a5GaHtN/ny6O125WW7KMDQs3iIYFPbyrD60WjZKNizZi28ptkMu0YdNw/vh5jJw9Eiv+XgGfmj4Y0n6IMPCalrONCxN1Geg3EAt2LkAuq1yiDH2Iey9LDv1eulJpkb70SE8ONU7uXb8nGgSL/1qM8UvG4/HDx1i0fYwsXdyKuqH/+P5Yvn855mydA9eCriJN4VFvZMlRQg3Lm5duigaLnPQoqVy7slo5Gj13tGw5wf8Go1+rfqIBOGvTLCzbt0zkk5mpmSw5qnrQNmz6MBjBCOWL1pQsY/74+Th35Bx+DfhVlOlW3VshYEwArt4/lWYeZCSXGl+je44WjZ2Jyydiyd4lcCngIsq3nPpMF3BPLxU2L9uMZj80Q5Pvm4j9QX6DcGLXGZy+HYjGedumeg31pDLbm5q6dqra/ogZI/BthW9FS6pclXKSZFRroD7PpcewHqLnRw95keJFZOtErcBJ/SZhiP8QrJ27FppgYmoCB2cHaAoZGud8zhg+Y3jSsXzu+WTLyeOYR21//YL1yF8oP8p9KS1viRvnb6B6w+qoWq+q2KcK+ODOg6JhIIfYmFjRm5q4bGLSve06qCtOHTgl7lf3od1llzOqaLYs34JOv3RCjYaJLe6Rs0biu4rf4cr9k/B2qydJDtGwVUPxGfo40WOQFunJscltg+nrExsWSvpP6A/fr33xKvwZnGzyStKlfsv6avu9R/fGXxv/QnDYQ3g5Osh6BqlBMWfMHPGsjfxxpKz0KDEzN0ulPMfJkkM9YPr9519/TjpG3otbt+KQECFdTnI9Tu4/CS/3cnDKnZ/WrJIk48aFG2jUuhHKVy0v9r/u8LXoBf8begelXdP2VqUn90nQE9y8eFM05pT1DnkcWlVshUM7Don6Nbvgnl4yPrz/IIxMxRoV1ebxfeHujaBnN7NUl8jwSPGZO49mc1fIFUe9Vmpxl/IupZGM2aNm48u6X6JizU/5IZfgoGC09mmN9tXbY2K/iXgWnNLFmB6n/j6F4mWL47effxONgJ5NemL3+t3I7H0mF2WTtk1kuSVL+ZTCxZMXRY+FuH/zPq7/c120/uVA7qyE+ASYW5irHSe39rV/rkETqFVNLiXVskuGp0T5EngYkrVlNy0i30WKnoilhbxeuup9o3tvndsabnk9ZC9b6DfAD21/aqtRA1DJ5TOXRTnsXLszZv1vFt6+fitbjzOHzoge7NCOQ4Us3298hXsxM9C9J7nVSic21qVSqmIp8YxRg4AaTpdOXRJGq0RhzZ95uk+EavmmepQaDJqWb23BPb1kvH31VlRG9k72asdtrewR+iKxossK6MGY99s8MSYj9wF9ePsh+rTsg/ex72FpbSncSuRilAsZTHJPkVtQU0pUKCF6aOTGIb//mtlr0L91f9ECtLKxkiQj5HEIdqzbgTY92qBD3w6iVzV37FwxvtO4TWON9KIKhsYZGreWd3373u0RFR6FLnW6iMUMqKxQr6zBtw1kyaG0U2Wzds5aFPIsJFYDohYwtY6pxa9ppUckL7u0/+5e2q75rOJ9zHss9lsMny/qwNLcOqknIoXTB05jfN/xiI2OhaOzo3BNK47YqfWKMmLDgg0wMTER49KaQo2bmo1rCk9DyKMQLJuyDCM6j0DfurMl9yHevHgjPCikT7eh3fDTyJ+Ee3FMrzHo32YaPO0raKQbjTVaWVuhfLEaQIz06/qN74cZI2bg+8rfC68MGafB/oPhHlxWVv6qQnEI5M6kOIDBfoOFm33Lsi0Iexom6oHshI2enhIwKgBBd4Nkj38RBYsWxLLAZaJSP/bXMTH4PvuP2bIM3/OQ58Lo0tiieS713ogcVN0fNDZasnxJEVByePdhNGsnzcWhSFCInl7P4T3FPgV80BgluWA0NXp/bfoLVWpXgZNrynGd9Diy+wgObD+AUXNHify8f+M+5o+bD0cXR9m6kOtx6tCpaFO5jTCgXqW9ULdFXeFpyGlQUMu43uPE93b1+wGJHQHJlK9WXpRpapTu3rBbyBrYfA6skfoKSsm5c/UOtq7cKsboM7M4fd1v6iZ9L/pFUbF1qNkBd4tdgZejj+QGLVGtYTXRkCMoSIjcjCeu7IZnbc2M3t4/9qL+t/VhZmouozkB/LnqT9y6dAuTlk+Ci5sLrp69ioDRAejZxF5ympJDDdJxi8eJcetvyn4jyjd5IKg+oN5kdsJGLxl2DnbiBlE0nSrhUa+R21LzcSk5UIE7ffA0AjYHIG++xHEPOZALQdlbIGNBPaOtK7aK1ptUqOKlPOjV9FMgA/Vq6IGgyNb99/eLVrNcKPiEordC/g2RfA217CmyTRXaP773ODSBIlsvnriIcUsSK2E5LJq0CD/0/iGp8qNKj9y1ND4o1+jRPaJ7TAP71Hskw0mVuSbjlYRD3sTySfeNZCmhfQdrzYKQtGnwQoNDMXPjTISssUaCTKNnaWUp8ou2kt4l0bFWR5y8FoiGpTpIuv7auWuih9W2alu18rw1eDEOnd+GiT+tgybQmDDVGWFvQuAlzf6K86lHVbiYeiPU3dMd525e1UgPei4fP3iMMfPH4MPf8saWl01dJrxBynFqapyS2/7Amc3waqSZ0VPWPcrGN5UBGlMnNy4dz07Y6KViMCgkmsZtlOG31DK7898l1CrZUqf/TS0gGmQ/EXgCs/6YpXHll5pcpY9dKt7VvYULUpUpg6cItwVV+poYPILcOuQWavBdA1njaPRAq/Lk4RPRKtWEwD8CxQNYtW7iQy4Hcq8lf20J7VNvVFOoQqeNolT/OfaPcHdpApUXMnxUdpXTC2hc+NblW+hUvzmy0+DRGBFFKdrZ2yEkWdCHJlB+x8VLL9MNWjVIMS5NEaDe7vVQpai8MTBVyF1HYf521g6y6hialpKiTAc9gUNuF409F1RveZb0xK2/42Tdn7gPcamW6QSFnP5i2tC4sjJ9d6/eRbch3ZCdsNFLBXI5+A/2F4WIggAoIi72Qwy+LN4o3cqcwpCVPH38VLi+bPPYCt+21KCRgzsOiog+8s3TPDCCBu0pwEEKS/2XonKdynDJ74KoyCgc3H4Ql09fThEZKmXMKflYIvnlc9vnljXGuHDiQlStXxWuBVzx4tkLMeeKetL1WnyKJJRyP/p+2xfr5q1DneZ1RCVOwQyD/AdBLtSACdwcKKLVqLUtF0rLurnr4JzfGUW8iuDejXsi2lcZ6SuHc0fPAYpEdzSVnUWTF4lGRXqyMipnrbu3FuOE1CMiI0jzAJ2cnVDOs7raOE9Gcmhu3vPg5+KeETR3lHgbmRu2cJIkh3roY38eK8aFJ6+cLHpWVKbfRsbBMt4O5jDJUAaVN8rv6g2qi0hFcm9uX7MdYc/C4F2nlqy8IYOriomZCXJbO8AlD72eLCFjXfLkFnNOazWpJRoXwY+CsXjyYpHXJQr7yMpfCqYZ32e8mLtG04poTI8idwe0niErTcqGzdE9R+E7ylejMlPuy3LCg0F1DO3T1Kn9W/fjuxqfIks1kUtDAdS4pGfl4Z2HYrikeqPqqFSrErITNnqpQK4rerioghaT00t6oG+rychtRa25hDTHDAa2pUnAiSwYv0B8UuU6YuYISf9LoerEwO8/ySEoEESq6+z1y9fwG+gnKheaDEzuNzJ4PrU0d1NkBmoJT+w7UVSi5NYpU6mMmIeYfPpAelCreMKSCWJQfE3AGjF5ts/YPrKDR4gLJy4IdyRFbWoCDfqTIaExV3Ib0lwvCvGmBQA0iWSkQAiKmrO1s0WtprVEUAyNh6RFRuWsnW87REdHY8bIGcKtVManDKasnYKIXerjPBnJoWg+6tkrmdB3gvhsWrUTmpbtKklO14FdhRyiZ+Oe6vn49Qx8YVc2QxmDJg8SPaKxW8aKKEkyPLQgwZwtc6A4Ulgt0EIbz2B6Mijk/sGtByJghPKWXMg0t5J6Ls/Wy8tfCoYhebToAwVlUaAXjYE53iotO00UcEbeHBoPlpumETNHYMy8MeLZoqlJ9JySB4Um/5eObA5FYgC5RnIpYGXBhAWJ7nZnRzENhuYiZjdGiuweVcwE9P4kOzs7vH37NlOvpCjgVgAhwSFwdHXElnNbUj3nVgDNnzGGsU0CSvTXvK2gDTmsi27lsC66lcO66FaOPukihdsB8YiPMIKVnRl+nPJpUr2u7AHP02MYhmEMBjZ6DMMwjMEg2+jVrl0bAwakvjhv165d0bKltAjHf//9V8yXuXz5MrKVhHjg47qExvFxifupnGP8McZafKZ2jsT/yrQc1kW3clgX3cphXXQrR590IRLikefpNTg/OCY+U8hR+R/Ev9f8f7KrpxcQEIBVq1bhs+HmTmB2aRhFJa4QYB7zDl/+0RNO/55OOoW+0zGLmHCxT5/Jz5GCNuSwLoaTJn3SJSemSZ90yelpKv/XKJQ8MkN8qspR/k71LiHq4dmlE+vlz8Xo0SBinjzSo/KyFcrYPzoD79QnSVtEvkSpg/7ihtBG3+lYWudIQRtyWBfDSZM+6ZIT06RPuhhqmoqeW5Xq73j3NLFe1qHhy7TR27NnjzB2v//+ewr3Js2Jmjp1Kjw9PWFhYQF3d3dMmjQpzcWRu3Xrhi+++AL//Zc4J0hnUBc6kFbsTwxctTQFrMwSP5ULFHmeWiI2go6ZIhamRjHiM+mc00thHBsJ4w8xaW+xkfA8nUk52pCRE3XJiWnSJ11yYpr0SRcDSZMqyv2C17an+J/E+vjjZILAETpzdcqeskBjeuXLl8fs2bOxfv16/Pzzz+KzefPmwui9efMG27cnJmj48OFYunQpZs2ahRo1auDp06e4ffs2evToIcb0ihQpgkuXLqFEiRL44YcfxLF9+/Yhb97Ul96KjY0Vm2qIasGCBeVPWQg6DqzOnhUqGIZhmJSsez4PHZ1VXlDdZTdQpKb+TFmYP38+evfujV27dgmDl5zw8HAxxkc9vS5dusDDw0MYPjJ4qkRERKBZs2YICwvD4cOH0zR4hJ+fn0iUciODpxER6b/aZnFccwz70BPnE9TfzJweUQoLFI5ZLzb6rgnakKFvclgX3cphXXQrR5900ZacqGzUJU5hDL8P7fDj+6GIVphnqp7WFI1mHG7ZsgXPnz/HyZMnUalS6kvK3Lp1S/TK6tVLf7kp6uG5ubnh0KFDsLS0TPfckSNHYtCgQSl6erKxUV8WrMaKCDyLUMDFxggnutngQLw3/lF8gWrGN+ED9RXvt78Yi5ZOnxYqjmq7BvEFv0TU+3hg6iVxLLz/ZcSbJy6xZPL4DKw2pVytIzU54S6VMi1DW7qkJUefdOH85fw1pPz93NNEmBolYEv8V3gJO9xXFEAZoyBsfTEJ0Ql2MDeOQnr1dLYavQoVKuDixYtYsWIFfHx8Un1VR0YGTEnTpk2xbt06nD59GnXrpr6MjhIaF6Qt0xSqBtCbhWnQFAph6JSQs/eOItGQetnEANGUtk8e4E8330jIsCreHDA2gcn7T4u82to4w8r8Y9bS7yr/la6cOEXmZWhLl7Tk6JMunL+cv4aUv595mpR4GT/B6QQ7Uc+WQRBaOf0KdRL/R9TTOkAj9ya5KskVuWPHDvzyyy+pnlOsWDFh+A4ePJiuLF9fX/j7++Obb77B0aNHkSUYmwCNlesKqhvsZ3DAO1jDxEiBok1Tn4+YdE1j/0RZH3GwNhdb2v+VsRxtyNCpHH3SRQM5+qRLqnL0SRcN5OiTLqnK0SddDDRNxY2eiG93EgqmHeqS7H/0JpDlzp07Yr9t27ZiP3kgy7hx48S4Hv1WvXp1MW5348YNdO/eXS2QRSlv9OjR2Lt3rxj7y5K1NykslqI4VaYtxNq646r3JITYV0SL8gUSz9k7FAgP/XRd7gKJN6XkN/L+K7NyWBfdymFddCuHddGtHH3SJR051yv5I8ShMspEnUO+4+r1r0b/I9ceKGTy1VdfKfr375+0f/PmTYWzs7Ni0KBBii5duihatGiR9Ft8fLxi4sSJikKFCinMzMwU7u7uismTJ4vfgoKCRHzqpUuXks6fMWOGwtbWVnHy5ElJurx9+1bIoE+NiY9TKB4eUyiubk78pP3kRL9VKMbmTtzu7E/9HCloQw7rols5rItu5bAuupWjT7pIkSOl/pWIVHsge0zvyJEjavs03eDZs9SjbOhFhL/++qvYklO4cOEUr42nIBXVQJUsgbrQGYXFqnazC1fTvNutDTmsi27lsC66lcO66FaOPukiRY6U+lfL8Pv0krHs+EPY5jJFw5KusFf6qo1MgGINP31PhZgP8eiy4pz4vrpbZeQyS+W8DORoQ0aWytEnXSTI0SddJMnRJ10kyNEnXSTJ0SddDCxNx++F4crjN2hcOh88nT8FEmYFbPRUSEhQYMb+u4j+EA+fwg6fjJ5ZLqDD5vSvVShwNuhV0vdUyUCONmRkqRx90kWCHH3SRZIcfdJFghx90kWSHH3SRVty9EmXdOQsOx6Eo3fDRB2b1UaPXy2kwpPX0cLgmZsao5CDVXarwzAMkyMp7morPu+GJi5qnZWw0VPhzrPEG+CZ1wamJpw1DMMwusDLxVatzs1KuGZX4e7HG6BshSTxPhKYlC9xo++aog05rItu5bAuupXDuuhWjj7pko6c4kqjFxqeIqBR1/CYngp0A1RbIWp8SLZEjqZoQw7rols5rItu5bAuupWjT7qkIYfG8Wghr9dRH/Ai4j3y2mphpS2JcE8vlZ6el0vWDqwyDMMYEpbmJklxE8p6N6vgnt5HPsQn4EFYRNo9PQlYphaymw0y9E0O66JbOayLbuXoky7akmOpB7pQPfvvyyjcDg1HdU8nZBVs9D5iamyEkyPq4m5oBArkkbZYtipW5qa4NaFxpnTQhgx9k8O66FYO66JbOfqki7bkWOmJLoMbFseQRsVR2NEaWQkbvY/QmyKcbXOJjWEYhtEtKQIGswge02MYhmEMBu7pfWT+4fuIiI1DK2+3lCsEGBkDhWp8+p7Gkjy+6y6I7ws7VkxjSZ705WhDRpbK0SddJMjRJ10kydEnXSTI0SddJMnRJ10MNE0rTwbhRsg7DGlYHK52WeNlY6P3ka0XnuDhi0hU93BKafTMLIEf96R7PS3Dc/hOWNL3VMlAjjZkZKkcfdJFghx90kWSHH3SRYIcfdJFkhx90kVbcvRJFwlyNp57LCaoNyuTL8uMHrs3P7ZY/n2ZOHHSy5WnKzAMw2QFXq5ZvzKLVowevUh2wIC03jIO8cJYChS5fPly0rGTJ0+iTJkyMDMzQ8uWLZFdxCcosO1iMBIUgI2FKRyszDWWo+Tsw1dq+1kpQ9/ksC66lcO66FaOPumiLTnxeqRLsY9etYO3nuH0g5ca66LTN6dn9Db11IiPjxdvTXdycoKpaaJHtUqVKvDy8oKfnx9sbGzEtfTGdVXDqOs3pwdef4pxu27i6duYpGP57HJh7NclxSsvkqDlc2aXSfw+4Bpgbp1CztidN/DsXazGcrQhI8vl6JMunL+cvzk4f3NimgKvP8XIbdfEqizpytCyPdC5e/P9+/cwMTGBq6trksEjHjx4gLp168LNzQ158uRBVkMZ7rvuoprBI0Lfxojj9LsaUS8TtzTkqN58uXK0ISPb5OiTLmnI0SddZMvRJ13SkKNPusiWo0+6GFCaAj/KUDV46crQIrKNXmRkJDp37ix6Z/ny5cOMGTNSvBF9woQJ4hyytr169VJzbyq/v3z5Et26dRPfV61ahXHjxuHKlStiX3lMV1AXmnp4qXVxxfvmAdGKCY/5gKj3cYh6H48ohUXiRt/FsTjxO52XGTnakJF9cvRJF85fzt+cl785MU3hGcggqH7WlatTtnuzd+/e2LNnD1asWAFnZ2f873//w9GjR4UBIxclGb3Xr19jzJgxSWN11NMrUqQILl26JMbxyNVZvHhxjB8/Hm3bthVd0tGjRyMwMBAHDhwQ19AxS0v1lVFiY2PFptqdLViwoGz3JvmOf1h6Rk6yGYZhGB1SK8oUx6zikvY39PwSVT0cte7elDVlISIiAsuXL8e6detQr149cWz16tXCRakKuS0HDx6ctE+9OyVKVyf15khB+k5Qz5Hcn8r91KDxP+oRZpbn4eouTYZhGCZ7KfbBBMcQp/N6WpbRo3E4GqOjIBQlDg4Ootemio+PD3TByJEjMWjQoBQ9PbkkX2oseHFPxEe+gom1Awr8tDTpeN8mgGc+ozTl3H+qwLy9n/a7v7WAjcIIEUYKLLeLlSRHGzL0TQ7rYjhp0iddOE2fR5rupyEjxkjd6airJSF1Mjnd2lo3C4haWFiILbNULuIgooRo0FT4oePeQ/EhVnwqcbAxgndhSxgbp10AvAsrYG8djdeRiTfLDEYwhxHMVM7JSI42ZOibHNbFcNKkT7pwmj6PNHmnIUNpMukqmqhO9XS2B7J4eHiIeXVnz55NOkbjd3fv3s20Iubm5mJqQ1ZgYmwkwmKJtG5v+xrm6d58gn7vUDP9eX0ZydGGDH2Tw7roVg7rols5+qSLtuR8LroYffyk+pnq6Ww3ejTu1r17dwwdOhSHDh3C9evX0bVrVxgbZ37mAwXABAUFiQjPFy9eqAWs6AKaB7Kwo3eKpW+oldK3sQV8PKR1guk8Ot/e2khjOdqQoW9yWBfDSZM+6cJp+rx1cbXLJeplTebp6Sx6k4JZfH19sW3bNtja2oqAFYrmVE5OJ+NFq7OortBCgSzK6E06j6C5eXQ+GU2CjFyHDh1w8OBBvHnzBitXrkz6TVeT0wkKi3XNnx8vnoXCLq8jtv2zOcPWTmokJChwY3Y8jKONkWCZgFIDTGTL0YYMfZPDuuhWDuuiWzn6pIu25CTomS43AxJgFGUEUxtT9JhaU+Menk6iN5W9vbVr14pNCfX8UovUVEKGMLltJcOmCo3VbdmyBVkNZbC5aWJP1dQkseutCXQdXZ+QCTnakKFvclgX3cphXXQrR5900ZYcY33TxRiggS1zEyOduTRV4bcsSOTP1X9i0+JNeBX2Ch4lPNBvfD+UKF9C8vVXzl7BpkWbcPfaXbx8/hITlk5AjUYfX7khkd/n/Y7jgcfx34P/YJHLAqUqlkKvkb3g7uEuS86OtTuwc+1OhD4JFfuFvQqjc//OqFLnU1SuXNbPX4+lU5aiVbdW6PtbX8nXrZq5Cqtnr1Y7VtCjINYcXiNbh7DQMCzxW4Jzh88hJjoGBQoXwPDpw1G8nHp0cXq0q9YOz548S3G8RecWGDAx7fVlVaGx6dWzVuPvP//Gq+ev4OTihEZtGqFTv05iqo4coiKisGL6CpzYdwKvX7xGsdLFRP5+Ue4LjcsaNUBXzlyJPev3IOJdBEr7lMbAyQPJuSRLzrG9x7Br3S7x+7s377B0L0U+F5YsI+5DHJZPW46zh8/i6X9PYW1rDe8a3ug1ohf5gmTpQuXo0K5DCAsJg6mZKbzKeKH7sO4wgpcsOarMHDkTu37fhda1fVG7eGvJMvwH+WPfln1qsip9VQk/+kyWrcuje49EmaZz4+PiUahYIXSqMgZ5jF0lyajjXifVtH1bqyfqlWgnWZfoyGgs8V8iyuG71++Qr2A+fPfjdyiGprLSRPUnpef8sfOi7JWtUhbNPfrA0Ux+FL6m8FsWJHBo5yEsnLAQXQZ0wZI9S4TRG9ZxmKiEpBITFQOPkh7oP7G/xnpQgWrZpSXmb5+Pab9PQ1xcnNAjOipalpy8rnnRc0RPLN6zGIt2L0KFahUwqscoBN0J0kiv21duY9f6XShaoqhG15PR3Xp+a9I2d+tc2TLC34Tjl+9+EXM9/df4Y9XBVfAd7QsbO3lvzVi0a5GaLtN/ny6O125WW7KMDQs3iIYFNYxWH1otGiYbF23EtpXbZKdr2rBpOH/8PEbOHokVf6+AT00fDGk/RBh4TcvaxoWJugz0G4gFOxcgl1UuUY4+qEQvS5FDv5euVFqkTxNdqGFy7/o90RhY/NdijF8yHo8fPsav3X+VnSa3om7oP74/lu9fjjlb58C1oKtIU3jUG42eQ2pc3rx0UzRY5OpCVK5dWa0cjZ47Wrac4H+D0a9VP9EInLVpFpbtWybyyszUTLIMVR1oGzZ9mGh4VShWU5Yu88fPx7kj5/BrwK+iTLfq3goBYwJw9f4pyXKosTW652jRwJm4fCKW7F0ClwIuCNg8DLEf5NVhmYF7ehLYvGwzmv3QDE2+byL2B/kNwtlDZ7F3016079NekgzqRWWmJ0VMXTtVbX/EjBH4tsK3olVVrko5yXKqNaimtt9jWA/R86OHvEjxIrJ0ohbgpH6TMMR/CNbO/eTyloOJqQkcnDMXnkyGxjmfM4bPGJ50LJ+7/MHwPI7qPYz1C9Yjf6H8KPel9Py9cf4Gqjesjqr1qop9qoAP7jwoGgdyiI2JFb2picsmJt3froO64tSBU+J+dR/aXXZZo4pny/It6PRLJ9RomNgCHzlrJL6r+B2u3D8Jb7d6kuQQDVs1FJ+hjxM9BnJ1scltg+nrExsVSvpP6A/fr33x6svnSb0ZKbrUb1lfbb/36N74a+NfCA57CC9HB1nPITUo5oyZI563kT+OlJUmJWbmZqmU6ThZcqgXTL///OvPScfIe3HrVhwSIqTJSK7Dyf0nUb5qeTjlyZckQ4qcGxduoFHrRuJa4usOX4te8L+hd1DatYYkOU+CnuDmxZui8aasZ8jDcOTPVrhw/xDqO2XN23a4p5cBH95/EEalYo2KSccoWpXcMDcu3shW3SLDE98BmDuPZkE8Slcc9WSp1V3Ku5Ts62ePmo0v636JijU/5Y9cgoOC0dqnNdpXb4+J/SbiWXBK92JGnPr7FIqXLY7ffv5NNAR6NumJ3et3I7P3nlyUTdo2keWWLOVTChdPXhS9FuL+zfu4/s910fqXA7mzEuITYG6hHt5Nru1r/1yDJlArm1xMquWZjA+56h+G3ER2E/kuUuS1pYV1pu4b3Xvr3NZwy+sh69qEhAT4DfBD25/aym4AqnL5zGVRDjvX7oxZ/5uFt6/fytbjzKEzogc7tONQIcv3G1/hXtQUuu9nDp1B03bqLkkp0FAKPWPUIKCG06VTl4QRK1G4oqz7QqiWZ6pLzUzM8CD0OrIK7ullwNtXb0XFY+9kr3ac9mlsLbugh2Leb/PEeIwmD+fD2w/Rp2UfvI99D0trS+FaIjejHMhYknuKXIKaUqJCCdE7IxcOjQGsmb0G/Vv3F61BKxsryXJCHodgx7odaNOjDTr07SB6VXPHzhXjO43bNNZIN6pgaNyhcWt517fv3R5R4VHoUqcLjE2MRfmhXlmDbxvIkkPpp8pm7Zy1KORZCPZ57XFoxyHRWqYWv6YVH5FaeX53T7q7Xhe8j3mPxX6LUbdFXWH0EtQX4M+Q0wdOY3zf8YiNjoWjs6NwTSuO2Kn1aDJiw4INYqlEGpvWFGrc1GxcU3gaQh6FYNmUZRjReQT61p0tuZ/x5sUb4UUhfboN7YafRv4k3Itjeo1B/zbT4GlfQbZeNM5oZW2FWo1r4cFiedeSq37GiBn4vvL3wjNDxmqw/2C4B5eVnL8Ue0DuTBr7H+w3WLjVtyzbgtcRYXgblVguswI2ep8pAaMCEHQ3SKPxL6Jg0YJYFrhMVOrH/jomBt9n/zFbsuF7HvJcGF0aWzTPpdmLdwlVVwiNlZYsX1IEkxzefRjN2jWTLEeRoBA9vZ7De4p9CvigMUpywWhq9P7a9Beq1K4CJ9eU4zrpcWT3ERzYfgCj5o4S+Xn/xn3MHzcfji6OsnUh1+PUoVPRpnIbYUC9SnsJo0Deh5wEBbWM6524ru7ASQPx3wr5MspXKy/KNDVUd2/YLeQNbD4H1pC2aPGdq3ewdeVWMW4vN+BIlbrf1E36XvSLomLrULMD7ha7Ai9HH8mNWqJaw2qiIUd4lvIUbsYTV3bDs7Z8o7f3j72o/239j8+ruqs1I/5c9SduXbqFScsnwcXNBVfPXkXA6AD0bGIvOU3UAB23eJwYp/6m7DeiPJPHoVSRylDE6f7lsUl6ZNk/fabYOdiJm5M8aIX2HfLqZpmcjKDCdvrgaQRsDkDefHk1kkFjDsreAhkL6hltXbFVtN6kQJUu5UGvpp+CGKhHQw8DRbruv79ftJjlQoEnbkXcEPJviKzrqGVPkW2q0P7xvcehCRTZevHERYxbIn+B80WTFuGH3j8kVX5U6ZHLlsYH5Ro9ukd0nylYiXqPZDipMtdkvJJQllm6dyRLrTxbaxaIpC2DFxocipkbZ4ooTrmVMmFpZSnyi7aS3iXRsVZHnLwWiIalOki6/tq5a6KH1bZqW7UyvTV4MQ6d34aJP62DJtCYMNUjYW9C4CXxpQF0PvWoChdTb4S6e7rj3M2rsnWg5/Lxg8cYM3+M7GtpbHnZ1GXCG6Qcp6YGKrntD5zZDK9G0tdaprpG2dim+05j6D9W9kVBB/UoW13CRk+CcaDwZxqjUYbeUiuM9r/t8m2W6kK+dBpgPxF4ArP+mKVxxZeWbKXPXQre1b2FC1KVKYOnCBcGVfiaGDyCXDrkEmrwnTxXII2j0UOtypOHT0SrVBMC/wgUD2TVuokPuRzIvZZ8lSLap96oplCFThtFqf5z7B/h7tIEKjNk+Kj8Us9BOTZ86/ItdKrfHNll8Gh8iCIU7ezttCab8jsuXnqZbtCqQYqxaYoA9XavhypFE4PYNCHsaZgI87ezdpBV79C0lBRlOugJHHK7aOS1oHrMs2TiPZd7j2hLrUwnKBJ7pHKhcWRleh49u4tm3j8iq2CjJwFyL/gP9heFhgb8KfqNQnMbf99YVmVOIchKnj5+KtxetnlshZ9batDIwR0HRTQf+eZpDhhBA/YU3CCVpf5LUblOZbjkd0FUZBQObj+Iy6cvp4gOzWi8KflYIvnoc9vnljXGuHDiQlStXxWuBVzx4tkLMd+Ketb1WnyKIpR6j/p+2xfr5q1DneZ1RCVOwQyD/D+9lUMq1KgJ3BwootWotS0XSs+6uevgnN8ZRbyK4N6NeyICWBn9K4dzR8+JN2uSO5rKz6LJi0TDIj1ZGZW11t1bi3FC6hGREaR5gE7OTijnWR2IkS6H5uY9D34u7htBY9xxz+NgCyfkscmToQzqnY/9eawYF568crLoVSnLdFy8JYzxqUynJ4fKHOV39QbVRbQiuTe3r9mOsGdh8K5TS1beJDe6JmYmyG3tAJc8NI8sIWNd8uQW805rNaklGhfBj4KxePJikdclCvvIyl8KphnfZ7yYy0bTimhMjyJ3B7SeIateoUbN0T1H4TvKV+MyQ9HL5MGgeob2afrU/q378V2Nn2XJIdc/NSbp2Xh456EYIinnWQ0lCurmzTypwUZPAuSmogeJKmQxOb2kB6asnSLLvUnjBQPb0gTgRBaMXyA+qWIdMXOEJBkUpk4M/P6THIICQeS4zV6/fA2/gX6igiFXErnfyOD51Mq6gqfaCp7Yd6KoQMmlU6ZSGTEPMfnUgYygVvGEJRPEIPmagDVi8myfsX1kB48QF05cEO5IitrUBBr0J0NC467kNqS5XhTiTQsAaBLNSIEQFDVna2eLWk1riaAYGh/RtKy1822H6OhozBg5Q7iZyviUEeU5Ypf5x2pdmhyK5qPevZIJfSeIzyYVO+Nr504Zyug6sKuQQfRsnDgWq2TA99PVgjXSkzNo8iDRIxq7ZayIkiTDQwsSzNkyB4ojhdUCLbTxHKYng0LwH9x6IIJGKG/JhUxzK7sN6YZn6+XlLwXDkDxa+IGCsijYi8bEHG+VTkqTlPRQwBl5cmgsOC0ykjNm3hjxbNH0JHpWyYNCk/9LRzaHIlK6HApWWzBhQaJ73dlRTHupbNweyLppevLX3tQntLH2JlHArQBCgkPg6OqILec0XwrtVgDNnzGGsU0CSvQ3zTYZ+iaHddGtHNZFt3L0SRdtybmlR7rcDohHfIQRrOzM8OMU9UnzurAHPE+PYRiGMRjY6DEMwzAGAxs9hmEYxmBgo8cwDMMYDGz0GIZhGIOBjR7DMAxjMLDRYxiGYQyGz3pyunKKIc3PyAzKxV1pRYiXr19qLCc61gQJ701gHBuPl6/js02GvslhXXQrh3XRrRx90kVbcqL1SJeoWFMkvDeGUaxZpupy5bUZTT3/rCenP3nyBAULZt1r5hmGYRj95vHjx3Bzc8uZRo96aCEhIbC1tc3Uq0AY6S0pamRQocrMCjiMdDjPsx7O888zv8mUhYeHI3/+/CkWx84x7k1KWHoWndENVDC5MshaOM+zHs7zzy+/aRmyjOBAFoZhGMZgYKPHMAzDGAxs9BjJWFhYYOzYseKTyRo4z7MezvOcnd+fdSALwzAMw8iBe3oMwzCMwcBGj2EYhjEY2OgxDMMwBgMbPYZhGMZgYKNn4MyfPx+FCxdGrly5UKVKFZw7dy7Nc5cuXYqaNWvC3t5ebPXr109xfteuXcXqOKpb48aNsyAlOTPPV61alSI/6TpVKBZtzJgxyJcvHywtLcV9uXfvXhakJOfld+3atVPkN23NmjVLOofLePocO3YMX3/9tVgZhfJm+/btGVwBHDlyBN7e3iKC09PTU5T7zNzH9GCjZ8Bs2rQJgwYNEuHCFy9eRLly5dCoUSM8f/48zYL5ww8/4PDhwzh9+rRYOqhhw4YIDg5WO48qgKdPnyZtGzZsyKIU5bw8J2iVCtX8fPTokdrvU6dOxZw5c7Bo0SKcPXsW1tbWQmZMTAwMHbn5vW3bNrW8vn79OkxMTNCmTRu187iMp01kZKTIZzJSUggKChKNijp16uDy5csYMGAAevTogX379mXquUkTmrLAGCaVK1dW9OnTJ2k/Pj5ekT9/foWfn5+k6+Pi4hS2traK1atXJx3r0qWLokWLFjrR1xDzfOXKlQo7O7s05SUkJChcXV0V06ZNSzr25s0bhYWFhWLDhg0KQyezZXzWrFmijEdERCQd4zIuHTIxf/75Z7rnDBs2TFGqVCm1Y23btlU0atRIa/dRFe7pGSjv37/HhQsXhCtMdS1T2qdenBSioqLw4cMHODg4pOgROjs7o3jx4vD19cXLl5q/riknoWmeR0REoFChQqJn3aJFC9y4cUOtlRwaGqomk9YfJPeP1PuYU9FGGV++fDnatWsnes+qcBnXHnQvVO8RQb045T3Sxn1UhY2egfLixQvEx8fDxcVF7TjtUyUqheHDhwu/vWphJLfPmjVrcPDgQUyZMgVHjx5FkyZNxH8ZOprkOVWqK1aswI4dO7Bu3TrxZpFq1aqJ12oRyusycx9zKpkt4zRmRO5NcrWpwmVcu9C9SO0e0dsXoqOjtVJX5Zi3LDDZh7+/PzZu3ChavKqBFdQqVlKmTBmULVsWHh4e4rx69eplk7afL1WrVhWbEjJ4JUqUwOLFizFhwoRs1S2nQ708KsOVK1dWO85l/POGe3oGipOTkxigf/bsmdpx2nd1dU332unTpwujt3//fvHAp0fRokXFf92/fx+GTmbyXImZmRkqVKiQlJ/K6zIjM6eSmfymYAxq1HXv3j3D/+EynjnoXqR2jyiAi6KRtfHcqMJGz0AxNzdHxYoVhYtGCbnOaF+1Z5EcihSkHkZgYCB8fHwy/B9yw9F4B4XTGzqa5rkq5Oa5du1aUn4WKVJEPPiqMsktRFGcUmXmVDKT35s3b0ZsbCw6duyY4f9wGc8cdC9U7xHx999/J90jbTw3asgOfWFyDBs3bhRRfqtWrVLcvHlT0atXL0WePHkUoaGh4vdOnTopRowYkXS+v7+/wtzcXLFlyxbF06dPk7bw8HDxO30OGTJEcfr0aUVQUJDiwIEDCm9vb0WxYsUUMTEx2ZbOzznPx40bp9i3b5/iwYMHigsXLijatWunyJUrl+LGjRtq94Vk7NixQ3H16lURWVikSBFFdHS0wtCRm99KatSoISIIk8NlPGMojy5duiQ2MjEzZ84U3x89eiR+p/ymfFfy8OFDhZWVlWLo0KGKW7duKebPn68wMTFRBAYGSr6PcmCjZ+DMnTtX4e7uLowZhQWfOXMm6bevvvpKhGcrKVSokCjEybexY8eK36OiohQNGzZU5M2bV2FmZibO79mzp0YFMycjJ88HDBiQdK6Li4uiadOmiosXL6aYtjB69GjxO1UM9erVU9y5cydL05RT8pu4ffu2KNf79+9PIYvLeMYcPnw41XpCmc/0Sfme/Jry5cuLe1S0aFExVUfOfZQDv1qIYRiGMRh4TI9hGIYxGNjoMQzDMAYDGz2GYRjGYGCjxzAMwxgMbPQYhmEYg4GNHsMwDGMwsNFjGIZhDAY2egzDMIzBwEaPYRiGMRjY6DEMwzAGAxs9hvmMGTt2rHinG73Zm16qSW/xprfZMwyTOvwSWYb5TPm4YLx4oWyBAgVw8+ZNdOnSRbzjkIwfwzAp4QWnGSYH0b59ezg7O2P27NnZrQrD6CXs3mSYz5RHjx6hT58+KF26NOzt7WFjY4M//vgDbm5u2a0aw+gtbPQY5jMkLCwMlSpVEm/snjlzJk6cOIFTp07B2NgY5cqVy271GEZv4TE9hvkM2bVrF+Lj47FhwwYYGRmJY/PmzRNBLOXLl89u9RhGb2GjxzCfIY6Ojnj37h127tyJkiVLCiPo5+cnAlry5s2b3eoxjN7CgSwM8xmSkJCA3r17Y/369bC0tETHjh0RExMjxvl2796d3eoxjN7CRo9hGIYxGDiQhWEYhjEY2OgxDMMwBgMbPYZhGMZgYKPHMAzDGAxs9BiGYRiDgY0ewzAMYzCw0WMYhmEMBjZ6DMMwjMHARo9hGIYxGNjoMQzDMAYDGz2GYRjGYGCjxzAMw8BQ+D/maY4QR2ov7QAAAABJRU5ErkJggg==",
|
|
"text/plain": [
|
|
"<Figure size 500x100 with 1 Axes>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"reset_plotting() # Default style for Simbelmynë\n",
|
|
"\n",
|
|
"generate_sim_params(lpt_params, ICs_path, wd, simdir, None, force)\n",
|
|
"\n",
|
|
"print(f\"SPM nsteps = {nsteps_spm}:\")\n",
|
|
"file_ext = f\"nsteps{nsteps_spm}\" # \"spm\" is already in the filename\n",
|
|
"generate_sim_params(spm_params, ICs_path, wd, simdir, file_ext, force)\n",
|
|
"\n",
|
|
"print(f\"P3M nsteps = {nsteps_p3m}:\")\n",
|
|
"file_ext = f\"nsteps{nsteps_p3m}\" # \"p3m\" is already in the filename\n",
|
|
"generate_sim_params(p3m_params, ICs_path, wd, simdir, file_ext, force)\n",
|
|
"\n",
|
|
"setup_plotting() # Reset plotting style for this project"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "4cbfc7f9",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Generate the initial phase"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 7,
|
|
"id": "ac1596ef",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"generate_white_noise_Field(\n",
|
|
" L=L,\n",
|
|
" size=N,\n",
|
|
" corner=corner,\n",
|
|
" seedphase=BASELINE_SEEDPHASE,\n",
|
|
" fname_whitenoise=input_white_noise_file,\n",
|
|
" seedname_whitenoise=input_seed_phase_file,\n",
|
|
" force_phase=force,\n",
|
|
")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "b1dfa6e3",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Generating the input power spectrum\n",
|
|
"\n",
|
|
"The second preparatory step is to compute the initial power spectrum to be used in the simulations, given the cosmological parameters and prescription specified in ``params.py``. The power spectrum is saved in `input_power_file`."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 8,
|
|
"id": "3c2cf19b",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"[17:40:16|\u001b[38;5;113mSTATUS \u001b[00m]|Setting up Fourier grid...\n",
|
|
"[17:40:16|\u001b[38;5;113mSTATUS \u001b[00m]|Setting up Fourier grid done.\n",
|
|
"[17:40:16\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]|Computing normalization of the power spectrum...\n",
|
|
"[17:40:16\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]|Computing normalization of the power spectrum done.\n",
|
|
"[17:40:16\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]|Computing power spectrum...\n",
|
|
"[17:40:16\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]|Computing power spectrum done.\n",
|
|
"[17:40:16|\u001b[38;5;113mSTATUS \u001b[00m]|Write power spectrum in data file '/Users/hoellinger/WIP3M/forcediag8/input_power.h5'...\n",
|
|
"[17:40:16|\u001b[38;5;246mDIAGNOSTIC\u001b[00m]==|\u001b[38;5;246mL0=64, L1=64, L2=64\u001b[00m\n",
|
|
"[17:40:16|\u001b[38;5;246mDIAGNOSTIC\u001b[00m]==|\u001b[38;5;246mN0=32, N1=32, N2=32, N2_HC=17, N_HC=17408, NUM_MODES=464\u001b[00m\n",
|
|
"[17:40:16|\u001b[38;5;113mSTATUS \u001b[00m]|Write power spectrum in data file '/Users/hoellinger/WIP3M/forcediag8/input_power.h5' done.\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"# If cosmo[\"WhichSpectrum\"] == \"class\", then classy is required.\n",
|
|
"if not isfile(input_power_file) or force:\n",
|
|
" Pk = PowerSpectrum(L, L, L, N, N, N, cosmo_small_to_full_dict(cosmo))\n",
|
|
" Pk.write(input_power_file)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "5f00a570",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Running the simulations\n",
|
|
"\n",
|
|
"We are now ready to run the actual simulations using the Simbelmynë executable. Warning: the following may take some time, even in relatively low dimension, and should not be run on a login node."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "9a1ac822",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"[17:40:21\u001b[00m|\u001b[38;5;227mCOMMAND \u001b[00m]|\u001b[38;5;227msimbelmyne /Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/forcediag8/example_lpt.sbmy /Users/hoellinger/WIP3M/forcediag8/logs/lpt.txt\u001b[00m\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]|\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| .-~~-.--.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| : )\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| .~ ~ -.\\ /.- ~~ .\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| > `. .' <\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| ( .- -. )\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| `- -.-~ `- -' ~-.- -'\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| ( : ) _ _ .-: ___________________________________\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| ~--. : .--~ .-~ .-~ } \u001b[1;38;5;157mSIMBELMYNË\u001b[00m\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| ~-.-^-.-~ \\_ .~ .-~ .~ (c) Florent Leclercq 2012 - SBMY_YEAR \n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| \\ ' \\ '_ _ -~ ___________________________________\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| `.`. //\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| . - ~ ~-.__`.`-.//\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| .-~ . - ~ }~ ~ ~-.~-.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| .' .-~ .-~ :/~-.~-./:\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| /_~_ _ . - ~ ~-.~-._\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| ~-.<\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]|\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]|2025-05-20 17:40:21: Starting SIMBELMYNË, commit hash 860f12de187bb46026620362f000d9aa8bc3fb41\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]|Reading parameter file in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/forcediag8/example_lpt.sbmy'...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]|Reading parameter file in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/forcediag8/example_lpt.sbmy' done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleLPT: Initializing snapshot...\u001b[00m\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleLPT: Initializing snapshot done.\u001b[00m\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]|LPT snapshot initialization: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleLPT: Returning initial conditions...\u001b[00m\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Reading field in '/Users/hoellinger/WIP3M/forcediag8/input_white_noise.h5'...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Reading field in '/Users/hoellinger/WIP3M/forcediag8/input_white_noise.h5' done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Reading power spectrum...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Reading power spectrum in '/Users/hoellinger/WIP3M/forcediag8/input_power.h5'...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Reading power spectrum in '/Users/hoellinger/WIP3M/forcediag8/input_power.h5' done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Reading power spectrum done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Generating Gaussian random field (using 8 cores)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Generating Gaussian random field (using 8 cores) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Writing field to '/Users/hoellinger/WIP3M/forcediag8/initial_density.h5'...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Writing field to '/Users/hoellinger/WIP3M/forcediag8/initial_density.h5' done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleLPT: Returning initial conditions done.\u001b[00m\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]|LPT initial conditions: 0.006 CPU - 0.011 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleLPT: Evolving with Lagrangian perturbation theory (using 8 cores)...\u001b[00m\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Computing Lagrangian potentials, periodic boundary conditions (using 8 cores)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Computing Lagrangian potentials, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Computing Lagrangian displacement field (using 8 cores)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Computing Lagrangian displacement field (using 8 cores) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Changing velocities of particles...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Changing velocities of particles done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Displacing particles...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Displacing particles done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleLPT: Evolving with Lagrangian perturbation theory (using 8 cores) done.\u001b[00m\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]|LPT evolution: 0.043 CPU - 0.017 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleLPT: Computing outputs...\u001b[00m\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Writing field to '/Users/hoellinger/WIP3M/forcediag8/lpt_density.h5'...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Writing field to '/Users/hoellinger/WIP3M/forcediag8/lpt_density.h5' done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Writing header in '/Users/hoellinger/WIP3M/forcediag8/lpt_particles.gadget3'...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Writing header in '/Users/hoellinger/WIP3M/forcediag8/lpt_particles.gadget3' done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Writing snapshot in '/Users/hoellinger/WIP3M/forcediag8/lpt_particles.gadget3' (32768 particles)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing block: 'POS '...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing block: 'POS ' done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing block: 'VEL '...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing block: 'VEL ' done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing block: 'ID '...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing block: 'ID ' done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Writing snapshot in '/Users/hoellinger/WIP3M/forcediag8/lpt_particles.gadget3' done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleLPT: Computing outputs done.\u001b[00m\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]|LPT output: 0.011 CPU - 0.004 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]|ModuleLPT: 0.061 CPU - 0.033 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]|Simbelmynë: 0.063 CPU - 0.035 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]|Everything done successfully, exiting.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;227mCOMMAND \u001b[00m]|\u001b[38;5;227msimbelmyne /Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/forcediag8/nsteps20_example_spm.sbmy /Users/hoellinger/WIP3M/forcediag8/logs/nsteps20_spm.txt\u001b[00m\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]|\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| .-~~-.--.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| : )\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| .~ ~ -.\\ /.- ~~ .\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| > `. .' <\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| ( .- -. )\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| `- -.-~ `- -' ~-.- -'\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| ( : ) _ _ .-: ___________________________________\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| ~--. : .--~ .-~ .-~ } \u001b[1;38;5;157mSIMBELMYNË\u001b[00m\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| ~-.-^-.-~ \\_ .~ .-~ .~ (c) Florent Leclercq 2012 - SBMY_YEAR \n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| \\ ' \\ '_ _ -~ ___________________________________\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| `.`. //\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| . - ~ ~-.__`.`-.//\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| .-~ . - ~ }~ ~ ~-.~-.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| .' .-~ .-~ :/~-.~-./:\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| /_~_ _ . - ~ ~-.~-._\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| ~-.<\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]|\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]|2025-05-20 17:40:21: Starting SIMBELMYNË, commit hash 860f12de187bb46026620362f000d9aa8bc3fb41\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]|Reading parameter file in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/forcediag8/nsteps20_example_spm.sbmy'...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]|Reading parameter file in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/forcediag8/nsteps20_example_spm.sbmy' done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleLPT: Initializing snapshot...\u001b[00m\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleLPT: Initializing snapshot done.\u001b[00m\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]|LPT snapshot initialization: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleLPT: Returning initial conditions...\u001b[00m\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Reading field in '/Users/hoellinger/WIP3M/forcediag8/initial_density.h5'...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Reading field in '/Users/hoellinger/WIP3M/forcediag8/initial_density.h5' done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleLPT: Returning initial conditions done.\u001b[00m\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]|LPT initial conditions: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleLPT: Evolving with Lagrangian perturbation theory (using 8 cores)...\u001b[00m\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Computing Lagrangian potentials, periodic boundary conditions (using 8 cores)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Computing Lagrangian potentials, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Computing Lagrangian displacement field (using 8 cores)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Computing Lagrangian displacement field (using 8 cores) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Changing velocities of particles...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Changing velocities of particles done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Displacing particles...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Displacing particles done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleLPT: Evolving with Lagrangian perturbation theory (using 8 cores) done.\u001b[00m\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]|LPT evolution: 0.039 CPU - 0.013 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]|ModuleLPT: 0.040 CPU - 0.013 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleP3M: Evolving with P3M...\u001b[00m\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Read timestepping configuration in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/forcediag8/nsteps20_ts_spm.h5'...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Read timestepping configuration in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/forcediag8/nsteps20_ts_spm.h5' done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|OutputForceDiagnostic: /Users/hoellinger/WIP3M/forcediag8/force_diagnostic_spm.txt\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|OutputSnapshotsBase: particles_\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin sPM step 1/20, time_kick:0.050000, time_drift=0.050000.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End sPM step 1/20, time_kick:0.073750, time_drift=0.097500.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 1/20: Density: 0.011 CPU - 0.002 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 1/20: Potential: 0.007 CPU - 0.002 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 1/20: Accelerations (long-range): 0.032 CPU - 0.006 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 1/20: Accelerations (short-range): 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 1/20: Kick: 0.006 CPU - 0.001 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 1/20: Drift: 0.001 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 1/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 1/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 1/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 1/20: Total Evolution: 0.057 CPU - 0.013 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin sPM step 2/20, time_kick:0.073750, time_drift=0.097500.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End sPM step 2/20, time_kick:0.121250, time_drift=0.145000.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 2/20: Density: 0.015 CPU - 0.003 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 2/20: Potential: 0.006 CPU - 0.002 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 2/20: Accelerations (long-range): 0.032 CPU - 0.006 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 2/20: Accelerations (short-range): 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 2/20: Kick: 0.005 CPU - 0.001 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 2/20: Drift: 0.001 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 2/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 2/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 2/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 2/20: Total Evolution: 0.061 CPU - 0.013 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin sPM step 3/20, time_kick:0.121250, time_drift=0.145000.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End sPM step 3/20, time_kick:0.168750, time_drift=0.192500.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 3/20: Density: 0.016 CPU - 0.003 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 3/20: Potential: 0.007 CPU - 0.002 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 3/20: Accelerations (long-range): 0.031 CPU - 0.007 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 3/20: Accelerations (short-range): 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 3/20: Kick: 0.006 CPU - 0.001 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 3/20: Drift: 0.001 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 3/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 3/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 3/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 3/20: Total Evolution: 0.061 CPU - 0.014 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin sPM step 4/20, time_kick:0.168750, time_drift=0.192500.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End sPM step 4/20, time_kick:0.216250, time_drift=0.240000.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 4/20: Density: 0.014 CPU - 0.003 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 4/20: Potential: 0.006 CPU - 0.002 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 4/20: Accelerations (long-range): 0.030 CPU - 0.007 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 4/20: Accelerations (short-range): 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 4/20: Kick: 0.005 CPU - 0.001 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 4/20: Drift: 0.001 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 4/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 4/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 4/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 4/20: Total Evolution: 0.057 CPU - 0.014 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin sPM step 5/20, time_kick:0.216250, time_drift=0.240000.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End sPM step 5/20, time_kick:0.263750, time_drift=0.287500.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 5/20: Density: 0.013 CPU - 0.003 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 5/20: Potential: 0.006 CPU - 0.002 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 5/20: Accelerations (long-range): 0.031 CPU - 0.011 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 5/20: Accelerations (short-range): 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 5/20: Kick: 0.005 CPU - 0.001 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 5/20: Drift: 0.001 CPU - 0.001 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 5/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 5/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 5/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 5/20: Total Evolution: 0.056 CPU - 0.018 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin sPM step 6/20, time_kick:0.263750, time_drift=0.287500.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End sPM step 6/20, time_kick:0.311250, time_drift=0.335000.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 6/20: Density: 0.007 CPU - 0.003 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 6/20: Potential: 0.007 CPU - 0.005 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 6/20: Accelerations (long-range): 0.030 CPU - 0.011 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 6/20: Accelerations (short-range): 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 6/20: Kick: 0.005 CPU - 0.001 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 6/20: Drift: 0.001 CPU - 0.001 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 6/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 6/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 6/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 6/20: Total Evolution: 0.050 CPU - 0.021 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin sPM step 7/20, time_kick:0.311250, time_drift=0.335000.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End sPM step 7/20, time_kick:0.358750, time_drift=0.382500.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 7/20: Density: 0.013 CPU - 0.003 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 7/20: Potential: 0.007 CPU - 0.002 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 7/20: Accelerations (long-range): 0.031 CPU - 0.007 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 7/20: Accelerations (short-range): 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 7/20: Kick: 0.006 CPU - 0.001 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 7/20: Drift: 0.001 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 7/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 7/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 7/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 7/20: Total Evolution: 0.058 CPU - 0.013 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin sPM step 8/20, time_kick:0.358750, time_drift=0.382500.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End sPM step 8/20, time_kick:0.406250, time_drift=0.430000.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 8/20: Density: 0.019 CPU - 0.003 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 8/20: Potential: 0.007 CPU - 0.002 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 8/20: Accelerations (long-range): 0.033 CPU - 0.006 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 8/20: Accelerations (short-range): 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 8/20: Kick: 0.006 CPU - 0.001 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 8/20: Drift: 0.001 CPU - 0.001 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 8/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 8/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 8/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 8/20: Total Evolution: 0.065 CPU - 0.014 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin sPM step 9/20, time_kick:0.406250, time_drift=0.430000.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End sPM step 9/20, time_kick:0.453750, time_drift=0.477500.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 9/20: Density: 0.013 CPU - 0.003 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 9/20: Potential: 0.007 CPU - 0.002 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 9/20: Accelerations (long-range): 0.032 CPU - 0.006 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 9/20: Accelerations (short-range): 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 9/20: Kick: 0.006 CPU - 0.001 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 9/20: Drift: 0.002 CPU - 0.001 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 9/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 9/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 9/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 9/20: Total Evolution: 0.059 CPU - 0.014 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin sPM step 10/20, time_kick:0.453750, time_drift=0.477500.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n"
|
|
]
|
|
},
|
|
{
|
|
"name": "stderr",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"HDF5-DIAG: Error detected in HDF5 (1.14.6):\n",
|
|
" #000: /tmp/hdf5-20250207-38588-gjrv3m/hdf5-1.14.6/src/H5Adeprec.c line 202 in H5Aopen_name(): unable to open attribute\n",
|
|
" major: Attribute\n",
|
|
" minor: Can't open object\n",
|
|
" #001: /tmp/hdf5-20250207-38588-gjrv3m/hdf5-1.14.6/src/H5VLcallback.c line 1125 in H5VL_attr_open(): attribute open failed\n",
|
|
" major: Virtual Object Layer\n",
|
|
" minor: Can't open object\n",
|
|
" #002: /tmp/hdf5-20250207-38588-gjrv3m/hdf5-1.14.6/src/H5VLcallback.c line 1092 in H5VL__attr_open(): attribute open failed\n",
|
|
" major: Virtual Object Layer\n",
|
|
" minor: Can't open object\n",
|
|
" #003: /tmp/hdf5-20250207-38588-gjrv3m/hdf5-1.14.6/src/H5VLnative_attr.c line 164 in H5VL__native_attr_open(): unable to open attribute: '/info/scalars/time'\n",
|
|
" major: Attribute\n",
|
|
" minor: Can't open object\n",
|
|
" #004: /tmp/hdf5-20250207-38588-gjrv3m/hdf5-1.14.6/src/H5Aint.c line 514 in H5A__open(): unable to load attribute info from object header for attribute: '/info/scalars/time'\n",
|
|
" major: Attribute\n",
|
|
" minor: Can't open object\n",
|
|
" #005: /tmp/hdf5-20250207-38588-gjrv3m/hdf5-1.14.6/src/H5Oattribute.c line 498 in H5O__attr_open_by_name(): can't locate attribute: '/info/scalars/time'\n",
|
|
" major: Attribute\n",
|
|
" minor: Object not found\n",
|
|
"HDF5-DIAG: Error detected in HDF5 (1.14.6):\n",
|
|
" #000: /tmp/hdf5-20250207-38588-gjrv3m/hdf5-1.14.6/src/H5A.c line 1022 in H5Aread(): can't synchronously read data\n",
|
|
" major: Attribute\n",
|
|
" minor: Read failed\n",
|
|
" #001: /tmp/hdf5-20250207-38588-gjrv3m/hdf5-1.14.6/src/H5A.c line 987 in H5A__read_api_common(): not an attribute\n",
|
|
" major: Invalid arguments to routine\n",
|
|
" minor: Inappropriate type\n",
|
|
" #002: /tmp/hdf5-20250207-38588-gjrv3m/hdf5-1.14.6/src/H5VLint.c line 1786 in H5VL_vol_object_verify(): identifier is not of specified type\n",
|
|
" major: Invalid arguments to routine\n",
|
|
" minor: Inappropriate type\n",
|
|
"HDF5-DIAG: Error detected in HDF5 (1.14.6):\n",
|
|
" #000: /tmp/hdf5-20250207-38588-gjrv3m/hdf5-1.14.6/src/H5A.c line 2193 in H5Aclose(): not an attribute ID\n",
|
|
" major: Invalid arguments to routine\n",
|
|
" minor: Inappropriate type\n"
|
|
]
|
|
},
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End sPM step 10/20, time_kick:0.501250, time_drift=0.525000.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 10/20: Density: 0.014 CPU - 0.003 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 10/20: Potential: 0.007 CPU - 0.002 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 10/20: Accelerations (long-range): 0.031 CPU - 0.007 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 10/20: Accelerations (short-range): 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 10/20: Kick: 0.005 CPU - 0.002 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 10/20: Drift: 0.002 CPU - 0.003 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 10/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 10/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 10/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 10/20: Total Evolution: 0.060 CPU - 0.017 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin sPM step 11/20, time_kick:0.501250, time_drift=0.525000.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End sPM step 11/20, time_kick:0.548750, time_drift=0.572500.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 11/20: Density: 0.011 CPU - 0.004 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 11/20: Potential: 0.007 CPU - 0.003 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 11/20: Accelerations (long-range): 0.032 CPU - 0.008 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 11/20: Accelerations (short-range): 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 11/20: Kick: 0.006 CPU - 0.001 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 11/20: Drift: 0.001 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 11/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 11/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 11/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 11/20: Total Evolution: 0.056 CPU - 0.017 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin sPM step 12/20, time_kick:0.548750, time_drift=0.572500.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End sPM step 12/20, time_kick:0.596250, time_drift=0.620000.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 12/20: Density: 0.009 CPU - 0.003 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 12/20: Potential: 0.007 CPU - 0.003 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 12/20: Accelerations (long-range): 0.030 CPU - 0.008 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 12/20: Accelerations (short-range): 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 12/20: Kick: 0.006 CPU - 0.002 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 12/20: Drift: 0.002 CPU - 0.001 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 12/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 12/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 12/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 12/20: Total Evolution: 0.053 CPU - 0.015 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin sPM step 13/20, time_kick:0.596250, time_drift=0.620000.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End sPM step 13/20, time_kick:0.643750, time_drift=0.667500.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 13/20: Density: 0.008 CPU - 0.003 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 13/20: Potential: 0.007 CPU - 0.003 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 13/20: Accelerations (long-range): 0.028 CPU - 0.008 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 13/20: Accelerations (short-range): 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 13/20: Kick: 0.006 CPU - 0.001 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 13/20: Drift: 0.001 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 13/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 13/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 13/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 13/20: Total Evolution: 0.051 CPU - 0.016 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin sPM step 14/20, time_kick:0.643750, time_drift=0.667500.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End sPM step 14/20, time_kick:0.691250, time_drift=0.715000.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 14/20: Density: 0.012 CPU - 0.003 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 14/20: Potential: 0.007 CPU - 0.002 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 14/20: Accelerations (long-range): 0.030 CPU - 0.007 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 14/20: Accelerations (short-range): 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 14/20: Kick: 0.005 CPU - 0.001 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 14/20: Drift: 0.001 CPU - 0.001 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 14/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 14/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 14/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 14/20: Total Evolution: 0.056 CPU - 0.014 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin sPM step 15/20, time_kick:0.691250, time_drift=0.715000.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End sPM step 15/20, time_kick:0.738750, time_drift=0.762500.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 15/20: Density: 0.016 CPU - 0.003 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 15/20: Potential: 0.007 CPU - 0.002 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 15/20: Accelerations (long-range): 0.032 CPU - 0.007 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 15/20: Accelerations (short-range): 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 15/20: Kick: 0.005 CPU - 0.001 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 15/20: Drift: 0.001 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 15/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 15/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 15/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 15/20: Total Evolution: 0.061 CPU - 0.014 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin sPM step 16/20, time_kick:0.738750, time_drift=0.762500.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End sPM step 16/20, time_kick:0.786250, time_drift=0.810000.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 16/20: Density: 0.012 CPU - 0.003 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 16/20: Potential: 0.006 CPU - 0.002 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 16/20: Accelerations (long-range): 0.031 CPU - 0.007 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 16/20: Accelerations (short-range): 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 16/20: Kick: 0.006 CPU - 0.002 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 16/20: Drift: 0.001 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 16/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 16/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 16/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 16/20: Total Evolution: 0.057 CPU - 0.014 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin sPM step 17/20, time_kick:0.786250, time_drift=0.810000.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End sPM step 17/20, time_kick:0.833750, time_drift=0.857500.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 17/20: Density: 0.010 CPU - 0.002 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 17/20: Potential: 0.007 CPU - 0.002 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 17/20: Accelerations (long-range): 0.029 CPU - 0.007 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 17/20: Accelerations (short-range): 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 17/20: Kick: 0.005 CPU - 0.001 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 17/20: Drift: 0.001 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 17/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 17/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 17/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 17/20: Total Evolution: 0.052 CPU - 0.014 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin sPM step 18/20, time_kick:0.833750, time_drift=0.857500.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End sPM step 18/20, time_kick:0.881250, time_drift=0.905000.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 18/20: Density: 0.017 CPU - 0.003 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 18/20: Potential: 0.006 CPU - 0.002 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 18/20: Accelerations (long-range): 0.032 CPU - 0.006 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 18/20: Accelerations (short-range): 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 18/20: Kick: 0.005 CPU - 0.001 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 18/20: Drift: 0.001 CPU - 0.001 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 18/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 18/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 18/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 18/20: Total Evolution: 0.062 CPU - 0.014 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin sPM step 19/20, time_kick:0.881250, time_drift=0.905000.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End sPM step 19/20, time_kick:0.928750, time_drift=0.952500.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 19/20: Density: 0.016 CPU - 0.003 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 19/20: Potential: 0.006 CPU - 0.002 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 19/20: Accelerations (long-range): 0.029 CPU - 0.007 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 19/20: Accelerations (short-range): 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 19/20: Kick: 0.005 CPU - 0.001 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 19/20: Drift: 0.001 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 19/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 19/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 19/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 19/20: Total Evolution: 0.058 CPU - 0.014 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin sPM step 20/20, time_kick:0.928750, time_drift=0.952500.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End sPM step 20/20, time_kick:1.000000, time_drift=1.000000.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 20/20: Density: 0.021 CPU - 0.007 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 20/20: Potential: 0.013 CPU - 0.005 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 20/20: Accelerations (long-range): 0.061 CPU - 0.016 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 20/20: Accelerations (short-range): 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 20/20: Kick: 0.011 CPU - 0.003 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 20/20: Drift: 0.001 CPU - 0.001 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 20/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 20/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 20/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 20/20: Total Evolution: 0.109 CPU - 0.032 wallclock seconds used.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Running force diagnostic for 3 random particle pairs per distance bin...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing total force on each particle (before removing any)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing total force on each particle (before removing any) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 18: [11.341, 19.050]. Total: 1 / max 60 pairs...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 18: [11.341, 19.050] done. Total: 1 / max 60 pairs. Trials 0 / max 100000000.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 19: [19.050, 32.000]. Total: 2 / max 60 pairs...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 19: [19.050, 32.000] done. Total: 2 / max 60 pairs. Trials 2 / max 100000000.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 18: [11.341, 19.050]. Total: 3 / max 60 pairs...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 18: [11.341, 19.050] done. Total: 3 / max 60 pairs. Trials 3 / max 100000000.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 19: [19.050, 32.000]. Total: 4 / max 60 pairs...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 19: [19.050, 32.000] done. Total: 4 / max 60 pairs. Trials 4 / max 100000000.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 18: [11.341, 19.050]. Total: 5 / max 60 pairs...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 18: [11.341, 19.050] done. Total: 5 / max 60 pairs. Trials 5 / max 100000000.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 19: [19.050, 32.000]. Total: 6 / max 60 pairs...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 19: [19.050, 32.000] done. Total: 6 / max 60 pairs. Trials 6 / max 100000000.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 15: [2.393, 4.019]. Total: 7 / max 60 pairs...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 15: [2.393, 4.019] done. Total: 7 / max 60 pairs. Trials 25 / max 100000000.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 17: [6.751, 11.341]. Total: 8 / max 60 pairs...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 17: [6.751, 11.341] done. Total: 8 / max 60 pairs. Trials 39 / max 100000000.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 17: [6.751, 11.341]. Total: 9 / max 60 pairs...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 17: [6.751, 11.341] done. Total: 9 / max 60 pairs. Trials 100 / max 100000000.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 17: [6.751, 11.341]. Total: 10 / max 60 pairs...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 17: [6.751, 11.341] done. Total: 10 / max 60 pairs. Trials 138 / max 100000000.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 16: [4.019, 6.751]. Total: 11 / max 60 pairs...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 16: [4.019, 6.751] done. Total: 11 / max 60 pairs. Trials 149 / max 100000000.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 16: [4.019, 6.751]. Total: 12 / max 60 pairs...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 16: [4.019, 6.751] done. Total: 12 / max 60 pairs. Trials 189 / max 100000000.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 16: [4.019, 6.751]. Total: 13 / max 60 pairs...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 16: [4.019, 6.751] done. Total: 13 / max 60 pairs. Trials 237 / max 100000000.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 14: [1.424, 2.393]. Total: 14 / max 60 pairs...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 14: [1.424, 2.393] done. Total: 14 / max 60 pairs. Trials 258 / max 100000000.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 15: [2.393, 4.019]. Total: 15 / max 60 pairs...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 15: [2.393, 4.019] done. Total: 15 / max 60 pairs. Trials 755 / max 100000000.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 13: [0.848, 1.424]. Total: 16 / max 60 pairs...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 13: [0.848, 1.424] done. Total: 16 / max 60 pairs. Trials 997 / max 100000000.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 14: [1.424, 2.393]. Total: 17 / max 60 pairs...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 14: [1.424, 2.393] done. Total: 17 / max 60 pairs. Trials 1323 / max 100000000.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 15: [2.393, 4.019]. Total: 18 / max 60 pairs...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 15: [2.393, 4.019] done. Total: 18 / max 60 pairs. Trials 1403 / max 100000000.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 12: [0.505, 0.848]. Total: 19 / max 60 pairs...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 12: [0.505, 0.848] done. Total: 19 / max 60 pairs. Trials 3386 / max 100000000.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 14: [1.424, 2.393]. Total: 20 / max 60 pairs...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 14: [1.424, 2.393] done. Total: 20 / max 60 pairs. Trials 4393 / max 100000000.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 12: [0.505, 0.848]. Total: 21 / max 60 pairs...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 12: [0.505, 0.848] done. Total: 21 / max 60 pairs. Trials 11684 / max 100000000.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 13: [0.848, 1.424]. Total: 22 / max 60 pairs...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 13: [0.848, 1.424] done. Total: 22 / max 60 pairs. Trials 14546 / max 100000000.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 12: [0.505, 0.848]. Total: 23 / max 60 pairs...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 12: [0.505, 0.848] done. Total: 23 / max 60 pairs. Trials 16273 / max 100000000.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 13: [0.848, 1.424]. Total: 24 / max 60 pairs...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 13: [0.848, 1.424] done. Total: 24 / max 60 pairs. Trials 19032 / max 100000000.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 10: [0.179, 0.300]. Total: 25 / max 60 pairs...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 10: [0.179, 0.300] done. Total: 25 / max 60 pairs. Trials 75794 / max 100000000.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 11: [0.300, 0.505]. Total: 26 / max 60 pairs...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 11: [0.300, 0.505] done. Total: 26 / max 60 pairs. Trials 88546 / max 100000000.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 11: [0.300, 0.505]. Total: 27 / max 60 pairs...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 11: [0.300, 0.505] done. Total: 27 / max 60 pairs. Trials 96044 / max 100000000.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 11: [0.300, 0.505]. Total: 28 / max 60 pairs...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 11: [0.300, 0.505] done. Total: 28 / max 60 pairs. Trials 260936 / max 100000000.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 9: [0.106, 0.179]. Total: 29 / max 60 pairs...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 9: [0.106, 0.179] done. Total: 29 / max 60 pairs. Trials 376024 / max 100000000.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 9: [0.106, 0.179]. Total: 30 / max 60 pairs...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 9: [0.106, 0.179] done. Total: 30 / max 60 pairs. Trials 445798 / max 100000000.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 10: [0.179, 0.300]. Total: 31 / max 60 pairs...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 10: [0.179, 0.300] done. Total: 31 / max 60 pairs. Trials 446516 / max 100000000.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 10: [0.179, 0.300]. Total: 32 / max 60 pairs...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 10: [0.179, 0.300] done. Total: 32 / max 60 pairs. Trials 561696 / max 100000000.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 9: [0.106, 0.179]. Total: 33 / max 60 pairs...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 9: [0.106, 0.179] done. Total: 33 / max 60 pairs. Trials 2942393 / max 100000000.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 8: [0.063, 0.106]. Total: 34 / max 60 pairs...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[17:40:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 8: [0.063, 0.106] done. Total: 34 / max 60 pairs. Trials 4175101 / max 100000000.\n",
|
|
"[17:40:22\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 8: [0.063, 0.106]. Total: 35 / max 60 pairs...\n",
|
|
"[17:40:22\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[17:40:22\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[17:40:22\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[17:40:22\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[17:40:22\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 8: [0.063, 0.106] done. Total: 35 / max 60 pairs. Trials 6361125 / max 100000000.\n",
|
|
"[17:40:22\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 5: [0.013, 0.022]. Total: 36 / max 60 pairs...\n",
|
|
"[17:40:22\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[17:40:22\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[17:40:22\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[17:40:22\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[17:40:22\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 5: [0.013, 0.022] done. Total: 36 / max 60 pairs. Trials 10042996 / max 100000000.\n",
|
|
"[17:40:22\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 8: [0.063, 0.106]. Total: 37 / max 60 pairs...\n",
|
|
"[17:40:22\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[17:40:22\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[17:40:22\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[17:40:22\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[17:40:22\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 8: [0.063, 0.106] done. Total: 37 / max 60 pairs. Trials 23333431 / max 100000000.\n",
|
|
"[17:40:22\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 7: [0.038, 0.063]. Total: 38 / max 60 pairs...\n",
|
|
"[17:40:22\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[17:40:22\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[17:40:22\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[17:40:22\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[17:40:22\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 7: [0.038, 0.063] done. Total: 38 / max 60 pairs. Trials 26214327 / max 100000000.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Running force diagnostic done.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Box: Density: 0.267 CPU - 0.062 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Box: Potential: 0.140 CPU - 0.052 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Box: Accelerations (long-range): 0.648 CPU - 0.155 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Box: Accelerations (short-range): 0.003 CPU - 0.001 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Box: Kick: 0.114 CPU - 0.029 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Box: Drift: 0.026 CPU - 0.013 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Box: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Box: Diagnostic: 6.346 CPU - 4.787 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Box: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Box: Total Evolution: 7.544 CPU - 5.098 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleP3M: Evolving with P3M done.\u001b[00m\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModulePMCOLA: Computing outputs...\u001b[00m\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Writing field to '/Users/hoellinger/WIP3M/forcediag8/nsteps20_final_density_spm.h5'...\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Writing field to '/Users/hoellinger/WIP3M/forcediag8/nsteps20_final_density_spm.h5' done.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Writing header in '/Users/hoellinger/WIP3M/forcediag8/nsteps20_spm_snapshot.gadget3'...\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Writing header in '/Users/hoellinger/WIP3M/forcediag8/nsteps20_spm_snapshot.gadget3' done.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Writing snapshot in '/Users/hoellinger/WIP3M/forcediag8/nsteps20_spm_snapshot.gadget3' (32768 particles)...\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing block: 'POS '...\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing block: 'POS ' done.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing block: 'VEL '...\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing block: 'VEL ' done.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing block: 'ID '...\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing block: 'ID ' done.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Writing snapshot in '/Users/hoellinger/WIP3M/forcediag8/nsteps20_spm_snapshot.gadget3' done.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModulePMCOLA: Computing outputs done.\u001b[00m\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]|PMCOLA output: 0.020 CPU - 0.005 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]|ModulePMCOLA: 7.574 CPU - 5.109 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]|Simbelmynë: 7.614 CPU - 5.123 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]|Everything done successfully, exiting.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;227mCOMMAND \u001b[00m]|\u001b[38;5;227msimbelmyne /Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/forcediag8/nsteps20_example_p3m.sbmy /Users/hoellinger/WIP3M/forcediag8/logs/nsteps20_p3m.txt\u001b[00m\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]|\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| .-~~-.--.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| : )\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| .~ ~ -.\\ /.- ~~ .\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| > `. .' <\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| ( .- -. )\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| `- -.-~ `- -' ~-.- -'\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| ( : ) _ _ .-: ___________________________________\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| ~--. : .--~ .-~ .-~ } \u001b[1;38;5;157mSIMBELMYNË\u001b[00m\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| ~-.-^-.-~ \\_ .~ .-~ .~ (c) Florent Leclercq 2012 - SBMY_YEAR \n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| \\ ' \\ '_ _ -~ ___________________________________\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| `.`. //\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| . - ~ ~-.__`.`-.//\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| .-~ . - ~ }~ ~ ~-.~-.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| .' .-~ .-~ :/~-.~-./:\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| /_~_ _ . - ~ ~-.~-._\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| ~-.<\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]|\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]|2025-05-20 17:40:26: Starting SIMBELMYNË, commit hash 860f12de187bb46026620362f000d9aa8bc3fb41\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]|Reading parameter file in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/forcediag8/nsteps20_example_p3m.sbmy'...\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]|Reading parameter file in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/forcediag8/nsteps20_example_p3m.sbmy' done.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleLPT: Initializing snapshot...\u001b[00m\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleLPT: Initializing snapshot done.\u001b[00m\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]|LPT snapshot initialization: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleLPT: Returning initial conditions...\u001b[00m\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Reading field in '/Users/hoellinger/WIP3M/forcediag8/initial_density.h5'...\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Reading field in '/Users/hoellinger/WIP3M/forcediag8/initial_density.h5' done.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleLPT: Returning initial conditions done.\u001b[00m\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]|LPT initial conditions: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleLPT: Evolving with Lagrangian perturbation theory (using 8 cores)...\u001b[00m\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Computing Lagrangian potentials, periodic boundary conditions (using 8 cores)...\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Computing Lagrangian potentials, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Computing Lagrangian displacement field (using 8 cores)...\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Computing Lagrangian displacement field (using 8 cores) done.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Changing velocities of particles...\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Changing velocities of particles done.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Displacing particles...\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Displacing particles done.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleLPT: Evolving with Lagrangian perturbation theory (using 8 cores) done.\u001b[00m\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]|LPT evolution: 0.041 CPU - 0.013 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]|ModuleLPT: 0.042 CPU - 0.013 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleP3M: Evolving with P3M...\u001b[00m\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Read timestepping configuration in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/forcediag8/nsteps20_ts_p3m.h5'...\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Read timestepping configuration in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/forcediag8/nsteps20_ts_p3m.h5' done.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|OutputForceDiagnostic: /Users/hoellinger/WIP3M/forcediag8/force_diagnostic_p3m.txt\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|OutputSnapshotsBase: particles_\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin P3M step 1/20, time_kick:0.050000, time_drift=0.050000.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End P3M step 1/20, time_kick:0.073750, time_drift=0.097500.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 1/20: Density: 0.013 CPU - 0.003 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 1/20: Potential: 0.007 CPU - 0.002 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 1/20: Accelerations (long-range): 0.032 CPU - 0.006 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 1/20: Accelerations (short-range): 0.262 CPU - 0.036 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 1/20: Kick: 0.006 CPU - 0.001 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 1/20: Drift: 0.001 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 1/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 1/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 1/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 1/20: Total Evolution: 0.322 CPU - 0.049 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin P3M step 2/20, time_kick:0.073750, time_drift=0.097500.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End P3M step 2/20, time_kick:0.121250, time_drift=0.145000.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 2/20: Density: 0.016 CPU - 0.003 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 2/20: Potential: 0.007 CPU - 0.002 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 2/20: Accelerations (long-range): 0.033 CPU - 0.006 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 2/20: Accelerations (short-range): 0.271 CPU - 0.039 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 2/20: Kick: 0.006 CPU - 0.001 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 2/20: Drift: 0.001 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 2/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 2/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 2/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 2/20: Total Evolution: 0.334 CPU - 0.052 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin P3M step 3/20, time_kick:0.121250, time_drift=0.145000.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End P3M step 3/20, time_kick:0.168750, time_drift=0.192500.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 3/20: Density: 0.018 CPU - 0.003 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 3/20: Potential: 0.007 CPU - 0.002 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 3/20: Accelerations (long-range): 0.033 CPU - 0.006 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 3/20: Accelerations (short-range): 0.267 CPU - 0.037 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 3/20: Kick: 0.006 CPU - 0.001 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 3/20: Drift: 0.002 CPU - 0.001 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 3/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 3/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 3/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 3/20: Total Evolution: 0.332 CPU - 0.051 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin P3M step 4/20, time_kick:0.168750, time_drift=0.192500.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End P3M step 4/20, time_kick:0.216250, time_drift=0.240000.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 4/20: Density: 0.019 CPU - 0.003 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 4/20: Potential: 0.007 CPU - 0.002 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 4/20: Accelerations (long-range): 0.033 CPU - 0.006 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 4/20: Accelerations (short-range): 0.272 CPU - 0.038 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 4/20: Kick: 0.006 CPU - 0.001 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 4/20: Drift: 0.002 CPU - 0.001 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 4/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 4/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 4/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 4/20: Total Evolution: 0.338 CPU - 0.051 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin P3M step 5/20, time_kick:0.216250, time_drift=0.240000.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End P3M step 5/20, time_kick:0.263750, time_drift=0.287500.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 5/20: Density: 0.017 CPU - 0.003 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 5/20: Potential: 0.007 CPU - 0.002 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 5/20: Accelerations (long-range): 0.032 CPU - 0.007 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 5/20: Accelerations (short-range): 0.266 CPU - 0.040 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 5/20: Kick: 0.006 CPU - 0.001 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 5/20: Drift: 0.001 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 5/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 5/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 5/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 5/20: Total Evolution: 0.329 CPU - 0.055 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin P3M step 6/20, time_kick:0.263750, time_drift=0.287500.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End P3M step 6/20, time_kick:0.311250, time_drift=0.335000.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 6/20: Density: 0.015 CPU - 0.003 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 6/20: Potential: 0.007 CPU - 0.002 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 6/20: Accelerations (long-range): 0.031 CPU - 0.007 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 6/20: Accelerations (short-range): 0.269 CPU - 0.043 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 6/20: Kick: 0.005 CPU - 0.001 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 6/20: Drift: 0.001 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 6/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 6/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 6/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 6/20: Total Evolution: 0.328 CPU - 0.057 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin P3M step 7/20, time_kick:0.311250, time_drift=0.335000.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End P3M step 7/20, time_kick:0.358750, time_drift=0.382500.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 7/20: Density: 0.011 CPU - 0.003 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 7/20: Potential: 0.006 CPU - 0.002 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 7/20: Accelerations (long-range): 0.033 CPU - 0.006 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 7/20: Accelerations (short-range): 0.284 CPU - 0.040 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 7/20: Kick: 0.006 CPU - 0.001 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 7/20: Drift: 0.001 CPU - 0.001 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 7/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 7/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 7/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 7/20: Total Evolution: 0.340 CPU - 0.053 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin P3M step 8/20, time_kick:0.358750, time_drift=0.382500.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End P3M step 8/20, time_kick:0.406250, time_drift=0.430000.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 8/20: Density: 0.019 CPU - 0.003 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 8/20: Potential: 0.007 CPU - 0.002 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 8/20: Accelerations (long-range): 0.032 CPU - 0.007 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 8/20: Accelerations (short-range): 0.263 CPU - 0.049 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 8/20: Kick: 0.006 CPU - 0.002 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 8/20: Drift: 0.002 CPU - 0.001 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 8/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 8/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 8/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 8/20: Total Evolution: 0.329 CPU - 0.064 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin P3M step 9/20, time_kick:0.406250, time_drift=0.430000.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End P3M step 9/20, time_kick:0.453750, time_drift=0.477500.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 9/20: Density: 0.016 CPU - 0.003 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 9/20: Potential: 0.007 CPU - 0.002 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 9/20: Accelerations (long-range): 0.033 CPU - 0.006 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 9/20: Accelerations (short-range): 0.294 CPU - 0.042 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 9/20: Kick: 0.006 CPU - 0.001 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 9/20: Drift: 0.001 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 9/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 9/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 9/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 9/20: Total Evolution: 0.358 CPU - 0.056 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin P3M step 10/20, time_kick:0.453750, time_drift=0.477500.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End P3M step 10/20, time_kick:0.501250, time_drift=0.525000.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 10/20: Density: 0.018 CPU - 0.003 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 10/20: Potential: 0.007 CPU - 0.002 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 10/20: Accelerations (long-range): 0.028 CPU - 0.007 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 10/20: Accelerations (short-range): 0.297 CPU - 0.045 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 10/20: Kick: 0.005 CPU - 0.002 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 10/20: Drift: 0.001 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 10/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 10/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 10/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 10/20: Total Evolution: 0.357 CPU - 0.059 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin P3M step 11/20, time_kick:0.501250, time_drift=0.525000.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End P3M step 11/20, time_kick:0.548750, time_drift=0.572500.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 11/20: Density: 0.011 CPU - 0.002 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 11/20: Potential: 0.006 CPU - 0.002 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 11/20: Accelerations (long-range): 0.031 CPU - 0.007 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 11/20: Accelerations (short-range): 0.271 CPU - 0.052 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 11/20: Kick: 0.006 CPU - 0.002 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 11/20: Drift: 0.001 CPU - 0.001 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 11/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 11/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 11/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 11/20: Total Evolution: 0.327 CPU - 0.066 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin P3M step 12/20, time_kick:0.548750, time_drift=0.572500.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End P3M step 12/20, time_kick:0.596250, time_drift=0.620000.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 12/20: Density: 0.013 CPU - 0.003 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 12/20: Potential: 0.007 CPU - 0.002 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 12/20: Accelerations (long-range): 0.033 CPU - 0.007 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 12/20: Accelerations (short-range): 0.314 CPU - 0.052 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 12/20: Kick: 0.006 CPU - 0.002 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 12/20: Drift: 0.002 CPU - 0.001 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 12/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 12/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 12/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 12/20: Total Evolution: 0.374 CPU - 0.066 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin P3M step 13/20, time_kick:0.596250, time_drift=0.620000.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End P3M step 13/20, time_kick:0.643750, time_drift=0.667500.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 13/20: Density: 0.016 CPU - 0.003 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 13/20: Potential: 0.007 CPU - 0.002 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 13/20: Accelerations (long-range): 0.032 CPU - 0.006 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 13/20: Accelerations (short-range): 0.325 CPU - 0.052 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 13/20: Kick: 0.006 CPU - 0.001 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 13/20: Drift: 0.001 CPU - 0.001 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 13/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 13/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 13/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 13/20: Total Evolution: 0.387 CPU - 0.066 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin P3M step 14/20, time_kick:0.643750, time_drift=0.667500.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End P3M step 14/20, time_kick:0.691250, time_drift=0.715000.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 14/20: Density: 0.014 CPU - 0.003 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 14/20: Potential: 0.007 CPU - 0.002 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 14/20: Accelerations (long-range): 0.032 CPU - 0.006 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 14/20: Accelerations (short-range): 0.333 CPU - 0.050 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 14/20: Kick: 0.006 CPU - 0.001 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 14/20: Drift: 0.001 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 14/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 14/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 14/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 14/20: Total Evolution: 0.393 CPU - 0.063 wallclock seconds used.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin P3M step 15/20, time_kick:0.691250, time_drift=0.715000.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[17:40:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End P3M step 15/20, time_kick:0.738750, time_drift=0.762500.\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 15/20: Density: 0.018 CPU - 0.003 wallclock seconds used.\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 15/20: Potential: 0.007 CPU - 0.002 wallclock seconds used.\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 15/20: Accelerations (long-range): 0.032 CPU - 0.006 wallclock seconds used.\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 15/20: Accelerations (short-range): 0.338 CPU - 0.057 wallclock seconds used.\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 15/20: Kick: 0.006 CPU - 0.001 wallclock seconds used.\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 15/20: Drift: 0.001 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 15/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 15/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 15/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 15/20: Total Evolution: 0.403 CPU - 0.070 wallclock seconds used.\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin P3M step 16/20, time_kick:0.738750, time_drift=0.762500.\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End P3M step 16/20, time_kick:0.786250, time_drift=0.810000.\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 16/20: Density: 0.017 CPU - 0.003 wallclock seconds used.\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 16/20: Potential: 0.007 CPU - 0.002 wallclock seconds used.\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 16/20: Accelerations (long-range): 0.032 CPU - 0.006 wallclock seconds used.\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 16/20: Accelerations (short-range): 0.343 CPU - 0.054 wallclock seconds used.\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 16/20: Kick: 0.006 CPU - 0.001 wallclock seconds used.\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 16/20: Drift: 0.001 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 16/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 16/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 16/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 16/20: Total Evolution: 0.406 CPU - 0.068 wallclock seconds used.\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin P3M step 17/20, time_kick:0.786250, time_drift=0.810000.\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End P3M step 17/20, time_kick:0.833750, time_drift=0.857500.\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 17/20: Density: 0.019 CPU - 0.003 wallclock seconds used.\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 17/20: Potential: 0.007 CPU - 0.002 wallclock seconds used.\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 17/20: Accelerations (long-range): 0.033 CPU - 0.006 wallclock seconds used.\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 17/20: Accelerations (short-range): 0.347 CPU - 0.058 wallclock seconds used.\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 17/20: Kick: 0.006 CPU - 0.001 wallclock seconds used.\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 17/20: Drift: 0.001 CPU - 0.001 wallclock seconds used.\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 17/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 17/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 17/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 17/20: Total Evolution: 0.413 CPU - 0.072 wallclock seconds used.\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin P3M step 18/20, time_kick:0.833750, time_drift=0.857500.\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End P3M step 18/20, time_kick:0.881250, time_drift=0.905000.\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 18/20: Density: 0.017 CPU - 0.003 wallclock seconds used.\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 18/20: Potential: 0.007 CPU - 0.002 wallclock seconds used.\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 18/20: Accelerations (long-range): 0.033 CPU - 0.006 wallclock seconds used.\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 18/20: Accelerations (short-range): 0.352 CPU - 0.058 wallclock seconds used.\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 18/20: Kick: 0.006 CPU - 0.001 wallclock seconds used.\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 18/20: Drift: 0.002 CPU - 0.001 wallclock seconds used.\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 18/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 18/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 18/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 18/20: Total Evolution: 0.416 CPU - 0.072 wallclock seconds used.\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin P3M step 19/20, time_kick:0.881250, time_drift=0.905000.\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End P3M step 19/20, time_kick:0.928750, time_drift=0.952500.\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 19/20: Density: 0.021 CPU - 0.003 wallclock seconds used.\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 19/20: Potential: 0.007 CPU - 0.002 wallclock seconds used.\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 19/20: Accelerations (long-range): 0.032 CPU - 0.006 wallclock seconds used.\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 19/20: Accelerations (short-range): 0.357 CPU - 0.066 wallclock seconds used.\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 19/20: Kick: 0.006 CPU - 0.001 wallclock seconds used.\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 19/20: Drift: 0.001 CPU - 0.001 wallclock seconds used.\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 19/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 19/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 19/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 19/20: Total Evolution: 0.424 CPU - 0.080 wallclock seconds used.\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin P3M step 20/20, time_kick:0.928750, time_drift=0.952500.\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End P3M step 20/20, time_kick:1.000000, time_drift=1.000000.\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 20/20: Density: 0.038 CPU - 0.006 wallclock seconds used.\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 20/20: Potential: 0.014 CPU - 0.005 wallclock seconds used.\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 20/20: Accelerations (long-range): 0.065 CPU - 0.013 wallclock seconds used.\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 20/20: Accelerations (short-range): 0.742 CPU - 0.130 wallclock seconds used.\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 20/20: Kick: 0.012 CPU - 0.003 wallclock seconds used.\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 20/20: Drift: 0.001 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 20/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 20/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 20/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 20/20: Total Evolution: 0.872 CPU - 0.157 wallclock seconds used.\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Running force diagnostic for 3 random particle pairs per distance bin...\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing total force on each particle (before removing any)...\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing total force on each particle (before removing any) done.\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 19: [19.050, 32.000]. Total: 1 / max 60 pairs...\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 19: [19.050, 32.000] done. Total: 1 / max 60 pairs. Trials 2 / max 100000000.\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 19: [19.050, 32.000]. Total: 2 / max 60 pairs...\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 19: [19.050, 32.000] done. Total: 2 / max 60 pairs. Trials 3 / max 100000000.\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 19: [19.050, 32.000]. Total: 3 / max 60 pairs...\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 19: [19.050, 32.000] done. Total: 3 / max 60 pairs. Trials 5 / max 100000000.\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 18: [11.341, 19.050]. Total: 4 / max 60 pairs...\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 18: [11.341, 19.050] done. Total: 4 / max 60 pairs. Trials 13 / max 100000000.\n",
|
|
"[17:40:27\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 17: [6.751, 11.341]. Total: 5 / max 60 pairs...\n",
|
|
"[17:40:28\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[17:40:28\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[17:40:28\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[17:40:28\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[17:40:28\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 17: [6.751, 11.341] done. Total: 5 / max 60 pairs. Trials 19 / max 100000000.\n",
|
|
"[17:40:28\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 18: [11.341, 19.050]. Total: 6 / max 60 pairs...\n",
|
|
"[17:40:28\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[17:40:28\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[17:40:28\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[17:40:28\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[17:40:28\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 18: [11.341, 19.050] done. Total: 6 / max 60 pairs. Trials 22 / max 100000000.\n",
|
|
"[17:40:28\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 18: [11.341, 19.050]. Total: 7 / max 60 pairs...\n",
|
|
"[17:40:28\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[17:40:28\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[17:40:28\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[17:40:28\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[17:40:28\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 18: [11.341, 19.050] done. Total: 7 / max 60 pairs. Trials 31 / max 100000000.\n",
|
|
"[17:40:28\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 17: [6.751, 11.341]. Total: 8 / max 60 pairs...\n",
|
|
"[17:40:28\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[17:40:28\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[17:40:28\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[17:40:28\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[17:40:28\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 17: [6.751, 11.341] done. Total: 8 / max 60 pairs. Trials 39 / max 100000000.\n",
|
|
"[17:40:28\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 17: [6.751, 11.341]. Total: 9 / max 60 pairs...\n",
|
|
"[17:40:28\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[17:40:28\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[17:40:28\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[17:40:28\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[17:40:28\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 17: [6.751, 11.341] done. Total: 9 / max 60 pairs. Trials 47 / max 100000000.\n",
|
|
"[17:40:28\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 16: [4.019, 6.751]. Total: 10 / max 60 pairs...\n",
|
|
"[17:40:28\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[17:40:28\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[17:40:28\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[17:40:28\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[17:40:28\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 16: [4.019, 6.751] done. Total: 10 / max 60 pairs. Trials 266 / max 100000000.\n",
|
|
"[17:40:28\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 13: [0.848, 1.424]. Total: 11 / max 60 pairs...\n",
|
|
"[17:40:28\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[17:40:28\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[17:40:28\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[17:40:28\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[17:40:28\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 13: [0.848, 1.424] done. Total: 11 / max 60 pairs. Trials 337 / max 100000000.\n",
|
|
"[17:40:28\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 16: [4.019, 6.751]. Total: 12 / max 60 pairs...\n",
|
|
"[17:40:28\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[17:40:28\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[17:40:28\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[17:40:28\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[17:40:28\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 16: [4.019, 6.751] done. Total: 12 / max 60 pairs. Trials 374 / max 100000000.\n",
|
|
"[17:40:28\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 16: [4.019, 6.751]. Total: 13 / max 60 pairs...\n",
|
|
"[17:40:28\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[17:40:28\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[17:40:28\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[17:40:28\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[17:40:28\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 16: [4.019, 6.751] done. Total: 13 / max 60 pairs. Trials 429 / max 100000000.\n",
|
|
"[17:40:28\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 15: [2.393, 4.019]. Total: 14 / max 60 pairs...\n",
|
|
"[17:40:28\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[17:40:28\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[17:40:28\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[17:40:28\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[17:40:28\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 15: [2.393, 4.019] done. Total: 14 / max 60 pairs. Trials 578 / max 100000000.\n",
|
|
"[17:40:28\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 15: [2.393, 4.019]. Total: 15 / max 60 pairs...\n",
|
|
"[17:40:28\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[17:40:28\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[17:40:28\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[17:40:28\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[17:40:28\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 15: [2.393, 4.019] done. Total: 15 / max 60 pairs. Trials 590 / max 100000000.\n",
|
|
"[17:40:28\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 14: [1.424, 2.393]. Total: 16 / max 60 pairs...\n",
|
|
"[17:40:28\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[17:40:28\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[17:40:28\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[17:40:28\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[17:40:28\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 14: [1.424, 2.393] done. Total: 16 / max 60 pairs. Trials 883 / max 100000000.\n",
|
|
"[17:40:28\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 14: [1.424, 2.393]. Total: 17 / max 60 pairs...\n",
|
|
"[17:40:29\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[17:40:29\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[17:40:29\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[17:40:29\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[17:40:29\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 14: [1.424, 2.393] done. Total: 17 / max 60 pairs. Trials 1015 / max 100000000.\n",
|
|
"[17:40:29\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 15: [2.393, 4.019]. Total: 18 / max 60 pairs...\n",
|
|
"[17:40:29\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[17:40:29\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[17:40:29\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[17:40:29\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[17:40:29\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 15: [2.393, 4.019] done. Total: 18 / max 60 pairs. Trials 1893 / max 100000000.\n",
|
|
"[17:40:29\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 13: [0.848, 1.424]. Total: 19 / max 60 pairs...\n",
|
|
"[17:40:29\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[17:40:29\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[17:40:29\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[17:40:29\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[17:40:29\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 13: [0.848, 1.424] done. Total: 19 / max 60 pairs. Trials 2224 / max 100000000.\n",
|
|
"[17:40:29\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 12: [0.505, 0.848]. Total: 20 / max 60 pairs...\n",
|
|
"[17:40:29\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[17:40:29\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[17:40:29\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[17:40:29\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[17:40:29\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 12: [0.505, 0.848] done. Total: 20 / max 60 pairs. Trials 4095 / max 100000000.\n",
|
|
"[17:40:29\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 14: [1.424, 2.393]. Total: 21 / max 60 pairs...\n",
|
|
"[17:40:29\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[17:40:29\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[17:40:29\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[17:40:29\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[17:40:29\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 14: [1.424, 2.393] done. Total: 21 / max 60 pairs. Trials 5689 / max 100000000.\n",
|
|
"[17:40:29\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 12: [0.505, 0.848]. Total: 22 / max 60 pairs...\n",
|
|
"[17:40:29\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[17:40:29\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[17:40:29\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[17:40:29\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[17:40:29\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 12: [0.505, 0.848] done. Total: 22 / max 60 pairs. Trials 6556 / max 100000000.\n",
|
|
"[17:40:29\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 13: [0.848, 1.424]. Total: 23 / max 60 pairs...\n",
|
|
"[17:40:29\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[17:40:29\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[17:40:29\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[17:40:29\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[17:40:29\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 13: [0.848, 1.424] done. Total: 23 / max 60 pairs. Trials 11865 / max 100000000.\n",
|
|
"[17:40:29\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 10: [0.179, 0.300]. Total: 24 / max 60 pairs...\n",
|
|
"[17:40:29\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[17:40:29\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[17:40:29\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[17:40:29\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[17:40:29\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 10: [0.179, 0.300] done. Total: 24 / max 60 pairs. Trials 26377 / max 100000000.\n",
|
|
"[17:40:29\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 12: [0.505, 0.848]. Total: 25 / max 60 pairs...\n",
|
|
"[17:40:29\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[17:40:29\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[17:40:29\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[17:40:29\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[17:40:29\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 12: [0.505, 0.848] done. Total: 25 / max 60 pairs. Trials 28202 / max 100000000.\n",
|
|
"[17:40:29\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 11: [0.300, 0.505]. Total: 26 / max 60 pairs...\n",
|
|
"[17:40:29\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[17:40:29\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[17:40:29\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[17:40:29\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[17:40:29\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 11: [0.300, 0.505] done. Total: 26 / max 60 pairs. Trials 46788 / max 100000000.\n",
|
|
"[17:40:29\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 11: [0.300, 0.505]. Total: 27 / max 60 pairs...\n",
|
|
"[17:40:29\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[17:40:29\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[17:40:29\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[17:40:29\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[17:40:29\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 11: [0.300, 0.505] done. Total: 27 / max 60 pairs. Trials 62452 / max 100000000.\n",
|
|
"[17:40:29\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 11: [0.300, 0.505]. Total: 28 / max 60 pairs...\n",
|
|
"[17:40:29\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[17:40:29\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[17:40:29\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[17:40:29\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[17:40:29\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 11: [0.300, 0.505] done. Total: 28 / max 60 pairs. Trials 108460 / max 100000000.\n",
|
|
"[17:40:30\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 9: [0.106, 0.179]. Total: 29 / max 60 pairs...\n",
|
|
"[17:40:30\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[17:40:30\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[17:40:30\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[17:40:30\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[17:40:30\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 9: [0.106, 0.179] done. Total: 29 / max 60 pairs. Trials 238614 / max 100000000.\n",
|
|
"[17:40:30\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 10: [0.179, 0.300]. Total: 30 / max 60 pairs...\n",
|
|
"[17:40:30\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[17:40:30\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[17:40:30\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[17:40:30\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[17:40:30\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 10: [0.179, 0.300] done. Total: 30 / max 60 pairs. Trials 445646 / max 100000000.\n",
|
|
"[17:40:30\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 9: [0.106, 0.179]. Total: 31 / max 60 pairs...\n",
|
|
"[17:40:30\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[17:40:30\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[17:40:30\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[17:40:30\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[17:40:30\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 9: [0.106, 0.179] done. Total: 31 / max 60 pairs. Trials 496503 / max 100000000.\n",
|
|
"[17:40:30\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 9: [0.106, 0.179]. Total: 32 / max 60 pairs...\n",
|
|
"[17:40:30\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[17:40:30\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[17:40:30\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[17:40:30\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[17:40:30\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 9: [0.106, 0.179] done. Total: 32 / max 60 pairs. Trials 535938 / max 100000000.\n",
|
|
"[17:40:30\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 10: [0.179, 0.300]. Total: 33 / max 60 pairs...\n",
|
|
"[17:40:30\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[17:40:30\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[17:40:30\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[17:40:30\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[17:40:30\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 10: [0.179, 0.300] done. Total: 33 / max 60 pairs. Trials 670645 / max 100000000.\n",
|
|
"[17:40:30\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 8: [0.063, 0.106]. Total: 34 / max 60 pairs...\n",
|
|
"[17:40:30\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[17:40:30\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[17:40:30\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[17:40:30\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[17:40:30\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 8: [0.063, 0.106] done. Total: 34 / max 60 pairs. Trials 872549 / max 100000000.\n",
|
|
"[17:40:30\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 8: [0.063, 0.106]. Total: 35 / max 60 pairs...\n",
|
|
"[17:40:30\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[17:40:30\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[17:40:30\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[17:40:30\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[17:40:30\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 8: [0.063, 0.106] done. Total: 35 / max 60 pairs. Trials 3895591 / max 100000000.\n",
|
|
"[17:40:30\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 7: [0.038, 0.063]. Total: 36 / max 60 pairs...\n",
|
|
"[17:40:30\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[17:40:30\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[17:40:30\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[17:40:30\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[17:40:30\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 7: [0.038, 0.063] done. Total: 36 / max 60 pairs. Trials 4613268 / max 100000000.\n",
|
|
"[17:40:30\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 8: [0.063, 0.106]. Total: 37 / max 60 pairs...\n",
|
|
"[17:40:30\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[17:40:30\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[17:40:30\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[17:40:30\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[17:40:30\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 8: [0.063, 0.106] done. Total: 37 / max 60 pairs. Trials 5477182 / max 100000000.\n",
|
|
"[17:40:31\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 7: [0.038, 0.063]. Total: 38 / max 60 pairs...\n",
|
|
"[17:40:31\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[17:40:31\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[17:40:31\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[17:40:31\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[17:40:31\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 7: [0.038, 0.063] done. Total: 38 / max 60 pairs. Trials 8780737 / max 100000000.\n",
|
|
"[17:40:31\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 7: [0.038, 0.063]. Total: 39 / max 60 pairs...\n",
|
|
"[17:40:31\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[17:40:31\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[17:40:31\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[17:40:31\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[17:40:31\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 7: [0.038, 0.063] done. Total: 39 / max 60 pairs. Trials 10189345 / max 100000000.\n",
|
|
"[17:40:31\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 6: [0.022, 0.038]. Total: 40 / max 60 pairs...\n",
|
|
"[17:40:31\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[17:40:31\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[17:40:31\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[17:40:31\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[17:40:31\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 6: [0.022, 0.038] done. Total: 40 / max 60 pairs. Trials 11768309 / max 100000000.\n",
|
|
"[17:40:31\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 6: [0.022, 0.038]. Total: 41 / max 60 pairs...\n",
|
|
"[17:40:31\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[17:40:31\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[17:40:31\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[17:40:31\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[17:40:31\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 6: [0.022, 0.038] done. Total: 41 / max 60 pairs. Trials 21421619 / max 100000000.\n",
|
|
"[17:40:32\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 4: [0.008, 0.013]. Total: 42 / max 60 pairs...\n",
|
|
"[17:40:32\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[17:40:32\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[17:40:32\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[17:40:32\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[17:40:32\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 4: [0.008, 0.013] done. Total: 42 / max 60 pairs. Trials 24094118 / max 100000000.\n",
|
|
"[17:40:33\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 6: [0.022, 0.038]. Total: 43 / max 60 pairs...\n",
|
|
"[17:40:33\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[17:40:33\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[17:40:33\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[17:40:33\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[17:40:33\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 6: [0.022, 0.038] done. Total: 43 / max 60 pairs. Trials 58033996 / max 100000000.\n",
|
|
"[17:40:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Running force diagnostic done.\n",
|
|
"[17:40:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Box: Density: 0.344 CPU - 0.064 wallclock seconds used.\n",
|
|
"[17:40:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Box: Potential: 0.145 CPU - 0.047 wallclock seconds used.\n",
|
|
"[17:40:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Box: Accelerations (long-range): 0.674 CPU - 0.137 wallclock seconds used.\n",
|
|
"[17:40:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Box: Accelerations (short-range): 6.468 CPU - 1.041 wallclock seconds used.\n",
|
|
"[17:40:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Box: Kick: 0.124 CPU - 0.029 wallclock seconds used.\n",
|
|
"[17:40:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Box: Drift: 0.027 CPU - 0.010 wallclock seconds used.\n",
|
|
"[17:40:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Box: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Box: Diagnostic: 22.898 CPU - 7.994 wallclock seconds used.\n",
|
|
"[17:40:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Box: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[17:40:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Box: Total Evolution: 30.680 CPU - 9.321 wallclock seconds used.\n",
|
|
"[17:40:35\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleP3M: Evolving with P3M done.\u001b[00m\n",
|
|
"[17:40:35\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModulePMCOLA: Computing outputs...\u001b[00m\n",
|
|
"[17:40:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[17:40:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[17:40:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Writing field to '/Users/hoellinger/WIP3M/forcediag8/nsteps20_final_density_p3m.h5'...\n",
|
|
"[17:40:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Writing field to '/Users/hoellinger/WIP3M/forcediag8/nsteps20_final_density_p3m.h5' done.\n",
|
|
"[17:40:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Writing header in '/Users/hoellinger/WIP3M/forcediag8/nsteps20_p3m_snapshot.gadget3'...\n",
|
|
"[17:40:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Writing header in '/Users/hoellinger/WIP3M/forcediag8/nsteps20_p3m_snapshot.gadget3' done.\n",
|
|
"[17:40:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Writing snapshot in '/Users/hoellinger/WIP3M/forcediag8/nsteps20_p3m_snapshot.gadget3' (32768 particles)...\n",
|
|
"[17:40:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing block: 'POS '...\n",
|
|
"[17:40:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing block: 'POS ' done.\n",
|
|
"[17:40:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing block: 'VEL '...\n",
|
|
"[17:40:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing block: 'VEL ' done.\n",
|
|
"[17:40:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing block: 'ID '...\n",
|
|
"[17:40:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing block: 'ID ' done.\n",
|
|
"[17:40:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Writing snapshot in '/Users/hoellinger/WIP3M/forcediag8/nsteps20_p3m_snapshot.gadget3' done.\n",
|
|
"[17:40:35\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModulePMCOLA: Computing outputs done.\u001b[00m\n",
|
|
"[17:40:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]|PMCOLA output: 0.019 CPU - 0.005 wallclock seconds used.\n",
|
|
"[17:40:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]|ModulePMCOLA: 30.710 CPU - 9.333 wallclock seconds used.\n",
|
|
"[17:40:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]|Simbelmynë: 30.752 CPU - 9.347 wallclock seconds used.\n",
|
|
"[17:40:35\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]|Everything done successfully, exiting.\n"
|
|
]
|
|
},
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"0"
|
|
]
|
|
},
|
|
"execution_count": 10,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"pySbmy(f\"{wd}example_lpt.sbmy\", f\"{logdir}lpt.txt\")\n",
|
|
"pySbmy(f\"{wd}{file_ext}_example_spm.sbmy\", f\"{logdir}{file_ext}_spm.txt\")\n",
|
|
"pySbmy(f\"{wd}{file_ext}_example_p3m.sbmy\", f\"{logdir}{file_ext}_p3m.txt\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "acd604ca",
|
|
"metadata": {},
|
|
"source": [
|
|
"The logs can be monitored in the corresponding files in the `logdir` directory."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "3060305c",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Plot results"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "fafb43e2",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Plot the evolved dark matter density fields"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 11,
|
|
"id": "73d9e5cd",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"[17:41:08|\u001b[38;5;113mSTATUS \u001b[00m]|Read field in data file '/Users/hoellinger/WIP3M/forcediag8/nsteps20_final_density_spm.h5'...\n",
|
|
"[17:41:08|\u001b[38;5;246mDIAGNOSTIC\u001b[00m]==|\u001b[38;5;246mranges=[np.float64(0.0), np.float64(64.0), np.float64(0.0), np.float64(64.0), np.float64(0.0), np.float64(64.0), np.int32(32), np.int32(32), np.int32(32)]\u001b[00m\n",
|
|
"[17:41:08|\u001b[38;5;113mSTATUS \u001b[00m]|Read field in data file '/Users/hoellinger/WIP3M/forcediag8/nsteps20_final_density_spm.h5' done.\n",
|
|
"[17:41:08|\u001b[38;5;113mSTATUS \u001b[00m]|Read field in data file '/Users/hoellinger/WIP3M/forcediag8/nsteps20_final_density_p3m.h5'...\n",
|
|
"[17:41:08|\u001b[38;5;246mDIAGNOSTIC\u001b[00m]==|\u001b[38;5;246mranges=[np.float64(0.0), np.float64(64.0), np.float64(0.0), np.float64(64.0), np.float64(0.0), np.float64(64.0), np.int32(32), np.int32(32), np.int32(32)]\u001b[00m\n",
|
|
"[17:41:08|\u001b[38;5;113mSTATUS \u001b[00m]|Read field in data file '/Users/hoellinger/WIP3M/forcediag8/nsteps20_final_density_p3m.h5' done.\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"slice_ijk = (N // 2, slice(None), slice(None))\n",
|
|
"DELTA_SPM = read_field(simdir + f\"nsteps{nsteps_spm}_final_density_spm.h5\").data[slice_ijk]\n",
|
|
"DELTA_P3M = read_field(simdir + f\"nsteps{nsteps_p3m}_final_density_p3m.h5\").data[slice_ijk]\n",
|
|
"diff_p3m_spm = DELTA_P3M - DELTA_SPM"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 12,
|
|
"id": "cd6e5652",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"max(DELTA_P3M) = 13.530181884765625, min(DELTA_P3M) = -1.0\n",
|
|
"max(diff) = 9.85678768157959, min(diff) = -6.458697319030762\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"print(f\"max(DELTA_P3M) = {np.max(DELTA_P3M)}, min(DELTA_P3M) = {np.min(DELTA_P3M)}\")\n",
|
|
"print(f\"max(diff) = {np.max(diff_p3m_spm)}, min(diff) = {np.min(diff_p3m_spm)}\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 13,
|
|
"id": "c9da7aa9",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAACUcAAARrCAYAAACq3IXEAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAuIwAALiMBeKU/dgABAABJREFUeJzs/Qm4XOd5GGieu2DfAW4iKYkASG2OZRKL5E68RAJgqZ3EiSWA1HSedKbbBthiL9OdhIChebo76Z4JCcryTJ5eIpDWPJnJJgKQmXiyOAJA2RPHdkIAoixbKy9AShQpLrgX+3qXeb5SH6hQqLt/davuue/7PMWLe1n11amqU//5zvm///+7RkZGRgoAAAAAAAAAAICK6W73BgAAAAAAAAAAALSC4igAAAAAAAAAAKCSFEcBAAAAAAAAAACVpDgKAAAAAAAAAACoJMVRAAAAAAAAAABAJSmOAgAAAAAAAAAAKklxFAAAAAAAAAAAUEmKowAAAAAAAAAAgEpSHAUAAAAAAAAAAFSS4igAAAAAAAAAAKCSFEcBAAAAAAAAAACVpDgKAAAAAAAAAACoJMVRAAAAAAAAAABAJSmOAgAAAAAAAAAAKklxFAAAAAAAAAAAUEmKowAAAAAAAAAAgEpSHAUAAAAAAAAAAFSS4igAAAAAAAAAAKCSFEcBAAAAAAAAAACVpDgKAAAAAAAAAACoJMVRAAAAAAAAAABAJSmOAgAAAAAAAAAAKklxFAAAAAAAAAAAUEmKowAAAAAAAAAAgEpSHAUAAAAAAAAAAFSS4igAAAAAAAAAAKCSetu9AQAAAAAAAMDsdPLkyWL//v3FiRMnimPHjhVnzpy58f9WrlxZbNq0qVi3bl2xcePG2r83bNjQ1u0FWkNbAHSyrpGRkZF2bwQAAAAAAAAwe0Thw86dO4tDhw5N+rFbt24tduzYUezatasl2wbMHG0BMBsojgIAAAAAAAAmNUNMzP4SRRExE0zMABM/4/f4f0eOHJlQnCiIiJlmgNlJWwDMFt3t3gCAetu2bSu6urpaflu1alWxfv36WsIWFelPP/10LUnL9uijj05qu2J7Ok28N5N9fwEAmHu5b6eSkwMAQGvOZ6L4IYoZ+vr6ioMHDxb79u2r/X748OEi5maI32MprbHE0lvA7KUtAGYLxVHAnFRWrMe6xzHNZ3SYRIdRdBzFv+vXQZ5J5fZ0kj179rR7EwAAqGDu26nk5AAAMLZywEUUP4y1FNbu3buLgYGB2s+xltQCZidtATCbWFYP6CjRMdPf33/Tv6PKPBKsZqLSPCrON23aNG7VeX3M8mdUrceUns06hLZv316LHdN/Zr6eeM6nnnrqxvY3PnckgHGfThDvTVT9xzSo0UnUKLY1OtTiPap//6fzngFURXlhINrP+Hd5/In2MtrJuEUbG23pTLebsU3PPvvsjW2LW/12bd68uXYc1J5Da1Ut952IeO7YhtiWGBUa7U+5PWU7FK8vZm96+OGHJ/Q6J/KccnKAuUteDpAvBltEexrFDhMVbW8U/def70SOe/z48RZtJdBq2gJgNlEcBcwKkSiVnRf1xqtGn6i4+BSdQc06orKeo168lnhNcYGrvABWLxLJjI6g6YplV+o7sepJVgGai9lGoo2fzJJV0dkRj8k+3jSKtjyep+xcj7a8LEII0a5HsUL9/4/jo5FbMLOqlvuW7U88Z2NOOZ5of+L9aEU7JCcHqDZ5OUBrRF4as9BONRct89rItbVrMHtpC4DZRnEUMCvEhayoQG8Uo7kzk6Z4nuh8aByRnT1yvEway9F/jZ1fccFrrOlFZ0K5jfG6m3VktarjDGC2ajyGxLGjnOlj9erVN+4Tt3L2lkZxMWDv3r0tOQbEtpXLRMW2RTs+2gj02MaYhaTcxmjv4/7AzKhS7tvYnkS7U7aP8bO++KhsI6O9aVzWbrx2ayrk5ADVJC8HaK1oX6OYM9rKycwWA1SLtgCYdaI4CqDTDQwMRCHnLbfjx4+35Pm2b99+y3Nt2LAh9TkiZjxPX1/fLc+1bt26kXbbv3//yMqVK2v/3rp16y3bePDgwXZvIkDHOHz48I32sWzbJ3Js2717d9PjW7S78f8zRJw4rpSxo32fqH379t10HMzaJmBu5L6RL9a3jZPZ/rhvfdtV3qK9zSQnB6gWeTnAzLa1E2lngWrSFgCzTXe7i7MAJmKml7M4ePDgLaPyowo+Rhpmi9GBMXqxcWRg4wj+mRYjER9++OG2bgPAbBCjuOP4EMeqGHkex5CJzGwS949ZQPr6+m65f8Rcu3btpJYAGW3GkRjBVcaZ7AwjMVI+trF+NBjQelXIfWPJvpgZo75tbMx5x1JOy9/YPsY2Nc4qlUFODjD7ycsBZkY5C19oRW4OzA7aAmC2URwFMIq4iNbYMRUXxfbs2ZP+XDFFeqN2TpNedgQ12y4Abm4vyw6Yo0ePTmm5q+iAiQKAxk756ECJ2PFzqqIwoeyAiWWjprL0UnTElK+rfL1A9WTmvmUeGe3bqVOnprwUYNm5PVbblklODjB7ycsBZk59IekTTzzR1m0B2kdbAMw2iqMARhEX1Pbu3XvL35966qn0EeTNRoMfOHCgaJeo8m82eh6AWzs5wmRnRGlUduI0FiZEp8eWLVumPGtLFDaUnnnmmSlvX31xQMSM2EC1ZOa+ZdsYHczTnQUrctJmHcit6BCWkwPMXvJygJlT30ZG4ai2COYmbQEw2yiOAhjDaCP5du7cmZ5ExsjBepFM1l88m0lxsc0IdYCxlQUD9SO4p3ssiM6cRvEck724EMeQ+tleYhunU6AQnfP1x6mIPZ2R80B1c98o6IkO5Mgns5YHLDu868VzZOfKcnKA2UleLi8HZl59e6stgrlLWwDMJoqjAMYQF6yaXViLC2LZS3l0yjIe5WubyhTvAHNJTBcdx4l9+/alxYxjTrPjzmQvLsS21d8/o3O9fkaZiG26bKiejNy3zF+j3Vq1alXKEnijdXS3IleWkwPMPvJyeTkw8+oHMDQWggJzh7YAmE0URwGMY7Tp2LM7SeKiW+PowRh5P9OV9vG6mm0LAD8WI8ajfW62BNV0NbuIEM81maWdYvR8/ejyuGUcD+uPDabKhmqabu577NixG+1W3CKfzVgCr1lumr3UdZCTA8wu8nJ5OdAejUtSNy4hCswN2gJgNlEcBTCOzZs3N/17dJK0OpEMk7noliGer9nSJQDcWiTQihk9RusMn2hhQmPnSOMSUdPdtvqOIR0xUD3TzX2bFRHFDEjTLWRq1pmcPZNrSU4OMHvIy+XlQHtE+9g4sEL+CnOPtgCYTRRHAYxjtFF9reiMafcyHuWoeMt3AIwu2sno5G8csZ1ptGWtJjJzSeNxY7RCh6lojHXw4MG02EC1c9/+/v5itpCTA8wO8vIfk5cD7dA4a1+0jYoiYO7RFgCzheIogHGMdYEte3mNuKDX2CEVF91aNSq+2YW7zJGMAFVUPzV0nOhHJ3r20k6jLUFVLlc1XgdRvYylO0qNI8HivZjppaaAzs59R2tzNm3aVGRrVUe4nBxgdpCX/5i8HGiHyFmbLUndihUXgM6lLQBmC8VRALNgpPpMJJFxES0upjV7fgB+rOwcj86OaJ9jCYuNGzemttVTnbmlvoNotI6T6WhW3NDsOYG5q9nMFfv27Zt2IVOz9i+zk7mRnByg88nLx39OgFZrNttpFKzO1MACoDNoC4DZQHEUwDjGGnnXitHqzZLImVjG48CBA7XX02zKeAB+7PTp003/vmfPnrTnWL16ddO/jzca/PDhwy09TjWL98ILL6Q+BzC7c9/o+B0YGKjlr3Hr6+srdu/e3ZLtasVsVCU5OUDnk5ffTF4OdMJyWuPNvAdUk7YAmA0URwGMo7+/v+nfWzVSvVlnSFTXZ08N36yzp1knEAATkzkSarTOk9E6gEZb3qMVx6rGbWv18QmYfblvtBORV8Ytox0arZ2JUaitIicHmL3k5QAzJ9qiZoMhoi1uZb4OdBZtATAbKI4CGMdoF5cyp0Nv1CxZbOVI9bKjx/IdAONbv359079njgYfbST6mjVrJnXMGm2k+3Q0duw0dvwAs1s7ct/xPPvss7f8bSZmV5KTA3Q2ebm8HOjsGWPKJU+BuUFbAHQ6xVEA4xhtWvJWdlo0Gy0eS2y0SnTyxEW1Vs2GBVAlDz/8cNMOl8yZPkYb7T5WO92soKEVy782duxEh9F4y4oAs0c7ct/xNLuIum/fvpY/r5wcoLPJy+XlQGeINm779u2jnkdkzugHdC5tAdDpFEcBExIXV6K6OxKYjRs31kbnrVq1qujq6qrd4vcYWT1a9Xc87qmnnipmoyNHjjS9CNbqkeqNSWT5GbRCfG5zYYR67IOx/05knx1vn9izZ8+N70L99yDW0I7ncUESqn2if/To0RvHgfg9OukzO+qn0gnT7DGtGKHerGPHKHWojnblvmNtT2NeFdszU0vPycnzycmBLPJyeTnQXtHeRc4V+ddYObIltaDatAXAbKE4Chg3qYkL9FEIFYlL/P7II4/ULjQdPHiwOH78eHH48OHaRem40BM/44J0fSFU/Dsudvf19RWzTSRyzS6oz8RI9WYdI61YxqPscJqpDqZ2iNcXiXnsn7EPx4XT/v7+GwV/8f9GW0KmXuzL8V0oO1siVrmkS1wYjd/LTpq4X/wEqimWl4rj38jISDEwMFDs3r17RmZuGWtZq2jXZmKEejNGfkE1tDP3HU2zfCrOQ2aKnDyPnBxoBXn5zeTlwEy1NZGLNeZ2o80YEzleqwYYAO2jLQBmG8VRwKiioCmSmlg6IjpE4kJTXHCKC02R3ESSExeD4mdcxI9OgrgQFT8jEYqkKBKd2Xwx+oknnrjlb/HaR0vuMsX72njxrNnI+emKzqVmz1UlMZo8EvPYj2Mfjf04fpafY/y/8j6jJe1lgh8iThT7RYyyQLD8vf4CaXTWxPcAIGPmlvFmbZmpIuRmo97NzAHV0M7cd7TzkcZimTjXGKtDOpucPI+cHJiN5OUAN7cxZVF72T5Gv0CZ20VOO1o+O5v7CICbaQuA2UpxFDBqghLJTYy8jQvNkxl5F0lQPCam8p7N02TGRfTGzph4P5555pkZ24ZmI8ejWC1T1ZfvKEcsROdJ437cOAtCs06TeH8aO3IiTrMp9CPhj32//v/FyUGV318gXxx7mnVqjNeWNHvMmjVriplw+vTpGXkeoNq5b73IvRovmkZhVDtmVpKTT5+cHJiN5OUAxU351Nq1a28shxw5VxSDRo5eXwSxd+/epo+PPG4qSykDnUVbAMxmiqOAW8RsT+WyeFHl3eyC83hipO7Ro0eL2apchqFeWSg2k6O5W72MRzmFabtmA5ipta7js2tW4Ne4b5f3bywSLDtYJlok2LjvRLJvantgopq189EOjddWz1Q70+w4qI2D2a1Tct/GqfnrO5dj5Gm7lpyTk0+PnByYreTlAD/Oo+rz87j2f+rUqab9BmPl7K1YnhqYOdoCYLZTHAXcYufOnTeSl6kURpUiMZrMjFOdluA1vpZ2dA7F+9/4GcTIxayLXe0afT9TyiR7rKlaGz/TZ5999sZ+UHbiRII/meVbHn744Vv+1jgiHmA0zWYjGW20Vb3+/v6iXSzfAbNXJ+W+5fbUL60WSxfVL73WDnLy6ZGTA7OVvBzgRwMF6gcLRF4+1rlC/H20PoHMHBqYWdoCoAoURwG3jFouL6RkLIk3kYtGnSISsugYahwZHglcuzqHWjlSPT7nmCVgNi99OJ5yetaxOpsaLxzGfhC3cnR6zJ422c++2f3LtbcBxmu3Gtul0Wba6CTt7AACZnfuGxdEy5mr1q9fX9ueaAejCCbysKnkYq0gJ586OTkwG8nLAX5U3F6//FXk6DGj63jGWn60nDUVmD20BUBV9LZ7A4DOUo7QDZs2bZp2vLggHaO9O/UidFxwj22Li+2N2xjbHSOLJzM6uRWiE6HZkhDTHfUcMcrPp8qFfpPphClt2bKl9jM6Bqc6e1q8t/XxjYSgE0RbEm1d7Juz9aL56tWra9/LeC1VbL+azaphqmmgKrlvWQQVedFoeViZ+05nBttWkJNPjZwcmpOXdz55OTDXlTN41udVR48endBj4/gwWp9A9D90eqEp8GPaAqBKFEcBt3SYZItR0K0qjoolAOOC3ETFRcfy4mOzi/CR2MXyC53UIdOswKwcYT6dC5BVX76jLPQbaxT+sWPHmv493t94f6azDzTbv+JvnTDzAXNT7H/1J7Kz+XXUL7VUJXHsaWw74iLBRF+nJTSg+mZ77lteGG22LdG2xy0uvMYtirRilGlsXyfkT3LyqZGTw63k5Z1PXg7MdZHjNs74ErPETCaHisc36xNoRf8D0BraAqBqFEcBN6kfsRgXqTMucGXMQDWaqSZQkbzFRfby5+bNm2uvtd2zRE0mgYwkdKqfT9n5NNa0prNd+X6N9R6Ntv/EY1rRSaUThk7o1I22fbZfrI/XUrX2K9rkxk6ychYXgKrkvvHc47VrcYyK4qgnnnii1tbHbfv27cUzzzzT9lxKTj55cnK4lby8s8nLgbkujk2Nhe2Rj082543HjNXWNiuAj+LU7ALi8jwo+ihiWfF4HbMhH4z3odksho3itZw6dWpGXlMsgz6RmVjjmGlGoNmvnW1Bq3RyG+M7DzNDcRRwkxiJXl6ci1G6GcVRrex0qfpI67ESyOg0muqU7vG4+Fw6ZXasbNHBEvvxePvvCy+80PTv050q36gHOlUso0RnarzYEO2zzwuYi7lvXOCLi2rxOssZaGNptri1+4KbnHxy5OQwOnle55KXA3NdzFbbWLw71QLRyHWb5WSjFURER3yZO8Yg7rGW4y6LEcp/16ufPbfs2I/tiNy9FUt5x3NE7hrPUV/8XA5Oidf0yCOPTKqfJO47kfci/hYDS1pdxBvv3WhFEuXrLGc5rur5zVzTzragVTq5jfGdhxkyAlBn69atI9E0lLeDBw+mxI1Yu3btmnaMxtv+/ftHZqvY/u3bt0/4/vH+Nb7+qX4+K1eunNR717hfZO4brbBv374J7R/xPjS+rt27d0/7+eN5G+OuW7du2nGBampsM6Jt6uvrm3ScaGca255oD7NFO9n4PBs2bEh/Hpjrqpb7TlVjHhq/Z5KTt46cHJht5OXAXHf48OFb2pXpXNNv1k5NNofNaOuOHz9ei9OYd04354xjRJxLlMeMyNcjZhxPot0v/1/9uUxsy3Tz63j9jcerVotjW+PradXxjfbrxLagVTq5jfGdh3zdM1WEBcwOMe1j44i5stp5uqOsG2MzvdGLUx1NHaPvo7r84YcfLqqqHNU51ij1eA+aVd7v3bt32s9//PjxW/7WqUs2Au3VbDmlWKLJiBuAH+d19W1i5LIx2rNdS1HJySdOTg7MJvJygB8tI91oOrOTxHLe09UsLyxnc5moyAHjdcRSVPW5aSxjtXHjximdW8RjyyWn4ngxMDBQy3/jeWLWmJjxtvx7OftvnAPE8zU7p5iIchbdmIWqfiab2P7G5b8zxYw4MZNNPO9o20S1dGJb0Cqd2sYE33nIZ1k94CbldI+NiVBc8I8kYaz1gccSJwJMT7lWcX0iVXaqTGZ94XK5xNmwtvpUxT483hIlzZLHcn3o6WoWW3Eg0Exj2xAX0jKWtJ1p5TTKAK0Q5xJxQbEUHRBbtmxpWvzSanLyiZOTA7OJvByY62IZ68YllKabr4722MnEbHbfqW5TPC7a92jzy1wxigDiXCPOLSYaN/LcKHqYyLLnEbMcTFEOQo/3unzOqYrnjW1oPL9ohdm2vHvsx6MtBzYbjuNZ50NVawtapRPbmGZ85yGH4ijgJnFwjsrf+oNseQAvRzTEQTEO7lW/mN+JGhOg8qRqMtXakdxWvVgt9s3xEsNyJHvj46arfp3p7NitFEWQsd3N3hegNeJYWt9eTLcDxjEZqKoosIn2sb7YJc5PykEcM01OPjFy8smTk0N7yMsBiuKJJ56Y0OwxGQWb7S7kjDx81apVN36PY8DOnTsnlJ/HeUicC8R9JzOQPGaVqV+hI+JEkdVkZ+MpjzHx2dSfk8T5RascOHCgVtgR29zpytm8Zrt2FmnPpbagE9uYRr7zkMuyesAtIiEfK7GPJD4KpeLgHslmHJTjQNyupS3mkmZJ6GQ6hOKzi2RqqjOAVUmrRpI3ixvveadPxV+Fk0aYTeJktr69yLjo0eyCwunTp4tszY73OoCAVmuc3bbMbdtxsU5OnkdOfjM5Ocw8eTnAjwp1GvPqjHy1U2eLiedvnBUl+jcmUmxQFo5E/0jMBjPR85F4zsbjS+OAi8mIvLZxyej64qss8Z7Ec3V6Hl21fLpdRSlzrS3oxDZmNL7zkENxFNBUVDBPZNrESDabFUu1cr3buaxZAjSZaWLjc3344YeLua6VI8mfffbZlsRttVhDGpgZcZJZ38mfNRqsnRcUqjrSC+gco81aG6MvZ5qcPIec/FZycphZ8nKA9uROndBWlatkjDdjTqPG2Wxjue+JajyHaIw33UEbrZhVN2JOd9agmRSz+c7moo7IIWI/addAmrnYFnRaGzMW33mYPsVRwJgHwbhwP5lksiyWitG+kxk5QetHqkfnQ5xsSWyan3RmreXdLPYjjzxSdLqqjKqBTle/TG2IKYqzLjI0u6AwU7M6RnE0QKs1ay+bjWydCXLy6ZOT30pODjNHXg7Q+txptBnuOmG2mNHOLcbLxxpf02gF/82sWbMmNf9rHNw+ke2fjPLcZTYN7IhVUfr6+oqRkZFZeRsYGKjlJO0q8JqLbUGntTFj8Z2H6VMcBYwpKtQjmYwiqcleJIoDcxRItWJqx7msWWIykfc47tNslPtcFKNBG2VcBI19vlmi3+mj1GObLYsJrRcnq/UjCuNiR2ab3OyCQitmoGgWs8oXM4DOsXnz5gmPbm01Ofn0yclvJieHmSMvB/ixyD+aDTbIyJ2atVObNm0qOtl4Ay+aFa20c/abxhmGMmeSiXOXiO/YMjdoC2bGdAd3+c7D9CiOAiYkDohx8Toq18sl9yZ64ShGRU9n/WzGX5+8rOgei+kwf+zAgQO3/C1mO5uuZh1z8T3p9GRSASO0XrTT0c6UnZ7ZHTCjFQ20opO1WcwqT4MNdI7R2s1YFmmmycmnT05+Mzk5zAx5OcDMzebZbEaTjHwvS7PXON4sLI2FCDFT0UTfqxiE3mi6MwQ1nltk5pTOXeaWudwWdFIbMx7feZgexVHApA/mUSgVB8m4gBRTfcbPOAkYq4J8z549Lva2cRmPcnrNdq1V3UnifWjVSPJmHXOzIZlsxdrUwM1iZHp58tuKDpgwU1NuNxvtZQYUYCaM1uHbrqXI5ORTJye/lZwcZoa8HGD8XDqrLYl2tlWxW2W8QpDIV2MAeTmQfPfu3dN6r6eb/8bj6487ExmwMRFx7hLHmU6ffZU82oKZMd1iM995mB7FUcC0RRITJwFxQhDFUjGzVLPEJi5It6vjomqaTW051oj5uNAen0m71qqeCyMgRlvfudPXZ45t9r2E1tqxY8eNKZNb1QETmsVtxfIdzTqzHV+AckDEqlWriq6urtry2tOdLr7RWPlaO5Yjk5NPnZz8ZnJymBnycoBbnT59umVtybFjx275Wyd1vE+1HS1nkZ1s7tqYA2cNmmgcCJBRdB8xYvUQ5o653Ba0SqtyNd95mLreaTwWqKCY3SnW+p3OBaJI6uMWnSONy+nFDFNGxOaIC/yNs3FFZ0yzk6pYsiLee4paEV+jjAuis3X5jrg4zNwRJ05xMjqbO99i1pD4Xo03Y2EnvedlR3krO2DqT7DrP99WfNaNMefqSC/g1vauPjeNzucokIqlI7IuqI61VFC0Te1oj+TkUyMnv5mcfO6Rl888eTlAc83ap2bLg05F42CJTppBdbTBFa06pjUbOLJ3796U2FHQEH0xpTjexeubTg4c5zjNlgGkuuZqWzAb2xjfeZg6xVHATeKAGgfnmP1puuIC2Zo1a246SMcBVnFUazqgQry3jYlljEiJxEjV9+gnohnrWzebJeCRRx4pOll8N7NndKBzRTtQheVNyxPL2dAJEwXC5Xs+Ex0wzTphsmdSaRYviqoBRjvGZA6OGGvWjXYVv8jJp0ZO/mNy8rlHXj7z5OUAk5MxuKHZTKGdtNRxs+1rZa5e30dSPlfW8aicyar+NcXAjKm+nsipzXhLJ7UFESMG2MTPcon22O9j++IW53zlOXjsv/F9a3ehTyvbGN95mDrL6gG3yFifthTL7TXrGGD6miUrZafLeJ0zc1W8N61Y23205TvGS0bjcY2zq40mPttI6mMGhnK5mvgZv8dI8/qOoPj3+vXrx3wf4jETfe7pivdmtG2faGdQxIiL2XH/OHmK7Y8OtHidEavZaPt4fXGfxueMx2d0QGV+JjMhTpqaLf8zG0Xb10kX1JopT8QzO2Bi/xrve9vsu5A5Sr3ZNNgZndnA7DbWcTWzDRqrY7ldF/Hk5JMnJ/8ROfnczMmDvHxmycsBJj87a8YxqnGm0LIzv1M0G8DRWMCUJXKe+j6ReB+yB5A3Ho+nM2PtE088kTarFbNHJ7YF5YzUkeNEHhX7ZeRzAwMDxalTp4pnnnmmNrtVeT4Q5yqRg3XC7KytbmN852GKRgDqrFy5ciSahuPHj6fF7Ovrq8Usb/v3759SnPoY043VCWL7t2/fPq0Y+/btu+U9ib+VBgYGan87fPjwtJ5n69attzzPwYMHR2ab2ObG1xH7/HTt2rXrlrjxno1n3bp1tfuOJb6LGzZsuLG/xGuI71R8tnGL/x+fecSK+8V3otyGRrt37276WU7mNhmxfbHN5WPjfYp9MbY5Xkf9+xbbFfefzGc32vsd70F8rnGL1xy/x+PL96l8TLxfU2nrMj8Tqin2gfIzzzqelsfS8drest1vVXtdvz/br6G1ZlPu25jv19/ieJ8l8ohmzzGdfE5OPvPk5HJyOTkzRV4OMLVcNtq66ao/3sct8oGpaty+6cRqPD60Oq+O40H9ezHdc4/IrerPNeo1vqapHPvK49xEc0Gqo9PagvL8Px4/ke1oPB+sShvjOw+57MVA0+Ko0Q62U1V/8XeqicVs6iCaiIyToWYdUZEsNl6Qnq6qdMQ06zCZ7mdQ/72ZzL5ZfnZjddhknwDEa62/NX6u8Toa79N4m0rnZXRGjLb9kbCX71/8HO1+8fd4T6Ntqu/caezIieeKOGPtn40XkSfT3s3kSRmzU+wXrSg0Lk9GJ7LflR2FWSf0Y+3TGW0oUI3ct9n2Zl1MHeti7XTbIjn5zJOTy8mDnJxWk5cDTEyzzu/ptpvNCgPGKsAeT2Os6bSn9ceHVp9nxftQXxiSMXBkrEKJxmPDVJ4v3tvRHqdQoto6qS2oLzKfzDbUn6NUpY3xnYdc9mLgJuVBeyIjbCd7gJ1uYjHbOojGk3XxqvFiW33CGP8v4+JbVTpiGkcpZOxDo81gMNHOvdGef6ZOABo7MzLUJ831HYMTOUkaqzNmrPc99vVyVPhETrAaHz+RE4eZPilj9qkfDTjd2UFGazMmc9/JfA+n2o7OxmMBzBazLfetL6yIW+QVmZ3RoVkxxnTbIjn5zJOT30pOLicnl7wcYOKazXQ33bazscN+urlw4/ZNNV60lfVFC+MVc09G5E7xvpWF5PW5e+QhWedGYxVKNBaiTGWARjxmtG1VKFFtndQWlP2Jkz03qh+4VJU2xncecnVPdTk+oNrq18DOsH79+hv/XrNmTWrsua5xbeFyPeNYVznWZH7kkUfasl2d5syZM03Xmp7uWvfN1o7evn37uI979tlnaz8ffvjhUdd5Lrdvw4YNE96e6awtnSH2uVjXe7Q1xZuJ17d79+4bn1OzfXq8zy2et7+/vzh69OiE1kKPx9e/V7Ee+VNPPTXmY2brZ8LM2bJlS62dif1+um1Lo4g5kX077Nq166bfY5viu9WKdnQi7R0wN5RtTxz3BgYGau3WZI6X0zlH6YS2SE4+MXLymSEn77zPhJklLweYuGjTGo+pzfK1ybRRcUyvt3fv3inHm852xOuIc4g9e/YUq1atquVHZTsc7eapU6dS2s94vdH/sW3btloOFc9XnrvEe7t58+YJHzumI55r3bp1N36P13ro0KEJPz62efXq1ennccwOndQWlN+f+v15IuL+M7X/zmQbMxrfeZg8xVHAqBoTl+no6+u78W8H2h/LuCjW7EL+gQMHah0EM5kMdrpmnWmR8E82wW4UHQCNxutIiMfELS7SjnZiPBtOAJqp74SJxH+i219/YhSvfSoFmgcPHpzUhYbo/KnfvjiJafZ51m/XbPxMmBlxASz2n9gPsztgwrFjx4pNmzZN6L7xPWjsiInjwnQ1xig7UAHq859WFSDEcbhZ7pzxfHLymSMnnxly8s77TJg58nKAyWvMm6INnao4lteLfDi7MCiKqbu6usa8RaFCWbAU94+cP/KBaDNjMMdkc5axRFv/f6zUc+NWDhiJ54z3pNyWsfKcVnyWzQYRjCbuO5ECeaqrU9qC8nsSAy8mK2NgUqe1MWPxnYdJSp6JCpjl6qd8jKnws9RPIztXlhaZyBSlWe/xaEuMjDbd5lxcwqNxCtesJSumsnxH+XmNNZ1y/bTLrZzmP/P9aFwyYLLTRdcvRzOR152xPEHj1LBjfSdn6jNh9inbl1a1i+WSM5NZN75xKuyM40390h1TmaYZqH7uW7aHGUvITSQfne7yRHLymScnH/t55ORycqZHXg6Q0y8Qt4kskTvWklZTPV4305jnRVsa50YTucUxIfKhqbyeLI1LCU/n/GCsJbZGWxptIq+9fNxY97XE1tzQ7ragcR+e7POX+2lV2hjfechlLwbGTHyyLiiVcad6obfZAX42dBBN5IQoO950E9eqdsTUXzzM7KhqljhP5MRgrPvN5AlAZkdM43ra0+0sG0/WBebGdq9ZB1I7TsqYHcpOtlYdj6LNKDspJ/scUZwwnc7RsY4zs/X4C7PFbM59y+Nq5raOlutOp11rjNvK7ZST/5icfPztl5PLyZkaeTnA9DR2gk9lwEN9kfV0BzKMletlFV3NpMb2O3K+qZwnjFco0ey8YSL5dhxPxstDFUrMDZ3QFtSfG8TjIw+bbM5WlTbGdx5yWVYPGNPOnTunHSPWuC2XqpjqshejTZ+ZsQRGO9RPKRpTbk5Xs6UgxloeIuP9n8qUpu1Srv/cKGOK/cb3eLzlHcppSp955pkxY9bH3bhx46TW947lImZ6yYj67/lU39uYgrbeVJbxyFgG54knnqjEZ8LM7Pdlex7TEMd+Md1bTMcct3KK5vh3OZX0ZJePiWNu/X43nWN64/I8jcuDALlmc+579OjR2jEzcp6MPDdec30bVIop6qd7bJWTzyw5eevJyccmJ68ueTnA9DW2KZEfT2YJuMivyvvH8TqWlKO4KS+rPxZEjtXsPKddy2xZXotOagvqzw0i3488LHK9ieT+kacdP368mEt852ESkoutgFmusSJ7uiNXY/RDGXMy046PN8quFSNQZkqz5TYyRvo1jvDNGkXeOAVqxqjgmdZsFH/W1PONVfljjaQoR7JOZLRFsyVH4nGTGSUxk6PUG/frqcwA0LivjRcja39sHAEx2r4xU58Js0OM9m7WNrbyNpURhfXH4amO9qrf9+O4286p6GGumO25b7SR9TPHTvVYGe1Nq2YakpPPPDn56OTkcnKmTl4OkKs+r4p2ayKz3TW2T63MlTptVpfJaDYLy2SPBxOZRaa8X/3zjPU5xuc1kbzcLDJzSzvbgtHOf8u40QbE92C6s0nPhjbGdx5y2YuBUQ+gcfAsD35TSQbiADvZAqu4sBOPi1s8f1xAH61zqP7icbmub/nYTrkwGq+nfB8jMWxMUBovJEeSE695Kkld4wXBqah//yJedBCNtc2d/N7Xa7YPTXe5itE6eUb7rpTfpYl2GMzUCUDWe5K1JOdkLg40fn+mqtl73ex9nemTMjpXeQLZqs6W0W5T1VhcMJmOUh0w0FpVy31HW34obtGeTOYYGe9FY1sbv8ffJ0tO3hnk5KOTk8vJmRp5OcDM5G3xe7N2J4639e1a5AKtaJ86uXBhspodtybznk20UKLxMxxr4HrcdyID2xVKzD3tbAtGW7Z+rHPiKrYxvvOQy14M3KTZLE/lATCSm4l2RpSjcSdyMXWsEb/tuFiVqdmo1oneptLxUyagU0nemiU6s/m9H2+/ypgZoNkI7fgO1Sf+8e9yP5hsZ8FMnAA0xpiKeI2N2xPbEn+f7G2iCXzjtk931oRm29/ukzI613Ta9qnepruPx/ervq2K/XOsixSNRQ2ddFEAqqRque945wVxi3w12tH6Yp5S/DtytPr2p74dmmrBj5y8M8jJR9cYYyrk5HLyuUheDtA6kas35m+R58bf4lZfCBG5V2Ze16jZucFs1Swnnkyx7EQLJZoVlI8VcyKF5Qol5qZ2tgXNBk2Nl6dN5bpBJ7cxvvOQq3cyS/ABc0OsA7xv376b1hju6+urrT+7bdu22v+PNX9jnd9Yvzf09/fX7hNrZZfrCcc62hGnfi3tyWxDWL169YQfE9tQOnPmTNFJJvp6ytcw1e2P9zvWXq7//Ka6rZN5/zv5vW98TeXv9etWT9fBgwdr34+nn3669vrXrl1b2/9jDezy+xDrdE/2c4kYsSZ3rD8/3vsa3724xfcttqf8bs6E+s+/FNuc/bnNpGavaTZ9JlTPdPef+D7Ffnjo0KHiiSeeqO2bq1atqu3TcWyP+M2O5bH/RtsV9wNap2q5b73du3fXbk899VSxf//+Wn4UOVPcJmI65xSN5OTtJSdvLTl5c3JyssnLgbki2p043kYuFW3Ws88+WzvuRtsUor2KfoNHHnmk9pOpH0fivY1zpuznic+wPI6E+BwbP6v4PMv7Qqe1BZH3DAwM1M7x4npC/f7cTPz/6Lc8fvz4nNunfedhgpKLrYBZbrxRlTGaLaqUm1WEl1PYR2V4Jy7jwNxVjrSM/TT23VbtnzGSIeKXoxniZ3wnMpZ0GG0WhdFuE33OjFHqjcvHxG0m2oDM0buNI1AmMhqjVZ8JzITYH2Nmx7JtbBz5Ff/PPgu0Qjk7VORIzdqg+Fs5sxTVIicfnZz8R+TkzEXycoDZM6tL5FbRLpd9IBkz65b5avYsMiG2cbw8czKvxSwydII43ytzp9Fy/saZhGdLG9OM7zzk6or/TLSQCgBov6juj9Ea9aNIm41GPXXq1Lgjvbu6um4ZgT1ZsQ0bN2686W8xyrXVo7Lrtz1GOsSIkIxYIUaixMwC7fhMAADofHLyH5GTAwCt1pgjxEwoMQvfTCpnJq2ftTLylMhXJiNmwInZThtNtKs2Zhvcu3fvhGaaim2N+4+WH5b/P2bmmUhuFLPQNM5MqouZdovcP76HsX/Wm8z3sxPamNH4zkOu7uR4AECLlcvLRMdDJKPRAdA4PWokurGcS6aI2ayToVmHS0yzO5tNZlmjdn4mAAC0h5y89eTkAECnKJdubvzbZDVbErhVRdsRtzEXqi8Wie2P/69onE4zkeWz688BopApzgHq9+Vm39mq852H8SmOAoAO1IknADEKY8uWLbf8vVkyPZtOPJp1GjVbc7sTPxMAAFqnE/M/OXnnfSYAQPXF7CsZTp8+Pe2C8MlonKWqvqAriiaazWIF7RR5esxYFOc9kxHnDo2zPc32wSJT4TsPY1McBQAdZjaeAETHQ73+/v5itmh8n6PjpHHk/Wz8TAAAmLrZmP/JyZuTkwMA07V+/foJFXKPp1kO0pjDZYrY9UXikU+VSxBHrtjK54bpmMpS47E/1y/LfezYsWKu8Z2HsSmOAoAONZtOABrXnp7KtrdL47Y+/PDDE77vRDgpAwCYvWZT/icnH52cHACYjsZCqMgtjh49Ouk4zZZHnsxMLlOZ/bI+Bypnj4lb49+hk0x2QMRo50Szne885FIcBQAdaqZPAMYbWT7W/4/Oi/oRCVPd9vrXsGfPngnffzrLYsTo83pjPa+TMgCAuUVOLicHAChnY4mZLUdGRmrF2s2WNR4vV2qcOSqKrqYyA9VkNBZfRd514MABy2vR0eK70qyYcDz1y1Q2zkQ7V/jOw+gURwHAHD4BmMxJfF9f36jxIs7evXtvma51KsrlMppNVz2aqS4ZUr/mdti+ffuY75mTMgCAuUVOLicHAAiRZ0UeMtUCgyeeeOKWvz3zzDOTLkR/4YUXJvW8kfc0FmDF3+RDdLpm35nx1Bcgbtq0qZjNfOchn+IoAJjDJwD1CfF4HQyRjI+VQO/evfum/z+ZUeaNrzk6diYzzWts21Q6SOq3MZ5zIhck5vpJGQDAXCMnnxg5OQCQrdnMlNOZrXI6Is+KgoMo7G4s7p5IHvLUU0/d9Ld9+/ZNataoMv+JAvbJvgeNBV1TKfCaaiE8TFXs65M9vyiX4C5ne5tNbUwj33nIpzgKAObwCcAjjzxy0++NUzvXi6lXt23bNqHnDrHdk71QEI+JCwVxcaDVy2TECUH9ScXBgwcndMI0EydlAAB0Djn5xMnJAYBMzQqiY2bMsfKlVjp69GitoClymMh7JlKwEPdpzJGiAD2KrSYiHh/F5PXFVRs3bpzUDKGNBe+TKYAv7d+//5a/NRZ8QbaJfs9CtAvluU+z/XU2tDHBdx5ap2skFscFADpGJL+rVq268XuM/D5+/PiELuBH0l4ufTHWkhujPVckyc2S3ki8oxNmImlD3Lf+pCU6IaIDYiLbHkl+3Dc6RcbT1dV149/l64yLExN5bJwk1Y+WiMfE8h2d8JkAANB+cnI5OQAwsyI3iJylzF+OHTs2ZlFEuUxUmQvE7JMzUQAd27Rz585asXY502bkNM3yiyjmjpysvtAi8rzxChUil4tC9XjceEUakXvF8sH1BfLNxDbGexz51ni5Wtw3Zo2J1xo/xypKj/cgZuUs3/so/B8rp4Ox1Of85b4d34HYv8dbejvOleLnaOcVndzG+M7DDIniKACgcwwMDERvR+22YcOGka1bt46sW7dupK+vb8zHxf+P+8XjDh48OOHn27dv343ni9vx48dv2Z6Iu3v37gnHrN+WuI332HIbtm/fPuHnqN/meJ/iOVeuXFl7v8Z6r3bt2nXjcXH/xtfbCZ8JAADtJSefGDk5AJAlcpUyN5jMrcwPxssJskVeETlJ+fyRb0R+EnlO5FP1eViZY010G8u8bDKvfzyRb8X9J7IN5bZP5bOIbYepKnP+2J/i3/XnDvEdiv3r8OHDtf049un9+/fX/l5+B8c6r+jkNsZ3HmaGmaMAoENHR0Tl/alTp2o/66v8N2/eXBsdEKMW4r4xwiFGCcRopfhbjAKYzHr15XSoMVVrKaZ1jueJUQoxmmmio7/Hihuv4+GHH66N4Ih/R+wY6R2vK36PkRGTmd61fpR6bF/EKqepjpEWESv+He9JPFeMdohpcsvRIPEaJ7pUSDs+EwAA2kdOPjFycgBgrov85tlnn72xFFeZ55SzzkTeFbmKmSthYiLnL5ewLMV3K84b6pe8i/OBmEEpZr2Nc46JzJQLzG2Ko0gRB6O44NSY/MWBKRK+mF6vTABbuQ1xoSsufpXbUB4Y4wAazx8HRgkoMBu04wSg7HSpb8ujzYwOh+i0mI7okIiLBHGxoJyetbxAEPGncnxo1hFTiueJ11J/TCifL96n6BCa7BS4TsoAAOYWOfn45OQAAADAbKA4immJ0Yf1I/7Ki1xxK9ckrV8btVx/ee/evWnrssbFvVjfeax1YevFBbEYMenCGMDsNlZHDAAA0HpycgAAAGA26G73BjA7RcHT+vXra0VGUQgVIwEHBgaKvr6+2gxS8XvM4hS/x9/LKdmjgCkKqtauXVsrapqumA0qRgBG3HiOuAgX9X7lLZ4/Rg/WzxYVIwnrHwcAAAAAAAAAQDWZOYpJi9mgtmzZUvv3M888M+Fp16MoKoqp6kXh0lSmhY+iptiG2JaYASqKscZbLi+eO7ahXjwmirkstQcw+xilDgAA7SUnBwAAAGYDxVFMuigpZn1avXr1lIqKYsammLmpXswwNdECq9LGjRtrhVExW1QURk3U008/XTz66KM3/S2W9zt16lTaMn8AzAwdMQAA0F5ycgAAAGA2sKwek7Jz585agVQUNE1ltqWYKWq0mBMVM0DVzxg1GVFM1ThTVTx3FFsBAAAAAAAAAFAtiqOYsCgiOnToUO3fUUy0fv36W2aBGk+MImycoSnixoxOE3Hy5Mna0njlcnhTEQVajYVdZVwAZqfJFNkCAAD55OQAAABAp1IcxYQ1FkJFQVEskxc/J6PZjFMTLXQqZ56K2aOmo9njn3jiCRfyAGap/v7+dm8CAADMaXJyAAAAoFMpjmLCRiuCKmeTmk5x1LFjxyb02HKGqVgebzqaPT4Kow4cODCtuADMjMZjT7ThseQqAAAwM+TkAAAAwGyhOIppFTW1Y+aqrVu3plxsiyX+Gh08eHDacQFozTFgx44dtRkLY1nX+HejWPI1bnGf+P+TndkQAAAYnZwcAAAAmK16270BzB5RlNTM9u3bJxWn2dJ1q1evHvdx5dJ7cTEuLrSF/fv3T3kWqWZFVo1LBwLQGeLYESPTV65cWfu9/NkoOl/iFvffu3fvDG8lAABUl5wcAAAAmK0URzFhcdHr+PHjxc6dO2tFRTHz0r59+yY9o1SzUYPNZnGayOMeffTRWpHTVGa1ilGOAMwOUYg7MjLS7s0AAIA5S04OAAAAzFaKo5iUKGKKAqnpaFbk9Mgjj0xpxqlytqepzB412mxVsX2tXELwL3z4H6TF+qPBP06L9UvL3psWa/G8obRY83qG02ItSIy1NPE1nr+W0xS/f+XFIst9iy+kxXrnkrfTYr1+aVVarO9ebD7KeSr+/RvL02J97eyCtFhvFnnvff/wy2mxLl3+ZlqsxYvenxbr4sWvpcXqXXB3WqzBqz9MizV/0bvSYv0vH/hgSpx7F+a1XX0Xl6XFeuncwrRY3zu3OC3WK1fyOiTnd/WkxbptXt52PX/lD9NinfvqM2mxmP1+4UN5efgfXP/dtFj/5d3jDxSZqDULB9NibVg5kBbrj/rHnyl4ouZ357U3X/5eznb9tffkHas3r/pBWqx33pmXv129nHcsO/HDvHPPf3Ly3rRYz194Ky3W1SIvv8nUf/730mKtXvbzabH6z//btFjzFubtE9cv9qXFWrXyI2mx/ulPzU+J092V155eGc67xHxtuDst1j/8zj1psa4nbtfZwa60WKvn513r+p2LP5q1P8Olr/3TtFhUw2sDedca5/XkfYdWDbyUFmvw2y+kxfrcX3kyLdbfOP31tFj9V/KuiR/u60+J81N35V2X/cCKvGNjz8s3r1oyHX/6P302LdZP/O09abFevv1HK7xk6OnO+14v6s07Zq/qupIW62pv3jnVguG87RruzbsGmul6XopTLLrwel6wV3P6Nv5o1YeLLB96+V+lxfq9x/5eWqw/84d55593XPx+WqyLK9+dFuvacOJxoyvxHGFZXntTNXlHCJiAZsvWxYxUE1mab7Tp2ieyJB8AAAAAAAAAAHOP4ihm1MGDB2/52969eyf02FhCr1nBVCyrNxX9/c1HJii2AgAAAAAAAACoBsVRzJhYFu/pp5++ZZm+3bt3T+jxUQQVxVXlknfx+9GjR0edUWo8fX3Np0efajwAAAAAAAAAADpL3oLwMI49e/bcUoTUbCapscTyexNZgm8iTpy4dc3nqc5CBQAAAAAAAABA5zFzFDPi0KFDN80aFYVRx48fvzELVDscOXLklr9t27atLdsCAAAAAAAAAEA+xVHMSGHUjh07blpK79SpU20tjGpc3q800SX+AAAAAAAAAADofJbVoyXOnDlTm5lp//79N2ZoitminnnmmbRl8aZj3759bSuM+s6r/6x46bV/PqXH3n/3Xy7ec+9fSd8mAACour4f/LPi5BTz8HV3/+Vi/T3ycAAAmIrPPfl3i9946okpPfZv7N5b/M1f+0z6NgEAMLcojiJFLEd38uTJor+/v1YYVa+TiqLCiRMnattaL2axalYwBQAAAAAAAADA7KU4ihSxVF7jMnlRgFTeYlm9uM+jjz5a7Nq1q2innTt33vK3gwcPtmVbAAAAAAAAAABoHcVRpBhr1qWYqWnPnj215fWiOCpucf+ZWsau3tNPP13bnsbCqCjcAgAAAAAAAACgWrrbvQFUXxQeHT58+KYCqiiWWr9+/S3L27VSLPcXhVn1Yps6Zbk/AAAAAAAAAABymTmKGRMzRZ0+fbp46qmnar9HYVQUSEXh1NatW1v+/LG0X712zV71nnv/Su0GAADMnPX3/JXaDQAAmFl/89c+U7sBAEC7mDmKGRUFSStXrrzpb9u2bWv5DFLlsn7tLowCAAAAAAAAAGDmKI5ixu3du/eWv0WBVKs8/fTTN2arCgqjAAAAAAAAAADmBsVRzLhdu3bd8reYOaq+gCnLiRMnikcfffTG7/v371cYBQAAAAAAAAAwRyiOqoBYLq6rq2vat5kSy+o1Lq0XnnjiidTniYKrLVu23Pj94MGDTQuzAAAAAAAAAACoJsVRtMW6detu+duZM2dqhV4ZItbGjRtrP8Phw4eL7du3p8QGAAAAAAAAAGB2UBxFxxRHlUVMmYVRMUPV8ePHi61bt047LgAAAAAAAAAAs0tvuzeAnEKjVi8XF4VGe/bsKQ4cOFD7/eGHHy727dvXdHm86RRHxVJ40xVL6UWcsjBqtOdql5HUWEOJsfKWVuw7uzgt1k/dfi4t1tJ5ee/X5cG82tLe7uGUOD+8Mr/IMnBtVVqs167k7Q9/PLA0LdbgcN4+/9rFhWmxvjvy9bRY56/8aVqsYngwL1Z33r56+dr30mIVw3ltxPDQxbRYxUjedv25+dvSYs3vfj0lzj///l1Flnk9Oe1pOH1pQVqs89d70mINFdfTYr1jQd779cqVvAxndU9n5W5Ux+0L874/iV/F4tXzi9Ji/bs38k7xv38+rx3cdPv5tFgXBvPa1AeTtusDy04XWY68+e60WOd+kNeefvt0Xh6+flVennQx8Rh7evDbabGuXT7VkblgV09ee3P+euJrLPJyknk9K9JijSzO+z72FHnnQPO6c/aJf/BS3utbu+JSWqx/+WreZ3h33ttenB/Ku4bw4TvzrnW9lXje8t5rH0mLBY1uG/rRCg8ZzvYkXrdcuj4tVrExL9ZfemlHWqyer/1OWqw75uU1rJvu+ZmUOP/2/R8qsiz/7rG0WF98851psR76n//fabHe8+7labHuSuzsunAtLx9c0Jt3zL5S5OXPPXmbVRRDedfquxIrBXr6X0mLNW8kbwf7evGOtFg/uTCnv+uOJXntafcH/mxarCX/+i+kxVqxIO98fXD+vWmxFvy7f5IWa/71vAuE3T/3qbRYRZHXL1s1iqMqIIp/9u/f39Ln2LFjx01L3j399NO1AqSpzvS0Zs2apn8vl8Gbqm3bthUnTpyovSdRGDXV4i0AAAAAAAAAAGY/y+oxrihYqi+MKsXfpjrT0+nTzUfWTqeYqSzgmmph1KFDh4qurq6U2asAAAAAAAAAAGg/xVGMa6xioanO9DTa46a6BN6jjz5aK27asGHDlGeMeuGFF6a1DQAAAAAAAAAAdBbFUYxrrEKjKEbKLLiKZfEm66mnnqot8xfbcvTo0SnPPlUuxwcAAAAAAAAAQDUojmJcoxUM7d+/f8oxjx07dsvfoqhp69atk4oTRVF79uyZ1oxR9ds01WIvAAAAAAAAAAA6j+IoJmT79u21n1G8tG/fvqKvr6/YtWvXlGeNaras3mTjHTlypLacXmxTFEZNR7lNZo4CAAAAAAAAAKgOxVFMyN69e2s/+/v7i927d0+riKjZjFMx41MUXU1mCbxYgi+Ktg4fPlxMV/ncmzdvnnYsAAAAAAAAAAA6Q2+7N4DZIZabi5mdYhm7mK1pqkvqxexMTz311C1/f+aZZyY1y9OWLVtuxIsiqamIQq94fMQrmTkKAAAAAAAAAKA6FEcxYVEQdezYsVqBVBQWRUFTzPg0GTt27Gg6a1O5bN94ophp48aNN5bli6X1sovAAAAAAAAAAACoBsvqMSnHjx+vFRAdOnSoWLt2ba1QajKFUY3FTFEYFcv0TaUwKptZowAAAAAAAAAAqkVxFFMqkIqCpihSiiX2Vq1aVfs52ixOUUi1fv362s9SzDh1+PDhCRdGhZ07d960BF42xVEAAAAAAAAAANWiOIopiRmf+vr6il27dtWKpGIGqW3bthVdXV21Yqkohopb/B4zRpVFTVEUFY8dGBgotm7dOqnnbNWMUSVL6gEAAAAAAAAAVEtvuzeA2StmWtq/f3+t2ClmjYqZoI4dO1YrhCqLoeI+URAVhVBRPDXZgqh6ER8AAAAAAAAAACZKcRTTFsVP27dvr90AAAAAAAAAAKBTWFYPAAAAAAAAAACoJMVRAAAAAAAAAABAJSmOAgAAAAAAAAAAKklxFAAAAAAAAAAAUEm97d4AmGsGR/JifbDrobRYQ8PX02K9Y/HVtFhXBvNqOPuvzE+L1ds1nBbr9YsLU+JcH857r9657HJarCvL8rbr5JklabGuD3elxTqd+MVe2LUsLdbIwvelxbpw6U/SYi2c/660WEMjee3N9eG8WMsX/kRarPcvyov1S/e9lRbr915flRLnu2dz2sBw58KhtFiXEo8/3xl+My3Wxa4zabHuHHxPWqzvd/WlxVpV3JkWC+ot6s1rI3552Z9Li/XGlXlpsX7xnQNpsU5fybtc8Huv5RwzwmsXF6TF+vrwqZQ4Z6+uL7K8mfj6HrrzbFqsM9fy9od/9IO87+KV4gdpsZb23psW6+LivDzi2pVX0mKtWvLhtFiXh/LyysGexWmxFnffnhZr29LNabEevv+HabH+wUu3pcT52rm8/fRr55amxbqzN2+7jlz+d2mx1vfk7Q+nL+ddn/rq+bxrGwt0FdBC3W98Ny3WmgWL0mL96eL3p8W67/BvpMWa/5d3p8V67YGtabG+ezrvmvHCyzn9EbuO/3+KLH904VparL/0/rxrG8sX5B0bv/5W3me4cmHeceP2xXmxBofzrtUvTsxL5l3JOz8bXrQiLdZQYp/lyOp3p8XqPfd6WqyfmHclLdarizalxFnclZfD/fHFNWmx1q/Ky1PfvDSYFuveq3nn/t3rfzIt1vCSvPd+qFsuPhPMHAUAAAAAAAAAAFSS4igAAAAAAAAAAKCSFEcBAAAAAAAAAACVpDgKAAAAAAAAAACoJMVRAAAAAAAAAABAJSmOAgAAAAAAAAAAKklxFAAAAAAAAAAAUEmKowAAAAAAAAAAgEpSHAUAAAAAAAAAAFSS4igAAAAAAAAAAKCSFEcBAAAAAAAAAACVpDgKAAAAAAAAAACoJMVRAAAAAAAAAABAJSmOAgAAAAAAAAAAKklxFAAAAAAAAAAAUEmKowAAAAAAAAAAgEpSHAUAAAAAAAAAAFSS4igAAAAAAAAAAKCSetu9ATDXvDj8zbRYf3HZurRYpy/PT4t134qLabEuXs9rpoZHutJivXVlYVqsf3/9VEqcNcU7iiz35b1VxZmreZ/hK1dG8mJ19aXF6i560mK9c+TdabFevPwHabEWLsxrbxb2rE6Ldfby19Ni9czL266fXfD+tFi/+t6X02L9y1fvSIv1h2eHU+IsLXLihOvDeY3XicG89/3SSH9arPldy9JinRnKe+/PDb6SFuvdvWvTYkG9f33u9bRYv3r3qrRYw2eWpMVaNX8wLdZ3BvK263sX8841FiUO8TozmJOHnzhzb5Fl5wNvpcX6yO15x7LnfvDBtFivXv13abHeteBn02K9OfzDtFjXLufsW6Fnfl7+NjxyPS3W1et5beqqxZvTYv3n77gtLdZ9S99Oi/Vi/9K0WIfOHEuJs6TnriLLX7/z9rRY/+treW3EyEhevruqK+9Y9tWzed/Ft7ryvos/1fOutFjQ6Oran06LNf9PD6fFeuCuvOs3Z986kxbr8mBe+/Xa+WtpsT5w++K0WMNJl3kvLsjLU+/+H3amxdr3G7+fFuvvnPnTtFh3LJmXFusdvXn71nfP5133v29F3jH7UuJ3sXf+8rRYeb1TRbHg7ZfSYl06eiAt1hN3/9W0WP/XD+ddT716NWdf7erK2+ff9/v/W1qs/o/9t2mxls1PvIDz/bxz7LfX/VxarDXn8q67dF/N61svluTt81Vj5igAAAAAAAAAAKCSFEcBAAAAAAAAAACVpDgKAAAAAAAAAACoJMVRAAAAAAAAAABAJSmOAgAAAAAAAAAAKklxFAAAAAAAAAAAUEmKowAAAAAAAAAAgEpSHAUAAAAAAAAAAFSS4igAAAAAAAAAAKCSFEcBAAAAAAAAAACVpDgKAAAAAAAAAACoJMVRAAAAAAAAAABAJSmOAgAAAAAAAAAAKklxFAAAAAAAAAAAUEmKowAAAAAAAAAAgEpSHAUAAAAAAAAAAFSS4igAAAAAAAAAAKCSFEcBAAAAAAAAAACV1NvuDYC5Zmjkelqs89fyvsKXh7vSYg2N5MW6NpRXwzk4nBfrUuJ2LSlWpsRZMDKvyDJwJe8znN9zJS3Wwq68ff7ayPm0WPO7lnXka+ydd1tarEU9t3fke9/VPT8t1kPzPpYW66+/59W0WFeGe9JiffPM4rRYb4z8aUqct7ry2q7Xri1Ji7WoWJ4Wa17XwrRY9xZ3pcUaLEbSYvV0LUiLdX1kKC0WtMqLb65Ii3V6MC1UsTExR33o9nNpsboTc6W1Ky6lxep7dVNKnHfPzztWv34pL7c5fz3vuL8m8Vg2PDiQFuv13j9Ji/Xh3p9Ni/UHC/Je46p570mLNa/I+xzPjQynxTpzJe9z/NX730qLtWje5bRYj//Rz6fFunr9jZQ4XV15bdczP7yYFmted94xY0lX3nnsXQvzDtjDl/POgU6O5O3zV4fflRYLGvWM5H2HXl/30bRYPXmX6ouV7747LdbZ//4/S4v14Of+YVqsUzu3p8V619OHUuIsefMbRZaeTe9Li1UUv58WaWFP3rX6S4n7/OnhvGtB71zWmXN5LO7N2655F3JyuHB58R1psY4NviMt1op/czwt1h3/+kBarN4X/0larAXLc87PFiXuW+f/4/8uLdbIUN714kzdy1enxVo6L++9v37burRY3dfyrncxus482gAAAAAAAAAAAEyT4igAAAAAAAAAAKCSFEcBAAAAAAAAAACVpDgKAAAAAAAAAACoJMVRAAAAAAAAAABAJSmOAgAAAAAAAAAAKklxFAAAAAAAAAAAUEmKowAAAAAAAAAAgEpSHAUAAAAAAAAAAFSS4igAAAAAAAAAAKCSFEcBAAAAAAAAAACVpDgKAAAAAAAAAACoJMVRAAAAAAAAAABAJSmOAgAAAAAAAAAAKklxFAAAAAAAAAAAUEmKowAAAAAAAAAAgEpSHAUAAAAAAAAAAFSS4igAAAAAAAAAAKCSetu9ATDXjBRDabG+dvVcWqwlxZK0WLddXpAW68y1vGbq2nBaqOK1kQtpsQaLaylxTne9XWT59qXb0mIt7J2XFuu+JTnvVfjj83nfxbPXvpUW67Zl96fFuqt4KC3W/GJhWqxXh19Li3X3gj+bFutn78z7Xr92eVFarK+dXpoW6+WRN9Ninb3yxylx5s27s8iyrPenik7UXfSkxfpu8d20WPMSv9cjRd5B9o2u19NiQb3rxZW0WGsW5eUkf3DupbRYp87dlxbra/155wfnk/Ld8LVzecfF7q6rKXH++NpAkeXF1/Jy1N7ue9Ji/fm7817jv/1mzvserlzKy8PPLf2P0mItm7c2LdbF4bfSYl25/sOOvLbx0wsfTov1B2/lnWu8cSXv2sbvXPxOWqyR4cspca5cy3uv3rnw59NinS9Op8U6fe3rabH+xdD302LN616WFusdXe9Ni/WH159Pi1UU/+fEWFTBSHfeNd7lz/3f0mK9/Ut70mLd8ed+OS3Woi3/ZVqsty4PpsVa+8yhtFg9SdcRLt/5gSLL2Y/ntan/j99emRZr+P/7G3mxtv5f0mL1dHelxfreuetpse5YktfeXEjsVFqx8Pa0WD88n/d+feOtvGvin3z6YFqs//RLT6bFemNl3nf79gU513kvD+btWz09ed/F4ZGRtFinL+edMw6u+TNpsbqu5733t712PC3W9+/I68/LuzpYPWaOAgAAAAAAAAAAKklxFAAAAAAAAAAAUEmKowAAAAAAAAAAgEpSHAUAAAAAAAAAAFSS4igAAAAAAAAAAKCSFEcBAAAAAAAAAACVpDgKAAAAAAAAAACoJMVRAAAAAAAAAABAJSmOAgAAAAAAAAAAKklxFAAAAAAAAAAAUEmKowAAAAAAAAAAgEpSHAUAAAAAAAAAAFSS4igAAAAAAAAAAKCSFEcBAAAAAAAAAACVpDgKAAAAAAAAAACoJMVRAAAAAAAAAABAJSmOAgAAAAAAAAAAKklxFAAAAAAAAAAAUEm97d4AmGt6ivlpsV4f+pO0WO/u2ZgW6/cvD6TFuq+4Jy3W2eJKWqzuxNrS3qR94nJxrsjSU3QVnWjJvMG0WLd1r0+LdXp+T1qs+d3DabH+/LIVabGuD+Xt8/de/vNpsTbcfj4t1l2Lr6bFOvH2srRYP7y4IC3WHUVerMFFP5cS5+LI6SLL3cWatFhXRvLamze73kqLdWnojbRYvd2L02J1d81Li3WtuJgWC+qtLO5Ki/VP+59Pi7Vx3sfTYn37TF4O11ecSot118i9abEWdOXlXZtW5MT64sB3iyx3dr83LdYdC6+nxbpzQV6eNG/Ru9NiDQ/nbdcrXSfTYv21O96RFuulgfvTYh0e/t20WH/7gZ9Ji3V9OO8awpFX8/LBu5flXUP42QXvT4v1YtftKXF+cDlvfzg98nJarHd05bWDV3r702JdvtKXFutqYu5856J1abGGhvKuK0Gjnot55/6DD38mLda9PXnX4bpOfj8t1oXb885d7lmW1+b0JF4rOfO/5nyOw7ueKDrRN7/w22mxTvze99Ji/dy3/5u0WEPDI2mxXjlzOS3W+7ovpMU6231HWqxvvp33Gj+8NO81vr4q7/rg+Wt5beri03l5yR0X89rnKwvu67j36syVobRYdy7JKx1Z1JvXpzQ0ktfeDOW9XUWxcEliMGaCmaMAAAAAAAAAAIBKUhwFAAAAAAAAAABUkuIoAAAAAAAAAACgkhRHAQAAAAAAAAAAlaQ4CgAAAAAAAAAAqCTFUQAAAAAAAAAAQCUpjgIAAAAAAAAAACpJcRQAAAAAAAAAAFBJiqMAAAAAAAAAAIBKUhwFAAAAAAAAAABUkuIoAAAAAAAAAACgkhRHAQAAAAAAAAAAlaQ4CgAAAAAAAAAAqCTFUQAAAAAAAAAAQCUpjgIAAAAAAAAAACpJcRQAAAAAAAAAAFBJiqMAAAAAAAAAAIBKUhwFAAAAAAAAAABUUm+7NwDmmmVdt6fFujD8vbRYb3SfSot1Zbg/LdbCnsVpsQaL62mxrhVX0mItLpalxFlULC+yLO3OOzycu9qVFmvVopG0WO/vXZ0W6+rwmrRY5/N20+InbjufFusDyy+mxbprYV6si4Pz0mL99qt3psU6fXl+WqwF3cNpsRYWPWmx3rr2Ykqcwas/LLJ8fWneF2hF191psVYVeW3Eu3rekRbrzeJcWqzhrqG0WBeLM2mxoFW54PBg3jH2273fSIs1PJT3XfzJrg+mxXqtayAt1vdGXkuLderswpQ4IyN57/sH5q1Ii/X7r+Vt18qF19JirZv3s2mxVhaL0mKdL66mxfrZO95Mi/Xfb34+LdaCFRfSYhUjeTncpw59Ki3WlaG8caBrFuft991F3rnsDy7/bkqcoat5++mSRT+dFqs7cSzviu53psXavCTvNX5zJO8a3Fsjr6TF6u1dmRYLGl1cmHcdrjuvSS2ujuRdJ+l614Npse6/mHecvdqV1xaeH0ycb+HRJ1PCXL6ed93snryuiGLlP/nnabHuT9znv3cuL78ZybssW6xfnffmv/w//zdpsX7jf/8PRSf6x4mxHv7OC0UnWrlhY1qs4YU5fXDh+nDOF3L1wrzjzz3def0tw/PyzrHfupb3GpfOyzv+XEw8bry24r1psfLeLcZi5igAAAAAAAAAAKCSFEcBAAAAAAAAAACVpDgKAAAAAAAAAACoJMVRAAAAAAAAAABAJSmOAgAAAAAAAAAAKklxFAAAAAAAAAAAUEmKowAAAAAAAAAAgEpSHAUAAAAAAAAAAFSS4igAAAAAAAAAAKCSFEcBAAAAAAAAAACVpDgKAAAAAAAAAACoJMVRAAAAAAAAAABAJSmOAgAAAAAAAAAAKklxFAAAAAAAAAAAUEmKowAAAAAAAAAAgEpSHAUAAAAAAAAAAFSS4igAAAAAAAAAAKCSetu9ATDXPDj/trRYr158My3WT8z7j9Ni/dHgP0uLdaXnUlqs8yM/TIvVXcxLi7W0a2VKnPf25sQJ87qH02JdHc6rwz1/Ne+wtX7lxbRYp84sSYt1faQrLdbISFqoYsW8q2mxVi84nxbrpYv3psV64+LCtFgXBvP2+1Xzh9Ji/bA4lxZr4/xfTIkzf0HePn9lJK/t6i7ytmu4yPsyXivyXuPykcVpsbq78vb5K0XesR/q/fzSFWmx/vHFy2mxfmHJe9JiHXzri2mxvrtkWVqst68cT4vV3ZOXdy3oWZMS5xeXfLjIMpJ4zHjlUt45S9+lnrRYH1md9/354cW84+K1K3nnGq9cyjvGLlied97Se9eVtFh/8vub0mK9eP2NtFjzi7yc/r1Did+ha3k5/fsW/VJKnHcsyXuvXh3Oy9/u6Mr7/lwYOZsW648Gfzct1uKeO9Ni/dl5H0iL9cZg4kUEaLDkWt71iKFFeXn9/B9+Iy3WudvfnxarWJ53vevClbxjUHfepZLi8vWcPO6eZXnH68tDee1g/6XBtFjnruZ9hssX5OX1S+d1d9z+EN755P60WMX//lDRiT69/X1psQYSv9hXEnOJ3ne/Ny3WlcU55/6ZbeqKxO/iW11L02ItTZxXZ3A4r+165dz1tFgLe/P2+bXDef30ue5v9wZ0LDNHAQAAAAAAAAAAlaQ4CgAAAAAAAAAAqCTFUQAAAAAAAAAAQCUpjgIAAAAAAAAAACpJcRQAAAAAAAAAAFBJiqMAAAAAAAAAAIBKUhwFAAAAAAAAAABUkuIoAAAAAAAAAACgkhRHAQAAAAAAAAAAlaQ4CgAAAAAAAAAAqCTFUQAAAAAAAAAAQCUpjgIAAAAAAAAAACpJcRQAAAAAAAAAAFBJiqMAAAAAAAAAAIBKUhwFAAAAAAAAAABUkuIoAAAAAAAAAACgkhRHAQAAAAAAAAAAlaQ4CgAAAAAAAAAAqKTedm8AzDWnrg2mxerqXpQW69XidFqskeFrabG6E2s453ctS4u1prg7LdZPLMj5HO9acqnIcvF63uHhzNV5abHWrbyYFusnEmNdvt6TFmth71BarGXz82K9cTWvvfnBlSVpsd64Mj8t1sXBvM8x0/OXv5UW60O9P5EWa2gkJ87Lw+dyAhVF0V/8IC3WB4r3p8W6bf5wWqxLQ3n7aX9eE1GcK/KOQeeG8z5HqDeQmJN0965Ki/UnlxK/jImWFCvTYp3pXZ0W687eP5MW697ijpQ49686W2S5PJh3/vPClctpsf6r+/KOPx+5Pa+d/5vHPpgW66GVee/X0sSc/ve/8eG0WHf0nU+L9erlvDbi/MhbabHuS8zh/v4r/ygt1n9y119Ni/WvLpxKifPty98u8uS1XQMLfjIt1v/pjtvSYr008HNpsd68nhaqOJ13mbH4+uDRvGDFf54YiyroOZt3/B9ekHdd6fpdH0iL1ZN36l/0dHVorO68YNeGcy4sdQ3l9UUsuZKXK3374uK0WBvnv50W6+1n/l5arP+w/X9Mi3XP8gVpsS4WebH+3sALabG+tfOvpcVa/f5702JdSPxeL+zNi3VqWV5e/+5zeceg16/lXN84cyXvHHvFgrxYP7iQl6iu/8Y/T4t19cM70mINJh1/wvBgXr/z+Z6labHyzoKqx8xRAAAAAAAAAABAJSmOAgAAAAAAAAAAKklxFAAAAAAAAAAAUEmKowAAAAAAAAAAgEpSHAUAAAAAAAAAAFSS4igAAAAAAAAAAKCSFEcBAAAAAAAAAACVpDgKAAAAAAAAAACoJMVRAAAAAAAAAABAJSmOAgAAAAAAAAAAKklxFAAAAAAAAAAAUEmKowAAAAAAAAAAgEpSHAUAAAAAAAAAAFSS4igAAAAAAAAAAKCSFEcBAAAAAAAAAACVpDgKAAAAAAAAAACoJMVRAAAAAAAAAABAJSmOAgAAAAAAAAAAKqm33RsAc8354nxesK68r/BwMZQWq6t7flqsM8PfT4t1W/f6vFjF0rRYKxZcSYkzPNJVZOnpHkmLdefinNcX3rfiUlqsdy3K+y5+5O60UEV3V957/53zi9NivXB+eVqsBT3DabEuXe9Ji7W4J68dPHU17zW+v+sn0mKtXHA9LdaDt59LifO98wuLLL/VnxfrZPGDtFjLhvMaiTWJn+HwlXlpsV4bPpsW63piLKj3wvVX0mJ1ded9f94uXk+LVXTnnR+8MfzttFiLe+5Mi3VXcVtarJ9afTElzuLevOP++Wt5uc2G+WvSYv3V9c+nxVrz3rxzvJ0X8vaHNfPyzltePLsyLdZL5/Je4zuX5OX0l4fyxluu6crbrreKN9NirVn6c2mxhobzztcff/cdKXFevfDOIsvTP/y3abG6ip6OHBW89Z2n02L97qur02J999q1tFiDg/JwWuft1e9Li7ViZDAt1oXreXncvO68tn6oSIyVd6kxsYUuinuW5pxT9Xz7K0WWS+/9SFqs4kJebvlf3/MLRSd6eMffTou1ZlHeuezFxO911/wlabHe+yufSIs1cj3v+P+Drrz2JjFUkfgxFv2L3pEWa2mRcwxaOi+vRR0aGem4tjkMvvG9tFgv/8on02K95/91MC1WkXhezMzwiQEAAAAAAAAAAJWkOAoAAAAAAAAAAKgkxVEAAAAAAAAAAEAlKY4CAAAAAAAAAAAqSXEUAAAAAAAAAABQSYqjAAAAAAAAAACASlIcBQAAAAAAAAAAVJLiKAAAAAAAAAAAoJIURwEAAAAAAAAAAJWkOAoAAAAAAAAAAKgkxVEAAAAAAAAAAEAlKY4CAAAAAAAAAAAqSXEUAAAAAAAAAABQSYqjAAAAAAAAAACASlIcBQAAAAAAAAAAVJLiKAAAAAAAAAAAoJIURwEAAAAAAAAAAJWkOAoAAAAAAAAAAKik3nZvAMw184sFabEWzr87LdZdxW1psS4u+EBarOGR6x353mdWli6bP5gS58pg3lZdH8qLNZL4Zv3bH65Ki/Vbl+5Mi7VyQc5nGO5aciUt1uXEfeLr/UvTYs3vSgtVrE58788N9qTFunte3nvf0zWcFuuBVRfTYnUnfY73r7icE6goii1X70mLdXUob384ey1vpx8ayYt1JW/XKi6PnMkLVuS991Cvp5ifFmvZvPvSYj1QrE2LNW/RwrRY14u8nGS4yGtwziVu15pFOecaf3o6L0+6cC3vMs2mu/La5ie+9h+lxfrHR/LOY3+yOy/WT995Ni3WDy/mfRcvXs/bJ/7ojbxj7LuWXEuLtTrx8uTwyLKiE21959tpsdYuPpcS533L8vbT/stb02J9I++UpfgPb85LizW/J+9Y9va1vO/i90f+OC3WyFDeuRk0GhnJi9U1lHctaOG8vHOE3sTrXYlvV6rLg3lt4YqkdvVb7/iZIkvX+by+iIdO/ou0WD916Ztpsf7w1QtpsZYuyDueXbqet2+dv5YX667rb6bFeuvD/0larEWJ157vvjrckW3ESGJLuOLf/9O0WKee+kcpcdb9rbz94XTivvXSwNW0WHd9/L9Ni3X//Lxzl/N5aUTR27skLdbgYKce/avFzFEAAAAAAAAAAEAlKY4CAAAAAAAAAAAqSXEUAAAAAAAAAABQSYqjAAAAAAAAAACASlIc1cRv/uZvFl/5ylfavRkAAAAAAAAAAMA0KI5q4sknnyy2bNlS9PT0FJ/61KeKr33ta+3eJAAAAAAAAAAAYJIURzXx0ksvFceOHSt+9Vd/tfjyl79cbNiwofjQhz6kSAoAAAAAAAAAAGYRxVGjiIKo/fv3F/39/cW/+Tf/phgaGqr97bHHHmv3pgEAAAAAAAAAABOgOGoCtm7dWhw/frx49tlniy9+8Yu1WaQAAAAAAAAAAIDO1ltU0PPPP1+cOHGi6OvrK06ePFmsXLmy2Lx5c23mp02bNhXLly+fUtzt27fXCqU2btxYfPzjHy9+53d+J33bAQAAAAAAAACAHJUqjnrxxReLnTt31gqjGh06dOjGv6NIKoqctm3bVnz0ox+d1HNEodXhw4eL+++/v3juueeKX/7lX07ZdgAAAAAAAAAAIFdlltX76le/WpvRKQqjRkZGbvn/8bfyFkvkPfXUU7XiqJ6enuKRRx4pfuu3fmvCz7Vu3bpaEdbnP//55FcBAAAAAAAAAABkqUxx1I4dO24UPzUWQ5V/6+rqunGr/38xq1Q8fjKFUr/wC79QHDt2rOWvCwAAAAAAAAAAmMPL6n32s58tTp48Wft3LJcXhU6rV6+uLYF35syZ2v974YUXiiNHjtR+L0WRVKksoIpCqXIJvkcffbTYvn1706X3yucDAAAAAAAAAAA6UyWKo5599tlaodPhw4ebFjLVO3XqVK1IKu5bXyzVrFBq//79tVvYsGFDbTm9uEVhVBRQRSEWAAAAAAAAAADQmSpRHBXFSqPN8NRo7dq1xc6dO2u38NWvfrVWXBXFTuVsUGWhVFkkFY4fP16cOHHiplgxsxQAAAAAAAAAANCZuosKiNmftm3bNqXHPvTQQ8WTTz5ZvPTSS7UCqMcff7xYsWLFjcKoKJQqbyH+Hrddu3YVn/jEJ1JfBwAAAAAAAAAAkKcSxVErV65MiROFUvv27Sv6+/trhVIxu1RZKFXeYlm9gwcPFn//7//9lOcEAAAAAAAAAABaoxLL6kXBUl9fX2rMKJTav39/7Xb27NlawVQsyQfTtXRkYVqsdd0b0mJdHRlKi7Wq6660WK+PfCMt1tmut9JifWjp/LRYy+cPpsS5Mpi3TRev96TFev3qvLRY54urabFeL76dFmvw2pW0WHdfeG9arMUjefvE0sRy6jPDw2mxuq/lpTIr5uW1g2cTv0N3L75edKJT53KOZ29fWlBkuWfZ5bRYvd0/Xl55ui4k7qcvn1tcdKLerrz8Zk1vXjsI9W4fuSMt1oaVa9Jinb6cd1z83rW848/pq19Pi9XVnZcPPrRwfVqsj9/1SkqcnsTzn6+9uTwt1jOvXkqLtbxYlRbr+sjFtFinR/Ly8COvL0mLtbon79jfP5RzvhjOdA2kxbpneGlarJXdeScbfzR4LC3Wh3o/lBarpysvtzz4yj0pcY72523TR1dfS4v1kaV5x8WTZ/KOi199c0VarCtF3mu8reu+tFirl7wrLRY06k28rnT9t//XtFiL/uwvpsUauO0DabEG85qJYnA4r70/fy1vw774rk0pcf7Wf3i6yPL2PXnH/u//mb+SFmv1YN5n+ME7864rrer/Tlqsy4vflxbr7p5zabHeLPKuIwwlfq+XXH47LdbpkZwJSMLbl/KuY8/r+dGKThmGzp5Oi3XPgX+REueFM3nnsrddzdu5VizIy59PDuS9xvdv+3RHfheXj+T1R8yf35nX/aumEjNHbdq0qThy5EjL4sfsUQqjAAAAAAAAAABgdqlEcdSuXbuKEydOFK+8kjPqEwAAAAAAAAAAmP06ojjqYx/7WPHII48Uv/7rv168/PLLk378hg0bivvuu6/YsWNHS7YPAAAAAAAAAACYfTqiOOrw4cPFoUOHij179hTr168v1qxZUyuW+s3f/M0JF0vt37+/OHbsWPHcc8+1fHsBAAAAAAAAAIDO1xHFUevWrStGRkZu3AYGBmrFUo8++uhNxVK/9Vu/VZw7d65pjK1btxaPP/54sX379uIrX/nKjL8GAAAAAAAAAACgs3REcdTKlStrP7u6um7cQmOxVCybt2rVquKBBx4oPv3pT99SLLVv377iox/9aK1QSoEUAAAAAAAAAADMbR0zc1Spfgap0Yql+vr6iqeffvqmYqm9e/fWCqK+9KUvFTt37qwVSH3uc59r46sCAAAAAAAAAACKuV4ctXr16hv/3r9/f+22a9euYu3ataMWS9X/PYqlnnrqqVpBVBRLHT9+vPb33bt3Fx/60IeKr33ta219fQAAAAAAAAAAwMzrLTpoWb2YQSpmfQrlz7NnzxZHjhwpDh8+XPt58uTJG48rZ5QKUQxVOnHixI0CqmPHjhUbNmyozTL18MMP1wqoli9fPoOvDgAAAAAAAAAAmLPFUevXr79leb3SihUrik9+8pO122SKpcrfy9mlDh48WLuFKJaKIqnNmzcrlgIAAAAAAAAAgIrq7aRl9coZpMYy2WKpZrNLxbJ7MbtUKYqyokhq27ZttcKp++67L/X1AQAAAAAAAAAAc7Q4KgqTRps5ajxTnVmqfhm+vr6+2v2efvrpG0VaZbFU/FQsBQAAAAAAAAAAs09HFEdFgdPw8HBarOkWSw0MDBSHDh2q3cpiqU2bNt0olnrwwQdTthUAAAAAAAAAAKh4cVQrTbVYqr5gKoql4r5xK+3YsaP44he/OGOvAwAAAAAAAAAAmJzKF0dNpljq2LFjxYkTJ266/2izSx08eLA4c+ZM8Tu/8zszuPUAAAAAAAAAAMBEzbniqIkUS0WRVDmz1GjFUlEoFfcBAAAAAAAAAAA605wvjmpWLLVly5babbxiqfI+AAAAAAAAAABA51EcNcliqXD06NHaT8VRAAAAAAAAAADQuRRHTYGiKKZjfldPWqyhkZG0WOe7LqTFGi6G02Ld3v1AWqzVIyvSYnV3DaXFujLUnRJnQW/e+/7W1Z6OPNBcLi6nxbo4+HrRiS70nk2LtbrrHWmxrozk7V+Lu3L2+bCwJ2+7EpvU4q5F19JiLZ1/PS3WK2cXpcX6vQs5++pP9C4uspy9Oi8t1ntWXUqL9eDqvGPs25cXpMWa1/2j5aJT5O2mxeJiWV4wqDMvMQ//wYW89uYHQ1fSYp0feSstVk/P0rRYC3pWpcXacEdernRhcH5KnHndeUnEhcG8/fQD3fekxTox/M20WJcufzst1nfm5e3z83vXpMX6ieEPpcW63pWX7z6Q+F28MpR3Tnz7wrxE4i8UD6XFeu+qgbRYf/Tm8rRY/+jtP02J856uDUWWoeG885+7F+fFujPxvOwfvbIkLdbaeTnHn3Duel5OcndX3rEfGg0lXnNZsO2vpcW6sizv2tnVq3nHxovX847/Q3mhive/8Qdpsf7D/Jy8t6s7L39ePC/vmuXS+XmxzibuWz1dedeCLtz23rRYZy/nvcYFvXnHs57EtmvForx94txg3rnLXb152zW/Jy/W3Rf60mJd/4v/TVqskUs5++qdS/PywVUL89rBc1fzDhov/CDv+s2CxP303Svyrq93DeWdy86/8EparGLx+/JiVUzengQAAAAAAAAAANBBFEcBAAAAAAAAAACVpDgKAAAAAAAAAACoJMVRAAAAAAAAAABAJSmOAgAAAAAAAAAAKklxFAAAAAAAAAAAUEltKY769V//9WLz5s3FZz7zmeLll19uxyYAAAAAAAAAAAAV15biqM9//vPF8ePHi3379hXr16+vFUp97nOfK86dO9eOzQEAAAAAAAAAACqoLcVRBw4cKLZs2VKMjIzUblEotXv37mLVqlXFxz/+8eK5555rx2YBAAAAAAAAAAAV0pbiqA0bNhSHDx8uBgYGarNIxe9loVT8ffv27UVPT0/xqU99qnj++efbsYkAAAAAAAAAAMAs15biqNKKFSuKXbt2FceOHSv6+vqKxx9/vFi7du2NQqmDBw8W27ZtK9asWVM89thjxYsvvtjOzQUAAAAAAAAAAGaRthZH1YuiqH379hUvvfRSbZm9nTt31oqnokgqZpjav39/sXHjxuKBBx4oPvOZzxQvv/xyuzcZAAAAAAAAAADoYB1THFXvoYceqhVD9ff315bZ++QnP3ljNqmYYSqKqNavX19s3ry5+MIXvlCcO3eu3ZsMAAAAAAAAAAB0mI4sjqq3ZcuW2vJ6w8PDxYEDB4qtW7feKJSKGaZiWb5Vq1YVH//4x4vnnnuu3ZsLAAAAAAAAAAB0iI4vjqq3ffv24stf/nJtmb0nn3yy2LBhw41CqZhhKv5/T09P8alPfap4/vnn2725AAAAAAAAAABAG82q4qjSihUrit27dxfHjh2rLbP3+OOPF2vXrr1RKBUzTW3btq1Ys2ZN8dhjjxUvvvhiuzcZAAAAAAAAAACYYbOyOKpeFEXt27eveOmll2rL7O3cubNWPBVFUjHD1P79+4uNGzcWDzzwQPGZz3ymePnll9u9yQAAAAAAAAAAwAyY9cVR9R566KFaMVR/f39tmb1PfvKTN2aTihmmoohq/fr1xebNm4svfOELxblz59q9yQAAAAAAAAAAQIv0FhW1ZcuW2i08/fTTxaFDh4ojR47Ufo8Zpnbt2lW7xfJ7jz76aPHLv/zLbd5i5oqFXV1psc4XQ2mx7i5WpcX6YZFXePiu7uVpsRZ1j6TFGhweTot17mpOU3xlsKfIMlBcSYv1/ZFvpsXqKvJe4/DI1bRYPd2L0mJdT3zvv118Jy3WT3a9Jy3W3YuvpcVaNn8wLVZ3V14bsWbR9bRYf/T6yrRYbw3lbddr1/4gJc7CYmuRZfG1vO/i+5ddSIt1/7I302KduWdeWqxXLixIi/XaD9+dFmuoyPsuQr2lXXljg74x9HparN5iflqs6yMX02L9paU/lxbrzaR8NwyPnE2L9b3LS1PinEl8fd8bzjv+fH/oq2mxBhO3q6sn73jdnZiHD43k5eHfGvlaWqxfWPSTabEW9WaeA+Udry8nnsv2JOb0/+AHebnzm0N5+8TV899IifONZZeKLCvP/fm0WI+999tpsd77/q+nxVrzBx9Li3X2et4+P/T9NWmxXruet89Do568S+LFm/PvSIt1+ULeft+VeN3/vqI/LdYPevPaiWIw7/366V9cX3Saa0N51/wzJX59igW9XR25zyeGSm1vll99Ky3WQNftabHOXMnrGzx7Ne8c4bun8/LLn7rrvrRYIwN5/RG3L845/7+YmHb1X87bH+779r9Mi1X8hf8xLdTtp46nxbptIK/fbHjRirRY55e/Ky3W6rRI1VOpmaNGE0VQX/7yl2vL7D355JPFhg0bbswoFTNMbd++vejp6Sk+9alPFc8//3y7NxcAAAAAAAAAAEgwJ4qjSitWrCh2795dHDt2rLbM3uOPP177W1kodfDgwdpMUmvWrCkee+yx4sUXX2z3JgMAAAAAAAAAAFM0p4qj6q1du7bYt29f0d/fX1tmb+fOnTcKpWKGqf379xcbN24sHnjggeJzn/tc8fLLL7d7kwEAAAAAAAAAgEmYs8VR9R566KFaMVQUSsXsUbHMXjmbVMwwFbNNrV+/vti8eXPxhS98oTh37ly7NxkAAAAAAAAAABiH4qgGn/zkJ4sDBw7UZo/6/Oc/X2zYsOFGodSJEyeKXbt2FatWrSo+/vGPF88991y7NxcAAAAAAAAAABiF4qhRxBJ7UQh17NixWqHUk08+WVuKryyUOnz4cG2GqZ6enuJTn/pU8fzzz7d7kwEAAAAAAAAAgDqKoyZYKBVL67300ku1ZfYef/zx2t/KQqlYim/btm3FmjVriscee6x48cUX273JAAAAAAAAAAAw5ymOmqSYPWrfvn1Ff39/bfaonTt33iiSihmm9u/fX2zcuLF44IEHis997nPFyy+/3O5NBgAAAAAAAACAOUlx1DRs2bKlVgw1PDxcHDhwoNi6deuNQqmYYSpmm1q/fn2xefPm4gtf+EJx7ty5dm8yAAAAAAAAAADMGYqjkmzfvr348pe/XJs96vOf/3yxYcOGG4VSJ06cKHbt2lWsWrWq+PjHP14899xz7d5cAAAAAAAAAACoPMVRyVasWFErhDp27Fht9qgnn3yythRfWSgVS/FFIdVtt91mJikAAAAAAAAAAGghxVEtFEVRsbTeSy+9VBw/frx4/PHHa8VTUSTV399fK6ACAAAAAAAAAABao7dFcWnw0EMP1W779u0rjh49WvvbRz/60XZvFgAAAAAAAAAAVJbiqDbYsmVLuzcBAAAAAAAAAAAqz7J6AAAAAAAAAABAJSmOAgAAAAAAAAAAKklxFAAAAAAAAAAAUEmKowAAAAAAAAAAgErqLSrs5ZdfLk6ePFmsW7euuO+++yb12C996UvFr/3arxXbtm0r9uzZU7z73e9u2XYyt6xffjktVu/5RWmxbl94PS3Wq5fyYr01fC0t1vsX5NWDXhvKi7V60XBKnOvDedu0qJifFqu3a2FarGvD59NiDQ/lfRdHhq+mxRrueWdarO6iJy3W4EhaqGL5grw24t6lee/9lcTv9YKenO91ODk8kBbrWteVtFjDQxdT4pwr+os896RFWjkvr424MpjXpr56KS/W+Wt5pwI/tXIwLVZ3kdjgQJ2fvutsWqwfvr4iLdb98/JypdeubUiLde56Xhtxx4K8NmJed14bcTXp2J8VJyxIzMPnd+ftp8MjiTnESF6eNDySlwuu7n1fWqzhIu81Xks8z9uw5lxarGW9Q2mx+s7ntYMvDSxJi/X20HfTYg0O5r33I0n71/XreXn4+jWX0mLd/+5vpcV641Te9dwX3lyWFuuOxXnXuu5bnvfeb1yUd64OjVa99SdpsfqWvT8t1kji6ed98/Pypa5Lee3EgkVdabGufON4Wqx7fu6DKXEG7/3JIstQXgpXzO/Je9/zzhDifCpvu3pH8s7zVizIO/8cyfxi9+S9+yu/+lxarIWbPpEWa+By3uf4cn9eXvLT9+adzw4O5+0TvUmnZz2J09esHX4zLdZ//fN702L97YE/TYv1jbfy9q13Lsz7Xl9YcldarOWn/jAtVvGTW/JiVUwlZ476zd/8zeKBBx4o1q9fXytuip+PPfbYpGJs3bq1+MQnPlF88YtfrBVXfepTnyrOn8/rlAcAAAAAAAAAAFqrcsVRH/vYx4pdu3YVfX19terg8rZ///7i+eefn3CcFStWFPv27Sv6+/uLZ599tvjyl79crFy5svjKV77S0u0HAAAAAAAAAAByVKo46uGHHy6OHDlSK4QKXV1dtVspltibiu3bt9eKpD760Y/WZpRSIAUAAAAAAAAAAJ2vMsVRX/3qV4tDhw7VCqN27txZPPTQQ7fcZ9OmTdN6jsOHD9cKpKJYyhJ7AAAAAAAAAADQ2SpTHLVnz55i48aNxa/+6q/Wfj948GCxfPny2pJ6Yffu3cWDDz447eeJAqlVq1YVO3bsmHYsAAAAAAAAAACgdXqLiswadfTo0VrhUmndunXFwMBAcerUqWL16tXFihUr0p4vCq0+/elPFy+//HJx3333pcUFAAAAAAAAAADyVGLmqFhKL8SSd43Wrl2bWhgVdu3aVYv59NNPp8Zlao4cOVKbyStmDotZvbq6uor169cX27ZtK5566qnizJkz7d5EAAAAAAAAAADaoBLFUceOHSu2bt06o8+5adOm4vjx4zP6nNwsCp/KIqgokIrZwvbu3Vsrltu+fXvR399fW24xCqbiPidPnmz3JgMAAAAAAAAAMIMqsaxeFL1s3rx5Rp9zw4YNxZe+9KUZfU5+/HnXFzvFModRFLVy5cpb7htFU48++mjtZxRS7du3r3Z/AAAAAAAAAACqrxIzR8WyaVH4MpPWrFljJqI2OHHiRG35vPK9P3jwYK3gqVlhVIgZxfr6+m7MLBYzSUWxFAAAAAAAAAAA1VeJ4qgojDl9+vSMPmcU3IxWkEPriuC2bNlS+xnK5fMm4vDhw7Vl98LTTz9dW5IPAAAAAAAAAIBqq0RxVBS9xLJpM+nAgQM3im2YGTt27LhRGBXLGu7atWtSj49iqlLMIGXmLwAAAAAAAACAaqtEcdTatWtry62dP39+Rp7v6NGjtSIdxVEzJ4rf6gvg9u7dO+kYsbReFFXVF1sBAAAAAAAAAFBdlSiOeuSRR4qRkZFi586dM/J8jz76aNHV1VV7XmZGzPRUiuUMJ7qcXqP6zywK6uIGAAAAAAAAAEA1VaI4qiyUOXjwYPGFL3yhpc8VxTXlcmyf+MQnWvpcNC9iihmgpqqxqKp+qT0AAAAAAAAAAKqlEsVRIWaNitmjdu3a1ZICqXPnztUKo6IAK2aNiudhZjQWMG3evHnKsRqXQnz66aenHAsAAAAAAAAAgM5WmeKop556qrbcWojCpY9//OPFK6+8khL7t37rt4q1a9cWhw4dqv0ez7Nv376U2IzvwIEDN/2+YcOGacVrLJAqP1cAAAAAAAAAAKqlMsVRK1asKJ588sna7FHh8OHDtSKYKJJ6/vnnazM/TcbLL79c/Pqv/3rxwAMPFDt27CgGBgZqsWPWqGeeeaZYvnx5i14J9WIJwzNnzoxZ3DRZjcVVsa8AAAAAAAAAAFA9vUWFxIxRfX19xWc/+9laEVMUM0XhS1n8EkU1URgTP9esWXNjpqkQBTjx2CjGOXbs2I2CnLLYqoy3e/fu4hOf+ESbXuHcc+TIkVv+Nt3iqNWrV4/7HK00XHQlxspzfThvu94e7kuLtbprejOF1bt4vSctVlfXj9qGDG9eXJgS58pQXr3r4q68WLeNvLMjS3p/uGBeWqxrw2fTYg2OXEmL1d2V9xq/PvLHabEG+t+TFuuDV5alxVq38mLRie4ofpyvTNe1kaG0WG/NvyMlzs8svLvI8uF3DKTFWtJ7LS3Wty/clhbr9OX5abEGruTFujKY10CvXpj33kO9b5zOO2Z8cFFeJn5tKC+vfPHSP06LtWbJz6TF+rl596XF+t65RWmxXkvKw79/PidOGC7ycsH5XUvSYg333HwePR1diTnq8PDVtFjXE9/7a8Pn02L96wvfSov15ZN5+8TWhT+XFmvlgsG0WB+8fXKDI8fy/R98KC3WnYvz9vvDV59OifOBhX+xyPLgbTcPbJyO65fy2vnnvv8TabHevrwgLdZrF/JeY093Xh5x4VqlugroMC/OT7wWNPJ2Wqwfzsu5thFeG8zLCYd670qLdcf8vGviC/7Sp9Ni9S5akRLntYt5eURmj8u1oa6OPGfMNK87s78lLVRxJfH9utCdN1HG2ff9pbRYvZfy9vuXz1xOi7Vlfd410EW9eTvFbYnnZ28M5uwT/Ymf4ZIVeceM//qv/Zm0WL/1zbfSYn343pxjRnh18bvSYi1PbJ7fuPfDabHuSYtUPZU744nl7qKwKWZ3ioKm+gKnsvhpPOX9Q32MPXv2FE888UTLtp1btWJWp/qiuDCRfQIAAAAAAAAAgNmnMsvq1du/f39x4MCBWkFTuRReeSv/Ntat2f0PHjyoMKoNGguXGgubpiJmDWt04sSJaccFAAAAAAAAAKCzVLI4Kmzfvr146aWXik9+8pM3CpxCfeHTaLdQPibixIxTEYf2F0c1Lok3Fc0KrMweBQAAAAAAAABQPZUtjgrr1q2rzfgUxU07d+4sVqxYMaGZo+J+u3btqj0uZqBau3Ztu1/KnBVLJM4ExVEAAAAAAAAAANXTW8wBUdwUS+3F7dSpU8WRI0dqhU9ReNPf31+bjShmE1q/fn2xdetWxVAdXBiVsaxes9mnTp8+Pe24AAAAAAAAAAB0ljlRHFUvCp9iFik6XxSuzRQzRwEAAAAAAAAAVM+cK45i9pipJfVm2vGT/6L46sv/ckqPfei+v1BsXPcX07cJAACq7pvf/+fFt1797Sk99n33/lLx/nf+5fRtAgCAuWD/bzxZPPP/fGpKj9353+4uHv0bv5a+TQAAzC3d7d4A6ISZo6paiAUAAAAAAAAAMJcpjmLOWblyZbs3AQAAAAAAAACAGaA4CgAAAAAAAAAAqCTFUcw5ltADAAAAAAAAAJgbeos55sUXXyyOHDlSnD59ujh58mStUCaWWVu3bl2xZs2aYuvWrcWDDz7Y7s2kKIrVq1cXVbRx3V+s3QAAgJnz/nf+5doNAACYWY/+jV+r3QAAoF1650pB1BNPPFEcOnRoQvePYqlHHnmk2L17d3Hfffe1fPsAAAAAAAAAAIB83VUvivrYxz5WbNy4sVYYNTIyMqHbwMBAsX///mL9+vXFY489Vpw7d67dL4UWL4kXBXEAAAAAAAAAAFRLZYujPvvZz9aKomIJvbLoqaura8K38jFRJBVL7n3lK19p90uac1pVsNTf33/L3+IzBgAAAAAAAACgWipZHBWzRf3ar/3aLUVRYSIzR4X6Iqkoptm6dWvxuc99rs2vbG6ZyYKlNWvWzNhzAQAAAAAAAAAwM3qLinnkkUeKw4cP1/5dXxBVzkS0adOmYsOGDbVimPh99erVteKnWK7t9OnTxYkTJ2qzTZXqY+zevbv2mF/5lV9py2ubi+L9rl9Kr9msTxlL81lWDwAAAAAAAACgeipVHLV3797i4MGDNxU0RdHLrl27akVTDz300IRjffWrXy0+//nPF88880zt93IWqYgVMxp95CMfadnr4MeieK2+mKlZYdNkRRFcoyiaAwAAAAAAAACgWipTHHXq1Kli3759N4qYoigqiqUef/zxKcWLQqr9+/fXbnv27Ck++9nP3oj96KOPFt/5znfSXwO3ilm+Tp48mRqzWYHVTC7h96/PvpkW6+cW3Z0Wa2HvUFqstd0PpsVa3Z3XTM3rznuNaxZdS4v14G0XUuKcH+wpsrx2cX5arPn9S9NifXU4r+2d17UkLdalwVfSYl3pzfsch0eup8UaHJx+cWrpWyPfSov1wyKvvfmpK+9Ji3VXYhvx7sWDabEuXs/bv5YPbkuJc/+qs0WWDy7Pi3VtOO/488Lby9Jiff/8orRYS+flHRffGvzRTK0pruQdg6Devzr/22mxHl79i2mxli/I+y7ee+0/Tot1X9cdabEeumP6MwCXXjm3MC3W7p/8akqcP3hrbZHlO+cWp8V69rXb02KdG8rLd4eHL3dkrPPFy2mxRoavpsUauvZWWqzrQ3nb9XwxLy3Wzwz/ubRYb13OyyOW/WjsZYorw3mxli7bmBLnv3xgoMjy8Pv+IC3Wop/JO/d87YW8/eFi4jWXnq683Pmb1/LOgeZfW5AWCxqtWJD3HTq/6K60WHlXB4viymBiY9+TdxB6/b/7q2mxVn72H6bF+h8Xvz8lzv/2rX9cZLl+7wfTYp06n7c/LJ3fnRbrwvW87bptUd61s2tDecfGed1535/EUMWaxPfr/1gwKcXH7l+VFusH5/P6I964mHdN/PKCvGuzb13Mue7/4LcOFVk+94mn0mJ9/3Le+/53/pe8axKZLicer89dy7umd/5q3nbdk/e1rpy8I2qbRcFSiOKlKKiJYqmpFkY1iqKrl156qbjvvvtqv/f19RWf+9znUmIzts2bN9/yt+nOHtW4NF8URllWDwAAAAAAAACgeipRHBWFUEeOHKnN7LRjx47i2LFjxYoVK1KfIwpojh8/XptRKgqw/u7f/bup8Wlu69att/xtujNJNT5+JmeNAgAAAAAAAABg5lSiOOrQoR9NPRczRj377LMte56YXejo0aO1wquYvej5559v2XNR3PhMG0XxW2ZxVBTUAQAAAAAAAABQPZUojjp8+HBt1qhnnnmm5c8VBVIHDx6szR4VP2m97du33/R7LGs4VVHU1rgs38MPPzzleAAAAAAAAAAAdK5KFEfFTEAxw9CDDz44Y0u9xVJs053BiInZu3fvTb/HEopT1fjYKLyKgjcAAAAAAAAAAKqnMsVRmzZtmtHn/OQnP3nL8my0RhS+1S+vd+LEiWnNMlbv0Ucfnda2AQAAAAAAAADQuSpRHBUz/8z07D/333//LcuzMXOzRz399NNTilP/uCi4ilnAAAAAAAAAAACopkoUR61evbothUqxtB4zI5a/q589at++fZOO8dRTT930+8GDB1O2DQAAAAAAAACAzlSJ4qgomjly5MiMPmdfX5/iqBkWxUzlDGGxpGFjsdNYonhuz549NxVX+fwAAAAAAAAAAKqtEsVRDz/8cK1Y5pVXXpmx5zx06NBNMxmN58UXXyyef/75lm5T1UUx09GjR2/8HsVO8TlMpDBqy5YtNxVG7d69u2XbCQAAAAAAAABAZ+iuypJrK1asuGlmoFb60pe+VJw6darYu3fvhB/z0Y9+tPiFX/iFlm7XXBAFacePH78x69OOHTvGnEHqxIkTxcaNG2s/g8IoAAAAAAAAAIC5oxLFUeHJJ5+sLbv2la98paXPc/bs2WLnzp21gqzly5dP6rFRwEVOgVQsaxhFTrHMXhTFrVq1qnj00UeLp59+unaLv0VRVNxiVrH4vMrHAAAAAAAAAAAwN1SmOGrXrl3Fgw8+WCuCaeXyerE82+rVq4tnnnlmUo+Lpd3IFbNADQwM1Iritm7dWhw7dqxWFFUWSYUohoqZpuI+5WxTAAAAAAAAAADMDb1FhRw9erQ2U1AUwRw5cqT4yEc+khb75ZdfLrZt21b09/fXim0mM2vUV7/61bTt4FZREBc3AAAAAAAAAACoXHHUuXPnaj+7u7uLQ4cOFTt27KjNJBQzCEXRTMz0NFWxJNuzzz5bixtiBqKYBerFF18c97FRSBX3jdmMAAAAAAAAAACAmVWJ4qiVK1cWXV1dN/1tZGSk2L9/f+2WIeLFc0Th1VQeCwAAAAAAAAAAzKzuogJiGb0oQKq/RSFT49+mcyuLr6bzWAAAAAAAAAAAYOZUduao0IqiJIVOAAAAAAAAAAAwO1SiOGr16tU3zRYFneyN84fTYvV3/0parPsWXE+L9dHbB9Ni3bn4Qlqsed3DabHuXXQlLda7Fp1LiXPq0soiy9oll9JiPbDiclqsNa+vTYt15NKptFjLF7w3LdaloTfSYnV15U0Q2d29IC3W4JW302KdKV5Mi/Xv5r2SFus9wz+fFutnVl9Li7V6YVqo4uzVeUlx8tLRk5eWpsW6OpT3/fn66WVpsRZ15+W637kylBbrpaF/nxbrnuKn0mJBvcHLr6bF+vrFtFDFJ9+Zl1ceuP/NtFgXBs+mxbp94fm0WOdvX5QWa9FTOTnvRz/zzSLLL//kW2mx/qszeecHO3/3F9Ji/c6F306L1du7Oi3W0FDOedmP5OURXb15+c3I0NW0WJcvfD0t1uGuP02L9YHl/2larI/dkXedZNXCvFiD39uYEud7F88UWX7vVM42ha6X8/Ld4ZG8Qa4Le/KuKf3u1a+lxbp4tS8t1sqFH0yLBY1uX5x37v/Gpbxrz/e99OW0WJ/5c38rLdZf//PvTov1e//htbRYj//aN4pO839/8K+nxXrtSt6+lelvvfHHabF6uvOOjeeu5l1Xmt+Tt13diZNc9CTGWpD4Gq8N5eUlF67lxbprSW9H7qvL+n4/LdZbKzalxOn+0C8VWR7/3i+mxRr5k99Ni3X+H/wPabGK/+x/Sgt1dTDvfGPlwp6ObG+YAzNHlTZs2FDs27evttReFE21U39/fzEwMFDs2rWrOHHiRFu3BQAAAAAAAAAA5ppKFEdFIVTp+eefL5YvX150ghUrVhRr164tDhw4UNx///3t3hwAAAAAAAAAAJhT8ub5bqM1a9bcKJLqlMKo0Yq3AAAAAAAAAACAmdFdpWX16pfX6zSdvG0AAAAAAAAAAFBFlVhWb/Xq1Tf97EQjIyPF2bNn270ZAAAAAAAAAAAwZ1SiOOqTn/xk0dfX19HFUSdOnGj3JgAAAAAAAAAAwJxSieKosHbt2qKTdfr2AQAAAAAAAABA1XS3ewMAAAAAAAAAAABaQXEUAAAAAAAAAABQSYqjAAAAAAAAAACASuqY4qhPf/rTxWc+85liNti7d2/x2GOPtXszAAAAAAAAAACA2VActX///mLfvn3FbBDbGjcAAAAAAAAAAKBzdUxx1GyzcuXKdm8CAAAAAAAAAAAwBsVRU3DmzJl2bwIAAAAAAAAAADDbiqPOnTtXdLKzZ8+2exMAAAAAAAAAAIDZWBx19OjRdm/CmI4cOdLuTQAAAAAAAAAAACagt+gwv/qrv1qcPHmyeOihh4pOc+LEieKJJ55o92YAAAAAAAAAAACzsThqYGCg2L17d9GpRkZG2r0JAAAAAAAAAADAbCyO6urq6ugCpE7fPuaWV4cvpcXqOb84LdYDqy6kxVrcM5QWa9X860UnOvzmO1LivHx2UZFlybzBtFh3LbmWFmvrvafTYi14/d1psf7N+dfSYi3reWdarCsjZ9JiXT3/jaITLV34vqITDRR5++qFa6vTYr17xeW0WJcHe1LiXLyel45+60zesezCtY5Lk2u+OZj3vX5z+Ltpsa5efikt1htL8j5HaJW3ih+mxfr//eBdabGW9eblzmsW5OXOS3rz8sFMz/4nOTNW/52T30+JEz6++OfTYv2Nn/hWWqwvbv9iWqxfO/xLabGe+eEfpsW6e8GfTYt1ITEXHDj7e2mxurry8puVy382LVZXV3darFNDx9NiFcUH0yI9uPJcWqzD3885P/h2/7Iiy3f6l6bFGhrpSos1v2c4LdbvX/t2WqzL1/OuIQxdyctJzvfk7RPQSkvm5R033n7/x9Ni/cY/+0FarMGtu9Ji/eRzT6XFKhKP2U8kXWt87ptvF1m23LYkLdaxn/qP0mL9+p15OcnfO5OXK70xuCAt1urE/ojM/bTo7szrg92Jr3FR4kt863Le53jvpe+lxTr2N/9uWqwr+w+lxOm7lnf989VzV9Ji3Xb/X0yL9Wfe99Npsd4cyqvNWLEgp18jLOzJO3dhZvR2agESAAAAAAAAAABApYqjOnlWJkVbAAAAAAAAAAAwe3RccdS2bduKFStWFJ3mzJkzxcmTJ2s3AAAAAAAAAACg83VMcdSBAweKPXv2FIcPHy527NhRPProo8VHP/rRotPENn72s59t92YAAAAAAAAAAADj6C46xPbt24u+vr7i+PHjxapVq4qtW7cWa9asKT7zmc8Ur7zyStEp/ov/4r9o9yYAAAAAAAAAAACzqTiq9NBDDxWf//zni+Hh4eKJJ54ovvzlLxfr1q0rPvaxjxXPPfdcuzevWLt2bbs3AQAAAAAAAAAAmI3FUfV27dpVHDt2rPjud79bPPjgg8Wv/Mqv1GaT+vSnP1187Wtfa/fmAQDA/5+9fwGSK0sPw8ybVYVnP1AApnve5DQwPeRQw9FMARjRpEhaQkGUKYuriCmgZdnyOpYBIBgOrb3hFSBwvavhSiIMSFyv17shAk2utV6HqAag4S5XsjhTaJImZVNSozAPDilyZgrd857pblSh0Q+8qio3TjaykI9bhazMP183vy+igKqbN/88mXnvuf/J/O+5AAAAAAAADLCBLo6qSjNHnTlzJltYWMjOnTtXufxemmHqwIED2a/+6q9mN2/e7Gl7Jicnsxs3bvT0MQEAAAAAAAAAgAIWR9WamZmpXGpvcXExO3z4cOXSezt37syeeeaZ7Ld/+7d70oZyuVwpkAIAAAAAAAAAAAbX0BVHVe3YsSM7ceJE9tWvfjX7zGc+UylYOnjwYPb0009nv/RLv9TV2aRSYdb169e7Fh8AAAAAAAAAABjh4qha09PT2YULFypFS3/zb/7N7Nd+7dcqs0n91E/9VPbrv/7r/W4eAAAAAAAAAADQB4UojqqdTerYsWPZlStXsq985SvZBz7wgexnf/Zns927d2c///M/n33ta1/rdxMBAAAAAAAAAIAeKVRxVK09e/Zk586dyxYWFir/p4Kpp556Kjtw4ED2q7/6q/1uHgAAAAAAAAAA0GWFLY6qNTMzk332s5+tFEr9+T//5yuX3hsfH89+7ud+LvvCF77Q7+YBAAAAAAAAAABdMBLFUVWTk5PZmTNnKkVSn/nMZ7Lr169nH//4x7Onn346+6Vf+qXs5s2b/W4iAAAAAAAAAAAQZKSKo2pNT09nFy5cyBYXFyszSf3Df/gPs507d2bPPPNM9tu//dv9bh4AAAAAAAAAANChkS2OqtqxY0d27Nix7Ktf/Wr2wgsvVAqkDh48mO3evTv7+Z//+eyll17qdxMBAAAAAAAAAIA2jHxxVK2pqansl3/5l7OVlZXs3Llz2Wc/+9ls79692Sc+8Yns13/91/vdPAAAAAAAAAAAYANK5XK5vJE7jJLPfe5z2dGjR7OrV69mpVKpsuz48eOVmaY+9rGP9bt5DKmtP/xXwmI9snlPWKynSx8Ji3UruxsW6we3bgqLtWV8OSzWxFhc13l7aTwkzhdvxb3uX1ueC4u1czxuOz38xONhsZ7ecSss1v/87Z1hsX7jjbjXfmnlrbBYd974o2wQlcY2x8Xa9FhYrLGxbWGxPrjlL4TF+nO74vqu1+/G9M83705kUTaPrYTFenTzUlisW0H9fPLHb4aFyl4pvRwW67tvfDYs1o5HPhEW65W5vx8Wi+G3+YcOhcV6ZNsPhsXak300LNZjpbjc+YktcbnzF+7czAbRD23aERLnM299JouyfOe7YbG2bvtQWKxTT304LNaP7X41LNY/fvH9YbF+9Rv/Q1isiS3vCYt1760Xs6Ib3xr3epWXXguL9cOP/EdhsZ75wOthsd5aijnX9csLj2aD+HlLZB6+bSJufPD/evk7YbHGsrjxwSs3/kVYrMd3/FhYrIW5/yYsFsWw+EbcZ1SRllbiPid5vBT32ezictznXVe/+0ZYrDtLcf3qR98Zcxx6615cm3Zsieuf73+lGOLdb30jLNb1f/LLYbF2/Kf/VVis77wZd/zftTXufdw8HvhGBloO/GZ/Iovbh96IexuzrRNx87tsuvL/CYu1vBjzeerS9LFsEI0FbvJb/uR3wmJ97b1xeequbRMD2ddH2vno9n43YWCZOarBzZs3s3/wD/5B9vTTT2f79++vFEglqYYs/aQZpfbt25f91b/6V/vdVAAAAAAAAAAAYB1xpXFD7tOf/nSl8Ony5cuVv2sn1KrOGlW73IRbAAAAAAAAAAAw2Ea6OOqll16qFESdP38+u3HjRl3RU15BVJIuqZcurffxj3+8Dy0GAAAAAAAAAABaNZLFUb/yK79SKYq6evVqS7NETU9PVwqiPvnJT/ahtQAAAAAAAAAAQDtGpjjq85///OosUa0URE1OTq7OEvXUU0/1ocUAAAAAAAAAAEAnCl0cdfPmzUoxVCqKunbtWktFUTMzM5WCqIMHD/ahxQAAAAAAAAAAQJRCFkf91m/9VqUg6tKlSy0VRO3Zs6dSEJVmitqxY0cfWgwAAAAAAAAAAEQrTHHUSy+9tHrZvBs3btQVP+UVRCXVy+Z9/OMf70OLAQAAAAAAAACAbhr64qhPf/rT2enTp7OrV6+2NEvU1NRUpSDq6NGjfWgtAAAAAAAAAADQK0NZHPX5z39+dZaoVgqiJicnV2eJeuqpp/rQYgAAAAAAAAAAoNeGpjjq5s2blWKoVBR17dq1loqipqens5MnT2YHDx7sQ4sBAAAAAAAAAIB+GvjiqN/6rd+qFERdunSppYKoPXv2VGaISjNF7dixo2uFWsnjjz/elfgAAAAAAAAAAEBBi6Neeuml1cvm3bhxo674Ka8gKqleNu/jH/9419uXLtM3NjaWLS0tdf2xAAAAAAAAAACAAhRHffrTn64URV2+fLmlWaKmpqYqBVFHjx7teVu7NSsVAAAAAAAAAABQsOKoAwcOZFevXn3oLFFp1qbqLFFPPfVUz9v54osv9vwxAQAAAAAAAACAIS6OmpubqxRDpSKovKKo6enpSkHUJz/5yT62MssuXbrU18cHAAAAAAAAAACGrDiqqloglezZs6dSEJVmihqUy9idPn26300AAAAAAAAAAACGsTgqOXz4cHbq1KnsYx/7WDYoPv/5z2dHjx7Nbty40e+mAAAAAAAAAAAAw1gcNTk5mV27dq1SiDQIUjHUwsLCalFU7cxW0I4tm96VDaKvZS+GxdqSbQ+L9YXbj4TFelf2eFis18v3wmKtlFZC4tzMFrMod++9EhZrbPyDYbF+7+VtYbEe3bQcFmvTeMx7mJTLce16YuLDYbG+lf1xWKzSlp1hsbZteSos1u273w6LtbL8Zlis+Xv/U1istxb2hcV6LKhPvZ59M4vyvux9YbF+aNODyzx36u7yWFisr5ZfCIu1OXssLNbYprj9eim7HRYLam3a/O6wWJtLcfvPtfIXw2JlgUPVd955OizWtiwuh3ss2xIW62v3gnL6clwuWBqPG/88Mh439vwHX4s7Xr9r65NhsW7c3jSQx7LHN8ftP9ffihurl7K4nOT9kzNhsb5zby4s1vLy62GxvvjGPwqL9Qf/Nu5zksntUyFxXrv9h1mU9279ibBYf+3dcf387cA8/Oa9+bBYE2OPhsUa3xLXpy6tvBUWCxpFfqWybSJuvP7GSlzDXl2Ky0u2B34m8UNPxB2DntgW95Xi3aDXfjlw49q1bTws1q2luDHCVybeGxbrqY/+cFisr92M+45kx5bxgdu2ks3jcfvim/fitokdr38jLNbK4+8Mi7V1YmtYrDfuxr1er3zwp8NiPbo5Jr+8+0bc/rMl8Lj4vm/+flis5dfjJpzZsTWuj7gX2EdsDewj6I24EWKQxcXFbH5+vvJ/KkLq90+6nF/t3wAAAAAAAAAAwHCYGMRL6j333HPZoLl69WplNqvPfe5z/W4KAAAAAAAAAAAwjDNHnTlzJhtEU1NT2dzcXOWyfwAAAAAAAAAAwOAbuOKoD3zgA9kg+1t/62/1uwkAAAAAAAAAAMAwFkcNunTZPwAAAAAAAAAAYPApjtqgp556qt9NAAAAAAAAAAAAhq04anJyMhsWN27c6HcTAAAAAAAAAACAdUxkA2JxcTEbFsPUVgAAAAAAAAAAGFUDUxy1Y8eObFgMU1sBAAAAAAAAAGBUDdRl9QAAAAAAAAAAAKIojgIAAAAAAAAAAApJcRQAAAAAAAAAAFBIiqMAAAAAAAAAAIBCUhwFAAAAAAAAAAAUkuIoAAAAAAAAAACgkBRHAQAAAAAAAAAAhaQ4CgAAAAAAAAAAKCTFUQAAAAAAAAAAQCFN9LsBMGr2jE2Fxbq2cjUs1lg2HhZrW+mxsFh3s9uBsR4Ni/VIaVNYrNezuyFxHs12ZFFubn5fWKwd2c6wWN8qfSMs1h9d/76wWPdWSmGx3jX+Q2Gxvnnv34TFysbjtvmsvBIW6tadF8Nibd787rBYS0s3w2KNleLStTezG2Gx3pW9IyTOnWwyi7ISuG19+fXNYbFWsnJYrFLguQ13y6+HxRoffyQs1p2lV8NiQa0fHP/xsFhfXZkLi/XE2NNhsW5lcceft7K4PuId2XvCYo1lcXnXlqCPRH5861/Kovwv934nLNaO7ImwWK9kb4bF+tcvx41bbi3FjWMf3/LhsFg3bn8pLFYpMBcsbYobq3/33ufCYm0Z3x0W69Z43LZaGo97vcpLr4XFGs+i8tS4vHJh5aWwWJ/+TtyY+PvG4j4H2jwe99nGSvleWKysFPc+rmSB7YIG43EpXLYcN8TOdtxdDIv12ua4fqIc+Ry3xOVLdwJf/ImxmI3iqaXvZlFeX477TDzSO7bHvYfjH/13B3LburcSt21tmRgbyP7mkU1x7SpvfTwuVmAusRz4Pga+jdnmwIPQ3aCNIipOshx40Pj2+340LNaTTwd+flMO3H8CX6/IvuvRwD6CtXmVAQAAAAAAAACAQlIcBQAAAAAAAAAAFJLiKAAAAAAAAAAAoJAURwEAAAAAAAAAAIWkOAoAAAAAAAAAACgkxVEAAAAAAAAAAEAhKY4CAAAAAAAAAAAKSXEUAAAAAAAAAABQSIqjAAAAAAAAAACAQlIcBQAAAAAAAAAAFJLiKAAAAAAAAAAAoJAURwEAAAAAAAAAAIWkOAoAAAAAAAAAACgkxVEAAAAAAAAAAEAhKY4CAAAAAAAAAAAKSXEUAAAAAAAAAABQSIqjAAAAAAAAAACAQlIcBQAAAAAAAAAAFNJEvxsAo+aPbv+zsFiPbvlgWKzX786Hxdq55T1hsV7LXgmL9c3sXlis29nNsFjl8ko2aN4z9kNhsbZlm8Ni7cieCIt1b6UUFmuiVI6LlW0Ki/XIxPvCYr029nJYrKwUWJu9cjcs1J23vhIWq7x8JyzWUlikLLs7/lJYrMWx3w+JUw58D7dsfzos1v7xfzcs1hNb4vr5O7c/HhbreunVsFh3xt4Ki7Ul2x4WC2p98fX/LizWOx//i2Gxvn3vSlisH938U2GxJuJSpVDXVhbDYr2Z3QiJs7QSN854cjwuD//JHXF55bff/OGwWO/c/lo2iO4tvBkWa+vmuDHxW/euD2Qevrz8elisN996MSxWuRyZPQ+mV278i5A4pVLcx8JLm3aFxfrG8ufCYv3E5P6wWC/diOufv34vZiyVvHfrT4TFek/gZy7Q6O5K3Gdnj5fjPnNZeWR3WKydr14Li7X84hfDYo3viHuOK+//aFysbTtC4tydfH8WZXkp7vObR2b/YVisLR/78bBYLz/334fFesf/+m+Exfr65veGxVoO7G8iZxgZH48bZJcntoTFWhqL+/5mc+DnCJsDX6/N43Hv5FLQ9hX5/CJ96eVbYbHevRTzmUvyxuYnw2K9dS+ur3/fI3Hv4/jit8JiZds+FBerYMwcBQAAAAAAAAAAFJLiKAAAAAAAAAAAoJAURwEAAAAAAAAAAIWkOAoAAAAAAAAAACgkxVEAAAAAAAAAAEAhKY4CAAAAAAAAAAAKSXEUAAAAAAAAAABQSIqjAAAAAAAAAACAQlIcBQAAAAAAAAAAFJLiKAAAAAAAAAAAoJAURwEAAAAAAAAAAIWkOAoAAAAAAAAAACgkxVEAAAAAAAAAAEAhKY4CAAAAAAAAAAAKSXEUAAAAAAAAAABQSIqjAAAAAAAAAACAQlIcBQAAAAAAAAAAFFKpXC6X+90IGCWbfuDHwmI9/dh/EBbrK68/FxZr8tEfCYu1ki2HxVoqvxUWa/vYE2GxHskmQ+JszbZlUW5mi2GxbpVvhMWaKG0Ni/V0tjcs1vu2LYXFWrgzERbrSytfD4t1/e4fhMUql+P261JpPCzWY5v3hMV6c+k7YbGWl98Ii7Vt83vDYv3ZTVMhcRbjdp/spewbYbFeuX0lLNZTW6fDYt3O3gyL9Wi2IyzWUhb3Ri5m3w2L9b0rvxgWi+E38cH9YbF2TR4Mi7X4+r8Mi7V52wfCYq2s3A2LtXzv1bBYm7d+f1isR8bfExLnB7IPZVEWsrgxy4tL/yos1qaxR8Ni/cjEJ8Ji7X/na2Gx/uV34o6L/+beZ8JiLd19OSzW5q3vD4u1aeyxsFhPlOLy8O8sfyks1r2luHHx+HjceP1/8+SPhsT5Fwu3syi3spthsV65Fdd3bdn8vrBYO8fjttOPjMeNy76zHHe8/m7geOo7V/5OWCyK4eabt8Ji3bgd97nS7m1xnyu9dieuXZFf2i2vxMUaD5xuYbxUComzMzB/zsbjPpddXN4cFivopap4dFPcm1iaPR8W68ZP/GxYrDvLcXvQY5vjXq/HVuK21dK9uD41K8U9x+VHdofFWgnsCN+4F9cR7vyDfx4S5xs/8O9lUXYFHssiZ9V55a24z4t3b4/rnx9bmA+LdecdHwyLFdh1ZY8/Ejf+LBozRwEAAAAAAAAAAIWkOAoAAAAAAAAAACgkxVEAAAAAAAAAAEAhKY4CAAAAAAAAAAAKSXEUAAAAAAAAAABQSIqjAAAAAAAAAACAQlIcBQAAAAAAAAAAFJLiKAAAAAAAAAAAoJAURwEAAAAAAAAAAIWkOAoAAAAAAAAAACgkxVEAAAAAAAAAAEAhKY4CAAAAAAAAAAAKSXEUAAAAAAAAAABQSIqjAAAAAAAAAACAQlIcBQAAAAAAAAAAFJLiKAAAAAAAAAAAoJAURwEAAAAAAAAAAIWkOAoAAAAAAAAAACikiX43AEZNeflOWKwv3/hHYbFK49vCYr321pWwWFu27gmLdef2S2Gxbo99PSzWQimmK960aVcWZfv4O8NibSk9FhZra/ZIWKx3blkOi7V1Ii7W9uW4uuUn7r4rLNatTTfCYr15N25fXL73alisxTvfDYuVleO2ifLK3bBYt8IiZdnVUkyf8+rtz2VRSkH9afKDW386LNa7x7aGxRorPR4W68bySlisz9+bDYtVLi+FxYJuWbjxfFis0viWsFhL9xbDYk1u+1hYrMW7L4fFuhcY67WxmyFx/nDz7SzKI6XdYbHeOfGRsFgT2aawWE9ui8ttdm6JO2bs2hx3XNyZfSgs1it3vh0W684bfxwW63bg8fr17PfDYpUG9DzQuNFBlv0/s/GQOPdufy0bxM+63rHjUFisH8j2hsX6wKNxfdcrgQOzP74bl4cvRY6JocGmwO75ie0x/WCyUg4Lle3aFNfbj915MyzWvW07w2KNlcJCZaVyUO51Jy6HK49vDou1YyJuo78X9xSzwE0+e+Mr18Jijf1k3MZVKsU9yxu34/brpc3bw2Jt2Rb3Pcl4Ke61Hw/cwMYD+5vlwM7+ux+O+cx45+a4PuLOUtzzux34efG2wIP/Yzfixi7Lj8d9b7YcuM3fWop77eO+QSiewfzEAAAAAAAAAAAAoEOKowAAAAAAAAAAgEJSHAUAAAAAAAAAABSS4igAAAAAAAAAAKCQFEcBAAAAAAAAAACFpDgKAAAAAAAAAAAoJMVRAAAAAAAAAABAISmOAgAAAAAAAAAACklxFAAAAAAAAAAAUEiKowAAAAAAAAAAgEJSHAUAAAAAAAAAABSS4igAAAAAAAAAAKCQFEcBAAAAAAAAAACFpDgKAAAAAAAAAAAoJMVRAAAAAAAAAABAISmOAgAAAAAAAAAACklxFAAAAAAAAAAAUEiKowAAAAAAAAAAgEKa6HcDYNSMb31PWKxHtjwVFuuNt74UFqs0vi0s1r2l69kgKo1tDYv12Oa9IXG2lB7LomzP4mJNluNiTZTianrvrYSFyt66Nx4Waywrh8XaVI57vT4+9tGwWI888sNhsRaXSmGxlrK4jeK72athsRbL3wiLVQqsi//xre8PibP9sbjj4r95fTks1kQ5br9+ctvdsFjXb28Oi7U9sE/dOvFkWKzl8p2wWFBrbMvusFi7t30iLNb1N343LNbY+CNhsV6788dhscrlpbBY4xNxuWV55V5InKXyW1mUraWY42uyZ2xnWKwdm+OOsXfiQmVXX348LNaX794Oi7VwL27/2f3oT8TFyt4dFutuFne8fke2IyzWV8r/NizWm0vfDIu1vPx6WKy/+f1TIXG+9+aPZFH+8cIXw2K9sfztsFh/ee9kWKwvL24Pi3Vl+cthsb5/84+HxXpx5bNhsaCbn8NtzuJyy3Ip8CuyyM8tt8XlcctxHzVmY3Efw2Wv3I5p2Fgpbgy0fSXuCT5y97WwWJtvfics1hvv+IGwWGPHfjEs1tdfi/vsLNKm8bj9+tZSXN/16Oa4dk1ujfsM9I27cZ39eGCHsxR4DJr8jTMhcZYPn8qivBY4yL4beNB4/L/9z8Jilf6To2Gx/mQs7vuID5e/Fhbrje3vC4vF2swcBQAAAAAAAAAAFJLiKAAAAAAAAAAAoJAURwEAAAAAAAAAAIWkOAoAAAAAAAAAACgkxVEAAAAAAAAAAEAhKY4CAAAAAAAAAAAKSXEUAAAAAAAAAABQSIqjAAAAAAAAAACAQlIcBQAAAAAAAAAAFJLiKAAAAAAAAAAAoJAURwEAAAAAAAAAAIWkOAoAAAAAAAAAACgkxVEAAAAAAAAAAEAhKY4CAAAAAAAAAAAKSXEUAAAAAAAAAABQSIqjAAAAAAAAAACAQlIcBQAAAAAAAAAAFJLiKAAAAAAAAAAAoJBK5XK53O9GwCjZ9MFPxAUrxdU3bnn0B8Ni3XnrK2Gx3vvYvx8W6zu3fi8s1hPbfiQs1kS2KSTOjZVvZFGWy3fCYr17/CNhsZ4e3xkWa9eWe2Gxtm9aCou1bdNyWKxSWKQsi0wWIl/7zePlgXyOf7LwaFislcCG/cGbcbE+9mhMw374HW9kUV69PREW681742GxvnojbnuYX74ZFuuV8kthsW6+/q/CYpXGt4TFuvtvfzssFsNv4oP7w2KVxjaHxdq07fvDYt279bWwWD/0+H8cFusPb/xKWKwfmfxPw2K9nN2IibMSN/65s/RKWKyf3PqXwmLte+drYbEmSnHJzb2VuIx36/hKWKxvv7k1LNZ44Ov159+9EBZr4V7MODZ56Y241+vectznJC+/FZeT/I9vzIfFOrT9gyFx/tx747aHX7/2zrBYP/2BuH7wn157IizWH5a/HBbrxq3Ph8VavvNyNoiWvnql301gwLz51q2wWOOBH3jdWo47zm4ei2vYxN24z0pujm0Pi7VrIa4vvP3kDw7c53m3l+LywZ2Br9Wrl/5RWKzH9n4gLNamf+cvh8UqT8Tlg1++91hYrE2B+/Wjv/y/D4v1jv/8dFisf3M9bi/60VLcZxKv7Iz7zvLNe3H7dtQmsWtr3GfP//TfvhoW669c+X+ExXrjyP8xLFYp8Ni/FPiFyxPb476PuBfYrp2Pxh37i8bMUQAAAAAAAAAAQCEpjgIAAAAAAAAAAApJcRQAAAAAAAAAAFBIiqMAAAAAAAAAAIBCUhwFAAAAAAAAAAAUkuIoAAAAAAAAAACgkBRHAQAAAAAAAAAAhaQ4CgAAAAAAAAAAKCTFUQAAAAAAAAAAQCEpjgIAAAAAAAAAAApJcRQAAAAAAAAAAFBIiqMAAAAAAAAAAIBCUhwFAAAAAAAAAAAUkuIoAAAAAAAAAACgkBRHAQAAAAAAAAAAhaQ4CgAAAAAAAAAAKCTFUQAAAAAAAAAAQCEpjgIAAAAAAAAAAAppot8NgFGz9bEfDotVzpbDYm0ff2dYrDvZV8JivbL0pbBYK0uvhcV6Y+W7YbHurbwREmfL+M4syqbSI2Gxnswmw2JNbrkXF2vr3bBY91biao23jq+ExRofK4fFevmtLWGxXnpte1isG/fiXvu3ykthsV4tLYTF+tDYk2GxvpvNh8VaLr8/JM7f+LnfyKKU/2g8LNb/9v97OCzWWCluX/zBTY+Gxdpy70NhsV585PWwWONjW8NiQa3xre8KizUxsSMs1uTEB8NivXzra2Gx/uTOZ7NB9GL2Ulise9ntkDibxx7LBvFTml1b4nKbyc1xsXYGxvrcq4GvfeBY40OTb4XF+tzLj4fF+sU/jBv3f7f0zbBYS1ncWP195afCYu0c25QNop1BY9n/+Ec/k0X5638mblz2H1z4a2GxNpfCQmV/YVvctvUn5T1hsb6y9Qthse6txOX00Oj1u3Gfd23fFNfnbB4L7CgCvTUR99nsllLcc1x+LC6X2PTG90LirAS2aSzwtSot3QmL9ea3XgmL9frXY1735NE/dyws1t3luM/OPjT+alisF8u7wmK9dvzvx8W6FRYqe/ejcdv90qb3ZYNo59a4z4wfyWL27d3/3qeyKD/x1z4ZFusjf+lkWKz3Bk7Rs3tzXB9xN/CDl4nANOL2StxzZG1mjgIAAAAAAAAAAApJcRQAAAAAAAAAAFBIiqMAAAAAAAAAAIBCUhwFAAAAAAAAAAAUkuIoAAAAAAAAAACgkBRHAQAAAAAAAAAAhaQ4CgAAAAAAAAAAKCTFUQAAAAAAAAAAQCEpjgIAAAAAAAAAAApJcRQAAAAAAAAAAFBIiqMAAAAAAAAAAIBCUhwFAAAAAAAAAAAUkuIoAAAAAAAAAACgkBRHAQAAAAAAAAAAhaQ4CgAAAAAAAAAAKCTFUQAAAAAAAAAAQCEpjgIAAAAAAAAAAApJcRQAAAAAAAAAAFBIE/1uAIyaD47/mbBYL2ffCov1VPaBsFj/OvuXYbHeO7E/LNaL2Uthsd439pGwWFtKm0LibCvFdemPjpXCYr3v0dthsT60862wWPM3toXFWi7HvV4vv7UlLNb3AmO9vhwWKru6/DthsUrZeFischb3JDeP7QiL9Tu3/pewWOXySlisb5f2hsS5/hPvy6I8+vuvhcW6uxx3DsHk5qWwWNs3xcXacmdzWKy9K/9OWKzllbg+FWp9ZMv/KizWplLc8eeJibht/rObd4XF+tGtPxMW63dv/d/DYr2rHHfceL30Rkic7638SRZlvBSXv337Vtz44Ge23wmL9a9eeTws1qu34l6vW0tx+/UXXolr1ytLccf+L978lWwQTWx7f1isL49/LyzWnbfiPkPYtOW9YbGWVmI+v3ntZ5/Mouz853GfTz0yETcue/VuXE7/+JZ7YbE+sbUcFuujS38qLNbrd2M+n4I82wJz3u0L18JirWzfmQ2izbdvhsW6Nfn9YbHubot7vV67E9Pff/fVuM+eby/FfW52pxzzuVnyZz/5V8Ji3Z36y2GxvnEz7tj4+Ja4Y/bixBNhsXbEHbKz28tx21c5sF07tsSNg14vPxoWa3Mp7rjx6L24PrX8xcshce6+sZhF+e/v/tOwWK9t+1RYrG+9fjcs1sSOuDH27htfDotV3vpYWKzNj747LBZrM3MUAAAAAAAAAABQSIqjAAAAAAAAAACAQlIcBQAAAAAAAAAAFJLiKAAAAAAAAAAAoJAURwEAAAAAAAAAAIWkOAoAAAAAAAAAACgkxVEAAAAAAAAAAEAhKY4CAAAAAAAAAAAKSXEUAAAAAAAAAABQSIqjAAAAAAAAAACAQlIcBQAAAAAAAAAAFJLiKAAAAAAAAAAAoJAURwEAAAAAAAAAAIWkOAoAAAAAAAAAACgkxVEAAAAAAAAAAEAhKY4CAAAAAAAAAAAKSXEUAAAAAAAAAABQSIqjAAAAAAAAAACAQprodwNg1Hxkeyks1tZN7w6L9fKbYaGyrdt/MCzWe7KdYbFeXL4XFms8sLb0m6UXQ+L8yMTTWZR3P3orLNYHHo+LtXNz3Hv4zkfi3sOX39oSFuvNu+NhscphkbLs9exuWKy7t2K2+eTJRw+Gxfrezd8Mi7W89b1xse68HBarNB63rT4yHrOF7f6tb2RRvvbKD4XF+pnvi3vdX3xrW1isN5fi+og/+Ebc9vCDj8X1z99+M65dUOsTO+O20ye3xyXPN+7EDcvfu/QTYbHeKq+ExSoF5s63SnfCYr288pWQOH9t10ezKNs3LYfFWim/ERbrjcDjz/XA3HnX1rjt4cntcfnuR3bHvfa/cC1mO01Km3eExfrAtr8YFuvFG78WFmv8sbh8cOXea2GxxrZ+ICzW45uXQuJM/t63szCvx33W9amPXwmL9dnvfjAs1uLduOP1P4obAmUf3/p4WKwXbl8PiwWNtpTicpzyq18Pi5W9+Ydhoca+78NhsV59fE9YrB2BUyS8eS9ujDAxFnPs+NM3P59Fuf3Uj4TF+s35xbBYf7znp8Ji/dGXF8Ji/dj3xeWWO3/3V8NivfD3/klYrCd/4zNhsfY8EtgPjm8Oi7WcxeVx4ytxn7ssjcU9x7HFV8Ji3XnlWyFx/tRPH86i/Jf/+c+Fxfobc38SFuvJ/zpunPfanbj959ajccfYW/fivoVbvhn4mcQjcd9HFI2ZowAAAAAAAAAAgEJSHAUAAAAAAAAAABSS4igAAAAAAAAAAKCQFEcBAAAAAAAAAACFpDgKAAAAAAAAAAAoJMVRAAAAAAAAAABAISmOAgAAAAAAAAAACklxFAAAAAAAAAAAUEiKowAAAAAAAAAAgEJSHAUAAAAAAAAAABSS4igAAAAAAAAAAKCQFEcBAAAAAAAAAACFpDgKAAAAAAAAAAAoJMVRAAAAAAAAAABAISmOAgAAAAAAAAAACklxFAAAAAAAAAAAUEiKowAAAAAAAAAAgEJSHAUAAAAAAAAAABTSRL8bAKOmVCqHxZq/uTUs1ru2LoXF+uTWPxMW6+bdlbBY75z898NifXhrXPe58/aHQuLsf9diFuXjO2+GxXr60e+Fxdq++VZYrN/93tNhse4ux9Uaf/31bWGxvrN8NyzWtZWr2SBaXPqTbBCVSnF9RHkl7n0sjW0Ki/Xxd74WEmf5S3HHsuu3Hw+LtWV8OSzW63fHw2J98ZW45/il5d8Pi/X+ez8SFut373wmLFaW/SeBsRh2N+/G9YG/dyMsVPYz77oXFuuvv2dzWKzvvnknLNZXyn82LNYr5a+FxSpnMWONdz8S91r9F39mNixWdjgu1Osf2BkW6y+eitsXn3vph8NiXX358YEcH9y++82wWFk5bnz9raUr2SAay+K2r0i3X/+DsFjbvy9mu7/xO+/Jouzc/62wWN//k38UFut9v/HesFi/9c24WF+79U/DYr0rOxIW61u3ficsVpadCIxFEbx8uxQW69774nLL937hUlislT/+12Gxdv+puOPZQun9YbH+1TfjPjN+92NbQuJc3z2VRfm/PfLhbBBdDoz1nsDvNT754m+GxSr/2bjBy4/9dx8Ni/Xylri8vjwe9/ngUuDcJ3G9c5aVAscbke16c9fesFjf+8mfC4mzfOX3skH03/6/vxQW6z8b/w/DYr3jv/m1sFj3luO+p38jcJt/1yPKdnrBzFEAAAAAAAAAAEAhKY4CAAAAAAAAAAAKSXEUAAAAAAAAAABQSIqjAAAAAAAAAACAQlIcBQAAAAAAAAAAFJLiKAAAAAAAAAAAoJAm+t0Ahtvly5ez2dnZyv/Xrl3Lbty4UVk+OTmZ7dmzJ9u/f3926NChbGZmpqttuHjxYnblypXVNqTH37VrVzY1NVV5/Onp6Up7AAAAAAAAAAAYHYqjaMvZs2ez06dPrxZDVQuh0v8LCwvZ1atXV3/Onz9fKVY6duxYdurUqcrvES5dupQdPXp0tQ210rL0k4ql0npJKpA6efJk5X8AAAAAAAAAAIrPZfXYkFRstHfv3kqRUSqEOnfuXLa4uJjNz89XZpBKf6dZnNLfaXkqiEpSoVIqqHrqqadWi5U6kWaDOnz4cCVueoy5ubmsXC6v/qTHP3PmTN1sUWmGqdr7AQAAAAAAAABQbIqjaFmaBWrfvn2VmaFSAVQqSEqFSWvNBJWWp2KpVKRUlYqSUnFSKpRqR7p/akMqdEozQKUiqPQY6fJ5tVJR1IkTJyq3p/9rpeKsFCMVegEAAAAAAAAAUFyKo2i5KOngwYPZrl27KkVRMzMzLd83FSc1XsouzTzVzgxSqQ2pSCsVZaWZqmpnhlpLKs5KBVS1UmFUKpAygxQAAAAAAAAAQHEpjqIlR48erRQSpRmjWilIalQ7e1RjzFalgqpUGJUKrRqLnR4mFVM1ziBVnYUKAAAAAAAAAIBimuh3Axh8qYioOstTKiZKxVGpOKlxNqj1pMvepcvs1RZDpd/Pnz/fVLSUJ830lC7Flx47zRjVjlSglZ5H7eX0qnFbaUMvfOGl/1/Tsj/9gb/cl7YAtOr2d640Ldv67v19aQtAqz71qU+1tIzR8cWv/UbTso9+/8/0pS0ArVp6+ctNyyae/FBf2gLQKrk4tf7rM7/YtOx/d/Ln+9IWgFb90n/V3Hf9F39L3wUMtk+NeB6uOIqHunz5ct3fqaDo0KFD2fz8/IZmkUrrppmfaqVCp1YKk6ozT6XZozqR7n/8+PG6ZadPn67MLJWKt/rti1//Z03LFEcBg+7ud+ealimOAgbdL/zCL4z0QJBmX8rJxRVHAYNu5ZWvNC9UHAUMOLk4tf6vf/900zLFUcCg+7+cbe67FEcBg+4XRjwPd1k9Hqp2pqVa1dmkWpVXSHXlSvNsI3nSDFNJKmLqRN790wxWFy5c6CguAAAAAAAAAACDR3EUD7WR2aG6OXNVuoxf48xT7UiX+Gt08eLFjuMCAAAAAAAAADBYFEfxUKkoKc/MzMyG4qQZmhrt2rXrofdLl96rFknt27cvK5VKqzNJRT2fxksHAgAAAAAAAAAw/BRH8VCTk5PZ3Nzc6oxL6f9UsLTRGaXyLs+XN4tTK/c7fvz4mpf7e5i9e/e2dT8AAAAAAAAAAIZLqVwul/vdCEZDmvEp73J2D5uB6tChQ7kzO507dy47duzYhttx6dKl7PDhw03L5+fn+34JwbzXyC4KDDp9FzCM9F00sk0Aw0jfBQwjfRe1bA/AMNJ3AcOoNOJ9l5mj6Im84qY0I1Url+ZL6+Vp5ZJ8AAAAAAAAAACMLsVR9ESaIarRqVOnWrpvuoReXsHU9PR0W21ZWFjIXa7YCgAAAAAAAACgWBRH0XU3btzIzp8/X7dsamoqO3HiREv3T0VQqbiqesm79Pfzzz+/5oxSD5Mun5en3XgAAAAAAAAAAAymiX43gOI7efJkUxFS3kxS60mX32vlEnytuHr1atOydmehAgAAAAAAAABgcJk5iq66dOlS3axRqTBqbm5udRaofrh8+XLTskOHDvWlLQAAAAAAAAAAdI/iKLpaGHX48OG6S+m9+OKLfS2Mary8X1Wrl/gDAAAAAAAAAGB4KI4i1I0bNypFUWkmpmphVPUyemnGqPR7P505c6bvhVGf+tSnslKplPuTp/b2dF8AACA2D39YLi4PBwCA9vlMHACAfpvodwMYbqkI6tq1a9nCwkKlMKpWKoR69tlns5mZmWwQXL16tdLWWmkWq7yCKQAAAAAAAAAAhp/iKDqSLpXXeJm8VIBU/UmzR6V1jh8/nh07dizrp6NHjzYtSzNaAdCZv/23/3a/mwCwYfouAIrA8QwYRvouAIadYxkwjP72iPddiqPoyHqzLqWZmk6ePJldvny5UhyVftL6vb6MXXL+/PlKexoLo1LhFgCdMb05MIz0XQAUgeMZMIz0XQAMO8cyYBh9asT7rrF+N4DiSoVHs7OzdQVUqVhq7969TZe366Z0ub9UmFUrtWlQLvcHAAAAAAAAAEB3lMrlcrlLsaGuKOrs2bN1y1Lh1PT0dNcf+9ChQ5XZq6r6NXsVAAAAAAAAAAC9pTiKntm5c2dlFqda8/Pz2Z49e3pWlKUwCgAAAAAAAABgdLisHj1z6tSp3FmduuX8+fMKowAAAAAAAAAARpiZo+iZNGtUmj2qUTeKlq5evZrt27dv9e9z585lx44dC30MAAAAAAAAAAAGm+Io+n5pvcnJyWxxcTHsMa5du1YpjKo+zsWLF7OZmZmw+AAAAAAAAAAADAeX1aOn9uzZ07QsFTFdvnw5JH6KVVsYNTs7qzAKAAAAAAAAAGBEKY6i78VR1SKmyMKoNBvV3NxcNj093XFcAAAAAAAAAACGk+Io1pUKjY4fP165HF76Sb83XhYvojgqXQqvUwcPHqzEqRZGTU1NdRwTAAAAAAAAAIDhNdHvBjDYDh8+XHfJu/Pnz1cKkNqd6Wn37t25yzspuEoOHTqUXb16tVJ8lQqjUoEUAAAAAAAAAACjzcxRrCkVLNUWRlWlZe3O9HT9+vXc5Z0UM1ULuNotjLp06VJWKpVCZq8CAAAAAAAAAGBwKI5iTesVC7U709Na91vrcnsPky7zl4qb0iX02p0x6oUXXuioDQAAAAAAAAAADCbFUaxpvUKjVIwUWXCVLou3UWfPnq1c5i+15fnnn2979qnq5fgAAAAAAAAAACgWxVGsaa2CoXPnzrUd88qVK03LUlHT9PT0huKkoqiTJ092NGNUbZvaLfYCAAAAAAAAAGBwKY5iXTMzM5X/U/HSmTNnsvn5+ezYsWNtzxqVd1m9jca7fPly5XJ6qU2pMKoT1TaZOQoAAAAAAAAAoHgUR7GuU6dOVf5fWFjITpw40VERUd6MU2nGp1R0tZFL4KVL8KWirdnZ2axT1cc+cOBAx7EAAAAAAAAAABgspXK5XO53IxhsaZamdBm7NMNTu5fUS7Mz7dy5s2n5xYsXV2enamWWp3379lVibfQyfLVSoVeKkeJVpRmoXFoPAAAAAAAAAKBYFEfRklSUlGZtSoVMzz77bGXGp41Isz2ly+E1ztqUZqNqRSpmeuqpp3IvyxfBbgAAAAAAAAAAUDwuq0dLqjMrXbp0qVKklGaSatXhw4c7LoyqzhjVDZ1cKhAAAAAAAAAAgMGlOIoNFUilgqZUpJQutZcuk5f+byx8qkqFVHv37q38X5VmnJqdnW25MCo5evRo3SXwoimOAgAAAAAAAAAoJsVRbEia8Wl+fj47duxYpUgqzSCVLplXKpUqxVKpGCr9pL/TjFHVoqZUFJXuu7i4mE1PT2/oMbs1Y1RVmhELAAAAAAAAAIDiKZXL5XK/G8FwSkVLadaoNBPUlStXKoVQ1UKmNBtTKohKhVCpeGqjBVFFVX290v+1r1d6rdJrtn///srrNTMz09U2XLx4se49S4+/a9euSqFY9f0yoxawXj9y7ty5Sh9S7UdSn5F+Uh+SCmhTvwIQRQ5Fp2xDQBHIw4Fek0MRwXYEFIFcHOg1OVQ8xVHQA2fPns1Onz5dVzxW/VlYWMiuXr1ad+nA1KmkROrUqVNhyVS6vGG6RGGrM3GljuzkyZMK24C6vqw6AKwWwB44cKDye5pVMCVJqT9L0m1p3WFJiIDBJIeiU7YhoAjk4UCvyaGIYDsCikAuDvSaHKqLUnEU0B3z8/PlPXv2pALE8tTUVPncuXPlxcXF3HXT8mPHjlXWrf5MTk6WL1682HE7pqenV2Omx5ibm2tq55kzZ1bbWvszMzOzZpuB0evL0s+JEyfW7BdmZ2fr1k19C8BGyaHolG0IKAJ5ONBrcigi2I6AIpCLA70mh+o+xVHQJamjSJ3QRjui1Jk0diTtJlKp80mdZ4qROrLUWT1MSvAaHz91bq3cFyhuX1btD1rtzxqTJ4BWyaHolG0IKAJ5ONBrcigi2I6AIpCLA70mh+oNxVHQBanzSJ1Xuzt/bQK10eSrVrUD22gSlipRGx8/PZ9BrvQEuteXVfuB1DdshLNlgI2SQ9Ep2xBQBPJwoNfkUESwHQFFIBcHek0O1TuKo6AL0pRxacdvnGauVel+nXYi1UrN1CG2Y61KT2B01CZUKSnaqDSdcG0fMqiV4sDgkEPRKdsQUATycKDX5FBEsB0BRSAXB3pNDtU7iqMgWOpoGnf8lAxtVG1l+karzFOyFdHp5F0rVKU7jIbGQVy71ymuVpq3O5gERoccik7ZhoAikIcDvSaHIoLtCCgCuTjQa3Ko3hrLgFCXL1+u+/vatWvZoUOHKv9vxJ49e5qWzc7OtnTfM2fOVP4/efJk1om8+58+fTq7ceNGR3GBwVe7/09OTmYzMzNtxXnmmWdWf7969WrlByCPHIpO2YaAIpCHA70mhyKC7QgoArk40GtyqN5SHAXB1uqsLl261HEnduXKlZbue/78+cr/x44dyzqRd//UgV24cKGjuMBgaxywTU9Ptx2rcQB57ty5jtoGFJccik7ZhoBhJw8H+kEORQTbETDs5OJAP8ihektxFATL63z6UWGaEreIavSpqammZRcvXuw4LjC4GgdrBw4cCOsTq0kWQCM5FJ2yDQHDTh4O9IMcigi2I2DYycWBfpBD9ZbiKAi2VjX5RqffzJtibteuXQ+9X3WKvNSZ7du3LyuVSh0lXnnPp3GKP6BYGqu485KZTpK7jVa8A6NBDkWnbEPAsJOHA/0ghyKC7QgYdnJxoB/kUL2lOAqCpesQz83NrSZO6f/UsWy08jNvGr1WkrG8+x0/fnzD1yat2rt3b1v3A4ZT6isak6hOK9cb+65Wr3MMjBY5FJ2yDQHDTB4O9Iscigi2I2CYycWBfpFD9ZbiKOiC1NmkjqxcLlf+b+faxHmdzjPPPNNWZWgnVZlrVZW22ykCgy2vr+h0INjYjwxSlTgwWORQdMo2BAwreTjQT3IoItiOgGElFwf6SQ7VO4qjYADldTipcrSVKfTSenlamToPoBtnsDT2S4OSBAHFI4eiU7YhoF/k4cAwk0MRwXYE9ItcHBhmcqjWKY6CAXTx4sWmZadOnWrpvmmqu7yOrZ0q02RhYWGkOkUYdY2DtLUSo43YvXt307KrV692HBegkRyKTtmGgH6RhwPDTA5FBNsR0C9ycWCYyaFapzgKBkyavu78+fNN0+mdOHGipfunzip1gtUpP9Pfzz//fNvJ3Pz8fO7yiOQQGPyBYETCktdfOFMGiCaHolO2IaCf5OHAsJJDEcF2BPSTXBwYVnKojZnY4PpAl508ebKps8ir+FxPmiavlanyWpFXyd5utSgw+Na6vnA0A0EgmhyKTtmGgH6ShwPDSg5FBNsR0E9ycWBYyaE2xsxRMEAuXbpUV92ZOrC5ubnVas1BuU7poUOH+tIWoPeDwIhq7rwzba5fv95xXIAqORSdsg0B/SQPB4aVHIoItiOgn+TiwLCSQ22c4igYoA7s8OHDdVPevfjii33twBqn4atqdSo+YLisdS3gbnCWDBBFDkWnbENAv8nDgWEkhyKC7QjoN7k4MIzkUO1RHAV9rkhPnVeqmKx2YNXp7lJlZ7+vv3nmzJmB7sCA4Zw+GKBTcig6ZRsCBok8HBgWcigi2I6AQSIXB4aFHKpzEwExgBalzipVhqdK9MaEK3VYzz77bNg1PSOuCdpYxZ6qTfM6NqAYenmWjEEnsBFyKDplGwIGmTwcGFRyKCLYjoBBJhcHBpUcKp7iKOihNKVd43R2qaOo/qQqz7TO8ePHs2PHjmX9dPTo0aZlqfIUYKP6Xa0ODD85FJ2yDQGjSB4OdEoORQTbETCK5OJAp+RQXVAGBsLc3Fx5enq6nHbL6s+ZM2f60pZz587VtSP9XLx4sS9tAXpndna2ad+fmprqStzU3wFEkEPRKdsQ0G/ycGAYyaGIYDsC+k0uDgwjOVR7xrpRcAVsXKrsnJ2drZte7uTJk9nevXubpqHrpjQtX6owrZXaNCjT8gHDx3TBQDfJoeiUbQgoKnk40E1yKCLYjoCikosD3SSHao/iKBgwJ06cqPxUpQ4sdWSXL1/uyeOnKfgaO7Da9gDFtWvXrn43AaBtcig6ZRsC+kUeDgwzORQRbEdAv8jFgWEmh9oYxVEwgFLH0Xg94kOHDnW90jNVlNZ2loPegQEA1JJD0SnbEADAxsmhiGA7AgDYODlU6xRHwYA6depU07LUkXXL+fPns7Nnzw5VBwYM7/S/jYkaQBQ5FJ2yDQGDQB4ODBs5FBFsR8AgkIsDw0YO1RrFUTCgjh071rQsVXjWdjRRrl69Wnc90HPnzg1FBwYMx+BsYWGhadmePXu68lgAcig6ZRsCek0eDhSBHIoItiOg1+TiQBHIoVqjOIqRkaZ1K5VKHf/0MiHLS8pOnz4d+jipYzx48ODq3xcvXsztQIHi6+XgbPfu3T17LGC0yKEGjzw8n20IqJKHA0UghxpMcvF8tiOgSi4OFIEcqjWKo2DIkrI0nWft9Ts7kWLt27dvdYrQ2dnZbGZmJiQ2MJwak6e8M1wipiE2hTDQTXIoOmUbAnpNHg4UgRyKCLYjoNfk4kARyKEeTnEUDGHFeupsIjuwlJDNzc1l09PTHccFhtuuXbvCr69+/fr1pmX79+/vOC7AWuRQdMo2BPSaPBwoAjkUEWxHQK/JxYEikEM93EQL60BhOoRuT+uWOoSTJ09mFy5cqPx95MiR7MyZM21Xg6/ViaUp6zqVprxLcaodmGsdA8nU1FRIH/OwwaQ+B6glhyo2eXg92xCQRx4O9IMcqvjk4vVsR0AeuTjQD3Ko3lMcxchIO+m5c+e6+hiHDx+um5ru/PnzlY6i3YrMta4/3GnV+qFDh7KrV69WXpPUgZnKE6g6cOBAdunSpbpl1UrwdjVOQ5z6Hv0OUEsOVWzy8AdsQ8Ba5OFAP8ihik8u/oDtCFiLXBzoBzlU77msHgRZ65qdaVm7FZl5024mnXQ61Y623Q4sJYilUim8ih4YDHnTYHa6vzfef1gryoHukEPRKdsQUATycKDX5FBEsB0BRSAXB3pNDtUfiqMgyHo7dbsVmWvdr90k6vjx45VOKE0R2m5l5wsvvNBRG4DBlvqHRleuXAntH1MyBVAlh6JTtiGgCOThQK/JoYhgOwKKQC4O9Jocqj8UR0GQ9TqEvMSqk44xTV+3UWfPnq1Mx5fa8vzzz7ddJVqdNg8orpmZmbq/5+fn246VkrHGhCxdNxmgSg5Fp2xDQFHIw4FekkMRwXYEFIVcHOglOVR/KI6CIGvt2J1c0z2vMj11PnlTfK4ndV4nT57sqLKztk3tdsrAcDh16lTd33lTe7aq8b5pkDnM1yMG4smh6JRtCCgKeTjQS3IoItiOgKKQiwO9JIfqD8VR0IXK8tTJnDlzplJZfuzYsbarO/Omv9tovJSEpWnvUptSB9aJapsGqcITiJcSldpkJVV2t2t2drbu79QfATSSQ9Ep2xBQBPJwoNfkUESwHQFFIBcHek0O1QdlIMzc3Fw57VZTU1Mdxzpx4kQlVu3P5ORkW+2ZmZkpRzh27Fgl3sWLF0PiAYMr7ee1/c+5c+failMbI6JvBIpJDkWnbENAUcjDgV6SQxHBdgQUhVwc6CU5VO+V0j/9KMqCokrVlGm6uVSJ2e7Ud6mKcufOnU3LL1682HTd4/WqMfft21eJtdHp8motLCxUYtRepzRVig7SFHhAd6Q+pHqGTKrs3uh11tM1idPUm1Xp/gNVIQ4MFDkUnbINAUUhDwd6SQ5FBNsRUBRycaCX5FA91oeCLCi8VOFZraxcXFzc8P2np6ebqjvPnDnT8v3TY6Zq0MYYUT/AaJifn6/rSzbaD7XbhwGjSw5Fp2xDQBHIw4Fek0MRwXYEFIFcHOg1OVTvDFZroIAdWepMNjL1Zur4Ou3A9uzZ07UOLMUGRkd1Gs3qTyvTX6Z+qNoHGgQCGyWHolO2IaAI5OFAr8mhiGA7AopALg70mhyqNxRHQRfVXt8zdWbp2pqzs7O566bkqrHzSfdZa/2NdIKRP6n6FBi9wWBt/7ReYrWRdQHWIoeiU7YhoAjk4UCvyaGIYDsCikAuDvSaHKr7SumfXl/KD0ZJuqbmmTNnKtcLrTU5OZnt2rVrdZ3G206dOpWdOHFiw4936NCh7PLly1m3pDal5wOMnnSt9NSXpesFp37qyJEjlWsQV6+dnvqe6vXY03WMU1/heupAu+RQdMo2BBSFPBzoJTkUEWxHQFHIxYFekkN1l+Io6JGUOKXOZXZ2Nrty5Uql40rLkpQopY5renq60gml/wEG1aVLl7Lnnnuu0o9V+7LUh6W+LPVfzzzzTDY1NdXvZgIFIYeiU7YhoCjk4UAvyaGIYDsCikIuDvSSHKo7FEcBAAAAAAAAAACFNNbvBgAAAAAAAAAAAHSD4igAAAAAAAAAAKCQFEcBAAAAAAAAAACFpDgKAAAAAAAAAAAoJMVRAAAAAAAAAABAISmOAgAAAAAAAAAACklxFAAAAAAAAAAAUEiKowAAAAAAAAAAgEJSHAUAAAAAAAAAABSS4igAAAAAAAAAAKCQFEcBAAAAAAAAAACFpDgKAAAAAAAAAAAoJMVRAAAAAAAAAABAISmOAgAAAAAAAAAACklxFAAAAAAAAAAAUEiKowAAAAAAAAAAgEJSHAUAAAAAAAAAABSS4igAAAAAAAAAAKCQFEcBAAAAAAAAAACFpDgKAAAAAAAAAAAoJMVRAAAAAAAAAABAISmOAgAAAAAAAAAACklxFAAAAAAAAAAAUEiKowAAAAAAAAAAgEJSHAUAAAAAAAAAABSS4igAAAAAAAAAAKCQFEcBAAAAAAAAAACFpDgKAAAAAAAAAAAoJMVRAABZll29ejXbu3dvdvbs2X43BQAARopcHAAAek8eDoySUrlcLve7EQAA/Xbo0KHs8uXL2dTUVDY3N9fv5gAAwMiQiwMAQO/Jw4FRYuYoAGDk3bhxozIITKanp/vdHAAAGBlycQAA6D15ODBqFEcBACPvwoULq78fP368r20BAIBRIhcHAIDek4cDo2ai3w0AAOi3c+fOVf5P0wfv2bOnozNtFhYWsvn5+crf6fdr165Vfk//pzNwZmdng1sPAADDSy4OAAC9Jw8HRo3iKACGSkqod+7c2fL6/bpW9qVLl7LDhw+3vP6xY8dWByP0VhqgXb16tfL7M88803acVrbLycnJtuMDAPSbXJxocnEAgIeThxNNHg6MIpfVA2DobCSZTgl+GpT12smTJze0vgFC/9QOwNOAvF0nTpzIZmZmKmfCrHWmzYEDB9qODwAwCOTiRJKLAwC0Rh5OJHk4MIpK5XK53O9GAECnZzmkgVca8KUBVTqTplavp21Ng899+/ZVHjdNKVsrte/ZZ5+t3GbwNxj27t3blel9z58/33St9jS1cLtTFAMADCK5OJ2QiwMAtEceTifk4cAoMnMUAEMvJdYXL16sDKzS7+lMhVppMJYS/V6edZHakDfQO3Xq1Jq30Xtp0F7dNhoHbdGq2ycAQJHIxWmXXBwAoH3ycNolDwdGleIoAApj165dq4OtRr28dnne2RG113tncNRuF40fIHRqbm6u7u90Fg4AQFHJxdkouTgAQOfk4WyUPBwYVYqjACiM6pknabDVeDZCGpz1Qnqc1A5J/3C4cOFCVwaBSeP00YcOHQp/DACAQSEXZ6Pk4gAAnZOHs1HycGBUKY4CoJAaz1JJ11xvTMy7ddbFsWPHuv44dC5tD2m76Mb0wSlu47TVPhwAAEaFXJyHkYsDAMSTh/Mw8nBglCmOAqCQ8gZj3Z5GOCX+6Xrd3b5ONzGq20M3zmpq/NDBtdUBgFEiF+dh5OIAAPHk4TyMPBwYZYqjACikvOT+0qVLq2dFdGtgkR5Twj8c0vaQHDlyJDz27Oxs3d/OkAEARolcnIeRiwMAxJOH8zDycGCUKY4CoLDyzlbp5nXWU2xnyAzXIDDpxnvWeJbMM888E/4YAACDTC7OWuTiAADdIw9nLfJwYNQpjgKgsGZmZipny/RiGuHqwCI9JoOvuh2kM5qmpqZCY7u2OgCAXJy1ycUBALpHHs5a5OHAqFMcBcBIXWe9eg30bgwsujEVLfHSQK16Fks3Bu6NZ8ikwWbjBxIAAKNALk4juTgAQPfJw2kkDwdQHAVAweVNDxt9pkx1YGH64OFQO410N94z11YHAHibXJxGcnEAgO6Th9NIHg6gOAqAgsubIjb6GuspXnqM6Klo6Y7nnnuu8n96v9L20e2zZA4dOhT+GAAAw0AuTiO5OABA98nDaSQPB1AcBcAIyDsTono99AjprBtnyAyH2imku/GeubY6AEA9uThVcnEAgN6Rh1MlDwd428T9/wGg0NdYb0z6T58+HXJt7XRGREr8u3Vt9TRgXVhYqAwwrl+/Xnms9Ht1Wfp7cXGx6frd6X7pbJA06Kmum84IST/prI303Ltxhkhe+1M7UjurbU9tTY+9f//+yvvSy7OLaqeP7sZ71sq11dN7ktpx5cqVptfkmWeeyU6cOBHeLgCAfpGLy8Wr5OIAAL0jD5eHV8nDAd6mOAqAkRkM1k4dnJLxlIR3OhhKCX0aVDUm+xFS+w4fPryh+6TnePLkydWBXzpDI7Ut/Z0GHmmgkn7SOum21P7oAWF6rBS/9vVOg730HuzevTubn5+vPLd0e/pJ7Thz5kxPBoTVs6Oqr0u3r61e+2FDet3TwDc99/RcUxv27t27er/Utuog8eLFi6akBgAKQy4uF0/k4gAAvSUPl4cn8nCA+8oAUBBTU1OVnzxzc3PldNir/Tlx4kRHj7e4uFiJMzs7m3v7zMxM02Oute5a8aenpyvPac+ePU2xqj9pvfST1kt/p8edn59f83Worhf1OtQ6d+5ceXJycjV2aktq21rS61Hb7m6q3QYuXrzYlcdofJ+q73d6jdPf6bmu9d6kdWvvm9oLADAs5OJy8fXIxQEAukMeLg9fjzwc4AHFUQCMxEAwL0lPA5ZOBz0p5lo6HQg2qh3sNQ4YUjvS82k1fmPbIgZh1cFO9Se9Pq1K66b7pIFvtxw7dmy1bd1Q/WCgcZCenlOrg8/qutVBIwDAsJCLy8XXIxcHAOgOebg8fD3ycIAHxqozSAFA0TVeYz1Nddt4PeyNSFO9NsbspjTlbZpqt1GaZjhNSzs3N1eZlrYVjVPUpulr03XX25Veh7Nnz9a9NmnK4FalddN90vtRO/VwpAsXLjRN6xupcVtKr2+aSjktT1MEt/K4tVNGp+mEO9k+AQAGiVz8Abl4PLk4AEA+efgD8vB48nBgmCiOAmBk5A1M0uCjHWnglRL1jQx2IuRdCz21JQ00Nnqd9Oeff77uGuNp0FE7mGtVGkTWDt7SYHQjr0tq/759+1YH1XmD3U6l55YG/km3Bu+N11ZP20d6XdLyVgfou3btaooBAFAEcvF6cvFYcnEAgHzy8Hry8FjycGCYKI4CYGSkQU9jQp4GMdUBwkakwUqKVTuQ6oXGgUKSBl2tDjRqpbafOnWqblk6q2Mjg480iKs9s6OdwXUaBNY+ZoqZfiJV25S3DUTJO6Olup20qnF7mp+fD2kbAEC/ycXrycVjycUBAPLJw+vJw2PJw4FhojgKgJGSBjqN2pmyNk1H28vpg9fTOBDbiBMnTjQNPvJeo7U0rpsGPRs5WycN+PIG4tEDwTTgT44cOZJ1Q3oOjW1OUwin13ejcbr5OgAA9JNcvJ5cPIZcHABgffLwevLwGPJwYNgojgJgpOSd2bLRszqqg4puXac74syZjWic7jed7dHKmTJpkFJ9LdoZRK7X9o1Oh7ye2oF+twbveWfIPPvssxuO0zjw6/VZWAAA3SQXbyYX75xcHABgffLwZvLwzsnDgWGjOAqAkdM48KleK71VaeDY6+uqd9MzzzzTtOz06dMPvV/eddD379+/ocdOA53GM0nSaxs5ELx48WLl/xQznbnSi2urpw8J2nmsF154oe7vAwcOdNw2AIBBIhevJxfvnFwcAODh5OH15OGdk4cDw0ZxFAAjJ+9MiVbPlElTvKYzIgZl+uAIacDSeDZG49kva02jXCsNtNo5qyMNKOfm5irvQRpQbfSspVber26f1dR4lkze4LqdON0auAIA9ItcvJ5cvHNycQCAh5OH15OHd04eDgwbxVEAjJy8syVavcZ6Onsk3TfyLI5BkHd2y3pnDuVdF72TQUu6bzo7Jk3xHKkX0wfnXVu9neeR95pu9KwjAIBBJxdvJhdvn1wcAKA18vBm8vD2ycOBYaQ4CoCRlDcoaGUwmNYp0hky6w3i8q4Zvt5tgzg4fu655yr/d3PwnndmSztnC0XFAQAYdHLxenLx9snFAQBaJw+vJw9vnzwcGEaKowAYSXnXR3/Y1LUpUU9nMRTp2upVu3fvblp2/fr1Ndefn59vKUY/pbNOqmf6dHPw3nht9XbP9ImKAwAw6OTi9eTi7ZOLAwC0Th5eTx7ePnk4MIwURwEwshoHdGnQ0DgVbONAsYiDwCTvbIz1XovGqW7XitFPtQP7I0eOdO1xGs9uOXDgQEicQ4cOddQuAIBBJhd/QC7ePrk4AMDGyMMfkIe3Tx4ODCPFUQCMrLwzJ9Y6UyYNfC5dulTI6YOTXbt2tTTYq1pYWMgGXXVK6HS2SbcGqVHXVk8fQjS+3s6SAQCKTC7+gFy8PXJxAICNk4c/IA9vjzwcGFaKowAYWXnX3F7rGusXLlyorJt3HfIiyBvYrTd4yhs4DpLagVU3B++NZ7akbaSdQWf1OvBVMzMzHbcNAGCQycUfkIu3Ry4OALBx8vAH5OHtkYcDw0pxFAAjrXGQUD0bptGZM2cKe4bMWmfENA6Sa+UNdtY7q6bXas926uagKuqa6I3b3DPPPNNRuwAAhoFc/G1y8fbIxQEA2iMPf5s8vD3ycGBYKY4CYKTlXS+9cRrh6nXXi3pt9eT69etNy3bv3r3m+nv37m1aNj8/nw2KdFZTL842uXLlSsfXRK9uX7WcJQMAjAK5+Nvk4u2RiwMAtEce/jZ5eHvk4cCwUhwFwEhLZ3s0Jt1pWtjaMz7SwDCt061rdA+CNBhptN4ZH3m3NQ5m+iWdcdKL6YPTYzS+bu1MMW36YABgVMnF3yYX3zi5OABA++Thb5OHb5w8HBhmiqMAGHl5g4Xa66yn34s8fXDedcLToHe9QU3edcQbzxjpl+rAKrWv3Sl9W9H4fNPjrTft8lpqt7WHTR+czk5qXB8AYJjJxeXi7ZCLAwB0Rh4uD2+HPBwYZoqjABh5abDQOKipTiOczrjo9oBiEM+QOXLkyEPv17hOOmsk4kyZta5xv9H7tvIc+n1t9fTaN16Xfq2zZKpTDbcz2AQAGFRycbl4O+TiAACdkYfLw9shDweGmeIoAMi5znpKuFPiffr06UJfVz3vevLJyZMnH3q/vHXaHcDVSq95K4+/3nXVk26f2dR4ZlE711ZvfO3X29aq6xb5QwkAYDTJxevJxR9OLg4A0Dl5eD15+MPJw4FhpjgKgEJpPOOgVXmDhqNHj1YGg4M+fXCnZ6Y0TkmbBiOtnImR1mk8oyNvUNlOe9od7FQfP7WtnWudd3Jt9XbaXDtwTQ4fPrzuuq69DgAMMrn4xsnFN04uDgBQTx6+cfLwjZOHA8NOcRQAhZEGRAsLC23dNw0cGhP5lOinwcSgT9lavZ54OxrPRknTJZ85c6bl+zeum96DTs6USfdNg6x2zpKpHZx1e/AecW311N7GDy7WGkymM3LSuqdOnWqjtQAA3ScX3zi5eHvk4gAAD8jDN04e3h55ODDsFEcBUAjV61Tnnb3QqrzBQyeJd7tn7LQzeGrnTJl0n7Nnz9Ytu3jxYtO15teTBj/pPo1nF7X73NN905kg7Qy+a8/26fbZJI3XVt+/f/+GYzR+aLHeWT1pYJxu7+aZPwAA7ZKLy8Xl4gAAvScPl4fLwwFapzgKgEJIA4i83zcib/DQyYAib3DW7iD1YTZ6be80UGu8TzrjpZ1pcNNrdOLEibrY7bwHqT3pvs8++2zWyfTBvTizKeLa6o1tXKvNaaCftpt2XxcAgG6Ti8vF5eIAAL0nD5eHy8MBWqc4CoChVT3LY+fOnXUDrPR7WpZu2+jZI+na4nm/b7Rd6ayGvMc+ffr06jS5UdJZKumMi3379rUUN61z8ODBuvalQVTtYG6j0iCy9v7pOa53rfBGaSCVBlfp7JONnKVTlZ5L9fl0e/rgJOLa6o2Dv7yBYHVQnbZFZ8gAAINELv42ubhcHACgl+Thb5OHy8MBNqwMAENkcXGxnA5f7fyk+z7M3Nzc6vrp91ZMTk5WftppU/W+J06caPv5p3bOz8+X9+zZU4l18eLFNe8/Oztb19Z0n7QsSnrsjcQ/d+7cars7aUd6/TbyPncitbPxPejk9arGmJmZqbut+p5OTU0FtBoAoHNycbl4Hrk4AEB3ycPl4Xnk4QAbM7HxcioA6L+NnknR6lkp6UyE6rTBGzkrIcVv5+yO6n07PWsmnWExNzdXOaMinZ2S/k7PY+/evZXb5+fn667Dntqarh3fyZkxedJjpjNG0llC6Xrn6fHSGTDp8Y4cOVJpz/Xr1ytnmVy5cqXyvNP6qe3tvn6111ZPsTqJ045OpplO901nwKT2p/cnndmV3rt0tlBalp5P47XcAQD6TS5eTy4uFwcA6AV5eD15uDwcYCNKqUJqQ/cAAPomDZzS9Mi10iCqdtCa1klTFafBVnVq3TQ4SgOM/fv3VwaK7U55u1FpcPPcc8+ttiO1LbUj/aQ2p+l+O70Wepp6uHp98zSdcicDs41OeRw1UEuvU5rGOQ2Ok/Q+pdemF88FAIDWyMWbycUBAOg2eXgzeTjAximOAoCCDQRHTRowVc+SkdYAANAtcvFmcnEAALpNHt5MHg6wcWP9bgAAQCeqg0BnlAAAQG/JxQEAoPfk4QAbpzgKABhaaerd2rNlAACA3pCLAwBA78nDAdqjOAoAGFrpmuRJun58r64ZDwAAyMUBAKAf5OEA7VEcBQAM7bXmL1++XPn9yJEj/W4OAACMDLk4AAD0njwcoH2KowCAoXThwoXV300fDAAAvSMXBwCA3pOHA7RPcRQAMNTTB+/Zsyebmprqd3MAAGBkyMUBAKD35OEA7VMcBQBDZGFhoaVlRXft2rXs6tWrld+dIQMAQC/Ixd8mFwcAoJfk4W+ThwN0RnEUAAzZNcVbWVZ0ly5dWv19Zmamr20BAGA0yMXfJhcHAKCX5OFvk4cDdEZxFAAM0ZkhR48ebVp+8uTJ1TNGRm364DR1cJpCGAAAukku/oBcHACAXpGHPyAPB+jMRIf3BwC6OPDbt2/fQ8+EqV1vcnKy8v/zzz9f2GuOp0Fves6J6YMBAOgGuXg+uTgAAN0kD88nDwfonOIoABhgaQCYBnfVAV6r9ynyNdefe+651d+PHDnS17YAAFBccvFmcnEAALpNHt5MHg7QuVK5XC4HxAEA6ImdO3dWBrvT09PZ7Oxsv5sDAAAjQy4OAAC9Jw8H6NxYQAwAgJ64fPny6nTKpg8GAIDekYsDAEDvycMBYiiOAgCGTppSeWZmpt/NAACAkSMXBwCA3pOHA3TGZfUAgKE7U2b//v0buuY8AADQObk4AAD0njwcoHOKowAAAAAAAAAAgEJyWT0AAAAAAAAAAKCQFEcBAAAAAAAAAACFpDgKAAAAAAAAAAAoJMVRAAAAAAAAAABAISmOAgAAAAAAAAAACklxFAAAAAAAAAAAUEiKowAAAAAAAAAAgEJSHAUAAAAAAAAAABSS4igAAAAAAAAAAKCQFEcBAAAAAAAAAACFpDgKAAAAAAAAAAAoJMVRAAAAAAAAAABAIU30uwEwClZWVrLr16/3uxkAAKxh9+7d2diYc0eKRh4OADD45OLFJBcHABhsu0csD1ccBT2QBoFPPvlkv5sBAMAaXn755eyJJ57odzMIJg8HABh8cvFikosDAAy2l0csDx+dMjAAAAAAAAAAAGCkKI4CAAAAAAAAAAAKSXEUAAAAAAAAAABQSBP9bgCMqvHv+0iWjU801Ci+/XupVLOsVKq7Lau77f76tTGqt9+/X+5t2XhN+Pq4paz6eOmP8aYY1fVLNTHSX7Vx69dvXja2+jzzbsuJ0bB+dZ26WDkxHtzWvP54udS0rPH/+mW167/9+4NXs9T0dtW/q/fXz7mtun4pKz9Yv2G9Umnt2+oec7UZzevXxV8nbnW91c2uZr2aRdlYddk67a+L3/iYNcHy2vNgq89pT8Pj1IVbfS2aY9XGaIxbH2vtx8x/LdZ5DdZ5bnUxGh4z97V+yGM2vhd5zynvNcuNldPuxvepfhusLlu7PbnbYN1rVr/ew9+T6no58VtYVv+eNC9r3kZaW7+6/5VKK+u2Z3Vbyn3tctq4uu88iLt637z1s5Wm7Wb19rG8+CvrPGbD/5VDRvNzqt7+4LC1TqyaGKv3qyvZz1u//nHq4zc/ZtPOVhMr75Ba0/HU/73WshbWrznUPFgv79SE3M79foz1d9xV5dwDUKn123Li1902tnZ7VpfVrL/63GvXb1ivLlbOYzbGqF3/wXOqWbb6uue1vz7Gwqt3sh//2D+veUEYJePv/6Esm9i85s75ID/O2YkbcufKr7l5ekMuXtfh3M93c/P66n5Sk6/njBEe5Lf1eXj9+s3Lxta9LSdGzvqNufZaMRpz8dr1q7l4ft6dl5OXcnLy6jO//1rn5Jd16zfl2A/Wz8s/mnKf3NtqljXk4rm52INFTXFz87q8/LjxeLtW/tSQs9XGWs2Zc9rTeo7avKwxF6/PQ+pj1i1bN7ddu42t5rt5z61xvJH3mHljivVy1PzxwNpjhNxYOc83d/yWu2zt9uRugw35dP2ynBilVnL4vFhr59F5+XH+NtLa+o25+MNy+MYYebfV7zv1OXNd/NU21uTrDbfl5ce144amx6x77GrO3Pyc6nLmhry49JAYzbn4erfVPNZq/JrbVvP72vUb71dzUyt5d16+3uL6D3LJnPVX/87r3GtirL/j3n+cvAPQ2vl0Xf7a3PE031b7nPLGAY05dl5nXX+AqL9fzmPmxaiun59j17SnMRevy9ff/v369bvZT/zpf1bzIIySTR/+ZJZNbM1KYzW55/3f65aN388Ja/LQrGG9Us32lRuj+tnz/Vh5jzlWt6yau+fEWo1fkwOPN7SnNse+v95YXRureev9/2tvy1k21rCs7rbVZQ9enupY4sGQpfmxqzHz4tbdVsqJ37B+dZ269tR0EePVuDXtqC5r/L/yeyln2ep6za/n/bd19X61v1fXq401kbNsdb11Hjv3MRvulxersqwat9ol5ry/ta/76no5tz3otpvb0/g4te9P3fNtfJ3q2p8Tv2G9ms3/wfZZd6i7vyxb86OgujHag/FD06Km+9W2v27bK603ximtHX+9WNnaz7NUrsmVyitrLlvNqVb/TuutNC1b/b0aY+Vh69fHrftsdp34q7FW8mKVW2zj8v0/ax5zZbn+/8pq93/Peczy6vrrLKt57NVYNfGrv6+2o/a21TbWtL/6e/V+1Zh1baxp//31V2Ms17bn/m11bSzX3bZSE7+6Xjkvxv32191Wfex1ltW+/it56y83vwar91ltY078lebntJL7mPXP4+241fWbn9PK/e2rGrMubnX92s0t7zFX16u/X95t9cuq7cu5rTbG/f1o+X5ba25abX/tssb1quvULstbf/VtyNZff3W96v2ytWOt1e6mx7z/961sJfsn2bezUaY4CvplfCIrjW9q+JQprzhqrM3iqLE2i6PG2iiOWrvYad0CqHWLo3K+WFm3OGrtL2zy1h8vt/ZFzPi6xVH3BxjrfOlSt35ugl5dttHiqNa+VGipUCnnvvWfdcUXR+UPavK+fGhev/G22mX5hSxZzmPWx31YIU5T++tei3Veg5znlvtlWkBx1FjbxVHNXzS08gVM7pd7edtlbiFRXvvLLbS/3JXiqLEWlj20OKop/kaLo9b5UqRu2QaLo/KKnTZYHLVeYVPuly3rfPnTcnFU7vptFkc13u+hxVHVx665bb0vbta5Lf/LkLzHzDtA3I+x3idEY8HFUS18mVPfnvW+WGloa94XN3nFUWOdFEfVr7decRQjrpqH5+XaOflxe8VRY20WR9V/IfPw4qj6PLl+/bULoB5eHNVwssFDi6PWztPz1q/m4usVR1Xz8Lz8Oy8XH+ugOGpsw8VReTlztnYus17+lJPXrZfTRhRH5R0WWjshIue2uhjxxVFjgcVRDxuHtVsc1UpuXr8sL/56OXb932svaxjj5BYStZpjZ23l2BstjspvY86y9YqjcuNvtDiqhVw4J2d+aHFUC/nxesVRDytsys2x18n5WyqOyl2/g+Kophy+JlRuHt0QIzd3zovffFt+Dty4fl7H32Jx1Lo5/8Nz7dw2tlwclZNjrz5mtn4OvF4O30KMh+XYTeutdxujKRVGbdrWQnHUegVKOYVKeTGqy9aJNbZu/I21MT/+g+29sago97ZOiqMa4m64OCq3WOtB/LFWiqPWKYTKW/aw4qXG4qj1YlV+L7Ub/+G3tbx+i8VReQVKjeutVzhV+5h5xVGry+q2qXUeu4XiqOo6Dy2OKrVWHJX/2fx68av3a35O+eOH0jrx14m14eKodYqdWi6OWmmvOGq9WC0XR7XYxpW8wqN1iqMaipIeXhyVc9u6xVHN8VtpY11x1DptzC1UWi3cyVmWVxzVQoy6QqWGWHkx6gqPWi2OamrjQwqy1iuOyimAerB+820rq0Vg6xRH1d42lvOY98cIq8+jZsyyUsopjqouq8avGaNVC6HKNWPLBwVQ1f9Xb2ppWfXv+mUtrr/6/9rL6oqjqoVcG1y2Gr9cs9KIqj1OAAAAAAAAAAAAFIbiKAAAAAAAAAAAoJAURwEAAAAAAAAAAIWkOAoAAAAAAAAAACgkxVEAAAAAAAAAAEAhKY4CAAAAAAAAAAAKSXEUAAAAAAAAAABQSIqjAAAAAAAAAACAQlIcBQAAAAAAAAAAFJLiKAAAAAAAAAAAoJAURwEAAAAAAAAAAIWkOAoAAAAAAAAAACikiX43AAD65bf/+Dcr/5dqlh388E/1rT3AA3/nf7xWv3OWsuz/9Jee6mOLgKJYXvxuNvHE9/e7GUAP/Ys//GxjWpH99Ef+Qh9bBPTD//l/+Nrbv5Rqxhh//QP9bBKMnKXvfSErjW3KNr3vE/1uCkDL/u7f/buV/0vl8uqy//L/8PN9bBEA7VAcBcDI+p0/+UzTMsVRMBj+7m++1LRMcRQQ4rWXs0xxFIyUz/zRbNMyxVEwev7OP/560zLFUdBb5Ze/lFVKCxRHAUPkF//e32tapjgKYPi4rB4AAAAAAAAAAFBIiqMAAAAAAAAAAIBCUhwFAAAAAAAAAAAUkuIoAAAAAAAAAACgkBRHAQAAAAAAAAAAhaQ4CgAAAAAAAAAAKCTFUQAAAAAAAAAAQCEpjgIAAAAAAAAAAApJcRQAAAAAAAAAAFBIiqMAAAAAAAAAAIBCmuh3A2BkLS9l5aYaxfu/l2qWlUrr3Fb9PWdZ4/3q1h/PWb96W/V+6dfx1mLcv0/5/rJSzfqlUvOyarz825qXlRvWrz5O3W1161fXe3vZSs36Y/eXlculpmWN/7993+qy2vXf/r261krNbdWXvf7Z3l8/57bq+qX7W0PeeqXS2rfVPeZqM5rXr4u/TtzqequbT816NYuyseqyddpfF7/xMWuC5bXnwdab056Gx6kLt/paNMeqjVGNm+fNO2+s+Zj5r0V1nbzXc+3nVhej4XnmvtYPeczG96L+9clbtk6snHY3vk/122B12drtyd0G616z8kPbX/+eVNfLid/Csvr3pHlZ43sy1uL61f2vVFpZtz2r21Lua5fTxtV950Hc1fvmrZ+tNG03q7eP5cVfWecxG/6vHAqan1P19geHn3Vi1cRYvV9dyX7+PvrK63cfxKiL3/yYTTtbzWPnHVJrOp76v9da1sL6NYeaB+vlnZqQ27nfj7H+jruqnHsAKrV+W078utvG1m7P6rKa9Vefe+36DevVxcp5zMYYtes/eE41y1Zf97z218dYePVOzYvBKCov37v/Wyv5dM3tTblzzm11981bf3ydvL66n9Tm2uvEaMjD315SnzvXLsvWva15WWMeXvtY1dvq12/O06u5eG2OXc3Fa5c15uLVPPztZaWcnLw+F8/psurXb8qxH6yfl3805T65t9Usa8jFc3OxB4ua4ubmdXn5cePxdq38qSFnq421mjPntKf1HLV5WWMuXp+H1MesW7Zubrt2G1vNd+uee43Xb7+xRv5a/zwe9pjrjonWGSPkxsp5vrnjt9xla7cndxtsyKfrl+XEKLWSw+fFWjuPzsuP87eR1tZvzMUflsM3xsi7rX7fqc+Z6+KvtrEmX2+4LS8/rh03ND1m3WNXc+bm51SXYzfkxaWHxGjOxde7reaxVuPX3Laa39eu33i/mptaybvz8vUW13+QS2breuXG3fxYdXluNVZOLpx7AFo7n67LX5s7nubbap9T3jigMcfO66zrDxD198t5zLwY1fXzc+ya9jTm4nX5+v1c/Pr915yRVr5368EfY+P1/ycr9/PL2jz0/u2l1f8fbF8PltXktNXPnsfHmm/LeczSWDXvzom1Gr8mBx5vaE9tjn1/vdpxbLW9pfv7x0rtbfeX1T6nsYZldbetLnvwkpWqefHq8KH5sasx8+LW3VbKid+wfnWduvbUdBHj1bg17agua/w/WSo1L3uw3v2xQt1t9/+vedDq79X1amNN5CxbXW+dx859zIb75cWqLKvGrXaJOe9v7eu+ul7ObQ+67eb2ND5O7ftT93wbX6e69ufEb1ivZvN/sH3WHeruL8vW/Cioboz2YPzQtKjpfrXtr9v2SuuNcUprx18vVl37cxbe98orr7wdo1yTP5WruV254e+03krTstXfqzFWHrZ+fdy6z2bXib8aayUvVrnFNi7f/7PmMVeW6/+vrHb/95zHLK+uv86ymsdejVUTv/r7ajtqb1ttY037q79X71eNWdfGmvbfX381xnJte+7fVtfGct1tKzXxq+uV82Lcb3/dbdXHXmdZ7eu/krf+cvNrsHqf1TbmxF9pfk4ruY9Z/zzejltdv/k5rdzfvqox6+JW16/d3PIec3W9+vvl3Va/rNq+nNtqY9zfj5bvt7XmptX21y5rXK+6Tu2yvPVX34Zs/fVX16veL1s71lrtbnrM+3/fqos2mkrlcm2vDXRDSpKefPLJfjcDAIA1vPzyy9kTTzzR72YQTB4OADD45OLFJBcHABhsL49YHu6yegAAAAAAAAAAQCEpjgIAAAAAAAAAAApJcRQAAAAAAAAAAFBIpXK5XO53I6DoVlZWsuvXr/e7GQAArGH37t3Z2JhzR4pGHg4AMPjk4sUkFwcAGGy7RywPVxwFAAAAAAAAAAAU0uiUgQEAAAAAAAAAACNFcRQAAAAAAAAAAFBIiqMAAAAAAAAAAIBCUhwFAAAAAAAAAAAUkuIoAAAAAAAAAACgkBRHAQAAAAAAAAAAhaQ4CgAAAAAAAAAAKCTFUQAAAAAAAAAAQCEpjgIAAAAAAAAAAApJcRQAAAAAAAAAAFBIiqMAAAAAAAAAAIBCUhwFAAAAAAAAAAAUkuIoAAAAAAAAAACgkBRHAQAAAAAAAAAAhaQ4CgAAAAAAAAAAKCTFUQAAAAAAAAAAQCEpjgIAAAAAAAAAAApJcRQAAAAAAAAAAFBIiqMAAAAAAAAAAIBCUhwFwEC4fPlydvjw4Wzfvn3Zzp07s1KplO3duzc7dOhQdvbs2ezGjRvZoLl27VqlrSdPnqz83o70vNLzS8/7+PHj4W2EKGlfTNv7sBnGvgWKrEj7ZJGeC/TSMO478n6IZ3wBAAwqx3uAYiqVy+VyvxsBwOhKg4lz585VvmSYnJzMpqenswMHDlR+n5+frwxErl69Wlk33ZbW3bNnTzYIUtvSgKgqtSu1MQ2a9u/fX/k7PY9a6Xmm5/PCCy/UPbdkbm4um5qa6ulzgIdJ2+jRo0dXt9XFxcWm7XoQDXPfAkVUpH2ySM8FemmY9x15P8QxvgDalfazixcvZleuXKnsi6k4Ie2Du3btqhxX07E67X/2PaBdjvcABZeKowCg1+bn58t79uxJBbqVnxMnTpQXFxdz152dna1b98yZM+VBkNpVbVOnPxcvXuz304GmfXRmZqZpW11rPx0URehboEiKtE8W6blALxVh35H3Q+eML4B2pWPn5ORky8fa6enpyv4I0CrHe4DRYOYoAHounV1x8ODB1eln01lfMzMzD71fOgMsnZ2RHDt2rHJmxiCdQd6OdNZJev7pTBPop/VmN6g1yGd2F6VvgaIo0j5ZpOcCvVSUfUfeDxtnfDE4fRgMs8b9KV2atnb2xdTXXLp0aXWml1ppf3322WcHto8BBoPjPcDoUBwFQE+lQcZTTz21OthIg4Y0eGhVurZ39cOOM2fOZCdOnMiG9UsSH9LQbzt37lzdFxtVPwRIHzIOw5cXRepboAiKtE8W6blALxVp35H3Q2uMLwazD4NhlPa9VKyQihZavXTVyZMnK5fEqpXuMzs767JXQC7He4DRojgKgJ6qPaMinek1NzfX0RcT6Vrf/fqAo90vSdKHOmmwVHumG/RDqVSq/J++jEj70f79+yvbdNpG07L0oWL6cHEYvrwoUt8CRVCkfbJIzwV6qUj7jrwfWmN8MZh9GAyjffv2VQqjNjoby/nz5yuzS9VKfcyLL744kH0N0F+O9wCjZaLfDQBgdKTBQnWwkZw6dWrDMdKHqmmgUp2S//DhwxsetERLZ4SkQVA6Ey2168qVK6tnm6QPXnbt2lVpc1rnyJEjPoxhYBSlRr6ofQsMqyLtk0V6LtBLRd135P2wPuOLwe7DYFikIsraGaM2IhVTpeKE2hmk0rE6FVul5QBVjvcAo2es3w0AYHTUniGaviho5drdeZ555pnV39PAozr46Jfdu3evnhWevihJZ76mD4XTT/o9ffiSrlWePqDxBQnEK2rfAsOqSPtkkZ4L9FJR9x15P4yGovZhMAzS5alSYVP1cnjtSMfpxplbqnEBqhzvAUaP4igAeqJxYJC+VGhX40Blo2eRAcWhb4HBUqR9skjPBXrJvgMMM30Y9FcqbEoaL8G5UXn3P3369OqMj8Boc7wHGE2KowDoicZBwYEDB9qO1Xj21/nz59uOBQw3fQsMliLtk0V6LtBL9h1gmOnDoL+q+0mahbETefdPhVEXLlzoKC5QDI73AKNJcRQAPdH44UO6FncnGgcdly5d6igeMJz0LTBYirRPFum5QC/Zd4Bhpg+D/rl8+fLqDC4Rl6XK23/T5W8BHO8BRpPiKAC67tq1a03TVjcOGDaqccAyOzvbUTxg+OhbYLAUaZ8s0nOBXrLvAMNMHwb9Vd0/UpHUvn37slKp1NEMLHmXyaoWYAGjy/EeYHQpjgKg6/I+eOh0wLFr166HPgZQbPoWGCxF2ieL9Fygl+w7wDDTh0H/CxYaHT9+PHd5K/bu3RvQKqBoHO8BRpfiKAC6rhtnSkxOTtb93e4HJcDw0rfAYCnSPlmk5wK9ZN8Bhpk+DPqrcSaXTosMGosVquyHMNoc7wFGl+IoALqucTDQOFhox+7du5uWXb16teO4wPDQt8BgKdI+WaTnAr1k3wGGmT4M+mutfW6tIieAdjjeA4wuxVEA9HzAEfGhRt6gxRkZMFr0LTBYirRPFum5QC/Zd4Bhpg+D/kqX0Mvbh6anp9uKt7CwkLtcsRWMNsd7gNGlOAqAvk2LHW1QBhzp+Z49ezY7dOhQtnfv3qxUKmU7d+7M9u3blx0+fNg1xyHIqPUtMOiKtE8W6blAL43aviPvh2IZtT4MBk0qgrp48WK2Z8+e1b+ff/75tmd1mZ+fz10eMUsMMLwc7wFGl+IoAHo+2Ij4ECLvjI7r169n/ZQGPOlLkPSFyMmTJyvPM531lj7YOXPmTLZ///7s0qVLlS9P0jrnz5/va3thmI1S3wLDoEj7ZJGeC/TSKO078n4onlHqw2CQzczMVIqayuVyNjs7m01NTbUdK++SVu3OQgUUg+M9wGib6HcDACi2taawLtrZGOnLj/QFSRpMpS9F0oc5edKXJ2m99AFN9QuU9OOsNdiYUelbYFgUaZ8s0nOBXhqVfUfeD8U0Kn0YjJK8GRxT4TIwuhzvAUabmaMAKMQ0tf107ty5yhcfx44dyxYXF9f8giRJU4PPzc2tnvmWPqg5ePDgSLxOEMk+A4OlSPtkkZ4L9NIo7Dvyfigu+yYUy1qzNp44caLnbQEGh+M9wGhTHAVAYc7G6NfgJp0Fkr4gSV+WtCqdNV6VziZPX5QArRuFvgWGSZH2ySI9F+ilUdh35P1QXKPQh8EoSZe5baQwCnC8BxhtiqMAGEqDdDmK6enpDX1BUj2TvPaDmvRFSbr0BtBfg9S3AMXaJ4v0XGBU9x15PzDMfRiMinSsbbycVePxGCCS4z3AcFAcBQAdfjkyOzvb1v3TWee1zp4961rkAAAwYOT9ADA8jh49uu5MjgAAjCbFUQAMpUGZlrbxi46NnlEyNTVVt8xZ5NBfg9K3AMXbJ4v0XGAU9x15PzDMfRiMivPnz1dmjmosjGo8DgNEcrwHGA6KowDoql27dvW7CQNt//79dX9funTJYApaoG+BwVKkfbJIzwV6yb6zPnk/DDZ9GAy/dFw9fvx43bJ0Kb2ZmZm+tQkYLI73AKNNcRQA9NG+ffuall24cKEvbQEAALpD3g8A3XX48OGmwqgTJ070rT0AAAwWxVEA9Fy3zpBOl6sowtkqs7OzfWkLDDt9CwyWIu2TRXou0Ev2nQfk/TB89GEwPNLlai9fvrz6t8IooFWO9wCjQ3EUAF3VrUHAwsJC07I9e/ZkRXh9aj/MAfLpW2CwFGmfLNJzgV6y76xP3g+DTR/GMLt69Wq2d+/erFQqDdzPzp07my51F+38+fPZ2bNnV/9WGAWsxfEeYLQpjgKgq3o5CNi9e3dWhDPIu3W2ChSJvgUGS5H2ySI9F+gl+8765P0w2PRhDLMrV65k165dywZROtal4qVuFobVFl+dO3dOYRSwJsd7gNE20e8GADAaZ2TUfvCfdybFRuV9kVCkqWrTh1rOLoH16VtgsBRpnyzSc4Fesu9snLwfBoc+jGF15MiRbH5+vrK9RWy30cXBhw4d6tox9ODBg6t/X7x4MZuZmenKYwHF4XgPMLoURwHQkw9CagcIEWdIX79+vWnZ/v37s15IU3WfPn268jzShy7PPvts24Odte7nLHIYvb4Fhl2R9skiPRfopaLtO/J+GC1F68MYHekYky4lN0rS/rlv377V/XR2djabnp7ud7OAIeB4DzC6XFYPgK6bmpoKj5k3aOnFGdeXLl3KTp48ufr46e/Dhw+3HW+twZezx2G0+hYogiLtk0V6LtBLRdp35P0weorUh8GoFEalwrC5uTmFUUDLHO8BRpfiKAC67sCBA03LOj0jo3G62zTY6MVUtc8991zTssuXL4c/jml3YbT6FiiCIu2TRXou0EtF2nfk/TB6itSHQZGlS+mlS+pVC6O6UegAFJfjPcDoUhwFQNflnb2VPsToROP9e3UmRvRlL/JeBwMnGL2+BYqgSPtkkZ4L9FKR9h15P4yeIvVhUFSHDh3Krl69WtmXXnzxRfsUsGGO9wCjS3EUAF2XdwbXlStXQgccnVziYiPyBjbHjh0LO6skOXLkSNvxYJQUqW+BIijSPlmk5wK9VKR9R94Po6dIfRgUUdp/0iyO6RidZozaaJFxukRuqVTquAgCGG6O9wCjS3EUAD0xMzNT9/f8/HxHZ3E3nsndqy8W9u7duzqISj8nTpzIzp0713a89GFO3llwwGj1LVAURdoni/RcoJeKsu/I+2E0FaUPg6I5fvx4pbgpHZPbKYxKXnjhhcr/ZnQBHO8BRpPiKAB64tSpU3V/pzO92tV43zSY6dUlKarT7qYPZdKHMWfOnOkoXuNzSc+jcXAGFL9vgaIo0j5ZpOcCvVSUfUfeD6OpKH0YFMnZs2ez8+fPVwqjnn/++bb3o+rl+AAc7wFGk+IoAHqiesZ17QcS7Zqdna37O31hsVHpbI50xln6aTyzYz3pOaQPUjo5a7x2ut3GKXc7/dIFhlG7++Mg9i0w6gZtn9S/QO8N2r4j74fR4/gPxZGKok6ePNnRjFG1l83Ku5wWMHoc7wFGk+IoAPp2Rkb6gKMdtfdLg5jqWd2tSoOdp556qnLt7/STft/IACh9kZHWTx+0diJ9uFMrffly7NixjmJCty0sLITG63R/HKS+BRisfVL/Av0zKPuOvB8Gn/EFsN5sLKnIIO07eZen3YhUpJyKJc0cBVQ53gOMHsVRAPRMmlK29oyMds6WTlNp17p48eKGYxw8eLDu7NH0e1q20eeRPmht96ySvC9ZGs8ygX67fv161x+j0/1xkPoWYLD2Sf0L9M+g7DvyfhgsxhfARo6fhw4dquyPEcfN6n584MCBgNYBReB4DzB6FEcB0FNpgFCdAjudtdU4gFhP+lCz9qzrNGDZ6Blf1TPF8mI3XupiPdWBzr59+zb8RUneh7MpnrPXGDR524FRQ3kAACmOSURBVHYn00x3a38chL4FGKx9Uv8C/dfvfUfeD4PH+AJoRdrnqsfPtD+lIql2ftKxe+/evVmpVFqd2cW+CNRyvAcYMWUA6LG5ublyOgRVfy5evPjQ+ywuLpanpqZW73PmzJm2HjvFqX3s2p9020bMzs5uuD3puU9OTtY9booDgyRtp8eOHcvdT9L2e+7cufL8/HzHjxO5P/a7bwGKe7zv93OBYVaUfkDeD50xvgBalfahxuNn5A9AI8d7gNEhGwSgb4OOPXv2tDSA2Mi6rZiZmWn6cCQta0ftlx7p/9S2vA9d03qNj5ueU8QHwNCuEydOVLbb6k+7Hy7Wxkjber/2x373LUBxj/cbbZ/+BYrXD8j74eGMLxz/oRPpuFq7D0X/pNgAeRzvAUZDKf3T79mrABhdaerZNLV1moY2TWF75MiRyrTXyfz8fHb58uXVafbTdcCjpqc9fvx4duHChcrvx44da+ua4o3Po3ba3fRcdu3aVfm9cfr+dFt6vPS40E/V7bY6fXQnqpevmJuby6ampvq6P/azbwGKfbxP9C8w2v2AvB/WZnzh+A+dOHz4cHbp0qWuxZ+ens5mZ2e7Fh8Yfo73AMWmOAqAgZA+/HjuuecqXyikn+oAJA0u0ocXzzzzzIY/EO211Ob0AWy6Vnl6DgsLC5Vl6Tmk5zIszwOKpAh9CxRJkfbJIj0X6KUi7DvyfhhdRejDYFAdOnSoUnjQLSdOnAgplgSKz/EeoJgURwEAAAAAAAAAAIU01u8GAAAAAAAAAAAAdIPiKAAAAAAAAAAAoJAURwEAAAAAAAAAAIWkOAoAAAAAAAAAACgkxVEAAAAAAAAAAEAhKY4CAAAAAAAAAAAKSXEUAAAAAAAAAABQSIqjAAAAAAAAAACAQlIcBQAAAAAAAAAAFJLiKAAAAAAAAAAAoJAURwEAAAAAAAAAAIWkOAoAAAAAAAAAACgkxVEAAAAAAAAAAEAhKY4CAAAAAAAAAAAKSXEUAAAAAAAAAABQSIqjAAAAAAAAAACAQlIcBQAAAAAAAAAAFJLiKAAAAAAAAAAAoJAURwEAAAAAAAAAAIWkOAoAAAAAAAAAACgkxVEAAAAAAAAAAEAhKY4CAAAAAAAAAAAKSXEUAAAAAAAAAABQSIqjAAAAAAAAAACAQlIcBQAAAAAAAAAAFJLiKAAAAAAAAAAAoJAURwEAAAAAAAAAAIWkOAoAAAAAAAAAACgkxVEAMOKuXbuW7du3Lzt79my/m0JBXb16Ndu7d292+fLlfjcFAGBgyMPpNnk4APKN/nAMpuj0LaPr8OHD2c6dOyv9HMV4f66O0DFLcRQAjLCU9KRBzI0bN7Jjx471uzkU1NTUVLZnz57s0KFD2fnz5/vdHACAvpOH0wvycIDRJt/oH8dgikzfMtouXbpUee9HoZBmVN6fqRE6ZimOAoARH8Qkc3Nz2eTkZL+bRIHNzs5Wkuzjx487owgAGGnycHpJHg4wmgYl30izy4zq7CKOwRTRoPQt9Ecquqm6fv16NghG+TgT+f7MjsgxS3EUAIz4IOb55583iGHNZDqdKZDOGEhTsZZKpcpP+j1tP2mK1pQotzr4SNtaOgPh5MmThT8DAQAgjzycVsjDAShCvpFmrUiX6UltGZbjj2MwDH7fAlWOM7GeH4FjVqlcLpf73QgAWpMOhqkKOv2kqt90EF1YWKj8Xf39zJkzpjKlpeuBp20mVYNPT0/3u0kM6PSrR48erTvb4GFmZmayZ599dt2Bse0PgGEkDyeCPIhWyMMB6MQg9fepHdUvd9MxanFxMRtkRT4GG8/QqUHYjum/9P6nIp7kxIkTlX6jnxxn4t+fawXf180cBTBE0kEzVQ2nqt1UOZwqd9PBtDq42cgBldGVKtKr1wMvWmJD3BkXqa9J20eaHjnV0qeBRfo9JdVrSf3RhQsX1o2dzjxIyXySHiP1XQAw6OThRJCH8zDycACKkm+kY1rtrBfVmTIGVdGPwcYzFKVvgSrHme7YMwDHrG5SHAUwRNJBM1UJp+u+mrKUdqTrBadkJiU4586dC03sUuxUUV6dCjT9n6Y0TQlUSkqLlkQVWXrP0kD34sWLlf4mSX1O+j2dbZCS9rUS9rRtPUzqx9JPGrCkxwKAQScPp1PycFohDwdgEPONdqQinFaWDYqiH4ONZximvqV6uTFYj+NM98wUedyYLqsHwHA6ceJEujRq3c+5c+f63SwG1Ozs7P+/vbsxjtrc9wBszpwC+OgAOgihgkAHwKkApwMyVMBABxwqIE4HTioApwPfVACkA9/57Z2XK5RdW9LqW88z4wGDV6u1tHp//9X7cVXOk/y9D2dnZ1e3b9/+x3l46Ovx48e9PTfDyDHNsfr69euNP5ufOT09/XYO5JrUVB7b5XEAMAdyOG3I4TQhhwMwt7zRx74sITNvsQ1WzzDHa8vFxcXVDz/88O35mrwnGVeOSTk+U17HtDPDH5+vM2qz+mTmKIAFm3o9X5Y3wiPS47uPqW8zgiO9xst0umUq0PJ1eXm5O0ervdozsr36OOanzCzQZBRZfiajhTKqIce8zTUpjy0/n+m8q1PgAsDcyeG0IYfThBwOwJzyxjGum7ljjrN6bLENVs8wp2tL3oOpUzIbrmxKE9qZ4d2eUZvVJ52jABZu7OkUWaaElxLAjg1TuZmSQiU3WFIQ5eZLwlqZCrR6bmYa0Px/fTrQrJOcbVjiY35yvGKMsJubeaUgePHixeDPBwB9ksNpQg6nKTkcgDnkjWMlp6QtS0eKtDf78kyW/Z2TrbbB6hmmurZkm6lL0okltUmWBM/30IR2ZjynM2qz+qJzFMDCWSOcJsVG6S2fwHhs4fvTTz/tQlyC0fn5eaPtpXiqr0ee/UrxY+T6PH348GGU5ymFdc4pRTAASyKHcxM5nC7kcACmzBvHKvvy6tWrg7N3TN2B65CttcHqGca8tty5c+fk1q1bu690hspMUWU2mmw/X9CEdmZcb2bSZvVF5ygAWLlqQDw2FGZbCUEZqV6/yXKT3MSpj1wvo9+XJvu9tF7+TaU4jRSnY9wwW+PoAwCAkMP7J4f3Rw4HWIc+80afs3lkZst0ptjX4SGdLuY0q4c2GIa/tpT3Vs79XB/yPjg7O9stHZY/Hz16dLIFa65nxqCdGd/pytosnaMAYMUStEpv7txIOWaERwJlwlu2kZHqXaSQqu9D2e6SZNR+WdJkbarLsrx+/XqU5yzT385xylsAgC7k8GHI4f2SwwGWrc+80fdsHjd1qpi6I1eVNhiGv7ZcXV3tvtIZ6uLiYjfgI51atjaD2ZrrmTFoZ6ZxuqI2S+coAFixatD6+eefj9pWCZOHpiptat/js59L6jFf1lpf4yiPFLz71pUfUvXcnFPRAgDQlRw+DDm8X3I4wLL1mTf6ms0j7Vn1JvB1s3rMZXkebTDM99qyNmuuZ4amnZnOzytqs3SOAoAVq/biPnbd7rKt0ku8q32Pzw2ZX3/99WQplnQD6diwPkYBnAKmFDQpDIycAQCWTg4fhhzeLzkcYNn6zBvHKp2w9900PXQj9diO333SBsM8ry1rs/Z6ZkjamencX1GbpXMUAKy4iClh+9gbKSXsJMD1Maqh2rO/yNrizEM1nOfYjzFV6ppGHwAA2yaH05UcDsAUeWOo2TyWNKuHNhjmd22BQjszvZ9X0mbpHAUAK5V1u4snT54cta3z8/NvoS1rYt+6deuo8FbtJV8subf52tTXe0/wHXqq1+o5kXPBKBoAYKnkcLqSwwGYIm8MOZvHUmb10AbD/K4tUGhnpvd4JW2WzlEAsEIJJtWR5ftugrSxL6QdE94ePHhw1P4wvPrIoKGL4YzuyFexpOVdAAAKOZxjyeEAjJ03jpH9uG42jyXN6qENZuvmdG2BQjszD/dX0mbpHAUAK1QNJgmM1R7pXRzqBd51lPndu3f3/vuSesqv3atXr/5xbIZeC7tacFveBQBYIjmcY8nhAIydN4aezWMps3pog9m6OV1boNDOzMfjFbRZOkcBsDrpRf727dtdqHj27Nnu71tTlt/oa4THoULo0M0Vli/HvD6SIUu4DLkWdnWkxKdPnwZ7HgBgGHK4HM7x5HCAZracO/rOG8ccg3TYvmk2j6XM6qENZsvXlTldW6DQzszLkxW0WTpHAXBQwkKKgIcPH57cuXPn5NatW7tlGNIApqd1dYrVvmXbeY7qc+fPfJ9/3zeyOSEp/5+vrI395cuX3b+X7WxJNeg9evTo6O3t672eINe1SCrHps5NnnnZN9JiyLWwqwVOZkkwgwEAWyWHL5ccTh/kcGAKee+nI0DyRnJHyQElhySb1GcuzL/la865Iz+fm455bfmZXE/zGvOzeV15zn3Pk+thHld+H+V3kf3La57yRmbfeaOrMhNHmxk55j6rhza4H+qZZZrLtQUK7cy8/LCCNkvnKAC+kwYtDXGKhhQwZS3fNNiZJrF8OJ8PFMqHCF2XdNgnz1c+oMhzZH/SkzrP//z58933+fdSTJXGt3ywkZ7hFxcXJ5eXl7v9LR/yZ7tz6Bk+hnpx2aRH/U1yDuT3WdYUzvd//PFH56l1c3z2MVXvfOS99fr1673/d8wHn9fJ+VU9B/q8tgDA3MnhyyeH0wc5HBhbyQBp43P9yTWh5I+07fkzNxSTBUpWyLUq16S08V1ujI2ZO/KYfOU1ZJvp1JTrXH720L7n59KZIo/Jc+XPPM/Lly93z5XnyDbzM2N3khoib3Tdj/we8/xtOm3PeVYPbfBx1DPLNpdrCxTamfm5v4Y26wqARfvhhx+ucjkvX+/eveu8rTy2bOf+/ftX5+fnB3/269evV6enp99+/vHjx7t/O0b1+fN1dnbW6OfK72Df/uZ1lJ978+bN1RbkdVZ/P3OU86W6j+UcWoo1n1N5H1WvK/uO1bHXmutUn+/p06eDPAcA9EEOl8Pr5PDhrfmcksOBKaTNb3N9uby8/EcGyvdzzh3JTbnG1fe7+pXXVeQaePv27Wt/H/Vr9Jjt0lzyRvkdXJdbD7m4uNh7HHIcp7DVNlg9o56Z07Wl/vz5Ova8mKOln1M5JuU1vHz5ctDn0s7M8/g8XnjdOM9PagAYvYipFiRtGrQ06uVx+eCg+mFCG/XC5KbAU//5Q6+7Gqq77tvSVI9l2w+oxrIv+C2pIFjiPt8k749qsM15VN4zCdL145X3+9Dn71TFCgA0IYfL4XVy+PCWuM83kcOBqVSzRG4itlG9brVp8+aQO5K36tfW8pj8X66BTbJLteNE15u3S80b5abzMc9/6MbwoU4tQ9h6G6yeUc/M6dqic9QyjNU5Sjsz3+NzuvC6UecogIXro4ipfijQJWzUC5m2H6jUe3GncW372vO8h8LyFoqXQ7+XOfbcrheg5WtJll7EXDdSdN97uBqqh76RNvUoJQBoSg6Xw+vk8OHJ4XI40J9cd9q0//XrU3l80wwzl9yx79qax+Y6eN32b7pujtWZYA5545jZPOYyq4c2WD2jnpnXtUXnqGUYq3OUdma+x+fNwuvGf029rB8A08o629V1dv/444/W28h6vy9fvtz9PWt3Z23c/NnUixcvvvv+l19+afS4sk55ed76dqrr4G5JWS99rq8967zXlfOH8eX9Vtazzvrdf/311z/WlM860qenp/947IcPH3rfn/o5Wz2fAWBN5PD1kcNpQw4HppQMUjLDkydPWj/+0PVpCbkj+77vmpf9OTs72/1/E0+fPv3u+z///LNVDltq3sjr/P3333dtVrJoV4cen9dXzchD0Ab3Qz2zLlNfW6DQzvTfzvTp/kLbrELnKICNh4xqwZBCpOkHAHWvXr36rjE8VFDUJeRkP677gOKQerBJoFlaQ9y3FHPVAvLBgwcnc5JjXT9GOd77btQwvLz/80FGOQ4XFxcHrwH7PlzYdzy3Hq4BoAk5fH3kcNqQw4GpnZ+fH30TvNq5YOm5I+1h25uw+/b/06dPJ2vPG6Vd6iNDHNrG69evT4aiDe6HemZd5nBtgUI70387s/U2q0rnKIANKz2X9xUibdV7OaegSIFyk4zIqmrzgcy+nx26x/fc1YPI3bt3T+ZkX3FbPwcYx3//+99vIb3+weih91t9dEM0eZ9vKVwDQBNy+PrI4TQlhwNzUO3E0/X9nutG084Qc88duaZ2yWNjXzunzht9zeZRHNpOeZ6+aYP7o55Zl6mvLVBoZ/7PEPu25TarSucogI2qj4ZIQOg6uuNQUdRkGtv6iKq2o9XqweHjx48nW/bly5fvvp/TFLgJhtXRPKWI3Rf+GFbCdXWE57t37xqdK/s+6Li8vOx13+rXob63DwBTk8PXSQ6nCTkcmKNci7pq2t4tIXfUl8nrcu0celm9qfNGn7N5FIe21XR5tKa0wf1Rz6zP1NcWKLQz828Hbi+szarTOQpgo+rTRvbxwXi9B3aT3td99ypeWi/lvg39Icwx+1Wfbj2htMsHTxyv+oFDAvq+ta33ObRG9xbPaQDoSg5fp7lmFjl8XuRwYC6qN+vqN/PabqfJDCNzzx19dRj+/PnzyVqvzSVf5pj3MZvH2LN6aIP7o55Zn7mfc2yDdmaZ16O/F3b90DkKYIPSsNZHDj958qSXbdd7QluqYVrHjtrpS330T27IZC16xpcPPKuBtc0ojJxPY0+bWh+5BABLJodvhxxOnRwOzEk9f2SWwfxbPafcJHnjpiVjlmCps6SMmTeGmM1jrFk9tMH9Uc9sw1xqGbZFO7PMzlFfZtxm7aNzFMAG7esN3dc60vVG/Kae1z/++GMvz3vo+bdmjkEkAbN6HrghM52E6nzgWX2/tJ01oD4abIiRAQpwANZKDl8vOZzryOHA3GQ2g/p7Pm3Gw4cPd19v375t3VFqybljKTlmqrxRnc1jiNknh5zVQxvcL/XMOs2xlmFbtDPDtzNbbLP20TkKYIP2jejqK/zXG8UEg+t6Odeft+0HL/VtP3r06GTL6qGpr+K0q4TCfKA25Q2ZnCMPHjw4uXXrVm9f1RtOfW3zzp07naexb6o+YqHL89XPqaGD8NwLAQBoQw5fLzn8n+Tw/yeHA3P0/v37vf+eTJDrbDpJ5TqZP3Pd+u233zpfG+aeO+7du3eyBFPljbKM2hCzeQw9q4c2uF/qmXWaWy0zF+qZ8Whnxm1nttJm7aNzFMAG7Ssq+mps9wXn64qYelBoO11kveEdolc53aQgrR7fd+/eTTJSPfuxhGlIcy73ucb1vu1XRzBE03Wvr7tWDFEsK8ABWCs5nDHI4e3I4cNuE5ivtN1NbkLmep7rWJZqzQ3YLsvvyR3LlWOVjnFDzeYx5Kwe2uD+qWfYEvXMOLQz47Qzfbo78/27zr+n3gEAxjd2oLuu53ACSUJPdZ8SRPaFlLp6YElw2vL0t4emxJ2il3mO508//fTdGvFTFZh53jx/n+d9GU2Q8zQfCvYhx6nJed/Vr7/++t33ea4+zo0hzq/qVM5LGiUBADeRw7dDDpfDCzkcmLN0nk0b/uLFi8Yj/8vye7n5lw64Tcgdy80bpe0dcjaPIs+Rc2vfPlxcXLTenja4f+qZbZiqlpkb9cw4tDP/NPf335eFtFn76BwFsEFjT3N405rVCZjVQJIPVpqEuXpYGiI8JfgmpDYdTXeT9IDP6yvTAic4ZH30jL57/vz50UFiDkEk51eOZznPMt3y1OG87xtCJbDn3JhiFH4f0153Lb7q14+hp5xe8igEAKiTw5uTw9uTw+dJDgfmLtfqfGU51tJWNpGZEj59+tT4ZuKcc8dSjJ03xprNo9rZJV/1mcnKrB5tc402uH/qmXXWM3OoZeZKPTMs7cw07cxW2qx9LKsHwOQSRqpBMGHopum58zPVER4JIX2P7siHPFlT+qb1zZvIvmbq8RQreb3Z369fv+4+QMr3mQY4/1+fgvPYIDJ2wVq9IZOiKq9v6hsy7B8R1fW41D+UyPnbt+p5qzgHgOHI4XI4w5PDgaVIJri8vNx95QZ8Zoa6qY2vL+W6xNyxJGPnjTFn8ygOPVfZlza0wes31+vK0uqZqWsZtks7M14706e/F9xm6RwFsEH7wn5fgXffaI4mxUW9R3WWgji0zm+CfoqBoq8R0aWXegqKW7duNf5w5ybZ3/L68gFTwld+JwkN+TPfp6DJ3/OcfT3vFHLcysiVUqAxvby/6+/xrsem/gFDRigBAM3I4fvJ4ceTw+dJDgeWKO1iWTIv7efV1dWuzU8HhH03wNLeHsoOc8wdzHM2jyLHeF9bWWb1aEobPAz1zH7qGWhPO/P9c1dtuZ0Zms5RABu074OMm6aobWpfMdRkWsUE93zwkoIkASLbSfDP6Of02E4hkD8z4qKE/ISYFAXHFjDZZoqW/JniKOsE5wOfPkaMJEyV/c00v4e2mWNSpuDMa+060qO+/b6OaxM5Xglx2Ye//vpr0yP55qY+QumYY1PdVinG+1S/hty7d6/X7QPAlOTw78nh/ZDD50sOB+aq7WwmafPLTfh9My40nfFhytyxBmPmjTKDRpeZNOYwq4c2eBjqmXXWM1PWMmyXdma8dmarbdY+OkcBbNC+0D/kCI+beksn6KfxT/DIvmWkc75S1GS/3r59uysEEuwTClJg5P/7mvI2z5vRcGVK2vJBTx8BpIxEye/gpmKrjMyLvN4ux6T++zh22t42rzPHMc+fY9P2d5cRAikkx9rfrelrWtb6CIYhRiPV99XNPQDWRA7/nhx+PDl83uRwYK7SfnS9GZk8kBv1VU1mWpg6d6zBWHmjOptHyUhj6mNWD23wMNQz66xnpqpl2C7tzPfPWTX3GeC+LKjN2uffU+8AAOPLyIkUBlWfPn3qZemFenBuMvoiBUS9Ec2+lH8f2lDhK7/jUog0DTSlWKsWV23UC6+MgBla9jlBNsfsjz/+6FT8ffz4cZFBaqmajLrap14YDDHdbZ8jLgBgbuTw78nhx5HDl0cOB+akzdIxdbkOpZNBNdfk5t51mWbq3LEGY+WNKWfzKNLBpL5cWvn3LrP9aIP7oZ5ZZz0zRS3Dtmlnxm1nttpm7WPmKIAN2tewZ8REH41ifVRCdQ3vQ/LhyZynieyqWoA0DVPVQrKPJT36GrlzXaGW/TzmhkyUZUAYRj2Ydz1OHz58+Pb3HPMhjllf63QDwBzJ4eOQw5uTw4clhwNzlvf9MbOD1JekuWlba80dYxs6b5TZPHKsppjN46ZZPXITuT7Lxj7a4GGoZ9Zbz4xZy7Bt2pnx25mttln76BwFsFEZ3dXXaLGiHhiahptMw5gGdU2hO7+L+jrBTVV/NiGxrerjh5wCt6zXnvDTZQmPIUYYsV8fgTrnUvU9fmhd7j6ep5h7IQAAXcjhw5LD25HDhyWHA3PXpb2rqt60v6k9WmPumMLQeaPM4jFUe9PGoX1oMtOINng46pl11jNj1TKgnRm/ndlym1WncxTARr169eraRriL+lSt9ee4qYf1r7/+erIW1aKw7c2KaqDIeuVtVW9u5GbHUK8vU/WWtdz7GBm0xCC1FDkHjy1wq+/vJmvdd1WWdgnnBABrJIcPSw5vTg4fnhwOzF11toIuqm3tTcvJrDF3TGHIvDGX2Tz6mNVDGzwc9cw665kxahnQzkzTzmy5zarTOQpgo9Jw13shH7MWdz5Urwb3NIr1USSHlAY0vbHXMsqjGhDarjVcLXq6jLyprpM8xMiZhMI8R9Y+7nLTqK6ch48ePeph7zikulZ1lw8sqtMxv3///mQo1X0ziwEAaySHD0sOb04OH4ccDsxZ3vvHdGqo3gi86dqxxtwxhSHzRskGc5q54phZPbTBw1DPrLOeGbqW6SIzg7Eu2plp2pktt1l1//7HvwCwaG1Ca4qMhO0yxWoa4oxC7tKgvXjx4rvv23xYn+dLWM++P3z4cBdG0kN6yeuFVwNC297T1aKnS2/zeu/yjPToq8d59uenn37a/T3Hq1o0tVGmPF76FJxLkhFXb9++/W6WgKbvseoHDLluDBl6q+dE1/MLAKYgh8+DHH49OXx8cjgwd8kSXWcjLO1u9ebgEnPH58+fT5ZiqLyRdqDcpM35kGw6Z2VWj+vaRm1wO+qZbdczQ9Yya7sO0412Zrp2Zo1tVmdXACza7du3r3I5L18vX75svY0ffvjh2+Ozva9fv7Z6/Js3b77bh7Ozs1aPz/NVH9/kK/t5//793b4/ffp0tw/n5+dXfar+XvIcbVT39fHjx60em2NYfXzb41Hf9/xu+pD9qJ9vfX4tSd+/27FUz63T09NGj7m4uPj2mJxXQ6o+19LOCQC2Rw6Xw/eRw4clhw9DDoftqbZX+Xr37l3rbSR3lMdfXl4uKnfUn6dt3ijq7XPX7cwhb6R9GiprDPXVJOtpgw9Tz6hnrtvvsfN2Xmv9WLU9H5ZgqfXMvvdc22uGdmb4duaY47OVunGZew3ArpGrh91jQmM1fKYxbhqc6wVM10Kivp2uXylu8nvpciNjqCKm7WPrx7XJB0zXbaOPD2by+0zROFTIzLaXZMlFTPW8vun9Wr0Rl2PUx/uq6XWgbfEPAGORw+XwptuQw/snhw9DDoftqXeOapsl0kaW61Sbm29T547s96Gbs8lxTbeXnzu0nXQ0G/q63XfeyO9lqKwx9Fdu1N5EG/w99Yx6psnjx+rsmffwoetpjkmuqV3qsrlacj1zTOcb7cw47czQnaPerKBu1DkKYEHS2LQdMVwCZNvwe9PjEgiqhU8a8SYhoenz9/HVZdTbHIuYLr/XBLDqNo6V1zBkwFxakFpyEZOAXD23D33okfOu3Ihr88HGMarXlGPfvwDQJzlcDm9KDh+WHD4MORy2p3o9ynWntDdNbqTl+lVyUdMZEqbMHXmtXXJcva3pmgeHuDnZd95Y4mwebbKMNlg90/d1Za31TN/Xlvq+5dwoX12PTXUbx543U1hyPXNM5xvtzDjtzNCdox6voG78d/cF+QAY25cvX1qtWRv5+abrhWdN7qzzm7Vus154/p6vp0+f7ta3vnfv3snl5eVurd2yrmz2JY87PT3t/LqyrWyjrDec58rXvtdZfS153HVrZ2ff8/NZr3eu67M3Pe5tlbXVy77ctDby2K+pbinrKa9Bzous6Z33edbDfvbs2e73n3PmwYMHu2N9fn6+e59H3j95f46hPGeMuaY9ANxEDpfDm5LDOUQOB+bo3bt3u2vR2dnZ7tpUrlHJII8ePdrlgki7//Hjx931Iter/Pv79+93Pzf33FEyWdsc9/nz51Hz4JR5o9oOLM2nT59u/BltsHqmvJ7q49Qzw19b6qrnYJtzcd92WBbtzHTtTJ9+X0PdOHXvLADmKT2M0/M3PYHTk7k6zWN6NKfXcR898/McpadxtttlitQ8Jj2xD/U+7zrtatcRHvUpQo8d4dF1be3qdoboJb5lSx/hUX2f5zVUR4/lPZ7v8+9jjJDbNzKpz3W2AWBp5HA5nMPk8P7J4bBNaSMPtVH161OZqaPkkC5LX805dyyVvNGNNnh46pll1zOuLcNaej0z9MxEazBlOzPk8TlfSZulcxQAk6kG7T6Xc6gvPdG1oe5axKS4m7qIqRdTCV/0Z+lFzBxVP4Toes4DAM3I4fvJ4fMnh/dPDge2njuWSt5YPm3weq8rS65nXFuGtfR6Rueo7R6f05W0Wf+aeuYqALYpU7Jmesky5WSmlOxLpgKvTseb57pumty+HTMlbJ/byxTCZdrbvP78HmCuyvTXOd/bTMsPALQjhw+/PTmcJZHDgSGtOXdMTd5YPm1wN2u+rsyhnnFtAdbcZukcBcAkXrx48e3vr1696n377969++77rHW+VHfv3u382Orvtv47obs+1kZn//tziOsBAPD/5PDm5PD5kcP7JYcDQ5M7hiVvLJc2uDvXleHrGdeW4ahnWKLfVtRm6RwFwOj+/vvv70YcDNXLuIxwiMvLy5Opio683mMcE5Tzuy2PLz27Od7z5893v9fHjx9PvSur8Pr1629/r47OAgD6JYe3I4fPjxzeLzkcGNLac8ccyBvLpQ3uZu3XlbnUM64tw1HPsESvV9Rm6RwFwOi+fPnS24js6/z4448Hn3NIx/b6rxc9x/5+3r9//+3vipl+ZMTM169fd9MMc5x8oFE+1EiwNmoGAIYjh19PDp8/Obw/cjgwtLXnjrmQN5ZHG9zd2q8rc6pnXFuGoZ5haf5cWZulcxQAo6uH8qHW7a5u99GjRydjqgaEtgVU/eePDRsZ6VHC9i+//HLUtqBv5ZzMef7mzZupdwcAVk0Ov54czpbI4cDQtpA75kDeWB5tcHdbuK7MpZ5xbQHW2GbpHAXA6NKIVqem/fDhQ+/PkVESv//++7fvx56mtDq6pO30t9Xiq68RBGdnZ9/25e3bt71sE46VEQflfZrRSEsfdQAAcyeHX08OZyvkcGAMW8gdcyFvLIc2+DhbuK7MqZ5xbYFt+3OFbZbOUQBMotrDOMG671EeL168+K6AqRZNY3jy5EnnER7Voqev/c52ylrA1fWBYUrlfZr3aEYjAQDDk8MPk8PZCjkcGMvac8dcyBvLoQ0+3tqvK3OqZ1xbYNterLDN0jkKgEmkMX358uW37x8+fNhbIZNpHn/77bdvIyTKCIcxVUeUHDPCo1oM9bGedX4f2Z+ff/65t+1CF1mrvqxVnXMTABiHHH6YHM4WyOHAmNaeO+ZE3pg/bXA/1n5dmVs949oC2/TflbZZOkcBMOkojzLSI+H6wYMHuwa3q4T/hP4yxWtGNpyfn08y1WOeuzp1bQkRN6kXPM+fP+91v0pBl99zdXpgGFPeq6WYLgU2ADAeOfyf5HC2QA4HprDm3DE38sZ8aYP7tebryhzrGdcW2Jb/WXGbpXMUAJPKKI+Li4tv07ymwS3FTNOREQnkz5492z2uhPOy3Skb7epIiqZFQ/XnMk1l3wVYfs+ll3d+Z21Hn0Afcu5FpmUuUzMDAOOSw78nh7MFcjgwlTXnjjmRN+ZLG9y/NV9X5lbPuLbAtjxbcZt16+rq6mrqnQCAEuAz4qMa5FOEZCrZFCgl0Cd8f/78eTdq4tOnT9/CeH42hUMa6z7Cf56zTEWbgqLLNLp37tzZ7V/27fLyslHoKFP35ueHKsIyRXBGwqSwSbEHY8l7NB9S5H2dEVgAwPTkcDmc9ZPDgbmYW+5YI3ljXrTB27uurLWecW0h52TOzdKRsMzgxnqOz88rb7N0jgJglhLkP378uCtUUkh8+fLlW7GSAuXu3bu7P3/88cfduuJpqPsM/NUQEU2LkLrsf/YvMrriul7WKd7KWuAJLdW104dQQk7XAg3aSvGcIloBDQDzJYfL4ayPHA7M1dS5Y83kjXnQBm/vurL2esa1Zdt0jlr38Xm7gTZL5ygANi/FQwqlUiSlWCn/VpVAkGLp3r17u+9LEVWm7r0pUER1qt+qPFeKnexDCp0yTe3QSjEjyDLGBxMZwbTmYA0AtCOHy+EMTw4H2C55Y1ra4PXbaj3j2rJtt27dGm1gEeMdn9820mbpHAXA5pUw33bK3BQcTQNGWb+8FCl5zoSMFC8JHaXIuWkUyBBKkTXFc7MNOc8znbQRRQBAlRwuhzMsORwAeWMa2uBt2HI949qyXWXJx1zbco1j+cfnfzbUZukcBQAjSrGUcFHWNE/hlKl1//Of//S2pnkXZTSLqckZQs71nPMZIQUAMAU5nC2SwwEIeWN82mC2UM+4tmxTjnuWfdQxaj3H5+8NtVk6RwEAAAAAAAAAAKv0r6l3AAAAAAAAAAAAYAg6RwEAAAAAAAAAAKukcxQAAAAAAAAAALBKOkcBAAAAAAAAAACrpHMUAAAAAAAAAACwSjpHAQAAAAAAAAAAq6RzFAAAAAAAAAAAsEo6RwEAAAAAAAAAAKukcxQAAAAAAAAAALBKOkcBAAAAAAAAAACrpHMUAAAAAAAAAACwSjpHAQAAAAAAAAAAq6RzFAAAAAAAAAAAsEo6RwEAAAAAAAAAAKukcxQAAAAAAAAAALBKOkcBAAAAAAAAAACrpHMUAAAAAAAAAACwSjpHAQAAAAAAAAAAq6RzFAAAAAAAAAAAsEo6RwEAAAAAAAAAAKukcxQAAAAAAAAAALBKOkcBAAAAAAAAAACrpHMUAAAAAAAAAACwSjpHAQAAAAAAAAAAq6RzFAAAAAAAAAAAsEo6RwEAAAAAAAAAAKukcxQAAAAAAAAAALBKOkcBAAAAAAAAAAAna/S/j7D91VSR0kgAAAAASUVORK5CYII=",
|
|
"text/plain": [
|
|
"<Figure size 2700x1200 with 6 Axes>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"from matplotlib.colors import TwoSlopeNorm\n",
|
|
"\n",
|
|
"fields = [\"spm\", \"p3m\", \"diff_p3m_spm\"] # fields to plot\n",
|
|
"\n",
|
|
"slices_dict = {\n",
|
|
" \"spm\": DELTA_SPM,\n",
|
|
" \"p3m\": DELTA_P3M,\n",
|
|
" \"diff_p3m_spm\": diff_p3m_spm,\n",
|
|
"}\n",
|
|
"titles_dict = {\n",
|
|
" \"spm\": f\"sPM $n_\\\\mathrm{{steps}}={nsteps_spm}$\",\n",
|
|
" \"p3m\": f\"P3M $n_\\\\mathrm{{steps}}={nsteps_p3m}$\",\n",
|
|
" \"diff_p3m_spm\": r\"$\\delta_{\\rm P3M}-\\delta_{\\rm sPM}$\",\n",
|
|
"}\n",
|
|
"\n",
|
|
"npanels = len(fields)\n",
|
|
"fig, axs = plt.subplots(1, npanels, figsize=(3 * npanels, 4), sharey=True)\n",
|
|
"\n",
|
|
"ims = []\n",
|
|
"for i, key in enumerate(fields):\n",
|
|
" ax = axs[i]\n",
|
|
" data = slices_dict[key]\n",
|
|
" title = titles_dict[key]\n",
|
|
"\n",
|
|
" if key.startswith(\"diff\"):\n",
|
|
" vmin = -np.log(1 + np.abs(np.min(data)))\n",
|
|
" vmax = np.log10(1 + np.abs(np.max(data)))\n",
|
|
" if vmin < 0 < vmax:\n",
|
|
" norm = TwoSlopeNorm(vmin=vmin, vcenter=0, vmax=vmax)\n",
|
|
" else:\n",
|
|
" norm = plt.Normalize(vmin=vmin, vmax=vmax)\n",
|
|
" im = ax.imshow(\n",
|
|
" np.sign(data) * np.log(1 + np.abs(data)), cmap=\"RdBu_r\", norm=norm\n",
|
|
" )\n",
|
|
" else:\n",
|
|
" im = ax.imshow(np.log10(2 + data), cmap=cmap)\n",
|
|
"\n",
|
|
" ims.append((im, key))\n",
|
|
" ax.set_title(title, fontsize=fs_titles)\n",
|
|
" for spine in ax.spines.values():\n",
|
|
" spine.set_visible(False)\n",
|
|
"\n",
|
|
"axs[0].set_yticks([0, N // 2, N])\n",
|
|
"axs[0].set_yticklabels([f\"{-L/2:.0f}\", \"0\", f\"{L/2:.0f}\"], fontsize=fs)\n",
|
|
"axs[0].set_ylabel(r\"Mpc/$h$\", size=GLOBAL_FS_SMALL)\n",
|
|
"\n",
|
|
"for i, ax in enumerate(axs):\n",
|
|
" ax.set_xticks([0, N // 2, N])\n",
|
|
" ax.set_xticklabels([f\"{-L/2:.0f}\", \"0\", f\"{L/2:.0f}\"], fontsize=fs)\n",
|
|
" ax.set_xlabel(r\"Mpc/$h$\", size=GLOBAL_FS_SMALL)\n",
|
|
"\n",
|
|
"for ax, (im, key) in zip(axs, ims):\n",
|
|
" divider = make_axes_locatable(ax)\n",
|
|
" cax = divider.append_axes(\"bottom\", size=\"5%\", pad=0.6)\n",
|
|
" cb = fig.colorbar(im, cax=cax, orientation=\"horizontal\")\n",
|
|
" if key.startswith(\"diff\"):\n",
|
|
" cb.set_label(r\"$\\textrm{sgn}\\left(\\Delta\\delta\\right)\\log_{10}(1 + |\\Delta\\delta|)$\", fontsize=fs)\n",
|
|
" else:\n",
|
|
" cb.set_label(r\"$\\log_{10}(2 + \\delta)$\", fontsize=fs)\n",
|
|
" cb.ax.tick_params(labelsize=fs)\n",
|
|
" cax.xaxis.set_ticks_position(\"bottom\")\n",
|
|
" cax.xaxis.set_label_position(\"bottom\")\n",
|
|
"figname = f\"fields\"\n",
|
|
"fig.savefig(\n",
|
|
" simdir + f\"{figname}.png\",\n",
|
|
" bbox_inches=\"tight\",\n",
|
|
" dpi=300,\n",
|
|
" transparent=True,\n",
|
|
")\n",
|
|
"fig.savefig(\n",
|
|
" simdir + f\"{figname}.pdf\",\n",
|
|
" bbox_inches=\"tight\",\n",
|
|
" dpi=300,\n",
|
|
")\n",
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 14,
|
|
"id": "228340be",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"full_field_p3m = np.log10(2+read_field(simdir + f\"nsteps{nsteps_p3m}_final_density_p3m.h5\").data)\n",
|
|
"\n",
|
|
"if N <= 128:\n",
|
|
" fig = plotly_3d(full_field_p3m, size=N, L=L, colormap=thermal_plotly, limits=\"default\")\n",
|
|
"else:\n",
|
|
" # Downsample the grid for visualisation\n",
|
|
" downsample_factor = N // 128\n",
|
|
" downsampled_field = full_field_p3m[\n",
|
|
" ::downsample_factor, ::downsample_factor, ::downsample_factor\n",
|
|
" ]\n",
|
|
" fig = plotly_3d(downsampled_field, size=N, L=L, colormap=thermal_plotly, limits=\"default\")\n",
|
|
"\n",
|
|
"fig.show()\n",
|
|
"clear_large_plot(fig) # Uncomment to clear the Plotly figure to avoid memory issues"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "7d0df151",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Force exerted by particles on other particles"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 15,
|
|
"id": "684477ec",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"Newton prefactor = 6.37e-01\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"r1, fmag1, _ = load_force_diagnostic(OutputForceDiagnostic_spm)\n",
|
|
"r2, fmag2, _ = load_force_diagnostic(OutputForceDiagnostic_p3m)\n",
|
|
"Newton_prefactor = (L / Np)**3 / (4*np.pi)\n",
|
|
"print(f\"Newton prefactor = {Newton_prefactor:.2e}\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 16,
|
|
"id": "6a6b4e9c",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"Nyquist: 2.00 Mpc/h\n",
|
|
"Particle length: 0.12 Mpc/h\n",
|
|
"Split scale: 1.25 Mpc/h\n",
|
|
"Short-range reach: 5.62 Mpc/h\n"
|
|
]
|
|
},
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABzUAAAVmCAYAAAAQ/+MNAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAuIwAALiMBeKU/dgABAABJREFUeJzs3QeYVNXdBvD/woIgAgKCJVgoothBbKjRSFNjl2KNlaZREwvNGhtFUNEoAsZeQtHYYgNN/KImhqaxoCBgS6IiXWVZyn7Pe/BO7s7OzM7ce+495577/p5n3GWcPX1uO62sqqqqSoiIiIiIiIiIiIiIiIiILFXHdAKIiIiIiIiIiIiIiIiIiAphpyYRERERERERERERERERWY2dmkRERERERERERERERERkNXZqEhEREREREREREREREZHV2KlJRERERERERERERERERFZjpyYRERERERERERERERERWY2dmkRERERERERERERERERkNXZqEhEREREREREREREREZHV2KlJRERERERERERERERERFZjpyYRERERERERERERERERWY2dmkRERERERERERERERERkNXZqEhEREREREREREREREZHV2KlJRERERERERERERERERFZjpyYRERERERERERERERERWY2dmkRERERERERERERERERkNXZqEhEREREREREREREREZHV2KlJRERERERERERERERERFZjpyYRERERERERERERERERWY2dmkRERERERERERERERERkNXZqEhEREREREREREREREZHV2KlJRERERERERERERERERFZjpyYRERERERERERERERERWY2dmkRERERERERERERERERkNXZqEhEREREREREREREREZHV2KlJRERERERERERERERERFZjpyYRERERERERERERERERWY2dmkRERERERERERERERERkNXZqEhERERERERERERE5YOXKlTJp0iTp0aOHNGvWTMrKyqRdu3bq33ifiCjJyqqqqqpMJ4KIiIhI183b4sWLZfny5eon/r1o0aJq/8bvK1asEFeNGTNGJk6cqPLbuXNnGT58uPTu3dt0sogoJbxjrXcsxjE4+9jcvXt3mTZtmumkEhERkaPSel+IfA0dOjTTcbn11lur6662bduqfM+cOVN9Bu/jWgz/j4goadipSUQUIVwwYiRcnHBx2rx5c/UTF64HHHCAulBF5waRyzACFTdoxXD18mfgwIE5R96OHj1ahgwZYiRNRJQOeFCGGQDFwEALdmoSERFRFNJ6X4jnT3369MnkHfd/uA/Mhk5PDISFOXPm8FkRESUOOzWJiBzr1CwEnZvo9OCsLXJRWm9ePcg7yiAfjEzGQAcioiiwU5OIiIhskMb7QgxsxbMeD1buGTBgQI3PoTMTnZoeDIZ3bbYqEbmPnZpERBHChfTUqVOr/XvZsmUyffp09fAvH1xY4gLUeziImZeFYNkUL3xvSZW5c+fmjQMdG7iQzXWRS27DzQ5Ga3pLk+J3V5acwfcKbd/7HmBQQb7vgIuXP7UNosD3HTe3RERRnBv81zz4fdasWZklzrKxU9N9Ll9vEBGR3dJ2X4j8YoamJ98MzXz3i7gm48B3IkoSdmoSEVm2TKTOJUBwEY8L1ylTpqgL3Vydm7iA5XIj6eBfZsZvxowZzj5ozJdnFy9/MJBh//33z/v/8T3HsYWIKM5zAwZoZT9IZKem29J4vUFERHZz9b4we6UMPONBR24pZZCvE5SIyFbs1CQisnCZtigOzejwwEUsOjmzcb899xVamrTQjY8LysrKarzn6uVPrs6DNOSbiOw9N+SaFcBOTXel+XqDiIjs5uJ9Ia6x/M94Cs26zNepmW+pWiIiW9UxnQAiorTKt7cdlp6NAmZpYYR8vo3ibdr7k/SbPXt23v+HTrBi9xxJojTNRMZNbPYxxJuR7Q1uICKK89zQpUuX0GFQcqT5eoOIiOzm2n0hOjP9HZq4Dyy0jGy/fv1yvs9VFIgoadipSURkmdr2zwwLMzJzzY7AxbB/HwaKBzqTsRSx6XYVVWd6Gr5Ttt2or1ixQn3HMeIWAxkwK8a7gff23yUiO47NpsVxbnD5/JIkvN4gKl5azgFJw3opDsspPfeFuN/z69u3b8HP454Q94neAHtv4Hu+AfdERLZipyYRUQph9F6u5Wax7yZvgOKFzuRCsxp0wQ1LvpuVQqM5KZlQp1hCKHvULWfIENl1bDaN54b04PUGUfHScg5IGtZLcVhO6YHnN37FDFLHuRiDXrHs7pw5czhLk4gSiZ2aREQphWVocz10mjRpUs59Nyn5co3CxE3M5MmTjaWJ4uF1ZnKGDBFl47mBdGObIiIiilauZzZc8p+I0qLcdAKIiMhsx2au0Xx4D0tYUrTinjWHB4wYlYkbIOxrhX9zZGY6eMvOcmkhotqlbUYzzw3u4/UGUfHSdg5ICtZLcVhO6TF37txq/8bgVQ5gJaK0YKcmEVGKYekRXPhm3/zg30OHDlWdnhQdPOgzgQ8W09vWXNtHhsilY7NpPDe4i9cbRMVL6znAdqyX4rCc0mPZsmXV/s37PCJKEy4/S0SUcvk2k8cytBQt7nVCccGMGeDoXaLa8dhMrmGbJioevy92Yr0Uh+WU3g5s3ucRUZqwU5OIKOX233//nO9jtib31oyno4koavgud+7c2XQyiBKBx2ZyDds0UfH4fbET66U4LKf04FLDRJRm7NQkIkq5QkuDTZs2Lda0pA07jSmuG17sucJlAImKw2MzuYZtmqh4/L7YifVSHJYTERGlATs1iYhSrm3btnn/H5evib6jiSiuhxs9evQwnRQi6/HYTK5hmyYqHr8vdmK9FIflREREacFOTSIiyotLmkSHo2gpLlOmTFF7rHCmJlHteGwm17BNExWP3xc7sV6Kw3IiIqK0YKcmEREVvfk86TNx4kTTSaCUfIenT58uAwYMMJ0UokTgsZlcwzZNVDx+X+zEeikOy4mIiNKCnZpERJQXZndRNB1NHElLcRg6dKj6OXz4cNNJIbIej83kGrZpouLx+2In1ktxWE5ERJQm7NQkIqJA+21S+I4moihhTx3M0hwyZAgHKBAVgcdmcg3bNFHx+H2xE+ulOCwnIiJKE3ZqEhGlXKF9M9mpqR9G0KKjiShq/fv3V52ZnKVJVDsem8k1bNNExeP3xU6sl+KwnIiIKG3KTSeAiIjMmj17dt7/169fv1jTkoYO5D59+phOBqXAwIED1UzNadOmcZYmUS14bCbXsE0TFY/fFzuxXorDciIiojTiTE0iopSbMWNG3v/Xu3fvWNPi+j4n+++/f8GZsUQ6TJo0Sb3w/eV3mKgwHpvJNWzTRMXj98VOrJfisJyIiCitOFOTiCjlsFxNLgMGDNAWPmaLYUYobrxw04WZY82bN1fL2/bo0UO6d+8unTt3lih4ceLn8uXLZdGiRZl/e++NHj06b37xmYkTJ6p8eGEh3UgvlvUsJt3oYMI+JyZuOBEn8ugvB5SB/z38vmLFisjT4rUFr+zxApRnHG0hTrny6m/3eGFUNfKrE2ZnYpYmyhDxR5U3DIZAXN53yGvbyCPy1qVLl7z5w9/g/7322muJn0VqY5vG8mOon3xtD2nBLHzdafIfZ71jC441/vfQLgoNpMHfTJ06NVOmXttCur22hTLt27evlrZj8ths+txk07khFxxfpkyZon7i+sGrI++7hZd3rIujHWeXVVVVlfZ69x9L8X4QvN7YjMdBfVw+55v8viSlTZvAenGnnEw/ByA327/pa+ik3y+aek5BpF0VEREZg8Nw9qtt27axxT9nzpycacBrxYoVocIePXp01dZbb63Cws/u3btXDRgwQL2Pn507d66R74kTJ2rL26JFi/LmLfuVK17kv3fv3pnPeOkfMmSI+t17H5/JFfe0adOqlYHuF9JRG3ym2PCignJEuWWXA+ob5YgXfo+yLfjrK8r8Iq8oc39ekRev3eAn0uL///gd74f9vnnQ7hCHbmjTSGd2vtDGUVeI12vz/u838of3PMinV98IM4lsaNO5juX+4xVeqAOv7XnHLX+6kH68r6PtFXucQZoKlWmu4633vckOC++V2oZsODabPDeZPDdkh5svfagf//UB8oT0os6y82iqHQcpl1LqvZTrQBvatC3XGzwO6uPqOd+W70tS2nRcWC/ulZPp5wA23BfqEkU944W2lLTjkg3X0Em9X7ThOQWRbnYfvYmIHGe6UzP7grTQRWApF5veBRoujApdMGc/wPHyj4vlsMJc9OJvvQu6XBfg2TdDyEMcNx9Je8iIG9dcF+r5LoxR7/72gBskHQ/B4rh5Rb784eO7VSjt+F5k3zQEvbmMmr8doX6KrRP/TS/qEvXuf4hhwwPOpLbpfMfQYh4aZD+sxsv/EDqIMA/zZ8yYodKNV6GyxPvZ5V/q+cqGY7PJc5PNnZrIm3d8wP9DuygEZZP9wCzsMbSUeralU9OGNm36eoPHwXDX7Wk659vyfUlKm44L68WdcrLlOUAh7NTc/Cr1msl0+/fCM30NncT7RZefU1C6leE/+ud/EhFRMcrKymq8h+Uegi47VuqyE1jqIhuWmSi0LFYxYWL5CixpUeySFbn2AxkyZIhaNiQob/ku7/dZs2ap9OVaogfLj3jLk3hpgTlz5qj68MMyP2PGjKkRBurM+yyWYskHy6FgyTw//F2pefWWSCnEv2zfsmXLVLq85U6y6bwcQBxoB/64Sq1PfzmjLYXZGxJpyV5mWVd+UbZYnsULv5S2n/23gHaI9mgLr+yQr1zfh2KXx8pu89nfGdvZ1qYB3+f+/ftnjmmlth38Xbdu3dRxAlAXOPYHrWMvTNQrjr25jrU4ZqEdZbcNlMXkyZOLWpow17mr2PK04dhs8txk8tyQfb2D+vKWyPbaMpa9wnulLL+Vne8w1zD+dlyoXoKUSyn1Xsp1oA1t2uT1Bo+D/6PjvOL6Od+W70tS2nRcWC/Fp8HmcrLpOYCp+8IoFKp3XANln2uL3X4E9Vxs+7Oh/dtyDZ2k+0XXn1MQ2T0khYjIcaZmamKUWK5la8IsW+ktZYv0B1miIleadCz9kS17uZvskXxIP9KRLw+5/r7U0Y7FLkUWhVwj/HVeDvhHQQYdCepvU15Ytc3aMTEi17+smjeKMcioSp0jQ3XyZlwU+j4UC/WXXQc2zNpIapvOHnEbZpZO9gwrXSPkc60E4D/WoQy90dJh06yrPZk8Nps+N0V9bsgO1zu/e205zPk++/jizRILC2HkOn/oLJdc9abzOtDl6w0eB/UeB3nON/t9SUqbNoH1Yn85JeU5QBJnatq2GpGN7d/0NbSN94uuP6cgguQevYmIHGCiU9O/LIz/FXYfPu/CK8xDi1x7fOrcAyXfgxbvote70C50gZ3vAWcpF+Wmb86jesjovwAPezGf6wYhaNuK4oYv+0YhzI1ZrrB0t/tSeQ9addShJ3v5oSQ84LSxTWd3FOion+y6CdPh6m/X+Y513vJRYW6Ms8PWcZNt8ths47lJ58Ox7HDxsNI7zuh4cJlrqS9dHZtRlkuuenelUzNX/LrKjsdBvcdBnvPNf1+S0qZNYL3YX05JeQ4A7NR0r/2bvoa27X7R9ecURJ7kHr2JiBwQd6dm9vr4ui5MvAteHXv65Bp5rnMUa64HTN4eB8WUhf/BT9A6M/2QMddoxLByjbDVdcHr3agE7XiP4oYvuwzD7luUq12ZfADo3bygTnWyJX9JbdPZo6V13lRmf090HHezy8871uFn2HNdrhlQYZk8Nttwbori3ODJlTbd1zzZbUJX/eUaCBZlvbvUqRlFm+JxUP9xkOd8s9+XpLXpuLFe7C6nJD0HAHZqutf+TV5D23i/6PpzCiJPco/eREQOyL440P0wy38hkm+JM103UboehOS6KNW9/Eyui15v1GAxMztQnt4yJrVttG7jQ8Y4Ovl0t2PvwV2Q9qo7v9k33LrafnYZxt0uco2UDjuDu9DoXNtvhmxr09kj2HWnJ/vYq2OmW3ZnEMrUu0EPe+7JftiiY7S36WOz6XNTlA/Hcl3v6D4ORPVgKcrOXojyOtB0m9bdpngc1H8c5Dnf7PcliW06bqwXu4/3SXsOwE7NdLT/uK6hbbtfdP05BZFfHdN7ehIRkT7Y0Bsbk2NDb2wwjo3Ky8rK1Cbf3sbsgA3Psck3Nj/HJvFheJuHd+nSRW1sXmgz+2JgA/PszcsRZq4N4HVB2JMmTVIbuSP+2mDDdpTdihUr1GbrpW5y7xq0NX/7Al2byKM9o26aN2+uNdygkE/k12/06NFawh4+fHiNuLzvV5z8cepu2wMHDpQksLFN4zgeRbvz4Ng3YMCAauns379/6DCz4TyBY3zYcw/OOdlmzJghLnH93IQ2rDONKKPs42iu7zIlF4+D+o+DPOeblcQ2nQasl/Q8ByA3238c19C23S+m4TkFUTXVujiJiChW+WYuRPHyRp3p3k8le18EHSPUco0817GkTaGRrHGOIndp5oS3J1QUIwJ1tS2d+c0epRjlUm1RjE4utdyjiN/2WRs2tumoRt0Wk/cwe8LkmuEW5V51Ydur6WOz6XNT3DM1o5gtVGgPw6A4U9OONsXjYDTHwbSf801+X5LapuPGerH3eJ/E5wCcqZme9h/lucfG+8U0PKcg8uNMTSIiC2E0WdAXRpVh5DdGOWIEnDcj0xt1lj36UccoslzvYbSmzpHnyENUMNIM5Wb7rBYb5Rr9lz2SLwiM/MPoxGLaW1yQpuzRmLq/TzaMTvaXcRQznMLOTElbm0b9Z4+69Y9u1gnHwOw2OHLkSK1x5BqFHzScbK6N5Hf53ORds0QRbnb74mjy5ONxMH84YY+DaT/nm+Jam3YF6yV9zwHIzfYf9TW0bfeLaXlOQeTHTk0iIguhAzLoCxf9c+bMUctPoUMTF6JRPhBdvnx5zvfDPBjJld6oO7Ow5AgFW9Ylm46bn0L1beriOdfNS79+/bTGgSWjs8X9MN7//UM9hF1KqpiHFbawsU3nusHX3e4KtUHdHUK6b7CLOR8lmavnJm85rTiWTYti6TSKF4+D0R0H03zON8m1Nu0K1ks6nwOQm+0/qmtoG+8X0/KcgsiPnZpERBRKvg7TMB2puUaeR30zk+sijUq/8UG965h9U6j9RDG7pzbeXrVRP5jMNaNh1qxZEqd27dpV+zf2ONH5/TNRf0lu09kjpqOe+ZKrTYcZcR/nsdbF0cI8N+lpwzh+86FocvE4GN1xMM3nfJNca9OuYL2k8zkAudn+ozrX2na/mKbnFER+7NQkIqJQBg4cWNL7tnJxeb+o5RrNr+vGBxfhueokqiVwguRV181LbTMa4h4BmX0DhAek+++/v7Z04AYT7STKmVqutOko05NPrvAxclpXhyGPtaVheZUu37GZo8mTicfBaKX5nG+Ki23aBayX9D4HIDfbf1Tn2iTcL7r6nILIj52aREQU+sILe3V6F1+4oMPSt7ovgqO+ubPpAVMSoD5yjZrVOSIS7chbNgYX5UOGDFFLKpuAtGSLaj8406OT8d3N/v6ivlG3WNYx7M0LjhlYItu22Rs2tulc7S6OpfxyHQ913bTyWFsallcwub4nuFah5OFxMFppPeeb5GKbdgHrJb3PAcjN9h/FuTYp94uuPqcg8mOnJhERhYaLLuzlWVVVpR5cRLlXUBRseriUFPluNnTe/KBecKOMdoX9Yk3uiZYrv1G1m+wbBhM38vnKGiNBcdPWrFkztTxQmD1zbGNjm86VpjgeDOdq21OmTNESNmfrFI/npnQ+JKbqeByMXhrP+Sa52KZdwHpJ53MAcrP9R3UNnZT7RZefUxB52KlJRESpx9Hjpcs1ItDVh/D5HuJFlVcbHnbigUShGyjcwGDfFSxRV1ZWph564oFnkjsNbGvTGPmaa/Rr9v5nUYhy6U4eb4vHsgqu0L5DlBw8DsYjjed8U1xt00nHeqE0c7H9R3Wete1+MY3PKYg85WLIrrvuaipqp2DU5D//+U/TySAiKhkunHERhp8Y3bl8+XL10MT7GSdenJUu34Nh2x7U6YA2ma8Mcu1hEUV8+E7EXbZY6gbw4LI2uPnECw89ActO4SEpHnwmZcS2bW06X3riOF7lioMjcePHc1Nw+R7E4Xvl4uAbV/E4GJ+0nfNNYZu2E+slvc8ByM32H1XabbtfTOtzCiKjnZo4cWGUH6ZT4yeVBuXmdWoSESUBHn5gZBt+5hpRhoeMeCjibWruPSghO+W7gHZRvpsX3ChEcbOQi6kbBTzkxANK7KtVygwnfMfxwvcYaR8+fHjmgamtbGvTJh/q5GtvvGmlpOPD0mThcTBeaTrnm8I2bSfWS7T4HMBubP/JvV9M83MKojq2dNDxVdqLHcFElAS4ccGobW+pKtyg4EYGFz4DBgxQewVgnwAc1zDYBf/GJuhx753ICzE9F9CulmO+Gz3cnMd13jcJDxnw/cR3M8gMJ5QfZn5gIJbN+3HZ1qbz3TSbTBOX7oyXq8fUOOQboc82nCw8DsYvLed8U9im7cR6Se9zAHKz/UeVdtvuF9P+nILSzXinJi52N23axFeJL3ZsEpHNcNOCpd9wA+PfE6F3794yZ84cdQODmxb8mw9tkynXBbSrSyUuW7Ys5/tpm/GDBxB46IDvMGZglPqwE+WF/bgmTZokNrKtTaOsbWPb6GQiXcdzshOPg+a4fs43hW3aTqwXffgcIHnY/pN7v8jnFJRmxpafJSIi9+DGZeDAgTVGsOHBCEZtcx8rd+AmNPti2dabj7BatGhhOgnWzeLACyOp0QZmz56tRl5jRCh+r+0mCscI77hgE9vadL52x5tUIv17bZKdeBw0z9Vzvils03ZivYTH5wDJxfbv3v0iURoYn6lJRERuwM0KRmT6b2Rw0YeHHkGXsCJ75RqR6OqND9tufviOY/8tzOLAdx2jr71l6zACOx889PCP3raBbW3axqWM+F2gpMj3gMnVFQVcxeOgXVw655vCNm0n1ks4fA6QbGz/yb1ftLWciOLATk0iIgqtT58+aqmZ7AusJUuWqIcfpB9uGk3uVZSm5YLy5dXVmalh4bvv3ysn3944OG7YxLY2ne8mNY52xw6h5B6bKZkPyWxmsk3zOGi/pJ7zTX1f2KbNYL1Ed7znc4DkY/tP7v0in1NQmrFTk4iIQsHo6+nTp9e4uMKeGbZd9LkEI2KxV5FtNz8uztbMl1cb9x/RAftf6Xr4iGMAZnSgrLKPB2grNu21ZVubznczH0e7y5dnHtPtPzZT4T2G2IaT1aZ5HIxeWs/5pr4vbNNmsF6iOd7zOYAb2P6Te7+YtucURH7s1CQiosBwE5PrAcVrr71m7YUo6XHAAQfkfD97HxUX2HbzEjXMtsB3W2f+UIa5HnBgSSpb2NamsYeZqXaXK8/50kNko1xtGMcfztRMFh4Ho5fWc74pbNN2Yr2Ujs8B3MH2n9z7xbQ9pyDyY6cmEREF1r9//xrvYU8dmy9ESY98ywnNnj1bXJRrryhX8+rRvf8Vbrrw8NTPpmU6bWzTudIUx01zrjj69esXebxEuuQ6tti4DB4fOtWOx8F4pO2cbxLbtJ1YL6XhcwC3sP0n934xjc8piIx2arZp0ybzotKx/IjINIzMzPUwbvjw4UbS06NHD2nXrp2RuNMIN6y5RuHOmDFDXIT2lc31h3NTpkyJ5EYw+2bQltm9NrbpXEsCRn2Tmq8+bOwQIkr6QzLueVQ7HgfjkbZzvkls03ZivRSPzwHcw/ZfHBvvF9P4nILIaKcm1nf+9NNPOXogIJYfEZmWawkpjMrWMTozyMwFPhiMX64bDlcvoPv27ZvzfVfzG8WsDf9+PbY+4LStTedKD46PUZZZrnrHzTtH3lNS5PvO2viQzKbjn614HIxHGs/5prBN24n1Ujw+B3AP239y7xfT+JyCCLj8LBERBZLrIinX0hdB8MYkGUvWDRw4sMZ7uPGJ8uZnzJgx0qxZM4kbbrByte+oHgL6HwaayG+UN7JdunSpEY8tbGvTeEAU940z9kGzZeR9EtnUntMq14wzHL+D7vHVvHlziUoSHjiZbtM8DsYjjef8KBSTP7bp+LFeilPs95PPAdzD9p/c+8U0PqcgAnZqEhFRyfJdsOXbOF1X+K4KOiI16ANaXXDjk2sk5ejRoyOLc+TIkZE+YC4kV75yjVTWvbyTqfzC9OnTtYeZ3W5xE20LG9t03O1u6tSpNepryJAhkkZJPTYnQZQPLXMdt8J8h3PVp66OmbiXK0tqm+ZxMB5pO+eb/L6wTQfHejFbTnwO4C6X2n+UeL9ox3MKInZqhvD666/L/fffr0aS4DV27Fj1HhGR6/LdbOh66DVt2jRxWXY5BXm4izqw4SIy1wU0LnCjgNGGuEHXNRK4VHgQlx036iGKh4CAcJHfXKNBk7zHVjbTD8ttb9O4ac4eOe39XVRtLmkjpnVx6dhsO7SzKNowvhvZ1ygDBgwI1ZESVX0i/1GPonelTfM4GI80nvNNfV/YpovHerGrnPgcwF1Jbv9pv19M43MKInZqluizzz6TwYMHS926ddVmvPgCYxo4Xph6jffw/44++mh57733TCeXiCiRcj3kc2kpGh1LceFvbNhvAjc+uZaqieKi3rt5MHnDM3ny5Bo37Rg5GQUvXDyQNwVLDuledsjf3nEDZtusDRvbdK6RtlG0u+wwUTdJGDGti0vH5iSIog1nP2TC8TrsyPl27dpFck3izVCIspPHpTbN42D00njON/l9YZsuDuslXcd7158D2C6p7T9uNt4vpu05BZHTnZqYOYkOyGJfTz/9dK0HCNzU4iBVVVWlXuD97n9hKSFcDFx00UUx5ZaIXGL7fjP5HkjoWC4Go74QTvZIs9rKBP8/6IPBuMs7181iKQ+RvM/qWuZHx4ja7LLHoB+dywfhBhcvXDibHOWPuLNHEKM+dI+CxLUGwsVNjOlZDbpvhvwPK3LdDNrAtjaNY252u0Mb0XnsyvUwO+6lMU2z7dhs+7VAWBgUGsV3qrbvcqlyHad0pBvHd1zrRNnJY1ubDoPHwXik8Zxv6vvCNl0c1otd5eTacwByo/2buIa27X4xjc8pKOWqHDZw4MCqsrKyqjp16uR84f/5X3379s0b1pgxY6r9jf/3Hj16VA0dOrRq0qRJ6if+3axZs8znevXqFWu+iSg5cBjO9VqxYkWV7bbeeusa6e7evXvocNu2bVs1ZMiQqmnTptUIf9GiRXn/Dv+/d+/eRcURRbpLgXxkp2H06NFF/z0+W1t5FIL8Zscf1pw5cyItV7QLtLkg340o8os2Wkr7LAXCQV47d+5cZUKu8poxY0Yk4esqsyjY2KYHDBhQLT262gjSkH1MnzhxopY86v7u+WWHjTwk+dhs+twUxbHSkx2u9/3SlUe04ez2Vkrd1SZMu6itreB7rLMd29Smo2hTPA7qPQ7ynG/++5K0Nh031ot95ZTk5wBRXuvELcq8JK39m7qGtvF+0eXnFER+yT16l3Bi9nds+jsi0Qk5d+7cWsPA5/ydmV44ffr0qVq8eHHev8OJGF92fH748OGac0ZESZfrxsP/sM92uPjMlfYwF0y4ePYexuQqn3wPWbzPFnNBjAvC7HBxsRi37IeYpaQBnw2T5qgesOVqE6hTXTdsQR+y5cqvjoEDuHnOrsOw4fofzJt6+JfrBllH3rJv/HS0jajZ2Kaz6wc3rrqPR7o6g3I99NLVrnMdy3Ucy0wdm204N0XZ+ZLrO+Q9tIyiDRf7cDPow70wD6y8axYv39lp13WOcvl6g8dBfcdBnvPt+L4kqU2bwHqxq5yS+hwgyvtCE3LlRef9Y1Lav+lraBvvF119TkGUqk5NmD59eqZTEjMpV65cWfTfotMzuzMTPzFzs5QvPf7m3XffDZELInJN9gOyKB/GRSXXg7igo7a80aH+i7bsC+l85eKNRivmQi1fuePhapxyjeorJg3eRXPQ9KJ8c+Vf1w11rpG1YS7qvQvyoCM48+VXx01ZrpGQOOcHHZSAmwPvRsHkwIZcN7Bhvtu5RuYmaXSnbW0613Es6DkDdZJd37pmceR74KXr/JbvWB72WGbq2Gz63BT1ucEfpv/45uU7TLvLbsNRPLjPNbMgyHHaC8d/DMx1LaXrHOXy9QaPg3qOgzzn2/F9SUqbNoX1Upw4yymJzwGivi+MU7686B5AkoT2b/oa2tb7RRefUxD5leE/4riePXvK7Nmz5bXXXpNOnTqVvNk21oouKytTe2XiJzYvLmWvCayn3b59e5WOl19+OUAOiCipsJa/t5eMt8H9okWL1Hu17XGB/QywnwT28oXmzZtn9suIcv+lUvO3//7719g3AHvmlLKPFfYewNr82EvBv98OwvXy78n+DMqyR48e6tjsbaLuwf4BpZQ7wkX5Zpc53o9ivwAv3x7EMWfOnIJ7lSBtSCM+Vxtv/wSUAepq1qxZBfdUQD5RlkgH8h60raGMu3XrVm0vC4SFNlFseMhrnz59Mvs1oH6jyG92fWfv4VIM1CHq0m/ixIlq74tSw0DZ43ol1744cUEb8I5byAPy4qWv1HrM1Sbwt2i/SdqDw1Sbrm0/wqFDhwZOD+oY6fHy5O3DEmTPs+xjLfKYvbehH9KKePzfvULH2TDHcu84Xsp3O45js8lzk4lzA+6hIFcZoR2jPec6jxeCMkMb9l+DoA0HOY4XA2WE+DwojyVLlhRdB156wX8MxHVUrvpHPvr166fK2iv7oMdNV683eBwMfxzkOT/+70tS2rRtWC92lVMSngOYuC+MQql58Z4jtWjRInOe9d4Pco9pU/s3fQ2dtPtF155TEFVT5TjMqMTsynnz5pX8tzNnzqyxf2aXLl0CjzxCOEuWLAn090SUTPlG0IV5xT2jMMqR4hh5hlHceOUb8eWN3MweIYj3vRFsuUaFFlre16Yyzy47lEWu+LwlzUvZUyHXkmelvMKOWs21nwPyW2h0H74zXr2WOpowbH7DLKWCOsle5gXpQTvNV194H98Bb9QjRq/asPyRN4o2e18urw16baOYskL9+cslKcvP2dKma4M6yB71jH8XigP1mP03yEOYtqfjOJsvzbqO5aXmL6pjsw3nJhPnBu9v840490a44zuCzxQqS7SVXDMH4jh+4vvsLz/8XtsoetS5d+zIdZzPNdtFVztOw/UGj4PhjoM858f/fUlKm7YR68W+crLxOYDp+0LddOQl7DHZhvZvwzV0Eu8XXXpOQZSqmZp16tRRowouvPDCkv920KBB6m/9szQxwuKUU04JnJbJkyfLBRdcEOjviSh5vNGD/lFg3uiwYnkj0QCjvqKchRAGRpVhNJl/ZCgg7xgJh9FpGC2IEXX4LMoG/2/48OFqpFihkXJeOebijSrPlR6MyPPCDVrucZQ5ygxll2ukK2C1AaQDo+IwOq7YUYXNmjXL/F5K/r1RoKXOmskFecLIzuzRpMgD2gReiAuf8/KP/4d6LTXuMPkFpAPtM8xMaLRVtMdS8ot6xffAlu+1N2sjezQ0IO2oT+977o349b7fy5Yty+TPP0MFeUMeXRjZGWebLhbKGmFnzwry0uOl23+MQZr69u2r8hJ29j+ukYMca/3fPcwOyNU+whzL/eGvWLGi5BHZURybbTg3mTg3eDM1C916Zl9HeNcOKC8cW/D/MXLdXx8mji3Zx0GPl17UrXe9gzaCNOM95C3XyPh8MzVzCdKO03K9weNg7eHnaj8858f/fUlKm7YV68W+crLtOYAt94W6BM1Ldn4KlVcS2r8N19BJv19M+nMKIj+nOzXRgThs2DB1sR0ElozFkkLgdWpu3LgxcHqwlC0OwFOmTAkcBhFREngPR7wLIry8ZTi8ByK4OSll2Qv8/dSpUzPL4uAhIC6Ok7ScVW1wgZldbsgfzh9Y8iPpF5NoF7iByM4fbki8C2kst+LCEllefeKc77858N804IV6teFm2Q83YEhzbTe93lJR/u+4f4lEtFt8z6NavtkGNrbpfO3O1e9ZHFw/Nsf1XfGWGa0N2q53fPEeuoL/2Ilji+ly97YY8NLpv9bxH+vRRgp937zl+7xjZ/ZP//JxuvLsepvmcbB4POcn4/vCNl0T68XOcuJzgPRIQvu3QZLuF21/TkGUmk5NnORwEzhhwoSS/3bVqlVqNIx/liYOMK+88krg9KCD9amnnpKFCxcGDoOIiIiIiIiIiIiIiIgobeqIw7CMD0bwBJE9lR7yLXlQLMzS9C8jSUREREREREREREREREQp79TE9OmgU6WxXEK2sFPBMbXcW3aBiIiIiIiIiIiIiIiIiIrjdKdmkI2D/TM1seSs33777acpVURERERERERERERERERULKc7NbHJbZDlXrGfJmZ5grflKDazNjlzlIiIiIiIiIiIiIiIiCitnO7UDLrca/Z+mpix2aVLl9DpWbRoETs1iYiIiIiIiIiIiIiIiErk/ExNb8Zl2P00e/ToETo9U6dO1RIOERERERERERERERERUZqUVXnrqzpo0KBBsmTJEnnllVdK+rs6depk9tNE8eD3FStWSJMmTQKn5bXXXpOePXuGDoeIiIiIiIiIiIiIiIgobZyeqdm9e/caS8nW5qmnnsr87nVoIpywHZEDBw7UEg4RERERERERERERERFR2jjdqYmlXtExOW7cuKL/ZuTIkTk7JMPo27evmjE6ceLEUOEQERERERERERERERERpZHTnZpNmzaV/v37y6233iqff/55rZ+fPHmyzJ07N7P0LLRt21ZOOeWUwGnAkrOY/Tlt2jTZZZddAodDRERERERERERERERElFZOd2rCsGHD1D6WmLVZqGMTHY+YkZm9l+bo0aMDxfv0009LixYt1F6aU6dODdUxSkRERERERERERERERJRmzndqtmnTRu677z759NNP1azLiy66SF5//XVZvXq1euH3fv36qSVi/dChOWDAgJI7I++//3454IADpE+fPqozFXG2b99ec66IiIiIiIiIiIiIiIiI0qOsClMSU2Do0KFy2223VVta1s+bmen9jk7JKVOm1Bruu+++KzNnzpQZM2aon97fgz8uzAIdNWqUNGnSRFOOiIiIiIiIiIiIiIiIiNIhNZ2aMH36dLXH5qpVq2rtAB05cmTe/z9v3jzVQYlOzJUrV2bez9WZ6b2P95o1a6b27Tz55JND54WIiIiIiIiIiIiIiIgoLVLVqenfPxOzMOfOnSvLly+X5s2bq2Vise8mlpxt2rRpwb9HxyQ6PoPA0rSvvPJKwJQTERERERERERERERERpU8qOzWJiIiIiIiIiIiIiIiIKDnqmE4AEREREREREREREREREVEh7NQkIiIiIiIiIiIiIiIiIquxU5OIiIiIiIiIiIiIiIiIrMZOTSIiIiIiIiIiIiIiIiKyWrnpBCTR/fffn/P95s2bS9u2bWW//faLPU1EREREREREREREREREriqrqqqqEoetXr1a/WzSpIm2MOvUyT/BtaysTP1E5+agQYOkf//+WuMmssmGDRtk4cKFNTr3C31HiIiIiIiIiIiIiIhct2nTJlm+fHm193bddVcpL+d8w6Cc79RE5wpen376qeyyyy6RxbNq1SpZvHixeqGRvvrqq/LUU0+pTs6hQ4fKrbfeGlncRKbMnz9f9thjD9PJICIiIiIiIiIiIiKy3kcffSQdO3Y0nYzESkV3cBz9tk2bNpVOnTqpF2CGJowZM0aGDRsmM2fOVC/O2iQiIiIiIiIiIiIiIiIqDdeIjNiQIUPULFHM3uzbt6/p5BARERERERERERERERElDjs1Y4D9NbEcLV5/+tOfTCeHiIiIiIiIiIiIiIiIKFFSsacm9rVctGhRpHtqFqNnz54qLa+88orRdBDp8s0338h2221XY03wbbbZxliaiIiIiIiIkm7p0qXy0EMPFfzMueeeKy1btowtTUn13XffyR577FHtPd63EhERkanrkK+//lq23XZbY2lKulTsqWmLzp07y+TJk00ng0jroIFsuDHkjTUREREREVFwGH/eqFGjgp/hvVdwLDsiIiKy6Zk6FY+dmjFavHixrFy50nQyiGK3adMm+e9//6t+33777QMfuHWFQ3Zi/bpbLjbnwWTa4ow7yrh0h60zPJvbHoXDunW7XGzNh+l0xRV/1PHYet4wXb9EJrjQ7m3OA+817Aub9xpUDNat2+XiSj7SjDUWo7lz56r9NYnSZsOGDXL//ferF343HQ7ZifXrbrnYnAeTaYsz7ijj0h22zvBsbnsUDuvW7XKxNR+m0xVX/FHHY+t5w3T9EpngQru3OQ+817AvbN5rUDFYt26Xiyv5SDPO1IzJU089pWZq9ujRw3RSiGKHvWSbNm2a+d10OGQn1q+75WJzHkymLc64o4xLd9g6w7O57VE4rFu3y8XWfJhOV1zxRx2PrecN0/VLZIIL7d7mPPBew76wea9BxWDdul0uruQjzcqqsFGDwzB9GI1z0aJFsssuuxhJw9NPPy29e/dW6RgyZIiMHDnSSDqIdFu6dKm0atWq2nvffvst9yYhIiIiIiIKAfdVEyZMKPiZwYMH17gfo5p430pERESm8DpEPy4/G3FnZq9evaRPnz6Z9wYOHGg0TURERERERERERERERERJU56EjsFZs2aFDmf06NGy9dZbS5RWrlwpy5cvV8vMYv9MDybDYpYmZmuami1KRERERNHCdeAf//jHgp857bTTpHnz5rGliYiIiIiSa+3atfL+++8X/Mzee+8tDRs2jC1NREREJlnfqYkHQ9OnT6/xfinrHaNTcdKkSZpTVji+7HS2bdtWJk+eHFsaiGyCTZe97zE698vLy42GQ3Zi/bpbLjbnwWTa4ow7yrh0h60zvLjrF/FhaZnaPkNuH1dMcqVcbM2H6XTFFX/U8dh63jBdv0QmuNDubc6DjrStWbNGXnrppYKfwQSK7E5N3mtEH57NbY/CYd26XS6u5CPNrK+xqVOnqp+rVq1So98xAxIzITF7c+bMmWp2pL/zMN8WoXFuHervcEW8nTt3ltdee02aNGkSWxqIbLJp0yb55JNPMr+bDofsxPp1t1xszoPJtMUZd5Rx6Q5bZ3g2tz0Kh3XrdrnYmg/T6Yor/qjjsfW8Ybp+iUxwod3bnAfea9gXNu81qBisW7fLxZV8pJn1nZqepk2bqlebNm2qvb9kyRKZNm2ajBo1SnVwZs/g9DozS5nZGQbi8+LEcrdY9rZ///6xxE1kq7p168pxxx2X+d10OGQn1q+75WJzHkymLc64o4xLd9g6w7O57VE4rFu3y8XWfJhOV1zxRx2PrecN0/VLZIIL7d7mPPBew76wea9BxWDdul0uruQjzcqq4pzCGDFMGx4wYEC1zk1vP0t0iEYN+yNhmVnMzOzRo4d069Yt8jiJTMISe61atar23rfffistW7Y0liYiIiJTcA6cMGFCwc8MHjy4xrmTiIgoG88p+vC+lZKMxwIiomTjdUiKZ2oWA2sg4zVw4EC1f6V/diaWrcUa80RERERERERERERERESULE51anomTpyoln697bbbTCeFiH6aMY1RKYBRKEGXg9YVDtmJ9etuudicB5NpizPuKOPSHbbO8GxuexQO69btcrE1H6bTFVf8Ucdj63nDdP0SmeBCu7c5D7zXsC9s3mtQMVi3bpeLK/lIszriKOxleeqpp5pOBhGJyPr169VyKXjhd9PhkJ1Yv+6Wi815MJm2OOOOMi7dYesMz+a2R+Gwbt0uF1vzYTpdccUfdTy2njdM1y+RCS60e5vzwHsN+8LmvQYVg3Xrdrm4ko80c3KmpmfMmDHy1FNPmU4GEYnIlltuaVU4ZCfWr7vlYnMeTKYtzrijjEt32DrDs7ntUTisW7fLxdZ8mE5XXPFHHY+t5w3T9Utkggvt3uY8hE1bnTp1ag0Dn4ki7lLwXoNcw7p1u1xcyUdalVVhvq3D+vTpI08//bQsWrSIe2oSacaNjomIiKqfAzHas5DBgwfXOHcSERFl4zlFH963EhERkSm8DtHP2eVnPT179jSdBCIiIiIiIiIiIiIiIiIKwflOzS5duqjNX4mIiIiIiIiIiIiIiIgomZzeUxM6deokK1askKZNm5pOClFqbdiwQZ577jn1+wknnCDl5eVGwyE7sX7dLReb82AybXHGHWVcusPWGZ7NbY/CYd26XS625sN0uuKKP+p4bD1vmK5fIhNcaPc254H3GvaFzXsNKgbr1u1ycSUfaeb8TE1ghyaRWZs2bZL3339fvfC76XDITqxfd8vF5jyYTFuccUcZl+6wdYZnc9ujcFi3bpeLrfkwna644o86HlvPG6brl8gEF9q9zXngvYZ9YfNeg4rBunW7XFzJR5qxG5qIIle3bl3p1atX5nfT4ZCdWL/ulovNeTCZtjjjjjIu3WHrDM/mtkfhsG7dLhdb82E6XXHFH3U8tp43TNcvkQkutHub88B7DfvC5r0GFYN163a5uJKPNCur4oaTRBTQ0qVLpVWrVtXe+/bbb6Vly5bG0kRERGQKzoETJkwo+JnBgwfXOHcSERFl4zlFH963EhERkSm8DtEvFcvPmrZq1SrV+3/00UebTgoRERERERERERERERFR4nD52RgsX75cZsyYIc2aNTOdFCIjMCEcnfveHrdlZWVGwyE7sX7dLReb82AybXHGHWVcusPWGZ7NbY/CYd26XS625sN0uuKKP+p4bD1vmK7fILAPVGVlJfeDqsWGDRtk++23r/FeRUWFpB3a/Zo1a9TvjRs3TkS7T1IeTKYtzrijjEt32DrDs7ntUTis22SWS506daS8vFz9dO2aj6pjp2YMVq5caToJREatX79exo8fr34fPny41K9f32g4ZCfWr7vlYnMeTKYtzrijjEt32DrDs7ntUTisW7fLxdZ8mE5XXPFHHY+t5w3T9VuMrbbaSlq3bq2WK2vYsKH85z//kf/+97+mk2U9PLycOnVqtfdQbl9//bWkHcoGbR/q1auXyAe7NufBZNrijDvKuHSHrTM8m9sehcO6TXa5IF3o3Nxyyy1l6623Vi9/R2cSrvmoMHZqxmDx4sXqZ/PmzU0nhcgYnOxsCofsxPp1t1xszoPJtMUZd5Rx6Q5bZ3g2tz0Kh3XrdrnYmg/T6Yor/qjjsfW8Ybp+89luu+2kY8eOssUWW5hOChEREVEiOl8xGxOvL774Qg0M22mnnTIdmLZe81FxyqpQyxSpnj17ysyZM6Vdu3aycOFC08kh0oYbHRMREVU/B06YMKHgZwYPHlzj3ElERJTvnNKlSxfZZpttMu9j5kHdunXVCzMRbJ0lQURERBQ3r6sLP7E8v3+JflwzYaAYXnHi8/MUzdR89913ZeTIkWqW4wEHHCCjRo2SJk2alBRGv379xPSys7Nnz+bys0RERERERERUEn+HJmYUYHYBOzGJiIiIcvOuk/DTW3IWHZvYSxsdnVh+Hv/eYYcdDKeUnOvUnDdvnrp498ydO1ftf4AOzlI6NmfMmJHZ9NUUToQlIiIiIiIiolLgWYbXodmgQQM1QxPwgA57RDVq1Ejtq4n3/ftEUe7nMhUVFdXeQ5myg5iS0n5re7bIWdtERJs7Lzdu3Kg6MH/44Qf1WrdunbpOwsAwvI/PfPPNN+q9uGdskuOdmv3798+csHFSxu8rVqyQYcOGyb333lt0OG3btlUdotniPNF7cbFzk9IMJ40XX3xR/X7sscdmbshNhROVOXPmqH1u9tprL9NJSSTb69cUF8rF5jyYTFuccUcZl+6wdYZnc9ujcFi3bpeLrfkwna644o86HlvPG6brN7tDc82aNep33F94aWnevLk0a9Ys04nJDs3i4AEmluv1Y9lJ5lkVHgCDt6Rx0ticBx1p82YYFZKrPcdZLlHGpTtsneHZ3PYoHNZt8svFmxiHQU1ff/216uDEsRLHU+QB+2xihc2jjz7amnsNKp6VV3DoiPSPMvJ+zpo1q6RwcMHv/b0/PG+UUxwvItp8EY4Z2Hj51zI3FU4UkJ6BAwfKvvvuK+eff758+eWXppOUODbXr0kulIvNeTCZtjjjjjIu3WHrDM/mtkfhsG7dLhdb82E6XXHFH3U8tp43TNdv9j5LgIdsWHYWsBdTixYt2BFH2mXvOZZENufBZNrijDvKuHSHrTM8m9sehcO6daNcsDLDTjvtlOknwrWVN4kOP5OUF/ofK7uhO3XqpPbU9HiNzL8kbbEzNf1hQPfu3dX7W2+9tUQJ+2guX75cZs6cyT01KfUweucXv/hF5nfT4URh2rRpaqYmPPjgg/LEE0/IpZdeKsOHD1ejqSnZ9WuSC+Vicx5Mpi3OuKOMS3fYOsOzue1ROKxbt8vF1nyYTldc8Ucdj63nDdP168HDtR9//FH97nVoYrZB06ZNjaWJ3GbTcdbFPJhMW5xxR31esjU8m9sehcO6dadcMCBs2223VbM2cY2Fjk3M1sR7Ns82pfzKqiycToiOwJ49e1abWYnfFy1aJLvsskvR4dx2220ydOhQ9bfoyHz11VelTZs2ErcePXrIa6+9Ju3atZOFCxfGHj9RVJYuXapGDGePKm7ZsqWkSWVlpeyxxx7qGJUNAyhGjBghv/71r9WeN0RE5C6cAydMmFDwM4MHD65x7iQiIvIvPbt48WL1HARLz8KOO+6oZhpk4xKqxXcUr127ttp7uDdj2VESBF1+loiIqkOnpvfsFs9yYeedd87M4owKn5/rZ+UZD7Mp0QG53377qdGI+DfWOC6lQxP8szFHjx5tpEMTBg0aZCReIorHpEmTcnZoAmZqDxkyRDp06KBmcHprzxMREREREWXDik/g3zfT69wkIiIiomAwQKx+/frVrrMwmIySx8pOTUBHJpZyxAU9OjixJG2p/MvPdu7cWXMKS0+Hd3NClDYYZYwNmfEKMzlcVzg6rVmzRm688cZaP/fVV1+pvTax5+YLL7xgTfptYmP92sCFcrE5DybTFmfcUcalO2yd4dnc9igc1q3b5WJrPkynK674o47H1vOG6fr1fP/999UetjVq1IhLo1Fk0Nb9rySyOQ8m0xZn3FHGpTtsneHZ3PYoHNatu+Wy1VZbqZ/evpredRcli7Wdmjr4pw5HPY24kKj37ySy3fr162Xs2LHqhd9Nh6PTuHHj1DICxfrwww/l+OOPlyOOOEL+/ve/R5q2pLGxfm3gQrnYnAeTaYsz7ijj0h22zvBsbnsUDuvW7XKxNR+m0xVX/FHHY+t5w3T9eryVXfydmkRRQnu36VjrWh5Mpi3OuKOMS3fYOsOzue1ROKxbN8vFu65CpybyUdvy3mQnpzs1MUMSS86aWnY21zKUROQOjOa54447Av3t3/72N+natauceuqp8sknn2hPGxERERERJW/vvOyZD3Xr1jWWHiIiIiKXYFl/8FbBwHUXrr8oWcqqkjpXOGGWLFmiftrSwUqkAzc6Fvnggw9k+PDhaknZoPCg4oILLpDrr79edthhB63pIyIiIiKiZKisrFQru4C351P79u25p2ZIeFi5du3aau81bNgwMxuWiIiI0mHdunXy6aefZq67YM8998xcd0WBz8/14xVcTGyaMUpE+uy1117y/PPPyxtvvCEHH3xw4CWmJk2apB5YXHPNNdykmoiIiIgohXLNFGDHGxEREZEeua6rOFMzeXh1TESkwc9//nN5++235amnnpIOHToECgOjh2+55RZp166d3HnnnWr0EBERERERERERERERsVOTiGKATZdffvll9QqzAbOucKKC9dhPOeUUtWTUxIkTZbvttgsUzrJly+S3v/2t7L777vL444+nZsSQ7fVrigvlYnMeTKYtzrijjEt32DrDs7ntUTisW7fLxdZ8mE5XXPFHHY+t5w3T9UtkAnakQnvHK6m7U9mcB5NpizPuKOPSHbbO8GxuexQO6zYd5eJKPtKInZpEFDl0yr3zzjvqFaaDTlc4cWw6PWDAALVG+8033yyNGzcOFM5nn30mZ511lnTu3FleeeUV50+0SanfuLlQLjbnwWTa4ow7yrh0h60zPJvbHoXDunW7XGzNh+l0xRV/1PHYet4wXb9EpqC9J73N25wHk2mLM+4o49Idts7wbG57FA7r1v1ycSUfaVRuOgFpsGTJErWcJNZs5ohPSqO6devKYYcdlvnddDhxadSokVx99dUycOBAtazsPffcI+vXry85nPfee0+OPvpoOeqoo2T06NHSpUsXcVHS6jcuLpSLzXkwmbY4444yLt1h6wzP5rZH4bBu3S4XW/NhOl1xxR91PLaeN0zXL5EpLrR3m/NgMm1xxh31ecnW8GxuexQO69b9cnEpL2lTVuX61B+LOjWbNWumlpUkcsXSpUulVatW1d779ttvpWXLlsbSZPux4LrrrlNLyoY59Pbr10/NAG3fvr3W9BERERERkTkVFRUyf/589Xv9+vXVzw4dOki9evUMpyz5MzHWrl1b7b2GDRuqgedERESUHphssmDBAvV7ZWWl+tmxY0dp0KBBZHHy+bl+vIKLwcqVK00ngYgs0KZNG3n00Udl7ty50qtXr8DhTJkyRZ1wf/3rX6uTIBERERERERERERGR69ipGYPFixern82bNzedFCIjMCsRo1/wCjNDUVc4pu23337y8ssvy8yZM2X//fcPFAaWssZytpgF/rvf/U7WrFkjSedK/ermQrnYnAeTaYsz7ijj0h22zvBsbnsUDuvW7XKxNR+m0xVX/FHHY+t5w3T9EpmAtu5/JZHNeTCZtjjjjjIu3WHrDM/mtkfhsG7TUS4u5CGt2KkZA8yqIkr71P6RI0eqV5A9JXWHY4tu3brJP//5T/njH/+oOieD+P777+WGG25QS9Hee++9iS4X1+pXFxfKxeY8mExbnHFHGZfusHWGZ3Pbo3BYt26Xi635MJ2uuOKPOh5bzxum65fIFLT3pLd5m/NgMm1xxh1lXLrD1hmezW2PwmHdul8uyAc7NpOpXFLss88+U0vDYibl8uXLtYePsGfMmKFmYxER5YJ9XLBH5sknnyyTJ09Wsy6x1nqpsAztxRdfLHfccYfccsst0qdPHykrK4skzUREREREREREREREcSurSll39NixY9XMSexpFxeviDETa+HChbHFSxS1Yjc6xnfAG8VTr169wJ1tusKxGZaRHTdunDpW/fDDD4HD6dKli4wZM0Z+8YtfSFKkoX7TWi4258Fk2uKMO8q4dIetMzyb2x6Fw7p1u1xszYfpdMUVf9Tx2HreMF2/UFFRIfPnz1e/169fX/3s0KGDSg8Ft2nTJlm7dm219xo2bKgGmKZd9iNBW463ruTBZNrijDvKuHSHrTM8m9sehcO6dbdccK23YMEC9fu6detUHjp27CgNGjQw/vycipeaK7jXX39dWrRoIUOHDpU5c+bUWAM6ylcSv+BEOuE7gJtyvMJ8H3SFY7PGjRur5WQXLVqkZl6WlwebUD979mw56qij5JhjjpH33ntPkiAN9ZvWcrE5DybTFmfcUcalO2yd4dnc9igc1q3b5WJrPkynK674o47H1vOG6folMgFt3f9KIpvzYDJtccZdalzfffddZGHHGZ7NbY/CYd2WXi6lfK9twbpNrlQsP4slHQcNGpQZTcAGS0S223bbbeX3v/+9/OY3v5Grr75apk6dGiicl19+WV555RU588wz5aabbpJddtlFe1qJiGizVatWyauvvlrwMz179pSmTZvGliYiIkq2DRs25H2GUbduXT7fIHKcN2GikCR1vGDg9erVq+Wtt94ynRQi0ujss89W3+1nn31WttlmG9PJIcc536k5b948GThwoPrdO8HHveJuUi4siKKyceNG+etf/6p+P/LII9XNt8lwkqR9+/Zqyewrr7xSzTT/y1/+UnIYOOY99thjqmMUsz9HjBhh5QVGGus3LeVicx5Mpi3OuKOMS3fYOsOLu36xfM1HH31U8DNHHHFEpGlIC5uPKya5Ui625sN0uuKKP+p4bD1vmK7f2pZPzQXLp/J5A4WBe0WvfSW1PdmcBx1pQxgY3FAIVnjKDjvOcikmLszi6tSpU+ZZrc6wdafVVNrIHqzb0svl0UcfVd9xvPAdt/G5Y65rPy5Fn0zOd2r26dNH/cSXDF+8tm3bSu/evaVHjx7q9+bNm0c2Wh6j9WfMmCEDBgyQlStXRhIHURLgJPHmm2+q3w8//PBQDxp0hJNEBxxwgLz22mtqBhA6N4MsKVtZWSl33HGH/OEPf1BhYBbolltuKbZIc/26Xi4258Fk2uKMO8q4dIetMzyb2x6Fw7p1u1xszYfpdMUVf9Tx2HreMF2/RKag7UOSH+zanAeTaYsz7kJxeR2aeE76zjvvlNzZoTsfOsOzue3RZuPGjVPP5bHN04oVK9RsQvz7yy+/VP8f/05z3WLWNFZ5W7ZsmSoXlNEXX3yhygXf2csuu0yt/FZbueB7jc5M9LfgtXjxYus7NtmpmVxOd2rii4QvEDo027RpI9OmTcuMCooDOkvRgYo0DBs2LLZ4iWyDE8RBBx2U+d10OEmFY1mvXr3UoIwnnnhCrrnmGvn8889LDgcXJljSFsvb/u53v5Pzzjsv8N6dOqW9fl0uF5vzYDJtccYdZVy6w9YZns1tj8Jh3bpdLrbmw3S64oo/6nhsPW+Yrl8iU0y294suukgmTJigNczWrVtLkyZNZN9991XL/h933HGBHqxfe+21cvPNN9f6ucaNGxd8eK+zfNu1aydfffVVrZ/Ds4Ibb7wx1rotFBdWKkG6MXCkY8eOWsMOQmd4PF/Ybf78+Wrls0Lf37TX7T333CNPPvlk0Z8vVC44Dr700kty2GGHJWLGZlrq2EVlVXGvxRojdCSOGTNG9t9/f5k1a5axdGB2FTohmjVrpkY9ELli6dKl0qpVq2rvffvtt9KyZUtjaUoTLHN47733qhut5cuXBw5nt912k5EjR8pJJ53EJTWIiELAObC2B3ODBw+uce4kIiKCiooK9QAW6tevr35itkO+WaMYmMgHcrXDUnlr166t9l7Dhg1ZdpbMoHr66afV797MqTVr1uTtfNh7773V7+i09PNmXuFnrk6/008/XXVSltKhhn3h8EyxmLTh+g735lG1Xyw/O378eBkyZEjestlxxx1l6623Vv/u37+/nHvuuWKDM844Q3WYoKPVP9uLKC4PPfSQeh6PmZrYmsn/PcZ3J99MzbTATM2FCxeqMsLx+O233672/4N8d3FsR2dy165drds/d/369bJgwYLMinaAc0ODBg0ii5PPz/VzulMTI7LQoYiD1i677GIsHRiVgI5VdmqSa3hQtgOWg8DNFpaWzb5ZL8UhhxyiwsGIKiIiKh07NYmIKAx2akaDnZrJkmv25h577CEffvhh0WHgIfrjjz9eowMjbOejN3sT6fHvox5lx4jXqYlZmnvttZdaJtJvxIgRqsPBxvbsdWyUWn9EUcE5Fu3Rw07N2o/BQQckHHrooaqD1LYBDezUdIN9ZzyNsPxD9+7djXZogjdSivtqElFUS13fcsst8umnn6oRmUFvZv7+97+r/YNOOOEE3nAQERERERFR7LBsajYsJVvqw3R0XuK5IGYKefCgfs8991R7PAbhPZg/5ZRTqi1biY5TzOyMCu7VMZi5T58+Nf7f9ddfL7Yv+zl9+nTTySHKdF5hiWrK78wzz9QSjndMxEAQ22ZrUvI53amJ5Rix7KtpzZs3l1NPPVW9iNIII1+wdyNe3igYk+G4aocddpBJkyapDsmTTz45cDjPP/+87LPPPnLBBRcUtV+HLqxfd8vF5jyYTFuccUcZl+6wdYZnc9ujcFi3bpeLrfkwna644o86HlvPG6brl8gELN6G9o6XLQu55dp/zZssUGoeEBYepvs7NjHDEnu9Be3Y9Jx11lnV/n3fffeVlLZSIGws42pr3eaK68ILL8zMjg2yj2ahsHWn1YawKD+0fQxU0CV7+epc0ly36MfQUS44/mKWJpx22mliozTWryuc7tTEzEgs1WLDLKpp06bJ1KlTTSeFiFJg9913z6yDH3QpWSxx88ADD8iuu+4qQ4cOlRUrVmhPJxERERER1Q4rseR6lZWVmU4aUSJkz6LE4N2zzz47UFjeDM1LLrmk2vvZy8Lq9Oc//1kuvvhiSdIeht6+fLlm3hKV4vPPP9caXqFBEqQXZrfjmIljLpbvJtLF6T0127dvL8OGDcuMDiIiM2uC4zDz448/qt+33HLLwDffusJJE5TZCy+8oI6F/j0/SoU9gbFXx69//evI1pln/bpbLjbnwWTa4ow7yrh0h60zvLjrl3tqxsfm44pJrpSLrfkwna644o86HlvPG6brN9+emh06dJB69erFnhaXcE/N/LIfCdpyvM1OR6G9MIvNA2Z7Pfnkk9Xee/DBB+Xcc88teZbXZZddph7WYylb/3322LFj5Yorrig5bbV1EN52223ywQcfyMMPPyznnXdejfadK+w46zY7LkzuwJK8YfcwzRW2jnOGrvBs/f64Bt8zdETqWsLU2+ux0J6aaa7b7H1H/XtiBikXby9i7zlyrtn4pvbUXLduncoD99RMHqev4DBLc9GiRaaTQZR6OEE0atRIvcJcCOgKJ01QTscff7z861//UjMvg+4dgJmaV111lXqogpuqjRs3RpJW1q+b5WJzHkymLc64o4xLd9g6w7O57VE4rFu3y8XWfJhOV1zxRx2PrecN0/VLZALauv/lch769etX4z10FoZx/vnnV/s37rmDpK2QyZMnq3jy/X2+sOOsW388t99+u+rQ1DVLU3c+dIbnwvcnCb788svY42Td6isXDALxXHfddWIT1m1yOd2p2b17d25GTUQkInXr1lUjOjEaafTo0YGX28DFJMLZb7/91BI4Dk/2JyIiIiIiIkeceOKJNd7DLEtvdnQQ/lmZOsLLhn0/MaPsnHPOkaS488471U/sY2p6RhYlH74DXic5JROOA0cffbT6/bHHHjOdHHKE052avXv3VjM133vvPdNJIUo1zOr7v//7P/UKM8NPVzhphmWWhgwZoo6NmHm5xRZbBAoHS98cd9xxcuSRR8o//vEPLWlj/bpbLjbnwWTa4ow7yrh0h60zPJvbHoXDunW7XGzNh+l0xRV/1PHYet4wXb9EJmCQKto7XkkdsBo2D++8806o+L2H9Z67775bW9rGjx+vwg/SORhn3XpxPfPMM2rvPMBzB51h68qHzvBc+P7YDt8BE1i3essFS9gCOqix+pstWL/J5fzys6eeeqr079/fdFLk/vvvVy+iNMJJ4i9/+Yt6hX3QoCMcEmnevLmMGTNGzdzEHiJBl1zAQ59DDjlEDSL55JNPQqWJ9etuudicB5NpizPuKOPSHbbO8GxuexQO69btcrE1H6bTFVf8Ucdj63nDdP0SmeI9oE5DHrB/Xraw21YNGjSo2r+zZyKFKV88/M8O39a6RTx4xlBoZqwt+dAZngvfH5uZ7ABj3eorF+xj6h1/saS2LVi/yVUujsMXBZ2bI0aMkFtvvdVIGpYsWSIDBgxQm9BfeOGFRtJAZBLafqdOnTK/mw6H/mennXaSBx98UC6//HJ1nHzhhRcChfPUU0+pUZk4xl1//fWy/fbblxwG69fdcrE5DybTFmfcUcalO2yd4dnc9igc1q3b5WJrPkynK674o47H1vOG6folMsWF9h4mD0G3ZvF33rVu3TozQxEzkZ599tlMp17QtL311luyatWqUJ2DcdbtihUr5O9//3vO2athRXH/YmNYVB2Wcva+VyawbvWWCzo2X375ZbWkNuq2Y8eOYhrrOLmc79TExcnUqVOlZ8+e0qJFixrr3cepadOmxuImMqm8vFxOOOEEa8Khmvbee295/vnn5Y033pChQ4cGWoIHI5wmTpwojz76qOokxfK2TZo0KfrvWb/ulovNeTCZtjjjjjIu3WHrDM/mtkfhsG7dLhdb82E6XXHFH3U8tp43TNcvkQlYsQdtPy15yLU3X/v27UOnAasf3XzzzZl/33fffaozMkz53nPPPXLWWWclom4R10svvZT5d/fu3bWGrTMfOsNz4ftjM6wIZgrrVn+59OvXT3Vqest033vvvWIa6zi5UtEdjZPp7Nmz5ZZbbpHTTjst9g2GV65cGWt8RERBHXHEEWp0JWZedujQIVAYP/74o7qha9eundr/YN26ddrTSURERERERFSs7777Luf7OpZJveyyy6r9Gw/u88VXrCeffFIuueQSSYopU6Zkfj/nnHOMpoWS76KLLpKPPvrIdDJIo+OOOy7zOyZUEIWRik5N6Ny5syxevFgWLlwou+yyi/zhD3+ILW50qHp72BERJWHk1SmnnCIffPCBGmG63XbbBQoHN3G/+c1vZPfdd5fHH39cNm3apD2tRERERERE8N2aCnno7c/kkifnyjkPvCP9Jv5d/bzsj+/Kk7P/Iyt+XG86iWRQrq1WTj/9dC1hb7PNNtK1a9dq7z388MOh9hHcY489rFiesVjeDCzsm4fy0AHL+KJza88991SrQOFZBX7i38ccc0y1/Rbx+4477pgznHHjxsm1114rZ5xxhvo7LIOJzyIs/J4NS2MiXu8ziBe/47MIq5h0Ix78Df7WS3exf18KLy5/GXlpRZ7Ddq7HHTf+BmFOmDBBTEH9o63469+rP91l6rW1XG0c72MZah0QTnY8/rqKA44L3r6a7LCmsFLTqektRTtnzhwZOXKkWhaxbt266gv99NNPy+rVqyOJ87PPPpPRo0dHEjZRUlRWVqo9bfHC76bDoeLUq1dPBg4cKJ9++qmaeeldfAQ5DmLZnP33319effVVqaqqyvk51q84Wy4258Fk2uKMO8q4dIetMzyb2x6Fw7p1u1xszYfpdMUVf9Tx2HreMF2/FNwH/14lv3vuQzn7gX/K4//4XD7+7xr5z8oKWf5Dpfr58ddrZMqc/0j/x/8lY2Yslvlff286ydbAvRnaO1757tNcycPkyZNrvKfzYX7//v2r/fvOO+8MXL633Xabem6ZlLr1d7xgaxsd4aHz5aSTTpIlS5aorcTw3tKlS9WElUmTJkmXLl1U/eFz6Cg877zzcu6/iE6jK6+8Uj3TwOxXb08/fDbXSn7ozEKHMlbdu+mmm9Syus8884wcfvjh6u8QFjqE0KGXXcZeh9zZZ58tbdq0kd///vfy5ptvqr9H55H39+hUCttZhTwjHJTRF198Ieeff77aCgjxId0777yzWjmrZcuWKk06O+KiiBvP51FG+Buvg9wPZed1EOd76YB0HHTQQer33/3ud2qbJtQfZhkiDWhHSKO/Qz0Ir62graEDd999982U4V133aX+jfcPO+wwVS5B68/7LiEcL57rr79exYP2edRRR6l+EZRfMR3uYY8r/uODrg7bMJJ87ks7pxcOHj58eN7/N2DAAHUSxP5veHnatm0bepNwD06AONkSkcj69eutCoeK16hRI7n66qvVcRPLeGPd+yD18O6770qvXr2kW7duarAHOjmzsX5zc6FcbM6DybTFGXeUcekOW2d4Nrc9Cod163a52JoP0+mKK/6o47H1vGG6fqk0WAnmD28ukamz/9eRsW7DJvl+3QbZsHGTbKoSqVMmUl63jmy1RV38Im8vXq5efbt8Lxcc1kbq1EnVWP/UwsNzdEj4Pfjgg1pnQmJfTXSsedBphjgPOOCAksJBJxxmMSG8pMAWNh50moSBzkJ0lrVu3VqVA1Z+8o7NGHiNzhfM+EJHDzrQ0AmJjsJ8UMeo62XLlqmJLpixm29bMnT+4JkwOk+zZ5timWI8w/DiQhrR2YWOKUD4eKaMAd3+/UX9f4+0omMV8aOTCR1LuWaKFoLOLWwbhLLBwHOkIXsJZYTptR8vTnTEoRzCtKso40bnNTpKjz76aPVvTD7yf2cRX6llVSqv/vEsv0WLFtXaXXb9e9/1IOXptXFAp+b06dOrHYu8Mrz44otV+0I5oG298847JR2zvPIHzCRHvLnaNb5H6KS99NJLZebMmXL77bdLVNCJ6tUrOq+jrlNyV1mVw93RWO511apVBT8TZ/axvxyWvyVyBS70WrVqVe29b7/9Vl2wZH/PvO9i06ZNA4+g0hUOhYOLTYyIxJKyYWCTcHSS4tgIrN/cXCgXm/NgMm1xxh1lXLrD1hle3PWLc2BtSyUNHjy4xrmT3DqumORKudiaD9Ppiiv+qOOx9bxhun6hoqJCdWhA/fr11U/sc48HqlSzQ/O2VxbIzPnfqH//sG6DrK7YIOs35t/yol7dOtKkQbk02mLz+P7uHbeVq3p1SHXHZvYzMVuOt9npwPUTBtcGyQO+U5h55e/IGjt2rJr9FwQ6XrCHJjoCCnUieMvb+u+biylfzBTDJIknnniixv9Dx4O/47TQc80469af7zAdZ+g0854neR1+xeQDHT/e7L7anvOiPaAjyYPOHnR6I4xmzZrlLPd8caGjzTtv7LTTTirfudqFH5b89GaUIh0ffvhhwc9np71nz57q79HpO2/evKKW+sXzG8wwDNP2TcTtr2uvnnTwZs16dYgO1Oz6z9fusuu/1JUf/d9hlOOXX35Z8PPIMzrAvfiK7dj05xHHodratf9YidmU/g7la665JtOuwx5X/PlHB3auAQBRQ2f1ggUL1O/r1q1TeUCZNmjQwPjzcyqe01duGMWAL1u+F9Q2dV3XiyjN8B3AaCe8wnwfdIVD4WAZlccee0zmzp2rLmqDmjJlihp1eckll6iTOes3NxfKxeY8mExbnHFHGZfusHWGZ3Pbo3BYt26Xi635MJ2uuOKPOh5bzxum65dKgxmaXocmlpld9kOl6tBEzTWqX1daNKovLRtvoX5uWb+ueh//H5/D5wF/j3DSzIVnV4XygAfo/g5NdAqg0y1oh2ZtMLPKD7MCSy1f3Gtnh2N73X7++eeZ39ExFNR1112X6cDyZnAVk49SZpah8wKdSdntBMuoFtPxg8HZHrQr7J165plnyl577VVrhyYcf/zxmd8x49EbyFJMhy/astchiq19it27FOnyZkBipmGpS6eajDsOWHY1u/7ztbvs+i8lP+ig9A9KQDnWBt8DDOrw4rvwwguL+huvUxLfpWLatffdQCdj9qx2nceVXXfdNfP7Bx98IKYl9bxHjndqYqZmoS9coQ5PXS8iIld16tRJXnnlFZkxY4Z07tw5UBgbNmxQ6/hjtuaNN94o33/P/W2IiIiIiPzXy97+VdkvzFZM6x6a3pKz6KDEcrPQpEE92WHrhtJiqy3UbMyG9eqqn9tstYV6H/8f8HmvYxPhIDxKPnS8oIMISyxitiNmVKIDwevQRMcKlpWMcllXdCb4O8xK7fRA2jFT3L8kI54t4rue7/uO900/f3z//fczv2N2eVBvvPGG+ok9GUuBzhj/7MvaoG14MCsWy25ii7JiYG/F7P1P0XmN/RCLgS15/F588cWi/g7LhHptGZ1cpS6d7E8fvhfFdqaajjtqyBf2zgxa/8V0THpOO+20zO84HhVbjnhW5kGHI44ThWbG+jslC302Fxx7MLMzKrvttlvm91x74BIVq9z1mZp+OMnjvaAP30uFE+Ps2bPVT6I027hxo8yaNUv9jv0k6tatazQc0qt79+6qXqZOnar23gyylzA6M7FZ+Z133ikXXHCBGs0X5dIPSeJCu7c5DybTFmfcUcalO2yd4dnc9igc1q3b5WJrPkynK674o47H1vOG6fql4j0156vMkrNeh+Y2W2FGZv5HXHXrlMnWW9aT+uVl8t33mztCtyivozo9n577lez1s6aSRl6HGWAZXltnrWB5/9qW+M8FHYyYGYdOgWJnloWFTlNvuU2YPHmynH322UWV73333Vej0xV1hMENkKtjE/+vvLy8Rthx1q1/aV+sxhQUZi7CihUrSs7HKaeckvn7QhAeZuT740SHaLF7+2W3I/w9OoGwB2OQv1+0aFGtf4OOcX9Hlb+Tq1iIFx1p3tKpmPFXzHKuJuOOC5YEzq7/fO0uu/78s5QLQWejvxMPS7oWC3GijXrtG8eJ7L1MvYEd/mMP2mWQ4x5WZPMvo63zuJKdHqQ5rmNzvmu/NC9Bn2ROd2p6Jyl84bD8AR64d+vWLdY0oEMTD/yxTCNRWuEkgRl9gEEFYR406AiH9MNFAEad4UYCI9xwoYs140uFmxfss/CnP/1JRo4cKb1797b2xjouLrR7m/NgMm1xxh1lXLrD1hmezW2PwmHdul0utubDdLriij/qeGw9b5iuXyrOd2sq5B9LlqnfsYcmYAZmoQ5NP3yuSYMqWV2xXv09OjX/vniZLPt+nZrhmUZo+2Dzg1080D///PNz/r/sLabwgBxLHGJGkImH5dhv09+xgA4hbLey3XbbFfw7PNxHp0+xM/5sqVukW3c4KAd/Z0cx+cDqT8XKntmK5xhh4LlFqasKeoqZCIMOMQ+WEw3arrF0qtexiHaJjsXaOnNNxh2XfPVfTLsrdiLT+PHjM79jGexS877vvvtmOjW9csyGGcd+QZexrm0J6bDHFeTfGwiB54bs1KQgnO7U9E5ouKgZPnx47B2aXsfqwIED1YsorXCCwEbT3u+mw6Ho1K9fX37961/LOeecozonsTfBDz/8UHI4GK3Yt29fNUp+9OjR8otf/ELSyoV2b3MeTKYtzrijjEt32DrDs7ntUTisW7fLxdZ8mE5XXPFHHY+t5w3T9UvFeeH9r2XDxipZt2FTZg/Nxg1Ke7SFz6+pWK/+HuFgZ6YX/vVfOafrLpJGSWjvO+20U959MNFB5T1kx2AE04Ni8YAenT/+2W333HNPrfstYm/GMJ1GpurWP5gZnRVBId/+zg5sd4OlPTHzs5h8YM/HYpegzW4j3p6PxfKnE0444YSi/7Zly5bV/u2flZoLlg/1z/BD51ZQ2UunovMdeyjaGHec8tV/vnbnr//Vq1cXNdvV316CdOZmz55E3fhna2IQgP//B+k4jeu4giW2vfJYsGBBycsZp+38Ryns1PSPfsFsSVO6dOmifi5fvtxYGohMwlIoYUe+6QyHoocLKOxLgP0WcPOG2ZvekjmlwBJgRx11lLrIHDVqVKiL6KRyod3bnAeTaYsz7ijj0h22zvBsbnsUDuvW7XKxNR+m0xVX/FHHY+t5w3T9UnHmfL75uYq37OyW9euqpWVLgc83rF9XfqzcqJaw3aK8vsz+fHkqOzXRuYO2n2Q25qF///7VOjXRYemfvZnLAw88IFdddVXiyiX7WWeYTmV0fHkdM+hMQyclnilccskltXZ84P9/+OGHtcaRK33ZsydLffYRZTlPmTKl2r8PPPDAwGFld5jnm/FnQ9xxylX/Or8/2eXo9ROUAp32ftjuzt+piX1ds5fUTcvxNgyX8pI2ddKyp6Z/vfS4mYybiMgkLLGDUalYJqNPnz6Bw8EFL0Zq/upXv5LPPvtMaxqJiIiIiCgZVq9dr35u2Lh5T68G9YItE9zwp7/DbM3N4ZY+AJMoH+yL6Z+1iA66QnsIzp8/X7788ssa+2kmgX/ZWMzACsO/1KkHe6micxOdNMccc4z6jO79GLNnT5YibJ5r87e//a2kpUGL2WfWDzP+bIw7TmHqvxjZ7bWUpZI92Z36y5ZtXoY9X8epzRMCmjRpUvRMZaJUdmra1plY7DrbRESuwZ4m2Nf4nXfekSOPPDJQGFhWCPuLYG+Uyy+/vMZFHBERERERua1i/eZOyE0/bYlXp8RZmp46P83W8rbWq1i/eflSIl3OOuusav/GYN987r777hrLc6YROm6eeeaZnP8PHcMY7IwZr4cddpiaMYblNbG0Z1gm9/SrjX/5V+jQoYO2DiVvxp+NcccpyvpHp79/6Vn/+6W+CvUxfPHFF1b3iRDp5nSnZps2bWTGjBlqDfZddtnFinQQpVFlZaXcdttt6oXfTYdD5mC5ktdff13tnbDPPvsECgN1f8cdd6jZ+CNHjpQff/xRXOZCu7c5DybTFmfcUcalO2yd4dnc9igc1q3b5WJrPkynK674o47H1vOG6fql4jSot/kxlteXucnr3SzRpp96M72VKIPO+Ew6DBxdv369euH3JLI1D1gy1c+/3122xx57TC6++GInyiVsXFhSEx2bxezPiSV+zzvvPNlzzz3VbNdi06e7PKIq42LzFEa+weIm47aBru+Pf89ZD9osZoeW+irUaZm9t2eLFi0kTcfboFzJRxo53akJ3bp1Uy/TbEkHkSnoeNLR+aQrHDIHIyqxR+a8efPkkUcekZ122ilQOLhoGzFihJoFOnny5EB7diaFC+3e5jyYTFuccUcZl+6wdYZnc9ujcFi3bpeLrfkwna644o86HlvPG6brl2rXpGE99bO8bp1QMyzX/vR39X4Kp0nD9O6rFUUnT9xszANmHWLZVL9cswqxBCeWVsWswySWi3+W26pVq7SEiY5N3O+PHTu2Rhnmgu1u8Dndy9IWK6oyzt6vNApLliyxLm5b6Pj+5CpHtFcv7KCve++9t+CsWpvLxd8BG3ZJ47BsO29Q8dJ71UZEsalXr57a3N373XQ4ZIc6derI2WefrfbaxD4ZWEYmyIXzf/7zHxkwYIDcfvvtauYmboDQceoKF9q9zXkwmbY4444yLt1h6wwv7vpt3rx5Jr5CnyG3jysmuVIutubDdLriij/qeGw9b5iuXyrO/js3l4//u0a22qJcfli3QX6s3Chbb6qSuiUsQ7txU5Wsrdzcqdloi82PxbrsnN7zc3l58h8N2pqH888/X6688srMvzEYN3vfzPvuu099Lh/c23r5wz10Nvy/fPe/tpZLsa644gq19Qw6Hp5//nl55ZVX5I033lCdQrlgz83FixfXupyo7ucFSS5nk51Kpju0XKpXzGzOtcyt7eVieulnXO+59PwwTZyfqUlE5uEE0apVK/UKc7LQFQ7ZpUGDBvLb3/5W3XwMHz5cGjZsGCicjz/+WE4++WS1v8abb74prnCh3ducB5NpizPuKOPSHbbO8OKuX9zgefHleyXp5thmNh9XTHKlXGzNh+l0xRV/1PHYet4wXb9UnOP23k7K65bJFuV11CxLzLFYU1Haii34PP6uft06KhyEd9w+20saoa2jowyvpLZ7m/Nwzjnn1Fgu1b+sJ/bJwz6R2Z/Ll79c8uU7rnLxD9hDp0oU9xrIAwYvY3bahx9+qDo5sUQtVoDyQ/yXXnppreHpFlUZ77bbbtpnUGYvU9quXTvr4g4C3yWdM3V1fX9yleOCBQtEN8z29lu0aJFEQUe5+Gd0mx7wa9s5g4rHTk0iIrJC06ZN5dZbb5WFCxdK//7989601QY3iocffri66ck3gpOIiIiIiJJnm8YN5OA2m/cKa9Jg80Ch1RXr5cfK4jo28Tl8Hhr/9PeHtG0hLbbaIrI0U3phFlJ2x9vdd9+d+X38+PHq/5uerRR2mV1dMNMSnVPFwP3+Sy+9pAY0+/ffxN6lxYZhu1ztImzespcIztexaDLuIF544QXVfmyTqxxXrFihPZ7sbZ2iiEMX/4zS7L1CiYrFTs2YtG/fXurWrSv333+/6aQQxW7jxo0yZ84c9cLvpsMhO3n1+/XXX6vlaD/44AM56aSTAof33HPPyd577y0XXHBBrPsL6OZCu7c5DybTFmfcUcalO2yd4dnc9igc1q3b5WJrPkynK674o47H1vOG6fql4p26f+vM0rFYhha++75SVv64Xi0tmwvex//H5wB/5y09e0rnzeGlEWa8ob3jldS9xWzOA9IzcODAau899thj1fbYHDRoUOLLxd+p6J+JWgpv1io6p0rJB/YiffTRR6u998knn+SNJ4qyiLKMu3btWu3fn376aajwspcoPe6446yM2zSd35/scly2bJno1r1794KzYm0pl+yOcdMDOjZt2mTdeYOKw07NmHhT9FeuXGk6KUSxw8kOF6Z4hX3QoCMcslN2/WLE55/+9Ce1hAhuVIJeoDzwwAOy6667yrBhw6wereZyu7c5DybTFmfcUcalO2yd4dnc9igc1q3b5WJrPkynK674o47H1vOG6fql4u31s6bSt8vmjsjmjepnOjYxA/M/K9fKsu/Xqf02sW8mfn73/Tr1vjdDE5/H3wHCQXhp5j2gTjKb83DsscdW6/RDx86zzz6r7nMxcw0zDpNeLv6lL8Murfnqq6+WnA+U4emnn5759z/+8Y+CcejuxIiyjE855ZRq/8bAm6Cyl2fdY489CnYqmYzbBrq+P9nlOHPmTIljqWsby8U/4ABtwLQNG0pbvp7swU7NmHidmVGMxiCyHZYRxTryeAVdUlRnOGSnfPWLUW1/+9vf1MzLoBc9FRUVMnr0aLW8ydixY9W/k8KFdm9zHkymLc64o4xLd9g6w7O57VE4rFu3y8XWfJhOV1zxRx2PrecN0/VLpbngsDbSveO26nd0ULZoVD+zx+YPlRtl2Q+VsvT7dernj5Ub1fv4//ic16GJv0c4aVdov8akiDMP2bPNaoN0nXnmmdXeu+++++See+6Rs846S3PqzJSLf+nLsLP5cO8fJB/9+vUzto9elGWc3VmVq3yKld3Ze/7551sbd7baJglF8bxd1/cH5egf2BB2708ss3vRRRdVew8dxNkzQnXuMaqrXPwzNbOXzDUh6ee+NNs8nI0itWTJkszvnKlJaVReXi6nnXaaNeGQnQrVL246jj/+eHXx9sgjj8h1110n//73v0uOAzM1r7rqKrnrrrvkpptuUjeRWBrcZi60e5vzYDJtccYdZVy6w9YZns1tj8Jh3bpdLrbmw3S64oo/6nhsPW+Yrl8q/UHkVb06SPNG9WTq7K/UUrJ4rduwSc3OXL8RS8rhPmJzZ2ajLerKFuX/u+7HDE10aKb9gSbus9D2k8zmPHhpu/TSS1VHpgfLrKKT45133ok87jh06dJF5QkWLVoUKixsHeNfranYfPhn/WELsLg6NCHKcka+rrnmGrn55psz5YMlfoPsZYpVrDytW7eWK664wtq4Ad+RYgcRoN35Zwzb9P1BOV522WWZcvRmaweZpe0t04zB+tnGjBkjhx12WObf+FyQVc8KDUwIWy6zZ8+udtwwzdZzB9Uu3VdvMcHsoOxlaImIKNgFB0b0LVy4UB1bmzYNtlTUl19+Keeee67st99+8uc//5lr6BMRERERJQw6JPv/vJ3c0W8/OXzXbaS8bplsUV5HzcTctkkD2a5pA/UT/0aHZnmdMunatrmMPHF3dmhSqFlG/gfzxUAnUPaqQ+iACdI5ZKOjjz468/t7770XOjyv86cUeEbgCbp9TRyWLl1a8t9gQDY6Av3/LhU6Iz/66KPMv3//+99bH7e/k9L/97lgEpENM/+KLccRI0YECgcD/NHZm6tTGO3evwzz+PHjA8Xh74DWPQvWtk5NSi6nu6Pvv/9+o/FjlMj06dNl8eLFmfc4U5OIKLyGDRvKkCFD5MILL5SRI0fK3XffLevWrSs5nA8++EBtTn/EEUeoTtKDDjookvQSEREREVE0sCcmXthL84V//Vdmf75cVq/dIBXrN0qDenWlSYNy2a91Y+nVsaU027Ke6eRSCcsTelavXi02QIeCNwMK6SxlT0AMzr3yyiur/btUtm5p5e9EfP/990OHh/L1z9YsZS9OLMFZW7188cUX1f5d6uxD/+xB7ItaiqCTXZA/r2P8ySefVMvtljLTr3fv3pnfBw8eXNLfmoobe1H6OzML1RP2w77++uuLCldn/ZfCX47I17hx44qaserBd2LChAk5Z2l6nnjiCbVMMGbVIp3XXnttSR3RWNY2uwNZZ18GnsF5otxPmFKgymHNmjWrqlOnjtFXWVlZtVeXLl1MFwuRNt9++y2mt1V74b1slZWVVXfccYd64fegdIVDdgpTv59//nnVueeeq46z2W2ylNepp55a9fHHH1fZxIV2b3MeTKYtzrijjEt32DrDs7ntUTisW7fLxdZ8mE5XXPFHHY+t5w3T9Qtr166tmjt3rnp98MEH6vXjjz9WrVu3Ludr48aNRtKZNCin77//vtqLZbfZpk2bVHvHC7/bYPDgwTnv1T766CNjeVi6dGmNdLVu3brqmWeeKfh32Wnz/30Qe+yxR41yueaaa4qKO0oI/5BDDqm1rmor4+zyxXvF5APxFRu3/7O1lWEuDz74YI2/f+qpp4ou4+x21LhxY5XPYqC9+f+u2HI++uijM393+umnF/U3NsSd3Sby/b2XtmIUW//52l2u+n/zzTeLzhPSivLz/ra2Y4g/3fg7lGcxn8X3p9Q4xo4dqz6f61in67jihdm1a9cqU5B27xrrnXfeqZozZ466/rLh+TkVz+m1Npo3b66WFDT5wlrT3gs4U5PSCN8FjF7DK8wyn7rCITuFqV8sM/Lggw+qpW5++ctfBk7DU089JXvuuacaPfjf//5XbOBCu7c5DybTFmfcUcalO2yd4dnc9igc1q3b5WJrPkynK674o47H1vOG6folMsV7fmUCZiodc8wxakYeXk2aNFEzkXLBDCcsR4nP4W/w8mZ1RpEH7HmHuBBny5Yta6QLM6FOOukk9bwP95D5ZhX60+YtDelfrjWfM844I1M2CB/x5FqCE0u1otz85fLQQw/ViDtqv/jFLzK/v/jii6HCQl3jHr9Tp07y8ccfF8wHZtn17NlT/Y5nAtkz7tBGvHJBOWYvA+yVob9toe79s+O8esBnzjvvvBp/f+qpp6r0en+PNHlQF/6/z25HmE2H9uW1IXw2H8xsQxvAMqb4O+TFq+t8ZYNwvf1OsT8mZvIFYSJub09PD2aJoj6y6/fXv/61eoaTS5j6R5t7++235dhjjy1Y/9jH0v/3/vrPVY7YS9dbihbHEMyOLASzLZFuhP/SSy9JbfAdmDdvXiaviAPH2tqON5hJ/swzz0ivXr1qHOtQdkjHww8/LM8//3yg44q/vRx11FFiA17vJVcZejbFUTipzZw5M5JNoAvxijQ7XrzfrFkza5eLIAqyF0CrVq2qvfftt9+qCzK/TZs2ZTqItt9++8B7l+gKh+yks37feOMNGTp0qLpYDGrLLbeUyy+/XK666ip1k2iKC+3e5jyYTFuccUcZl+6wdYZnc9ujcFi3bpeLrfkwna644o86HlvPG6brFyoqKjIPQ+vXr69+tm3bVurWrZt3v3lbvh82Q92uXbu2xnYWLLvqnV7+AflxwcN8dPJgj7hSeMs/opNl9913jyQPeICPzo5i0ualJ/sRa3b5ooMEnR64T61tuUt0kqAzIUjZoCPoxhtvjK1uEY/XieV12hbT+ZLd+YRnScgvtvFChxY6WtCRhfD2339/OeCAA6RDhw5qCdd//OMf6pkvOs3QQfTHP/4xZ8cy0oXOnWLL0Ss/b8lOdMSgI6uUv0fHkLe0ZqltHH9fzKN6r30C8n/88cfLgQceqJ47f/rpp/L000+r9uYtyYst2nTt4Rp33P74AB2YiA/bvqF+9tprr7ztLWj9e9+fRx55JFT9F5svhI+tkdCX4ZXjnDlzVPvH/8PSuqUsVZsrDpQDlr0++OCDM/vQ/vOf/1Tt019P6NRFR2g+SA8mbZV6XPG+z96x29SewuvXr5cFCxZkrruQB5RNgwYNjD8/p+I53anZt29ftael9wWLI6uICzcd+eLaeuutS95QnMhWPCiTzXAcxsU0NmD3LliCwM0ULgQHDhwoW2yxhdY0EhERERF52KkZDXZqEsUDnYpeZ1aQZ7AYTIzOKX/nJI6J6GD09gn0OlWaNm0qhx9+eMn7O7oGnXpTpkxRexVipQF0qqGjETNHMRsOHUlRdR7FGTfawd13360GsH/55ZeZuM4999yS9oy0UaFy7N+/v8qjjjgmT56s9hP1Bktg4MS+++4rF198cbXvnNepiTTgO4m+DPxEZyt+b9euXaAOVm+gBjoQP/zwQzHF36lZWVmpfqKdslMzWZzu1Bw2bJiMGTNGdTQimwMGDFAzd9q0aaMlfBxoMDoII4hmzJghc+fOVaOE8CUfPnx4tQ3AiVzEgzIlAS5YHnjgAbnhhhvk66+/DhwOzh0Y4XbaaafxAQgR5fTDDz/IrFmzCn4GI8wbNWoUW5qIiCg52KkZDXZqUpIV+9g27lm2uXizGqHY2WpE5D4sG4xler1lonV01AbFTk03ON2pedttt6lOTJzY0aGZb11+ndDROXHiRBk1apSa3YPf/evKE6V1+VmMOAIsCxFmSSgd4ZCdoq5fdDbccccdarCLtzxQENjXY/To0dKjRw+Jgwvt3uY8mExbnHFHGZfusHWGF3f94hxY2/UmlkvKPneSW8cVk1wpF1vzYTpdccUfdTy2njdM1y+wUzMa7NTMD48EUT6A8rChY8ylPOhIG/5+w4YNBT+T61gQZ7n448JED9xvB1mCtrawdeRDZ3g2tz0Kh3Wrt1y8pWcxQ3T16tViEpefdUO5OAwX/54+ffrEEieWPxgyZIh6oUO1e/fuMmnSJLngggtiiZ/IRrgA/9Of/qR+x34X3g26qXDITlHXL2ZGYW8ELCN7yy23yL333qsuZkqFDdexzwGO7xjAgr09ouRCu7c5DybTFmfcUcalO2yd4dnc9igc1q3b5WJrPkynK674o47H1vOG6folMmXjxo3qZ5I7eW3Og8m0xRm3F9dZZ52lBvlhr0vsk4kJH7blQ2d4Nrc9Cod1q69cvL00L7vsMrEJrv3q1atnOhkUgNOdmljnOVcHZ1wwkwdLjGFvT2DHJqWVt9es97vpcMhOcdUvRkLdeeedcumll6q9Mp944olA4WC58S5dusjpp5+ulqWN6jzjQru3OQ8m0xZn3FHGpTtsneHZ3PYoHNat2+Viaz5Mpyuu+KOOx9bzhun6JTLFhQf2NufBZNrijNuL68Ybb5THHntMzdYcP368lv0OdedDZ3g2tz0Kh3Wrp1zGjRuX+d22Tk3WcXI5vfzskiVL1Oa1uCFZsWKF2tTWhOnTp6uNq7HnJjbgJXIFp8+TCzDzEnswv/rqq4HDwMiuQYMGqZmgXFaSKL24/CwREYXB5WejweVnKcmCLj9rEgYPY+CvDUtNEpFZ6I/BIAc8L9MxyCEs7qnpBnvOeBFo3ry5nHrqqeplqkMTevfuLRdeeKF6ERGRXbBH5iuvvCIzZsyQzp07B74ouvvuu9VAGlykff/999rTSURERERERGQ73BO3bt1adWRcdNFFppNDRAYHOOA4gD0rbejQJHc43amJ/S2nTZsmU6dONZ0UtRTtnDlz5L333jOdFCIiygF7ZM6aNUut9R90KVl0Zl533XXSvn17NVsryJ6dREREREREREn2xz/+Uf3EfTH21iSidMH3HktQw6RJk0wnhxzjdKembft7YsbmfffdZzopRLFDx869996rXmE6eXSFQ3ayoX6xZM9pp52mlv266667ZJtttgkUzjfffKNGpO65555qCfIwK73bUC5h2ZwHk2mLM+4o49Idts7wbG57FA7r1u1ysTUfptMVV/xRx2PrecN0/RKZgPsUtHe8kro7lc15MJm2OOPOFdehhx6qlpuEE088UWvYutNqQ1hkF9Zt+HI5++yz1SxNbL+C44GNWL/JxU7NGB1wwAEye/Zs08kgih1OEFg/HK8wJwtd4ZCdbKpf7GF0ySWXyKJFi9TMy0aNGgUKZ+HChdKnTx85+OCD5a9//WviyyUom/NgMm1xxh1lXLrD1hmezW2PwmHdul0utubDdLriij/qeGw9b5iuXyJT0N6T3uZtzoPJtMUZd664sNxk165d5e2335Zx48ZpDTsMneHZ3PYoHNZt8HJ56KGH5OWXX1bffwwWsxXrN7nKqlh7sXnqqadkwIABsmzZMtNJIYp1o2NsbP/FF1+o33faaafAG9jrCofsZHP9fv3113LjjTeqJTM2btwYOJxjjjlGRo0aJfvss48T5eJCHkymLc64o4xLd9g6w4u7fnEOxBJbhWCkava5k9w6rpjkSrnYmg/T6Yor/qjjsfW8Ybp+oaKiQq0Y4g2yA2yLULdu3ZyfLy8vt+b7YTPU7dq1a6u917BhQ5Zd1sPpsrIy9Uoam/OgI23FdCDkCjvOcikUF5ag7NSpk3z11Vfy5ptvljxjS3c+dIZnc9ujcFi3wcsF1zEHHXSQ2hbwyy+/FBtnZy5YsCBz3YU8YM/PBg0aGH9+TsVjp2bMnZp9+/YN9UCcyCY8KFPa4MIHS+hgv+agcMGEZTjQSbrzzjtrTR8RmcVOTSIiCoOdmtFgpyaRWejYxLEMFi9eHHibFyKymzeIYdWqVfLOO+9Ix44dxeZOzcrKSvUT6WSnZrLwCi5GOHETEVFydejQQaZOnaouzo444ohAYWAs0SOPPKLCuuKKKzh7n4iIiIiIiJyFTkzcQ2PmFjo80PFBRO7BczKbOzTJHezUjBH2Ztt6661NJ4PIyMjYjz/+WL3wu+lwyE5Jqt8DDzxQ/vKXv8iLL74oe++9d6AwMCLs9ttvl3bt2qklaX/88cfEl0s+NufBZNrijDvKuHSHrTM8m9sehcO6dbtcbM2H6XTFFX/U8dh63jBdv0QmYMAl2jteSV3IzeY8mExbnHEXExc6OObNm6eW9z7xxBO1hq07rabSRvZg3ZZeLthuyZvUlZQOTdZvcrFTM0aY3dOlSxfTySCK3YYNG2TKlCnqhd9Nh0N2Slr9YhlZXLThxuzhhx9WN2dBYBTb8OHDZdddd5X777+/Rt6TVi652JwHk2mLM+4o49Idts7wbG57FA7r1u1ysTUfptMVV/xRx2PrecN0/RKZgvae9DZvcx5Mpi3OuIuJCzM233rrLXn22We1h20qPJvbHoXDui2tXB599FH58MMPE7W8NOs3ucpNJyAtJk+eLCtXrpTOnTubTgqRkc6fHXfcMfO76XDITkmtX+xx9Ktf/UrtmXzvvffKLbfcIsuXLy85nP/85z/Sv39/NXtz5MiRcsIJJ2Q2Xk9iufjZnAeTaYsz7ijj0h22zvBsbnsUDuvW7XKxNR+m0xVX/FHHY+t5w3T9EpniQnu3OQ8m0xZn3KXEVWqnRxT3LzaGRXZh3ZZWLknqzPSwjpOrrIpzbCP3+uuvS/fu3dUXZcaMGXLUUUeZThKRFtzomKgmDGAZPXq03HnnnVJRURE4nK5du8qYMWPk0EMP1Zo+IooOzoETJkwo+JnBgwfXOHcSEREBrh3nz5+vfq9fv7762bZtWzWILpfy8nKpU4cLcBWzvNzatWurvdewYUOWHRERUcqsX79eFixYkNkWCrBcboMGDSKLk8/P9eMVXMSdmf369ZMePXpkbkbYoUlE5DbsnYyZlp9++qlceOGFgR+WvP3223LYYYep/UY++ugj7ekkIiIiIiIiIiIiShKnl5/t1atXoCUAw87QQZz46cFkWMzSnDhxYqxpISIic372s5+ppccvv/xytWdmqfuGeJ577jl54YUX5LzzzpMbbrhBWrdurT2tRERERERERERERLZzulNz1qxZsmrVKtWpaIq3H9qAAQM4S5NSPbX/oYceUr+fe+65Uq9ePaPhkJ1crV8sY/HMM8/IW2+9JUOGDFEzMIMsmfWHP/xBHn/8cbnssstk2LBhakZoUthctybTFmfcUcalO2yd4dnc9igc1q3b5WJrPkynK674o47H1vOG6folMgHPyzZs2JBZzjiJ+4vZnAeTaYsz7ijj0h22zvBsbnsUDus2HeWCaz/kg5LH6VrDcq9z585VXzCvYzPuCwi8Bg4cWOv+SkQuw/fgP//5T+Z30+GQnVyvX+yN+eabb8rzzz+vOiW9/ZJK3WcJ+3VOmjRJrr76arn44osjXfc/DXVrMm1xxh1lXLrD1hmezW2PwmHdul0utubDdLriij/qeGw9b5iuXyJTXGjvNufBZNrijDvq85Kt4dnc9igc1q375eJSXtLG6U7N5s2bZ373OjPjbKydO3dWSw926tQptjiJbIRRL6effnrmd9PhkJ3SUL84F51wwgly7LHHysMPPyzXXXdd5uFZKVasWCFXXnmljB8/Xm666SY566yzpG7dumIrm+vWZNrijDvKuHSHrTM8m9sehcO6dbtcbM2H6XTFFX/U8dh63jBdv0SmuNDebc6DybTFGXfU5yVbw7O57VE4rFv3y8WlvKRNWZXDXdKDBg1Ss1n8HZroaMQMzig6Ttu1a6eWA0T43bp10xYHka2WLl0qrVq1qvbet99+Ky1btjSWJqIk+fHHH+Xuu++WkSNHquXSg9p7771l1KhRcswxxyR++Q+iJMM5sLbVOQYPHlzj3ElEROStyuGt5lG/fn31E88X8g1ew8O4OnXqxJrGJMJWDmvXrq32XsOGDVl2REREKYMlZxcsWKB+r6yszGwbFeUqaHx+rp/T3dHefmPozMRD3jlz5nDWJBERWWPLLbeUoUOHSv/+/eXWW29VHZzeRVUp3n//ffnlL38pRxxxhFqe9qCDDookvURERERERERERESmOD0sDTMnAR2aeMjLDk0icyNjFy1apF743XQ4ZKc01y9m/Y8dO1aNFjvnnHMCz7Z844035OCDD5Y+ffpkRp7ZwOa6NZm2OOOOMi7dYesMz+a2R+Gwbt0uF1vzYTpdccUfdTy2njdM1y+RCZgEgPaOV1IXcrM5DzrShr/FwNdCr1zHrDjLJcq4dIetMzyb2x6Fw7pNR7m4ko80crpT0780bPfu3Y2mhSjNNmzYII899ph64XfT4ZCdWL8iO++8szz00EPy3nvvqX03g5o+fbrsscceapnL//73v2KazXVrMm1xxh1lXLrD1hmezW2PwmHdul0utubDdLriij/qeGw9b5iuXyJT0N6T3uZtzoPJtMUZd5Rx6Q5bZ3g2tz0Kh3Xrfrm4ko80cnr5Wf/emTr30SSi0mDW2bbbbpv53XQ4ZCfWb/U9Mv/85z/LX//6VxkyZIjMmjWr5DA2btwo9913nzzyyCNyxRVXyJVXXilNmjQRE2yuW5NpizPuKOPSHbbO8GxuexQO69btcrE1H6bTFVf8Ucdj63nDdP0SmeJCe7c5DybTFmfcUZ+XbA3P5rZH4bBu3S8Xl/KSNmVVDs+xXbJkiVqCFg10xYoVxh7mErmKGx0TRQ+n6aefflqGDx8uCxcuDBzONttsI9dee60MGjRI6tevrzWNRPS/c+CECRMKfgYzqLPPnURERFBRUSHz589Xv3vXaxigXbdu3ZyfLy8vlzp1nF6AS9vycmvXrq32XsOGDVl2lJj2W9tsIh4LiIiKs379+sx2TVi+Gzp27CgNGjSILE4+P9fP6TNemzZtZMaMGfLqq6+yQ5OIiBIJA3NOPfVU+fDDD1VniTeDoFTfffedXHbZZbL77rvLk08+yb2iiIiIiIiIiIiIKFGc7tSEbt26qRcREVGS1atXT82y/PTTT+Wmm26Sxo0bB17F4IwzzpAuXbqogT9ERERERERERERESeB8pyYRmYep/Q899JB64XfT4ZCdWL/FlctWW20l11xzjSxatEguvfRS1dkZxLx586Rnz57qNXfuXElr3ZpMW5xxRxmX7rB1hmdz26NwWLdul4ut+TCdrrjijzoeW88bpuuXyNRWF2jveCV1dyqb82AybXHGHWVcusPWGZ7NbY/CYd2mo1xcyUcalZtOABG5DyeIzz//PPO76XDITqzf0soFa++PHz9eLSmLvTKfeOKJQOFjtiZep59+utx8881q36Y01a3JtMUZd5Rx6Q5bZ3g2tz0Kh3XrdrnYmg/T6Yor/qjjsfW8Ybp+iUxxob3bnAeTaYsz7qjPS7aGZ3Pbo3BYt+6Xi0t5SZuyKtYeEUW80TH27ps/f35m8+WgG9jrCofsxPoNVy6YbTls2LBQS8pi1ufgwYPVTFCdG5bbXLcm0xZn3FHGpTtsneHFXb8VFRVqFnUh7dq1kwYNGkSajjSw+bhikivlYms+TKcrrvijjsfW84bp+vXOI14a6tevr362b98+78oc2HsdL6q9bteuXVvtvYYNG1pzbDEJjwS9x4JJbU8250FH2vxh5JMr7DjLJcq4dIetMzyb2x6Fw7p1t1wwO3PBggWZ6y7kYY899oj0Hr3Y5+dUPHZqElFgPCgT2QedmkOHDlXLywaF/Tqvuuoq+e1vf6uWuyUiIiIiM52aHTp0CLzdAG3GTk0iIiLK7tSsrKzMDGZjp2ay8AqOiIjIIT169JDZs2er5WjbtGkTKIw1a9bIddddp2YG3HfffdxXioiIiIiIiIiIiIxjpyYRxTIy9osvvlAv/G46HLIT61dfuWDUOfbI/Pjjj+Wuu+6SbbbZJlDc33zzjVqOds8995Tp06cH3m/A5ro1mbY4444yLt1h6wzP5rZH4bBu3S4XW/NhOl1xxR91PLaeN0zXL5EJuL5He8crqQu52ZwHk2mLM+4o49Idts7wbG57FA7rNh3l4ko+0oidmkQUuQ0bNsiDDz6oXvjddDhkJ9av/nLBsmWXXHKJ2uPv2muvlS233DJQGhYuXCh9+vSRgw8+WN544w2n6tZk2uKMO8q4dIetMzyb2x6Fw7p1u1xszYfpdMUVf9Tx2HreMF2/RKagvSe9zducB5NpizPuKOPSHbbO8GxuexQO69b9cnElH2lUbjoBROQ+bLrcvHnzzO+mwyE7sX6jK5cmTZrIjTfeKBdddJH6OWnSJNm4cWPJ4fzzn/+UI488Uo499lgZOXKk7LPPPomvW5NpizPuKOPSHbbO8GxuexQO69btcrE1H6bTFVf8Ucdj63nDdP0SmeJCe7c5DybTFmfcUZ+XbA3P5rZH4bBu3S8Xl/KSNmVVnGNLRAFxo2OiZMKm6FdffbVaUjbMxd+vfvUr1Um60047aU0fERERURpVVFTI/PnzMytuQIcOHaRevXqGU5b85eXWrl1b7b2GDRuqLRuIiIgoPdavX6+eiUFlZaX62bFjR2nQoEFkcfL5uX68giMiIkoZPBybNm2a/OMf/5AjjjgiUBgYE/Xwww+rsK688kpZtmyZ9nQSERERERERERERedipSURElFIHHXSQ/OUvf5E///nPsvfeewcKY926dTJu3Dhp166djB49usYoeCIiIiIiIiIiIiId2KlJRLFsvPzEE0+oV5hNmHWFQ3Zi/ZopFywjiz0y582bp2ZeBl1KdtWqVTJs2DDZdddd5Q9/+EO1tNpctybTFmfcUcalO2yd4dnc9igc1q3b5WJrPkynK674o47H1vOG6folMgGrr6C945XU3alszoPJtMUZd5Rx6Q5bZ3g2tz0Kh3WbjnJxJR9pVG46AUSUjj1MFi5cmPnddDhkJ9av2XKpW7eu2iOzb9++cs8998gtt9wiK1asKDmcf//733LhhRfK7bffLiNHjpTjjz/e6ro1mbY4444yLt1h6wzP5rZH4bBu3S4XW/NhOl1xxR91PLaeN0zXL5EpXnvH/UBS2ZwHk2mLM+4o49Idts7wbG57FA7r1v1yQV5cyEcasVOTiCKHE8SJJ56Y+d10OGQn1q8d5YLN0a+44gq54IIL1HKyd955p1RUVJQczkcffaTSfeihh8qtt95qbd2abHdxxh1lXLrD1hkejyvuYt26XS625sN0uuKKP+p4bD1vmK5fIlNcaO8258Fk2uKMO+rzkq3h2dz2KBzWrfvlUl7OrrGkKqviHFsiCmjp0qXSqlWrau99++230rJlS2NpIiK9vvrqK7nhhhvkwQcfDDVrAQ8JMXOzY8eOWtNHRERE5AoMJJs/f776vX79+upnhw4dpF69eoZTlmy4hs3e971hw4ZSpw53ZDLtoosukgkTJmgNs3Xr1tKkSRPZd999pWfPnnLcccfJNttsI7a79tpr5eabb671c40bN5bFixfHkqcdd9xR3Q/W5pprrpGbbrop8vQQEYW1fv16WbBggfq9srJS/cRzKgzwjwqfn+vH7mgiIiIq+FDg/vvvl8svv1xGjBghzz77bKBw8HfPP/+8nH/++aqT9Gc/+5n2tBLZ8DB60aJFBT/Trl27SG+YiIjIvQ65fAPLsDc6XkRJheuirl27qt9XrlwpX375paxZsyZvZ97ee++tfkenpd/q1avV3+On1wmHlWOefPJJ9fvpp5+uOg11DbDE4IO7775b3nvvPXn//fczaUYa0RF4xBFHyJlnnqlWrSlWly5diioLvHfdddfJvffeK1EaN25c3g5NL59bb711ph6JiIjiwpmaRBT5SBPchON9wOeDjojVFQ7ZifWbjHJ58803ZejQofL2228HDgMdOr/5zW9UON6NcBrLN864o4xLd9g6w4u7fhFXbbMNBg8eXOPcSck/NtrClXKxNR+m0xVX/FHHY+t5w3T95pup2bZt27xLvWHZNFu+HzbjTM388EjQeyxoSyd5rtmbe+yxh3z44YdF5+Gtt96Sxx9/XB577LFqHYO4DgvTGYjvJwZ7vvzyy5lOVswIRaceOiJnz56t/p8HnZRjxoyRQw45JFD5erM3kX900noQ97JlyzL/xjEiuz2HrVt0Wu61117V8pNvVmaU7Uh32DrDs/H7Q3qwbt0tF/9MzXXr1qmfOMZypmay8AqOiCK3YcMGmThxonrhd9PhkJ1Yv8kol8MOO0x1bD7zzDOy++67B35gN2rUKHXzf/vttwfas9OF8o0z7ijj0h22zvBs+/6QPqxbt8vF1nyYTldc8Ucdj63nDdP1S2QK2rtNbf7GG2+s8R46DkvJA2ZIovMSy7R6sx8BnaV77rmnfPfddyWnCx2MePD9xRdfqK05MCsUnaeI54orrlAdfS+99JJ6eI2ZoYCBoLh/+uUvfylBeJ2HJ510kurI9KCjFqvg+DsYdNYt8rVq1Srp169f3jTpiqsYusPWGZ5t3x/Sh3Xrfrmgg5OSiZ2aRBQ5jNzBBTheYUbx6AqH7MT6TU65IB3YIxNLLU2ePFl22GGHQOEsX75cPQDYbbfd5JFHHpGNGzdKmso3zrijjEt32DrDs/H7Q3qwbt0uF1vzYTpdccUfdTy2njdM1y+RKbbNtsm1V2Rtq7vkywPCQgedv2MTMx47depUUscmZo9ixuTYsWPVjNFzzz23YPqfeOKJTMcmYLYjZj2GccYZZ1T7N+7Doqrbe+65R8466yxr2pHusHWGZ9v3h/Rh3bpfLq7kI424/CwRBcbp80QEP/74o9x1111q9iVG9Aa1zz77qDCOPvpoXlxSInH5WSIiCoPLz0aDy88mT/a9QNhlY9GBmf2cAvccmFlZG3SKYrYlZmcW6swsJs4g+cD+oZdccomcdtpp6n7Jz1s6UfexAHG+88476nXeeedV+398jExESeZffrayslL9xH7LXH42WXgFR0RERKFsueWWMmzYMFm0aJHaY8Z7CFeqf/3rX3LsscfKUUcdJbNmzdKeTiIiIiIiSh/MnvTPnPRmTz700EO1/i1maAI697B0LTo5i43TP0MUahv8VghWt8Hyt37jx48X3VAm2E8TD/mJiIhsxE5NIiIi0qJFixYybtw4NertV7/6VeDZln/961/lwAMPlL59+8rChQu1p5OIiIiIiNIl1/6Qt912W61/5+/ExNK1xxxzTNFx5toL9Nlnn5WgsmeKFtMpWyosa3v++edrD5eIiEgXdmoSUeSwgfS0adPUK8xm0rrCITuxft0pl5133lkefvhheffdd0u66c+GPGM0Mvaw+frrr8W18o0z7ijj0h22zvCS+P2h4rBu3S4XW/NhOl1xxR91PLaeN0zXL5EJWEoU7R2vpC4rWmweTjzxxBrvoZPSW/I5nzVr1tT4d21/42nevHmN9z799FMJ6rLLLquR/k8++URb3WLJ3LffflvOOecca9qR7rB1hufC94dyY92mo1xcyUcasVOTiGLZwwQX23jhd9PhkJ1Yv+6VC/Z8efHFF+WVV16RHXbYIfBFJpZpat++vVx//fU1HiokuXzjjDvKuHSHrTO8JH9/qDDWrdvlYms+TKcrrvijjsfW84bp+iUyBe096W0+TB6wb2QhrVu3rvGeyX3QsBeo3z333KOtXLCcLcLH0rk2tSPdYesMz4XvD+XGunW/XFzJRxqVm04AEbmvbt26mdla+N10OGQn1q+75dKtWzd5+umn5fXXX5cHH3ww0JKyP/zwg9x4442qg/Paa6+VgQMHBt6705byjTPuKOPSHbbO8Fz4/lBurFu3y8XWfJhOV1zxRx2PrecN0/WbT3l5udSrV890MshhNrX3qPPQuHHjGoMkFy1aVPBvfv/738tJJ52U+fc111xTdKff4sWLa7yHwZqlwrYeXh5xH4T9QD1PPPFE3r06S61bLGeL/AYR9XnJ1vBc+P5Qbqxb98vFpbykTVkV59gSUUBLly6VVq1aVXvv22+/NTpqkYjstn79ern//vvld7/7nXzzzTeBw2nbtq3cfPPNam+cOnW48ATZAefAfA+VPIMHD65x7iQiIoKKiorMspbe4K0OHTqwU1PDTIy1a9dWe69hw4a8hrQYOvGyr5/uvffe0OE2adKkRqfm2LFj5Yorrqh1WVbsrXnooYeWNIsRn8dyrn6lPoZFmrHs7E033ZR5b8cdd5Svvvoq8+9nnnkm5/K6pUD+MLBj9erV1To5zzvvvFDpJyKy7ZnUggUL1O+VlZXqZ8eOHaVBgwaRxcnn5/rxCo6IiIhig4dyeCiBvWQw83KrrbYKFA5GPZ9xxhlywAEHyMyZM7Wnk4iIiIiI3JJrK4tiZk6iIxOdhqUuy5rdoZm9dGxQ5557brV/33fffaHDxDK2Z511VuhwiIiIosZOTSKKHEbyLVu2TL3CjOrTFQ7ZifXrbrnkygM6M7GMLJZ7uuSSSwLPQJg7d6706NFDevbsqX7Xkba4xBl3lHHpDltneC58fyg31q3b5WJrPkynK674o47H1vOG6folMgFt3f9yOQ+YbZlL2BmOhWY+ZsPStTpg5qYflqPNzl+pdfvkk0+q+zLb2pHusHWG58L3h3Jj3aajXFzIQ1qxU1NE3n33XbUUHmaO9OrVS836aNGihVrm5bPPPqv17+fNm6f+ZsSIEUV9niiNU/uxLwNe+N10OGQn1q+75VIoD1iC46677lJLrZ122mmB45gxY4bsv//+cuaZZ+bcuyZI2qIWZ9xRxqU7bJ3hufD9odxYt26Xi635MJ2uuOKPOh5bzxum65c0+H6pyDsTRaafL/LoKSIPHqt+lj19odR/9yEpW7vMdAqthPae9DZfTB5eeOGFGu+dfvrpkaVpyJAhNeLCcrQ6YMZo165dq7338MMPB65bLDO7xx57qCUYbWxHusPWGZ4L3x/KjXXrfrkgH+zYTKbUdmqi83H48OGq8xIPQbHR9qRJk9QSdpjpsWLFCjV7ZOXKlbWGtfXWW6vXqFGjpF27duqh7Oeffx5LPoiSYosttlAvW8IhO7F+3S2X2vKA8ydGB8+ePVu6d+8eOJ4nnnhCdt99dzV6GfsW6EhblOKMO8q4dIetMzwXvj+UG+vW7XKxNR+m0xVX/FHHY+t5w3T9UkD/eVfkpaEij54kMvsBkW8+FFn9b5Efl23++c2HUv7uI9Jw2unS4K83SN1vPzCdYjJg8uTJNd7DyjFRzdL0Lz17yCGHyOOPP641jv79+1f795133hk4rNtuu02uuuoqDakiIkru/s2UHGVVKeyOxoxMdGBCdva9xoz38fucOXNkv/32KyrcVatWya233qouBvC3iOOCCy6IIAdEduBGx0QUFcy8HDp0qFoNIajGjRurEdK//e1vpVGjRlrTR5QLzoETJkyo9To0+9xJREQEFRUVavUKqF+/vvqJFaSCLtPvvE2bRP5xj8i8x/733oZ1IuvWiGxaL1K1SaSsjlTVqSeyRWORcl+H9X5nSdkhF4vUSe1Y/0Q9aMb107333huqk/Gwww6r9t6DDz5YY29KHbAMbKdOneSrr77K7KP50ksvBQ6vSZMmasDmTTfdVGs5vfnmmyXPBsUxB7M0cz0exgzO8847r9p7KXyMTEQOwezMBQsWqN8rKyvVT8xSb9CgQWRx8vm5fnXStswsZmais9Fb+xkXAN4LwqwJ3bRpUxk9erSa5XnhhReqUVMXXXSR5lwQERG5D/tkYtYmZl62adMmUBhr1qxRo6/bt28v9913nzNLpBARERGlHjo0X7/xfx2a677fPCtzzX9EKteIbKgQ2Vi5+Sf+jffx//E5ePexzX+PcMhp6LQ75phjqr03duzYSDo00Xnq79DEkrNhOjRrk7187j333FNyGHfffXeky/ASERHplppOzddee00tM4sOR8juxMSrc+fOasm73r17y4ABAwLHhc7NiRMnqgeoeLFjk4iIqHR16tRRN9h4EDF+/Hi1d0wQX3/9tRrdvddee8lTTz3F0cVERERESYcZmp/81Fn0w3ciPy7d3IkpZSL1txLZsqXIVttu/ol/4338f3wOnwf8PcIhZ2Gm4UEHHaQGO3oruWCG5hVXXBE6bNyjPPvsszJu3Dg1kBIzJDEbFB2amJ2JWZMYoBmliy++uNZ9Q2vz2GOP1QiHiIjIZuWSAli6DjM+vM5M72EmOjD79OmjfuaaBeItURsUOkabN28uffv2VR2qXIqW0mrDhg2Zi+vjjjtOysvLjYZDdmL9ulsuYfOAva0uvfRSNZoao6rx4ODHH38sOR1YYgQDlw488EAZM2aMHHHEEUbLN864o4xLd9g6w3Ph+0O5sW7dLhdb82E6XXHFH3U8tp43TNcvlbiHpjdDEx2UmImJTssGTUS2aCpSp271z2+xlUjD5iIVq0TWrf7p8yLSaJvN4exyuMgOxW075Bo8H9u4caP6vW7duoncX8zLw7Jly2T58uXqmv+VV15RnXVeZyago/HRRx8NPFDSD/cjV155Zc7/h6Vcu3Tpop4HRl2+6Eht3bp1ZmYo8ouOXNw3FRM3OmUxMaPUJWuzRZlP3WHrDM+F7w/lxrpNR7ng2g/5oORJxUxNdFz6v3zYXwszNl999VW1RGzQZe2KgYen2GwbHZyff/55ZPEQ2WzTpk3y3nvvqRd+Nx0O2Yn162656MoD9pO58cYb5dNPP5VBgwYFvvj85z//KUceeaR6YPmvf/3LWPnGWbdRxqU7bJ3hufD9odxYt26Xi635MJ2uuOKPOh5bzxum65dK8N6Tm39iKVmvQ7NRy80dl9kdmh68v2XzzR2Z+Dz+zluK9r0pkmZo77a3eexZ7t8+yv/C6i7Yd3a77bZTHYonnXSS+jw6+NDhhxVbsJ8ZloHV0aEJmOnpX/kNL8TxzDPPyE477SQ333yzSgtmbmJJ2ijLN3sZ3cmTJxddt1hdTtcyvFG2I91h6wwvCd8fCoZ16365uJKPNHJ+6OFtt90mixcvVr9jeVksQ4tRSHHCPpvTp0+XgQMHyssvvxxr3EQ2QMcDZkR7v5sOh+zE+nW3XHTnYfvtt1cPKn7729/K1Vdfrc6xQfz5z3+WF198UY3axmoKcZdvnHUbZVy6w9YZngvfH8qNdet2udiaD9Ppiiv+qOOx9bxhun6pSN8vFfnszc2/r1u1+SdmaNZvVNzfYynaDZWb/xYvzOL87P82z/hUHZ7pk4T2jg7C888/P+//91ZkQydnixYtZNddd5XddttNWydmMRDXiSeeqF6YAYnO1bffflsNpsQ9y0033RRJvJdddpnqRPUgzu+++06VQ6G6xWfwjBKzV3WI+rxka3hJ+P5QMKxb98vFpbykTVmV4xtLYbmHVatWqRmTU6aUNvoOo73mzp0r++0XfhkSPHDt16+fmiGKmSZELsBIxFatWlV779tvv5WWLVsaSxMRpc8777yjVmH4v//7v8BhYInbSy65RIYPH66uHYiCwDkQHe6FYLZA9rmTiIgIKioq1D59UL9+ffWzQ4cOahYa/eSdiSKzHxDZsE5kzX82z7psumP+GZro8Mp+Y9NGkVVfShn+T+MdRMq3EDngApEDB0SdeipS9pKGGISImZZJ4nVserp27areK7WjFc8Q0XFZqFMUy8eiM9NzzTXX1NqJiiV0n376aTWTNB8sZXveeedVe8/xx8hE5Lj169erZcqhshJ7cYt07NhRGjRoEFmcfH6un9PLz2JW5sqVK6Vt27Yld2jqhk5VnPj9y0AQERFReAcddJD89a9/VTMv99prr0BhrFu3Tu3XiWsGrLCwdu1a7ekkIiIiCrLfU75XKjsXvnxn8891P+2ViBmaBTo0c8LnvZmdXjhf/ENnKonUjE3MMPWg0xHvRQFba2V3RtbmgQceqPF3RERESeB0p+a0adPU6C78tAGWssE+nkRpg5vt1atXq1eYG29d4ZCdWL/ulkscecD5/thjj5V3331X3cTvuOOOgcLB6g7Dhg1TS1bhRh8PDF2o2yjj0h22zvBc+P5Qbqxbt8vF1nyYTldc8Ucdj63nDdP1W8z+Vdkv29IZi7UrN//ctH7zz/KGwcLx/s4Lp+KnpWxTJntfyCSyOQ9XXXVVtX+jY/Oiiy4qORx83zG7KN/rnHPOkcaNG2c+/9VXX6kZmPnKBTPCv/zyS237aUZZB7rD1hmezW2PwmHdpqNcXMhDWjndqYm9NLGPpo7lY3XA7I/ly5ebTgZR7HCRfccdd6gXfjcdDtmJ9etuucSZB+yJgJt6LCeCmZfNmjULFM6///1vtc/mvvvuK88991wkF7txlkuUcekOW2d4Lnx/KDfWrdvlYms+TKcrrvijjsfW84bp+qUibajY/LNq0+afdQI+1vL+zrvGW5/eVTq8jrEkszUP2Z2NgK0KsJ9l2M6E7NdZZ51V7fP33HNP3nK5++675bjjjpOk1IHusHWGZ2vbo/BYt+6XC/LBjs1kcr5TE7MjbbH11lurNBGlEfaoxcuWcMhOrF93yyXuPGA/hCuuuEKdd4cOHRp4f4SPPvpILRP185//vNo+NUkslyjj0h22zvBc+P5Qbqxbt8vF1nyYTldc8Ucdj63nDdP1S0Uo/+maruynetr0U+dmqby/8/ZurBdwxidRLXJtjzF+/Hjt8VxyySXV/v3kk0/m/exjjz0mF198sfY0EBERxaGsyuHuaNyMTJo0SS688MLAfz937lxtMz0HDRqk9tTcuHGjlvCITONGx0SUFFiC6YYbbpAHH3xQLd8U1EknnSS33nqr2kieKBvOgRh9X8jgwYNrnDuJiIigoqJCLQsJ9evXz6z4hJUocikvL09fJ+z080W++VDkh+9EKteI1N9KpFHh+8+cD71+WCplld+L1G8s0mgbkW33FOn9QFSppgBbS/gdffTR8tJLL0kSnXHGGTU6GLHX5ocffljU3zdp0kR1WF5//fV5P+MdC/bcc081KNODe5/sJWafffZZGTFiRFHxY1uP8847r9p7Dj9GJqIUwOxMrOwFlZWV6iee7wQdCF8MPj/Xz/mr3+bNm4stZs+erW5IiIiIKF6tW7eW+++/X/71r3/JCSecEDicZ555Ro227t+/v1qiloiIiIhitONBm39u8dOSnpU/iGwqceA4Po+/84ez08E6U0mOwCAD7IF5zDHHyLhx4wKF0a5duxrvYT/LKJx//vnV/o2JFdnuu+++Gp8jIiJKEqc7NdGBOGvWLLEFZn2yU5OIiMgcjF7G6OS//e1v0rVr10BhYKYnOkh33XVXNcp55cqV2tNJRERERDnseYpInXKR8i1E6mI2a5XIulWlhVGBz1eJ1N1iczgID+ES+WDfy4MOOkitwvHyyy/LlVdeqWZdBtmKKtuaNWskqj08/bB9hjf728sT8pL9OSIioiRxvlNz5syZYoPbbrtN/ezcubPppBDFbsOGDfLnP/9ZvfC76XDITqxfd8vFxjwcdthh8uabb8r06dPVLM4g1q5dKyNHjlSjr2+//XZZt26dteUSZVy6w9YZno1tj/Rg3bpdLrbmw3S64oo/6nhsPW+Yrl8q0lYtRXY5bPPvWzTd/LNi9f9mXtYGS86uW/3T3zfZ/HOXn29egjaFsJQo2jteSV1WNKo8YN/L7M7HQvtU5kvbihUrarzfuPFPM4Q122abbdRSvX533XVXplyQJ/x/fC4p7Uh32DrDc+H7Q7mxbtNRLq7kI42c7tTs1KmTmh353nvvmU6KeuiJPQH69etnOilEscOsJiy/jFeYvex0hUN2Yv26Wy625gHn5eOPP17tE4OfO+ywQ6Bwli9fLldccYXstttu8uijjxa9d3ac5RJlXLrD1hmerW2PwmPdul0utubDdLriij/qeGw9b5iuXyrBvqdv/rnFVpv3xMSsyx+Wiqxdnn8pWrz/4/LNe3Hi8/g7/L0KL93PadDek97mo8jDokWLtISD2ZHZmjb9qUM+AoMGDar278cff7zaHpnZ/z8J7Uh32DrDc+H7Q7mxbt0vF1fykUbl4jCcqDFDcujQoWp5BVMGDx6slqbDTI799tvPWDqITKlbt64cccQRmd9Nh0N2Yv26Wy425wHpOeqoo9Rr//33l9///vcyatQoWb36pxH8Jfj888/lV7/6lYwdO1ZGjx4tvXr1Uh2nNpRLlHHpDltneHG3vUaNGmXiK/QZcvu4YpIr5WJrPkynK674o47H1vOG6fqlEuywn0ins0TmPfa/GZaVazYvK4tZm/UbiZQ3FKlTB08sRTas/Wkm50+zMdCh6f0dwkF4KeZCe48iD7n2wtxjjz0C3SNkO/zww0sKA/cUhfLov+c48cQT1UxQb5Ypfj733HNqduaqVavU/49C1OclW8Nz4ftDubFu3S8Xl/KSNmVVjs+xxQPKd999V3Vs3nrrrSX9bZ06ddRMzzAdkdhza8CAAeoCAw84sQY/kSuWLl0qrVq1qvbet99+Ky1btjSWJiKisJYtW6auGdDBWVlZGTicX/ziF+rcf8ABB2hNHxEREbmpoqIis/9d/fr1M9vq5HvoVl5erp5bpBI6K1+/UeSTlzb/ex2WlV0lsrHmtVvmoRf24MSStT/N0Czb7RiRo67b3PlJVskeGIglU1966ae6jsmzzz4rJ510UubfXbt2Ve+VunTrjjvuKF999VW197ANxqGHHlp0WVxzzTVy0003FR3nRRddpPYC9Zdfs2bN1P6e9957b9HhYGYnVrXxc/wxMhE5bv369bJgwQL1u/e8p2PHjtKgQYPI4uTzc/2cv3IbPny4OuHioeK4ceNijRszNQYOHKguQHAjwg5NIiIi+7Vo0UJdM+BC9+yzzy4427KQv/zlL3LggQdK3759ZeHChdrTSURERJRa6IhEhyRmWgI6Kpv8TKTxDptnYpY3EKm7xeaf+Dfex//3lpzd7yx2aFJB3ozH1q1bq+eKb731Vskdmlh6NrtDE7M9i+3QDOqSSy6p9m+sXvfCCy/UeJ+IiCiJnL966927t5x66qnqAmTIkCFqdFL2Rt+6Yck6LDmH2aHeCKaJEydGGieRzfA9wKhjvMKM6tMVDtmJ9etuudich0Jp23nnneWRRx6RefPmyTHHHBM4jmnTpqmHFxdffLF88803RcWtW5Rx6Q5bZ3g2tz0Kh3XrdrnYmg/T6Yor/qjjsfW8Ybp+KQB0SHa9ROTkiSJtjxKpUy5SvsXmpWUbby/SZIfNP/FvvF+nXDbtcoSsO/YuqTrkYnZo/tTu/a8kijIPl112meqUPOOMMwL9/XXXXVfjvUmTJpW8Hyf2+i0FZh1lL5WLGaN4P2l1oDtsneG58P2h3Fi36SgXF/KQVqm4gsMSsN4m3K+++qpabmHEiBGB9ssq5LPPPlP7Z2JJh5kzZ6ovBmZ3YPlZ7NVFlOap/ZgtjRd+Nx0O2Yn162652JyHYtK27777yosvviivv/564KVkN2zYoJZ6wt48119/vRpgFWe5RBmX7rB1hmdz26NwWLdul4ut+TCdrrjijzoeW88bpuuXQsCemMeMFPnVsyIHXCCy7Z4iTVuLbNli889t95QN+50ja/s8KRVHXi8bW+1lOsVWQXu3qc17HXl+tT2/iyoPWPIVnYNPPvlkyau/YSlp/xKwgGVkS5ml6XWKYqZlrnIpJHvZ2PPPP1+CbMthQzvSHbbO8Gz7/pA+rFv3ywX5YMdmMqWiUxMdmq+99lqmk9Fbjhadj3g4iWVise9mEPg7dJpiZiYeVGLElfdlQFyYKZp9EUNUCnSQYxljtC+0Kbzwe48ePWTMmDGycuVK00kkIkoF7JH5zjvvyNSpU6V9+/aBwvjhhx/kxhtvVMdxdHKis5OIiIiINMCMzAMHiPR+QOSsp0TOe1H9rDrlfqnc7xypatjCdAop4OzGt99+O7PfbNzeeOMN1bGJLaWweksxnYv4DJ4H+p1++ulF74uJv8/eF7NTp05qT89iXXHFFQX/XYwHHnigxnvXXnttyeEQERHpVFaVou7ouXPnSpcuXTIdmx7/XlmYxYn9L/HCcnF9+vRRvwM6j5YvX65+Ll68WL38/J2Z+B2dTq+88kps+SO3oH2hMxOdmp07d1ZtFw/BFy1apN7ztz/MBjaxxHGxGx3j+7Bp0yb1e506dQLvT6crHLIT69fdcrE5D0HThhF9GNT0u9/9rtqSsqXCNQYebvTr10/q1q0rSawD3WHrDM/mtkfhsG7dLhdb82E6XXHFH3U8tp43TNcvYOlbr+Omfv36mWuFfNcI5eXlKq1UGOp17dq11d5r2LAhyy7H0ntxt3vMfsTzDW8m5vvvv19wyyjsb7nTTjtJkyZN1L8fffRRadGiReR5QCfj2WefrWZMYp/Ns846S+1PmWs5V+y9edppp1XbSxOTKS6//PKCaUOHJQauf/HFFzX24cyGTlY8v0Rcher2zDPPVLNMsRXXSy+9VDBMLLG7YsUKVRd47vnRRx/l/SzKYO+9987UA+5lzjnnnMz/132v4afjnKErPNPfH4oO69bdcsGznAULFqjf161bp/KAY3mDBg2MPz+n4qWqU9Pr2ERH5ZIlSzJfvFxF4HVM5vty5vsb7/9hJuhVV12lPf2UnnbarVs3dQM7efJk1amZDbOC0enpwWfnzJmjLmzjwoMyEaXd999/L7fffrvcdttt6veg9t9/f3XtgGM/ERERpRM7NaPBTk17ebMR0UlWCq/jEx1vUe0TmctDDz2krvu9Dj+vk3XnnXdWHYIffPBBtQ5JdCbiXqGYNGIG5M0331xUWXj5r+2RLjo9MbsUq83UlgbsuYm0B6kLLKtb7CxUIiJbOjUrKyvVT3ZqJk/qOjU96AxCZxFkd1wWUyS5Ojvxd+hQwlK3WBaCKAiMiGvTpk2mk7IQjGjEjGBTHZs8KBMR/e/Yhxv5++67L9SSsj179pRRo0bxOoKIiCiF2KkZDXZqkm7oLHz88cfV0rRffvllppPR6+Q86qij1MzHODtciYioduzUdENqOzVh3rx5cuutt8pTTz0VeMq0V3y40Rg6dKj0799fezopfR3u2K8Ns4mL6ZzE5zFr08RStMUelDdu3Kg6+wGzkIIusagrHLIT69fdcrE5D7rThiXCMVL5j3/8Y6hwsFQUOkkxyMX2OtAdts7wbG57FA7r1u1ysTUfptMVV/xRx2PrecN0/QI7NaPBTs3Cz7TQ9gHtLIlLCdqcB5NpizPuKOPSHbbO8GxuexQO69bdcvF3auLaANcCWNKbnZrJkuorOMyCwL6ZeACJpWLx4BBfzmJfTZs2VRt/I4xPP/2UHZqkZZYmOiiHDx9e9GxLLFfoh7/P3u/VNJzw/v73v6uXd/IzGQ7ZifXrbrnYnAfdacPex9i3Zvbs2aGWksXI7912201+85vfqD18bK4D3WHrDM/mtkfhsG7dLhdb82E6XXHFH3U8tp43TNcvkclOX28/2aSyOQ8m0xZn3FHGpTtsneHZ3PYoHNat++XC673kKjedABugMxMdQ3itWrVKLek5a9Ys1cG0fPly9dMbIYmOJjyw7NKlC5eGI+0wQxNGjhwpM2bMUDMu0e4KQZvs3r27aree6dOny5AhQ8QWGL1zyCGHZH43HQ7ZifXrbrnYnIeo0oY9MnEcxwsrObz77ruBRhCOHz9eHnjgARUGOjgbNWpkXR3oDltneDa3PQqHdet2udiaD9Ppiiv+qOOx9bxhun6JTHFhxqrNeTCZtjjjjjIu3WHrDM/mtkfhsG7dLxde7yVXqpefJbJN9lKy6LDEZvOl/h06OfEgPWqcPk9EVDuMYsRytFdffbV89tlngcPZbrvt5IYbbpALLrhALTdHREREbuHys9Hg8rNEREQE3FPTDbyCI7IIZgb7YZZwMUvJYvZwoXCIiMgcPDA744wz5OOPP5Y777xTWrRoESicr7/+WgYNGiR77rmnPP3005l9vckeGzZsUDcnhV74DBERERERERERlY7D/Iks0qNHD7V0rH+mZm3LzyYBHrx7663j4X7QjaR1hUN2Yv26Wy425yHOtG2xxRZy2WWXybnnnitjx46V22+/XX788ceSw8GowlNPPVUOOuggGTNmjPz85z83mk/dYesML+62h0FFEyZMKPiZwYMH1xilSW4dV0xypVxszYfpdMUVf9Tx2HreMF2/RCZkD5JLYru3OQ860oYwahsUh1nb2WHHWS5RxqU7bJ3h2dz2KBzWbTrKBflJeh7SijM1iSwyYMAA9QJ0Zk6bNq2ov1u0aFG1fzdv3lxsm9p/8803qxd+Nx0O2Yn162652JwHE2lr2rSp3HTTTfLRRx+pvTeDXkS/8847csQRR8jxxx8vH3zwgbF86g5bZ3g2tz0Kh3XrdrnYmg/T6Yor/qjjsfW8Ybp+iUxBe096m7c5D2HThofuxbyiiLsUUcalO2yd4dnc9igc1q375YJ8cAWsZGKnZkwwKr9Xr17y+uuvm06Kk7MbmzVrFlt8M2fOlD59+qgH0YgXD6Ox/CvSgRkzWDI2jIkTJ6oDKjoqsTdmMbKXqEVaiIjIbttvv73qkLz44ovl5JNPDhzOCy+8IPvss4+cd9558sUXX2hNIxERERERERERkS3KqtgdHQvMnFu1apXqsLrwwgtNJ8cJc+fOlf79+6ufsGLFCrVca1TQYYn6Qwci4kGH4wEHHKB+RwckOju9tOD/4bNxLB2LTtTsTl2kJ464i93oGIeZdevWZZZfDLMklI5wyE6sX3fLxeY8mExbdtyYeTlkyBD529/+FjhMhHPppZfKsGHDqs3ajzKfusPWGV7c9YtzIJefjYfNxxWTXCkXW/NhOl1xxR91PLaeN0zXL1RUVMj8+fPV7/Xr11c/cV9Xt27dvEtOYqlcKgzLCq9du7baew0bNmTZObKUoM150JE2tN9ilp/Nbs9cfjb68GxuexQO69bdcsHsTGzpA7juQx46duwoDRo0MP78nIrHPTVjFnYWH22elTh06NBqe09GHR9mPnqzIfHAefjw4Tk7UNGxOXDgQPUTszdHjx6tPh+lSZMmVft37969rduHEycIHScHXeGQnVi/7paLzXkwmbbsuA8++GB544035MUXX1SdkrUtKZsLLspvu+02mTx5sjpXXXLJJeqhXZT51B22zvBsbnsUDuvW7XKxNR+m0xVX/FHHY+t5w3T9EpmQxAfSScqDybTFGXeUcekOW2d4Nrc9Cod1m45ycS0/acJhaTHADE2vM3PZsmWmk5M46ExEByY6MrHkKzoL4+rQxMxLxOl1aGKPS3RU5psRihma/mVjkWZ0ckYJM0I9SBceZBMRUXIvqn/5y1/Ku+++Kw899JDsuOOOgcLBdQfOQbvuuqs88MADsnHjRu1pJSIiIiIiIiIiihNnasZg6tSpmd85U7M4WE41X1lhJiJE3bGJ+Lt165ZJBzoPvbhrM2PGDNX5is5QzKTE71HM2MSSuP79NNHpGuUSvEHhYbq3nOLhhx+ed/mkuMIhO7F+3S0Xm/NgMm2F4sbv55xzjvTr109+//vfy6233qqWWS/Vv//9b7ngggtk3LhxcuaZZ8ohhxwiP//5z7XmU3cZ6gzP5rZH4bBu3S4XW/NhOl1xxR91PLaeN0zXL5GppQSxvClg+dIkzlqxOQ8m0xZn3FHGpTtsneHZ3PYoHNZtOsoF135cij6ZWGsRWL16tXp99tlnaum3QYMGZb7ky5cvN528RPA6EtFB17lzZxkwYIDqsMMDXfzEXpZR69OnTyYdXhqCzqDEbBl/56POZXg9KBdvhqiNJwksqYhXmNlCusIhO7F+3S0Xm/NgMm3FxI1l8K688kq1CgCO+UGXxfvoo4/k6quvlnPPPVfefPNNsbkMdYZnc9ujcFi3bpeLrfkwna644o86HlvPG6brl8gUtPekt3mb82AybXHGHWVcusPWGZ7NbY/CYd26Xy6u5CONrJmp6ULvfjGb6Oru2ErLxsNxw56YeHnQOV0qdDCiMxRL2HqdpHPmzNGWRoTnKWUWqanvd5cuXTK/mw6H7MT6dbdcbM6DybSVEjdWMBg1apRcfPHFcsMNN6ilab0RkqX44osv5Mgjj5STTjpJRo4cKbvvvrvYVoY6w7O57VE4rFu3y8XWfJhOV1zxRx2PrecN0/VLZIoL7d3mPIRNG56V1hZGvuepcZZL1OclW8Ozue1ROKxb98vFpbykTVmV6d6jn7Rv397ZDj/v4gJFjWVIFy5caDpJiYdlV/2zFAGzOHUtvYp9NL3OSIQZZMm/XOlEpyY6OsPCPp1Y1tbr0Cx1FqkuS5culVatWlV779tvv5WWLVsaSQ8RUVp8+OGHMmLECHnuuedCXcBjaVp0ku6www5a05dWOAdOmDCh4GcGDx5c49xJREQEFRUVMn/+fPV7/fr11c+2bdvmXQq3vLycD+SKgIFga9eurfZew4YNWXZEREQps379elmwYIH6vbKyUv3s2LFj4FWxisHn5/pZcwWHjiN0/rn48uPys/ZDZ6bXoQlhlnTNnj3pX5I2KHRmeh2aWHLWVIcmERGZs+eee8qzzz4r//d//6f2yQz6gG/y5MlqYBmWpl21apX2dBIRERERERERETnXqYnRh/5Jo/g9qlfUceQLH7w9Gsle2R2PYfbvRLv28zojg5o+fbqapQkzZsyweslZIiKK3uGHHy5vvfWW/OlPfwq8lCxmLtx6663qnHXHHXfIunXrtKeTiIiIiIiIiIjImT01mzdvnvkdHYCYHYdlO/G+riVFAR1C2CsRYWKGW5gOq+wZmIsWLVJhY5YfZmgi/d6eHJQcU6dOrfbvsMvF4iGxf2lldEwG6YxEu8I+mmi7WMY2u8PUZpjOP3r0aPU7vhfeUkqmwiE7sX7dLReb82AybbrixjUH9sg87rjj5MEHH5Trr79e/vvf/wa6lrn88stl/PjxcvPNN8sZZ5xR1LJsustQZ3g2tz0Kh3XrdrnYmg/T6Yor/qjjsfW8Ybp+iUzA8zcsxQf16tXLuzejzWzOg8m0xRl3lHHpDltneDa3PQqHdZuOcsG1H/JByWNNpyb2mvSg42bKlCna4+jVq5fqdMQNysiRIyUqXucT9lNEB9bJJ58cWVykFzofs2fThu08RKeov1MzyAxL/H23bt1UWtChWVtHP/KgczCADljm0KZwyE6sX3fLxeY8mEybzrixr1b//v3lzDPPVB2To0aNktWrV5cczueffy5nn322jB07VoWB66fablZ0l6HO8GxuexQO69btcrE1H6bTFVf8Ucdj63nDdP0SEREREVFhZVX+9VINwp5OmEWJh2bo9DnqqKO0ho8HcrNmzVJ7EKJzKA7Iz/3338+OzQigwxid034rVqwI3ZGH5WG95V09Yb8iCM+/7Cw6JjGrt1jooGzTpo2atVxMhybiQjvH9yhqxW50jDJcs2aN+r1x48aBR/LoCofsxPp1t1xszoPJtEUd97Jly+SWW26Re+65R41ADOoXv/iFmrmSb3UL3fnQGV7c9Ytz4IQJEwp+ZvDgwTXOneTWccUkV8rF1nyYTldc8Ucdj63nDdP1CxUVFTJ//nz1uzdTFPePdevWzTugqZhVFdIOndVYbt+vYcOGLLsczztsOd66kgeTaYsz7ijj0h22zvBsbnsUDuvW3XLBTNMFCxao37H1DvLQsWNHadCggfHn55TAmZr+2XC6l9UcNGiQmqGJjqRddtlF4t6bEbPyMHtz3333jS1uCiaKjsDsTkj/rM1i7L///kV3aIKNS9PiBNGkSRNrwiE7sX7dLReb82AybVHH3aJFC7n99tvl0ksvleuuu04ee+yxQAN1/vKXv8iBBx4offv2VZ2k7du3jzQfOsOzue1ROKxbt8vF1nyYTldc8Ucdj63nDdP1S2RCEh9IJykPJtMWZ9xRxqU7bJ3h2dz2KBzWbTrKxbX8pEkdG/fU9P8e1muvvZaZuRZnh6a/YxOzTrEcLdkvu8NRxxKueKicDZ3cxXZoentoFpuW2bNnq78jIiICXP888sgjMm/ePDn66KND7TmNEYwXX3yxfPPNN1rTSERERERERERElJhOTcws69Spk3rphCVK0aF4yimniCnoUP3uu+9k3LhxxtJAwTo1dXSw5+qMLGa2ptcRjo75Yjs0sVQtOkxtm6m5ceNGeeutt9QLv5sOh+zE+nW3XGzOg8m0xRk3wv/+++/lmmuukVdffVW6dOkSKJwNGzbIvffeq/ZCv+GGG9QyfbrzoTM8m9sehcO6dbtcbM2H6XTFFX/U8dh63jBdv0QmYBUPtHe8LNmdyqk8mExbnHFHGZfusHWGZ3Pbo3BYt+koF1fykUbWLD/btGlTNRtNJ8xIwAt7WpqEDqlhw4bJrbfeKldccYXRtFDtnYJxqK1TE/twot0OGDBARo4cWVSaly9frpZZhqAPq6M8SXhpw55s+faEiSscshPr191ysTkPJtMWZ9z+uIYPHy7//Oc/1aCrESNGlLTPs+eHH36Q3/3ud6qDE2Fg/07s66UjHzrLxea2R+Gwbt0uF1vzYTpdccUfdTy6w+e9BlE4Xid+kvcYtTkPJtMWZ9xRxqU7bJ3h2dz2KBzWrfvlgry4kI80sqZTMwpTpkyRzp07G1l2NtuQIUNUx+af/vQnOfnkk00nh4rs0NSx/Gyu2Z54+JvPmDFj1JLJ4P0slY5064QThLenbJiTha5wyE6sX3fLxeY8mExbnHFnx4W9I7BHJq5JJk+erDoosVF9kA3vf/vb38p2220nZ555ZiRptSUssgvr1u1ysTUfptMVV/xRx6M7fN5rEIXjQnu3OQ8m0xZn3FGfl2wNz+a2R+Gwbt0vF5fykjZlVQ7PscVsNYywnDBhgumkKHh4iIeI6GylcNDxh6WF/VasWBGqMw+zJ7Gcnh86xcPOIMaMy+w9VXv37q1myBTz2VLpSHMpD7NbtWpV7T08FG/ZsmUs8RMRkR5YmhbL5I8dO1b9HhT2dB49erR069ZN0gjnwNquOwcPHlzj3ElERAQVFRUyf/589Xv9+vXVT2wtkm/WKFZJ4AO52m3atEnWrl1b7b2GDRuy7IiIiFJm/fr1smDBAvV7ZWWl+tmxY0dp0KBBZHHy+bl+Tl/BoZMKD9dsgQ5W7HdI6V56thAdHd627adJRET222qrreT666+XTz/9VH7961+rh6RBYFBN9+7d5eijj5Z3331XezqJiIiIiIiIiCi96rjeSZVr6U9T0NmEfQ/JTnHWTb4OVMzexOTpMK9cM0DjhJEnmJFcyuuGG25Q65hjhMyGDRuqhYf38PJPKs/3WYy2wfsYievB73gP/8+2zyL9eN9bj77Uz6JMvPKJ6rO5yr2Uz4apz7B173I7iaPuS/msybrnMUJvfTZr1kzuvvtuNUukX79+EtQrr7winTp1krPOOkuNgrSx7qNqJ7XhMYLHCF2f5XWEvs/yOsLsZ3mMqPnZUhbU8t8L1va+bZ+tLYxSPlsojNrKztby4WftT1tcn8XxqNDL+5u01T3bCT9re9r4WTuPEf7/H9c1JOnl9J6aWIoUszVtYsNsQIqXbftb2mrWrFnqIfjee+8tp5xySub98ePHy48//qiW60NZ3n777eokgRPEbrvtJqeddlrms/fcc4+sWrVKLrzwQvnZz36m3vvggw/UXrYYVHD22WdnPos95DD9/5xzzsnsu4sH75gtu+OOO8r555+f+exDDz0k//nPf+T000+XDh06qPeWLFkijz32mGy77bYyaNCgzGcff/xx+fzzz9USw3vuuad676uvvpIHH3xQDbK45JJLMp+dOnWqLFy4UE488UTZb7/9MssPTJw4URo3biyXX3555rPIw0cffSTHHHOMHHjggZmO+N///veyxRZbqD17PS+88IK89957arbUoYceqt5bs2aN3HHHHWqJpWuvvTbzWZT57Nmz5YgjjpAjjzxSvbdu3Tq1fCRcc801meWuXnvtNfn73/8uhxxyiPTs2VO9h4cvI0eOVL9jSWhvuYa//e1v8sYbb6hlwH/5y19m4kO4+BvswdekSRP13j/+8Q+ZOXOmqntvCQjkHXWNtGDWWIsWLTKzwF566SXZY489qi3VjE4Y5HHgwIFqbz94//335dlnn5Vdd91VzjjjjMxn77vvPlV25513nuy0007qPXTgYPnnnXfeWc4999zMZ//whz/IN998ozpmvOWpMZPtySeflB122EH69++f+eyjjz4qX375peoI2n333dV7X3zxhTz88MNqSYmLLroo89k//vGP6vyE/Qz32Wcf9d5///tfuf/++6Vp06bym9/8pkY7wcy5q666Si1FhraLJS633HJL9Z7nueeeU/nu1auXHHzwweo9fCfwPapXr56MGDEi89kXX3xR5s2bJ7/4xS/k5z//uXoP3zUsPwqYtedB/bzzzjty2GGHZZYVxUWZV/fDhw/PLJH217/+Vd5880056KCD1Gw9wEWd99nLLrssc1x866235C9/+Yvq/DrhhBMy8SENCN//2WKOEd5yHpghiO9BMccIfPb5559XAyzwPfLyEccxAm0T7RzfCeQ3ymOE950CpBHtpNAxon379qqdoh3dddddKj9BIL8IB6tVYNBN69atizpGoB5QJ0g36h5tEPucnXTSSZnPFnOMQNvzPgdxHCNqg/r30qDjGIF0ffLJJ3LcccdlVihJ2jECvM9eeeWV0qhRo6KOEf52gtVQojhGJO064t///rc88MADNco9adcRXjtBfHjfy0eh64ggx4hSryNwTBk1apR6eIH24K2QEtd1hHdM8x6gRHWMwPcY5Q9oy/iszmME0o8lz73Oz7DHCNT9xx9/rN7D8SDodYQN9xreeSfXg7d88FmkF8dD1JMH+cD3Bd9B73tYymf9D+G8+tH92VxpwPfev2JErs/ic/h8KZ/N5j1wLCZcr9MI76HsSv1svnKP6rNB6t4rC/x/m9tJrnJHenW1E911729/XvkGrftCkBb8nT9cf14hymMEPuv9jrTorHt//Xrhhz1GePA3YdpJdtpcPkYk5Vyi43tfSjvRdYxIWjvxysULI2nXEf7/538/qnsNXKOTXk7P1MSNBW5ebIGHU+zgIgoHJ4zsES/kVv16nQ9UHdt9tEp5eKgT2ntco/aCfL/wMP9Xv/qV2sva6zQpFW4ucCOADppbbrlFfvjhh1r/Bg+6dR0LeExxl852QnYqZRa06+cLD9p8HGmI+posezanLenlvQYRERERkd3KqkzflUWob9++8tRTT+UclWcCRiSvWLHCqo7WpMLDVYza9kPZhuk0xqiLHj16VHuvc+fOapRFGBgd7R+dARj5PmPGDEm6XBsdB4GR3Bj1n2t0kvfAwxs5g1kF+BxGoWOUTvboG2/EEcLxHoblGnFkw2fxXvaIo1I+6x8V6B/JpPOz2SOv8Crls4XqM/uz+Pfq1avVe5iNUkq4ucq9lM/a3E7w2WXLlqnPYaaGN3o66roP206yR09jpgrgmFFbHRVqJ2E+m6+d4FiGv/WWz46r7vH/cEzDZzEKEH8b1TECn/WWWUdc+H+l1j3ixOwizLz67LPPJKjtt99errvuOtVZiriy6xNpwYwpxIdjQb7Rq8XUPcJCvpE3LK2Lz0Z5jMBMWsxoKsQ/Eyyqc0nSjhHF1mdU7URH3Zv4bK5y945pgFmg/hkhttR9MZ9FuN999121c1+QdhKm7ms7nyFdtR2bdde9d0zDe7jv8R/TdB4jECZmJAKOnV4nn652gs/h2gbvI3xv1rWJa0jb7jWQHsz8xb8xi9obrO2fneDnn2kB/t/9j3r8szFs+mxtYZTy2UJh4LV27dpqYTVs2DDzGVvLJ67Pev/P2x7GtvTWFkauPMSVtmLbXzFpyxeud+woxDvW5HrEi/ey27rucshHZ7i58hH0GOEPK9ffF5M2/3eltrTZ8D1y+bNRxaernbj22bDHNNPXEbju8laJw2A2vNexY0e1YkxU9xpYkcNb5cODZwe4n6BgnF5+Fh1H6FDCsj8XXHCB0bRgiSl0muFBFtnJpv1X0yh7KQGP/4EIeFP6c8m1lABOJNlh2PJZ/wkuyGdx0ozzs7nqqJTPQm2f9ddvKeHmKvdSPmtzO8FnvQ4QU3Wvo51k5yHfZ0FnmyqmneRKW1x1X+iYpvsYUSiuYuv+zDPPVMtiYonWm266ST2ULhWWSMQyf3feeafceuutavlE7ybAS4P3IDds3SPcfPmO6hhRG+/hdqnh2nx+CHuMgCCf1dVObDvmF/vZXOWe75hma90XCjdXPuI+PxR7Pour7gsd03QfI2q7JgvTTvC5bbbZJmc+4r6GtPVeI9dD1Hzyfba2B7GufbZQGPk6SbI/b0M+THzWhXJwIW2lfO/zsaEciv37KNNQ2/vFpL2Y+AqFZ0Oe+dlwYehqJ659NuwxzYbP5vv/cd5rUDhOLz+L/UgAM/q8kZumYE1mfFGyZ+wRuQYjTbyRO8W+brjhBtPJJiKiIqEjCfuULVq0SK6++mo10yEI7PF26qmnSteuXdUem0RERERERERERKnt1MSSMd26dVPLkg4YMMBYOp5++mmZNGmSWiLoqKOOMpYOKt3KlSsjCTdte6ti6v0///lP9QqzHLSucMhOrF93y8XmPJhMW5xxRxEXrrNuvvlm1TmJ2Zb5lsarDfbb/PnPfy7HH3+8fPDBB1rTanPbo3BYt26Xi635MJ2uuOKPOh7d4fNegyg4DDL2lssrZjlRG9mcB5NpizPuKOPSHbbO8GxuexQO6zYd5eJKPtLI6eVnvRmSXbp0kWnTpqnlRe+9995Y4583b55apg2zNIcPHx5r3GRHR6O3h5kf9kVJE5wkXnrpJfX7fvvtF/jBt65wyE6sX3fLxeY8mExbnHFHGRf27dt3331lhx12kH//+9/yzDPPBArnhRdekBdffFHOPvtsdc2GTtOwabW57VE4rFu3y8XWfJhOV1zxRx2P7vB5r0EUjteJ718iP2lszoPJtMUZd5Rx6Q5bZ3g2tz0Kh3Xrfrl4+19S8jjfqdm5c2fp37+/TJ48WSZOnCiLFy+Wl19+OZa4EeegQYMynVhXXnllLPFSMHF2NBbaq8VFOEHssccemd9Nh0N2Yv26Wy4258Fk2uKMO8q4/GFjxubs2bNlyJAhgZaU3bRpkzz88MNqz4ljjjlGVq1aJS1btkxM/WJpXi++Qp8ht48rJrlSLrbmw3S64oo/6nh0h5+Ge4186dGxBx+Rbe3dtTyETRu+57WFke9YEGe5RH1esjU8m9sehcO6db9cXMpL2pRVpWCOLR6I7bLLLpl9NTEjb8yYMXLBBRdEEt9nn30mAwcOlJkzZ6opzLi4mDFjBpee1Qj1h71S/bDMcNjZls2aNau25CzCQ7i604oOdpNLIuuydOlSadWqVY09NcM8gCYiouTD9c+f//xnGTZsmHz44YeBw8F5eMSIEfLrX/868N6dRERESVFRUSHz589Xv9evX1/97NChgxrsQ8Fh0NTatWurvYfrCj7MJCIiSpf169fLggUL1O+VlZXqZ8eOHaVBgwaRxcnn5/ql4goOy5e99tprmTWSvT02MVtu3LhxqhMyLHSYYu/MXr16Sbt27ap1aI4aNYodmgmB5e5076m5bNmyGu9hSWQiIiJX4frnuOOOk/fee08efPBBad26daBwcB7GrE880EU43OOMiIiIiIiIiCi9UtGp6S1D++qrr2Y6GvETnZt4UIZOSHRw9uvXT8aOHas6J999913VUenN7gTv3+gEff311+X++++XwYMHywEHHKBm+PXp0yfTmQmIB+FfddVVBnNOpbYT3XJ1jKZtT00iIkon7Ed27rnnqpGQWLkg6IoKX331lZx//vlq707svZmChUaIiIiIiIiIiChte2r6de/eXXVs9u3bVy1JC/7Zm9OnT1evUvkfrKEj0+s0xZKjI0eO1JgDiho6qLPbADolwyxru3z58hodmmGXyU3i1P67775b/X7JJZcEXj5JVzhkJ9avu+Vicx5Mpi3OuKOMq5iwscQbBnldeOGFagWL8ePHy7p160qOC0vZHn/88XL44YfL6NGj5ZBDDgmdNkom1q3b5WJrPkynK674o45Hd/i81yAKDs+uNmzYoH4vLy9P5D6tNufBZNrijDvKuHSHrTM8m9sehWNL3b711ltyzz33yN/+9jc10BewChLuhzE568QTT0xlueiCaz/kg5InNTM1/R2bixcvlv322y8za9PfERnkBf4wsNwt9tBkh2Yy20c2tJcwsv8+jbM08b1Ys2aNeoWZXaMrHLIT69fdcrE5DybTFmfcUcZVSthY2QKdkQsXLpTzzjsv8F5WuKnr2rWrnHrqqfLJJ59oSRslC+vW7XKxNR+m0xVX/FHHozt83msQheN/tpVUNufBZNrijDvKuHSHrTM8m9seJbtur732WjnssMPURKzf/OY38swzz6gVJnfaaSd58skn5aSTTpIdd9xRdXymqVx0ciUfaVRWleLawzJomC2AmXg6RvoA9urEwzp0bFK0dYeZsH44yOuYAZndFiZOnKjqNSg8wPUvQRs2PJsUu9Hxpk2b1PuAzwd9iK0rHLIT69fdcrE5DybTFmfcUcYVJuwPPvhARowYIc8//3yoJW4vuOACuf7662WHHXbQljayG+vW7XKxNR+m0xVX/FHHozt8l+41KioqZP78+er3+vXrq5/YV5qzRsNB3a5du7bGKhK2HFtMyjVYP2lszoPJtMUZd5Rx6Q5bZ3g2tz0Kx3TdHnroofLFF1+oFSc7duyYs8Pz5pv/n73zAI+i3N74u+kBEhKqqHRQ8KJSxS5IE/96FQUL6rUixXavIIhgLwiKio1iQa8VQbFeFbCXi0qRKxZAuooghARCerL/53yTCZuQsmXKt7Pv73mGnSyz56s7s9+8c865p+LvuXPnqrQvXu8Xq7wzJT2OYEaPOuKII5CSkuL6/XMSPDEtalYnbprU9aWs2m2SO3PixIkUMz0gakpu1MAQtDK2IlSHg8wpETXtqKcO8KRMCCHECj7//HN1XV+6dGnYNuTm5I033qjC3PL3GCGEkGiEoqY9UNQkhBASLYhg+dxzz2HlypVo0qRJrccFCptffvmlEkNJ8KJmUVGRehXhmKJmdEFRMwA5WSxZsgTz5s3DihUraj22e/fuKlTpgAED0K9fP8fqSOwXNWXse/ToUWmsly9fHpYtEUdFJDUZOnQo5s+fD6/AkzIhhIRAXhaw5n1g6zdA/m6gOB9ITAVSM4GWvYFOpxv7MVp/+UkqIXXkIbHaQsrWRePGjTF58mSMHj0aycnJYdshhBBCnIaipj1Q1CSEEBINyG8A8RoM1vMyPT1dhc0X5HM//vijA7WMbihqegNmQg2gW7duapMn/E02btxY4cEpglnbtm1drCFxAhExZTOF7boE7tqQ3KqBjBw5ErFIaWkpfvjhB7V/5JFHqlCBbtohesLx9W6/6NwGy+pWm+CX0QrIzwa2LgVKi/eX7ffhh/zmALbjyD+eQvzyuUC7PkCXoUCzTlY1MfJ27vgFWL0A2PBppfpX2N69FT+s3w58/h6O/FtnxB81LKz6S5SMIUOG4PTTT1dPnM6aNQs7d+4M2c6uXbvwr3/9CzNmzMBdd92Fv/3tb+qmpW5zj3j3vOImXukXXdvhdr2cKt/ucqy2z7UGIYjooTIRfQX5vRSNoQR1boObdXOybDvLstq2lfZ0nnskeMS78euvv1bCk+kZ6dbYPvbYY0hLS0Pv3r2DOv7iiy/GzJkz1f5PP/2k8mva6a3ptTkvbYn2NsQqFDXrgCJm9JCVlWVZWFfxEgn0sJwzZ05YeTDlc1W9e2MRuUHw1ltvVTw5FMmNBivsED3h+Hq3X3RuQ611C8Yzce/2WgU//LESyBNhzgckpwGJ9YCSfHVsaVkc3irsa5SduBXxPj+wbrGx9bjM2Cz6gR3WGEgwj+XPGZtJSQFQkG201V8G+OJQGpeCt/aVt2Pdx4hfvySi+suiIiEhQV135WnJBx98EHv27AnZzqZNm/CPf/wDzZs3V5E1nn76aa3mHvHuecVNvNIvurbD7Xo5Vb7d5Vhtn2sNQiJD5r4QzZ6rOrfBzbo5WbadZVlt20p7Os89UjciAoqgqcvYfvbZZ8rzUn6HHH/88ap+tXHRRRdViJrCBx98YHsIWi/N+ZKSEkbDiFIoapKoRLww7ETCxAZ6a0pOzVBFTQmRG4iXws6GilzoOnbsWLHvth2iJxxf7/aLzm2otm51eCYiewvwx/fAZ1MNkU9EzoSUAwU/+Vv24+INgXCfiJtlQFwC4ItHHBLQ0bfZKDt7MyA/psVWcrohJObtAk4aa4mwGfIYSH2/mA78/I7xd+EeQ9iVNlW17S802uGLQ1zRHiClQUT1D6zreeedp8LI3nvvvXjiiSdUqJhQ2b59O1588UX8/vvv6trcs2fPkG0Q/dD5vOImXukXXdvhdr2cKt/ucqy2z7UGIZHhhfleXRumT5+uIq+tX79epSuSh+Tk761bt6r/D+ehOavq5hROlm33dUlXe174/sQyssYURECsmr/SjbE1z0+CiK11eV4efvjhlf5etmwZ7MZLc95LbYk1mFOTRCXicSH5T6uKhiJGWsWGDRtUbk0z/LAIm+PHjw/qs/KZzMz9ecVC+Ww0wZjghBBPEaRnohIly0qB4n3GMbIv7yHgJ1VZibEpu+Y/PkPgExtJaUC9xoZNsVO4d//nUzKABhKWFoa3Y8/L4TjL5u7vh9ztRh8oTI/T+oZYa/aDA/WXlAC33XYbXnrpJRX2JlzOP/98Fd62Q4cOltSLEEIIsQrm1LQH5tSM3bx0NSHhHZ0SNQkh+mLmpAw2h6XdSOoUCSNrIvuS77E2AsOnBuPdGeswp6Y34C84ElWI56TkpawqaAojRoxQ4V5FjLSCdu3a4aOPPqr4e8KECViwYEFQgma/fv08L2gSQoinMD0TTSFPPBPFe1K2ghygOM8QOOU1PwvI3wWUFBlbWXF5SNkSw8sytbEh/sUlAn5ZYAQIcEoUTQRKxYuzAEhJB9JaAI3a7/+cCIgiJApSH/EcdRIp7wBB02fUT+op9ZV6J9V3tP6SEuCFF15QvwVOO+20sO3MmzdPLVquvfZatZAghBBCCCHeQn7riUghaQwk6oeImIQQ99m5cydatmyJ4cOHu10VFXJeBE1BB0FTkPvahx56qDpnTZ48uU5B03wQyqR169Y215AQPWD4WaIlIiAG5qM0vSVrQ44RwTOQwBybIlBKSNlQkOOXL1+u8muKWCqvtYmUcqPVPFagoEkIIVGCiG9mqNXaPBMlr2bun8b7fiOXhCFgJhj/H58ElBbt92KUPJkibPokL1ep8ZkyAPGJRnjWxAZAYopxfP0mQEIysHebUb7k7xSRdPXrwKmTnOsLCb1rCrumoCnCpfRDTThY/65du+L999/Hx68/h/G3TMLytX+ElTtDQg09//zzGDduHG688UZLbnaJSBqY06Q65MZa1ac0CSGEkNquWTVFKJAc1PQ2JKR6AkWK6667rlbPTZ2R77+Zw64mJAdwoLcWIToiHoQXXHABfvvtN2zebKRhcZNZs2ap10gemLUaCTUbGIK2Lr755ptKf0vEQUJiAYqaRFtEpDRFyUBxMhw7kSDCpuRgMIVWeZ0yZYrK82VeLOT/xXvUzMEpYXBF0BRvT2K49ps/FkaNGhV2+CSr7BA94fh6t190boOq2xOPArk7MKpJHBL3bQvwTGxk5LgUwc5EhD4RJEWwVPk25SZj+Y1GuZGg8mb6jX05RhDBM15C1sYZXp1K2IxDsS8Zs7JOVP8/qsm3SPSVGcJhSaHhCSo5LEUU3PAJcNwYoy52j0FelpFLVJDyBemHWgTNYn8cZu08xrAt7UiNrP511rU8TPCpO5/Dt/9sjwUrGuKWNzdg/c5ChEpubi7uuOMOPPnkkyq0rUR9MMP9Eb3R+bziJl7pF13b4Xa9nCrf7nKsts+1BiGRCWYinJsieTQKY8G0QbydxPtJxBTd6haMDQmhXBvycENV206OrZ1lWW3bSnte+P44gXgT3n333XjllVegEx988EHFNT9ax/app56q9Pell15qa3nR0i+h/PaTdpDog6NWDZs2bVLilHjb7dq1S72KMCYClYhr7du3V/unnnqq21X1LCIIyqZjnSQErYSuk+TLr732WoX4KnNCvDIlV1eoHqFeRy56WVlZFftu2yF6wvH1br/o3AZVt5xcAPXgl7yQtXkmSo5MlTuyPI+mz/wpVQb4JYdm+Q96yZOpcmyW7ffiFEQclfarY0vhjwey/OmGA2d5yk1FaoYR4lbC3comrHkf6Drc/jGQckSsrSjbV6cYKeaySutV7Eda/1rraoYJLveqjSvei/M65OHsaxviqWX5uOuTfdixr/abPjV5WEo42ocffhj33nuvirpAzxe90fm84iZe6Rdd2+F2vZwq3+5yrLbPtQYhkaHrfJfwlOLNFUx+uGDaILnzYq1/nSzb7uuSrvZ0/f64LWJKzkK5b/rcc885/jBBMEi9BInWc9ZZZ0Xl2Mq58euvv674W8LVNmnSxPZyde+XWG1LrEFRs5yPP/4Y8+fPV952oeRk7N+/v/LYu/LKK22tH9EH8cKUjQSPPPVy+eWXV+y7bYfoCcfXu/2icxsSivbg8iarlGCZsG9X7Z6JkltTvDBFtDQFS+WBWVohVCphUn4YiwBq5tAMfHhRhE0VPqoMCf5iXB6/EEjOQIKEqa04JsEoX4V/zQEapABblkYkagY9BlvLw9eY4XelHoGeqtXZ9pXh8kbLK/bhi6z+tda1hjDBSQlxuOaUg/CPE1Pw0Gc78cBH27GvKHRxUyIvSEgkyb8kDzLxATZ90fm84iZe6Rdd2+F2vZwq3+5yrLbPtQYhkaHrfA8lPGUwbYgkAli09q+TZdt9XdLVnq7fH7dCpwaKbCYS3rVt27Z1pulww8PxjDPOiNqxDUx3dvzxxytvWCfQvV9itS2xRsyP3BtvvKFCiZphQ0NV6EUElU1OJLfccgvGjh1rU00JiV7E26VVq1ba2CF6wvH1br/o3Ia4dR+iVcIuw6OwNL92z8SiPOPVDCurBEtfJaFS5c+sED7LjwlEjpf3/KWI85egVdyfQNkewNey8nGSw1NEQcnPKVTk+LR5DMyQsyq0bnk96rLtA1olieBrTf1rrOuOXwxRs5KgWTlMsEjRt5+ViVF9W+Pu9zZj9hfbUBK6tqmeKu7Xrx8GDRqkxM2jjz46dCMkZs8rbuKVftG1HW7Xy6ny7S7HavtcaxASPhI6UNfwgYEpiaK1DW7Wzcmy7SzLattW2tN57rmBPBAqHtGZmZkqyqGImSJ0Cm+99ZY2oubOnTsrxNdrrrkmKsd2+vTpFW2QfMHBeLRbge79EiqMzhS9JMRyiNkBAwZUeGWaYmaoX0zzc7t371bCpgik8rTHkCFDbKg1IYQQQiwlFM9E8cZUr2YOzbgDhEr1f6a3pvpJUc3vCvNYMxenaTcQ88e1KY6agqrdFOdXLrcOL80asaP+qxcYr8oDtJYwwQCapyXi8TPT8c/uRZi8JBfzfgg936bw4YcfYtGiRbjooovUk69t2rSJtBWEEEIIISQItm7d6pp3JSEkdJzyFIyUGTNmqFfJs2uKrtEW3nfcuHEVguaPP/7odpUIcZyYlKNFdJQnRkTQDBQzTUFT3qtrMzE/J5uZg0NCk44ZM8a19hGiG5LUXi6ystWV4N4JO0RPOL7e7Red21CWtxs/FjTFj0UHo0y8LGvzTDQFuuqo6pG5/0M1l+334ceydvixtLVRdqX/rOLpmWTkrLR9DBJTK5dreqXWZlvaIX1Y0HR/OyKof7V1zcsCNnxa2Zu0pjDB6phdSvhsl5mIW889Gq+O6IxT24b3LJ/8vnvxxRdx+OGH41//+pd6spe4j87nFTfxSr/o2g636+VU+XaXY7V9rjUICR/5nSPzXTadcovJ7629e8tz2UdpG9yum5Nl21mW1battKfz3CO1R20ULrvssqg8N/bu3bsi5KzTgqau/RIuXmlHLBJzoubo0aMxatSoShM2UKyUGN/du3dXwuTVV199wCbvy//LcVWFzkBxc/bs2TjmmGNcbSshulBSUoIFCxaoTfbdtkP0hOPr3X7RuQ0lRQVYkH0kFhT1QQnia/dMrFG4VP8ZshAq5S0oG4QFJf1RUlXULN5nvMYnGa8pGc6MgRl6Nz6xcj1qs+33GX2YfeT+dkRQ/2rruuZ9IySuhAmWrbYwwcUFQJ6RH7WkrAwLcDp+OeR8/Ocfmfjgono4unl4P3+LiorwyCOPqAfj7rvvPuzbV3ffkNg8r7iJV/pF13a4XS+nyre7HKvtc61BSGTIfNdtzpueVNHcBh3q5mTZdpZltW0r7ek890j1Xo4//fST2h8+fHhUja0Imt26dVMPfFx44YWOhZzVvV8iwSvtiEUSYk3QnDNnTsXfIj72799fhaGVVzkxhMrGjRtVTs3ly5fjtddeUzH/TY9PeU/ih3/wwQeWtoOQaEO+E61bt67Yd9sO0ROOr3f7Rec2+BJT0TpxN1BaCJ94VdbmmeiTn01FRrhZvylYmiKoGZK2PKem+SrHyH/5DhQ65a3W+B3wxRuHm5SVAIXlT6anNDReWx3rzBi07A1sW2WIkAU5Rj3qN6tV7BVzqg/N5kdY/2rrGkqY4IJyT86yUvhQhtbYqp7ji0tIxKDDUjCgfQJe+bEMkz/Kw6bs0D1x9uzZg0mTJuHxxx/HHXfcgSuuuAIJCTH1k1oLdD6vuIlX+kXXdrhdL6fKt7scq+17fa0h+Z5qus7oVE8Sveg4j557rjyPehS3waq6BZPDrqb/d7Jf7L4u6WpP57lHDuSxxx6rCNvauXPnqBrbU045Bb/99hsmT57saqhf3folErzUlljD548RH9uJEydi6tSpFX+Lx6W8F46QWRvyVOf999+PFStWVHwxhg0bhldffdXScgjRgb/++gvNmjWr9N6OHTvQtGlT1+pECCEh8fb1hoiX+6ch4iWnG3kaq0O8//J2GqJkaZEhS4onolzvxYtQ8mT64stFS/PHcZkhhsaX34yUn13qs/7yz8YB9ZoC9RrtL2ffTiN8akIKkNHa8Jq8aH7NnolWImFeXz7PaE/2ZsMrMrUxUL9J8DbsqP+8S4DsLUDOVqA4D2jQAkhJP/A4EVSzJF+6X9xwD+x/Ea3LilW/F/oTMfO7ItzzaS527Qv/CU0JSys51c8++2x1XZw5c2adD9lVvXYSQgghQkFBgfIiEZKSjGgHhx12GBITyyMokLDDy+Xnl+cNLyc1NVUJxkQ/5DsggoMZXtEqbyTJnff111+r/bS0NPWgGiHEGd566y21XjKx8rsdCunp6crT8cEHH8TYsWMRLZjnrzfffBNnnXWW29WJaoqLi7F27dqKaEyCCNwpKSm2lcn759YTE7/gVq5cWSFotmvXDuvXr1delVYLmqZYumzZMmXfDEs7f/58LFy40PKyCCGEEBIh4pkYGB5VPAxr8tZUXoe+8jC0spV7dopQaYaZjUsw/l+8CE1PQhE7zdxcyrY8TxZXbsdXWZyT8vOzjH1TBGzX1xlBUxBxtV2fyuVLfUzPy7qwq/7F5TciK/q5Ji/NnP0esiJoSv9WOrZcbPYDyQk+/POE+lh/zzGYNLglUhPD+1m8Zs0anHPOOWphLlE6CCGEEEJIZPfVCCHEakRENXP1XnrppYgmQfOHH37Al19+WaugOWbMGAwePNjRuhHiFjEhaoqnpHhNSohZudkk+TCd+BH266+/VuTeHDFihO1lEkIIiTHEq27lS4a3oXiyvTjUeJW/5f388jCcpGYOH2x4EopXoWyidtXUbyJYSthTtW8KliWGV2OFUOmrLGyqkLUifko+yCLDkzDw8yqMaoLxvng47t1mHC8iq3iNCl3OhaN0Kb+RJOUrsddv1EvqZ9a/KnbXPzG1cl7TmoTnorzK/y/HVwopY4YJLv/TF4eGqQm456y2+PXuXrj6pIMQH+av46VLl0bV4pgQQgghRDfkpryZ744QQqzkiSeeUK+SKq5JkxAiEbmIiJQiaH7zzTdK3KyNVatWoWfPno7VjRA38byo+dRTT2HDhg3KQ3PRokVo2LA8t5MDSJkiokqZu3fvxvTp0x0rmxDdXPtnzZqlNtl32w7RE45vCP2y4xfg43uMMKHfzjHCp0pozn1/Ga/yt7z/0jDjODletzZoQnFiGmZln4RZO3uhOKVx3Z6JKeUeh0qwlFCz5Z6Y4q1pCm7i0Vm/PIyICntaHpJWjgtIsFlc6sOs/NMxa0dXFO/abIRsNQXBBs2Nz/e4DGjWydkxkPKkXEHqYQqbUj8J7SrCZcEeoChXvRbv2YFZO7pj1t5TUeyPi7j+1dbV9PQUAVodtK/6D4vIrF4N8bIYiZhVMkxtxX4zNLBQPlYiKJdzcEYyZl90GFbf1hNDjnLu9yLx3nnFTbzSL7q2w+16OVW+3eVYbZ9rDULCRx7Cl/kum5vZqXbu3Klu3tcVxt/ONkjY2+HDh6Nly5YqRKU4R8irCAm33nqrqqNVdZOyRMD929/+Vqks+VvetyIsp5T3xhtvqH4NLEfaF06bpM5yX1PqJ/1k2jX764EHHqjUTmmDHCP/b5YrZbo9R620F44t6UcJxSp5Y+U1nHkVDGJXxkDKkc2NUK+68corr6jX888/P6yxlX6UOW/OZ/ku1DR+8r7Md/O7Z36/Q/kOyPds9erVSteoK/+nIOKn3aKmLtcMq/BKO2KR6rPNewgJOysnm8WLF7tSfkZGhgo/O3DgQNx3331RFa+bEKuQC8T27dsr9t22Q/SE4xtEv0gI02VzgeXP7T9Ach4WZJfndJT8gXGG8GOGU1232NhEXJLNhUToOo+tqpvSx9LgTxLPxH1Gf4pwV1IIpGZUEr6QmALUa2x4JVa4+wk+Q7Qs9QNx4vmZbHh+KnHUzLFZ3nbpg7Ji+H3x2F5miHWit6njRbwzPRw7n7lfXHR6DKRcySH68zuGQCmekuLBKvOtcI+xVdhOwHYYT7r6JR9pSv2I6l9tXSVMsIj1Mq8lxKz0a/1mB4ahrRAty/+Eb3/d/NWEr00qr2sAnQ6qhzeuao//rt6I8Yvy8OWmwpDbQGL7vOImXukXXdvhdr2cKt/ucqy2z7VG7eTl5VXk6YxVZDzNvFkmkrNU7hV5FbkBXq9evaCOdXO+iygg3kVmrsuqyPt1jZPkTI20DVKPF198EWeccQbuvvtudOzYUYkS8+bNU0KI1OOee+7B3Llzcdllof2+Dayb2LzkkkvwwQcfqL8vvPBCda9QvMbWrVunnDFE2JVNUhuI6BWOR5mIj3feeacKtSn5SS+//HLVpsByZsyYodokXmsvvPBCneWIp9i4ceOCaquIP1Km2Jb+3LVrl/qslPfxxx9XEtjM8ZU8pyamQ0pOjqSW2I+Ise+//36tuVgD7Zi2Au3IvpVzPlhbMiaPPPIIfvvttwP+T+p8ww03qC1SD0Ip59lnnz3A4znW88jKnDT7IdjvcODYihgp35nbb78dxx57rJrL8j2V84Z8NwJFRxkDme8yH6+44gp1vBnZR+aAPGzw448/1ilovvvuu+q7KelOZKsOOaeII5V8p+X7Lnm47cZLv5G81JZYw9Oi5saNG9XTDBMmTECbNm1cq4eEvT333HPVSev7779H165dXasLIW6QkJCAiy++uGLfbTtET2J+fCWU7Jr3ga3fGOKR5BBMTEVCSiYuPvZIoGUvJCx9FPjlXeN4EZVMkakq4lwgwk+gSCZCqIhUJ411XNjUeWwr6rb2QyRsLtvvYSjCpngmitemhIhNrA/ExRm5MVUYWfHOLCnXNU1hTURlX/nnyt+Sv00vTuXdKTZKlQdnQlwKLsYiJYIm1D/EEExNLBahQx4DKVfmigi4MndkDsmmRPQcoLSoQkRPiEvGxfHfKjE9wRQJI6h/tXWVMMHL55YfkGLUQ+Z//SqLftNb1rSFUlwc946xX1ZUOUywymdag0dmWRmOa5WEz0c1xHtb6uPmt3/Dj79VvqlC3EXn84qbeKVfdG2H2/Vyqny7y7HaPtcatSM3+hmOLvZYtmwZevToEdSxbs53uW8nHkwifgkiugQKnCJA1BVyMdI2iPeUOCTI/cOqgpLkr5N+NMU8EeqEUIRNs25vv/02zj77bLUvYseCBQsqCSHSTrF7zTXXKA9H6QeJAFdVMKkNEThOOeUUJWhJ37355ps488wzlXBoiodmOaZwIqJt06ZN6xRse/furY4RgXLJkiUVwqyJ2Je2PvTQQ0pQlfx/5tjJGJtIu0SsNXMDytjLuG/ZsqVC8DPzHppIW8QzrrY5LW049NBDDxANTVvyf126dLF8ztdlS87BkqKstrDKUkcRyWSbPHmyEoLDEe2uv/76ivbKHJO50L59ezRu3FiNWywjkRwFeXAh1LE1H2qQ75M5b0Vclzkv/S2OTFu3bq0kRgYea343xYY5P0UkrWmc5SEL06vUPGcES7Dnikjw0m8kL7Ul1vD5PSxJ33zzzSr8gTyxEHgBdYMVK1aohYTUSZ7CIsQL/PXXX2jWrFml93bs2KF+TBJCgkRCw65eAGz4tDw3Yw2YAqaIlCIqieim8AWIbvGGYCahOZWHYPklvmo40J7GYpwEID+HvphueCbWJRqbxyuBsmS/15+MgYSbreQ1m2SIcMV5+8dEhMLUxgcKfuJh266vkYPSgpCz1s7R14ENn9Q+R+2uv4RSFq9jGRuVu9MHiGeomedUyN4KlOSVj0GpESJY6iVitOQ1RbknrYyZiLTy+eoQ+1JO+XentNmR+Hd2D9x2223VPl1tItc/uRFVGy1atMCVV16J+PgqXqaEEEJinoKCggqvSvEkFMTrIjGxPPx6GEhKHIqasUcooqZuBHpmireiVWEzRWAzBVPTa03Ew8zMTLz88su1flaOM0W8cDzeTM9FU1wzBZCakDafeOKJFeUFI2zKuUPEFfmtKmWsXLkyKK8/EVdEbBEefPDBoCPMBbbJ/Ozpp5+uxDQR8ALrW9XbtibhTsTOqiKO2KvLq62mvhOkL1599dWgxHGrkTERMdj0mBWvPekj6RszPKyEPK8qEMuxn332WdBem6Y4bYrEIiw7IW6FQtWxtfK7XRfS1+Z9ykCxPZQHH44++ugDzhMitJtrQ7Er4yjenNV9X8VGoLBdU/tNL89wCObcQoyQs2vXrlX7ZhQHGa+UlICHzC2G98+tx9M5NUVIFC9JtwVNoXv37hU5NgkhhBAlikko2YUjDaFGRBgR0HL/BHK2AtmbjVf5W0TMfTsMkWXXr0BeeehTEcYatTeEmZR0I5SmvMrf8r78vxwnAmiuEU5Ned25nGNTS0zPRDNcqgheGa2NTYStxHqGOCmv8ndmG6DJYUBmO+NYCYXa8FCgwUFAw5bG5+RV5aRsCGS0AnpdBZx0E9C+H9CojZF3M7M10OJooPdI4KL5wKmT9BI0BamP1EvqJ/WU+kq9na5/l6HGq/S3medTxEcJBSzispBUHmbNFJpF5C8p3i9o+hL2/5+Zp7MqYsvMqVruyRnf9nh100YWP9OmTVNP84eL3MSRRbE8wevhZwsJIYQQQrRGxAPxDqxL0Kyag08EKjOUZTCIcBEo/kmYyLoQ0WX06NEV5V111VV1ijYinpkCi5QRrCAm4qLpKStiSrBtq86r88Ybb1S/dasKOiLSBWKWVxXxbDPbbSLehqEgfSdhfc1yReRxQ9AURGSW8ZM+EWFWBGOzb2R8pL3i8SdefYFhc0X8knvIwYh+0jYRNE3PXLGnm6DpNs8//3xInt9VhWkZj+oeXA0Ma3z11VerhwOq63/5flb11JX1YHWIl3O4mJ7IhMQCnvaxldARw4YNgy6IsClPShESa0iOi19//VXtd+jQAXESwtFFO0RPYmp8Q/AKLCvy4dfSBgAORgdsQRwk7KmIN2kHht4MRIQb+X/J7SjCjwibkhdRBCHxuhPxySF0HtsD6iZerK2O2++ZKDSo4Yk98QDsONDwTExrboQP3rLU6OuiPENgE/Gt1bFG+NQqIpqT/WJJWVL/rsONrTrbW/9Chw4NI25HjXUVsVREZxHmawoTHJ9ieMnKd0xSlwL41d9SidYd8BviTO/IevLdqGFc88UL2m/8v2wyzjJ+0gWpqbjpppuUp+X999+PRx99FIWFoefclJsaEgrs5JNPVvnfzTwrxBvnFTfxSr/o2g636+VU+XaXY7V9rjUICR95wMp8yCowRKnX2yBCk4gHNeVnrErVkJUiGgYTglbqdcEFF1QS84IVnO666y6Vs6+6kK1VkffNsKMiCkoZofSL5O0zPYZEgBWBNFRhTJw4xFNNbFVFvA4ll6h4uI4YMaJWYSmw3cI777yDxx9/PKh2mJgPIEqIXzvnfG22JISoiMzBeL/K+Mk9bDN0sCDjKR6ntXkWmt7HwXrzxiqSY1QwQ8yHMrYvvfSSEserG4PAMMkybvLdq+64qg8YyHjJPK8O3fOeeuGaUfW3X7S3IVbx9K/0rKwsFTtcF+QpG7lIERJrlJSUqCfHZJN9t+0QPYnq8ZV8mCtfAt6+Hph3CfDiUONV/pb3RbAMREQZU9AUD0oRHZWgKaFk04EGLYB08fprgZKkhngFf8crOAsl5UKN8jYryTdyZNaFCD2pjYx9sx4i1lWtU4yObbV1C8cz0RT8/v4ocN6/gYsXGK/yt7xfjVegk/1iZ1lW267Vnoianc809kXYFK9kJU76jYcD8nYY3pnKMxMoQTxe8Q3BKzgbJfHJxudEaJYQwNUhHpoikArmmElI3Srj16hRI+WxuW7dOnXjJ9yF0Oeff47jjjtO5V5fs2ZNWDZiFZ3PK27ilX7RtR1u18up8u0ux9Hrhov1IiRakPke7XM+nDZI6MhgvbaqihKbN28O6nMS2jUwdYF47AWLlBno4ShhSqtDPCsD85AGiiXB9ouUFeg9WZdnaHVIFBL5XSv5G6uzLwKyeB7WJQbLsRKa00T674svvghpfEVErU1AtnLOV2dLvPtEmBWP0WDD+Uq75cFHCSFaNfSxePpVRURTCprBe1oK1113XUiflXFduHBhtd7CVb1oZdyefPLJGm2Zoqds1eXvjSa8cM0w8Uo7YhFPe2pmZ5v5xgghbiI3ew8++OCKfbftED2JyvGtKx9m9hZg2ypg+VygXZ/94TNF1DQFTZUbU0LJNjKEEzM0Zjm+0lIcjB1KtDF6RYTN8pCVEoZWQs7W5HFmkpphCDUinJreoOJVWMXjLhbHtta61eCZ6EjZUVSW1bZrtWeGCRZRUr5H8hCAbDKvJUxzaREQV2zklfXFweePw8H40/iofEfTGhvidHUhZ8VDUwmafkP4FLuCeOLWcjNMnvyVUFsTJ05UNxTC4Y033lBP38sNpNtvv13l3STRe15xE6/0i67tcLteTpVvdzmOXjdcrBch0YIX5ns4bTjnnHNsv98oUT1Mwgl9KSEqTUGmat7FQOHURMTAQLEklH6RELtmGSKWiWgTSn2DCZMbLOPHj6+Uf1EipLz99tshiVhz5sxxZM5XZ+uxxx47YPyDRSL8iVOM6QUor+LJGSiiybrB9GZluNnaMcNLywMCofaTOEvVNJeWLl1a6e/qcsQGImXXJnpGE164ZnixLbGGz+/hZD4SMkbCz06ZMgU6ILHUN27cqJ7qJ8QLMNExiVnk0imCiilOCkpUyTbETQl/6YszwlaKOBIoOjZoBuzdDhTtNTw0RaoUbzPxqKyO7K1ASZ5hVzzQVF5AHxCXaAigIrzI5+tCyhJPNqmPeLiJt6F4ERISraiHCsrDBFd9qEAEf/Fkll+5Kt+mH4hLML6X8l1LrA9IWMGyMkMAVTk0y38Sm98R0zNUQhIHidxU+Pbbb2s95oknnlDXz5qoV68e/vWvf6kwtw0bGjk9CSGExAYFBQXqhryQlJSkXg877DAkJiaGbVNCQvbs2dOyOpLoYNmyZejRowei/SaziHTB5BUMBjNUp0ltYT2rIz09vUJoEq8sydVYG+JBGZhLUzwHgw13W5MNyZkYGIJWxK1A8U+8wMIVTsQbMPBeTjD1rSoIyG9cqzzQAvs7FNvDhw/HqlWrlNejW0jdJdRpuGMhc15CzwYiXr6mcGb2TeB7ulN1rlr53a4NeQg12DDANX3/qpNOxIM28EEDD8srnqO4uBhr165V+0VFRRWic0pKHc4CEcD759bj6fCz8mTLihUroAviXi51IoQQ4oF8mKagKUJh9mZjE0+x4jxD4JRX+dv8PzlORMlNXwL7dhghawXx0KxJ0FTllewvV9aMvnJPTiVwlofL9Jfv14aIOIJ4sgnKQ5SQKKa2MMEHdweadgIaNDWOy2hl5JQ1w9TmbgP2/G68yt9mDk15QMAUNCXMrYiaIWDFzcO8vDzce++9KoXCjBkzwsrZSQghxDtIvqeaNt5EJSR8JJ2AncybN6/S3+E8XCC5LauK1bWVccwxxyBcqgqGNXmGhmIjEm644YZKf8vv4mDD4F5xxRVwCxHqRHAMNdRpICK2i0AdyD333KMeepGws2JfPA+jRdB0cyzM8M+XXnppWN+/uXPnVvt/q1evrtgPDBNNCHEGT4ef7datm3oSQ5LsylMsbiLhA0TUHDBggKv1IIQQEiFV82FWiIO+AA+weEN0ND3AROQUT8n4JEOclHyWIkSKt2U1uRYrIV6fgSjbyv1sv9Ap4qmZN7MmxCst0F5RXljNJ0Q7agoTHOhRXV2Y2gqP6iQgpWFlj2oRM2VzMRzNrl278M9//hOPPPKIuokhOXnizO8xIYSQmEHEy5pyPiUkJNQZOk28D6oKIbGGiL+mN4aJeMJ6Oewcw1HWjd0eMlW90OSBtUjHUbwpS0v3P9AquSYDycysY21ZB+KBGpgDVLzrAj1Da0PC61qJiJryGzjQa64uEU+OEcEvVI88K5GwpNIXkX4HxctTcoOa4YeFoUOHVvx93333RVxXryMRcqoLyxwsMobVjaN8DwO/J9Xl3CSE2IunRU2JB//AAw+o2Otun+wnTJigfjCPHDnS1XoQ4pZr/wsvvKD2L7nkkrDDJ1llh+hJVIyvhLsMIR8mUtKB+s0MEVNy9RXlGscLImqKyFL1M1UoRiJeKDlDeZJdggVQvSJCjHxehNP4BKBoX92ipoTZND8rJNWDU+g8tm7Wzcmy7SzLatuW2fP5UHz0xXhh+T4VivaSBl8hUX75NqghrIyEi27X18ihKd6dmrBp0yYVvkoe1Js6dap6QM7LN2G9cF5xE6/0i67tcLteTpVvdzm6XjfcHl+7kLDm0RqG1EphOD8/v9J7qampfFioXPA1RfNgRHIvtcFKr8LqRI/A0KmB70eC5PIMFDUDhRUzXHUk/VLVIUQeiAhW1JQwn3IetWoeyfhICFzTY1TaWpfIKveA5UFAp+Z8dbYk5PeRRx4JK5BcjoFhaE1BU0S6YMcllhGvXWHEiBEhf7a2eWLatcJDOtrwwjUjEPOcRaIPT49a9+7d0bZtW3UDaOLEiZY/NRSKl+aSJUvUE1Ndu3Z1pQ6EuH3RM/NNRBIiySo7RE+iYnxXLzBeJVylKWjWlg9TENGyfhMgIRnYvUniv+4XNs0QsrXg9yViK4ycmX75nOldpkLOlguVKmdgHYjXqCBeaWbeQIfQeWzdrJuTZdtZltW2rbSnbP25y9i/4kVg4xJgy1Lj+yveyiLuy3eh1bHA4YPr9py2gHAXTd9//z0GDRqEfv36qd+2sX6DWufzipt4pV90bYfb9XKqfLvL0fW64fb4EuIWXpjvurWhuvzpgbkxwyUw3/qaNWts7xeJHBJK3aweh1GjRlUKgztr1qwaxTwJzSqinwiBdWFlPava2r17N1q3bm2JbQlDKyLtK6+8Uun98ePHW2Lfy4gAbj5YcNlloaUUqWueLFq0qNLfZ5whD6HHDrqdbyPBS22JNTwtagriGXnzzTerG0Dffvut4+Vv3LhRlS1PLlx99dWOl0+IDsgNXPGcNvfdtkP0RPvxlRyYGz419sXzMph8mIHIceJVqcJeloeNlVCYIkjG1dzehKRknF/8vpI0E0QEVb+5zFCyNYSorYqUIWFwBQmzKYiI4xA6j62bdXOybDvLstq2lfYq2UprUn2YWod57733MH36dLz00kthff6jjz5SOZmkXWbuzWrPV2veB7Z+Y5yvivONnKIi2rbsDXQ63REBN1bPK27ilX7RtR1u18up8u0uR9frhtvjS4hbeGG+69aGrKysA94TwS2ckKQ1haCurgyr+0XuaQaL3Pe0ehxEwAwMiSsCp3i7Vudl+9hjj6nchiIE1oWV9axqS1KgiYONVbz88svKMzDQ87c2cZfs7yNBvH3DpaZ5Ehj2WeannV7fOqLb+TYSvNSWWMPzIydPr8yePVu5/weGLXAqXNjAgQNVeAjx0pwyZYpjZROiExLWp1OnTtrYIXqi/fiKQFBabAiRsqmwsyGKAvHJhg2VD7Pc67JgD1Cv5tCxcanp6JS/wVAwy3zlny338DQjfZghZWsiX7xK/UbOQNkkzKZ4pTmEzmPrZt2cLNvOsqy2baU9HefeIYccghdffFHl+pFIIh9++GFYdubNm4fXX39dPcF+6623olmzZkaIbPEolwcw1LmmCtlbgG2rgOVzgXZ9gC5DtQq1G+1jqwNe6Rdd2+F2vZwq3+5ydL1uuD2+hLiBCFHRHj7QC23QtV9CzdFpR0hn8bILzK05Y8aManNryu/r22+/3dH54tTck9DoZ599dsXfcm9b8oeG64EYC5j3/2WtZOXYVs2nedJJJyGW8Nr5lmHoo5eYGDkRNcWdePHixSq+/ObNm20vU24yyZPz69evV1/2p556yvYyCSGE2Ih4PAkq7Gy552Ud+TAPQMTECgHSb4iakg+zNsSL0/QGNcsTUVOFySi3VYunp/LQlHyeginCSt7AKPfSIiTa6datm1psS4qCcEPJylP7jz/+uPrNedfIIch95Spg3eL9D2Dk/gnkbAWyNxuv8re8L/8vxy0cCSybW34+IYQQQgiJLkRg+Oqrr6Abhx9++AHvrV271tIyAvNnhuK9WRviZRhItRFBHOaGG26o9LeIeVWR98STUR4adBvJSyrOLVZSnSfg9ddfH3GOVq9izhFJQ2e1R2vVfJrizEQIcZ6YEDX79++Pm266SQmbv/76K9q1a4cxY8YoT0qr+fjjj1W+o/POO0+VJ4Lm0KFDcc4551heFiHRgoRLke+bbLLvth2iJ9qPrxly1vR+Sqwfug35jBI1y59sE1GzrBpvqgDK/MCm+PbYVHYwynwJgC9QSBVh1A8k1a8+5Oy+ncDebcZxkjcwOd34vy7nwkl0Hls367aNHU4AAQAASURBVOZk2XaWZbVtK+3pPPdMzBQJr776qvqNGg65ubm4fc6baH/rt3hyyQYU79pkCJkFOUBxniFkyqv8Lbl9d64FstYDuzcCi28FnjwWePt6YOVL+891mhMNY+sGXukXXdvhdr2cKt/ucnS9brg9voS4gdy3kvkuWzTmFhOBYfDgwdq1oToRSnItWknjxo0PeC9Q5ApnbHNyciISNe0YA2lnYAhR8ZKTfImBPPDAAyr3pNNzvjpbEnp21apVsJLqcmiKiCvCJjkQ07Ho4osvDttGTfOE+TSj+5pRFa+0IxaJCVFTmDp1KkaMGKH2ZbKK96ZcnEWAfPrpp8MWOOUppjfeeEOFD+vYsSMGDBignrg3Bc3u3bur8GCExDLiSfL888+rrbpcEE7bIXqi/fhKTrrA/JWhemlW5LP0lWua8o/fyLFZCyX+ODy/51g8X3YWSiBlBoT6EI9N+XxxgRHGtijXeBUhM2sDkL9rv6DZoLnxmR6XOR5uUuexdbNuTpZtZ1lW27bSns5zr2rYG8nj9vPPP6t8QE2bNg3Lzo69xbhmwW844qHfMX91IfxJaUCDFkD6oUCq3PiKM84ZJfnG+aIoz3gAQgTQ9R8D384BXhoGfHyPEcpWY6JlbJ3GK/2iazvcrpdT5dtdjq7XDbfHlxC3kPke7XNexzYcf/zxlf62w6vuuOOOq/S3OHJE0i+BeRtDFWzkPqhdY2Dez62aL1GQ38+Sr1TSMbgxX6raOuaYY1R9rEIE3K+//lrtT548udL/vfLKKwcIvLGOfM/M/rrooosislXdPAkUrMUTNNbyaep6vg0Xr7QjFvF8Ts1ARMiUUAwSGta84IoAKZuJPCFvbkJGRkbF/5nhAzZs2KDsyGtgSAFT2TdjS8vTOR999JFDrSNEX+Q7Yd6gjST2ulV2iJ5oP76JqcarGT62rDyvZSiIECp2CoukkeWiZrERItYMMVsFOaxpQq461Cf5MAv3GW+Kx6Zcd2S/aK+xVUWOlzCzpodm5zMNUdNhdB5bN+vmZNl2lmW1bSvtOT2+CQkJdQqSckxNJCUl4dprr8Wll16K6dOn48EHH8S+fXWEqK6GX3eV4rxXs9Hrv6WYOiQVfVsVlT/kUJ7bVzzE5Rzml9cS47wmD0NIKGt5+EJC08om5wvZNPve6n5ecROv9Iuu7XC7Xk6Vb3c5ul433B5fQtzCC/NdxzZIxDZTXBHk/uC4ceMszWE3ZMgQ/Pe//634e/ny5Qd8NliqhvE94ogjQhZs7BqHM888E4ceemhFLkNJ4SDildRPHgiUunbu3NmVela1ZQrB0p8nnHBCxPZlbWAKmpJLVCIEBs6rSy655ICwwbGM5FwVZL5E2v/VzZNAwdqK8Y1GdDzfhouX2hJr+Pwx6GM7bdo03HzzzRUTt2oXBDOhq+u2QHvDhg2jhybxPH/99ReaNWtW6b0dO3aE7WFCiNZIaMZtq4ycdBLCUYTCtBah25G8dpLjUoWR9RmenwnJQGojIDWj+vyYIjrkZwN5uwB/iRI4EV9+XIODynPkFRm2RJyITzKECRE1TTQWJwgh1bN9+3bcddddmDNnTkRPkZ7WMQn3D2yAo5vHlT+QUWacR4x/9nuQy3lJHrCo+jDESWN57iCEEAcoKChQXkfmgy6CPHAdHx9f44My4u1P6g4vl59fHnWlnNTUVPadpgTekxOx6scff6zxWHkI7M477wxK1BEBIlAMCvV2qORKND0ZRTDZunVrrceL6CbfX/Mz4tUVifgkYXbFeeLJJ5+sVEbg/Zdg6lVbXwaKrvJwXV05KgPHSjxT7cxvKp6Y99xzT8Xfpsgn43L77bdrkU/T5G9/+xtOOeWUSmMVDsOHD1femIHjWnVeCRKe9/3334fOiEfp2Wefbft8admypRK/zflhZxuC+Y4Q/SguLq7IcVxUZEROk4ciUlIC7p9ZDO+fW09M/oKTWOTLli1DmzZtKsLEBm7yXl2bUNPnxCOUgiYhhHiMlr2NVwnlKoh3ZajemiJOShhbES7Fa1OEyeQGhrAgXlQSMla8pWoKJStrxnpNgEbtDcGhfjNDvJTQsg1bAhmtjVf5WwTN+ESg40BgyGyg5+UUJQiJMpo3b44nnnhCPREs+drD5YN1Rej2ZBb+sSAHm3aLOOozzkEVOXpN7+8yI5y1nHdytxv/9fM7wPLnrGkQIYQQQkgdiPgXLOvXr1ciho6IF+ENN9xQ8beIUOGGChUhS7wTq+a4lDICQ5KKmGM+GBEqzz77bMW+iGi6iTWBfWl65D33nPEbVbe6XnHFFZg5c2ZEIYelbSJoCq+++mqlMX/00UcrHStzI5Twu15F5r7pzVt1vljBhx9+WOnv008/3fIyCCHBEZOipiC5LuXHj8RhlyedahMra9qEQKFTxFJJ/F011jshhBAPcPhgQyQUsVB5QIoQuTs0G+JtKZ9LamB4ZoqQICKkeHyaNgv3ALnbgD2/G6/yt7wv/y/HiWCZmAIcczVw9WdA75FAi6OBzNZA/abGq/wt7180Hzh1kuM5NAkh1iJ52+WBuW+//RZ9+/YNy4b8zH3hf8U4/PG9uHFRIXYVyoMViYZ3t89f/rBFkvG3eH7n7gB2/Azs3gh8fDfw2YOhn/MIIYQQQkIkUKSsKzehpIRq1aoVdEU8xUQgNLnlllvCsnPbbbcpsbc68a5qGeF4p5l5KU0ef/xx6IaIeeKRGCgSX3/99SHl/XQKGScZLxm3cBDx+/LLL6/wBqwa5vSyyy7D6NGjK70nXqymyBurSChi0wvUjlyXn332WcW+jG8oIY8JIdYSs6KmydVXX60Sab/22msYOnQoGjZsGJSnprmJODp16lQlZt5///3q84SQA137X3jhBbXJvtt2iJ5oP771GgHt+hj7EppRkDCy4rEZDHKcHG9+XsTJNicaQoJ4XYqXpWziCZpYzxAxE+uhOLkxXvANwwtlZ6E4qdxLVMLISjjIeplA1+HA3x8Fzvs3cPEC41X+lvfNerqMzmPrZt2cLNvOsqy2baU9nedeOPTq1UvlY5LwUke1aRyWjaJS4OGv89Fu+k5M+TwPecUSBhuGkFlWZISzVh6cZcbf4l1enAd8Nwd4aRjw8T3Ajl/gNl4bW6vwSr/o2g636+VU+XaXo+t1w+3xJcQN5L6WhLiXTZfsVJKLMpDaPA/fffdd9OvXL6g2bNmyJWi71REY7jNYpD6BYUFFOJQwr6EgITrF609CrNbEokWLKvbFu09EsVDGVu6HmohYdtZZZyFURGC2Yx4FtmPUqFEHjEmoHopWzvnabIk3pYxbqN65gSFOZSxq8kKV0LaBIq8gQuiYMWOgI3LfvLbvoxW8+OKL1Z5DrBpb5tPU85oRCV5pRyxSTeKu2EQu4OZFfOXKlSo8rXhyykV5w4YN6v2MjAw0atRIhXuQ+OXnnnuuy7UmJDqQC4T5PYrkYmGVHaInUTG+XYYC6xYbIqTc6C/INsI0lhTWnQ9TCZp+Q7Q0c9UNKH+KdvXrwIZPjP0GleP4+8visGGf8ZShv30/4OihUed5qfPYulk3J8u2syyrbVtpT+e5Fy4SLURuYAy87zS8vHgZJr+5HptVSNnQ2FPoxy2Lc/H4Uh/uOCUZl3dLREJ8+fOOEoZWvfqB0mLjb8klLOc9OQfK5nKeXi+OrRV4pV90bYfb9XKqfLvL0fW64fb4EuJmzlGhptytTiNhIwNzJ4rn4csvv1yt+COilog+5oMINbUhMCylidgM1quxqgec2BKxMRhh47DDDsPrr7+uvOukvpK3skOHDkEJh1JvyaUpv/1qC7EqHmNvvvlmhRh2ySWX4JtvvqkIV1vb2Ip9U6y58MILg84DWVWcFRvSJyeffDLsmqN///vflVeqOZaSczUcbzkr53xNtmS8JdKKjIU8LBPMeIsgKUKoKWjWNRYimAd+RpB98ShcsGCBNp6EEoa3qvgsYyjfK+knKzDPB1aGIw4c26r5P3v27IlYRbdrRqRt8UI7YhGfn7/WCSE2JzqWi8Tq1avVfpcuXRAXF56TuFV2iJ5Ezfgum7s/v5zknBNhU+EDktOAxPqA1F1+6BXvK/fkLL/UiqApHpqCiAGS59JEwjqueR/YstSwWZQHJNVDWXIGVscdoULKduneW99+idKxdbNuTpZtZ1lW27bSns5zL2JeHArs+wuFOzfhya+ycM9n+cjKCzHPbwCdmsRhSr9knHV4AnzST5WWCJJzUx6HTAXSDtr/YEbnMw2vcReETU+PbQR4pV90bYfb9XKqfLvL0fW64fb4CgUFBRXeY0lJSepVHqiu6YZbQkKCNt8PnZGxzc/Pr/Reamoq+65cwDdvUEt/mKmW3EYEkEBh88svv6wkIIpI0q1bN5x55pkq/3jVNsj/i5hkeoTVFMZWBDIJX5uenq68AE3hSQQMKX/Pnj3q81UF0eo+/9BDDx0gIgX279q1azFw4MAKW3WJVmYfiKAZ6O1ZG3L+CCxD8mT+4x//qHZs5Vhx7jD7RnJz1ibyimgkKbxC6ROhun6JZI5KSFdzbsydOzdkUczKOR+MLZm3X3/9tRrvu+6664CwqDJXzfygZp+G2i4ZG5nvVb2JJQzr0UcfXSFu25171JwjgswToba5YoZxlZDT4khkzhlJExesuG4yfPhw5aUcyvcl3HlX3TkpVtD1mhEK8hCMnI/N313SBnlAIiWlsoOBG/fPSfBQ1CSEhA1PyiQmkcvmF9OBn98x/paclyJISsjGmpBQshIKVgMhgBDiEeZdAmRvAXK2qvCwOfHNMO2zbDz80e/ILy73tAyD41vGY+qAejixTTJQVmp4aVacq3xAQlLtD2gQQggJG4qa9kBRMzqpKmyKKHTMMceoqGoiAMnDBzWJF/I9kpvUIpgEg4hBgaKe2JdQnqF8Xjwlg/HGC2yX2JeckCJEZmZmqvRYy5cvV+KM/J+EnA1HiAosQ0RGEX+l78wy3njjDSW0mcLX008/XafwGGqfmP1itfgjIqDcc5J6mMKZ7gR6U5qir0QG3Lp1ayUhUgQ58eoMJx+k9IvkGJW5Ux1O9Jc5R8zywkH6Q767P/74Y0ifM8W1YL+HoWKKpkI0zT1Su6hZVFSkXuX8R1EzuqCoSQgJG56UScwil07x1jQ9NgURNSU8o+SlUyJAHBAvN/8bGqKmicshGwkhHuHt64Ftq4DcP41zjzw0kdYCf2QX4o7XV+OZZftQFsGv/L93SsaU/qk4oonfOJ/FGTfXjXOXv7KwOWR21IXFJoQQHaGoaQ8UNaMX+T489thjKpymKQCJKCRebMGGjtUVEYAkPKl4iOfk5FS0TQSvESNGWBKWs7YyTj31VCXU6BKiNBTEs0+E2lC9+dxEREfx9qs6l82xkLDL4YiZ1ZUjnp8ff/wxfvjhhwrRNByhMFoIFNztEhvFe/uCCy5Q3qRz5syJSS9Nr0BR0xtQ1CSEOBJ+dtu2bWq/RYsWEYWEssIO0ZOoHN8dv+zPhyl552oiPhFo1xfocm7IN/6jsl+iqA1u1s3Jsu0sy2rbVtrTee5FzMqXgG/nGA9UZG82vCgbtQfi4oGs9fhlewFu+XAPFv5Sy7mpDuJ8wGVdE3Fnn3o4tHGKkTe4fjMjl7AIm2ktDDG140Dg1ElwEk+PbQR4pV90bYfb9XKqfLvL0fW64fb4ChQ17YGiZs3ILUHztqB4OkVjKEGd2+Bm3Zws286yqtoWD9MTTzxRhc0NR5C1sq46z71YwgzxKzlhq8u/Gw4cW+/2C8PPegP+grOIXr16qXACq1atcrsqhGhHSUmJCmcim+y7bYfoSVSOrwiUciP/ovlA75Eq7yUyWwP1mxqv8re8L/8vx4XhyRSV/RJFbXCzbk6WbWdZVtu20p7Ocy9iDh9sPDAhnuDKG9xvhMIWfHHo1DQBb1zQAF9fWR8ntkoIqwjx9Hx2ZTE6PpaDmz/ci90SZVtyB6c2Mg4wy5MHO8x9h/D02EaAV/pF13a4XS+nyre7HF2vG26PLyFuIfM92ue8zm1ws25Olm1nWYG2JYeqCBCReJhaWVed514sIJ6pZijla665xlLbHFvv94tX2hGLhHeHwwNI/PjZs2djw4YNapOnHyUpeLhJk9u0aaOSIYvNHj16YOrUqejbt6/l9SYkGpGnXho2bFix77YdoidRPb6SL7PrcGOzmKjulyhog5t1c7JsO8uy2raV9nSeexFTrxHQrg+wbrFxDhLvyfwsICEZ8MlP/CIVKva4lgn4/IokvPurHzcv2oufdpSGXFRBCTD1izzMWVaAWwYn4dpTmiMFWYaXqJlPeM37tpwDY3JsI8Ar/aJrO9yul1Pl212OrtcNt8eXELfwwnzXuQ1u1s3Jsu2+Lgm7du1SeQ3nzp1riT2vz71Y4Pnnn1evEsrX6pCwHFvv94uX2hJrxFz4WXnqcsKECSohsxDYfJnI06ZNC1vYFCSuttjYuHEjRo4cGVXx3QkJFbrPE0IIIS6HwF440tjP3Q4UyO9bHxCfDJRImD2/kedXvZeEUj/w7+W5uO2TfPy2J/wlQMvMZNw1IAOXdPEjvl6mkVtTPNP//qh1bSOEkBiE4WftgeFnCfEG06dPx5133mlb3kQSffztb39ToYgnT54c9Xl2iTMwp6Y3iKlfcOeffz6uvvpqZGZm4rXXXlOCphn/WTb5W7wtI0Hs//rrr5gyZYqydcwxx/BiSwghhBBCrEdCWve4zNgXYTElwxAyRdAUMbNMvDJ98hSfyvsb7y/B5V0TsPbaBpjaPxkZYa7btu4uxOWvbUfXJ7Lw3ups4yFBJagSQgghhBASGl999RWee+45FUq0Nh555BFcfPHFjtWL6I08BCSCpjB8uHMRYwgh7hMz4WcHDhyIjz76COPHj8f999+v3svIyEBOTo4tLsdSztChQ1Uo2p49e1Y8AUAIIYQQQrxJVlYWXn311VqPueCCC9CoUXlOSisQUTNvF/DzO4awmZhq5LcsKwH8pUrjVP9U7AOpiT6MPyEZV3VPwv1fFuLRb4tQGEY6kdXbS3DGc9tx8lcFmDo8Hsda1ypCCCGEEFIeYU68jWtDvI6jNYzirbfeinvuuUftp6WlqRRhTZo0qVb4/O2333DXXXe5UEuiI4899ph6jTTHKiEk+ogJT82bb74ZS5YsqSRoCsOGDasIPyuvsknIWKuQMDEShlaeNJIbWITEKpJ4WW7yyhZJEmar7BA94fh6t190boObdXOybDvLstq2lfacHl8pQ0LL1LZZXg+5gXXS2P0em8npQEZroGFLI7emCq1n3uSS1/03vBql+jBtUAOsvaEJLuuWokyFw+frcnDcnZ+qB/rWrFmDWD+vuIlX+kXXdrhdL6fKt7scXa8bbo8vIW4g98FkvssWrdmpdG6DFXWTz5WWlta6VWfbyX6JpCzx0DTZu3dvRY7EqrYlMt7o0aOrFTydqqudtkjovPPOO+r1iiuusNw2xzY2+sUr7YhFPO+puXLlSpXjcsCAASokbCCzZ89WT9SLB6c8MS+C5rhx4ywtX7xBRVAVb00JfztkyBBL7RMSDchTheZNzrqeMHTCDtETjq93+0XnNrhZNyfLtrMsq21baU/nuWcpokb2vBxodRyw+nVgwydASkOgrNjw4hRdU/aVt2aVRZvfj1YNgbln18ONxybilo/y8e7a8G7mv/7663jzzTdx1VVX4fbbb0eLFi1gFzEztjHaL7q2w+16OVW+3eXoet1we3wJcQtzvteUuzUa0LkNbtbNybLDLSs9Pb3S3x06dDjgGPlduXXrVsu8NK3sF53nnpcxPXeFSy+91JYyOLbe7xdpixfaEYt4XtScMGGCyqE5f/78av+/pvetpHv37jj33HNx3333UdQkMYlcIM4444yKfbftED3h+Hq3X3Rug5t1c7JsO8uy2raV9nSee7bl2Dx1EnDcGGDN+8Dm/wK/fQfs+Q1ISAL8ZUBJocqvaVAelra0TDlwHtk8Du8MT8Nnm8swYXEevvnNPC54xFtAHhx84YUXcOONN+Kmm2464GaVFcTc2MZYv+jaDrfr5VT5dpej63XD7fElxC28MN91boObdXOy7HDLEi8708FEPDHPOuusSv//0EMPqfupX3zxBRo3buxqXe22RYLniSeeUK/HH398xN67NcGx9X6/JCR4XhrzLD6/h31sJfRr+/btlbBZ1UvTaSQmfMeOHdVr69atXa0LIVYhYfSaNWtW6b0dO3agadOmrtWJEEIIcQu5Bs6cObPWY+RmTdVrp63IT/3lzxmbUFYK7Fpn5NyUfRE2fXHGFhdvvJaHFlq4PgkT/7MLa3fkh1283GSYPHkyRo0aheTkZKtaRQghnqSgoAA///yz2k9KSqpIa1PTDUS5GSe59Ejdnhj5+ZWvZampqew7EjXzt66Q2NF+Lhg+fDjeffdd3HDDDTjttNPUe0uXLsUbb7yBH374QT0sV1XsJLGNPDQp4Yrnzp2Lyy4rT8NBSBAUFxdj7dq1ar+oqEi9Sk7WlJQU28rk/XPrid4rXhAsWLBAJcq2Mk9muMhCpG3btpg1a5bbVSGEWE1eFrDyJeDt64F5lwAvDjVe5W95P3+32zUkhBASq5ihaYfMBjoOBBJTjNC08YnGZibS9JmCpk/l5fRltME5x7bD6tt7YNbwDjgo3bi5HiqSW/6f//ynWii+/PLLDOlICCGEEEIqIb8RRbj8+OOPccEFF+DEE0/Es88+i6OPPhp79uyhoEkq8dZbbylBU6CgSUhs4mkf28WLFysxsU2bNtABqcuKFSvcrgYhjiPeHvJUiiBPocjDBm7asYwdvwCrFwAbPg0I5RdA9hZg2ypg+VygXR+gy1AjNCCJjvHVBC/0i85tcLNuTpZtZ1lW27bSns5zz9XQtN89C/z3CcBfAhT7jHyb4rmZmA6kHQQk7PeoTIyPw8iTD8bFvRrjkUUbMPXjndhb6A8rgspFF12EBx54AFOnTsXAgQMjag7H1tv9oms73K6XU+XbXY6u1w23x5cQN5B5bwZwkzkfjfNe5za4WTcny7aiLBEuqxMvrW6HlfZ0nntexnQYuvDCC20rg2MbG/0ibYn2NsQqnvbUlFCvks9SF0TUlDoREouu/RKOTzbZd9tOxMgFfNlcYOFIYN1iQ9AsKQBy/wRytgLZm41X+Vvel/+X4+R4+Zx3o35HhDbjqxle6Bed2+Bm3Zws286yrLZtpT2d555rpGYCJ48F+t0KZLYFmnUGGjQ3cm6WFhjXsL3bgII9QFGu8bp3G+rv24xJJ8Rh/Y1NcMNJmUiMD2/x9/3332PQoEEYMGAAli9fHnYzOLbe7hdd2+F2vZwq3+5ydL1uuD2+hLiFhDatK7yp7ujcBjfr5mTZdpZltW0r7ek897yKeO8K11xzja3lcGy93y/ye8/DmRk9jac9NUVAHDZsGHQhIyODoiaJWerVq6eVnbCRi90X04Gf3zH+LtxjhJcV8bIqci+kIAdISDFuIienGznN8nYBJ43dH/KP6DO+muKFftG5DW7Wzcmy7SzLattW2tN57rlKj8uM65Fcz0TUTEzdfz2Ta5tsVUlIQdODMvHIRem4YVA+bv2sBC8tXhlW8UuWLEHPnj1ViLF77rkH7du3D9kGx9bb/aJrO9yul1Pl212OrtcNt8eXEDfwgpeKzm2wom7h2nCyX+wsy2rbVtrTee55la+++kqluGjSpImt5XBsvd8vXmpLrOHze1iOliTZkk9TnrTUgVGjRuGpp55CaWmp21UhxBJiMtGxeFqKMCnkbgcKssv/Q3KQpQGJ9YG4eKCsFCjeBxRKnP/y02xKhnHj2LyZLDnOCCGEeAa5Btb1u3P06NEHXDtdQ5YBck0zr2uCiJryQE5pEeAvM/JsxicZeTjlIR0TuY71uAwrv/8eN998MxYtWhR2NRITE9Xv5MmTJ+vTN4QQ4gIFBQX4+eef1X5SUlJFxKf4+Phqj09ISFD3PUjtSD7n/Pz8Su+lpqay7wghhJAYQ7wz165dq/aLiorUa+fOnZGSErDWtZiYvH9uM57+BadbuNdly5apOhFCohTJoXmAoOkDUhsDjdoDaS2AlHQgqb7xKn/L+/L/cpwcL58TxI7YI4QQQtxCnkyVB2yGzAY6DgTiEw3hUh7AadgSyGhtvKrwtCnG/8txcrx8zudDt27d8OGHH6pc9uGmfZCF5WOPPaa8Ne+66y7k5uZa3lRCCCGEEEIIIYREP54XNSW0lQ5s3LgRK1asoKhJSDSzeoHxKiH5TEFThMv6TQzvzOqQ9+X/5ThT2DRD+q1+3bm6E0IIITXRrBNw6iTgovlA75FAi6OBzNZA/abGq/wt78v/y3FyfBX69++P7777Dq+88krYv3dFzLz99tvRoUMH5rQjhBBCCCGEEEJIbIma8uS48Mwzz7hdFUydOlXFaQ73CXZCohlJIP3GG2+oLZJk0lbZCYu8LGDDp8a+5BwTUhsZIWeDQY6T4wM/v+GT/fvE3fHVGC/0i85tcLNuTpZtZ1lW27bSns5zT0sk/3PX4cDfHwXO+zdw8QLjVf6W9+X/a0HC+EmOTAmdKJ6X4YbT2b59O8aMGYMjjjgC8+fPR3XZMji21eOVftG1HW7Xy6ny7S5H1+uG2+NLiBvINVbmu2zRmp1K5za4WTcny7azLKttW2lP57lHIoNjGxv94pV2xCKeFjUlN49MzAkTJmDPnnLPKBdYuXIl5syZo/bPP/981+pBiJs5TH744Qe1yb7bdsJizftAabGRa0w2FXa29pu7B5CaYXzOtCH2xC5xf3w1xgv9onMb3Kybk2XbWZbVtq20p/Pc8zKSB+7aa6/F+vXrcdttt6F+/fph2fn1119x3nnnoXfv3vj00/IHi8rh2FaPV/pF13a4XS+nyre7HF2vG26PLyFuIfM92ue8zm1ws25Olm1nWVbbttKeznOPRAbH1vv94pV2xCIJ8DBt27ZV3prff/89rr76arz66quO1yEnJwfDhg1T+xKKq2vXro7XgRC3iY+Px6BBgyr23bYTFlu/MV5V2Nlyz8uaQs7WRFyC8TkVvjYHaJACbFlqeL8Qd8dXY7zQLzq3wc26OVm2nWVZbdtKezrPvVggLS0Nd955J0aPHo27775bPeQXjveThLXt27cvBg8ejPvvvx9HHXUUx7YGvNIvurbD7Xo5Vb7d5eh63XB7fAlxCy/Md53b4GbdnCzb7uuSrvZ0nnskMji23u8XL7Ul1vD5Pe5ju2DBAvWEt4R+FXHRSWFTBM2ePXuqp9Sl/NmzZ+Oqq65yrHxC7Oavv/5Cs2bNKr23Y8eOsMPNac28S4DsLUDOVqA4D2jQAkhJD91OwR4gdxuQWA9o2NLIVSah/QghhEQ9cg2UXJC1IQJf1WtnrLBu3TpMmjRJhZQNF/lNffHFFyuRtHXr1pbWjxBC3KagoECF8Da93s2Ho2u66ZaQkKBCf5O6PTHy8/MrvZeamsq+I4QQQmKM4uJirF27Vu0XFRWp186dOyMlJcW2MmPq/rlDeP4X3NChQ9GvXz8VhlZuoJx22mnYvHmz7eV+/PHHlQRNWYhQ0CQkiikuXwT7y0MThOqlaWIunE07RXlW1I4QQgjRno4dO+K1117DN998gz59+oRlQ37Tv/DCCzjssMMwduxY7Nq1y/J6EkIIIYQQQgghRE88L2oK4iFpsmjRIiUwTp8+3ZayJHenPIE/YMAAbNiwoeL9SJ5IJyTakRuQ2dnZaovEOdwqO2GRmGq8+spPm2Wl4dkx47WbdpLqWVE7T+Dq+GqMF/pF5za4WTcny7azLKttW2lP57kXyxxzzDHqAcD//Oc/OPLII8OyIU/VPvTQQyrdxH333Ye8PD4k5KU5r2s73K6XU+XbXY6u1w23x5cQN5C5HrhFIzq3wc26OVm2nWVZbdtKezrPPRIZHNvY6BcvtCFWiQlRU0RMETNloorXpLyOHz9ehXC54IILVM7NSJEbM+effz4yMzNVviDzyy3lSe4f5tIkse7aP2PGDLXJvtt2wiI103iNTyyvzL7w7JifizfCSSElw4raeQJXx1djvNAvOrfBzbo5WbadZVlt20p7Os+9WEd+I0uOzJUrV+Lf//43WrVqFZadvXv3qpC24gX69NNPh5Wz00t4Zc7r2g636+VU+XaXo+t1w+3xJcQtZL5H+5zXuQ1u1s3Jsu0sy2rbVtrTee6RyODYer9fpB0UNqOTmBA1hf79+6twV4HCphmStkePHkrgHDRoECZOnIg33nhDCZ2bNm1Sm3hfCvIqf8v/yTFybK9evdRnxTNT8ncGipmCiKc33XSTy60nxH0SExPVpoudkGnZu7IIWbg3dG/NshLjc8pOQ+O11bFW1jLqcW18NccL/aJzG9ysm5Nl21mW1battKfz3CNQv6MvueQSrFmzRkVSadSoUVh2/vjjD4wYMQJHHXUU3nrrrZhenHplzuvaDrfr5VT5dpej63XD7fElhBBCCCGE1I7PH2MrfhEezzvvvArRMbD55nuhULX7Au1OmDABU6ZMibjOhOhKTCU6zssCXj4PKC0GsjcDJQVAamOgfpPgbezbCeTvAhJSgIzWhtfnRfP3e4ESQgiJauQaOHPmzFqPkTQFVa+dZD8S9nHatGl45JFHkJ9fns86DI4//nhl54QTTrC0foQQYicFBQX4+eef1X5SkhHZRcJsJyQkVHu8vB8XFzPPqodNWVnZAdeU1NRU9h0hhBASY4h35tq1aytSmgidO3dGSkqKbWXG1P1zh4i5X3BDhw7Fr7/+qsLBmh6V5lY1LnQwm1DVRsOGDbF48WIKmoR4iXqNgHZ9jH1ThMzP2u95WRdynBwf+Pl2fSloEkIIIQFkZGSoHJnr1q3DVVddFfYN56+//honnngizjrrLPz000+W15MQQuygunNejD2HTgghhBBi64NOVeFDTtFHTI6Y5Nhcvny5ynUpAmR14mQom2CKnCKabty4Ef369XO5lYQQy+ky1HhNTi8PQ+sH9m4zPDAltGx1yPvy/3KcHC+fk88re+c6V3dCCCEkijjkkEPw1FNPYfXq1Tj77LPDtvP222/jyCOPVALpb7/9ZmkdCSHEagI9Ms37FKWlIaa8IIR4CjkXyE342jY+/EAIIcFRUmLcvw08b9YUEYPoS0yKmiaS7zIrKwuzZs1SIV2qemDWReDxV199NdavX6/ydopQSgipfMGQm4qymRcPN+2ETbNOQI/LjP0GzfcLmxJSNmuDIVwW7AGKco1X+Vvel/83BU35nCB2xB7RZ3w1xQv9onMb3Kybk2XbWZbVtq20p/PcI8EhoYAWLlyIr776KuxQsnKz75lnnkHHjh1x8803qxC3XsUrc17XdrhdL6fKt7scXa8bbo+v6SlQNS2OGRqNEDuQ+1ky32WLVmFM5zZYUbdAGzVt1dl2sl/sLMtq21ba03nukcjg2Hq3XwoLCyu1RX530VMz+uCIAUqQlJC0IkpOnToV/fv3rzPsrIig8jkJMys3SkxhlBByIPIdWblypdqqc/N32k5EiBjZ+UxjXwTKtBZGjkwRLQv3ALnbgD2/G6/yt7wv/y/HmYKmfN4UR4le46shXugXndvgZt2cLNvOsqy2baU9neceCT1H5hdffIG33npLCZ3h5qqT3/oStWX69Onqb6/hlTmvazvcrpdT5dtdjq7XDbfH1yQxMbGiPkJubq5rdSGxgentF83o3AY36+Zk2XaWZbVtK+3pPPdIZHBsvdkv5u8qiYQh7TB/d5Hogr61AYgoedNNN6nNJCcnBxs2bKjI8dOoUSN6YhISIvHx8ejbt2/Fvtt2IkKenD5pLFCvMbD8OSOUrGwlBUBBDlBaBPjLAF8cEJ8EpDQsFz3LETFTtipPYBNNxldDvNAvOrfBzbo5WbadZVlt20p7Os89EjryFO3f//53nH766Xjuuedwyy234K+//grZzu7duzFu3DjMmDEDd999Ny6++GLPzA+vzHld2+F2vZwq3+5ydL1uuD2+JnLfYceOHepmm9QjLy9P3XSjFwGxC53Os15sg5t1c7Jsu69LutrTee6RyODYeq9f5LfVvn371L78tpK2pKWluV0tEgY+f7T6ChNCXEduJDZr1qzSe7IAb9q0KWKCHb8Aq18HNnwClBbXfFx8ItCur5FDkyFnCSHEs8g1cObMmbUeM3r06AOunSQ85Eb/Y489hilTpqgHEcNFcm7ef//9GDx48AFhHwkhxGkk3OyPP/6oIkQlJSWp85Ksr0TsrIrkgKLYWTdy4zI/P7/Se6mpqew7EjXzt66Q2DwXEEJI3Wzfvh07d+5Uv7GKi437uJ06dVK/Cewk5u+f2wCveIQQEi4iUJ46CbhoPtB7JNDiaCCzNVC/qfEqf8v78v9yHAVNQgghxDLq1auHCRMmqKgq4nmZnJwclp0ffvgB//d//6c8tL755hvL60kIIaEgQqZsgilkyM2wvXv3ulwzQgghhJDoZNeuXUrQND02BQk9a7egSeyB4WcJIbYjT8CIN4V5AzJcLwir7FhOaibQdbixkbDRdnxdxgv9onMb3Kybk2XbWZbVtq20p/PcI5EROLaZmZl44IEHcN111+H222/H888/r/4/VD777DMce+yxGDp0KO69914cdthhiDa8Mud1bYfb9XKqfLvL0fW64fb4BiJemeJNUFhYqOohXlh//vmnugmXnp5OjyxiGVWvl7qcb73SBjfr5mTZdpZltW0r7ek890hkcGy90S/i6S6/pUTQNCP7mDlBpS1NmjRRr7q3g2gkaj744IMVP9avuuoqt6oRtbD/SDQhLv3mnJ04cWLFk8du2SF6wvH1br/o3AY36+Zk2XaWZbVtK+3pPPdIZFQ3tq1atcLcuXNx4403qvfee++9sGwvWLAACxcuxIgRI3DbbbehRYsWlQ/IywLWvA9s/QbI3w0U5wOJqcZDTi17A51ON/ZdwCtzXtd2uF0vp8q3uxxdrxtuj28gct6R/L9Sp4KCAqSkpChhUzw2xctARNcGDRoo7wKGnawbuWFpemWYiBcsb2JW7hvJLRaNfaJzG6yoW3Xztzqq2nayX+wsy2rbVtrTee6RyODYRme/iFgp9ZNrfG5urtrMMLOC/J9s0o5t27bhnXfecf03H4kyUXP8+PFq4lOUCw/2HyGEEEIIIdXnyHz33XeV56WEpw0npKwsdmfNmoV///vfGDt2rApvm17wB7B6AbDh0/25tMtKgIIcoCgP8JcAP74BLJoENGwJHHEW0OtK1wROQkj0IiKleA/89ttvyhtdhE0JsS0CprBv3z61EUIIIYSQ4MRO09NUHgxbtmyZ29UiEeDzhxObyQLMJwnlB7q4AJPQYP8RHWCiY0IIIYTojCx13njjDdxyyy1Yu3Zt2HaaZDTArQObY9TJLZCUEGcImft2ACWFUgigHlL2AXEJ4iqx/4P1mwFHDjM25tYmhIRxE+7XX3+tJGDKw81yP8C8J6CblwQhhBBCiFuYUpe8mqFmA2nevDkOPvhgR+vE++ceEzVNT0OKcqHD/iM6wJMyIYQQQqIBCTv07LPP4o477lB56cKlbeMk3HtqKs7v7EdcXLmQoFZTgUsqH+CLA+JF4IwDUjKABs2BHpcZGwUIQkgIyM04CZEmuaAkLxSJLF+qidt5UwkhhBDinI4i1325h92wYUPHy+f9c+uhqBmlsP+IDvCkTAghhJBoQrydHn74YUybNg179+4N2063g+IxdUAqBrRPMDw1FVWXVeXiZly8IWrWawx0PhM4aSyFTUJIWBQVFak1WHZ2tnpYw6XbOVEHRU1CCCEkdpDru+T8lDCzjRo1Qlpamqv5x3n/3HooakYp7D+iA8GelCVB85IlS9R+//79K3LBhIpVdoiecHy92y86t8HNujlZtp1lWW3bSns6zz0SGZGOrfyGuffee/Hkk08qYSBcBrRLwP39U9D9kCRDwBTKSgF/aYCwKS/xQOMOQEKK4a3Z83LYgVfmvK7tcLteTpVvdzm6XjfcHt9wvTil3lVDq5HK7N69Gz169Kj03vLly1U6n1hHcox99dVXav+EE05QN4GjDZ3b4GbdnCzbzrKstm2lPZ3nHokMjm109ovoJfL7rS4B0+nffBQ1rUf/X+mEkKhHFtnffPON2j/11FNdt0P0hOPr3X7RuQ1u1s3Jsu0sy2rbVtrTee4RuDq2soB85JFHcP311+PWW2/Fyy+/HFY9Fm8oweI5ubjwqBTc078+2jVKMDwzRWAoLTK8N/2iapYCOb8Zwuby54BWx9mSY9Mrc17XdrhdL6fKt7scXa8bbo9vOMhNu6SkJLeroT1ys1JC+FZ9LyUlBbGOeP/+97//Vft9+vSJyvmkcxvcrJuTZdtZltW2rbSn89wjkcGx9Xa/RONvPlIZipqEENuRJ3dOPPHEin237RA94fh6t190boObdXOybDvLstq2lfZ0nnsEWoxtu3bt8NJLL2HcuHG4+eabsWjRorDsvPK/Aiz4sQCjj0nF5D4N0LR+HOCX0LQlhqgpwXGK9gG7fjVEz1cuAA46EkjNBFr2BjqdbuxHiFfmvK7tcLteTpVvdzm6XjfcHl9C3MAL817nNnCtoZ9trjVIMHBsvd0vXmlHLON6+Flh6NChblQhqpk/f756lXApDD9L3ILu84QQQgjxEhKGaMKECVixYkXYNhok+TD+pHr413GpaBAvoW0DllsSojYh2QhL26gdEFf+jGl8ItCuD9BlqC0enIQQEstw3UoIIYQQt+DvEI+KmiQ8ZOgoahI34UmZEEIIIV5DwhG9Nv50THr+M2zYWRC2neYNfLj95GRc1T0RifEB6x7JrykkpgDJaUBKhpFr00RybsrGtRIhhFgC162EEEIIcQv+DvFY+FmX9FRCiAvf9eJi8VQAEhMTw36gwSo7RE84vt7tF53b4GbdnCzbzrKstm2lPZ3nHokMO8dWHr68oFdTnNO2J2Yv+gl3LdmNnXmhr1u25/ox5j8FeHhpEe7rl4xzOycY9fSXGoJlcQHgLwMKcgxRU8LPJqcbOTfzdgEnjQ1Z2PTKnNe1HW7Xy6ny7S5H1+uG2+NLiBt4Yd7r3AauNfSzzbUGCQaOrbf7xSvtiGVcEzWXL1/uVtGEEIeRC8WUKVPU/sSJE8NOJG2VHaInHF/v9ovObXCzbk6WbWdZVtu20p7Oc49Ehu1jW5yPpIQ4XHd8Gi49ohTTlxZj+ld52GesfUNiXVYZhs3PxzGHxGFq/xT0aZsExCUaoWeTGwCFe4GSAmDvNlUuGjQHfn4HqNcY6Hl5TM55Xdvhdr2cKt/ucnS9brg9voS4gRfmvc5t4FpDP9tca5Bg4Nh6u1+80o5YxjVRs1u3bm4VTQghhBBCCCE1k5hqvPrikJ7iw52n1sPoHom467N8zFlRhNKy0E1++3sZ+j6fh8EdinD/aek46uAkIK0FUL8ZkL8byM8CCrKNg0XYFI/NVscxxyYhhBBCCCGEEOJ2Tk1CSOzEBGdIKBIMHF/v9ovObWBIKP1sMyQU0WJs374e2LYKyP0TyN2hxE2oZVMZ1mbFYfLHeZi/ujBs81LdS7rWw11Du6B14/J8muKxKd6a8Btip4Si7TgQOHVSzM15Xdvhdr0YftZee26PL7EP5rLy9rzXuQ1ca+hnm2sNEgwcW2/3i9Pt4O8Q66GoSQgJG56UCSGEEOJJVr4EfDvHCAu7c50hNCphU/JhxgPxifj2t2KM/2AvPtsURkzacpISfLi2z8G45bRWaNwgEdi3E8jfZeTYzGitysFF8418m4QQQsKC61ZCCCGEuAV/h3go/CwhhBBCCCFeIicnB4sWLar1mIEDB6Jhw4aO1YmEyeGDgeVzjf2EZKAkf///+cuU1+Yxhybikysz8cG6Ikz4MBc/bC8JuZiiEj8eWvI7nvnqT9w8qCWu79Mc9ZBliKmyCWveB7oOt6plhJAogdcUQohQVFSEP/74o9ZjDj74YOaEI4QQEjNQ1CSE2E5paSk+/fRTtd+nTx/Ex8e7aofoCcfXu/2icxvcrJuTZdtZltW2rbTn9PgWFhbip59+qvWYU045xdY6xAq2j229RkC7PsC6xUD9pkDOFkPMhIQm8gNlpUB8ggpVNPiwZAzskISXVubi1o/zsSUn9EA4OfmlmPjmJjz+6R+4c0AGLu0CJBTkAA1SgC1LgxY1dT7fhoKu7XC7Xk6Vb3c5ul433B7fqvCaQpxAt3nvtTZYUbfs7Gw8//zztR4zevToA7yAuNaw357Oc49EBsfW2/3ilXbEMnFuV4AQ4n3kYvHll1+qTfbdtkP0hOPr3X7RuQ1u1s3Jsu0sy2rbVtrTee4R6D+2XYYarxL6NbG+IWZK5g6VWrPEEDbLiY/z4R9HJ2PNtWmYPjAZjVLDy8vye3YRrpq/A0c9vgtv/W+3yveCguyYm/O6tsPtejlVvt3l6HrdcHt8CXEDL8x7ndvAtYZ+trnWIMHAsfV2v3ilHbEMPTUJIbYTFxeH3r17V+y7bYfoCcfXu/2icxvcrJuTZdtZltW2rbSn89wj0H9sm3UCelwGLH8OSD8UyFoPoMQQNoXSIqAs3sixqRw4y5CSANx4XDKu6JaEqV8W4pFvilAQelRa/PxXKc7+9w6c8FUBpg6PwwnnBfc5r8x5Xdvhdr2cKt/ucnS9brg9voS4gRfmvc5t4FpDP9tca5Bg4Nh6u1+80o5YxudXj/8SQkjoMNExIYQQUvkaOHPmzJDDgxGNkaXSF9OBn98B8nYCuTsMD01/cE/0/r6nDHd8Wohnvy9GWQSrrrPOOgv33XcfjjjiiPCNEEKiCl5TrIPrVhLN8FxACCHRDX+HWA+laEIIIYQQQgipDp8POGms4bGZ2hio1xhISAISUgwPTeWiWTOHNEzAU0MaYvV1jXFW5+Swq/HWW2/hyCOPxFVXXYXff/89bDuEEEIIIYQQQkg0Q1GTEEIIIYQQQmoTNnteDpwzB+h6MVC/mfGeiJuJKUBCMhCXAPiqLq18QLz8Xzw6N0vAmyPa48txR+H4dulhVaOsrAzPPPMMOnTogIkTJyI7O/hcm4QQQgghhBBCiBdgTk1CiO0UFRVhypQpal9uwiUlJblqh+gJx9e7/aJzG9ysm5Nl21mW1battKfz3COR4crYSo7NfpOB468BvnsW+OlNIGcrUFYCJMQZombRPuO1tFhkSCNMbUqmsSWm4IQOwJc3HY13/peFmxduxM9/5oVcjYKCAtx///2YPXs2Jk2ahGuuuQYpKSmemvO6tsPtejlVvt3l6HrdcHt8CXEDL8x7ndvAtYZ+trnWIMHAsfV2v3ilHbEMRU1CCCGEEEIICZbUTODkscaWvxtY8z6wZSlQkA1s+x+QnwXEJwIlBUaI2qQGhkdnOT6fD38/ujFO79IIzy/9E7e9vRl/5BSFXI3du3dj3LhxePTRR3H33XfjoosusrihhBA3SU5OrjOPrhxDCCGEEEJILOHz+/1+tytBCPF2omM5zeTlGZ4I9erVUzfzwsEqO0RPOL7e7Red2+Bm3Zws286yrLZtpT2nx1eugTNnzqz1mNGjRx9w7SQeOq/s+AVYONLYz91uCJ0Shja1EZCaYYSprUJeQSEeXbQR93/8F3IKwl+aSc5NeeL4lFNOUf2hVb94ZHzdrpdT5dtdjq7XDbfHl7i/bo1FvDDvdW6DFXWT8PP5+fm1HpOamoq4uMph8LnWsN+eznOPRAbH1tv94nQ7+DvEeihqEkLChidlQgghZD8UNYli2Vxg+XNVhE3BBySnAYn1AbnxWFYGFO8DCvfK0hq78sow5asSPPZVNopKwl+i9enTB1OnTsUxxxxjTXsIISTK4bqVEEIIIW7B3yHWU/kxHkIIIYQQQggh4dPjMqDzmcZ+g+ZAWgsgQcLP+oHCPUDuNmDP78ar/C3vJ6SgcfND8OCFR2Ltnb3wj0E9wn5i+NNPP0Xv3r0xbNgwrFu3ztq2EUIIIYQQQgghLkJRkxBiO6Wlpfj888/VJvtu2yF6wvH1br/o3AY36+Zk2XaWZbVtK+3pPPcIvDu2IkaeNNYQN4XkdCCjtbGlZACJ9QyRU17lb/P/5DgArQeOwvPvf4fvv/8ep59+etjVWLBgATp37owxY8bgzz//RDSh6/i6XS+nyre7HF2vG26PLyFu4IV5r3MbuNbQzzbXGiQYOLbe7hevtCOWOTCpCyGEWIxcID755BO1f+yxxyI+Pt5VO0RPOL7e7Red2+Bm3Zws286yrLZtpT2d5x6JDO3HVoTNnpcDrY4DVr8ObDDqigbisVkN8YlAu75Al3OBZp3UW0cddRTee+895Xk5YcIEfPvtt2H1k4REfv755zF27FiMGzcO6emGeKozuo6v2/Vyqny7y9H1uuH2+BLiBl6Y9zq3gWsN/WxzrUGCgWPr7X7xSjtiGYqahBDbkYT13bp1q9h32w7RE46vd/tF5za4WTcny7azLKttW2lP57lHEBtjKwLlqZOA48YAa94Htiw1cmwW5QFJ5Z6arY4FDh8MpGbWmCNz6dKleP3113HLLbeEFVI2Ly8Pd999N2bNmoVbb70VI0eORFJSEnRF1/F1u15OlW93ObpeN9weX0LcwAvzXuc2cK2hn22uNUgwcGy93S9eaUcs4/P7/X63K0EIiU6Y6JgQQgipfA0Ur7jaGD169AHXTkKCpbi4GM888wzuuOMObN++PWw77dq1wz333IPzzz+fC3lCiOfhupUQQgghbsHfIdbDFSwhhBBCCCGERAGJiYkYNWoUfv31V9x1111o0KBBWHY2bNiA4cOHo1evXliyZInl9SSEEEIIIYQQQuyAoiYhhBBCCCGERBEiZkoY2fXr1+P6669XYmc4rFixAgMGDMDAgQPVfo3kZQErXwLevh6Ydwnw4lDjVf6W9/N3h98YQgghhBBCCCEkSJhTkxBiO0VFRXjwwQfV/rhx48LO4WSVHaInHF/v9ovObXCzbk6WbWdZVtu20p7Oc49EBsfWQMIYzZgxQwmbInK+8sorYdlZvHix2sR7U3JvSnhaxY5fgNULgA2fAqXFB34wewuwbRWwfC7Qrg/QZaiRR9Sj4+t2vZwq3+5ydL1uuD2+hLiBF+a9zm3gWkM/21xrkGDg2Hq7X7zSjliGoiYhxLEcUDrZIXrC8fVuv+jcBjfr5mTZdpZltW0r7ek890hkcGz30759e7z88su44YYblDAp4WXDQWzMnz8fo0eNwuQz26Pphjf2/2dJAVCQbYib/jLAFwfEJwIpGcb/r1tsbD0uMzafz5Pj63a9nCrf7nJ0vW64Pb6EuIEX5r3ObeBaQz/bXGuQYODYertfvNKOWMXn9/v9bleCEOLtRMdymsnJyVH7DRs2hC/Mm1xW2SF6wvH1br/o3AY36+Zk2XaWZbVtK+05Pb5yDZw5c2atx4wePfqAayfx1nlFh3755JNPlMflypUrw7aVlhKP8QMPxb9OTEf9sj2GqFkTCSlAaiaQnG783flM4KSxYQubuo6v2/Vyqny7y9H1uuH2+BL3162xiBfmvc5t4FpDP9vRvNYgzsGx9Xa/ON0O/g6xHoqahJCw4UmZEEII2Q9FTaITZWVlmDdvHiZNmoSNGzeGbeegBnG4/dT6uLJHPSTWSwcS6wNx8UBZKVC8DyjcK7cGjIPFa7NBc2NfvDV7Xm5RawghJHy4biWEEEKIW/B3iPUw/CwhhBBCCCGEeIy4uDhceOGFOPfcczF79mzcdddd2LlzZ8h2/swtw+i39+LhpcW47+xGOKdb2v6nmVPSgfrNgPzdQH6WEZ5WEGFz+XNAq+MsybFJSCzCB2UIIUJJSQmysrJqPaZRo0ZISOAtXkIIIbEBr3iEENspLS3Fd999p/Z79eqF+Ph4V+0QPeH4erdfdG6Dm3Vzsmw7y7LatpX2dJ57JDI4tsH3S1JSEq677jpceumlePDBBzF9+nTk5eWFbHvtjgIMnfMzjmmThmnntMUph5Xn0hSvzfpNgIRkYO82Q9hMTDVC0a5+HTh1kiXt0AG36+VU+XaXo+t1w+3xJcQNvDDvdW6DFXUTQTOcBxy41rDfns5zj0QGx9bb/eKVdsQyFDUJIY5cLD788EO1371794huNFhhh+gJx9e7/aJzG9ysm5Nl21mW1battKfz3CORwbENvV/S09OVt+aYMWPU65w5c9TxofLtpr3o89D/8H9HNsKUs9viyEPqG/+RnAaUFAL5uwzPTRE1N3wCHDfGyLdpUTvcxO16OVW+3eXoet1we3wJcQMvzHud28C1hn62udYgwcCx9Xa/eKUdsQxFTUKII+HPjjzyyIp9t+0QPeH4erdfdG6Dm3Vzsmw7y7LatpX2dJ57JDI4tuH3y0EHHYQnn3wS//znP1W+zQULFoRV1ns/ZOE/q7Pwj97NcdffW6NVoxQgNcMIQ1tSYGzCmveBrsMtb4cbuF0vp8q3uxxdrxtujy8hbuCFea9zG7jW0M821xokGDi23u4Xr7QjlvH5/X6/25UghEQnTHRMCCGE7If5z0g08s0332DChAn47LPPwraRnODDdX0PwcTTWqJR2U6gcA+QkmHk1mxxNPD3Ry2tMyGxAK8p1sF1K4lmeC4ghJDohr9DrIdSNCGEEEIIIYTEKL1798Ynn3yC9yb03R9KNkQKS/x4cPFvaDf5W0z9LBf5xX6gtMj4T8mxSQghhBBCCCGEWABFTUIIIYQQQgiJYXw+H07v0ggrJ3XH88Mao1XD8JaJOfmluPndbej48E48++0elJT6gaI8y+tLCCGEEEIIISQ2YU5NQojtFBUVYcaMGWr/hhtuQFJSkqt2iJ5wfL3bLzq3wc26OVm2nWVZbdtKezrPPRIZHFsb+iUxFfFxPvyjZzrOOyIeT3yfgHsX78DuvJKQ6/H7njJc+fouTP96OaZcfAzO9PuVcOpIO2zE7Xo5Vb7d5eh63XB7fAlxAy/Me53bwLWGfra51iDBwLH1dr94pR2xDEVNQogj5OXlaWWH6AnH17v9onMb3Kybk2XbWZbVtq20p/PcI5HBsbW4X1IzgewtQHwiUhJ9GHtifVx5yjGY+uFWPPLx7ygoLgvZ5E/b8nDWA5/ixP+ejKlTp+L444+P+vF1u15OlW93ObpeN9weX0LcwAvzXuc2cK2hn22uNUgwcGy93S9eaUes4vP7/X63K0EI8XaiYznNyLGC/F8oT+rbYYfoCcfXu/2icxvcrJuTZdtZltW2rbTn9PiWlJQgKyur1mMaNWqEhAQ+V+jl80rU9svKl4Bv5wAlBUD2ZlkqAo3aA3Hx+G13Ie54dzPmfv0nyiJYPZ599tm477770LlzZ/vaYSNu18up8u0uR9frhtvjWxVZV82cObPWY0aPHn3AeoyEv26NRXSb915rgxV1C/f3Jdca9tvTee6RyODYertfnG4Hf4dYD0VNQkjY8KRMCCGEEOIR8rKAl88DSosNUVPEzdTGQP0mFYf89Mc+3PLWJry1alfYxcTFxeGKK67AHXfcgUMOOcSiyhPiPShqWgfXrYQQQghxC/4OsZ44G2xGHd9//z2efvpptSAYNGgQevXqhcaNG+Owww7Dpk2b6vz8ypUr1WduueWWoI4nhBBCCCGEEK2o1who12d/KFohPwso3FtxyBEH18ebo/+GL8YdjePbpYdVTFlZmVp7dejQARMnTkR2drYl1SeEEEIIIYQQ4n1iNvaViI+zZ8/GnDlzql1IiwOrvB/MIjsjI0Nt999/v8oVM2zYMPXaunVrm2pPSHRRWlqqHh4Qunbtivj4eFftED3h+Hq3X3Rug5t1c7JsO8uy2raV9nSeeyQyOLY29UuXocC6xUByOlCcDxRkA3u3ASWFQGoGEGcsH0/s0BBf3nQ03l61Czcv3IhftueHXNeCggK1fpL12KRJkzBmzBikpKRY0w6bcLteTpVvdzm6XjfcHl9C3MAL817nNnCtoZ9trjVIMHBsvd0vXmlHLBOToqZ4ZMriWagafTecGMpt27bF4sWLkZOTo3LEPPDAA5g/f74q48orr7Ss3oREK3KxePfdd9X+kUceGdGNBivsED3h+Hq3X3Rug5t1c7JsO8uy2raV9nSeeyQyOLY29UuzTkCPy4DlzwENmhvvibCZv8vw2kxOAxLrSwxZ+MrKcFb7YvzfmHQ8tzIBt3+0D3/sLQu5zpInbOzYsZgxYwbuvvtuXHTRRdqOr9v1cqp8u8vR9brh9vgS4gZemPc6t4FrDf1sc61BgoFj6+1+8Uo7YpmYEjVFge/Xr5/yvjTFzEARU96LJMVow4YNlYemhKEdP348RowYgeXLl+PJJ5+0pP6ERCuSO+nwww+v2HfbDtETjq93+0XnNrhZNyfLtrMsq21baU/nuUcig2NrY7+IqJm3C/j5HUPYTEwF8ncbOTYL9xhbAAnxwFXHNsLwE9ri0a/24P4PtyInvzTkYrds2YJLL70U06dPx7333qtSgchaTafxdXveOVW+3eXoet1we3wJcQMvzHud28C1hn62udYgwcCx9Xa/eKUdsYzPH4mKF0V89NFHGDhwoBItTSGzatO7d++ORo0aqVCy8vrUU08pUVLckMNBPDVHjRqlNgqbxIsw0TEhhBBCiAeRdZJ4a8pmIqJmQQ5QWgT4ywBfHBCfBKQ0BBKMsLHCrvZDcd9/NuLxJ55AUVFR2FXo06cPpk2bhl69ekXaGkKiEllXzZw5s84oVFXXY+RAuG4lhBBCiFvwd4j1xISn5sqVKzFgwAC1L4KmKWb2799f5b+UVwkhWxUzRG24XH311UocPe+889CjRw+GoiWEEEIIIYTojzwE2vNyoNVxwOrXgQ2fGO832C9eViI+EWjXF+hyLho364Tp/YHrb7gBt912G1544YWwouF8+umnOOaYY9R6TTw3O3bsGGGjCCGEEEIIIYREOzHhXysLYRNZUEto2N27d2PRokUqRGx1gqZVDB06FDfddJMSODdv3mxbOYQQQgghhBBiKZJj89RJwEXzgd4jgRZHA5mtgfpNjVf5W96X/5fj5PhyWrdujeeff16lABk8eHDYVZg/fz6OOOIIjBkzBn/++adFDSOEEEIIIYQQEo143lPzgQcewIYNGyrCy0oYWsl96SSSZ3PBggUYOXIkPvjgA0fLJkQHiouL8cQTT6j9a665BomJia7aIXrC8fVuv+jcBjfr5mTZdpZltW0r7ek890hkcGwd7pfUTKDrcGMLkaOOOgr/+c9/8Mknn2DChAn47rvvQrZRUlKiwnD++9//xtixYzFu3DikpaVVf3BeFrDmfWDrN0Yu0OJ8Iy+otKFlb6DT6cZ+FM47p8q3uxxdrxtujy8hbuCFea9zG7jW0M821xokGDi23u4Xr7QjlvG8qDllyhQVclY8JufNm+daPUTYPP/887Fnzx6kp6e7Vg9C3EA8pHNycir23bZD9ITj691+0bkNbtbNybLtLMtq21ba03nukcjg2EZfv/Tt2xfffPMNXn/9ddxyyy1Yt25dyDb27duHu+66Swmct956q3poNCkpyfjPHb8AqxcAGz4FSosP/HD2FmDbKmD5XKBdH6DL0EqepdHQv06Vb3c5ul433B5fQtzAC/Ne5zZwraGfba41SDBwbL3dL15pRyzj83t45MQrU3Jptm/fPqxFc1xcHFasWIGuXbtaUh+xJ56j8nQxIbGU6LisrAzbtm1T+y1atFDfhXCwyg7RE46vd/tF5za4WTcny7azLKttW2lP57lHIoNjG939Ik9HP/3007jzzjuxffv2sO20a9cO995zD85rn4e4lf/e/x8lBUBBtiFu+ssAX5yR9zMlA0gIyAva4zJjkxyiUdC/TpVvdzm6XjfcHt+qyLpKBPzaGD169AHrMRL+ujUW0W3ee60NXGvoZ5trDRIMHFtv94vT7eDvEOvxtKg5atQoPPXUU1i+fHlYwqTVoubAgQOV1+iHH35oiT1C3IYnZUIIIYQQEi65ubl4+OGHMW3aNLUfLt1bNcDUIW3Rv128EXJWRM2aEFFTws8ml0fP6XwmcNLYoIVNQpyCoqZ1cN1KCCGEELfg7xDr8XT4WcmlKXk0rRIlI0WeJBaBlRBCCCGEeA8JjVlXvsBevXqhfv36jtWJEJ1p0KBBRRjZe+65B7NmzVJenKGyYksuBsz4AQM7JOH+gQ3Q7eAkIDkNSKwPxMUDZaVA8T6gcK8heO7dZuTabNAc+PkdoF5joOfltrSREEIIidSjKD8/v9ZjUlNTo9ZjihBCCAkVz4uaw4YNgy5kZGSoOhESiz/CV69erfa7dOkSUUgoK+wQPeH4erdfdG6Dm3Vzsmw7y7LatpX2nB5fETU/++yzWo854ogjKGp6/LziJtHaL/Lk8qOPPoobbrgBkydPxquvvhqWnUW/FmHRr1kY3qsJ7jkrA23TUvf/Z0o6UL+Z4cmZn2WEpxVE2Fz+HNDquDpzbLrdv06Vb3c5ul433B5fQtzAC/Ne5zZYUbedO3eG5bXNtYb99nSeeyQyOLbe7hevtCOW8byoKfk0dSE7O1tthMQaJSUlWLhwodrv1KkTkpKSXLVD9ITj691+0bkNbtbNybLtLMtq21ba03nukcjg2HqzX2Tt9sorryhxc/jw4di4cWNYdl7+bifmr9iFMaccjEmDW6JpWnk/iNdm/SZAQrLhrSnCZmKqEYp29evAqZO07l+nyre7HF2vG26PLyFu4IV5r3MbuNbQzzbXGiQYOLbe7hevtCOW8bSoKTRq1Ai6sGzZMhWClpBYQ3LJmnNf9t22Q/SE4+vdftG5DW7Wzcmy7SzLattW2tN57pHI4Nh6u1969OiBO++8Uz1BvWjRInz//fch2ygu9WPGx7/j2a//xPiBh+Jf/Q5F/eR44z8lNG1JIZC/y/DcFFFzwyfAcWOMfJua9q9T5dtdjq7XDbfHlxA38MK817kNXGvoZ5trDRIMHFtv94tX2hHL+Px+vx8epUOHDir87JQpU8L6vLger1ixwrKcnGJvwIAB+PDDDy2xR4jbMNExIYQQUvkaGE54MEJI7eGhJBztpEmTsGnTprDtHJSehDvOaIUrTjgIifFxQFkJkCWpQfxARmsgIQXoPRLoOtzS+hMSLrymWAfXrSSa4bmAEEKiG/4OsR5PBwwWxX3JkiXQgQceeEC9du/e3e2qEEIIIYQQQkhUIA+GSijaX375BTNmzECTJk3CsvPnniKMevlXdLlrOV5f8Rf8vnjDY1MoyDFetyy1sOaEEEIIIYQQQqzG06Jmt27dlKflqlWr3K6K8hYVd+bzzz/f7aoQQgghhBBCSFSRnJyM66+/HuvXr8fkIV1QLym8peza7fkYOudnHDfte3y+pTxoUWmR8So5NgkhhBBCCCGEaIunc2qOGjVKeUhOmDABH3zwgWv1kDAQ2dnZaN++vWWhbAmJJoqLi/HUU0+p/REjRiAxMdFVO0RPOL7e7Red2+Bm3Zws286yrLZtpT2d5x6JDI6tt/ultnakp6fj7nMOx5hj6+OuN37EU9/lorQs9DK+2bgXpzy2F/93eBKmDI7DkQ0BFOWFXS8ncKp8u8vR9brh9vgS4gZemPc6t4FrDf1sc61BgoFj6+1+8Uo7YhlPi5pt27ZV3pqLFy/GLbfcgvvuu8/xOjz99NOYPXu28tIcOXKk4+UTogOSulfih5v7btshesLx9W6/6NwGN+vmZNl2lmW1bSvt6Tz3SGRwbL3dL3W2IzEVLRomY+Y5TfHPY5Mx6dMSvL6qPIRsiLy3pgj/WbsNlx5bhjsvboJWNR2YlwX/j+/tr9crw4HkFCA1E2jZG+h0urHvgfG1uxxdrxte+f4QEmvzXuc2cK2hn22uNUgwcGy93S9eaUcs4/N7fOQWLFiA8847T4mK06ZNw9ixY0PK3yLha8P1rnzwwQeVl6iZ33PdunVh2SEk2hMdl5WVYcuWLWq/VatW6rsVDlbZIXrC8fVuv+jcBjfr5mTZdpZltW0r7Tk9vnINnDlzZp0RPKpeO4m3zitu4pV+qbMdb18PbFsF5P5p5MNMTsfSv+pjwsKN+HxdeOKmkJwYj+tu+BcmTpyIRo0aGW/u+AVYvQDY8CnKSoqxpSjDqFdSNuJ8AR+OTwTa9QG6DAWadUI0j6/d5eh63dDt+8NrivPr1lhEt3nvtTZYUbeioiL88ccftR5z8MEHIykpyfKyg4VrDf3mHokMjq23+8XpdvB3iPV4XtQUhg0bhtdff10JmwMGDMD8+fORlpZmm6i5Z88eVeaSJUuU2i/lirfoqaeeGkErCNEPnpQJIYSQ/fAGNCEOsfIl4Ns5QEkBkL1ZlrVAo/bw++Lwn9VZuHnhRqz+o/ZQsrWRkZGBiTffjOtOyEDqjy/v/w8pT/JulhYD/jLAF2eImSkZQELK/uN6XGZsvkDVk5DQ4DXFOrhuJYQQQohb8HeI9USnnB5GCNiGDSVJCrBo0SK1SJVwtCI+WsmmTZvUoiIzM7OSoHn11VdT0CSEEEIIIYQQKzh8sCEmipCoxEQ/kL9brb3+78jG+H5yDzx36WFomZkclvns7GxMuPlmdDzzejz71Z8ozc8xxFPZxDO0OM8QOOW1IOD/CsvXl8ufA76YLvGsrG03IYQQQgghhMQ4MSFqiqD50UcfVYiM8jp16lQlPvbq1UuFif3+++/Dsi2fE9F00KBBaN++PebMmVMRi1nKGjp0aJ1PVxLidcSt/5dfflGb7Ltth+gJx9e7/aJzG9ysm5Nl21mW1battKfz3CORwbH1dr/U2Y56jYxQr4KZxzI/Cyjcq3bj43y49LiDsPauXnjw3HbIrJcQVj1+zy7ClS+sxVFTVuOd1TkoLfPhl/gj8EtSd5SltQQatFChb5WnqIice7cBuduND//8jiFuRuH42l2OrtcNr3x/CIm1ea9zG7jW0M821xokGDi23u4Xr7QjlokJUVPo3r07li1bVknYlG358uUq72WPHj0QHx+Pxo0bK6Hz/PPPV5+bMmWKyqkim3hhyvsiYHbs2FEdL58bOXJkhWdmoP3+/ftj3rx5bjedENcpKSlR3wXZZN9tO0RPOL7e7Red2+Bm3Zws286yrLZtpT2d5x6JDI6tt/slqHZI7kpBREUJ/yremiIq7tsJlBmfSUmMw9gBh2LDPcdgwqCW6u9w+GlHKf7+YjZOeT4PD6xri3l5vVGS2ABISQfSWqjQt0jJBMpKgX07gL9+AbLWA0tuB+b9wwiXm78b0TK+dpej63XDK98fQmJt3uvcBq419LPNtQYJBo6tt/vFK+2IZcJ7ZDXKhU3Jd7lx40YlPgqBaUV3796thE7JpSksWLCgWlvVpSINtCeeoDfddJNNLSEkupDvRsuWLSv23bZD9ITj691+0bkNbtbNybLtLMtq21ba03nukcjg2Hq7X4JqR7NORt5K8YZs0Nx4T/Jd5u8yvDaT04DE+kBcHDLiynB//xRce1Rj3PHxXsxdUYCyMCLDfrV+D75a/yy6dW6Pc85rhCNbpBoemiJYlnuJqlybpYXGa1w8sHWpEZp2+VzDu1TEWKm7Xf1iAXaXo+t1wyvfH0Jibd7r3AauNfSzzbUGCQaOrbf7xSvtiGV8/urUuRhAvCufeuqpaidvMF1S3YSXz0m+Tgl1261bNwtrS4ieMNExIYQQUvkaWFfaAYn8UfXaSQgJE1m3Se5KCfUqSE5LERhFaKyJhBT8mJ2CW/6zE2//b1fYRcf5gCt7Z+KOk+NxcHr8/vqUFhmCpoSkjRPP0Dggsw2QVH//h0WMlY03UUgt8JpiHVy3EkIIIcQt+DvEemIm/GxVZs+erTwyzz333IqwsYGCZV2bifnZtm3bKptZWVkUNAkhhBBCCCHEbmRddtJYQyA0Q9FmtDY2CUmbWE+JmOpV/i7/v7+1aY63xvwNXzx1M44//viwihZPz6eW7kaHh3di0qI9yMkt3O+hqfBLwh7AXwJkbzK8NUV0FcS7VMTY2Hy+mBBCCCGEEELCJmZFTUHEx/nz52P9+vUqVKwIk6ZIGczWsGFDDB06VNn49ddfMWLECLebRAghhBBCCCGxJWz2vBwYMhvoOBCITzSETAlJ27ClIWTKq/wt78v/y3FDZuPEq6bgyy+/xMKFC9GpU3ghYfOLgfs+z0e7GTl4+L+FKCyLB3yyzPYZr754Q9wU71HJ+Zm73figeJeKuEkIIYQQQgghJGhiKqdmTYiYKTkwZcvJycGSJUvw3XffITs7W3leyqvQrl07FV62ffv26NmzJz0yCQmS4uJiPPeccdPmsssuQ2Jioqt2iJ5wfL3bLzq3wc26OVm2nWVZbdtKezrPPRIZHFtv90tY7ZA8ladOAo4bA6x5H9iy1MixWZQHJJV7arY6Fjh8MJCaWfExicJz9tln44wzzsBz15yI2+etxB85RSHXOSvfjxs/LMCMb4pwT796GP63OCP6rIiocYmGF6nk+pQ6CSKyiqjZ6rigc2w6Nb52l6PrdcMr3x9CYm3e69wGrjX0s821BgkGjq23+8Ur7YhlKGpWQbwvJSStbIQQaxDP5j/++KNi3207RE84vt7tF53b4GbdnCzbzrKstm2lPZ3nHokMjq23+yWidohg2XW4sYVAQkICrjrpUAzvkoAZ7/2I+z/NwZ7C0Ptwc3YZLnk9Fw9+GYf7+9fDoE6J8Eko2vpNgIRkw1tThM3EVEPoXP26IcZqNL52l6PrdcMr3x9CYm3e69wGrjX0s821BgkGjq23+8Ur7YhlKGoSQmxHbhJdeOGFFftu2yF6wvH1br/o3AY36+Zk2XaWZbVtK+3pPPdIZHBsvd0vrrUjMRX1kuIx8dRMXN0jEfd9DTz+5U4UlYR+s2PV9jIMfikXfdsWYurgTPRqJDk/04CSQiB/F5C/2xA1N3xieJcGeI+63S92l6PrdcMr3x9CYm3e69wGrjX0s821BgkGjq23+8Ur7YhlfH7K0YSQMPnrr7/QrFmzSu/t2LEDTZs2da1OhBBCiFvINXDmzJm1HjN69OgDrp2EEE14+3pg2yog90+gIEeJjpuLMnHr25vw4rc7EMnK+bweTXHvWW3QoUkikLVBngs38n1Kns/eI0P2LCXeh9cU6+C6lRBCCCFuwd8h1iNZPgghhBBCCCGEkNimZW/jVfJvCoV70TozEf++vBNWTuqOwYenhm36teV/ofMdy3DNvI3YXlRuR4RTQfJ/EkIIIYQQQgipE/rXOoQ8QblhwwZMmDABp556qtvVIcRRysrKsHHjRrXftm1bxMXFuWqH6AnH17v9onMb3Kybk2XbWZbVtq20p/PcI5HBsfV2v7jWjsMHA8vnGvviQVlSYISJrd8ERx/aAO9e2hQvr03BA4u24n9/5IdsvqTMjyc/24bn/xuHcSekYmzfFKQ1EHEzW6t+sbscXa8bXvn+EBJr817nNlhRt3C9trnWsN+eznOPRAbH1tv94pV2xDIcMYeYN28elixZooRNQmKNkpISvPjii2qTfbftED3h+Hq3X3Rug5t1c7JsO8uy2raV9nSeeyQyOLbe7hfX2lGvEdCuj7Fv5rjMz1Iem6pefh/WtxmOISPG4+VhDdChUXxYxewrKsOdn+xD+6lb8fgnv6MoL1erfrG7HF2vG175/hASa/Ne5zZwraGfba41SDBwbL3dL15pRyxDT02Hyc4O7ilcQryEz+dD8+bNK/bdtkP0hOPr3X7RuQ1u1s3Jsu0sy2rbVtrTee6RyODYertfXG1Hl6HAusUqnyaK8w0vyr3bgJJCSE2aYyfg82Po35Iw9IhkPL2iSAmU23PLQi7qr31luG7eejzy6Q7cmzoPw4YNq/VJcaf6xe5ydL1ueOX7Q0iszXud28C1hn62udYgwcCx9Xa/eKUdsYzP7/f73a6E18nJyUFmZqb6kowfPx5Tpkxxu0qEWAITHRNCCCGRhwcjhGjGsrnA8ueM/dzt+8PDlhYbr/4yY/PFqS23oBQP/bcAD3xdiNyi8Ivt0aMHpk6din79+lnQCBLt8JpiHVy3kmiG5wJCCIlu+DvEehh+1gFee+21in16ahJCCCGEEEKIxvS4DOh8prHfoDmQ1sLIsSkipr8UMJ8LFmGzrBQNkoHb+tTD+n82wrXHpiIhzFX28uXL0b9/f5x22mn4/vvvrWsPIYQQQgghhHgEipo2sGfPHrVt2rQJEydOxKhRoypcmbOystyuHiGEEEIIIYSQmpC120ljDXFTkFC0Ga2NzZcAqBCxvv3HxicBCUlolp6Ix85Ixy83d8AFPcN/8vrDDz9Et27dcPHFF2Pjxo0WNYoQQgghhBBCoh9tcmpK7hCvxjAOjPC7YcMGV+tCiBsUFxfjpZdeUvsXXXQREhMTXbVD9ITj691+0bkNbtbNybLtLMtq21ba03nukcjg2Hq7X7Roh6xNe14OtDoOWP06sOETFCem4SXfeUBZCS6KexuJ/gLjWH/58clpQEom2jdJwStXHYxxAw7FhIUb8dEv4UXrkT6QqD9jxozB5MmT0bBhQ0f6xe7+1/W6ocW8I8RhvDDvdW4D1xr62eZagwQDx9bb/eKVdsQy2oia7dq186zgZ4q1Im4y/CwJhwULFmD27NnqOyJbRkYGevbsiWHDhuG8885Tf+uMzP3NmzdX7Ltth+gJx9e7/aJzG9ysm5Nl21mW1battKfz3CORwbH1dr9o1Y5mnYBTJwHHjYH/x/ew+b31Rr0kHG2ZvzzPph9IyQDqNQLi9i+xe7ROw+IbjsTiH3dhwhsb8P0f5SJoiDddZsyYgWeffRbjxo1DYWEhkpKSKvdLXhaw5n1g6zdA/m6gOB9ITAVSM4GWvYFOpxv7mvS/rtcNreYdIQ7hhXmvcxu41tDPNtcaJBg4tt7uF6+0I5bx+TUZORFoVq5cCS8jXZ2ZmYldu3a5XRUSJSxZskQJlyKGjx8/HiNHjkSjRo1UGGMROadNm6aOk/2rr75a20THZWVl+Pnnn9V+586dlWd2OFhlh+gJx9e7/aJzG9ysm5Nl21mW1battOf0+BYUFGD9ekPwqIn27dsjJSXF1nrEAjqfV9zEK/2iazsq6rXhU3T+fT7ifH4gdztQYD64Wu6tmVjfCFFbVgYU7wMK96rPvvpDASYtycem3SKEhkeTJk2U5+akSZOQlL0BWL1A1ccQV2sgPhFo1wfoMtQQaV3uf12vG7rNO15TnF+3xiK6zXuvtcGKuoV7LuBaw357Os89EhkcW2/3i9Pt4O8QD4ua4m0m3miBXo12YXcZtdmX/ystLbWlXOIt5syZo0RM8cJcvny58mauioidPXr0UN6bImqKuOkkPCkTQgghhJCYQ9Z5X0wHfn7H+Ltwj+EhWVKLJ6Z4dqZmojCuAWZ9vg13L9qGXTl5YVfhsFbNMWVwYwzp2thYf0rZIq6KuOkvA3xxhpgpHqRStonkCZXNo6lfCKkOrlsJIYQQ4hb8HeLh8LPifWYiYmD//v0xYcIE9b6VoTVFJBLvN7EpIlCvXr0ssSuec/LklNhesWKFWlhK/cUDlZBQkXkkc1WYP39+tYKmIPN48eLF6qk8EUFF4HTDY5MQQgghhJCYQQTBk8YC9RoDy58DktONTQmLOUBpUYCwmASkNKwQFpMB3DB+Ei6bMwQPTp+Ohx56CHl5oYuba7dsx7mzt6N363qYNigNJ7eq5iBx3pT6lAuqqo5S37xdRv0pbBJCCCGEEEKiDG08NR944AElAooYOHToUMybN8/yMgYNGqQEIClnypQpsAsRNSVk6KZNm5T36ZAhQ2wri3gTCVMsXpjdu3dXXpp1IQKoiJrC7t27HcuxGUr42d9++03tH3rooRGFhLLCDtETjq93+0XnNrhZNyfLtrMsq21baU/nuUcig2Pr7X7RtR3V1mvHL8Dq14ENnwQRArYv0OXcSiFgt23bhjvvvBNPP/10RBF9zjg8GVPOaI4uLSWvZzxQVloR+lbl/BTEa7NBc2NfvDV7Xh58Oy1E1+uGrvOORA49JLw973VuA9ca+tnmWoMEA8fW2/3idDv4O8R6tJl5gSKM6aFmtaD53XffKVHTTkFTECFKvDavuuoqJdAuXLjQ1vKIt5A8mSJohvJdCDxORHvdKCkpwdy5c9Um+27bIXrC8fVuv+jcBjfr5mTZdpZltW0r7ek890hkcGy93S+6tqPaeolAeeok4KL5QO+RQIujgczWQP2mxqv8Le/L/8txVXJatmjRArNmzcKPP/6Ic889N+y6vbumEEc9tAWXz9uGLbnxQEo6kNYCaNQeSG1s5PuU8LSSA1QQj00RZINtZwxcN3Sdd4TYiRfmvc5t4FpDP9tca5Bg4Nh6u1+80o5YRpvws4HhNWsKtRkuo0aNUuE8RWhs06YNnMLMbyjCpnhvHn300Y6VTaKXwLyYEoY5WCHdRDw2nc6tWRfigW2GmDZzzrpph+gJx9e7/aJzG9ysm5Nl21mW1battKfz3CORwbH1dr/o2o5a6yXhXbsON7YwOPzww1WUn6VLl2L8+PH44osvQrYhMZie++92vPLdDlzf9xDcfFpLNKqfCNRvAiQkA3u3GcJmYqoRilY8TEVoDaWdHr5u6DrvCLETL8x7ndvAtYZ+trnWIMHAsfV2v3ilHbGMNuFnV65cqfIBykSS8Jnp6emW2P3oo48wYMAAtUA855xz4AZS/ubNm7F27VpXyifRg4jf8j0wCeXrKXk1N2zYUJGHU8R0u6H7PCGEEEIIIdYia4D//Oc/uPnmm7F69eqw7WTUS8DEQS1xXd+DkZoUD+zbCeTvMnJsZrQ2QuKKB6kIsoR4GK5bCSGEEOIW/B3i4fCz4p3ZrVs3tVmJhOKU/JZuCZqmwLRz505Mnz7dtTqQ6EA8ik1CzYsZ6OEsYZYJIYQQQggh0Yc86Pt///d/+P7771VYLMn1Ew7ZeSWYsHAjDrv9O8z9+k+UJjc0wtCWFBib5ABd877l9SeEEEIIIYQQz4uaDRs2xPLly7Fs2TLLvDTF+1O2qVOnwk1EnJKnbO+77z5X60H0R/K+mphu8MESKIIGiqOEEEIIIYSQ6CM+Ph6XXXaZivjzwGUnILNeeNljfttdhCv+vRZH37cK76z3GdFgCnKM/9yy1NpKE0IIIYQQQkgsiJp2MG/ePJVr0Mk8mjUheVEkrO7ChQvdrgrRPPxsuLllA0VQMwytLkjS5ZdfflltkSRgtsoO0ROOr3f7Rec2uFk3J8u2syyrbVtpT+e5RyKDY+vtftG1HW7VKzU1FeNOa4s1d/XGGScehcSE+LDs/PhHHv4+dxtOeXo3/rthj/Gm5Nh0uJ26Xjd0nXeE2IkX5r3ObeBaQz/bXGuQYODYertfvNKOWCa8Rz2jBPFW69WrF3RBchy++uqrGDJkiNtV8RSSs1Q8fEU0dmpezZ49WwmHsmVnZysBUjapy9VXXx1y6FgrxMiqZUq9wq2H1ZSVlWHdunUV+27bIXrC8fVuv+jcBjfr5mTZdpZltW0r7ek890hkcGy93S+6tsPVehXno2G9RPTsfw469uqH3V+/gH9/uxNl/tBNfbG5GMc/uQ1DuhbhvguT0cnhdup63dB13hFiJ16Y9zq3gWsN/WxzrUGCgWPr7X7xSjtiGU+LmiIQjRo1CrogAuucOXPcroanvBpHjBhR4d1ot4g3bdq0CjFTyunfvz/OP/98tb9+/XoldkoOV9nk/+TYUL0tA4m0LVlZWdqImhI666yzzqrYd9sO0ROOr3f7Rec2uFk3J8u2syyrbVtpT+e5RyKDY+vtftG1Ha7WKzEV8T4/zkr8EsgswpEXtMTYga1xy1sb8c7/ssIyufD7XXj7f0tw5fqRuP3223HwwQc70k5drxu6zjtC7MQL817nNnCtoZ9trjVIMHBsvd0vXmlHLOPzq4Qa3iQuLg4LFizAOeecAx14/fXXlRffrl273K5KVCOiogiHMraBiKemHSKelCcemKYXpYQSnjhxYrVlibA5cuTIimMln6scHyw+n6+SZ+/8+fOD/qz0iQivJpKjVsIv28lff/2FZs2aVXpvx44daNq0qa3lEkIIIYQQElO8fT2wbRWQ+6eRDzM5HUhrof7ri3U5mLBw4/6QsmGGuP3Xv/6l1i4NGza0sOKEuA/XrYQQQghxC/4OsR5Pe2qK6KRbbkHxJiShIWMo3pjfffedEg0D807ajZTVr1+/inETkVHExpoQD03x2hQR1PTclL/Fa9PpuSGemoQQQghxjoKCAnXdr4327dsjJSXFsToRQjxCy96GqJmSYYiahXuB+s2AuHic1LEhvrrpaLz5/S5MfHMj1mzPD9l8fn4+7rvvPrVumTx5MkaPHo3k5GRbmkKCg9cUQgghhBBCYkzUlNCfIoTpghm2lNRNZmZmjSKfKSpW9dS0Gik/UNCUBX5tgmYgixcvVgtMGXMJOSz7dXlsWi1C6iSgS3xyeQJFkCdTxIvaTTtETzi+3u0XndvgZt2cLNvOsqy2baU9p8d3z549df4+EaGAN6C9fV5xE6/0i67tcLVehw9G2bK52OFvAMQVo1npNsTl7wbqN6mI+DKkWxOceVRjzP36T9z+7mZsyykKuRiJKiQem9OnT1cPaEo6l4QEa28b6Hrd0G3e8ZpCnEC3ee+1NlhRt507d2Lu3Lm1HnP55ZejSZMmlpcdLFxr6Df3SGRwbL3dL15pRywT53VR027hKxRE6Iokx2IsYQpyIgJLCFUJ2ytekhJiVl4lP6ndDBs2rKIeZh1CIdA7U24I1OU1rJMIaTUlJSWqP2STfbftED3h+Hq3X3Rug5t1c7JsO8uy2raV9nSeeyQyOLbe7hdd2+Fqveo1QkmbUzB71zGYXXQWShAP5GcZHpsBJMT7MOKkFvj17l6496w2SE8JL0/Qb7/9huuuuw49evTAhx9+CCuz1uh63dB13hFiJ16Y9zq3wYq6yc33vLy8Wjc5xo6yg4VrDf3mHokMjq23+8Ur7YhlPO2pKaFARdR85plncOWVV7pal40bN1bkWyR143aqVxkr2Uwkh2Y480/EUDNcroikkueyJqz24tXJK1ieHE9LS6vYd9sO0ROOr3f7Rec2uFk3J8u2syyrbVtpT+e5RyKDY+vtftG1HW7Xy3fEEKQtfdnYT2kIFO4C9m4DSgqB1Awgbv/yvl5SPG4Z3ApXn9AU9727Hk98lYWi0tDL/N///ofTTjsNp556KqZOnYqePXt69rrh9vgS4gZemPc6t4FrDf1sc61BgoFj6+1+8Uo7Yhmf3231yEZycnJUGNNGjRopL7n09HTX6iJhe5566inlrSkLQhIZ06ZNU96PgYgXp1VCnjyRbIqRYlNsW1FPETVF6KwOmaMSptZEQt2KV2qwSDlSXjBlWQUTHRNCCCGVr4EzZ86sM1Rg1WsnIYQEzbK5wPLnjP3c7UCBGe3FBySnAYn1AQmhJV47xfvKPTn92LS7FLd9WoQXV+xBJHcAzjvvPNx7773o0KFD5f/IywLWvA9s/QaQsLjF+UBiKpCaaeQD7XS6sU+ChtcU6+C6lUQzPBcQQkh0w98h1uPp8LMNGzZUORFFkAo1dKiVvPHGGyqvoohjFDT1R8RMU9A0PS7DpWoOzsCQtFUR8d3KcLQ6eWoSQgghhBBCLKDHZUDnM439Bs2BtBZAguRU9AOFe4DcbcCe341X+VveT0hBm1aH4t8jumLlpO447ZjDwy7+tddeQ+fOnXHttddi+/btwI5fgI/vAV4+D/h2DrBtFZC9Bdj3l/Eqf8v7Lw0zjpPjCSGEEEIIISRMPC1qChIiR5xRxeNtzJgxjpe/cuVKJWyJK3M4IUyJ81QVHiPJ31k1h6qI23aJkFVF0KoiKSGEEEIIISTKkRBZJ401xE0hOR3IaG1sKRlAYj1D5JRX+dv8PzkOwNFnXYv3l/6Mjz76KOxQspJ76IknnkD7tq1xxxWDsPeH94HSYqCkAMj9E8jZCmRvNl7lb3lf/n/dYmDhSMPb1LsBowghhBBCCCE24umcmoKE3xwxYoQK/SpilYT4/OCDDxwpW8qUsLOmuDVu3DhHyiWRIU8fBxJpCFcZe5l3JpLntaoHZ6CwaYqTWVlZIZVT9XidPDXlxsfChQvV/pAhQ5CQkOCqHaInHF/v9ovObXCzbk6WbWdZVtu20p7Oc49EBsfW2/2iazvcrlfl8i9BQqvjgNWvAxs+MQ5oIB6b1RCfCLTrC3Q5F2jWSb0lEYS+/fZb9fDvLbfcgvXr14dcn335hbjzvS2Y+dkfuK1fOkZ0S0BSQpW8RMUACnIMoVXCzyano2TZv7Hw29+BJodhyDnnaHPdcHt8CXEDL8x7ndvAtYZ+trnWIMHAsfV2v3ilHbGM5z01BckzKKFoBclp2bhxYzzzzDO2lbdp0yYMGjRICZriJSpemrWFHSX6IOJjVY/Hqt6WoVJVFJU5WBOBT0uHGn42UDiNtM5WU1ZWhp9++kltsu+2HaInHF/v9ovObXCzbk6WbWdZVtu20p7Oc49EBsfW2/2iazvcrtcB5YtAeeok4KL5QO+RQIujgczWQP2mxqv8Le/L/8tx5YKmiaxTJUfmzz//rDwvw83HtiO3BNe+lYUjHt2FeT/7UFbvICD9UKBBi3IPUZ/hrbl3m8oDWuYHfvqrFD/9/LNW1w23x5cQN/DCvNe5DVxr6Gebaw0SDBxbb/eLV9oRy8SEDC2CphleRxZuZo7N8ePHq6dSzz33XLRp0yaiMvbs2YMlS5Yo8VJeBVPQvP/++5lLM0owxy6QSAXCqmFgqyvDZMCAARX/H6qnZqAIGql3qdXEx8dj8ODBFftu2yF6wvH1br/o3AY36+Zk2XaWZbVtK+3pPPdIZHBsvd0vurbD7XrVWL54QHYdbmxhkJiYqFK1/OMf/8D06dPx4IMPIjc3N2Q767NKccFLf+LBL3MxdUhbnNopE0hJB+o3A/J3A/lZQEE24v0+DE5bY7Rj169AiyMQCV5da4jIfPvtt7tdDeJxdJv3XmuDFXVLS0ursFHbMXaUHSxca+g390hkcGy93S9eaUcs4/OL8hYjiFg0cOBAJTSazZZ9M1Rn//79Vf5EEbHMTUhPT68QLk2xSbziZFu+fDmWLVuGFStWVJRjipmCCKdTpkxxvK2x4H07YcKESu+JWB1pyNVhw4ap8LCBRPoVkXpKfYOxKfOoR48eYZVtzjlBxHUR7u3mr7/+OuCJ7h07dqBp06a2l00IIYTohlwDZ86cWesxo0ePDtsbihBCnGD79u245557MGvWLBWeK1wGHZGJqee0xdGHNjDeKNxreGvCD6SVe3F2HGh4kRJiI1y3EkIIIcQt+DvEemLCU9NERMtFixapEDs5OTmVRCMRxETMqipoBUOg8CTCkimaiphFQTO6CAzhalVeSgl3XJ14WZ03pbwXmIOzpuOqUjVUrcxxQgghhBBCCAmV5s2b47HHHsMNN9yAyZMnY968eWHZ+fCn3Vj0825cdEwz3H1mG7RpkgaUFAL5uwzPTRE1JR/ocWMMb1NCCCGEEEIIqYOYyKlZVdgUwahr164VHpWBQmQ4mxBoQ8LdSt5ECprRL2pWDR0bDtUJo1XLCWTkyJFBhaoNJPC4oUOHWiLGWol8L3bt2qW2SDxfrbJD9ITj691+0bkNbtbNybLtLMtq21ba03nukcjg2Hq7X3Rth9v1cqp8s5zMzEy88sor+O6778JOpyLVfPGbHTj8ju/wr9fWY2dpffj9PuwqTsauwjj4S4qBNe9bUl+uNQiJzXmvcxu41tDPNtcaJBg4tt7uF6+0I5aJOVFTEMFHwsZKrksRIKsKk+FspsApIT83btyIfv36ud1MEgZVPR7tojZRU0IWm6KkhJENhsCnp6dOnQrdKC4uxuOPP6422XfbDtETjq93+0XnNrhZNyfLtrMsq21baU/nuUcig2Pr7X7RtR1u18up8quW07NnT/UQ5Yd3nIWuLeuHZbOoxI9HPv4d7W9bgXu+KsFD+UPx+O4+KPbHAVuWWlpft+0QEk14Yd7r3AauNfSzzbUGCQaOrbf7xSvtiGViUtQMFI8kP2aguBnofVkbVb01xZaEsJW8I2KLeEPQtMLjsTpvT3kSpDY++uijCvFzzpw5tR4rNxjMsMkiaJq5YHUjOTlZbbrYIXrC8fVuv+jcBjfr5mTZdpZltW0r7ek890hkcGy93S+6tsPtejlVftVy5EHegZ3SsHxid7x4QVO0yQjvVsKeglLc9sFOPPboo1i17BuUlJYBBZE/WMq1BiGxPe91bgPXGvrZ5lqDBAPH1tv94pV2xCo+P31sK1i5cqUSiMTrTXIZ1obkOZRQtgMGDKBXpgtMmzZN5SwNRETlSERIERDbt29/wDiLV28kiOA4bNiwSu9JiNj58+cH3UapQ3W5NaXOPXr0UIKseAkH69lpFUx0TAghhFS+Bs6cObPWY0aPHn3AtZMQQqKCF4cC+/4CsjejsCAfs/6XhLs//BO79pWEbfLw5qmYcsHROPvhr5VwSogdcN1KCCGEELfg7xDriWlPzap069YNN910E5YtW4aysjK1rV+/XglKssm++b4cIx6eFDS9g1OhZ4NFvH8lN6sItSJcSq5NU2wXMVNETxFhpd4iZjotaBJCCCGEEEJiiMRU49UXh+QEH244uQnW33MMJg1uidTE8G4trNmej3NmLMXxxx+PL774wtr6EkIIIYQQQjxHgtsV0J22bdu6XQXiEBKKWDcBVbyBxQNVQtCKZ6eI6PJZETolzKyEmxUPTSvC5FpFON4nt99+O2699VaUlpYiLi4OCQn7T01FRUXqNTExseLpbTmuumMlDro4n8t78n+CPIRQUlKiPis2dDpW3pP/i4+PV1uox0o5Zuz3pKQkW46trt9DOTaS8Yx07L08T5wY+0jniVNjz3OEfmMf6+eIuhBbgfs8R4Q+njxH1Nzvus0TniPcP9bSsU/NBLK3APGJKCmKQ1lRARqkNcQ9Z7XFmFMOxp3vbcEzX22DRJQNlaVLl+Lkk0/GGWecgbvvvhtdunThOYLnCMvOEeb7gch7svEcwd8RVh2rw3jyHKHP2Ht5nvAcwXOELvMkms4RxFooahJiM1YIjiJcyuZlvvvuO3z44Yc48sgjcc4551S8P2PGDOTl5alwfZKf9N1331U5SX/77TccfvjhuOCCCyqOfeKJJ5CTk4OrrroKhxxyiHpv9erVWLhwoRKBL7nkkopjn3rqKeX+f+mll6JNmzbqvbVr16rw0y1btsQVV1xRcexzzz2HP/74AxdeeCEOO+ww9d7GjRvx4osvonnz5hg1alTFsS+99BI2b96sQgz/7W9/U+9JXefOnavqf91111Uc+9prr2HdunU466yz0LVr14rwA+J1m5aWhhtvvLHiWGnDTz/9hMGDB+OYY46pEOIlqbXEgL/55psrjpU+WrVqlRLFTzjhBPXe3r178fDDD6sLqwjIJtLn4nl+yimnoE+fPuq9wsJCJZgLkydPrvgxILle//vf/+K4447DwIED1Xvy42LKlClqX8Ilp6SkqH150v6zzz5Dz5498X//938V5Yld+cy//vUvpKenV9zEktDfRx11VMUPAbmh9dBDD6m6XHvttWjcuLF6X7zm33//fRxxxBGVwjo/9thjqo3i0XzQQQep93744Qe89dZb6NixI4YPH15xrOQ+lr67/PLL0apVK/Xezz//rEJFt27dGpdddlnFsc888wy2b9+Oiy++uCI89a+//opXXnkFBx98MEaMGFFx7AsvvICtW7fi/PPPR6dOndR7W7ZswfPPP69CSowZM6bi2FdffVV5XA8ZMkS1W9i2bRuefvpplZf5n//8Z8Wx8kCDzM1DDz1UzVf5YSRzV0Jc1qtXT0UYMHn77bdVuwcNGoRjjz1WvSffCfkeyQ+tW265peLY//znPyrset++fdVNREG+aw8++GDFwwYmMj7ffPMNTjzxxIoIBfKjzBz7iRMnVvzw/PTTT/Hll1+id+/eOO200yp+iJrHStvM3NNfffUVPvnkExUp4e9//3tFeVIHsX/DDTdUnEODOUeYD1V8//336nsQzDnif//7n5onDRo0UOWZPzydOEdI/aSe+/btU/PKznPEuHHjVFnmD3tpt1XnCLEntqUPpM+sOEfId1zmrJwLZO7JHDz66KNx9tlnVxwbzDlC5p7U7ccff1T7Tpwj6kLG36yDFecIqdeaNWtUX0lkByHazhGCeazM1fr16wd1jujcubOyK22XeWrHOSLafkdIOTIv5Vwm3znznBZtvyPk/CDnCfluS/+Y7ajtd0Q454hQf0fIeUTmn9zE+Mc//lHxAKxTvyPMc5pEEMrNzbXtHCEpVuR6I8j3Wr4b6hwxuDewbRWQkoH/7OuKlXlHoK/vV5yctgUHZyTjoQuPQOJR5+Djjz9WfRIO0r733ntPzT/pP/k+1XWOkPlvZtWRdob7O4JrDe+uNeS7XBX5Dsi85lqDaw2Baw2uNaJlreH0OYJrDa41uNaIfK0h3y1iLQw/SwiJGuTCIhc+ueAS7yGLFRlf2QI9mWId8yadzPto7ZfAeuuWytusm9wcdrp/zXOaLEydKks2q8fAtC2LLquQBZEV5wKzbnKTgXgPuQHEa0ZlzO+3+VRztLdDxCWd2iF1MZ/KduN6Zp7T5JrlRDkHfL8OH6y8NJGQAsQZN5BQnF/ps3LjVG6o/nd8V5zUwbgZFCrSt5KGQ27MyQ0oiVxTLeVl+7cs3V/f+VcApeVeeQU5IZXLtQaJRbjWsBeuNayzzbUGcRquNQ6Eaw2iCz6/bld8QoJA8knKAjcQWexG4hUpT13IU8mBdO/eXT1lEQnyVFPg0xmCPI0iC3UvJjoOh2DDz8qFRp6QkVd54k7eYygH74RyEFvyBJYgT/XJe8Ha9XK4F3nyS55KlPcl35T0fbSFe5G/5SlIQdoQ+L7b4V7kPXmaT5CnBM32OTH28irnNHmVp17lPbvOEfKelCXI+VM+b9XYVz03y+cjOUfI+3LtlWPNJ3zDHXvZl7rJa69evdRTonaeI+TpdnlquTYCn+BmSKjwv/dWzhMrxt6NY6vr95rOaTqNfTDHyrjJdzfw2hfOPIlk7Ou6nslT4OZ4ODX2tZ3TrDxHmF5Lgng6mO+pYz++B1i3GCUFuSjbux3x8CM+vTmQnAa5s1DsN+qTFFemynnvhyzcvHAjftyWh3CRNd748eNxzTXXKO8h319rgNULULr+M5SWlEBuaCzLP1Qde2y9rSj1G+OdmBAPX/s+QJehKG3ckWuNGF5r/Pnnn8oTMRAR8USE51qDaw2rjuVag2sNu9cabhzLtQbXGlxrRD6nxMPV9M41kXsH8juEhAdFTYfo0KGDcv2WMA7iZk70EzVXrFhREUrBhKKmc6LmHXfcYUmdCCGEELcIRtQMDE1ECCFRx45fgIUjjf3c7UBBttxWAFIbAakZQNyBGW5KS4rxwhebcev7f+K3PeE/DS/h1u66fAAuOWgd4uOMm0coKTDqUFoM+MsAX5zhTZqSYXiUmvS4zNjKbzqR2KK6dStvJhJCCCHECfg7xHqYU9MhJI60kJ0tiz5CvAtPyoQQQgghhHiUZp0McXD5c0CD5sZ7Iirm7wLys5THJhLrA/L0v3h4Fu9DfOFeXHakH+d3aoLHl/lx3ye7kZ0Xeqg+yRV2+V3P4sGD6+H+/2uO/2tXCl9p4YEHFpeHnhVRMzUTSE436pu3CzhpbNQIm5J3a9GiRbUeIzmjzPyBhBBCCCGExAIUNR1CxExxRZZYzSR6sEuEjsSjNBoRh3BJ+iyokFFh3kiwyg7RE46vd/tF5za4WTcny7azLKttW2lP57lHIoNj6+1+0bUdbtfLqfLrLEdETREIf37HEDYTU4H83YbXZOEeY6tKQgpS0zJx05npuLJvMe76Ngmz3lqqQl+Gyo9/5OHMpzbi5DaJmDooDb3bN8behMYqz2eafx98JfuAwr1GffZuM3JvSj2lvvUaAz0vD6/dDiN9I3nfauOUU05xrD7Em+g2773WBivqJk4Sr776aq3HXHDBBWjUqJHlZQcL1xr6zT0SGRxbb/eLV9oRyxjBk4mtSNhZE3pq6otdQqPppRtIu3btEEtI/PKHH35YbWYsczftED3h+Hq3X3Rug5t1c7JsO8uy2raV9nSeeyQyOLbe7hdd2+F2vZwqv85y5MaPeDyKuCmIJ2RGa2OTsK+J9QwvSXmVv83/k+MANDjhSmQe0RdjxozBpZdeWpHTKVQ+31SM42Zn4ZyXd2PShp54OHsAipMzgLQWQKP2QGpjIzSueJJKqFxBPDYlhG447SbEg3hh3uvcBivqJjnlJHRhbZscY0fZwcK1hn5zj0QGx9bb/eKVdsQyFDUdYOrUqbUKXEQPnBQaGzeWBXZsITcrwr1hYYcdoiccX+/2i85tcLNuTpZtZ1lW27bSns5zj0QGx9bb/aJrO9yul1Pl11mOCJvi8ThkNtBxoJHHUoRM8Yhs2NIQMeVV/pb35f/lODm++yXKdmZmJubMmYNVq1bhzDPPDLuub36/E08+8QTefecdbMsp9/yMiwfqNzEETlPYND1IV78efrsJ8SBemPc6t4FrDf1sc61BgoFj6+1+8Uo7YhWfX/xtPcrTTz/tavnr16/HggULsGHDBuXWLK7M/fv3x4cffuhqvbzAtGnTMGHChErv7d69O2JvS1lYB3rTij2xa3VdZ8+ejauvvhrRDhMdE0IIIZWvgTNnzqz1mNGjRx9w7SSEkKhHws+ueR/YstQQEIvygKRyT81WxwKHDzbyW9bC559/rtZNS5cuDbsaqYlxuLH/IbhpYEs0TC3PtrNvp5HzU8RVEVtFYL1ofp31cRteU6yD61YSzfBcQAgh0Q1/h1iPp3Nqjh8/Hjk5Oa7WIVAzln16auqN5CAIFDWtCBdcXR7Vnj17RmyXEEIIIYQQQrRABMKuw40tTE4++WR8/fXXePPNNzFx4kSsWbMmZBv5xWW49/2tmPX5Nkw+vRVGn3wwklMzgPwsI8embIIIsBHUlRBCCCGEEOIOcV4XqERIdHMT70xzE5hTU2+6d+9uuc3qxjzWcmoSQgghhBBCSF3IunnIkCFYvXq1im7TIrN+WHZ27SvBv+ZvQKc7vsNL3+1CWWID4z8Kyh96Fo9SQgghhBBCSNThaU9NEY4k9KspKDrtnVldufTU1JtevXqpkMFVRclIwtpWHXOZl5GGyY02JGm9GXZ50KBBSEhIcNUO0ROOr3f7Rec2uFk3J8u2syyrbVtpT+e5RyKDY+vtftG1HW7Xy6ny7S4nGPvynqTruCj5E8xYuBRTP9iMPYWhZ87ZtKsQF89dgwcOTsHUASkY2LlQMmwaIXLDqBchXsML817nNnCtoZ9trjVIMHBsvd0vXmlHLONpT82qwpETnplC+/btlXDVtm3bSpv5HtEXyXlaFRHGI6Hq52PRS7OsrAzLli1Tm+y7bYfoCcfXu/2icxvcrJuTZdtZltW2rbSn89wjkcGx9Xa/6NoOt+vlVPl2lxOK/frxxbhlcCusH38I/nl8PSTGh/fA8qo/CnDa89no/9SfWLZ5r5HzM4J6EeIVvDDvdW4D1xr62eZagwQDx9bb/eKVdsQynpahA8UjERzlSc8JEyZYJixKvk7xwhPRavHixVixYgWWLFmi3pMcIOPGjbOkHOJu+Fk5wUUSlraqqDls2DDEGvHx8TjllFMq9t22Q/SE4+vdftG5DW7Wzcmy7SzLattW2nN6fOvXr19RXm3HEG+fV9zEK/2iazvcrpdT5dtdTkj2E1PVS5MGiXj49DRc3681blu0Cy99uwPlzxSHxMfrC9Brykqcf1wW7jn2V3To0CG8ehHiEbww73VugxV1C/f3Jdca9tvTee6RyODYertfvNKOWMbnN90LPcgDDzygREwJAyuC5syZM20vU4ROyf1x//33o0mTJmq/b9++tpcba0ybNk2NbSC7d++2JKyriI6BIWjHjx+PqVOnhmVLQtdmZmbaUk8d+Ouvv9CsWbNK7+3YsQNNmzZ1rU6EEEIIIYQQj/D29cC2VUDun0Y+zOR0IK0Fvt+ai5sXbsSHP+0O27SEGhs5ciRuu+22A9Y0OiDrqrruYYwePVrLuusG162EEEIIcQv+DrGeuFjx1HTKO65hw4ZKBBNvzSFDhqhwps8884wjZRNrEC/bQMT7Nlyqfnbo0KGeETQJIYQQQgghxFZa9jZeU8rXUIV7gbJSdG3ZAB9cfySW/PNI9GjVIOx8Sk888YRKH3PnnXdi7969FlacEEIIIYQQYgeeFjUDxSM38hiKd9+8efMwYsQICptRhISaDQw3K2GFw0XCEgciTwLHIuIQXlBQoLZInMOtskP0hOPr3X7RuQ1u1s3Jsu0sy2rbVtrTee6RyODYertfdG2H2/Vyqny7ywnJ/uGDgfhEICHF2OAH8vd7Z/brlIlvJnTDv6/4G9o1NULVhkpubi7uuOMOFYp2xowZStzUad4R4uXzmtfbwLWGfra51iDBwLH1dr94pR2xjKdFzUAhs1GjRq7UQTzzXnvtNRX+dtWqVa7UIVYQ71i7vDXnzJkTlp3Az4lQKp67sUhxcbES+WWTfbftED3h+Hq3X3Rug5t1c7JsO8uy2raV9nSeeyQyOLbe7hdd2+F2vZwq3+5yQrJfrxHQro+xn1qe1iM/y/DYLKfUF48NrYZh+MixeOT8jmialhhWvSQM2D//+U+0adMGr7zyCm9ykZjA7fOa19vAtYZ+trnWIMHAsfV2v3ilHbGMp0VNETLPPfdctaWnp7tWDxE2r7rqKrURa9i1a5ftYxborRlOTk3J+xnI/PnzLakbIYQQQgghhMQMXYYar5JPU4Wh9QN7twH7dgJlJZVyZI4+5RCsv7sXbj/9UNRP8oX9sOxFF12EY445Bp988olVrSCEEEIIIYRYgM/Pxw8dITs7W4msK1euxNFHH+12daKeAQMGHJCvUkRDESOtYsOGDejRo4caO1PYlHypwSCfycwsf5I4xM96MdGxnGbKysrUflxcHHy+8G4wWGWH6AnH17v9onMb3Kybk2XbWZbVtq20p/PcI5HBsfV2v+jaDrfr5VT5dpcTlv1lc4Hlzxn7uduBAmONBvjgT0pDWWIDMYa4slL4SvYpT87tuSW4+5N9mP1dPkqM4sLitNNOw/333+/4Ol7WVTNnzqz1mNGjRx+wHiPhr1tjEbfPa15vA9ca+tnmWoMEA8fW2/3idDv4O8R6PO2pqVt+TxHcZs2a5XZVohrJbyl5KasKmoLkLpVwryJGWhW++KOPPqr4e8KECViwYEFQgma/fv08L2iGglwc4uPj1RbJhcIqO0RPOL7e7Red2+Bm3Zws286yrLZtpT2d5x6JDI6tt/tF13a4XS+nyre7nLDs97gM6Hymsd+gOZDWoiLHpq9oD+L3/YH4vb/Bt28bULhHvd88oz4eH344fr6jF87rEf5Now8++ADdunXDJZdcgk2bNoVthxAdcfu85vU2cK2hn22uNUgwcGy93S9eaUcsQ1HTQXr16oVly5a5XY2oQARE8XQ0NznByCaekzXltxQxUQTP9u3bVxwfaEME0VCRELTLly+vyM86bNiwA8LKBiJlSB3NsihoEkIIIYQQQkiEyA2nk8Ya4qYZijajtbFJSNrEeobIKa/yt/l/yeno0CwV82ZNxbfffIO+ffuG/UT/iy++iMMPPxw33ngjdu7caW37CCGEEEIIIUGRENxhxApEGLPKizAWEJFSPFwF8zVcO5Egwub69euV0CqCqrxOmTIF5513nhIwBfl/8R41xUzxyhVB0xRDY53S0tIKr1fxYpUnYdy0Q/SE4+vdftG5DW7Wzcmy7SzLattW2tN57pHI4Nh6u190bYfb9XKqfLvLCdu+CJs9LwdaHQesfh3YYOS7LK2fio/2tpNItOiXtgHxvvIMO/GJQLu+QJdzgWad0AtQ5S5a9P/snQeYVOX1xt9p2zuwgEpHQUTpYhelWBI1RsCSokYFMf80jQpqNDFG7MYkioJRU2wgGktsiy1qlC4RRaRJkb6977T/c767syy7yzI7c+feb++8v8dxLrN3zvnKnbnz3feec95Wa7pVq1Z1uO0NDQ148MEH8de//lXZ+OUvf4mMjIwO2yFEF+z+XnN6H7jW0M821xokGji3zh4Xp/QjmWGkpsXEK7AlCyIIyt2wpaWlcT/EjjxEnIy3TWJPandOmDBBRd3KQlaiQyPRoxKVKZGdsg8Fzf1PFp988ol6yLbddoiecH6dOy4698HOtlnpO5G+zLZtpj2djz0SH5xbZ4+Lrv2wu11W+U+0n7jtFw4GTr8Z+MECYOx0BLsfg09q+qhHUKIzew5Tr6u/y36yfyOSzeeMM85QN6NK5GXfvn1j6kNFRQVuvvlmDBw4EPPmzUMgEIjJDiHJ/r3m9D5wraGfba41SDRwbp09Lk7pRzLDSE0LYZSmM5AoTHmQ6JE7Xo4//vimbbvtED3h/Dp3XHTug51ts9J3In2ZbdtMezofeyQ+OLfOHhdd+2F3u6zyn2g/ptlPzweGXwLP0Rfi+EzjbnvP+FvE6EHf6na78YMf/ECt6+bMmYM77rgDxcXFHW7Cjh07MG3aNNx///0qm8/3vvc91mYinQq7v9ec3geuNfSzzbUGiQbOrbPHxSn9SGZcYQlhI5Zw9dVXqwi+WBZLhOjInj17UFhYuN9ru3fvRrdu3WxrEyGEEEIIIYR0hPLyctx777144IEHUFtbG7MduUB2zz334KSTToq7TbKuEsG1PWbMmNFqPUZaw3UrIYQQQuyCv0PMh+lnLWT+/PkYPXq03c0ghBBCCCEJQNIPyuKkvQdTFBJCiH7k5uaqaM3169eryMtY79qXNGYnn3wyzj33XHzxxRemt5MQQgghhJBkh+lnLULqbEg9zXjrOhLSGZGA8FAo1JTqKdaUTGbZIXrC+XXuuOjcBzvbZqXvRPoy27aZ9qye35KSEkbVWITO3yt24pRx0bUfdrfLKv+J9qPreUPsdO/eHY888gh++ctfqpqZL730Uky2Xn31Vfz73//GZZddht/97nc47LDDYrJDiNO/15zeBzPaVlpaipdffrndfc477zzk5+eb7jtauNbQ79gj8cG5dfa4OKUfyQxFTQt49913MX36dPUBmThxot3NIcRy/H6/qjEjzJo1CykpKbbaIXrC+XXuuOjcBzvbZqXvRPoy27aZ9nQ+9kh8cG6dPS669sPudlnlP9F+dD1vtLTz4osvqsjLG264AR999FGH7cnFsieeeALPPPMMfv7zn2PmzJmtRAdCkv17zel9MKNtYmPz5s0H3ScRvjvSRq419Dr2SHxwbp09Lk7pRzLD9LMJFjMvvPDCJiGzf//+OP300+1uFiGEEEIIIYQQQqKokfmf//xHRV4eddRRMdmoq6tTdTYHDBiA++67T/2bEEIIIYQQEhuusMTbOpQzzjhDpQGzEkkxKz7lOYIMsURpFhUVUdQkSVnoWD4D9fX1ajs1NTWulFBm2CF6wvl17rjo3Ac722al70T6Mtu2mfasnl85BzL9rDXo/L1iJ04ZF137YXe7rPKfaD+6njcOZicYDOLvf/87br31Vmzbti3m9vbq1Qu33347fvSjH7Vbu5PnFOvXrcmI3d9rTu+DGW2L9buAa43E29P52CPxwbl19rhY3Q/+DjEfR6efXbp0KcrLy9WBahfyoZDHtGnTKGiSpEU+A2lpadrYIXrC+XXuuOjcBzvbZqXvRPoy27aZ9nQ+9kh8cG6dPS669sPudlnlP9F+dD1vHMyOCJCXX345LrroIvzlL3/BnXfeud/NzNGydetWZef+++/HXXfdhbPPPrvTXhQknR+7v9ec3geuNfSzzbUGiQbOrbPHxSn9SGYcnX5W0r1GoiRbioxWPATxL4Lmwe6qIoQQQgghhBBCiN6kp6fj+uuvx4YNG9Sz3OEfC6tXr8Z3v/tdjBs3Dp9++qnp7SSEEEIIIcSJOFrULCgoaNqOCI0iMlr1GDlyJJYvX05BkyQ9kqrp/fffVw/ZttsO0RPOr3PHRec+2Nk2K30n0pfZts20p/OxR+KDc+vscdG1H3a3yyr/ifaj63mjo3bkeoPUyly3bp2KvIw12lJqdkrtzsmTJ2Pt2rUde/Oa14Da0pj8EqLD95rT+8C1hn62udYg0cC5dfa4OKUfyYzX6ZGazYkIjS1fN0s4HTBgAPLy8pT98ePHm+aDkM6OnCA++OADtX3CCSe0WzvGCjtETzi/zh0XnftgZ9us9J1IX2bbNtOezsceiQ/OrbPHRdd+2N0uq/wn2o+u541Y7UiNzCeeeALXXnstZs2ahddeey0m/wsXLsS//vUvXHnllbjtttvgKd9y8Dd9/gKw7hmg/zhg6GSgcHBMvknyYvf3mtP7wLWGfra51iDRwLl19rg4pR/JjKNFTREYhUgKWomaHDFihN3NIiTpcLvdGD16dNO23XaInnB+nTsuOvfBzrZZ6TuRvsy2baY9nY89Eh+cW2ePi679sLtdVvlPtB9dzxvx2hk6dCheffVVFXl54403xpRSVi6yPfbYY/jH357Etd8ZDO/R3z/IG+qBYABYV2Q8Rl1mPFijk3SS7zWn98GMtknK64iN9vZJhO9o4VpDv2OPxAfn1tnj4pR+JDOusCh+DmXevHmYPn26EjTvvvtu/PrXv7a7SYQ4ij179qCwsHC/13bv3o1u3brZ1iZCCCHELuQceLCyAzNmzGh17iSEEOIs5DLLSy+9pCI3v/7665hsyJrqpz/9abv7zPA8h0JfLZCeD6TmGC8eeQ5w8nUUNpvBdSshhBBC7IK/Q8zH0VJ089SwEyZMsLUthBBCCCGEEEIIcT5yY/X3v/99fPHFFyryskePHonyBATqgModQNUu46U1rwLLn0qQP0IIIYQQQuzF0aJm89qZZtbRJIQQQgghhBBCCGkPr9eLadOmYf369bjjjjuQnZ1troPcXkB6F0PcrCvbJ2yKqLn7K3N9EUIIIYQQogFJUVOTEGIvDQ0NKgW0IPVlUlJSbLVD9ITz69xx0bkPdrbNSt+J9GW2bTPt6Xzskfjg3Dp7XHTth93tssp/ov3oet5IZL8zMzNx8803q/I4f/jDH/Dwww/D7/fHb9jlATK7At5UI1pThE1fupGKdvVC4PSbzWg+cTB2f685vQ9ca+hnm2sNEg2cW2ePi1P6kcw4OlKzX79+KCoqwttvv42cnMb6EoQQWwiFQuqhix2iJ5xf546Lzn2ws21W+k6kL7Ntm2lP52OPxAfn1tnjoms/7G6XVf4T7UfX80ai+921a1c8+OCDWLt2LX7wgx/Ebe/6hRuxYU8tkJoNpDeW36ktNZ43vrdvmxCNv9ec3geuNfSzzbUGiQbOrbPHxSn9SFZcYalgTwghCSx0LF8zlZWValtSLkmNmVgwyw7RE86vc8dF5z7Y2TYrfSfSl9m2zbRn9fzKOXDOnDnt7jNjxoxW507irO8VO3HKuOjaD7vbZZX/RPvR9bxhx/yuXLkSs2bNwltvvdXqb7Km+ulPf9ru+yXis6xkL64+pSduOfMQFPq3SU+AvD6ANw0Y8UPAlwFsXWwInP5aI5IzPR/oNRYYfLax7XCiXbcmI3Z/rzm9D1xr6Ge7M681iHVwbp09Llb3g79DzIeiJiEkZvilTAghhOyDoiYhhJBYeOf35+PGxxdh+ZaqDouasiYTslI9uP7UXFw71oOsrGzA7QHCISDn0AMb8PiA/uOAoZOBwsFwKly3EkIIIcQu+DvEfBydfpYQQgghhBBCCCFEZ8YfkYUlM0fguUu6oX++JyYbVfVB3PZ2CQY+uBdz/rMT/ppyINgABOqAqp1A+VagbLPxLP+W14N+YF0R8NJ0YNmTErpget8IIYQQQggxE6/dDSCEOJ9gMIhPP/1UbR933HHweDy22iF6wvl17rjo3Ac722al70T6Mtu2mfZ0PvZIfHBunT0uuvbD7nZZ5T/RfnQ9b9g6v/5auN0uXHhMBs4/woW5q1Pxl2WBmEztqgrjmn/X4IFP6nDnhAxMPrq+dVo1P4C6ciNFraSfTc0Blj8F1BQDJ18HdNJ0cqTzfa85vQ9ca+hnm2sNEg2cW2ePi1P6kcxQ1CSEWHKyWLRokdoeM2ZMXBcazLBD9ITz69xx0bkPdrbNSt+J9GW2bTPt6Xzskfjg3Dp7XHTth93tssp/ov3oet6wdX6lzqXgciPF68L/ndQF3zm+G/5ulHuKifUlIUydX4UxH9fjnnMKMW5wNyMlbSgI+KuB+kojWrNyh1FrM6s7sOZVIKMLMPpy07pG9Mbu7zWn94FrDf1sc61BooFz6+xxcUo/khmKmjHw+OOPt/l6QUEB+vfvj+HDh1veJkJ0xu12Y9iwYU3bdtshesL5de646NwHO9tmpe9E+jLbtpn2dD72SHxwbp09Lrr2w+52WeU/0X50PW/YOr8SLVm2xahxKVGU/mpkpvU0xfTSb/047dFvcdZRNbjr/H445rAcIC0HyCwEakuB2hKgrszYWYRNidjsfbyja2wSfb7XnN4HrjX0s821BokGzq2zx8Up/UhmXOGws4smVFRUqOecnBzTbLZ3sEfSuoi4efXVV+Oqq64y1TchOsFCx4QQQsj+58A5c+a0u8+MGTNanTsJIYQkOSufBpbMNSInpe4lXNidcwzmlJzQ7tsefvhhtSaLFrlc8cNjC3H7OX3Rt2ua8aJEbEq0JsJAdk8jFe3hk4DTb4ZT4LqVEEIIIXbB3yHm43gpOi8vT0VQfvPNN6bZDIVCrR6lpaVYvnw55s+fj0cffVRFa15//fXIz8/HTTfdZJpvQgghhBBCCCGEOIhBZxlRmlLjUh4iMNYZN2ibidzS/o/FuzHot0tx7YINKK7yA6nZQHqBsYNEbgob39u3TQghhBBCiEYkRfpZK4JRc3NzMWLECPUQJEJTuOeeezBz5kyVp1kejNokhBBCCCGEEEJIExkFQP9xwLoiIxWtRE7Wlx/0bUd0T0cHAjWbaAiE8eA73+KvH+/EzDN74RfjuiMDJUakqDyEtW8Awy+JoTOEEDMpLy/H22+/3e4+kyZNUtclCSGEkGQgKURNO7nhhhswefJk9QNj6tSpePPNN+1uEiGW09DQgAceeEBtX3vttUhJSbHVDtETzq9zx0XnPtjZNit9J9KX2bbNtKfzsUfig3Pr7HHRtR92t8sq/4n2o+t5w+75xdDJhqgp6V/9tUDtwW/OfuHKI1D0YTluWVSBLeUdv5m7oi6Im/71Df7y3nb8dmIeLj8a8NaVA1lpwJZPKWomAbYf9w7vgxltq6+vx5dfftnuPqeeempCfEcL1xr6HXskPji3zh4Xp/QjmaGoaQFSX1Puqho4cCBeeuklnH/++XY3iRDLkR/iOtkhesL5de646NwHO9tmpe9E+jLbtpn2dD72SHxwbp09Lrr2w+52WeU/0X50PW/YOr+Fg4FRlwHLnwKyugNBETbbf4u78lv86GgXpgzOxpxlDbjjP/UoiUIMbcn28gZMe2E3HvjAg9lnAecdXwhXXVnsfSGdCru/15zeB6419LPNtQaJBs6ts8fFKf1IVlxhK3Kz2ojb7YbL5cKGDRvQt29fW9si0ZrSlrfeesvWdhBidaFj+ZopKSlR21LjVj4HsWCWHaInnF/njovOfbCzbVb6TqQvs22bac/q+ZVz4Jw5c9rdZ8aMGa3OncRZ3yt24pRx0bUfdrfLKv+J9qPrecPu+W1sBPDh/cCaV7Hbn4k5xWPb3X2G5zkUhnYDLjcQCqK8Loi7F7vwx48qUesPxdyME/rn4O5LRuCk37+PZFq3JiNaHPcO7oMZbYv19yXXGom3p/OxR+KDc+vscbG6H/wdYj6M1LSQkSNHYt68eXY3gxDLkZNDly5dtLFD9ITz69xx0bkPdrbNSt+J9GW2bTPt6Xzskfjg3Dp7XHTth93tssp/ov3oet6we34bGwGcfB2Q0QX4dMHB988+BKitBoINStTMzfDhzvN64aeTUvG7f29WNTNDMdzG/t+NFTj5jg9w7v/Ow+zZszFkyJCYukP0R4vj3sF94FpDP9tca5Bo4Nw6e1yc0o9kxm13A5KJjRs3oqyMKVwIIYQQQgghhBByAGFz9OXAhNsOvq8nFfCkGHU40/MBtxfwV+PQ/FTM/eERWH3raHxvWOwX7V555RUcffTRuOKKK7Bt27aY7RBCCCGEEGIWFDUtZMWKFaq+JiHJRjAYxJIlS9RDtu22Q/SE8+vccdG5D3a2zUrfifRltm0z7el87JH44Nw6e1x07Yfd7bLKf6L96HresHt+W1HQ7+D7HDMFOPUGILsnkNnVeK2+UkVtCkf2zMBLM47Cx9cPw4kDcmJqRigUwhNPPIHDDz8cM2fORGlpaUx2iJ5od9w7rA9ca+hnm2sNEg2cW2ePi1P6kcww/axFLFy4UEVqTpw40e6mEGI5coJ444031Pbw4cPh8XhstUP0hPPr3HHRuQ92ts1K34n0ZbZtM+3pfOyR+ODcOntcdO2H3e2yyn+i/eh63rB7fmNi8HeALC/wv/nGv71pQKAOqC3dJ3JKjcwBufjw18Pw2uclmPnSJny5o6bDrurq6nD33Xdj7ty5uOmmm/B///d/SEtLM7M3xAY65XHfifrAtYZ+trnWINHAuXX2uDilH8kMRU0LePHFFzFlyhSVr1nqahKSbLjd7qY6LLJttx2iJ5xf546Lzn2ws21W+k6kL7Ntm2nP6vlNTU09aN0x2Yc4+3vFTpwyLrr2w+52WeU/0X50PW/YPb8xn1MycoH+44B1RUYK2sodQG0J4E0FUrOb9pXrEecc0wVnHVWAv3+6C7e++g2+LWvocLskUvP666/Hn/70J/z+97/HD3/4Q14M7MTodtw7rQ9mtC3W35dcayTens7HHokPzq2zx8Up/UhmXOFwOIay8Z0HOTDlx/uGDRvQt29fy8XMxx57DIsWLYIMs13tICRR7NmzB4WFhfu9tnv3bnTr1s22NhFCCCGEEEJIUrH7K+Cl6cZ21S6grkwu9wDpBUB6nlFrswW1dfX4c9Em3PnOHpTXxX5ZaOjQobjrrrtw9tlnq2seOsJ1KyGEEELsgr9DkjBSU4TBpUuXxm1H0qTk5eUhkZSVlaGkpESlmZX6mREigubkyZMpaBJCCCGEEEIIIcQ8CgcDoy4Dlj8FZHU3XhNhs7bYiNqUiE1fptz1LUUyAX810usrccPxLlw5rCtmfxzAnz8uQ32g4+Lm6tWr8d3vfhennnqquu4yduxY8/tHCCGEEEJIZ4nUnDp1Kl544YVWr0d7B2Cke1beMdh8SMWv/HvAgAFYvnw5cnJyLGsHIYmGd5oQQgghhBBCiAbIdYgP7wfWvGr8u77CqK0pNTYPhNTglJS1qTnYUlKH2/4Twt/eWr7fNY2OcsEFF+APf/gDBg0atO/FmhJg7RvA1sVGm/y1gC/d8N1rLDD4bGM7QXDdSgghhBC74O+QJBQ1I5SXl6soSImAlEhIid6UtK4SHdlctNShO80FVGmP1NF85513kJuba2u7CLHrS9nv9+PPf/6z2v7Zz34Gn88Xkz+z7BA94fw6d1x07oOdbbPSdyJ9mW3bTHs6H3skPji3zh4XXfthd7us8p9oP7qeN+yeX1OQ6yESrSmPCCJq1pUDwQYgHAJcbsCTAqTlGqJmBIn0HHUZPl+9GjfddBNee+21mJshNTavuuoq3HrNxei55z/AxveBoL+dN/iMuqBDJxtRpybDi4nOPu517gPXGvrZ5lqDRAPn1tnjYnU/+DskCdPPRhBBUB79+vXb7/VNmzZhwYIFqoaDCJwtIzKtjtQUfxGfku5W0q/Ij3lCkhn5TFRWVjZt222H6Ann17njonMf7Gyblb4T6cts22ba0/nYI/HBuXX2uOjaD7vbZZX/RPvR9bxh9/yaglz3GH050Pt4YPVCYON7xutZzcTLVmLiacDQC5rExKOPPhqvvvoqPvjgA9x4441YvHhxh5sRDAbx6KOP4u9PzMW1Ew7D9RMPQ44vYKTEFXGzSVz1AWmNZYLWFRmPRnFV9YUkHCcc9zr3gWsN/WxzrUGigXPr7HFxSj+SmU4TqRkNkqZ22rRp+4mbkXqWVkRJFhQUoH///ioyc+LEiRg/fnzCfRJiJ9HeaRIKhdTrguzvllouMWCWHaInnF/njovOfbCzbVb6TqQvs22baU/nY4/EB+fW2eOiaz/sbpdV/hPtR9fzht3zmxAk1aukfd3yqSEoNtQAKRmGkNj7OGDQWe2mfZXrKS+99BJmzZqFr7/+OuZmdM104zfjMjF9TDpSva520+AqjjwHOPk604RNRkg4+7jXuQ9ca+hnm2sNEg2cW2ePi9X94O8Q83GUqBlh+vTpmDdvXlM9S3nesGED+vbta3fTCHEU/FImhBBCCCGEEGcjadqeeOIJ/Pa3v8XOnTtjttOvwIs7vnMoLhrVBW6EAH81UC+REo2XpURszepubEu0pkSdmgDXrYQQQgixC/4OMZ/OKacfhMceewzXX389w4cJIYQQQgghhBBC4kBqTcnN4+vXr8cdd9yB7OzsmOxsKgngB//YjNH3f42ijUEguydQMABI7yL33BvRpFW7jJ2lLujur8ztCCGEEEII6fQ4MlIzwpQpU7Bw4UJGahJi850mUlPl888/b6rR4vF4YvJnlh2iJ5xf546Lzn2ws21W+k6kL7Ntm2lP52OPxAfn1tnjoms/7G6XVf4T7UfX84bd89vZ1oF/+MMf8Mgjj6gozliZMDgPd53fD6P6ZBsRm5U7JOctkJpl1N3M6ALk9QF86UZ62l5jgcFnt5sy90DtZYSEc497nfvAtYZ+trnWINHAuXX2uFjdD/4OMR8vHMw999yjRE1CiP0ni5dfflltDxkyJK4LDWbYIXrC+XXuuOjcBzvbZqXvRPoy27aZ9nQ+9kh8cG6dPS669sPudlnlP9F+dD1v2D2/nQm5CPfHP/4Rv/jFL/Cb3/wGTz/9dEx2Fn1VhtGzV+LiMd1wx3d6on+KB2ioBmoaAG8KUF4LeFIAtxco2wLsWAUsfxLoPw4YOhkoHGx635INJxz3OveBaw39bHOtQaKBc+vscXFKP5IZR4ua/fr1wwUXXIAXX3zR7qYQktRIweXDDz+8adtuO0RPOL/OHRed+2Bn26z0nUhfZts2057Oxx6JD86ts8dF137Y3S6r/Cfaj67nDbvnt7Nec/nnP/+J6667DjOvuRRvf2pEPXSUZ5fuwQsr9uDqMem45SQfCjNdQLDB+GPJRiNS0+Mzam4K64qMh9TdlIfLZWKvkgsnHPc694FrDf1sc61BooFz6+xxcUo/khlHp58V5s2bh6uvvprpZwlJAAyfJ4QQQgghhBCCV36ORe++jxtf+Borvq2P2UxWCnDDCan41fEpyEqVC41uI2ozgjfNSD+bmmP8+8hzgJOva1fY5LqVEEIIIXbB3yHm43gpevTo0XC4bksIIYQQQgghhBBiH7WlmHBkPpb+X088OzUX/bs0EyI7QFUDcOv79Rj4pyrMWRaA350GZPU0REy5tNNQBZRuBvZ8BZRsAP77J+DJs4CVT6s2EEIIIYQQZ+Po9LPCiBEjUFpaitzcXLubQgghhBBCHIzcbTlnzpx295kxY0aruzQJIYSQTn9O8deqJ7crjIuOScP3j+uPuYsrcPvrW7Cn0t9hc7uqw7jmtWo8+Ekd7jwvExcMbgzGDMlfw0CwHggFAY8X2PGZIWiy3iZxIJWVlfjPf/7T7j6nnHIKsrOzLWsTIYQQYieOFzUFCpqE2Ivf78ejjz6qtiUdtM/ns9UO0RPOr3PHRec+2Nk2K30n0pfZts20p/OxR+KDc+vscdG1H3a3yyr/ifaj63nD7vnt9EjdS8FlJARLcYfxf6cdikuP7477irbh/kXbUF2vFMkOsa44iClPrMexh3lx96RsjOvnBYIhICwPPxAOGj6r9xipaVlvM+mOe537YEbbamtrsWzZsnb3GTNmTCtRk2uNxNvT+dgj8cG5dfa4OKUfyUxSiJqEEHuRFNAlJSVN23bbIXrC+XXuuOjcBzvbZqXvRPoy27aZ9nQ+9kh8cG6dPS669sPudlnlP9F+dD1v2D2/nR6pc1m2BfD4AAnM9FcDaTnITvPid+f0xYxTDsHvX9+MuR/uRCDU8fFdsi2A054oxVkDvbhrQhqO6e4xIjZF3JRnidSUyM2MAiNV7fKngJpio94mcfRxr3MfuNbQzzbXGiQaOLfOHhen9COZcYU5c4SQBBc6DoVC2LZtm9o+7LDD4HbHVs7XLDtETzi/zh0XnftgZ9us9J1IX2bbNtOe1fPb6VIFdmJ0/l6xE6eMi679sLtdVvlPtB9dzxt2z2+nP6dITcslc4FAHVC2WS43AQUDALeIj/tYt6sWN7+4FgtWVcTsSoIvf3RMKm4fl4I+eS7A1Shwur2Gv7Q8IKu7sfOoy7Cnz3ejWrcmI7od907rgxlti/W7gGuNxNvT+dgj8cG5dfa4WN2PaK+fk+ihqGkB5eXlmDp1KlwuF9588027m0OIafBLmRBCCOnEF6AJIYRoS6c7p9SUAM9MBYJ+Q9QUcTO9C5DZtfW+5VuxZFM5bnyzAu9/E4jZZYoH+L9jU3DTKZnokuXbJ27Ko5mwuefk2Sg86sT93st1K+ksdLrvAkIIIfvB6+fm0znl9E6GhDMXFRVh6dKldjeFEEIIIYQQQgghxFwk7Wv/cftS0Qq1JUB9Zet9QwEce5gP716Whdd/kIGjVSrZjtMQBB74pAEDHirDXf+pQU3QDWT3NKJE68qA+sZo0K9ei7lbhBBCCCFELyhqWkBZWZndTSDE9rD+L774Qj1k2247RE84v84dF537YGfbrPSdSF9m2zbTns7HHokPzq2zx0XXftjdLqv8J9qPrucNu+fXEQydbDxLTUuJlJSIycodQPVeJWQ2oepgivToUjUyV07Pwd/PT0fvXFdMbsvrwphVVIUj7t+Bvy6rQiAlIqqWGs+bP4qzY87FCce9zn3gWkM/21xrkGjg3Dp7XJzSj2SGoqYFbNy4UT0XFBTY3RRCbCEQCOCFF15QD9m22w7RE86vc8dF5z7Y2TYrfSfSl9m2zbSn87FH4oNz6+xx0bUfdrfLKv+J9qPrecPu+XUEhYNVDUuFpH6NCJu1xUDJRkPgrKswRM1QsEnc9LhC+NGwFKz9WR7uPyMDBemxiZvfVoRw5T/W4ZgHvsHLa+oR9tcaaXAlJS5x7HGvcx+41tDPNtcaJBo4t84eF6f0I5nx2t2AZOCxxx6zuwmE2IrUk+3Tp0/Ttt12iJ5wfp07Ljr3wc62Wek7kb7Mtm2mPZ2PPRIfnFtnj4uu/bC7XVb5T7QfXc8bds9vS3JycjB58uSD7qMdImrWFANrXjWETV+6ETEp4qKkg5VHsKFR0JT6l424fUhL8+Da44GfjEjBPR/V4Y+f1qE2hmuNa3bW4ntP1+LE3j7cfU4qjuh7qKlddBK6HfdO64MZbfP5fE022tsnEb6jhWsN/Y49Eh+cW2ePi1P6kcy4wuFws1+R+vDZZ59h9uzZKspxzJgxuOuuuzr8g/3CCy+E3Wlnly1bpp5lmAcMGIB169bZ2iZCzISFjgkhhJD9z4Fz5sxpd58ZM2a0OncSQgghjkIuMy1/ynhEEFGzrtwQNCWCMlhv1L6UiE25oOhJVf80dM6wiq78tiKA337QgCdW1CMUx5WrM4/Kx5tfNKaibYTrVkIIIYRYAa+fJ0mk5sqVKzF69Oimf69YsQLz589XAmdHhM2ioiKUl5fDTjTVjAkhhBBCCCGEEELMR0TK0ZcDvY8HVi8ENr5nvJ6VZjyLkFmywRAv1TWTEOD2AjmHApXfNtXfPDTHjXnnZePaE7NwU1EV/rVGhNCO01LQJIQQQgghnRcta2peddVVSgyMCILyXFpaipkzZ3bITv/+/ZvsNH9YiYQwM4yZEEIIIYQQQgghSVdj8/SbgR8sAMZOB3oOA/L7ANk9gNzDAG8GkFFgRGmGg0DID7haX6Y6stCLl36Qh4+n5auUsmZg9w3whBBCCCHEQZGaEpnZXAiMbC9durRDdgoKCvZ7v2C1sElBkxDA7/fjr3/9q9q+4oor2qz3YKUdoiecX+eOi859sLNtVvpOpC+zbZtpT+djj8QH59bZ46JrP+xul1X+E+1H1/OG3fPraNLzgeGXGI8Iu78CXppubFftAurKgModRkpauWYj11Lk0o2qvelRu53Qy4cPf5KNV7+qx8xFtVizV/4WG5Id7De/+Q1++tOfIi2tMYI0CXHCca9zH7jW0M821xokGji3zh4Xp/QjmdFS1BwxYoSqqRlBREgRB5unpI02UrO5DWHChAnq9by8PCQSqaNZUlKCRYsWqW1Ckhn5/O3atatp2247RE84v84dF537YGfbrPSdSF9m2zbTns7HHokPzq2zx0XXftjdLqv8J9qPrucNu+c3KaM4R11m1N3M6m68JsKmRGtKelolbspkNG6rVLUhuBDGuYO9OPuIPPz98wBufacK31aEYorU/PWvf40//elP+P3vf48f/OAH8HgM8TSZcMJxr3MfuNbQzzbXGiQaOLfOHhen9COZcYU1nDkRAidNmtQU5RgRNTds2IC+fftGbefee+/FjTfeqN4rQubbb7+Nfv36wWomTpyId955BwMGDMC6dess90+I3YWOQ6EQNm3apLblM+h2x5b52iw7RE84v84dF537YGfbrPSdSF9m2zbTntXzK+fAOXPmtLvPjBkzWp07ibO+V+zEKeOiaz/sbpdV/hPtR9fzht3zm5TI5agP7wfWvGr8u74CqCk2niN/j9CUBcsNuD3GA0CNOwd/XhrA7De3oLxWBNDYOProo3HXXXfhrLPOSqqMW0447nXuA9ca+tnuzGsNYh2cW2ePi9X9iPb6OenkomZE2BRBUg4widC8++67VQRnR5g3bx6mT5+ufpAuWLAA3//+92EHCxcuxJQpUyhqEsfBL2VCCCFkHxQ1CSGEkA4il6QkWlMeEcq3AnUVRpSmSj8rV688gMfXTNwEkNEVyOiiNkuq/bjzja3483vfoiEY+2WucePGqetPxx57bOx9IoQQQghphNfPzUdbOV3SxC5fvlylcJUIy44Kmi3Tz44cOdLkFna8HdIXQgghhBBCCCGEENIYgTn6cuD8x4DDJxnCZUY3wOMFvKmA29soZIaMtLSiV6bmAHl9mgRNoSDdhfvOysHXv+yKS0ek7ad9doT3338fY8eOVTemf/311+b1kxBCCCGEOFvUNIOCgoI2t60m0fU7CekMYf2yIJSHbNtth+gJ59e546JzH+xsm5W+E+nLbNtm2tP52CPxwbl19rjo2g+722WV/0T70fW8Yff8Jj1SY/P0m4EfLABO+gXQczjgSQF86YAnFXC5DXEzolYGGoCGKiOis3IHULIRqC1Gn3w3nvpBH6y6ZRTOHhr7daAXXngBQ4YMURkWduzYAafihONe5z5wraGfba41SDRwbp09Lk7pRzLjaFFTIiQlL7IddTTboqyszO4mEGILgUAAzz77rHrItt12iJ5wfp07Ljr3wc62Wek7kb7Mtm2mPZ2PPRIfnFtnj4uu/bC7XVb5T7QfXc8bds8vaSQ9Hxh+CXD5G8AJPwcKBgDdBhuRmSmZkq/WqLlZtQOo+NZ4VjU4w4A3DcjuCWR1x9GHZuLfD8/Ce+++G1PmLyEYDOLRRx/FwIEDceutt6KiorHWp4NwwnGvcx+41tDPNtcaJBo4t84eF6f0I5nxwsHk5uZiw4YNdjdDiao6tIMQu5C6toccckjTtt12iJ5wfp07Ljr3wc62Wek7kb7Mtm2mPZ2PPRIfnFtnj4uu/bC7XVb5T7QfXc8bds8vaYHMwcnXGSlmpd6mpJyVR6AOqCsHgg1GvU2J4JSIzrRcQ9SMMOoy9RjncuHNN99E9+7dY25KTU0Nfv/736u62b/5zW9w9dVXIyUlBU7ACce9zn3gWkM/21xrkGjg3Dp7XJzSj2TGFQ5LVXZCCOk4LHRMCCGE7H8OlAue7SFp7FqeOwkhhBDSDru/AlYvBDa+BwT9B95P6nH2Pw0YeoGRzraddWu8N67/4Q9/wIUXXgi329EJ0AghhBASJ7x+bj6OjtQkhBBCCCGEEEII6WzU1dUdNOPTgAEDkJbWLDrR6fU2j78GWPsGsOVToK4MaKgBUjKAtDyg93HAoLOM9LVRMHPmTDz88MOorKzscHM2bdqESy65BPfeey/uvvtuTJw4MYZOEUIIIYSQWKCoSQghhBBCCCGEEKIRUr/xhRdeOGj0f1KImi3rbcojTq699lr1uOOOO1SWBb+/nQjQA7By5UpMmjRJiZp33XUXRo4cGXe7CGlJdXU1li5d2u4+Y8aMQWam1JwlhBBCnA9FTUJIwpEF4j/+8Q+1/aMf/Qg+n89WO0RPOL/OHRed+2Bn26z0nUhfZts2057Oxx6JD86ts8dF137Y3S6r/Cfaj67nDbvnl1iPpH176KGH8Itf/ELVynzmmWdislNUVKQeF198sRJJ+/fvj86CE457nftgRttE1Pzggw/a3WfIkCGtRE2uNRJvT+djj8QH59bZ4+KUfiQzFDUtQFKTSFoYqbUQCATsbg4hliOle7du3dq0bbcdoiecX+eOi859sLNtVvpOpC+zbZtpT+djj8QH59bZ46JrP+xul1X+E+1H1/OG3fNL7ENEyKeffhrXXXcdZs2ahbfffjsmO88++6yKrpUI2ltuuaVT1MpywnGvcx+41tDPNtcaJBo4t84eF6f0I5mhqGkhubm5djeBEFvwer248MILm7bttkP0hPPr3HHRuQ92ts1K34n0ZbZtM+3pfOyR+ODcOntcdO2H3e2yyn+i/eh63rB7fon9SPrYt956C4sWLcKNN96IFStWxBT98ac//QlPPvkkrr/+evzqV79CVlYWdMUJx73OfeBaQz/bXGuQaODcOntcnNKPZMYVphydcKTOwqhRo5Cfn4/i4mK7m0OIaezZsweFhYX7vbZ79+5OcUcqIYQQYjZyDpS6XO0h0Rstz52EEEJIS3hOsXfdGgqFMH/+fNx8883YuHFjzL67d++O3/72t7jiiivg81cCa98Ati4GaksBfy3gSzdqhfYaCww+29gmpBn8LiCEkM4Nr5+bjzsBNkkLIj+ACwoK7G4KIYQQQgghhBBCCGkHKR900UUXYc2aNSrysmvXrjHZ2bVrlxKcjurXEy9cdyrCix8DdqwCyrYA1XuMZ/n3krnA01OAd+8Adn9len8IIYQQQpwCRU0LeP755+1uAiG2Ine5fvPNN+oh23bbIXrC+XXuuOjcBzvbZqXvRPoy27aZ9nQ+9kh8cG6dPS669sPudlnlP9F+dD1v2D2/RE9SUlLws5/9DBs2bMCtt96KzMzMmOys+7YYUx5djePuWoEPVm0EyrcCZZuN56qdQKAOCPqBdUXAS9OBZU9KoS8kGicc9zr3gWsN/WxzrUGigXPr7HFxSj+SmaROGiwHbllZmYqkLCkpMd2+2C4qKlL1GAhJZgKBAP72t7+p7VmzZqmFoZ12iJ5wfp07Ljr3wc62Wek7kb7Mtm2mPZ2PPRIfnFtnj4uu/bC7XVb5T7QfXc8bds8v0ZucnBz87ne/U1GXt99+O+bOnYtgMNhhO0s2V2PcnGqcfUQKZk/KwjE9fIAfQF054E0z0s+m5gDLnwJqioGTrwNcLiQKJxz3OveBaw39bHOtQaKBc+vscXFKP5KZpBM177vvPhU5GUvB91hh2VKS7LhcrqY84bJttx2iJ5xf546Lzn2ws21W+k6kL7Ntm2nP6vn1er0HrYsh+xBnf6/YiVPGRdd+2N0uq/wn2o+u5w2755d0Dnr06IFHHnkEv/zlL3HLLbdgwYIFMdl5/esGvLGuBD8enY/bJ+aid0adEa1ZucOotZnVHVjzKpDRBRh9uen9cNJxr3MfzGhbrL8vudZIvD2djz0SH5xbZ4+LU/qRzLjCSaK4vfvuu5gyZYqKnrS6y/LhEJ8DBgzAunXrLPVNSCJhoWNCCCGEEEIIMR9ZV82ZM6fdfSRqsOV6jFi7bl2yZAluuOEGfPDBBzHbSPW68H+n9sSsU7PQxV0ht8YDaXmGsCmc/xhQODjuthJCCCHEenj93HySoqbmvHnzMHHiRJSWlipxUURGKx+EEEIIIYQQQgghxFkce+yxeO+99/D666/j6KOPjslGfSCM+9/ZjgGzN+DuxW7UqnS0ZUC9CJwAVi80t9GEEEIIIZ0Yx4uaK1euxPTp0/cTM2XbygchhBBCCCGEEEIIcR5ynemss85S15/+Nvdh9C5Ii8lOeW0QM1/djsP/WIy/LqtFoKrE+MPG94DaUnMbTQghhBDSSXF8UR9JOStExMz+/ftj8uTJKnJTtgsKCpCbm5sQ3+Xl5SgqKsK0adNU2ltCkhW/34/nnntObV900UXw+Xy22iF6wvl17rjo3Ac722al70T6Mtu2mfZ0PvZIfHBunT0uuvbD7nZZ5T/RfnQ9b9g9v6Tz4/F48OPRuZj6u9F45N3N+MOb21BS2/Eb3b8tD+DKf1Xggf9WY/b3UnHOiB5wrX0DGH6J6W12wnGvcx+41tDPNtcaJBo4t84eF6f0I5lxtKgpd8lt3LhRCZr9+vVTBdxHjBhhmX8RS0VAlTbMnDnTMr+E6IbcUCCfg8i23XaInnB+nTsuOvfBzrZZ6TuRvsy2baY9nY89Eh+cW2ePi679sLtdVvlPtB9dzxt2zy9xCFsXI83nxrUnpuMnQ7ri7v8G8MePylHnD3XY1Je7gzhv7jqcOGAX7r7qRZyYAFHTCce9zn3gWkM/21xrkGjg3Dp7XJzSj2TG0aLm888/r55HjhyJpUuX2taOUaNGqeeSksbUIYQkGV6vF+eff37Ttt12iJ5wfp07Ljr3wc62Wek7kb7Mtm2mPZ2PPRIfnFtnj4uu/bC7XVb5T7QfXc8bds8vcQiRNLFBP/LS3Zh9Xh/836RU/Pa1zXjivzsRiuHa6ccbKnDSzIU475PvYfbs2TiyT3dAIje3Ljb8+WsBXzqQng/0GgsMPtvYTpLjXuc+cK2hn22uNUg0cG6dPS5O6Ucy4wo7WI6eNGkS3nnnHWzYsAF9+/a1NWJUhM38/HwUFxfb1g5CzGbPnj0oLCzc77Xdu3ejW7dutrWJEEIIIYQQQjo7sq6aM2dOu/vMmDGj1XqM2Lxu/edkoHoPULYZCNQBOYcBKZnqT2t21GDWvzbh5VWxXxdyu134yYk98duze+HQ/NS2d/L4gP7jgKGTgcLBMfsihBBCSPzw+rn5uOFgJIx4woQJtgqaQl5ennpmXU1CCCGEEEIIIYQQhyIRk4Kr8XJbKNj0pyN7ZuBfM47CR78ehhP658RkPhQK4/EPt2PgrUswa/7nKNv5jSGglm8FqnYaQmrQD6wrAl6aDix7UnLrmdI1QgghhBAdcHR8raR7vfrqq+1uBgoKCnDBBReo2p6EJCOhUAg7duxQ2z179oTb7bbVDtETzq9zx0XnPtjZNit9J9KX2bbNtKfzsUfig3Pr7HHRtR92t8sq/4n2o+t5w+75JQ5B0r6WbTGiJf0A/NVA2v4C5okDc/HR9cPw6v9KMPOlTVizs6bDbur8Ydz1binmflKGm8dl4ppjM5DmcwF15YA3zWhHag6w/Cmgphg4+TqgjWtSTjjude4D1xr62eZag0QD59bZ4+KUfiQzjp4xiYzs37+/3c1Abm4uFixYgPnz59vdFEJsIRAI4PHHH1cP2bbbDtETzq9zx0XnPtjZNit9J9KX2bbNtKfzsUfig3Pr7HHRtR92t8sq/4n2o+t5w+75JQ5BaloKaUbGLtRX7hetGUFuej93WBf87zej8PiPDschuSkxuSupDeO6N6ow6E+l+PvnQDAkB3MdULkDqNpl7LTmVUPcdOhxr3MfuNbQzzbXGiQaOLfOHhen9COZcXSkpgiaEq1JCLEXWbCJuB/ZttsO0RPOr3PHRec+2Nk2K30n0pfZts20p/OxR+KDc+vscdG1H3a3yyr/ifaj63nD7vklDmHQWcDyJ41tiZgUgbG2FMjs2ubuXo8LV5zYExePKcSf3v0Wd721FeW1rUXQg7Gl1I9Ln9+F+w/NwF1ndcGZfRrgqmssgZTV3RA1ex/fqsamE457nfvAtYZ+trnWINHAuXX2uDilH8mMKxx2bnL9SZMmYdSoUZg9e7bdTSHEkbDQMSGEEEIIIYSYj6yr5syZ0+4+M2bMaLUeIxqsW9+9w6hpWV9hREzCBWT3BFKzD/rW4pJSzP73Bvz50xo0dFzbbGLcwCzcMyEVYw7zNvrOAQ6fBJx+c+xGCSGEENJheP3cfBydfnbChAl44YUX7G4GIYQQQgghhBBCCEkGhk42nkVIVGlow4a4Wb0XCB0gzZ28Xr0XXUJ7cN9Z2fj6xr748fC0tspgRsX766tw7KPFmPpcGdZt3W28uPE9I2qUEEIIIaQT4+j0s5MnT8bMmTOxatUqDBs2zO7mEEIIIYQQByNlD5577rl297noootQUFBgWZsIIYQQYjGS4nXUZUbKV0n9Kkgq2NpioLbEiNj0ZQJuNxAKAf5qo/amiJ9CWh76ZHjxt8m5uO607pj17x14/euGmJqyYHU9XvpyO646MYBbv9sfPda+AQy/xMTOkkRTW1uLzz//vN19jj76aKSnp1vWJkIIIcROHF9T84ILLsBVV12FJUuW2NoWKTwrXHnllba2gxA7kKLLkahpudnA6/XaaofoCefXueOicx/sbJuVvhPpy2zbZtqzen7Fn6SWOdg+xNnfK3bilHHRtR92t8sq/4n2o+t5w+75JQ5DRM2aYmDNq4aw6Us3oiSlxqakpZVHS6QGZ3q+EeFZvlWJm8ccEsK/f5yP97d5ceObFVjyjYifHSMQAuZ8uBt/X7IX1634I3497xxkZ2c75rjXuQ9mtK2yshJvvPFGu/v07du3lajJtUbi7el87JH44Nw6e1yc0o9kxvEzNm/ePCVu3nTTTbjzzjttacOmTZswbdo0uN1uipokKQmFQli7dm3Ttt12iJ5wfp07Ljr3wc62Wek7kb7Mtm2mPZ2PPRIfnFtnj4uu/bC7XVb5T7QfXc8bds8vcRiSN/bk64CMLkbEpgiV8hBRs64cCDYA4RDgcgOeFCAt1xA1I+QcatTirNim/jlucDd8Oqw/Fq7Yi5te/gbrdtd2uEnV9SHc/vxSzHl3AH7zm99g+vTp6vXOftzr/NnlWkM/21xrkGjg3Dp7XJzSj2TG8aJmXl4e5s+fj0mTJqFLly647rrrbGtLbm6ubb4JsROPx4Pvfve7Tdt22yF6wvl17rjo3Ac722al70T6Mtu2mfZ0PvZIfHBunT0uuvbD7nZZ5T/RfnQ9b9g9v8Shwuboy4HexwOrFxo1LYWsZuJlczw+oP9pwNALgLdvAar3GMKn4PbA5XJh8qhuOG94F/z145347WubsavC3+FmSVaJn//85/jjH/+I3//+9zj77LPVTfid9bjX+bPLtYZ+trnWINHAuXX2uDilH8mMKxwONybtdzYrVqzAhAkTlLgp0ZuRVBtWsHLlSowaNQr5+fkoLi62zC8hiUYWQ4WFhfu9tnv3bnTr1s22NhFCCCF2IefAOXPmtLvPjBkzWp07CSGEkJbwnOLAdaukn5Walls+NWpsNtQAKRkqzSx6HwcMOstIPys8/yOgbIuRhtZfA2T1BNJy9jNXVRfEg+9swz1vb0NVfTDmZo0cORJ33303Jpww0mjf1sVGW/21RtpcaVOvscDgs/e1j1gGvwsIIaRzo83vEAfh+EjN5j/SNm7ciPHjx6tc8/fccw+uuOIKS3wvW7ZMPRcUFFjijxBCCCGEEEIIIYRohAiCwy8xHtHsK6KmRG9KMKa/upWomZXmwW++0wfTT+6JP7yxBXP+swP+YDimIICJEydi0pAC3PW9vhjRO2v/HaQdO1YBy58E+o8Dhk4GCgd32A8hhBBCiBm4kURIKtrly5dj9uzZuP7661V48TXXXIMXX3wRFRVtFGk3gW+++Ubd8UZIMiMB4XIHijziCQ43yw7RE86vc8dF5z7Y2TYrfSfSl9m2zbSn87FH4oNz6+xx0bUfdrfLKv+J9qPrecPu+SVkPyQyUpAoTqG+Egi1HY1ZmJOChy4ciDW/HY2Lx8Qe9fH2lyUYeecK/OCxldi0aSNQttmIFK3aadQCDfqBdUXAS9OBZU/KhwY6oPNnl2sN/WxzrUGigXPr7HFxSj+SGUdHas6aNeuAf5s2bRrmzp2Lxx57TD0i9O/fX4mfZlBWVqaiQwlJdvx+f1O6FPlcpqSk2GqH6Ann17njonMf7Gyblb4T6cts22ba0/nYI/HBuXX2uOjaD7vbZZX/RPvR9bxh9/wSsh+SilYiIwVvmiEqSkrYzK4HfMuAbul45ooj8euJh+HGFzdh0VdlMbl+ZmUlFvyvEtccm4Gbx2WiW6YbqCs32iERpKk5wPKngJpi4OTrjNqhNqLzZ5drDf1sc61BooFz6+xxcUo/khlHi5oiVpaXl7e7T0s1fsOGDQluFSHJSUZGhlZ2iJ5wfp07Ljr3wc62Wek7kb7Mtm2mPZ2PPRIfnFtnj4uu/bC7XVb5T7QfXc8bds8vIU1kFBipXiUyUoTEyh1AbQngTQVSs9t968je2Sia0Q9FK7/BjW9VYuWOQIfd+4PAQ5/U4IkVdbhhXD5+NdaDTNQZ7ZBam1ndgTWvAhldgNGXw250/uzG2za3231QG7JPInx3BK41iNPg3Dp7XJzSj2TFFXZwjO3o0aNVbYAD4bLwbjIZ5gEDBmDdunWW+SQk0bDQMSGEELL/OTByx+eBmDFjRqtzJyGEENISnlPMo9OuW3d/ZaR6Fap2AXUSeekC0guA9DzA3UacQigA1JYZAijCCKXk4vm1btz88jfYtLcu5qb0yPHht5O64idHh+DzNKbFFWFTOP8x1tgkhBBCnPY7RGMcXVOzoKCgSbxs/mguNCb6QQghhBBCCCGEEEJIhxChcNRlxrYIiKq+ZhioLQZKNhpRk3UVQEOV8Sz/ltfl77JfWh7cOT1w8ZhCrHn5ITz00EPo2vXA6WvbY2eFH1e/sANDHy7Dwi/qEZZUuPUVxh9XLzSx04QQQgghSZx+VupjNkdERnlt5MiRlviXmprLli1Tz4QQQgghhBBCCCGERI2ImlK7UlK9irDpSzdqa0qNTREVI8Jic5rXvhSOPAepx1+Fn5/gwmVTz8V9V52G+9/egpqGUIeb8/Xuekx+th5jD/PhnrNdOGVkDrDxPeD4awyfhBBCCCEJxtGiZl5eXpOYmZ+fj/nz52P8+PGWtkEEzQkTJrSbBpcQpxMIBPDKK6+o7XPPPRder9dWO0RPOL/OHRed+2Bn26z0nUhfZts2057Oxx6JD86ts8dF137Y3S6r/Cfaj67nDbvnl5A2kWxjJ19n1K5c/pQhVMpDRM26ciDYAIRDgMsNeFKAtFxD1GwuisqjMWtZzo6Pcft3e2PG8Xm4/eW1mLesFsGOa5tYvM2PU+fuwneOqsPs7w/E0WvfAIZfAjvQ+bPLtYZ+trnWINHAuXX2uDilH8mMo9PPSg1LQVLOzpo1y3JBMyKsTp/eWAOBkCQlFArh888/Vw/ZttsO0RPOr3PHRec+2Nk2K30n0pfZts20p/OxR+KDc+vscdG1H3a3yyr/ifaj63nD7vkl5ICIIDn6cqN25eGTAI/PEC4lcjO3F5DXx3iWf8vr8nfZT/aX9zUrw4Sti9VTz9QazDk3B59d1x9DhgyJuWn//qIcw+5Yjsuu+z22bNkCO9D5s8u1hn62udYg0cC5dfa4OKUfyYw3GWpqChItaRejR49WzyUlUqidkOTD4/HgjDPOaNq22w7RE86vc8dF5z7Y2TYrfSfSl9m2zbSn87FH4oNz6+xx0bUfdrfLKv+J9qPrecPu+SUkqhqbp99spHqVyMgtnwJ1ZUBDDZCSYdTc7H0cMOisA6eCldS1QtCvno48JBd/veJIfLH5MPztjcX4cF15h5sVDgN/e/crPHfEEfjZz36mggqaX49LNDp/drnW0M821xokGji3zh4Xp/QjmXGFJTerQ1m5ciVGjRqlIjU3bNiAvn372tKOTZs2qahRSYFbXCwF2wlxBnv27EFhYeF+r+3evRvdunWzrU2EEEKIXcg5cM6cOe3uM2PGjFbnTkIIIaQlPKeYB9etzfjnZKB6D1C22Uhhm3MYkJKp/iSXB99YXYobX9qI1dtrYnaRm5urhM2f//znSE9PN7HxhBBCSOeDv0PMx50MNTV1QeprEkIIIYQQQgghhBBiOb5GkVFqcAqhYNOfJCDg7KML8Nkto/DUpUegV35qTC7Ky8sxc+ZMHH744XjiiSdU7TJCCCGEELNwtKjZr18/FBUV4e2337YtSrNlOwhJRuSOTxH15RFPcLhZdoiecH6dOy4698HOtlnpO5G+zLZtpj2djz0SH5xbZ4+Lrv2wu11W+U+0H13PG3bPLyGWEElLK3U35bhvqEZZIE09Ioe9x+3Cpcf3wNe3j8F9F/RHfkZslau+/fZbXHHFFRg2bBheeeWVhH2udP7scq2hn22uNUg0cG6dPS5O6Ucy42hRUxg/frx62I0u7SDEDvx+Px566CH1kG277RA94fw6d1x07oOdbbPSdyJ9mW3bTHs6H3skPji3zh4XXfthd7us8p9oP7qeN+yeX0IsoddY41nqb8pxX1+Lh/aeoB7+8P6XCNN8blw38TBsvONYzDyjl/p3LHz55Zc477zzcMopp+C///0vzEbnzy7XGvrZ5lqDRAPn1tnj4pR+JDOOFzUJIXrg8/nUQxc7RE84v84dF537YGfbrPSdSF9m2zbTns7HHokPzq2zx0XXftjdLqv8J9qPrucNu+eXkIQz6CwjStObZjwQhg8B+Fz70tC2JC/Di9nn98O628fgihN7wO2KzfVHH32EE088Eeeffz7WrFkDM9H5s8u1hn62udYg0cC5dfa4OKUfyYornAQxtp999hlKSkpw+umn290UQhwFCx0TQggh+58D58yZ0+4+M2bMaHXuJIQQQlrCc4p5cN3agnfvANYVAfUVQOUOuTQIZPcEUrMP/t76Sny5YStuKqrEy2vqY26C2+3GT37yE/z2t7/FoYceGrMdQgghRHf4O8R8HB+pecYZZ2DUqFGYOHEijjjiCOhGRUWFEl3fffddfPPNN3Y3hxBCCCGEEEIIIYQ4laGTjefUnMY0tGFD3KzeC4QCbb9HXpe/V+7AkEIP/nVFX3z462E4oX9OTE0IhUJ4/PHHcfjhh+Omm25Sdc0IIYQQQpDsoubMmTNRVFSktiUgdcOGDUpEtBtpw6xZs9ClSxfk5+c3ia4DBgyAx+PBNddco0U7CSGEEEIIIYQQQoiDKBwMjLrM2M7qvk/YrC0GSjYaAmddBdBQZTzLv+V1+bvsJ/tndcdJA3Px0XMP4l//+hcGDx4cU1Nqa2sxe/ZsdT3sgQceQH197NGfTqWurg5ffPFFuw/ZhxBCCEkWvHAwL7zwAkaOHIkVK1aof0+YMAE5ObHdRWYW9957rxJbhQNl/n3ssccwd+5cJciedtppFreQEPMJBAJ4/fXX1fbZZ58Nr9drqx2iJ5xf546Lzn2ws21W+k6kL7Ntm2lP52OPxAfn1tnjoms/7G6XVf4T7UfX84bd80uIpYioWVOMwJev4fXgqYC7AWe7PoA3WGOkpZVHS6QGZ3q+EeEpHHkOXKMvx3kuF77zne/gqaeewm233Ybt27d3uDlSMuq6667Dn/70J/z+97/HJZdcom767+yfXTPaJkEPcn3zYKmo09LSTPcdLVxr6Hfskfjg3Dp7XJzSj2TG0ZGaGzduVGksJEJTBMK33nrL1vbIjwwRNCNipsvVdnV1+buk4hAR9qWXXrK4lYSYjxzPK1euVA/ZttsO0RPOr3PHRec+2Nk2K30n0pfZts20p/OxR+KDc+vscdG1H3a3yyr/ifaj63nD7vklxFLketTJ1yE0/EdYWXsIVjb0RSi3D5DXx4jE9GUYIqY8y7/ldXlEBE0RRU++zrAjeqfXiyuvvBLr1q1TkZe5ubkxNWvz5s348Y9/rAIU3nzzzQMGA3SWzy7XGvrZ5lqDRAPn1tnj4pR+JDOOlqHz8vLU3V79+vVTDzuRdLMSgRkRM+WHWf/+/XHjjTdi9OjRalvaunz5ctx1110qulT2mTx5shJn+/TpY2v7CYkHucMyEnUc7d2WibRD9ITz69xx0bkPdrbNSt+J9GW2bTPt6Xzskfjg3Dp7XHTth93tssp/ov3oet6we34JsRyXC54xl+G00peBXV/A4/cCoTQga/+IvyY8PqD/acDQC4wUtm2QkZGhbua/6qqrcOedd+Ivf/kLGhoaOty0//3vfzjrrLPUZ/Luu+/GmDFjOuVnl2sN/WxzrUGigXPr7HFxSj+SGVc4mtueOikiFsoPnzlz5tjajk2bNqn6ABExU55FuLz++usP+J577rlH/RCUfaXm5pIlSyxtMyHRsGfPHhQWFu732u7du9GtWzfb2kQIIYTYhZwDD/a7UzJ3tDx3EkIIIS3hOcU8nLxuLatpQNGXu7BiSynKavyo9QeR7vMgL8OHkb3zMWlID+Rm+KIzVlsKrH0D2PIpUFcGNNQAKY2Rmr2PAwadZaSf7WDk5a233op//OMfUUVdHogpU6bgD3/4Aw4//HAkG/wuIISQzo2Tf4fYhaMjNcePH48XX3zR7maoaEwhImjecMMN7Qqaguwj0ZtTp05V0Zt//etfccUVV1jUYkIIIYQQQgghhBCiI+t2VeKVVdvx0fq9CARbi4XbSmux+tsKPLNkC04a2BXnDjsEh3fPbt+oCJbDLzEeJiFZx/72t7+peply4/4bb7wRk50FCxao8kzTpk1TImn37t1NayMhhBBCOheOrqk5ffp0VU9z1apVtkZpSkHvSP1MESqlvkA0SOpZiegUMVTSbRDSWZFjuLq6Wj3iuTvTLDtETzi/zh0XnftgZ9us9J1IX2bbNtOezsceiQ/OrbPHRdd+2N0uq/wn2o+u5w2755d0rujIBcu2YtaL/8OMfy7HZU8uUc/yb3m9vMafMN9ybD6zeAuunb8K76/dowTNOn8Quyvq8G1pDbaW1Khn+be8Ln+X/WR/eV/LY9uq4/6YY47B66+/jnfffbfdVLLtEQgE8Mgjj6hMaLfddhsqKyu1/+xyraGfba41SDRwbp09Lk7pRzLjaFFTBESJ1oxESrbkm2++UbUuzzjjDHTp0kXlUJZnSWdx4YUX4vHHH0dFRUVcbRBBs3mU5oHa0l7EptQDFXH2vffei6sthNiF3+/Hfffdpx6ybbcdoiecX+eOi859sLNtVvpOpC+zbZtpT+djj8QH59bZ46JrP+xul1X+E+1H1/OG3fNL9Bcwf/T4Ypx673sYd+/7uPP1Nfjw673YXFyD4qqGpsjIv3+yGZc9tQT3v71WRVOaiVxXeuT9DXh2yRb174o6vxIxxXdFXQC1/hDqAyH1LP+W1+Xvsp8g75P3N7+Aa/VxLzXMFi9erCIvY00lKxehb7/9diVuSs1O+beun12uNfSzzbUGiQbOrbPHxSn9SGYcnX5WeOyxxzBw4EAlCEYKwH722WdKXFy0aFHTfpEfdaWlpeqxceNGJUhKtKfsK2kycnJyOuy/qKhov39feeWVMfVh0qRJ6jnSB0IIIYQQQgghhBDSfn3JFH9lnOldQyip9qOkuqHp76FwGJV1AeyoqIPX7UKa1400nwc56T6kwaOiI+Vx8bG9cfGxvZqyd8XDs0u24s3VOxFGGHsq6pVwKYjprFQvMlI8cLtcqm01DUFU1QeUyLm7ol5FbXbLTlXvz89IwSVje7eyf9srq1FWF46vLmcUyFhIZrLzzjtPBRP87ne/w65du2KqUfazn/0MDzzwAEaOHImjjjrKtDYSQgghRF9c4SSIsRVRUpR3ESrnz5+vBEqheddb/sBs+bf8/Hx1J1lHRUW3263eL/ZGjRqFpUuXxtQHuQOtrKwMxcXFMb2fkETAQseEEEIIIYQQQnSuL1lfWYqim8+Nat0q125EPIxEQwJhbC+rQ3mtH+HGv8vlItlWV5GaXUoScdPjcilxU0TAnDRDCDxzaA9cM25AXMKm9FFSyKq2V9Q1CZr5GT7kZaTA425tOxgKK6G3tDEdbk66F4XZaWr7ganD1HN749bUL48r+rqcMVBVVYUHH3wQ99xzj9qOFbnmJqWbxh8/Alj7BrB1MVBbCvhrAV+6UTO011hg8NnGNiGEEGIBvH5uPkkhagoTJ05Uufubp4KNlsgQyXskevP888+Pup6miJERX5JKNtp6mi2RH3eSKnf58uUYPnx4TDYIMRt+KRNCCCGEEEIIsYPWAiRURGJFrR/+YAihMKC0vroKrJw9Zb/3znljBaafMXy/a0OR9K4SzShI2lYV5RgINv69dRvEvkRHRiIkxZwIm2JXRESJjnTBpSI224qOjBZJZyuRn5E2CT1y01SE5sGQiM2d5XVqu3tOKrLTvOialYa9VYadA42bz+M2Ik99nqb9zIw8bYlcS7jjjjvw6KOPxpUOcNKQAtz1vb4Y0Tur7R08PqD/OGDoZKBwcOwNJoQQQqKA18/Nx9E1NZsj4mJzcdK4u27fIzc3t+nR8m/N3yMpMlatMu6OOxgSGSpEbMRaDF2YMmWKsrNs2bKYbRBCCCGEEEIIIYR0djpSX1LSxLbkxRXbWtWXbJ7eVaIhRQgUQVPJd80ETY/beIjwJy8Hw2ElaEpEo0RMpvqMS20VtQHsqTSEQ2lnrDU2JdpSoimNbX9ThGY0gqYg+8n+gkRt7q6sx6cbi1Ukpxl1Oc1CLvj+6U9/wpo1a3DRRRfFbOftL0sw8s4V+OHcldi0aSNQthko3wpU7QQCdUDQD6wrAl6aDix7sm21mhBCCCHakhSi5sKFCzF37twmYVKEy2nTpql0shs2bEAoFEJJSUnTQ/4tD4mKlDqWEyZMaPrBJs/jx49HRUVF1KJmhLy8vJj70K9fP/V+aRMhnY1AIIA333xTPWTbbjtETzi/zh0XnftgZ9us9J1IX2bbNtOezsceiQ/OrbPHRdd+2N0uq/wn2o+u5w2755d0jJYCpEQvihgnAYQSiSgRiT1z09RzVlpr8U+u8Mj7xY4ggmNEII3UqxTRz+syUsqKsilPKV43Ujyexodb/R2NwqakcJWozIZAGAWZKU3CZmWjIPjqqu0x9VXqhIptiaZsaOyjpJztCLK/vK+mIaCEURm3baU12FtRiyGhTRjp3ozcVPd+4ybjKO+J1OXcXVmn3td83BIVlPDss8+qm/pPHdexElDNeXpFJQbdtw2/fHkP9pZVAXXlhsApj/rGa3rLnwI+vD9hwibXGvrZ5lqDRAPn1tnj4pR+JDNJIWpeddVVTYKk5NcX4VLSWVxwwQVKLDwQI0aMUO99++23sX79erW/UFpairvuuuugfkUwbU7//v3j6sfo0aMZqUk6JXKTwOLFi9VDtu22Q/SE8+vccdG5D3a2zUrfifRltm0z7el87JH44Nw6e1x07Yfd7bLKf6L96HresHt+SfS0JUAKEo3Yt0smuuekITvNh8xUr3rulpXaykZx9f4RlFJbUpCIRLEn4p3b7YLX41bpWJvXzIwgN87L331ud5OwKUKoIGlcI9GRkejKD9fvRXnjdkdYsaXUaFutvynysq0amu0h+6d53QiEjDaKSFpdL1GoYQxy78QR7p2NQua+cZNxlPGM9MOsyNNoENvvF2chf8rvMfaaB5Bz2OEx2fEHgYc+qUH/B4rxh48CqG4IG9GalTuAql3GTmteNcTNBMC1hn62udYg0cC5dfa4OKUfyUx0uSo6eZRmWVkZ8vPzlSDYnojZHiJISmSnRHxeffXVShydOXMmcnJyorZRUFAQk+/mbXjnnXfiskGIHXg8Hpx00klN23bbIXrC+XXuuOjcBzvbZqXvRPoy27aZ9nQ+9kh8cG6dPS669sPudlnlP9F+dD1v2D2/JHpaCpAdqS8ZobIxglLEuwXLtmLp5tL9BMg0r0dFKEpa2RAkAtMQBttCXg+HXQg0ipryb0l527sgA2W1fmVHoizT4EHRml2YPOqwDvU30iYRSoWMlNiOTxFdBemTbElvCnPSsSPUV71u9LJ137pkpSLV51HpeEXYTPcZ4yaRp9dOGoRE10nNHjASg6b9BbtXvYsd7zyFhrJGMbIDVNaHcMubxfjLf3347aSuuOLoELx1ZcYfM7oY0Zob3zMiNv21gC8dSM8Heo0FBp9tbMcA1xr62eZag0QD59bZ4+KUfiQzrnAiEuFrxKRJk5QQKGlbhw8fborNG2+8Effdd58SOK+44ooD7ifip+wTuYNPIjw7IoK2RETUefPmobi4OGYbhJgJCx0TQgghhBBCCLEKqS95+VNLVaThlpIalY5VIglFeDsQ9ZWlKLr53P1eG/irZ5GZW4BeBRkor21AVqpPiYZSQ1KlmfW4UB8Iq9dEDJQITZ8U0jwAcmmtISjyp7zXDbfLhS6ZKeo1EThz0rwozEnD0ENzMPv7x3Soz5c9uQTFVQ2qtqUIpJIeVqIpO0IwFML6PdWGMNqoaEo7j+ieHbWN4qp6VZMz1etW4yY1RJ+67FjkNkZymlUnVdLbRkRriWyVPkcIBRpQtuINFH/0DII1By8LdSCOKEzF7NNTcf5gD1xuLyDRtqk5QHbP1jt7fED/ccDQyUDh4Jh9EkIISU54/dx8HJ9+dtGiRZg8ebJpgqYgUZpSl1PS0naEeARNoUuXLirqlBBCCCGEEEIIISTZMKO+pBCpFSl2RHRUUZ/N0rtGUs5GogBEpGzfnqtpn0gK2uqGANIboyr9QeO18kYfHSHdZ9iIBIpKpGVHURGt8rZwk6ap6oPGUpczMm4yDxJ5amWd1EO75ODICVNx0q8ewZUn90C6L7bLml/vrscFz1Xg+HkV+M/GWiAcAmpKgLItRs3N8q1A1U4jVW3QD6wrAl6aDix7MmH1NwkhhBASHY4WNVeuXKmeL7zwQtNtT5gwAStWrGh3H6ndaSZ5eXmm2iPEKtRdqw0N6hFPcLhZdoiecH6dOy4698HOtlnpO5G+zLZtpj2djz0SH5xbZ4+Lrv2wu11W+U+0H13PG3bPL7GuvqQQiXQUOyJC1tQH9kvvGhE1m1TNKFxERM3IW1Qq2sbXIkJkTUOww23Na4yEjESKxmJD+hdJOxtpq9QIFYHOHQ6qx8HEOhnnSIrfyPgv31xiS53U7+V+jRsmHoJ3fz4AV45Kg6fjh4Bi8bdBnPpUFc75RylW76wHGqoMIdNfA9SVGwKnPOobo0Kl9qakqo3yO4JrDf1sc61BooFz6+xxcUo/khlH19QUUVHulpNalGZjR33LDRs2UNgknRK/34/Zs2er7VmzZiElJcVWO0RPOL/OHRed+2Bn26z0nUhfZts2057Oxx6JD86ts8dF137Y3S6r/Cfaj67nDbvnt6MpWCViUQQ+qbdY6w+qaD4Rv0b2zsekIT1UtNvB9jErbaiVmFVfMs3nQV3IiKAUAVPqYboblUsR/ETvU9KhvNQY4RiNsKlovD4qdiN1LCOCZyztlfla/W0FctJ9Suyrqg+ga2PtzmiR8YoIq67G9mSmeOFGCCNL31evr8gfhxDab59EnkpkazyRp2bUSR0cWKOeD8/24/7v5iPt+AvUNbo1a4zXO8prXwfw73VVuHRECL87dwB653kAf7XkLjZEzsodRq3NrO7AmleNOpyjLz+oXa419LPNtQaJBs6ts8fFKf1IZhwtakZIhBBoRypY8VdQUGCpT0IIIYQQQgghhNiPRLOJ+PPR+r0q9WdLpB7ksm9Kcd/ba5VwJRFtIt613EcEsmeWbMFJA7vi3GGH4PAO1FW0GxFnhUgk5cHSwh6I5hGUog2GQoC3cajkNYliFOEuYl1e80SrajbuJnZrG6MqfY2hhLnpHReSJw7pruYrDR5Vz1JSsoqw3V4d0ZY0BI0oTdUKl5F+V0RSYF+9ymgwI/K0JdIXOaaNbX9ThOaBBE0hO1ylnr0wBNCuXbuqLG39tz6LPy/6Fks3G3/vCNKlp1bU4Nn/rca0k3vglrP7oLCgEKgtBWpLgLrGa4AibErEZu/jWWOTEEIIsQFX2MExtpJ+dtSoUaqu5umnn26q7auvvlrdBbZu3boD7jN16lS88MILalsiRoPB+H7sTZo0CaWlpVi6dGlcdgixutCxfM3IXTCCz+dTn4dYMMsO0RPOr3PHRec+2Nk2K30n0pfZts20p/OxR+KDc+vscdG1H3a3yyr/ifaj63nD7vk9WNuk3mAkPacgNQ0lBagRgSc6VRiBkIhXoSahT4QnqZsoAp1c+RGRTVKYipjVXOy8+NjeuPjYXlr1+UDM+OdyJcx+W1qDWn9I1VkU8bY96itLUXTzufu9dtytL6IslK6iV0Xuk4jKdK9HRQlK/UYZt+KqBjWGMqaRGpSudoRNmQuxI8KfjLMIkPJeGfvD8tPVmF96Ql9MHnVYh/t9/9tr8f7aPSqSUWpNHiySsTkS2bm5uLpJ1JTnnDQvehdkGulnG4XNkFSoOsgxEPEv43Zofjp6FaTjkR+MQjwsWLYVf/9kszqmZW6lCZJytr1I1NsqbkNuqAzdQzvhC/uxw9UdFaFUeBBEituFD9ZV4I/vbMeanbUxtysnzYOfn34Irp1wGPI9jdGaMnrZPYHUHODwScDpN7drg2sN/WxzrUGigXPr7HGxuh/RXj8n0ePompqRtLOR2ppmIkJpItLatseyZcswevRoS30SYgZycpBQfnnEc6Iwyw7RE86vc8dF5z7Y2TYrfSfSl9m2zbSn87FH4oNz6+xx0bUfdrfLKv+J9qPrecPu+W3vwtsj729oEjRFVNpaUqPEHxHgRNgTMaiyPoiqhoAS0eoDQfWQbRG0JF2o/Fv2lffIe8WG2BLEtvjoDPe8m1FfUpAxM+wYaVi9Lldj5KIhAmZKmlhXYypaJRkbNTIPhIxdJHqxuRgnL4m4KYKm1+PCxCO7x9ReiagVctJ8yEk3hMyd5XUorqo/YLvkdfm77CfHtIitEcE7EnEpCmLI5VGPgwmaghmRp2bUSa13GVGqkaTBqS4/Ut2G+CwS7WmDcvHGz4/CU5cegV750Ue0NqeiLog7Xt+KIb9dhj//txyB1HzjDxK5KWx8b9/2AeBaQz/bXGuQaODcOntcnNKPZMbR6Wdzc3MxcuRI3HnnnbjqqquQk5Njit2FCxdi48aNKlrTKsrLy1X62QEDBljmkxBCCCGEdOz32ttvv33QzBvyG5UQQgiJ5pyypbgGW0pq0B9hlXa0sDHtrGhQX3v7w52aoUS4itpAk5DVPKGoaH+qfmKqV4lFIgLK/mJLIu5E3OuWnYo3V+9EfkYKLhnbGzpjRn1Jobo+AE+GkYJVxEZ5vwiPkfSuIgRnp3rVs/wtFJJI2DBcLiMSsyUy7jIzIrHJeIvAKWMrF0sjQuzJA7vGXMdUUgRLRK0I0DJfgsx5aY0fZbV+NbdS71LaJtGiIj7K2ER0ahFpI1GjrjBQFwipNndk3GR/sSlEBOBRfQpsqZNa6cpCIXYhAC9SUY+0cB0qXRnqb4Y4b/Tr0uN74MLRhfjz2+swe9FulNZ2XLjfWeHHz5/fiEfeT8PdE9NwzqAwXFJnU1j7BjD8EiSShoYGbN9u1Bw9EIcccghrwhFCCEkaHC1qCuPHj8e9996LadOm4bnnnovb3jfffKMEUvlhOnnyZFjF3LlzlU8RaQnpbEjq5ffff19tjxs3Dh6Px1Y7RE84v84dF537YGfbrPSdSF9m2zbTntXzW19fjy+//LLdfU499dSEtiFZ0Pl7xU6cMi669sPudlnlP9F+dD1v2D2/7Z1TCg6Qb6s883CUhd2org8awpsInlIvMWykGBUkXar8TfYR0bJ7jk+JgFLHUASxiBhamJ2mBLMxffO1rrFpRn3JtiIoTxrYDZ9uLFaio4i9MjYFmYZwp8Y2bIiFIryF3caYRlLRitgXaFQP3W4gEDLEQyPVr7cpPe45jdGWsSIpgktrGpQALfOV7vMrQTAiwsqjJdJHEVVFKNxUXIPcdC/qGiSK1zgGumb6cEjtJrXv9vR+CLsOnNBN9jcr8jTeOqlfeY/EgMAGVLuzkBasxbLwMahEJo6A1JM1DEUiZ9N8bvxsbCp+eGQBHvy4Cn9eXI82hurgPnfV4bx/1uHkPj7cfU4ajh/aF9jyabuiphnfKxLg8Le//a3dfWbMmNEqtSHXGom3p9t5g5gH59bZ4+KUfiQzjk4/K9x0003qecGCBTjzzDNRWVkZs613331X1eiUOyYnTJiAvn37trv/ihUr9gthFkE0Vp5//nn1bHZtUEKsOll89NFH6hFPbVmz7BA94fw6d1x07oOdbbPSdyJ9mW3bTHs6H3skPji3zh4XXfthd7us8p9oP7qeN+ye31iRKL2IsCaimyBimqr/6IJ6LZKetLxxXxHkRASUmoyCCJuVjaloX13VfkSY3eRlpOCkgV3VdiTqUQTISARhx2zti6CcOvqwVuldS6r9ahwl8k9FczZe35GIzYZACA2S4jcQMiIMDT3ZEDgbIyDFTiSqUqIs4xWL5frSNeMGKFuCiKW9CjJUvU6pkSl1LkVwlGf5t7wuf5f9PG43jutXgG5ZqcjLTGkat+p6P3rWfaMeETGwLWR8Zf+W4xZr5GlzpL1CJGg0Ika2x+KU4xB0eVGPFNS5UvGpaxS+wGBVFzRyFS4ijkpUqtROy093484J6fjqp9m4dHhKk7+O8uFmP074yxZ8/9Ev8NWGze3uy7WGfra51iDRwLl19rg4pR/JjOMjNSW91/XXX6+iNYuKipCXl4fp06eryM3hw4cf9P0VFRWqfubs2bOVSCk/ZuWH5N13393u+6SOp6SobS5qyvsPJoS2xTvvvKPeO2XKlA6/lxAdcLvdGDt2bNO23XaInnB+nTsuOvfBzrZZ6TuRvsy2baY9nY89Eh+cW2ePi679sLtdVvlPtB9dzxt2z29LIiJje4hgWdUYchYRLqU2ZCSlqEQUisAWSTNa2SJVq6Qszc/wGSlMa/xK/Ppw/V5ccVJ/U8SqRCH1Jd9fu0cJkJLiVURZqRspfRHRM5qUqtktIigPlN5VhEsZ53Bon0gW2i/FbzMBrjHraZrXg+45qU32zxzaQ0VZmoFcY5IUwRJRKwK0zJdErUrkZFuIGCviYyRK9Nr5q/Yft4p6bE45xBBvm+TAfQSbRfUKZkaeRhCRVOq8ihgvdV8lRXLEx4GocmfjM99wjGpYhhpkYlR4lXo9CzXwuwyxPnIcSPuzYaQHlv/1ynVj3nmZuO74FNz8bh1eXRtD2CaAlz4rxiv/exVXfDUdt912m0oB2xKuNfSzzbUGiQbOrbPHxSn9SGZc4c5QCd4EpBalREpGRMkIks61f//+KCgoUIJnJLWDCJKRhxAZJnmvCKJz5sw5oC+J5JSIzk2bNjW9V2xPnDixKeKyI4wePVqJpBJt+v3vf7/D7yckUezZs6dVipPdu3ejW7dutrWJEEIIsQs5B7b3G/FA6cEIIYTohYggRV/uwootpUrsk/SYEk0m4ovUdJw0pEfCRb9/vPc/bPzPS+3u81/fSGyp9anINqmXKFc6UjwSodkoasKIKAw3vi6iXJesFJWGtrlo9U1xtUorKpF9Io5dekJfTB5lRC7qyjOLtygBUvq4p7K+KY2udL1lfcmK0mJ8Nnv/m8Qn/OEVpGXnKyEzUkdUrt088v4Gld41Iiwb6V2DShyWRxONKX5djT5lzGU7N92HnrlpTXMg9kXQbH4dykzKa/woWrMLyzeXqEhcEQQl1ay0Q+pdSnrY5sdqR8atZV3OSOSp9LT5uMXLgmVb8fdPNiuhVcRNaUvfLpkHFad7BbbgV1X3q+38UAkyQ1VKmK1056DKlYX87AwVsSrHd/fADnjhhy8cgNsVkaRdKrLz/c0h3LKoGou3xSZuCunp6fjVr36FG264wfTa6fx9SQghnRtePzcfx0dqRpAoTREaJfKyuUi5fPlyFQXZFs31XvkBKv+Wh9S3FKHxiiuuaPWeF198ETfeeGOToCk89thjKC0txaxZs7Bq1SoMGzYs6nbfd999qn35+fkUNAkhhBBCCCGEkASxblclXlm1HR+t34uA1KdsgQguq7+tUDUdJQWqRAwmqv7kmh0VSI2qFqGvKUpTRMvm4pmIT/JaJAWt2+NCTX1gP1FThCMRs6QeY0WtX4maIpDpLmp2pL5koI0Ciq42Iigj6V1lfET4k2jB7KaoRj/qAkHU+UNK3JRhlrFrXv+xIFMEYx98XndTdGSi65OKYClzFe18xVOXMxGRp/HUSd3q7Y230s7EGXVvYi/yEEQYOa5q5IYrkBOuRGogF9WVKUgNiXQZgjccVM+RGZN/BeDFSX2Al6/sgoVrgfuLvsXGvfUd7kNtbS3uvPNOdf3vlltuUSJjamrH6rwSQgghJDqSRtSUaEwRMCVaUgTH5j/0DxSs2nIfSf8qkZb33HMPrrrqKhWxKbU1JQpTojuXLVumnpvblDS1sq9Eb86cORPjx49X7ejTp09UNTzlLq9o0t0SQgghhBBCCCGk48j6/dklW5WQFSEiZEm9RNEMJWhM0mPmpPuU+CLpT+WRqEg8EZcOJolEamhGrmg0F9giRETNyD6BNq5/SHSe+PMH96+9qTMHEyClLxLBqsYkrfWlr++PPAzTxw1oNW/RpHcVgbiizq8EYjk2RFjs3Vjbsq3oyM46bj6P1AX17df3RBzvkTqp8nmScdtdUa/S3ab6PEpwb4+3Us9Emr8MxwX+iz3IV6lnc1CJdFcA7oYKpAZC6CafXwThkaTBqt3yeXAhAKNfEtVZ4c7DxCOB047IxcKVxfjzezuwu7Ljn4Pi4mIVsfnAg3/EeVf8CplDTkV5XdCWaG9CCCHEqSSNqBkRNjds2KBqas6bN0+9plKEHODHWESYFNFS9r/gggvUv0VoFEFT6mwuXLiwKUVtBNl/6tSpKmKzX79+6jVJPyHvl/0l5e0LL7yA00477YBtFX9XX321apu0+8orrzRtHAixmoaGBvV5ESRiOSUlxVY7RE84v84dF537YGfbrPSdSF9m2zbTns7HHokPzq2zx0XXftjdLqv8J9qPbueNSMrRtz//FqNL31evvYJjURNofZ1A6v1ViNjodStBQmoTijAkkW8iFJkp9IjIdPC2Rzba2cm1/z6hfcUgm5B0o+pvjQYlhWlnINr6kvWVda3ee8Gow9qdL4mwvHbSIFVftCPpXTvbuL2yYguqlrygXl+RPw4hl6fdupyJijyNpU5qpN7nH2vPwhSvkdZvquvfqHVloneOGwhUor66BlIBVY7tDNQiDDe8CMKFsBI5S935KHfl7tfXC0d3xbnHFOBvn+7G3A93oqq+jQ/NQdi6ZTP+ctsvkXPoAJx72vGqJNbKgtOwrdRjWbQ31xqJt2f37wKSODi3zh4Xp/QjmUkqUTOCpIOQqMlHH320TVEygoiPcmBHxMyWwqVET8pDojAjNuT1iJDZkscffxyLFi1S0ZwS4SlRo5Foz5ycHJUaV6I9RQyVlLOR+p9SS5MQQgghhBBCCCHmIhGakopTRI4Ikv7S5TKixETAkqg1EUVqGmsMyt8lmkzEF6kxKO+XyDezagwKKampKPEVotYfQDAEpPnc8Lrd++0TbGgUoIzgs7aJvN6oCbUwYdhpFDMjkZ7S587EwQRIX1YARRald+1s4/az8Ydj9hLj30MOyUZ5fdgW4VbaIlGgcpOAfKYEETYlYrOs1t9uvU9Pk3IPrEwZiUlpXyA1TQ70DOytr1appKXmbDeUIAe1EMle0tBKUtoGtN2v9BQ3rj6lhxI453ywE88s2YOGNlJSH4yKbzfgn//coK4Tpk3IR3afoyyL9iaEEEKciit8oNyrSURElJSHiJISGXkgYTJeRKyUepwH+7ESmRYRYCV9LSGdudCxHM81NTVqOyMjI+Yf62bZIXrC+XXuuOjcBzvbZqXvRPoy27aZ9qyeXzkHzpkzp919pMZSy3Mncdb3ip04ZVx07Yfd7bLKf6L96HTekBqa185fpbZ3l9eivt6I6MtIT0deZmq70WEitgg56V5Vm1B4YOow06KuZr34PxXRtbuiTkWHZqd50T3H8BNhW2mNqvEoKXJF6BHBR1LkNqfl39J9bhyan7HfPrsq6lT62Zw0Lwpz0jD00BzM/v4xSLZ1azJi9/daW1HTcpOAUFm3r97ngVD1PtO9yG/M1Tz+6F746XFd4fr6DWDLp1i+dhPCDTUo9XvVZ3eYZxNq3FnIC5UhM1yt3lPhykGlK6vNKFV3OIjscBVKSkvx+/eq8ez/6tsNjD4Y2UNOQbdxlyK78LCmaO9IndIDRXuHQiFVs7M90tPT4W5xxwLXGom3p9Pnh5gL59bZ42J1P/g7xHwoatqARGtKCtxIbc/mU9D83xKh2VaUKCG6wC9lQgghZB8UNQkhpHNx/9trVaSU1EeUyEuhR27aQev4CRIlJukxhe45qaou4WmDuqmIQTNYsGwr/v7JZhUNuq20VpUC7Nslcz+htbS6AcXVDSqKVCLR5C8pHnfTxTmpHNgQCCkRRl6XSMwuWSkqqjSCCD3fFFeriDepCSmpWy89oa+jIhO5bnVKfduO1/tseXPAj1LexRS8o/5WECppEjalxmaNKx11rjQVwSmRnGnhOmSEa1UUt3yGKsIZ+O+uNPzx3R34z7qK2Dvp9iBvxFnoevIlKOjWTUWmuuBS7Tcz2psQQoge8HeI+bSReIQkGkk3K7U9JQKzpaYs/548ebL6OwVNQgghhBBCCCHEfCTa8qP1exu3jahLqd8XjaApyH6yf/P3S03H8sbteJk4pLuq7yeijUSjyaUDaXNzstONtorI425MoCsiZQTZln/J31RqWReaIsMiiE2xLT7El/iUdKOE2FnvU6Ke5SaByGdAIogPzU9Hr4IM9Sz/jhyvsp/sL+9rGW0zsne+ehYBVPin/zR87DtBbZe4C9SjweVTn57McA26hErQLbRXPcu/5XX5++5wPvYgH0cdkokrrvgxbpvzHMaMGRNbJ0NBlC1/DRse/gk2vPkUdu4tVS+LkCvR44QQQghpn6SsqakLklpWHitXrlSpbyXt7YgRI+xuFiGmEwwG8fHHH6vtE088ER6Px1Y7RE84v84dF537YGfbrPSdSF9m2zbTns7HHokPzq2zx0XXftjdLqv8J9qPLueNoi93qVp7EgUm0YweVwhD3NvhrgV2pvVB2HXwe8DzMlJUvT9Jjyl2pE6e1HQ0I8pRbJ80sKuKJJU0lRJJKilvU31GrU9BamxmpXlRVRdQEZyhUBiBcBguETZdQKBR4IxEd2aneveL9JRo00ga3bxGgfbkgV0TXj+R6IPd32ux1kltXu8zK9Wt+rBjbes+yM0BzyzZoj6bItzLZ3Vu6DxUpeXgjLo3Ue3KVI8UNCArVAUvAo2RmS4E4EWVOws1IR+C8ooLeDv9TLyTcRae+vFY3DZ9Ki79zZ+wcO59qNmzrcN9DPvrUPzh00rgLJ/4Yxxx6vl4ddV206K9udZIvD1dPz8kfji3zh4Xp/QjmaGoqQEiZFLMJE5GThbvvfee2j7uuOPiEjXNsEP0hPPr3HHRuQ92ts1K34n0ZbZtM+3pfOyR+ODcOntcdO2H3e2yyn+i/bRnX6IGRWxcsaVURT/W+oNI93mU4CYRV5OG9GgluMXaXvEhSFpLITvFg151G9X2rrTeUdXNE4FQBEapRyl2JHJMxBezUreeO+wQJWpKdKWRgtNIeSsRoiJ6iv+8dN8+UTPsUvUzpY5mpP1et6tJyBQh6EB1QSV9rnDOsENMaTvpHNj9vXYw5PMun6f2PlMNDQ0H7EObNwfUBrAwZSK+zDoKpzR8gOH+z9AQNiI3WyLpbutDbvw3fAwWZ4xDSVp/nHZ4N2VLPkOVh4zGuJv+gVWLFmLn+08jWG18r3SEYE051r/8Z2z/+EXsPncaLj/hRuRnNRYJjQOuNRJvT/fPD4kdzq2zx8Up/UhmKGrGiRTibquYbF5eHkaPHo2pU6fiiiuusKVthOj0OYkI9y2L19thh+gJ59e546JzH+xsm5W+E+nLbNtm2tP52CPxwbl19rjo2g+722WV/0T7acu+pFx8ZdV2lQ5WoidbIjUlpS6eRFyJQCFin0RyxdPeSMpYEQCFtBQv9oQMQU+itKIlPcWjRE2p9ydINJlZSB+lzp6kpZS6e4IImyJGSoSoCKriPzPVo15vbPx+gqzEnImIKcKl1N2U9kmEZqQSjrwesS2+IuNKkgO7v9es6MOBbg6oz+iObzJ+iH+lfQ9jGxbjyMCXyApXIS1cj1qkoiSYgU8Ch+O98CggPQ+FGWn7Cf+RaO+GkAvZI76DrKGnI7jqNWx671kE62s73I+avd9i2RO3YfQnL2Dunx/E+PHjEzouZsK1Ruf9/JC24dw6e1yc0o9kxhVuWdSRdIh77rmnTVGzuLgYK1aswKJFi5Cfn4/HH38c559/vi1tJCRRsNAxIYQQsv85cM6cOe3uM2PGjFbnTkIISVbkcsSzS7Yq0S6CITr4ldgo2VMlyNDncauaeBIJGUEEuIuP7dXmejwaLntyCYqrGrC1pEalpOyZm4bMKOtpNqe6PoAd5XUqtaXU++uSlYKnLj8WZo7RI+9vwJurd6p/V9b5lSArbW6+j6SalShNITIikYs9HpcLPo+8um+spL0SARuJ0DxzaA9cM25AzOOpM1y3kmcWb1HfMyLy76msb7oJQA73yM0B8jmRz1BtQ7BN4d8Fl/rekdqdwqwX/6dutthdUYeKugCy07zonpOG+spSrHvrKWz+6GWEQ8GY23zGGWfgrrvuwvDhw80ZBEIIIbbA3yHmw0jNOLnhhhsOus+NN96IyZMn44UXXqCwSQghhBBCCCEk6Wkp1lXU+VHeQqyLUOsPKdFAhDhJ+ygRVyJQlNY0xCzESVpbIVJiUtJMxkJESHQ3tkHq/ZmJ9E36mJ+RovosIqQ89om/YdV28S7CpkRjRtoir6d43fCp1LRGG0XcNFsgJkR35PiW7wv5vinMTkO6b9/NARJpLY+WtCX8i50DRXtHPvup2fkYOvlX6HfqVKz99zxsX/FOTG1+66231OMHP/gB7rjjDvTt2zcmO4QQQojToKhpAXfffTc2btyIK6+8kqImIYQQQgghhJCkRyI0RWBQkVMV9Uq0bB45JQKBiHAizNU0Rk6JACE18UTQk8gpeb+IfZHIqY4gYoWktZUoUBFNxUdEvOgIEtUlGJGQ++pWmomIjdLHMX3z8eqq7fhw/V6kwbOfMBlBxkaiOQXpT1v7CF6PCycP7KpSaTLlLHE60d4c0BHhX2r+CnLDgBC5mSBCZrdDMfKy36L/6Rfjq1fmYO/Xy2Nq+9NPP40zu6aiAAEAAElEQVQFCxbgmmuuwc0334yuXbvGNgiEEEKIQ6CoaRFXX301Fi5ciL/+9a+ssUmSjoaGBtx3331q+9e//jVSUlJstUP0hPPr3HHRuQ92ts1K34n0ZbZtM+3pfOyR+ODcOntcdO2H3e2yyn+0fspqGlRNuRVbSlXEklzgl+hHEQtH9s7HpCE9VFRlW/bvufdeNARCcOefgp2V/iZBMz/Dh7yMFHgi4ZONiPjQNRRWPqWeZCR1pERcPb94EzYu+ocSFDoyLtJGSR0p4oX4r62vx4iST9TfVuWfgpDr4BGXUqtSxFZB7Aij+hQgUYj4eO2kQbjipP4oWrMLyzeXqBqZIsiKCCyCqvifeGR3tf/B9mlrfkhyYff3mpV96MjNAdEI/9FEe7vDQZyWtR3jLj4Xi3ZfhC9fmYuKb9fF1Mc//vGPeOKJJ1TGuF/+8pfIzMw86Hu41kisPSd8fkjbcG6dPS5O6UcyQ1HTIiRSU1i2bBlFTZKU+P1+rewQPeH8OndcdO6DnW2z0ncifZlt20x7Oh97JD44t84eF137YXe7rPLfnp91uyrxyqrt+Gj9XgSCrS/iS/SjiIXPLNmCkwZ2xbltCALBQACexpSzEUGzR26aitA8ECJ0dslKRarPg53ldUrYlBSSualuZa+jlesmDumu2iiihqSZDASC8KB16tv2EJFVdAx5vwgjIoJEBMVEImLk5FGHqUd7RLMPIXZ/r1ndh47cHNCe8B9ttLf6XnEBhYPHoMugY1U62q9em4fakh0d7mdFRQVuueUWPPzww/jtb3+Ln/zkJ/B6D/y9ybVG4u054fND2oZz6+xxcUo/khVXWApZkIQzcOBAbNq0CdOmTcOcOXPsbg4hlhY6lq+Z8vJytZ2bmxtzrRaz7BA94fw6d1x07oOdbbPSdyJ9mW3bTHtWz6+cAw/2O2/GjBmtzp3EWd8rduKUcdG1H3a3yyr/B/Ijr0vKWEndGKG6PoC9VfWo9wf3pWB0u5TIJ3UvJXpRxMjmqRtLq+tx9RMfKkF0fXkIDYGwitAUwTJaiqvqVcSm+OmVn44MVz3unTwMvXp07dC43P/2Wry/do8SV3dX1CETDSqtrTct08iD2w4SoSniqtA9J1WJGacN6qbEEtI5163JiN3fa525DwuWbcXfP9msUtiKuClu+3bJ3D/SXOrahozviQZ3WtP3StDfgM0fv4x1b/0N/mqj7bEwaNAg3HnnnarUVct+c62ReHtO+PyQtuHcOntcrO4Hf4eYDyM1E8g333yDRYsWNdXUlA/IgAED7G4WIZYjx35eXp42doiecH6dOy4698HOtlnpO5G+zLZtpj2djz0SH5xbZ4+Lrv2wu11W+W/Lj1z8eeT9DaqGpSBCZkl1AxqCbUQ2BsPq9er6IHZX1auopyc/3oTSmgZV027Rmt2oQRrqQkE0BAwhQFLOdgTZv6zWr2ps1gVCgC8NS7bXo3fPjl2UkihSETVzmmrruVBdCeQHG9pMg6u61ywNrpCT7m2KzpI0lYR0Juz+XuvMfWgZ7S3fR/LdsN8NGi4XGjzprd7r8aWg/7gpyBx6Oja++zxKF7+IkL++w21Yu3YtLrjgAhx33HG45557cPLJJzdzzbVGou054fND2oZz6+xxcUo/kpmkFjVffPFFLF26VAmOkfSwZWVlcdksKSlpZad5MKxEahJCCCGEEEIIIZ0FidAUQTMUDmFLcS2qGoyUsSL5qbvbw/Kfse5V/w8DIYQRCoZRWt2Ayjo/nlm8BXnpPqzebtwZX1FriIKScrYt8bA9ZH95X2VdQNmR1K+SQrKjqVYlDaVEkUr0qURoGu0KKMFSRFPxkZ7igcflQjAcRm1DUEVoRpb4ImhG3id22qq7FyuM/idEb+TGB0mxLTdGSJra3RWNEeQ+T7uptCPId0llKBXdxv0Yh4/7Pra/909s++Q1hEL7J9OW9LL5+fnt2pJSV6eccgq++93vYvbs2Rg6dOj+O9SUAGvfALYuBmpLAX8t4EsH0vOBXmOBwWcb24QQQkgnIOlETck/Lyf4uXPnHlB4NJtICPP8+fORk5OTMD+E6EowGFQ3EAhjxoyBx+Ox1Q7RE86vc8dF5z7Y2TYrfSfSl9m2zbSn87FH4oNz6+xx0bUfdrfLKv8t/WzcW6NEP1kzb95bg2q/ccHd3ShmhtpaS8sSWITOsARuGn+XyM4/vbsOA7tmoLBuC1IDfnyJbqqGXSyI2CiiptTCFHv+HT4Eg0d1eFwkLa5Ekb71+XYM9e1GPYL4wt8NUupT7MujJRKVJfX0IhGaZw7toewQ0tmw+3uts/ehdbS3kZZaUmqL6Ol1hdGtfpvad0/qYQi73G1Ge3fN7oGuF/4ac+++FfMevBMLFy5s8iGC5k9/+tN22yE1NiW94WuvvYbXX38dl156KW699VbsXLcK2LkKY+o+hCfU0PqNZVuAHauA5U8C/ccBQydL8c8OjwPXGp3380PahnPr7HFxSj+SmaQSNT/77DOMHz9eiZktRcxE1iORx2OPPaZSQhDSUSSF8YIFC9RzJKK4f//+6jFx4kQV/at7yLycLN566y21PXLkyLhETTPsED3h/Dp3XHTug51ts9J3In2ZbdtMezofeyQ+OLfOHhdd+2F3u6zy39LPK6u2q+3t5XWGoBk26mZGxExXo8CpRM5G5G8Sqdn4HwKhMNyukLrg//XOCnw3vE7t9xW67ve+jiDRk43e0LtmHVAjbT+vw+Mi1wIkLW5uigsbFr2nXqvM742agBFN6g+GVX+knT6PS9UJlcjQCM3rhRLS2bD7e62z9+Fg0d7yvTIqaHzfbQwXotqPdqO9zxjbG2ec+AI+/fRT3HDDDfjwww873KZQKIQnn3wSzzz9D4wafaxKSTuyTwAeqe1ZVyYFPYFwCHC5JQ8ukNZ4PWldkfEYdZnx6MB3GtcanffzQ9qGc+vscXFKP5KZpBE1V65cidGjRzeJmc0XHBHhsSWyT0ciOFvaFNFp8uTJmDVrlio6S0hHEAFz+vTpSsyUL9gJEyaomqwbNmxQr0UeN954oxI2RTjXFbfbjaOPPrpp2247RE84v84dF537YGfbrPSdSF9m2zbTns7HHokPzq2zx0XXftjdLqv8N/dTURfAR+v3qgik8saoIln2RgRNr8ulUsG2FPQ8MNbSEpEkgqbsLeKgxw2U1QawO7MQ9UGRPfeJox0lEgHqghvFKd1VxGes4yLtv2hsH/zzm8H4tqxWtT/N5d5PvGyO1+PCyQO7qhqaZqacJSTZvtec0IdItLek6C7MTkO6z4+yGqPmb0V9EN+4u6j9dlc2IAR3VNHeUiPzgw8+UFGXd955Z0ztqm8I4L///S9WrViG/NOy8PNjvUj3tRAq5Wu9rhzwphnpZ1NzgOVPATXFwMnXRS1scq3ReT8/pG04t84eF6f0I5lxhROZd1UTysvL0a9fPxWh2VKojES8yUOIRLyJoCTpHq666qp2o+DEptTRlGfJYS/PkhpCIutOP/10C3pHnMiKFStUVLEcl/PmzVOiZkskhbKInhFk3+XLl1satSnpTVrWcJHaL926dbOsDYQQQogusP4ZIcRpLFi2FX//ZDO+La1BqdTAlKV04zVun9sdVS3MQCikBE31Ho+ImECGz6NESBFNs9O86J6T1uG27aqoU6lhc9K8KMxJw9BDczD7+8fADETALVqzS9XpLK/1o6YhqNqbm+7DqD4FmHhkd1VDL5HwnGIeXLeSRCPXGaX2sERsRjDS0cYf7b1z586D3sQeST/bHofluHH7mV3x4+N6wuP1AlK7018N1FdGqiEbUZtZ3Y1tidYcfXkHRoEQQkhb8HeI+SRFpOaUKVP2EzRFIJLoSYl8O1AEZUTUvOeeezpUB3PTpk149NFHle1JkyapHx59+vQxsTfE6cixGhE0RaQ8EBKdGUlBGzlmR40aZbmwSQghhBBCCHEmK7aUKlGyZV3JSIRmNHjdUkMuqMTMQDCsohxr/EGVclFETUnF2DUkUZwdSHUYCqv3CSIQCCI2moUIlpNHHaYehBByMOR64yVje2NM33y8umo7Ply/F2nwmBLtbVYU0baKEH4yfzfu/6gKd32vH75zdAFcaTlAZiFQWwrUlhjpaQURNiVis/fxMdXYJIQQQhKJ4+NrRZiUFJ3yA0METImglIhKqW/ZXkrYLl26KAFUojA7gkSE3n333ep9ImaK6PTee0ZdDkKiQdLJCu+8885B9xXxXMTNCCJsRt5PCCGEEEIIIfEgKRQrawMIYV8gj0iPHREgm9e/VIGesh0GGgIhlYJREimV1TR0sF0N6n3yfhENRCCQ6ElCCLETESivnTQIT112LC49oa+KIO9VkI4uWSnqWf4tr8vfZT870ld/sb0G5zzyBU69fxU+2VgBuD1AZlcgu6fxDS/CZn2FsfPqhZa3jxBCCEGyR2rOnj1bPYu4KGJmtLUtI/uJSNS3b98O+5VIOYnSlMg5qav57rvvYtiwYR22Q5IvSlPSyoowHm20pewr74kg2yJsRlIq60BDQwMeeughtf2LX/wCKSkpttohesL5de646NwHO9tmpe9E+jLbtpn2dD72SHxwbp09Lrr2w+52WeW/uZ+6ghNR3RBQImQk86ykUDxQmsQD4RIRVEI15f2hAC5I/R9c9cAn6WOxszKE0ho/Un0eZKUe/BKFRGjK/oLUpHOHgxhR+gnmPvxfrjUIScLjXsc+RKK9zz26ULu2RfhwfQVOuOczfH9EV9x5Xl8M6pENBOqB2mIVuRnwZaP8f2/hL3vHYWdDGmr9QaT7POp7d2TvfEwa0qMpDTfXGvrNL4kPzq2zx8Up/UhmHB2puXLlSlWbUGpcFhUVRS1oNkdEzXiQKDoRmKS+ZkVF451OhByA+fPnN4nxklY2muNPxE+J2GzOCy+8AN2oqalRD13sED3h/Dp3XHTug51ts9J3In2ZbdtMezofeyQ+OLfOHhdd+2F3u6zyH/EjF7Al1WukjiYaRc0OE95/M80VQCqkHqYPOemGkLmzvA7FVfWGvzaQ1+Xvsp8g78tOMy6ohwP1XGsQksTHvc59sKJt48aNi/m9L67ci6NuX4bpT3+N7fUZCIVd8NfXYvveUpRUViNncxG2ldaiuKpBPa/+tkLVWr7sqSW4/+21WLdLanJyrUGcB+fW2ePilH4kK66w5Fh1KPfeey9mzpypIiavvPLKDr9/4MCBSliaM2dO3G0RO4cffjgeeeSRuG0R5zJ9+vT9oi5FsCwtLe3w+0TkFCFfl0LH8jUTKVovf+vond1m2yF6wvl17rjo3Ac722al70T6Mtu2mfasnt9AIHDQ0gUFBQXweh2fLCWpv1fsxCnjoms/7G6XVf6b+3nwwx149X87UecPItAoNqZ43B1OP+sPhpre73EBh6X5kZeZglBKNsIuYE9lPSpqjRqZ0i2J2ExP8ai0tcFwGLUNQRWhGbl6IYKm1OR0wYWLxvTCxP7pjltryLrqYNciZsyY0Wo9RmJftyYjuh33TuuDGW2L9vflJ/deiBsfX2SklI2RdJ8bM47Lwg0n+OBNz0axqwBfhvvidtd0FWwvX/0+j1vVMm5eL1S+hyf0S1P941qDOAHOrbPHxep+8HeI+Tj6ioqIOiIKxSJoCpK+U+pxmoGkCB0zZgzuuusu5OTkmGKTOI+WP1QlHa1Eax4sleyAAQPatWM3cnIwY7Ftlh2iJ5xf546Lzn2ws21W+k6kL7Ntm2nP6vkVsVLXY91p6Py9YidOGRdd+2F3u6zy39zPyD71+PfnO5WIGRElw02JaKND9g81qpHqXSJUpuXgkB65GHpoLt5cvROF2WlI9/lVDc/6QAiVdQH1aInU0JTUh5EIzTOH9sAlY3ubcjHK7vklxA6ccNzr3Acz2hbt78uT+2fg4+uH4V//XYtZbxRj7d5gh33V+kN44MMK/G2ZC9eeEsCZo3KQ5q1EbSi03z4VdQH1fSzpZyXi/rmlW1FW2wPXjBtgujjAtQaxA86ts8fFKf1IZhydflbEoKlTp8b8/pEjRyobZqSNFVsjRozYL5qOkLYiepsjorxOtTEJIYQQQgghycPEId1VVI6qo9n42oHSwx4I2b9JBnUZkT5yEVzESbkAfvGxvdV+IlT2KsjAYfnpyEnzqtS3ctFcnuXf8rr8PSJoyvsScQGdEEI6Jf5a9X14/lHpWP2zLph7UW/0zI2tTlxxbRg3v1WOcx/5Cp+s3orCLB965qahe04qstO8KqJebkDZXVGP3ZV16uYVuUHl2SVbTe8WIYQQklSRmiJIjho1Kub3S/SbhCMvWLAAV1xxRdztkZSgS5cujdsOcS5Sg3X58uVK/BYxU1InR8OGDRtapR7RiWAwiM8++0xtDx8+HB6Px1Y7RE84v84dF537YGfbrPSdSF9m2zbTns7HHokPzq2zx0XXftjdLqv8t/QzoncePl5fDK/HBX9Qoi6BQCgEr/vg90hL6liJ8JRAzYj0mJPiRveG7eiHeoRCIRVpOaZvPl5dtR0frt+LNHj2S2vYHGnDyQO74pxhh+Dw7tlttpdrDUKS67jXuQ+Wts1npOGGy62+K38ytguGDD8Wz/xnLf757peoqOt45Oa3ZQ24/cWvkLP4agw+92p0G3ysurGkayiMspoGlNb4VepwVziEI1NKUfSfbzGqVw4GHZJnWre41iB2wLl19rg4pR/JjKNFzXjFHREhBRGWzBA1RSR955134IRowmXLlkVV69EMJAWwzIGI1PKQlKwi+MlD2iJCoEQ0OgXpa7RiZgQZl/YiPnU4Wbz22mtq++ijj47rQoMZdoiecH6dOy4698HOtlnpO5G+zLZtpj2djz0SH5xbZ4+Lrv2wu11W+W/pZ8a4AYao6XYjEAoqgVLETSCk0tLui+Hch0TtSIRmJGWtRGfKlhsudM1KQd+qr7DjcyD43VNUP0SgvHbSIFxxUn8UrdmF5ZtLUF7rR01DEBkpHuSm+zCqTwEmHtldpTtMxLjYPb+E2IETjnud+2Bp29LzgbItgMcH+IGgvxaL6oai8NihWDMuG/e9tRkPf7AdDYGORdsLFd+ux5I5v0aXI0biyHNnIK/3YHTJSkWqz4Od5XWoqvOjb+Arte9rq4aaLmpyrUGshnPr7HFxSj+SGUeLmiJ6tRR7OkK/fv2UWCaRc6tWrcKwYcPiFlhXrFiBzoq0/aqrrmrqg4iLiRQT77nnniYxU/yIyHzhhReqbYlMFLHzxhtvVA/5m+ybjKlaZR5a1n6dPHkydMLtdmPQoEFN23bbIXrC+XXuuOjcBzvbZqXvRPoy27aZ9nQ+9kh8cG6dPS669sPudlnlv6UfEROP61+ATzeWwOd2oUEJmoawKcKlpKaVh9I2w1D1M+URuWze+LJCUs7KRXBv/qEYUJjVqh8iWE4edZh6xNpes/pNSDLghONe5z5Y2rZeY4Edq4C0PKCuHO76SgxK2a3qGBdmp+CBKQPw89MOxW9e/QZPL9mtblDpKMVfr8BH912FQ0aejkHfuQpZ3Q5DfoYP5TUhbEe+She+amMxrqzxt7oBJVa41iB2wLl19rg4pR/JjCss+VUdyqRJk5Cfn4/nn38+ZhtSk/OFF15Qtt5888242jNv3jzMnDkTxcXF6EyIqCjCoYxDcyRSMxGipviTSMOIIH3DDTdg1qxZbfoSMW/69OlN+959991q/2RCxF+Zn+aCpqRMtoI9e/a0Kqy8e/dudOvWzRL/hBBCCCGEkMTz9c4K/OiJJSrNoD8YaqqTGaGtspYuSTnrciHUuGdmihf9umYomfOBqcOa0seStpF11Zw5c9rdZ8aMGa3WY6Q1XLeSpKCmBHhmqoRoAmWbgUAdkN4FyOzaatfPtlZh1r824c0vYs/A5nJ70PvE8zBg0qXY0ZCiRFKpfSzpw6eMPkwJnCu2lKKsxo9af1D9W25sGdk7H5OG9DBN9CSEEN3h7xDzcbQULdF7LYW4jiKRgUJRURFeeumluGyJDd1qHbaFCIQybiKUSU1SSZsb7zhGi0SBis+ISCninAiVBxJPZY4lajOSKljaLCJnMtE8Va2Mk4jnhBBCCCGEEGIWR/TIwc/HH46CzBRVq02lnW0MzlSIgNlYN9MVudDgQpOgmZXqRd8uhqB58bG9KWgSQojZZBQA/cftS0Ur1JYA9ZWtdh3eKwtv/OxoPHflIAw9RL6bO044FMTmD1/EB3dchPKPn0WwvgYl1Q3YVVGHhxatw98/2YzV31ZgW2ktiqsa1LP8W16/7KkluP/ttVi3q3XbCCGEkKQWNadMmQIJRL3//vtjtnHBBRcooUjsXHnlldi8eXNMdjZt2qSEQV3To0pEq9xFKw8RMWXsJAJQREaJ/LMinamkUR0/frx6joh10foVwTgytnPnzlVtTwakn81TLIsI7KT6ooQQQgghhBA9uOTY3rhkbG/0ys9Q4qbP41ZpZ1WUptTMbKybaVTbNJ5TPG70zE1D3y6Zaq155tAeuPjYXnZ3hRBCnMnQxmtoqTlGGlr5Jq7cAVTvBUKBVrsf1z8bL141EI9O7ob++bFdIg7W12L7u3/HxoevwOaPXkJFdZ2K6K/zB7G7og7fltZga0mNepZ/y+uBYBjvr92Da+evwjOLt6hrroQQQki0ODr9rCBReyImfvPNN8jObn03qLweiUKUaL/hw4e3KRxJ2lhh4MCBqsZmW7baQ9LXvvPOO5g2bdpBU8jYgSwwBRHERBwcPXq0SgErYyKvtUxxmoj0s+IvUhty5MiRapw7grxXbESQCE5dRWQzEDFTBOjmgqbVtTSjDZ/3+/14+OGH1fZPf/pT+HyxpRkxyw7RE86vc8dF5z7Y2TYrfSfSl9m2zbSn87FH4oNz6+xx0bUfdrfLKv/t+ZHLB88u2Ypnl2xRKWgr6vyoqPWjPhBSdTQFETpTvW50zU5VKWcjSISmCJqBQEDL84bd89sSpp81D6Z96zzHvdP6YEvblj0JLH8K/rAbD+8eLSGV+KnnefhcQSA1G/BlShE5IBRCaXkZ0kI16laUhkAYc1aGcd8HFSiubi2ARosvvycKTr0UeUed0nStsTm5qMIkz3KM8a5DgbsGqeF65OXmYkDvw+CSuqCDz94Xacq1BrEJzq2zx8XqfvB3iPnsW2E4FBHjROyRyMOWNTFFZBSxsTkicJ5//vmthFERNeVkvH79evTr10/ZPO2006Jqw3333acEN3l/c9FNJ+zWtmV8IoKmIDU0O4oIsCKGSnSpIHPeUWG0MyH9i9CRqFa7jq/y8vKmbbvtED3h/Dp3XHTug51ts9J3In2ZbdtMezofeyQ+OLfOHhcz+lFW04CiL3eZWs/L7vG1yn97fmRNK9GaY/rm49VV2/Hh+r3Iz0g5oC1JVXvywK44Z9ghTSlndT1v2D2/hNiBE457nftgS9tGXQbUFCP8xb9RHs4yfHvTgGAVUF9hPBrJCBtJwuuRgjJPFs4fm4kzRoRw++JUvPqfzxFsqO2we3/pDuz6110oX7wQfc6ahh6DR6mbXXoFt+CU+g8wKrgK3nAQ8EOlMve6XQiXlqGkYQe67FgFLH/SSKMrUaeFg7U9Z5hti+gF59bZ4+KUfiQzjo/UFEQsE/FSHvPnz0dOTo56XaIRIwJYBInE/Prrr1vZkCjFe++9Vy3iZMjkWUQlETvbiu4UKioq1D7iP/IeiW6M+O9MJDpSU+poRuZCbIptM9opoqYInQdDxObmaVwTiUSPxpsmVoR2SbMbETQlAtgOor3TJBQKYceOHWq7Z8+ecMtdgTFglh2iJ5xf546Lzn2ws21W+k6kL7Ntm2lP52OPxAfn1tnjEk8/pD7XK6u246P1e1V6u/bEtpMGdsW5zcS2RLbLDKzy3xE/5TV+FK3ZheWbS1Be60dNQxAZKR7kpvswqk8BJh7ZvZV4rOt5w+75bQkjNc2DERKd57h3Wh9sa1s4jNCyJ7Fj8YuGb28l3ME6oK4cCDao6E243ChvcKEsnIGakE9F34vI+E7GWXgr9UzUV5bi67f+hi0fv6zqZ8ZKtyPH4idnDMUVBSubXvOE6pAZqoYPAXhUQWY3AvAiK68LUtMy97151GUIjfgxduzcqd05w2xbRC84t84eF6v7wd8h5pMUomYkAnPq1KkoKCjAvHnzVDSmbEdUeSEiPAaDbZ+sJdWnpKttvq8g4pTYlr/LttSEXLp0aVNa28i+Ekn3/PPPozOSSFFTxEwRNSPIOInoZ0ZKVhH7RPQ7GPIeq0RNGTOpsRrr2ImYKaKmXSlnm8MvZUIIIYQQogPN06JGkLpdkhpVanuFwpIWFaoOZE66D2k+T6u0qG2lySPELihqmgfXrSRp2f0VsHohsPE9IOhv9eeSmgYUVzXADw/e9w/FGzgBwS6DlLgZoXrPNqz99zxsX/FuzM2Q0+s5xxTgptPycGReHVLCDfAgBFc4BJfEijaef11wwe1LBTK77UtBe+Q5wMnXNe1DCCGdDf4OMR/Hp5+NIMLPsmXLVOSkbIug1FzQFGQR215UX1FRkYrulPdFIjYj4l4kaq45zYXPWFOqJgMtRccxY8bEbKtlDU2Zl2hETam/2RkQoTwiaMrxKCl3CSGEEKIH1dXV6sa29pDfOZmZze5AJ4TEjay7Hnl/A95cbURySJ1HiSCUOo8tqfWHUFEXUDUfJYIwJ82nhNDSmgZcM24AhU1CCCHaRRTV1rafBjY9Pb3tSKPCwcDpNwPHXwOsfQPY8ilQVwY01AApGcjsloN/buqG/3qPxVdlHnXezK9pQJes1CYTmd0Ow8jLfof+p1+MNa/MQfHX+2e8iwa5fPrKqhK8uboEM8ak4qaTU1CQ4UXQ5UY4LFJmGB6E4UIIYX8tXOVbVApd5BwGrHkVyOgCjL68w34JIYQ4k6QRNQURLEW8ighdK1fuS30giNDZXoSgCGaSSlaEpIiwGaGtgNfI3+X5hhtuOGCa2mRHUgI3J5p0se0h89Q86lKEQJ3rTXYkolVEeTlOJa1uSwFX9x/hq1evVttDhw6NKyWUGXaInnB+nTsuOvfBzrZZ6TuRvsy2baY9q+dXRM0PPvig3X2GDBlCUdPh3yt2ovu4RFvnsqP9kAhNETTDCGNPRb0SLQVZjmWlelU6VKnnFQqHVXrUqvqAunC7u6JeRXN2y05V75fakFIvUtfxtcp/ov3oet6we34JsQMnHPc698GMtu3duzemqO1WvodfAsijGSJd+t9ei+q1e5Cb4VfnxdIaP1J9HnX+bE5e78E47qd/xJ6vluCrVx5FxbfrO9yXhiDw0Kf1eHJlA647MQ2/PC4VGeJGLqm6gBDc6hqqRHHCXw2UbEAoqwdWf/g6UNcTQ0+YpM05w2xbRC84t84eF6f0I5lJKlGzeUpSeYgwKeKXPEQgGjFixEHfK4JbJOJTRNHmwmVbiNgp9Rpnz55tej+cgIy9pOttTrxincxRc1FTIho7u6gp/Rk/frwaGxE0D5a6VsbUrHqnZhAIBPDSSy+p7cGDByMlJcVWO0RPOL/OHRed+2Bn26z0nUhfZts2057Oxx6JD85t5xqXg9W53FZai9XfVuCZJVtUncuzh3SLuh9iO5JytrmgmZ/hQ15Gyn4p9ITsNB+6hsJKYJULtxW1xv6F2WnKzpi++QessWn3+FrlP9F+dD1v2D2/hNiBE457nfvQGdYaUlv6/bV7VOYCI217ADvL69o8j8q1z8Ijx6Lg8NH43wf/xu73/45A+a4Ot62iPozb3q3Fo0vqcNu4NFw+3KdqXSt1UwmcLuMZAQSqivFSeCjwzmIMPvZ0bc4ZZtsiesG5dfa4OKUfyUxSipoRcnNzlZAZjZjZnIiwJBGAd911l4qgOxBSh5KC5oGRyNeWxCtqSq3Ug/noTIhAKTVHpV/RCJoSiSwRxyLm6oL88I3MazwpvcyyQ/SE8+vccdG5D3a2zUrfifRltm0z7el87JH44Nx2jnHpcJ1Lqem1dg8++GonTupyCHrkpB60HyKWRlLORgTNHrlprSJMmiMXaCW1nkSiyIVbuYCb7vMrwfPVVdtx7aRBWo6vVf4T7UfX84bd80uIHTjhuNe5D51hrSE38khtaTlXS+YCQc6LcuNPWa1fnU/TUzzwuFwIhsOobcx4kHrkqTj08BNQufJ1lP33OYRqKzvcxh1VYVz9Wi0e+KQevx+fgfMHe+FxiZrZeAOUlPVCAP1dWwFPClx15UBKfDXouNYg0cC5dfa4OKUfyYwr3FbeVNIhNm3apIQzSW0bifocMGAApk6dqoRTJ3DPPfcogbY5Uks03mhAiXgVcbg58R6S0k5pr5k27USOJSEaQVOI1NyMppZovLDQMSGEELL/OTCW9GCEJHudywjN61wKZw7t0W6dS4m2vPyppSr6c0tJDRqkFliGb79aYAejuKox1Z7XjV4FGSpS5KnLjlXtIMROeE4xD65bSWfGiu+Clufsyjq/ShPf3jlbbk6S1O7BUBiBuirUr/gX9nzyIkL++pjbMfYwL/4wIRPj+3mBkNyo1Hgtz5tmRG+efD1wynUx2yeEEDvg7xDzSepITbPo168frrrqKrub0SlpniZWMCNlapcuXVq9JtG08dbqtAOJ0JQxeeedd6IeG0mPHBE2CSGEEEIIsQMr6lxKfU4RNGV/ETTFtqTK6wiyv0SiiG+xI9GiRWt2YfKow0wZB0IIIUR35OYhuYlIzrkSsSmZC+SxL7tCWJ2v5bzt87hUdoVdFXXqdYneTMnIQt/vXImjJ07F128+hW2fvIKQpGPoIIu3BTDhqXKcMzgFsydk4KgujTaCfsCbAnz5L4qahBBCwCqoRCtRs2Xq2FhoS/xr6aczIFGsQkcETUlVKwJuvCl8CSGEEEIIiZX26lz27ZKJ7jlp6mJpZqpXPcu/5XX5eyTt3Z5KI9JD7Ii9tlixpbRxf796FrG0ZQ3NgyH7R1LVRuws31wSY88JIYSQzitsyk1ED0wdhtMGdVOZC9J8HhTmpOHQ/HSVzUCe5d/yuqSOz07zIi/NC6/bjVp/CGm5XXHMhb/GP35+Es44MvbMda9+1YBjHi7DT16uw9byEBBujBgt3wrUGud+QgghyQsjNYmtiAhnBZ1N1JRIS0nLO23atIPWZI2MYUlJSVP90NGjR0Mn/H4/5s2bp7Ylqtnn89lqh+gJ59e546JzH+xsm5W+E+nLbNtm2tP52CPxwbnVe1zirXO5p7waJzb8D95SF9bmHXvAOpeSGi+SAk+Q6M9YkFphlXUBFXEilDeKm7qNr1X+E+1H1/OG3fNLiB044bjXuQ+dca0hNTblnHvFSf1V5gK50UfOi5JVQc6zuek+jOpTgOp6P15Y/q2K5qwvrcJJ/v/BV+bGV7ljcERXH566sBs2bA1iVlEtPtwS7HD7JdDzyc8a8OzqBpx87EhMOnk0fpHzJnxr3wCGX4JY4VqDRAPn1tnj4pR+JDMUNYlWgqYZ6WfbivYsLi5GZ0Hqgc6dO1dtR547ihnjaCZSn0Hyh0e27bZD9ITz69xx0bkPdrbNSt+J9GW2bTPt6Xzskfjg3Oo7LlLn8qP1exu3DXFQIjDbEzSbI/sF0n3I9dc2ldL6cP1edXG1ZZ3LWr9xkTSS4U7S4sWCp/F9klpPkAu3Oo6vVf4T7UfX84bd80uIHTjhuNe5D515rSHnXEnFfqB07HK+/9dn21XadlUTG7VAY0BlvSsV6ahTNTLfuywD/14XxE2L6vDFngPX6DwQcm9U0X9X4MMVX8I/Lh2/OuIjpMUhanKtQaKBc+vscXFKP5IZiprENiSy0Co6S6SmRGfeeOONcdnQsXao1+vFpZde2rRttx2iJ5xf546Lzn2ws21W+k6kL7Ntm2lP52OPxAfnVt9xMaPOZXZGGt4tOVJtp/jDSHOF26xzme4zIjMjGWcjomRHkXpghh1XuxGfdo+vVf4T7UfX84bd80uIHTjhuNe5D2a0TW5aj9hob59E+G7XZ0YKThrYFe+v3YOs9FS8W2Wct931IVS6suAOyw1CLnVuPecILyYOzMU//xfA796rxrcVMYibdXW46c06zFn6N9xedSx+9KMfwePpeIYGrjVINHBunT0uTulHMsNZs4Dy8nKVRlTy0z/33HN2NyfpUs92Jp5//vm4bdhdT7OwsLDD77ntttvwm9/8BsFgEG63e78TSkNDg3qWVADyt759+6r9AoFAq30lfYDcYSOvyd+EUCik9pXPX/N0AjrsK6/J3+SHeOTHeEf2FT/iT0hJSUnIvtIGaYsg4y6Pjuzb3ny2ta/Mb7T7HmzuO7KvzseJvH7IIYeoMY/sa8Xcx3ucNB932ZY+CJH94jlOYt23rXEXpG3y3uavWTX3csxb9R0R+XzJvvIwa+5bfjeb8R3Rp08fU+Y+0jZpg7TNiu+IgyG2mm8n4lzS2b4jop3PRB0nsYy7Dvu2Ne4H+k7ryHzurajBO1/uxGfbKlBWF1TRkOleN/LS3Rh+WB7OPKZXU8RkW3ZXbC5RFzKra+rEC7JSfSq1rCscggthhOX/rsa2hcNwN4Z1hOCWk4Ta9rqBhpRcVNQHkVUXQFqKV6W/O/fowv3mMy/Dh29LqpHmDqMeIRVhKTU6BeNi6v5297UBCLv2jVl9fQM8CMLnNl6T1HoHOp8deuihre7otmru2/tOM/s7InLOkH0jnyOzviOkzfL5jfTDzt+QOq81ImN5MLjWOPhxEnm9OfKaPLjW4FpD97WG/Fts6LjWOHtIN/znq53ISU/B7kCBqontrqjF0pTDcQI+RhAedX6Vs2bA7cOFw9Mw+ahUzFlSi3s/qkFZXcdvRtpaXIPLL78c9913nyrXNGnSpKb2JsNaQ4ffm53tOyLa+UzUcaLTfOqw1tDhd4S8Lv2QPjTvRyLPD8RcKGpaFJG4YMECipo2Rmp2FgFVjpNkZenSpXjrrbdw9NFH4/vf/37T6w899BBqamowY8aMJsH0s88+w2uvvYZBgwbhoosuatr34YcfVjcRXHnlleqCk7B69Wq89NJLSuyVO/kiSO50STUgd+ZELoJ8/fXXSlju1asXfvKTnzTt+9RTT2H79u24+OKLccQRR6jXNm3ahH/+85/o3r07rr766qZ9n376aWzevBmTJ0/GUUcdpV7btm0bnnzySZUa+Wc/+1nTvvPnz8e6detw3nnnYfjw4eq13bt347HHHkN2djauvfbapn2lD19++SXOOussHHvssU2fob/85S9ITU3FzJkzm/aVsVm1ahUmTJiAE088Ub1WWVmJBx98UJ1YRUCOIGO+bNkynHrqqRg3bpx6rb6+HnfffbfavuWWW5p+DLzzzjv45JNPcPzxx6uFgyA/LiJ1XyXKOC0tTW1/+OGH+OCDD1R91+985ztN/sSuvOdXv/oVcnJy1Guffvqpqgc7bNgwfO9732va94EHHlBt+b//+z906dJFvbZ8+XK88cYbGDJkCKZMmdK075///GfVR6lH26NHD/Xa559/jpdffhmHH344LrlkX3qaRx99VI2dLIR69+6tXluzZo2KlJYfrZdddlnTvn/961+xa9cu/PCHP8SAAQPUa+vXr8ezzz6rfgBJ7v0I//jHP7B161ZceOGFGDx4sHpty5Yt+Nvf/oZu3brhmmuuadpXzgUSQX7++efjmGOOUa/t2LEDjz/+OHJzc/HLX/6yaV9p19q1a/Hd734Xo0aNUq/JsTtnzhxkZGTg+uuvb9r3lVdeUf0+44wzcNxxx6nX5DMhnyP5oXXTTTc17fv6669j5cqVOO2003DKKaeo1+SzJovDyM0GEWR+Fi9ejJNOOgnjx49v+lEWmftZs2Y1/fB8//338dFHH2Hs2LE488wzm2xE9v31r3+NzMxMtf3xxx/jvffew4gRI3Duuec27SttEPu/+MUvmu465ncEvyM6y3fEwZD5j7SB3xH8jtDpO2LdrkpVC3PLig9QUL8De9IHYld6H7WvL1SHHmUf48svXHhuxXgVmXHusEPw9bL/tPqOKK+qxcjS99X28xjTFPV4aO0G9Kjbgp1pvbEt43D1mgiMkX1X5p2CoMu4kNKz9huMCm7COnchvgwONOzW+lt9R4zsnY896z/HqOB6bHJ3xZL6AegaCisR9Ziyj+ANB/B57vGo92QoG13rv0Wfmq9R4ivExuyj1WvBUBinBpYjw+vHytRRCCJd1Qrj7wh+R+jwHREN/B1x8N8R8lluiXwG5LjW7XcEvyP4HdGZfkfM/+tfMNqbgiU5J6Nbdqp6/cj6tQiFUrA0fAxOcC1XgmYlsvBH1zR1w9GvvXPwqxPScdmIVPzs4654efEGJQJ0lC+++ELNq3yu5PtIvq+SYa3B7wh+R3Sm7win/I6I9ztCPlvEXChqWohudQ6dCsfZuciJRU7iO3futLspJAHInVJfffWV2o78ECP78vvLcS+fgWijwXSiZWSajuNbXV1t+fhGvtMitRys8JWImhER22berCSLdVkkx/tdEGmb3OFJnMeGDRvURQmeM9DqOzZyV3O032nPLN6CZ5dsUdt9G78iqur9+LauRtWrzEA9hjXuK6llJdWcPMZnVbWyVRfY/8JkbHUujUZkoh7hcOiAdS4nDumOIkMThdvtQjhg1PjqkmVcWI0G2T9CitcDv8eFiUd2x6avjbqgzZExjdyVbUf9nch3mpyzrPpNFksWlo6ck8zCjN+QXGuQZIRrjcSSDGsNn8eFM44qxOKVXyA/FUgPuYEgUIFMlZFBZUwQmv8ccAEFGR5cOvFo9Bn7HXz53gIUrdrWVCO7I4hAI+Lf3r17lSAhQtLB4FqDRAPXGuatNXQj8t0sQVCduR/JjCvMaqgJR+4UmDhxIvLz81FcXIzOyD333NOq1mNpaWlcAqLc5SDj0rIepNzVEA9t2ZW7P4qKiuKyS1ojP47NuNARbfrZ5ndiXXfddeoOG6elckjm9LPSlnvvvbfpTrsIyZ4SSu76az4uMn+dLd2LzHvksyt36MmderEeJ2ane5HaLJG7/Jrf4WnF3Mvfm3+nybgk6jtCiPiSu2nFv1lz3/K7OT09Pa7vCHncf//9TXMitmKd++bHnrRNLl4k8jtC7lyVu5bbo/kd3EwJFfvn3szjxIy5t2Pftsb9QN9pB5ojGZ95H27CW2sMAa+izo/Kmno0BCRVnGvfhUiE4WlME+v1+lT62Zw0n0rnOmlIIa4eN7BpLGf8Yxm2l1Zje2kNqgJA95w0lRK2I+lnPSE/RpT9R22/hrHoUZCFXgXp+OOUo1vN531vfokPv96D8roAdlUax1yP3DTkpLgOmn62qj6AneV1KjVeYXYqMtNScdrgQlw7adBBz2fN7/a2au7b+04z8ztC+i3rv8h5OzLWZn1HtOyHXDC06zekzmuNSNRMe0hkSNeuXbnWOMhxIoLdYYftX5NXIlMkeolrDa41zNo3mdcasn3XXXc1ZV6Q8/y5lfNxiX+B+jXhgx8BeNX5V94dVL8vXAjADbfLgxRPGF/tbsBNb1fi1bWt00VHi7RNouAkekuuVTltrWHHvlxrcK0Rz1pD198RtbW1Tb91m/cjUecHiaSNROdGkGsH8juExAYjNS1gxYoV6lnCuEni6SypZsn+tMzRHqH5yUxOEpJmQZAf5M1PEELzk28EOZE0t6HTvi3b39F9ZTys3LetOerIvkJ7+zaf35Y/pg5mN959dT5OZN/m4xJ57mzHSaQPze+Ai+U4iWffAx0nLcfXqrlv+Z3W0o6Z3xHyQz7iS/y09BXP3LfsR/Oxj+U7ouV3QTxz37Jt0Rx/8c79wWjehkSdSzrbd4Rg53Gi23d+tPu2Ne4H+k470Bwt/GyXEjRF5ttTUY+KOiPSwOXyICvVq1LHSqRlKBxWkZIiAtYHQthdUY86f1ClmpP3F2Rn4JKxRgq1vMwUbCurg9vrkysRTXUu5QJnq7tpxba6vLk/IZcbJchGUF10cTXVuWxrHM4b0QsfrCtBdroHtYGwquclQmV9hg95GSkqFW2ESBsk5WxZdT1Ka4yLHJnpqchMNwTKc4YdEtX5rPnfrJr79r7TzPyOaH7OELtttS2e74iW/Wh+rFr9G1LntUa05xiuNfZxoH3bel1ea/k61xpca8SzL9cavVDbEMTJfQrx0aYyLMr6Lr5TXoS8kFyjcyMFgcbfAS6jzqbLjRSX/M4IqZuchnYN45WLM/Cfb3y4cVEdPt3W8ZS0IiZIakxJxSrpI+VmTkmn6qS1hg6/Nzvbd4TAtYY9aw275749u231w8rzA4kPRmomkIqKCpV/+oYbblBCm+Q/l1zUnZFERGqK2BvJx25mpKbke2+et1pgpKZ1kZq804QQQkiyEk2kZvN6K4TYidTQvHb+KrW9u6KuSdDMb0MMjKDEwJqGJjEwJ92LwmxDDHxg6jAc3j0bC5Ztxd8/2axEz22ltSpIsm+XzDbtHQjx801xtVzjxGH56UjzeXDpCX0xedT+kVYt0+cqcbayXgmbgvgWcTY9xQOPy6VE0tpGcTayCpY+iDjrggsXH9u7SZwlxG54TjEPrlsJsZbyGj+K1uxCwad3Y2TJ68gMlsODSIpWOeOGI0kU2sCtBM9/rWnArKJqrC2OPaWw1LmTrGBSUzASwUsIIVbD3yHm405GoVFSuEjh5DFjxqgTXERFN/sh6WYlxRgjBwkhhBBCCCE68cqq7U0pZyOCpqRtlXqUBxIg5XX5u+yn3lsbQGWdIXC+2mhP6lx6PS4lRKZ63Uo8bF63Mhpkf3mfvF/seBvrXB6Ii4/thTOH9lCXSUVk7Z6T2uS7si6gIkt3lNepZ/l3xLbsJ/vL++T9YocQQggh8SFp6uVGpNOn/BR5hYfBl9sDbrdEZUqt7TBcbolk8gAqHb2kiZeHF/CkAh6fKr95/mA3Vv9fHh6b3B09c1tHREWDlAD75S9/icGDB+Ppp5/WruYqIYSQ2PAmk5gpkYZz585tes2qIFUJY2ZAbHQkSgCOJ6KUEEIIIYQQJyGi4UfrjTqaZY1RlxKhKVGN0SD7yf4SsSnvl/SyH67fiytO6q+iPE8a2BXvr92jLmqKkCj7pfqMlLYHQ6IoI5GgeRlGqqaTB3ZVttpbb10zbgDyM1JUxKa0Rx4SLVpR64c/GFYpdCWVrs/jQk66T4mlESRCUwTN5umnCCGEEBInhYOBUZcBy58CUjKB8m2AvwYIS2pZOee6Jfflvv1DASAcMkROTyq86fmYNqE7fnByEA+t7Y67/7lIXd/tKN988w1++MMf4r777lP1ACdOnLjfOV9+FxV9uQsrtpSq3zW1/iDSfR71O2Rk73xMGtKj3d8hhBBCrCUpRE05eckJa+PGjU3iopy8uGi1l0QJjSUlJa1e69+/f0J8keiQ+gpPPfWU2r7ssstiziVulh2iJ5xf546Lzn2ws21W+k6kL7Ntm2lP52OPxAfnNr5xkQt3gWBYiX4NgZBKASdiZEeQ/ctq/arGpthJg0elmpPIjHOHHaJEzZwmYdGocxltalsPQpjoWwNfvQtfpY5qqnPZHrK2k9SxY/rmq6hREVmlTc3Fy+ZI9KeIpWJb0uZ2huPOKv+J9qPrecPu+SXEDpxw3OvcB641YIiaNcXAmleBLgOBujKgajcQrFe1NBGWbBEuQ+N0eQC3D/ClAen5QGoO/GE3nglMQLfhPfDVLX9R5bEefvhh5bOjfPbZZzjjjDNU5OYFF1yAH8y4Fq9/sUfd6CW/i1oiafRXf1uBZ5ZsUTdsndviN4POxx6JD86ts8fFKf1IZhwvapaXl6s6jfIsRIRMKyMnKZ62jZVCo6QZJvYhn7ft27fH/dkzyw7RE86vc8dF5z7Y2TYrfSfSl9m2zbSn87FH4oNzG9+4SCSCIFGMgkRQdqTmpSD7y/sknavYEfFw+eYSJWrKBT+JfpSoSalXafgyIjBFCD1oncs0D/ICVUAQmNpoL1pk32snDVJRoyKySpvKa/2oaQgiI8WD3HQfRvUpUOlsOxp1YfdxZ5X/RPvR9bxh9/wSYgdOOO517gPXGo0Frk++DsjoYkRspuUZj0AdUFcOBBuaRWemAGm5gNdIc6/sDf8htr+1Dajcrq7tPfjgg/j5z3+OW2+9VaWUjaVvX331Ff7whz/gydf/i0HfnY7Mboc2y+4QQigsaXIBn8dtZHeAR92sJY/m2R10PvZIfHBunT0uTulHMuN4UfOqq65SKU2bp4CVCMEJEyYoUU1OiPLvgoIC06MFxW9RUREWLVpkqm0nIWPfPOVsW1GWZqSwZfpZe/F6vbj44oubtu22Q/SE8+vccdG5D3a2zUrfifRltm0z7el87JH44NzGNy6RlLNy4U4QsS8WRJgUUVPSuwoiHkaQC36lNQ14c/VOVbcy3WekqpXITnmPPFoidS4l1Vt2qgfr/MMwqk8+Lj6ub1z1vOThlOPOKv+J9qPrecPu+SXEDpxw3OvcB641mgmboy8Heh8PrF4IbHzPeD1rn3i5Hx4f0P80YOgF8HY9AhcXrN/Pdr9+/fCPf/wD1113HWbOnIm33norpnZvX/kedqz6DwpGfwf5J14Mb+b+1w5r/SFVd1x+n8jvCslAITdsye8bSXuv87FH4oNz6+xxcUo/khlX2MFytERn5ufnNwma06ZNw/Tp0zFixAhL2zFlyhQsXLgQAwYMwLp169AZkfQOUpO0OaWlpXGLhTImkha4OfEektJOaW9zli9friJ2ibns2bMHhYWF+722e/dudOvWzbY2EUIIIXYh58A5c+a0u8+MGTNanTsJsZrLnlyC4qoGbC2pUSJjz9w0ZEZZT7M51fUB7CivUxf7ehVkoEtWCp66/Nj9ftc/u2SrugAYgXUuCYkOnlPMg+tWQjSjthRY+waw5VMjHW1DDZCSYURw9j4OGHSWkX42St555x11LVCu/cWKOyUdPU6agv6nXQhfWob6jVLTMpNEuldloHDBpX6nSNp7Qgg5GPwdYj6OlqLnz5/ftC0nNqvFzAgXXXSREjVJa0RobClqJiJSkzU1CSGEEEJIopGakFKvUtK7SlRirT+IdJ9HRR+O7J2PSUN6dDjlaSKQNgmRjLNy4S4WJHWsYcfVZsSnFXUuCSGEENLJEMFy+CXGwwTGjx+PJUuWYMGCBbj55puxYcOGDtsINdRi+7t/x96lr+KIMy9H7xPOQXZaGro2q/ktqfQFyUAhN2zJ7xv+XiGEEOtxtKgpJzNZSMuzXYJmc0HNjNSqTmPMmDF44YUXWomS8USAthxnGX+mn7WXUCiETZs2NaUJcbvdttohesL5de646NwHO9tmpe9E+jLbtpn2dD72SHzoNrfrdlXilVXb8dH6vQg0pmJtzrbSWqz+tgLPLNmCkwZ2xbkJEu2iHRcRWaVNUitKUqtJJEJ2WsfFVqmFKUikpSD1Ks2ocyn9iFyQ1GF+dTnurPKfaD+6njfsnl9C7MAJx73OfTCjbbFGbSfbWkNev/DCC/+fvTuBk6sq08f/1NZd3Z1esxJISDphHZSsIAqyZAEdRYEsLKPCIAnB0ZlhSYiOissQEkX/OkpI4sLPEZAkiAMjQhIQhBHJShRBTDohCZCkk/RSnV5r+3/eU32bTqfTS/VdTp37fLXo6uqqs9x7U3d573sOrrrqKqxatQrf+MY3VHZUf7U11OL1Nd/DrhdW48xPzMNJEy7B4EH5yI+EcKC+RQU2ZUh9OW568rV38Onxeb22jXKPzt8rXjJluZjSDz8zeo1JcEsCWldffbWn7WBA7cRkbtOuBpq52fXzzNL0XiKRwC9/+Uv1kOdel0N64vo1d7no3Acv2+Zm3U7WZXfZdpan87ZHMGLdyvCqj7y6F7ev3o4X3jqkApoyvGp1rAXv1jap4V3lp/wur8vf5X3yfvmc3TOB9HW5SNaokCFfhQytlkz1ry3yfvlc53IkMNmXeS6XXP1BPHDDZDVUrfyU3+V1K4tVl/Xbldftcqt+p+vRdb/h9fol8oIJ273OfeC5hvtl5+Xl4Qtf+IK6OerrX/86ioqKsqq36dA72Przr+Hl++fj8N+3YlB+GOXtxynW3OTb/77r/bY9diPwy1nAY58BnvwSsO3hzDC7lJN0/l7xkinLxZR++JnRmZoS3JI5NHXR3bCoftfdPJebN28e0PyXXYOaMqcpeUsypocPH97x3OtySE9cv+YuF5374GXb3KzbybrsLtvO8nTe9gg5v24lIPnAC1V45vUD6vdYSxz1TXE1R2VXkg0Za0mouSclcFcSjahhy2qb2nDbJeNs60Nfl8uMs4errFEZClbaJG2WodUkE6Gv5P0Sk5XPy3CyMnSsZFq62Q+3ed0ut+p3uh5d9xter18iL5iw3evcB55reFd2cXEx7rnnHpXF+q1vfQsPPrgCyWT/gxf1e9/En370rxh61vk4/RPzEYiehFMSezG34VVMSL6OF4MfRjAYQN3+KrTF4+qmLzVn+F9fQWD9j3H05Asx6qLPonj0Of2um7yj8/eKl0xZLqb0w88CabtvD9aIpA6vXLkSn//8571uSs5btmyZmnS7s9raWluyUCXo2HkI2oULF2Lp0qVZB47Ly8sdaScdjxMdExERDXx4MMrNeTAl01ICk2mkcSjWqoKWQs6L5W5+GVZV5pqUC1syzKpkNVpnXiUFYQwtzkcAAVx33mg176Tb7l/3lsoalWBsdaxVvTaiNKra3hvpiwzBJoaX5Ksh2C49Y6gaYpaI7MF9in143kq5jN8F9rj1x/+LJ3/6fezf9nz2hQQCmPDBs3DfxWmMrogiFAggH60YhEaE0wkEkEIaQSQQRmNwEFqR13FsuGv0bIydeRtOG1FiX6eIKCfwOMR+RmdqMpCVGxYvXnxMUHPDhg1Zl9X1s7NmzeJ2QERERES2zoMpn5WApugc0JRhycoK8xAKHnvHrwT9hqTSKoBa2xRX8zGJYcVRVc7UMeWOzLHZE+mPBDUla1SGxpU2SaDyRH0QyU59sIKz1lycnzx3pKvtJyIiIuqrQOlJmHzTN/D3qZ/GO8/+FE17tve/kHQar21/A598PYDPTinFly+KYliRBDMzx0yZo8m0CmUWJo+iDXk4GihGU7AIY/eswSv/711suvhOXHf+aGaHERENgNFBzYqKCg75mgNkqFl5bN26Vf1u/czG+vXrj/ldp+GHiYiIiEiP7EsJ4P3mtXc73p8J6sURT6YgU0tKPC8SCqq5ImWIVgn+yUOyKq87b5QKhgrJcrQCmr1lOUqQUIZ3zY+EVPBQ2lAQiaug4FPb33M9y1GCqNIfCapK1qiQNknAsq45rvpSkBdSWQjJdBrNJ8g2FVKO20FZIiIior6SY0FRMPIMjPqnJcg/+Be8/btViL27s99lxZNp/PTVOqx5LYDbP1KIz32oHAgXIokgQkihEC0YhGbkoQ0V6SOIpFtQG6zABW1/xLMvrcQDzTfZOv0AEZHfGB3UnD59ugpy3XnnnV43xUg1NTW2ZUFKtmbnuS9l2OB58+b1uxz5nEUCpbINkPfi8Tgefvhh9fyGG25AJBLxtBzSE9evuctF5z542TY363ayLrvLtrM8nbc9GpgTrdvesy+b8PzfqlXwblA0jHAwoIJ1/ZkH8726ZvzfzsPqPRIwFZLd2JdhW4W8T96vgodNmaDmSzsP4+YLK7sd5taO5XIiEqCVeT1lXlDJGpUgq7RJlkdDS0I9upLlIcFhK0PzinNGqHLspOu/Xa/b5Vb9Ttej637D6/VL5AUTtnud+8BzDX3KlpvbRBhJTAu/icjoPFTduRLvbH0eb/32J2iuycyR3h+x1jTueb4R398EfOniIGZPrEBeOIBWFKE+nURx+ihK0g0oTjcinQRqghW4vOUZfP+1f8CjhXmeTD9Auf+94iVTlosp/fAzo4OaMvTo5ZdfjlgshpISjlk+EEeOHHF8XXXO1pQ5Nfsb1JR5Pztbs2aNrW2k7MnUvXv27Ol47nU5pCeuX3OXi8598LJtbtbtZF12l21neTpvewRb1608Ht24r2NI2BNlX8ZTabQlUmpuo9rGNpWBKIFNeUiQrrt5MCXAJ3NOSnmSmfibbe+q4cXkvVZZMlxrf8j7JRtSypZyJRt0/ZsHMWvyKbYul95IhoBkCpQX5qllJ8tAHu8vu7RaFrJMIqFAJnO1/aKgsDJX7c400PXfrtftcqt+p+vRdb/h9fol8oIJ273OfeC5hj5lyw1ZMrVAXiiIYckGIAUEg0GcMvVynDThUux5+QnsePYXiDfF+l12fUMjvvW/jXj4Twdxx4yTMf3MUiAYRgPKkEjnYXDqCErSjWhJ5aMJRfho24t4eONoT6YfoNz/XvGSKcvFlH74WSBt+JobP3485syZg3vvvdfrpuS0GTNmHDdfpQQNJRhpl127dmHy5MkdQwZLYHPhwoV9+qx8pry8vOP3/nyWnJ/oOJVK4c0331TPzzrrLHXgmA27yiE9cf2au1x07oOXbXOzbifrsrtsO8tze/22tLSgqqqqx/eMGzcO0WjU0Xb4Qed1e+aZZ+LBP+xW2YbWkLD17dmGx3wmnUZbsv016wwoABXQlCDj8OL844Jz3c0hKYHMlnhKBTUl8FkcDWN4Sf/X6cFYi8qELImGMawkinNOLsGSqz+YzeKwZZuXLFcZBvelE2S5WsKhAC4aP0TNoenUhThd9xtet8ut+p2uR9f9htfrtyvuU9w/b/Uj3bZ70/pgR9uy/S7gucax1mzeh1+8sgctbXEE6jPTCIQrTkEo9P7NWvHmo6h67hHs+v1qpOKtWbd50qgi3DnzZEw5dZD6vTRVj5J0DC3pCN7BMARCEXyr9Bs476xK16cfoNz/XvGSKcvF7X7wOMR+xgc1JRAn2ZqSAXjuued60obdu3erAwz5B5JIHD+Ek85kua1YseKYYV0tMvSsBA9liNfKykrb6pPAZn8CpxLQnDZt2jFZngxouoNfykREROS1R17dq7IM00jjUKy1Y45LiU/KUK9W9uWRxlY0tiZVoDLdaZ5LyUCU/1UU5alHdyRjU+bBtMqVMygpRT43vCS/YyjW/pDgq2SAynBoJ5cXYFRFAR644f3jYK9IQFiyRrfsqUF9c1wFbmUZlhZEMPnUCsw4a/iAh8klInITz1uJSG5Su+mhTerGrX01TermN5kOQOY776ql/jD+/rufYe8rvwXSx09R0FfTzizFHdNH4vSheRiZ2q/uqnsnPRRtgTysK/oU/lA0Aw/deB6Pq4gMx+MQ+xkf1BTz58/H2rVr8fzzz3sS2LSCmpJJ6PQwrtlatGjRMYFLK1uyvzrPsfncc8+pIWX7S4KTMr+mZG72FqTsz3vJfvxSJiIiIi9JduHtq7er59Wxlo6AplykkuxLCVqKZCqF3UeaVIZmazwpI45Jkqb6T0gNrZq5O/eU8oJjhlft7MjRVpWxKcPZyvsl61MCoiNLC1DUx/k0O2tsTWB/fYuao3JURSEGD8rDQzedl/3CICKibvG8lYjE/evewgtvHeq4sUyMKI2ecF70owf3oO2JRfjjG+9mXaccil49cTC+dnEUp5W0oT5diEMox5688Xiw5F/xuQ+PGfD0A0SkNx6H2M/oOTUtkmkowbbLLrtMBTcvvfRSV+vPNkDoNmmnFZTsHJzMppyBkECoDK1hBVrl55IlS9QwwlYWp/xdsnCt7EzJ5pSApl0Zo2R/Wv8777yjnp9yyikDGhLKjnJIT1y/5i4XnfvgZdvcrNvJuuwu287ydN72aGCsdfuEzKGZTiPWmugIaHZ3cUr9LZ0ZgjYdAGRLkIBnIpVW82oGU2n1u2Qmniioac2DKWXIQ0jWp/W8v6ReIVmkQrIhB8qUbV7XfnjdLrfqd7oeXfcbXq9fIi+YsN3r3Aeea+hV9pXnjsQLf6vGyFAjCvLbsLe1QI3E0fVmOMug4adi0fUfwL7dRfjhurfxp31t/W9/Gli79Qie+nMA/3J+FF/4SBiIAtFEg/q7jIzBoKZ+dP5e8ZIpy8WUfviZb9aYBLwkMCbDlN52221oaMjsPNxgZRFWVFRA5+UjSbu1tbUDfkg58sgmS7Nrm6Q8GYJWhrjdvHmzCnBK5q2VVSpZmVu2bFHvYUBTXzLs8s9//nP1GMgQzHaVQ3ri+jV3uejcBy/b5mbdTtZld9l2lqfztkewZd02//U5BJFCXfucl3JRqru77ZtaEx1BSCuQGA4GEW4PKFqvyxyX1vOu5EKXlC1Dzsp75JPyVhmeNRvN7Z+TbE8hw7sOlCnbvK798LpdbtXvdD267je8Xr9EXjBhu9e5DzzX0KtsmQt87uSROLNhCy5I/gVl0cxlcRmJ4+0jjWq+c8nilNE05Kf8nmprwgdOLsRvb6zAmrnFGD+k+6kKetOaSOP+/2vGpB8ewEN/rAbiTep1uaGO9KPz94qXTFkupvTDz3yRqWmZN28epkyZooKbkokow5befffdmDBhgqP1PvbYY46WbzrJwuxtXk3SWyAQ6Ajqy3OvyyE9cf2au1x07oOXbXOzbifrsrtsO8vTedujgZH1mVdYoi44tcSTaEuk1FyXcpd9dyQjU1jhSis7UgKVyWQaKWQyLuX1WHMc5SeYW7NA5ucMZoKZ4WBADUUr820Oac/07CsJisrnREl7MFPmqxwoU7Z5Xfvhdbvcqt/penTdb3i9fom8YMJ2r3MfeK6hX9lzpo7C0peL0dSWwNDiKPLyMjfHyRybcnObPDprDuarY0wghH88Ix8Txg/Ho39uxQMvHsCBWP8DknUtady/4T38YmMNRn7ydyi/9BMD7hP563vFS6YsF1P64We+mFOzOzLfowQ16+vr1e+SCSiZfjL35UCGXu06DOv69evVMKmymKXsHTt22FI2kQ44JjgRERF5ZfGv/4zX3411zKVZHA1jeEm02/fuPtyoAokS/JQApsyJKXNpCglMylCw1tya0UgQp5QXdluO3Ln/Xl0z4sk08sLBjvk1JUN08KD8Prfdmp/Tmk8zHArgoRvPQ2nhwLM1iYjoWDxvJaLO5Brtoxv34VGZxqCd3CQnN7bJMZ51o5uMpvE1rMDpqV0oTR5BcboRDShENSrUceXDrx7CipcOItaS3agdouKUcfjFgz/Axz/+cQZXiAzF4xD7+SpTMxaLqWFLZY5Na0hYK6YrgUen+DRuTERERETkGGvIWQks9jYnpSRRqstNcq0o3f5ov24kF60kqGkdsZ9o+Fn1t3RaXXCypt2UwKYc6qsAZSTU7dC3XUmGprxflLUHMS8aP4QBTSIiIiIXyLHc9eePxtQx5Xhq+3t4aedhRBHqdl71HS1n44zWXWgODkJJqgmD0IzD6RRC4RBuuWgEZk8egpUvHcAvXj2EtkT/r//WvFOFT3ziE7j44ovVNFznn3++Tb0kIjKXb4Kajz/+OObMmXNckNG6C8bJwKPUwcAmEREREZmqrqkN6984iK17a1WwsTmeREEkpIJ2k0aXY+bZI2wP2kkdwopBWkPKdiczVGxmHszMZ9IIdfzWrr2cHmKaHfNgFuWF0BRPIRoOIhIOItacwIH6FpWxKUPgdjcUrQRLZTlZAc2SgjCKo5ll8slzR/aj50REREQ0UDLH5u0zz8DNF1Zi/ZsHsWVPjZrjUuZLl5vlZL7zsSfNxpi/vIxYYxPaYrXIS8dRhgbUpErV8WVZYRgLLz8Fn/nQMPzw+f349WtH1A1v/fXiiy/iQx/6EK655hr853/+J8444wwnukxEZARfBDW/853vqLkzrcBid+n8TPEnco5Murx69Wr1XG4uCIfDnpZDeuL6NXe56NwHL9vmZt1O1mV32XaWp/O2Z4odBxvw5Pb38PLOw0gkM8fayVRKDQfb1JpQc1k+tX0//vO3b+Lk8gJ87JwR+MyHxgw4wCnr9qTDW1AeT2I/xqO1PVB5IoX5YTTH296fQ1NlZkqQs9M5QEfmZu/zYFYMyke0Ldk+j2emLxLYlIBlXXNcZWzK/JsypK1kd0owVD5rNVECmkOLM8PVXnfeaHVRzQ6mbPO69sPrdrlVv9P16Lrf8Hr9EnnBhO1e5z7wXEO/srsrT45LZ00+RT261XwpSt5ah+qjxahI1qAscBSt6Tw0pgbhFZyn3nJRySYsuepU3PThYbh//bv4/d9jWSfl/OY3v8Ett9yCr33tazjppJOy7ywZ+b3iJVOWiyn98LOwH+bOXLRokQpaupGV2R0GTMnvUqlUx3yy8tzrckhPXL/mLhed++Bl29ys28m67C7bzvJ03vZMnItI5iE6fLQVLYlUx/CuchSsAompAHYdasSPf1+Fxzbvw6fOHYlPTTg562CerM9oUzVkBs280GloTKTVXfVW5mNXJdEwjjS2IYiAesi8mhKklDvsrWCodcTeXZalkCxLeavMgynDkxXlh3DR+KF44e+HMKw4ioJIXGWptiZSaGhJqEdX8lkJglrtvOKcEbjuvFFZLQOTt3ld++F1u9yq3+l6dN1veL1+ibxgwnavcx94rqFf2VmVd84shHesRzBaisamVhSmGzEcNTiUSuG94HD1Fms8kNOHF2DFP43H5t31uH/9O9jyjtx61z/JZBIPPvggfvGLX+D222/HXXfdhZKSkn6XQ2Z+r3jJlOViSj/8zPig5vz584+5+FJZWYlZs2ZhxowZ6nlFRQVKS0sdqbu+vh7r16/HvHnzUFdX50gdRLkgFArhU5/6VMdzr8shPXH9mrtcdO6Dl21zs24n67K7bDvL03nby2VyTP3AC1V45vUD6vdYSxzVMQlmJju9Sd6XeSrZmnKZR2KF4VAQhxvasGbLO3jhrUO4/vxTVVCvvzcByvoc+cGL8H9VhzEokIfa1laVCTkkle42KBkKBlGcH1aBRvl7KpVW7QJSHUFN63NFeeE+zYP50dOG4t9nnI6TygpUcFcClfJoiSdVgFeGu5WyZVjcSCiAkoLIMXM1SYZmNn33wzavaz+8bpdb9Ttdj677Da/XL5EXTNjude4DzzX0Kzur8oadCUy+EWWv/gz7Wirk8BGFaMTgdD0+lnoOrYE8DEKDukUuiBSi6RZ8enQzPv3Pxfifv+XjP55rQtWR4292601TUxO+/e1vqwDnV7/6VXWNOz8/M9IH+fd7xUumLBdT+uFngbTBkz1KlqYEL+VCwdixY7FmzRpMnDjR9XYsW7ZMDX87bty4jrsAiExw6NAhDBs27JjXqqurMXToUM/aRERERM565NW9Kognw7ceirWqDEgZYrUjNJdW13pOKBTIBBll+NWKojyVrXjbJeP6HdyTzMmbHtqkhr3dV9OkMiRlTsvBg7q/2CPBxndqm9XzeDKl2ixnQpmAawB54aD629ghRR0Bzu7mwZSsTPG9Oed2ZJrKMLxPbX8PL3Uahrc74VAAF40foubQtGvIWSIi6hnPW4lowOSg8aX7cWTz46hpbENRuhFFqQbkpdvef0/7saz8V44G2xBBXXoQalMFeGLbEfx/L9YgdrQp6ybItW0Jcl577bUIBjPHrUSkPx6H2M/oTE0JYopJkyZh06ZNnrVj8uTJ6mdNTY1nbSAiIiIiZ7W0tKCqqqrH98hNbtFoJiiWiyR4Zw05KwHNmqZMQFPmjpR7JVUwMwAE2wOF8pDgp4zqI+8TEvOTYX4OxlpQkBdUGZ/lhXm4/vzR/WpLWWEeLhw/RGV8ylxIki0qwcf8SEjNadmVZElKEFUuRElwMZWQlmUuOklGpQQ6ZUhZCX72dx5MeX77zDNw84WVWP/mQWzZU4P65rgaErcwL4TSgggmn1qBGWcNH/B8okTkD37YpxAR5QwJWF50ByoKByP5wgrUNxehMVSEcKoVRemjCKcTCKpj4QDiCCOGIrQiT31UBuoo/vAN+PDFl2H3i2ux5/ePoKWpsd9N2L17N2644QZ897vfxdKlS1UiDxGRHxkd1Ny1a5e649sKbnpFhrgl8jO5cCl3oAi5MyXbO8rsKof0xPVr7nLRuQ9ets3Nup2sy+6y7SzP7fUbi8Wwdu3aHt+zYMGCnL4A/eT29zqGnK1rjqshXCPBoAoKWtmZMk+lZDrK/zIyUU7JeoxLdLM9kphEGvvrWlA5dJAKlE4dU97n7EVr3V50chgv/C2Nko5hXxM4UN+iMjYl6Nl1KNqKogjakknUNcataT87miiBzJZ4CvvrW7KeB1MClrMmn6IeXtD5+9aEfnjdLrfqd7oeXfcbXq9fP+5TyHu6bfem9cGOth0+fBg///nPe3zPTTfdhCFDhthed1/55lwjEEBgyk0YOvpDOPjszxF6+0XUBkpwKDAUJemYupFPbvKzjjHTgTC2RybijwWXYF94tLoI/7Wv/gdm/Pw/ce+99+LHP/4x4vHMaCD9sW3bNsycORPTp0/Hfffd15FMg6Ya4K3fAfteBZprgXgzECkACsqBUecDZ34885xy+nvFS6YsF1P64WdB04Oa8gU/ZswYT9tRVlamfnJeTfKrRCKBFStWqIc897oc0hPXr7nLRec+eNk2N+t2si67y7azPJ23vVwkw7C+vPNw+/O4ClKG24fZsrIwI6EgwsFgp4Dm+yTAqN4v/2//c1M8qcoVMnxrf9ft79b+EnMnj1SvSRalZFMKydh8+0ijygaVAGxja0L9PBhrRWNrsiOaKW3KjwSRFwpiUF5YzacpQcyCSAgl0TBOKS/AqIrCjoCmZGhmM1SuW0zZ5nXth9ftcqt+p+vRdb/h9fol8oIJ273OfbCjbXLxXeZW7Okh73Gi7r7y27lGYNhZ+MBnliF0/aP4XfoS9TgYPgmN4XLU5J2Effmn4dmiT+E/y76Jx4o/i/35p+LSM4aqqQtkZBIZcvL73/8+3nrrLZV5ma0NGzZgypQpuO6qf0TVL28HHpkDbFwJ7N8O1O0FGg9lfsrv8vrDs4Hnvw1U/y3rOv1C5+8VL5myXEzph58Znakpw73eeuutXjdDZWpec8012l78IHKabPvFxZnMi4H8O7CrHNIT16+5y0XnPnjZNjfrdrIuu8u2szydtz2vSSBx/RsHsXVvrQpQNseTKpAnGYmTRpdj5tkjjhsmVd4v80VKRmRrIqmyMyUYGG+fQ1JlaPaynCWImExm7mCX90ow9MjRNpVVKfNRyvCtfRmetfO6nTN1FOrb0moYW5nvsiASV32SOTYbWhLq0VVRXhiF+SHVn4bWBEplaNlB+d1uJ7k0D6Yp27yu/fC6XW7V73Q9uu43vF6/RF4wYbvXuQ8819CvbDvLqxw9SpUlx8QHL/oRtr0TO2b6gbG9TD8gc2T+8pe/xB133IHFixfj2Wefzaodv/rN03j8qd/h1o+ehP+YORzDIo1AMg6kU0AgCIQiQDSTcIMd6zOPyTdmHpr9m9GFzt8rXjJluZjSDz8LpCUv3lCSOizDtVx99dVeN4XISJzomIiI6Nh94PLly3sdKrDrvtPtOTFlCFnJuJSA3olIIE/mq7yyUyBv8a//jNffjaE61qLm0pSzCAlStiVl9iAgL9x9hmZXMnelNQ+nXASSz1QOLVJzXn7uw2OyGrpVTmke3bivY75PkRmONq6CrlKPzO8ZCQVQUhBRdVk+PeFkleEpAV7Og0lEusiFfUqu4Hkr5TJ+F/jHc889h0WLFmHLli1ZlzEoL4C7LizE7R8pxKD8zACNcswux95tiOBosASNgUJ1XPy38osRm/wlzPyHk3isS+QgHofYz+hMzcrKSpWtSURERETkZz0H/VJIpQGZflKGj1VBP4TwwluH1EOGXJU5JCX7UVjvV5mW8kRuJpQ5hvoQ0LTeKxdW0u3PJeAo7ZBA45Y9NVkFNeUOWxnOS+bllGFsJetT+tA5eNlb9uXsKd3Pk0lERERE5LRp06Zh48aNWLNmDb785S+radX662hbGl9/vhEPbGrFVy4fgTnnFiOSbEJBuhlBtKEkeRihQBFqghWoPPR7PPtCPm7c9PHjbmYkItKZ8UHNqqoqr5tBRERERORpQPOBF6rU8KxC5pasbx+etavmeAqxloSaV1Lu2C6JRlQgtLapDU1tmWFcJY6pBnsJBFRgEu3Byf43TEZWyQQ1rSFsJVNyIORCzO0zz1DD2K5/86AKkjL7koiIiIhyZdTBuXPn4qqrrsLKlSvxzW9+U2V59dfBhgS+tPYd3P98Pm6fPhIfO2sEinEUpWhAYfqomg7iSKACM5ufwRvhf8ALb6WPuZmRQ3ISkc6MDmpOnz4dq1atwpIlS7xuCpGvyaTLTzzxhHouB2bhcNjTckhPXL/mLhed++Bl29ys28m67C7bzvJ03vbcJBmaEtCU3MhDsVYVtBRyrWJQflgF+6yMSQn+HW1NqIBndaxVZXMOLc5Xn7eGcJWMzg5WVDOb6x6B9z8nZQup3451KwFLyfjMJuszl5myzevaD6/b5Vb9Ttej637D6/VL5AUTtnud+8BzDf3KzpVzjby8PPzLv/wLPve5z+H+++/Hd7/7XTQ2Nva7nD01rfjX1buxamQhbp9+Ei4ZU4HhqEExGtGczpcQJ86t34C/Fn3mmJsZb7tknK8Dmzp/r3jJlOViSj/8LDO4tqFmzZqlMjW3b9/udVOIfC2VSuGNN95QD3nudTmkJ65fc5eLzn3wsm1u1u1kXXaXbWd5Om97bs6haQ052zmgWV4YwZjBRRheEkVxNIKi/LD6Kb/L6/J3EWtO4FBDq3q+v65ZBTlliNqOQKR1rePE03Mexwpgqo+qIiRQmilIAqx9KoPr1ujloms/vG6XW/U7XY+u+w2v1y+RF0zY7nXuA8819Cs71841iouLcc8996jr27fddlvWwZfX32vCP/+iCjc+uh+vVuepgGVZ4Kj62/npP6MldgTVDS3qJki5mVFuivQznb9XvGTKcjGlH35m/PCz11xzDW655RY1JrmXfvKTn6ifn//85z1tB5EXQqEQPvaxj3U897oc0hPXr7nLRec+eNk2N+t2si67y7azPJ23Pbc8uf29jiFnrYDmiNKoytA8kVAwgMGD8pEfCeFAfYsKbBZE4ijMD6uhXGUI18ONbSo4acU05XmoD+maMmytFdSUemROzmBQ5vLMfFbK7guuW7OXi6798LpdbtXvdD267je8Xr9dDRs2DF//+te9bgYZTrft3rQ+2NE2CWpZZfT0Hifq7iueazi/jIcPH44f//jH+LeZlfiPby3F6i39H5JW/GFHDNN2xnDdB6L42qWFKK6IoykdwKXpLfif5ovVe4YVR9VNkTJXvV/n2NT5e8VLpiwXU/rhZ4G0mhDHXHV1dSq4eeutt+Lee+/1pA27d+/GuHHj1Ljokt5MZAoZ119Otjurrq7G0KFDPWsTERGRV2QfuHz58h7fs2DBguP2nU6pa2rDTQ9tQiKZxt6aJrQlUioDUwKWfXXkaCtqm+Jqjs2RZVG8faRJZXLuPtKosjZDgQCS7cHNvHBQZV32JJFMISHD2CKASDig2pQXCmJURSGikRA+9+ExvhsyloiInMXzViIyxpNfAvZvx6Y33saip/bj97uzn49eBki5+bwS3HjxGFQXnY47W/5ZHdfLcb+MolJelIezTypBWWEEk0aXY+bZIzgnPVEWeBxiP6MzNUVZWRlWr16NmTNnYvDgwbjjjjs8a0tpaalndRMRERGRv6x/46AKaErwUYKHMsJrWWFev8qQ99c1x9Ucm/FkWmV4xprjGFKUh3fqmjMBzTSQDkBlXYaPmXDzWPJ3CWgek6UZCKhgpjzCoQBmnDV8wP0mIiIiIjJSc636MfXkEJ7753I8+84gLPrfg/jzu/2fb1Omsl/+Sgz/vfV1zLmwGfFJzUiF8pFqS6mbFasbWlGU14R3agN4/d0YHtm4FxeOH4Irzx3p2wxOItKD8UFNMX36dGzevFn93LRpE1atWtXt0AxOZosS+ZkkhNfU1KjnFRUVWU82blc5pCeuX3OXi8598LJtbtbtZF12l21neTpve27Yujdz0UOCkEICkhJM7A95v3yuoSWhylFDzx5txSnlhahpbENTPKmm05RYpQQ9A4G0yt7suh6OCWjK3wOStZlWWZpy97e4aPyQPt/97fd1a/py0bUfXrfLrfqdrkfX/YbX65fICyZs9zr3geca+pWd8+ca8eb2yuWGxQCu+IdyzDz3ZKx4+T18+7f78F59W7+LPNqaws+e24Hwxnko/cj1KPrAdGQmlghgz5FGdS5QUhBBFCG88NYh9bjuvNG47rxR7/e5qQZ463fAvlczgVdpZ6QAKCgHRp0PnPnxzPMcofP3ipdMWS6m9MPPgvCJSZMmYdeuXdixYwfGjBmDn/70p67VLQFV6x8JkR/F43H86Ec/Ug957nU5pCeuX3OXi8598LJtbtbtZF12l21neTpve26oa8r0OZ5MqZ+FMsZUFgraPydBS8moPLmsQP0+sqygI0BpkYzQtmQSyVRKBTKl7rb2IWeFvF/eLq9LVqcENIujmUDmJ88d2ec2+X3dmr5cdO2H1+1yq36n69F1v+H1+iXyggnbvc594LmGfmXn/LmGBApFoP2SfiqJYDCAT36wAs9+6WwsuvxklBZkd8yfaDiCI8/8F/b/7F9w9O9/QjKdQksihVhLAu/UNmNfTRNiLZl+ypybD7xQhXT1m8Dz3wYemQNsXKmGxkXdXqDxUOan/C6vPzw7877qvyEX6Py94iVTlosp/fAzX2Rqdh6KdsuWLVi5ciXuuusuzJs3D/Pnz1cZnPIoKSmxvc63334bS5cutb1colyTn5+vVTmkJ65fc5eLzn3wsm1u1u1kXXaXbWd5Om97TmuOJ9XPVCaeqIZ6zYaVeZlqD0wOGZSPqWMr8MzrBzC8JIpDDa0qgClD0QqJobbnb3bEO63Yp5SRbi9T5vccWpxZP3K3d3+HsfLzuvXDctG1H163y636na5H1/2G1+uXyAsmbPc694HnGvqVndPnGpLtKMHCUASQWEy8EYiWqGPx/EgQn/3QUHzq3Ao89Eo1fvGnarTE208E+iF+ZB8O/frbiJ5yFoZN/2cMHj8BR1sTajqK6lirmtpi6KA8pDf/HDXbnsfgovbpLRItQEsdkIyrTFIVeJV2Rssyf9+xPvOYfGPmoXl2nM7fK14yZbmY0g+/CqQl39ZQixcvPuHfpNsS3Kyvrz/m9crKShX8tGvYWckOteobN26cyhQlMgUnOiYiIjp2H7h8+fIe37NgwYLj9p1OWfDLLequ6ndrm9AcT2F4SX5HVmR/yB3ZcgGjQLI0ywswqqIAP75+Eh7duA+Pbtyj5tuJNSdUwFKGlLUClxZ1uaLTNYtoOIRhxXkoKchcALninBG47ZJxHPaHiIgcwfNWIjLGtoczmY8SQKzbkznIrhiH3bUt6jhcRkiRK/2RUADVDXH86Pf7sXbrkY6bHLMx/JwLcdon5iFZMhK1aiSYNL6Y9yRmYKP6+6lFCeTF6zNtOpFwNBOQzW9PKDrrk8BFd2gf2CSyA49D7Gd0puaKFSuOC1p21TWmW1VV5XCriIiIiIicJ0O7SlAzEgqqoGZTWzKroGZzWybjUy6OCJlXUwKQ158/GlPHlOPJ7e/hN9vexeGjbcgLv5/VKXeMqyNt+U9AgplBDB6Urz5vOW4+HiIiIiIi6t4ZHwO2/Pz9QKEEEptrEQwUdoySYl3pHlGSh29/6lTc+OFh+N6G97DhzZ6vkZ/IwddfxsG//hGjzv8YTp72OcwIvoqPJv6EVCiAIelaBI42yTAsmQP+/GIgUgQEQ2poXJVJ2tqQaWfD/sxcm4OGA28+BRQOBqbcZN+yISLfMDqoKVmXW7duPeHf5eKJWxdQDE6IJSIiIiINTRpdjtffjaGkIKLmwpFho4ak0ggF+378K4FJ+ZyQcsTkU9+fJ16GjL1j5hn4/IWV+OWf3sbTrx/Au7XNSMgQWGGouorywuqzVr3hUAAXjR+i5tDs75CzRERERES+VVgBVF6SGcZVMh8lUNhcg8IA0IZo5jp3WkZOkaknMh8ZP7QAD1w3Dlv3HsV31+3D5r3N/a83ncK+P/0W721eh3POL0fsI8MwvqABRWhCUuoqGoyQtE2CmZ1FS4CiYSrwKu1Uw9MKCWxueQgYfQEw7EwbFgwR+YnRQc2KiswFl66BSyvA6EagkXedEwGJRAL/+7//q55/4hOfQDgc9rQc0hPXr7nLRec+eNk2N+t2si67y7azPJ23PTfMOHs4Htm4F1GEkB8Oqnlw6praVLZkX8n75ZBZPh+NhFRAcsZZw497X2lhBF+47DT1qG+KY/2bB7FlTw3qm+MqQ7QwL6QyNCUgKp+X9w+E39et6ctF13543S636ne6Hl33G16vXyIvmLDd69wHnmvoV7YR5xrnzMoENWUoV8l8bKlDefIw0qlixDAISQTUjYnhTjcyBtNJXHpKEp+8sQhPvxXGV55vwd8PyVCy/ZNMxPGT/6vGmi2HcfdFUdx6XiGO5g1BYbAMFV0Dmh2Vh4CiIUA4PxOElcBmpCDT/tcfBy77CnSj8/eKl0xZLqb0w8+Mz9TsTIKY8tqkSZNcqV/m1Ny8ebP6SeRnqVQK27dvV88//vGPe14O6Ynr19zlonMfvGybm3U7WZfdZdtZns7bnhvKCvNw4fgheOGtQyqIKPNiyjw4+ZEQBkkaZS8kQzMzb05mKFshGZa9BSTl77Mmn6IeTvH7ujV9uejaD6/b5Vb9Ttej637D6/VL5AUTtnud+8BzDf3KNuJcQzIbJ9+YyXSUjEcAoeY6lKRjKEYDGgJRNKWjQDKISDCNaLoFhelmBJBGOgBcdEYFfjW+FE/+uQb3v1CHhoaj/W5CfUsKi9c34b9ebcWXphXh2qmDUNHbTYsyNG2iFWg+ksnclKDmrt8DF9yWyTrViM7fK14yZbmY0g8/MzqoWVZW1hHMLC8vx+rVqzFt2jRX2yABzenTp/c4DC6R6UKhkPp3YD33uhzSE9evuctF5z542TY363ayLrvLtrM8nbc9t1x57kgV1CyJRtASTyLWnMCB+haUF0ZU0LO7oWjlzm7J0LQCmiUF4Y65OGXIWB1w3Zq9XHTth9ftcqt+p+vRdb/h9fol8oIJ273OfeC5hn5lG3OuIUHNpiOZuSkHDUcgUoB07DACiVYUoxnFaFKTawZS7x/rtwUiqE0PQgMKEQ6mUfjBKzDszI8juuV/ceT/HkOqtbHfzXgvlsTdT+zBQ69U4/5rxuFj55T3PGphQVlmGFqZY1Me4q3fAROuh050/l7xkinLxZR++FkgbfBkj6tWrcL8+fPVl+nSpUtx5513etqOcePGYceOHZ60gcgJhw4dwrBhw455rbq6GkOHDvWsTURERF6RfeDy5ct7fM+CBQuO23c67ZFX9+LRjXvl3mwcamhVgU0h1xskY7MgL4RQIIBkOo3mtqTK0LTOECSgObQ4HwEEcN15o3H9+aNdbTsREdFA8byViIwkB+ySrSkPAC2JFA7W1GFQ6iiC6bhc9EdKhqINRNAULEJbIB9tiZTEOvFo4jI8kroUkWBQ/d7aGEP9K2vQsOUppJP9H5bWcvFppVh69VicP7bkxG+SIWhbY0C0LJNpetK5wJU/zLpOIt3xOMR+vphTU1jRdy9MmTJF/aypqfGsDURERETkT9edNwq1TW145vUDGFYcRUEkjrqmuJpjs6EloR5dyRyaMuSslaF5xTkjVDlEROSO+vp6rFu3rsf3zJw5E6Wlpa61iYiINCJ3KE65CRh9gZqbMrrr9xhUNAg1jXnqz4lUWo3AoqKWSSAdDOIlnIunkhfgrdRIFRONJyWdEwgVFGPotJsx5PwrceTFh1H/lw2ZoGk/vbijHh9a+hpmTRqC//zUGJw+vPD4N0WKMkHNZFvmd5ljk4ioH3wzp6Y1FK0XvKybSAeSEN7Q0KCeFxcX9zwUhQvlkJ64fs1dLjr3wcu2uVm3k3XZXbZd5cnwqev+egDbdu1HrDmOxlQEBXlhFaibNLocM88e0evckKaQZXjbJeNQXpinMjYlUFncMRxtXF3MSKXTCAYCiIQCKCmIIBp5fxgeydCUgCb/7erPlOWiaz+8bpdb9Ttdj677Da/Xb1etra144403enzPxRdf7Fp7yEy6bfem9cGOtkmCxK9+9ase33Pttdcek9hhV9195cdzDSfaNqA5Ni/7ipqbsuJvT+PAxvWoPVKNaLAVR1N5OJIswKbUGfh9YjIOJwohuZpWvFJ+hBBQU1KoaSlKh+OMuQsR/fj1+NtTK1H911eyatLarYfxxGuHccuFJ+Fr/zgaJ5Xmv//HYLC98lTmZ1sTdKPNutWMKcvFlH74mdFBTd2CiTK/JpEfxeNxfP/731fPFy9ejLy8PE/LIT1x/Zq7XHTug5dtc7NuJ+uyu+yBlrfjYAOe3P4eXt55GKlEApNqX0AUwNbyS3AkEMI7tc14/d0YHtm4FxeOH6LmnDxteDFMJydqMnTs1DHleGr7e3hp52FEETomeNlZOBTAReOHqDk0dVw+On+veMmU5aJrP7xul1v1O12PbvsNp9pFlAtM2O517oMdbUskEmrowt7e40TdfeWncw0n2zZgBeUITLwBZ0+4Ho9u3KduZrTIzYxojiPamkBLPIV0QG5qVEma6qZGK6hTUZSHiqIIUDwe581fhiM7tuHNJx9E3Z6eb7LpTjIFPPiH/fjFnw7ijumn4M4Zp6ipLZBqD2YG2oObed1kc3pMu3WrCVOWiyn98DOjg5pjx47F+vXr1fMxY8Zo0Q4ivwpad2JpUg7pievX3OWicx+8bJubdTtZl91lZ1Oe3G3Z9eS9LZ5U88iId2qbkA6EEAkFM5mICOGFtw6ph46ZiE6RAOXtM8/AzRdWYv2bB7FlTw3qm+NoakuiMC+E0oIIJp9agRlnDdc+k1Xn7xUvmbJcdO2H1+1yq36n69Fhv+FkOUS5xITtXuc+8FxDv7LtLE/Hba+nmxkrUim8fTiTGSnza0rWZjKdRnlBRJ0HdL3hcfBpE/GR2x/Ege0v4sCTS/Hu4aP9bk9TWwrfenovlv9hP7768dG4dWIAKoQUag8kydyaGtJx3erAlOViSj/8KpCWK0BERFngRMdERKQDOZx94IUqNWekiLXEUd8+Z+SJyJyRErQr6TRnpAzROpDApuwDly9f3uN7FixYcNy+k4iIqCvuU+zD81bKZfwuoIGS86LONzP+9b0YapvaVMJkayKphp09qbQAg/J7zn26pPEZHP2/X+DHL+zHoaPHZwf31djyEP5zehHmXnQGgnkFwPnzgQnXZ10eke54HGI/ozM1iYiIiMhbMrfl+jcOYuveWtQ1xdEcT6IgErJ1bkvJ0JSAZhppHIq1ItaSOcmW+KScnEsGoswXKfNGSkbi0daECnhWx1rVUExDi/PV52XOSbmrmYiIiIiIyARyrjVr8inqIWS6jttXb1fPqxtaEGtO4EB9C8oLIygrzMvMrdlFMpXGutQULJ30DD52ThmefPVt/PD/jqKhrf+5Urtrk7h+TQzf+dObWDprPGZ89mM29JKI/IRBTSIiIiKyXee5LRPJ40927ZrbUuqxhpztHNA80Ul5cTSCIam0CrbWNsXVSbwYVhxV5cgwTTrOIUlERERERDRQcq4j02/IuY/c3CnknEjOjeqa4+qm0IK8EEKBgBqatrn9ptB0OopXAh/AJdHtuO2SkZg/+TC+83ITHtzUgng353u92bbvKGZ+/zXMeH0u7rvvPkyaNMmB3hKRiRjUJCLHyaT1zz77rHp++eWXIxwOe1oO6Ynr19zlonMfvGybm3U7WVfXskOh0HFzW0o2ZKw5jngyhVQakDjjiea2nD3pJKxbt67PbZXAqTXkrBXQHFEaVSfjgXQKoxrfUq/tKzwd6UBm3gwJdA4elI/8SEjdlSwn8QWRuAp4yrwzMuck6U3n7xUvmbJcdO2H1+1yq36n67G7fJ5rEGXPhO1e5z7wXEO/su0sT+dtrzfXnTdKDUEro9XIzZ1yLiSj6shoNg0tCfXobvqOP0UvxfS2P6MRRTipPIEffCKMf/twEb76+zY8si2WVVvWr1+vHtdddx2+/e1vo7KyEl7L5XXrJFOWiyn98DPOiEpEjkulUti8ebN6yHOvyyE9cf2au1x07oOXbXOzbifr6lx2MplUc1taAU0JNO6raVJZmRJwbI6n1Imy/JTf5XX5u7xPyOdWvFjV57ZKtqVkgmaexzsyNK35YAJIY1jru+ohz7uS98n7O3/+pZ2H1bwzpDedv1e8ZMpy0bUfXrfLrfqdrsfu8nmuQQRfb/c694HnGvqVbWd5Om97vQkEArjtknHqplIhN3eOqijEKeUFKImG1XQhEsSUn/K7vC5/rymsxLPRK1BRlIeiwScjEC1DZUUID19TgK23DcbM0wuzbtOjjz6KM888E//6r/+q5iD0Ui6vWyeZslxM6YefMQxNRI6TrJ2LL76447nX5ZCeuH7NXS4698HLtrlZt5N1dS577db3+j23ZUsiica6BKqDrYiEAljxUgMuKByD4SVR/Oa193D5OSefcM5NmatThraVTNC2RErVI0POWtII4L3o2I7n3ZH3yzBLEmyVciRzdP2bBzvmnOmPoqKijmXR03vI7O8VL5myXHTth9ftcqt+p+uxu3yeaxDB19u9zn2wo23ZHl+aeK6h0z7DibZ5Edi8/vzRavoNGa1Gbu6Uc6FopPu+hEMBXDR+CC7/4CIM/ns58OZTwKDhQKQAaK7FxJEtePazxdiwMw+L1h3F1veOz/bsTTwexw9/+EP8/Oc/x1133YV///d/x6BBg+C2XF+3TjFluZjSDz8LpNPp/g96TUQkc5cdOoRhw4Yd81p1dTWGDh3qWZuIiMgbMrfl7au3q+fVsZZe57aUAKIMeVTfHEdCxqSVE4pAQA1LK+RuYDmhlpPnE825ufjXf1bzclr1FUfDKhjaXwdjLWqIJbkLeVhJFOecXIIlV38w62VBREQ0UHJetXz58h7fs2DBguPOx+h4PG8lIuqdjFYjN3du2VOjztHkJlS5KbW0IILJp1ZgxlnD37/ZVMIJWx7KPCyJFqClHki2IZVMYvVfmvGVdXXYdST7UXCGDx+Oe+65BzfffDMike5vdCXSHY9D7MdMTSIiIiIasJ7mtjxWGjWNcdQ0tqnfwsEgkE4hnkojkU4jlU6qu4bfq2vGyLKC4+bclPlf5O+dh4yVuTqFnHRnoyAvpIKa8WQmuCon8URERERERH4hAUsZraZPI9bI+diUm4DRFwCvPw7s+n3m9UGZG0zlNtVrLwau/kgKK1/aj28+vReHGvp/jnXw4EF1A8/3vvc93Hvvvbjmmms6zgWJyL8Y1CQix0lCeGtrq3qen5+f9QGIXeWQnrh+zV0uOvfBy7a5WbeTdUnZ1bUNeOXv+4F0qNu5LTu9G9UNrYg1Z4KeyVRaPVKd5ruUoWnzkUAiDuyrSSEaCasT7JJoRM25KdmdMv+L9KE5nmz/TOazMrRtl8YhlG6vKxDOnHx3QzJErbqF3JVMetP5e8VLpiwXXfvhdbvcqt/peuwun+caRNkzYbvXuQ8819CvbDvL03nbc82wM4HLvgJccBvw1u+AvX8CWuqAtiYgrxB50TL8y90L8LkfXojv/vinuP/++9HY2Njvanbs2IHZs2fjpNPOwdTZX0T5+Alqvs+ywggmjS7HzLNHnHDKkmxw3Zq9XEzph58xqElEjpMx8ZcuXaqeL168GHl5eZ6WQ3ri+jV3uejcBy/b5mbdTtYlZT/4X9/HBwD8cdBF3c5taZEMTQloypybMhdmsj2IKKcQMjqtBCfDSOH66Gvq9V+1TUJrIojqWKsarnZocb6as7O8ME/N/yInssIa2dYKSlqCSGFi3R/U863llyCF7jM5rXZYQdFsMz7JPTp/r3jJlOWiaz+8bpdb9Ttdj93l81yDKHsmbPc694HnGvqVbWd5Om97risoByZcn3l0QyYR+cY3vqGyLr/1rW9h5cqVSCT6P+fm/h2v48l752PY2R/CmZ+cj5KTx6vpSB7ZuPeEU5Zkg+vW7OViSj/8LDNpERERERHRADW0D9sqGZrdzaFpDTnbOaAZDgaQFw4iLxzKfKbTxwrzwirjU0gw9FBD5m5KydiUOTzlzlxhzcOZbYZlc/vnIqFM5TJvDBEREREREdlnxIgR+PGPf4w33nhDZV5mq/qNP+EPy/4Zf/r5N1FX/Z46v5TpSm5fvR2PvLpXZeIRkbkCaf4rJyKHJzqWr5lUKjPfWTAYHNCQUHaUQ3ri+jV3uejcBy/b5mbdTtYlZd/2y814t7YZ79Q2ozmRxvCSfBRHjw0MHoy1qHkrZbjZeHtbJBhpDf0qMn9LQmKLeaEgwqEgTh08CEdbEzhQ36LeY5V96RlDMaqiEL94ZY8KmErdUtSYwUXvB1TTaQTah7aVZ90NPyt1vn2kUd6KU8oLEI2E8LkPj+nbXDLkGZ2/V7xkynLRtR9et8ut+p2ux+7yTT3XkPOq5cuX9/geyXjpej5G2Z+3+pFu271pfeC5hn5l21meztterti4cSMWLVqEF154IesyAqEIhpx3JcbP/CcMHjxEvXbFOSM6pizJBtet2cvF7X7wOMR+zNQkIsfJziEUCqnHQHYUdpVDeuL6NXe56NwHL9vmZt1O1qXmtkykkQ7IYK+Bbue2TKZSaGh9fx5NK0Ozc0CzU4lIp4NIy+Cx6UBH5qeVsWnN2fnSzsM4f+xghEMBFYjMDwdVYLKuqa1z41S75HGi+TTl/fI5+byUI+XNOGu4HYuGfPq94iVTlouu/fC6XW7V73Q9dpfPcw0i+Hq717kPPNfQr2w7y9N528sV5513Hp5//nk8/fTT+MAHZEKT/ksn4zj0yuN49b5/wmu/fQiJthY1ZcmjG/dl3S6uW7OXiyn98DMGNYmIiIhoQHqb2zLWkpBUSfV6KpMzedzwtMdo/1Pnt8gcnXK+0ZpIqcxMGWJo49s1au4UUdoe9KxtiqvMzr6Q98n7M+VnPn/R+CEdZREREREREZFzJKj0sY99DNu2bcOy/1qBgvLsbjBNtTbinWd/ij9+82oc/ONaPPzKLjVlCRGZh0FNInJcMpnEunXr1EOee10O6Ynr19zlonMfvGybm3U7WZeUN6T+bzilaQfy2o8su85t2dQlS1MyOeV/XUnQU/I9J4f24dzgXoQD7wdHJQgqGZsi1j5355Y9Nbjy3JHqeUk0gpKCzN9lqNojR1uRSiZVu+QRSGeGl7HaIX+3hrSVz1nD5X6yvTzSm87fK14yZbno2g+v2+VW/U7XY3f5PNcggq+3e537wHMN/cq2szydt71cJFlzwdMvxiX/8TAqP7EAwYLirMqJxRqw6Vc/wPYlV+NHP/huVvNrct2avVxM6YefMahJRI6THcQrr7yiHgO90GBHOaQnrl9zl4vOffCybW7W7WRdUl748E6MaNmL0vagomRAWgFMkWh/br3SdXha9TfJ4lRBzTT+IXwAZwX3Y1BeJgPUUtD+ezyZKam+OY7ThhfjuvNGq9+HFud3BDYlA3NvzVHVLnk0tcYRa4mruT1lDk0rQ1PeL58TUo6UR/rT+XvFS6YsF1374XW73Krf6XrsLp/nGkTw9Xavcx94rqFf2XaWp/O2l4tkWpCXdx5GKJKPQVM+jXFf+BlOvvg6BCOZc7X+ere6Fj9c8k18ZMLp+L+XX+7XZ7luzV4upvTDzzJXfYiIHL7b6oILLuh47nU5pCeuX3OXi8598LJtbtbtZF1S3qSp56t5S/IjYeSHE2qIWDkpHTwocwLaEd+0fnYz8qwEQdvzOPFm6iT1rLgg79i62oOh1vC2VkbodeeNQm1Tm2rDsOIoCiJxNfdmPJHqKGt/rBWpTvfzyRyaMuSslaF5xTkjVDmUG3T+XvGSKctF13543S636ne6HrvL57kGEXy93evcB55r6Fe2neXpvO3lovVvHFRTjMhUI22JFMIFg/DBqxbgzMtmIfG/X8VLm994/7yyH175805ceNFF+NSnPoV7770XZ599dq+f4bo1e7mY0g8/C6SzycEmIgJw6NAhDBs27JjXqqurMXToUM/aRERE3rh/3Vt44a1DKhuyOtaqXhtRGlVDxu450qiyK9uSKRWQjASDx8ypKQHNeCozPKz1t+JoGMNLosfUYZUtc3ieXF6AURUFeOCGyepvckj76MZ9eHTj3o73ywmxDFUrdass0EAAkVAAJQURRNvnAbUyNCWgKfO5EBER6UDOq5YvX97jexYsWHDc+Rgdj+etRET6W/zrP+P1d2OojrUg1pLoOB+8vOV3uLzlGew81Iwfrd+Dp//WlHUdwWAQN910E77xjW/g5JNPtrX9RCfC4xD7MVOTiIiIiAZM5raUoKbMbZkJJibUnJXlhRFY8UsrZCgBxhACKhApAc1E+z12kolpBTtLCzIZlJ01t2dmSmCy63skIHn9+aMxdUw5ntr+Hl7aeRhRhI4JXnYWDgVw0fghag5Nu4acTSQSqKmp6fE9FRUVCId5CE5ERERERGSRkXZEPJm52bUwL4RRib0qoCnOG9yMx+cW4ZV9ebh7fQs27mvpdx2pVAo//elP8fDDD+Pf/u3fsGjRIpSVldncEyJyGq+oEJHj1Dxp7Rk4cldUtpkwdpVDeuL6NXe56NwHL9vmZt1O1mWVXTmkENdOHYVfbdrXMUelBDZl7koJXFpDxsqPZFqGmk2q59aQIRLQlECjvDK4MIKCcCboifa2ShkyV6eQTEsx+dSK49ojAcrbZ56Bmy+sxLo3DmDrniNq7s2mthQK88MqECqfm3HWcJQWHh84HQgJaDKrxh06f694yZTloms/vG6XW/U7XY/d5fNcgyh7Jmz3OvfBjrbV1tbif/7nf3p8jwyrWV5ebnvdOp1r2FW2neXpvO3louZ45gZWa4hZGWXno20vqudF6Ub1EKedOgL//fkCPP9WPb67/j1UHep/cLOlpQX33XcfVqxYga985Sv4whe+gGj0/VGCuG67Z8pyMaUffsagJhE5Lh6PY8mSJer54sWLkZeX52k5pCeuX3OXi8598LJtbtbtZF2dy7777rtR1xw/bm7LlkQS8cT7Mx7IM3UOEZAZNDPZmVaGZnk0gBlt/we0AVvLL0EKmUxLmaNTYpwyF6ZkX0oAVAKTJyIBy099cDje+O3PENVw2yNzv1e8ZMpy0bUfXrfLrfqdrsfu8nmuQZQ9E7Z7nftgR9ukjD179vT6Hifq1u1cQ6d9hhNt8zuZYkRYo/wUpWKYEH9NPS9ON6ifsUAJmgOFagSgaWeW4eLTSvGb7Ufwg+f342Ds+H8Hfblp4M4778QPf/hDfOtb38INN9yg5ljkuu2eKcvFlH74WdDrBhARERGRGeQOx9suGafmqBTF0QhGVRRiVHkhCiMhdbetdZIqgc1wMIC88Pvza1YU5WHIoEyWZ2eSoSkZn6KsPbtSho61O9OSiIiIiIiI3Ged50VCmXDFlNY/IZROIB9tiKTjSCOAhsCgYz4jN7rOmjQE6770D7hzxkgUR7ufeqQ3e/fuxec+9zlMnDgRTz/9dGbEICLSViDNf6VE5PBEx/I109raqp7n5+cPaEgoO8ohPXH9mrtcdO6Dl21zs24n6zpR2TsONnTMbZlIptU8m+/UNnfMkyJD0KI9sClDwpYX5mXmv5T5NtOZYWbb0iGV+WkFNEsKwioDVHxvzrm9zoXp9vqVfSCHn3WHzt8rXjJluejaD6/b5Vb9Ttdjd/mmnmtwn+L+easf6bbdm9YHO9qW7XeB6ecaOpSn87aXi9Zs3odfvLKn47zxG8GVmBjeg4pUjRp6tjFQiJrg4B7LqGtK4Mcv7Mcjmw4jnsw+5HHJJZfgm9/8JqZOncp1a+A273Y/eBxiPw4/S0SOk51D57HpvS6H9MT1a+5y0bkPXrbNzbqdrOtEZXee23L9mwexZU+NGjr27SNNiMiQPskUEqm0mkuzqS2JYCCOtmRK/S7nn81tSRxtbVVDzloBTWuuTskE7S2g2VPbKPdx3Zq9XHTth9ftcqt+p+uxu3yeaxD5e7vXuQ8819CvbDvL03nby0Uzzh6ORzbuRRQhdd5YmjqqzhfDyNzw2hLofVkPioZw58yTccP5Q7H8xQP4zfaajvPJ/njhhRfw0Y9+FLNmzcK9996L0047LZsuGceUbd6UfvgZh58lIiIiIsfIELGzJp+CJVd/EE998UIsuGQcTh1chPHDinFyWYHKzpQTzYaWBKpjrdhf36J+yu/WHJrDS/JVhmYAAVxxzghcd94or7tFRERERERENikrzMOF44d0nEMWoBXJVBqBdEq9luoljJFKp9X7xeiKfCy9egye+7dz8PGzS7Ju09q1a3HWWWfhtttuw4EDB7Iuh4jsxaAmETkumUyqu5zkIc+9Lof0xPVr7nLRuQ9ets3Nup2sqz9ln2jOzVPKC1ASDaMgEkI0DEwIv4vJkfcwqixf/V3eJ+Rz8vm+Dg+j87ZHA8N1a/Zy0bUfXrfLrfqdrsfu8nmuQQRfb/c694HnGvqVbWd5Om97uerKc0eqnyXRCBLBTCZdIh2AhCqDyAQ3uyMZndZws6FgAMH288ULxpXht/Mq8ft/Lsd5ozKj/vSXrFsZAnrcuHH42te+hlgsBr8yZZs3pR9+xqAmETlOdhAvvviiegz0QoMd5ZCeuH7NXS4698HLtrlZt5N19bdsCUhef/5oNSfmpWcMRTgUUNmaw0qiOLm8AKPLC3Am3sFp6X0oiATV3+V98n75XH/mu9B526OB4bo1e7no2g+v2+VW/U7XY3f5PNcggq+3e537wHMN/cq2szydt71cJVOMWDfAtuWVqgBlXGbPS6cRSTar4GUync5kZabT6vfWRKojQ1PeHw5mzhcrivIQDQeBeCMuqczDn750KtbOOwunjSzLqm1NTU341re+hfHjx+O//uu/0NbWBr8xZZs3pR9+xjk1ichxwWAQU6ZM6XjudTmkJ65fc5eLzn3wsm1u1u1kXdmW3d2cm/XNcTS1tqEpdSryQkHccP4YXH7OSDX8kJttI/1x3Zq9XHTth9ftcqt+p+uxu3yeaxDB19u9zn2wo20FBQUdZfT0HifqzuVzDTfK03nby2Uy1UhtUxv+tvksjEtUoQmDUJJuxKB0Mw6nkkh2k6Ml972GO2VolhZEVFATqQTQ2pB5T0EZrpkUxZWfvxs/3dKEe+65BwcPHux3+w4dOoQvfelL+P/+v/8P3/72tzF37lzfrH9TtnlT+uFngXQ6m+lyiYgyO/Jhw4Yd81p1dTWGDh3qWZuIiHpT19SG9W8cxNa9tahriqM5nlTDnpYVRjBpdDlmnj0i6yAa+ZvsA2Voop4sWLDguH0nERFRV9yn2IfnrUREuUXCFY+//DrOefHzCKUTGJ46gLx0HHUoRg1K1HC0Er6UUXxCgYAKalokmCkP9VLjYaD5CBCOAmWnAqEIcMMaoKAcR48eVYHJZcuWoaEhE/jMxqRJk7B06VJMnz7dlr6TeXgcYj+GogG89tpr+MlPfqJOCC6//HJMnToVgwcPxumnn4633367189v27ZNfebLX/5yn95PRERE7ttxsAH3r3sLNz20Cb94ZQ9efzeGd2qbceRom/opv8vrNz60Ub1P3k9ERERERERE7pFg5ayLPoCh516O4mgYR4PF6vUyNKAk2KJG9YmEgio7UwKa8pD3jaooxGAroCkZms01mQILyjM/Ky/teD5o0CD8x3/8B6qqqlTmZSSS3Y3NW7duxYwZMzBz5kz1nIic59ugpgQfFy9erIKXkydPxvz587Fy5Ups2LBBfQHV1taqL7W6urpeyyorK1OP++67T00afO2112LPnj2u9IOIiIh6v8vzkVf34vbV2/HCW4eQSKbREk+iOtaCd2ubsK+mSf2U3+V1+bu8T94vn+OgFkRERERERETuGnz+9RhREsWwIcOQzi+FTJc5NH0E5ahHfiiNgrwQBg/Kx5jBRep9ag5NGXJWMjQb9svVACBaBuSXZAo855rj6pBsuR/84Af429/+huuvvz7rtq5fv17FGG644Qbs2rVrIN0mol74MqgpGZkSfJT0cgleysVK65GNsWPHqi8uKevOO+/E6tWrUVlZiZ/+9Ke2t50oF8nk2TKZtjwGMpG2XeWQnrh+zV0uXvZB9u0PvFCFRzfuVb/HWuIqiCmZmbGWBNricXwq/Sd8MvUnNLa0qtfl7/I+IZ+TzzsR2HRzuThZl91l21meCf9+qHtct2YvF1374XW73Krf6Xp03W94vX6JvGDCdq9zH7xsG881nC9P523PGMPOBCbfqDIyCypGIm9QBfLDQQwJHsXo9H6cEqpDRbAZ4UQj0BLLBDJrdmWGnLUCmoOGZ8qafGOmvBOQa/kPP/wwtmzZgmnTpmXd5EceeQRnnnkm/vVf/1UNO2oSU7Z5U/rhZ0G/DTMrmZmSkWkFMSWd3XqIgQQ3S0tL1RjaEtz8/Oc/j1tuuQW33Xabzb0gyk2pVEo9dCmH9MT1a+5y8aoPj27ch2deP4A00ioTszrWitZEqmN4mmHF+QgG0upRnB9Wr8vf5X3VDS3qc/J5KSfXl4uTddldtp3lmfDvh7rHdWv2ctG1H163y636na5H1/2G1+uXyAsmbPc698HLtvFcw/nydN72jCHByLM+mXkuAcrikzJzZErQsjUGHN0PxN7N/JTf5XX5u7zPCmjK56WcPs6R+fTTT+Mzn/kMRowYkVWT4/E4fvjDH+Lk0WMx8epb8fmfvIzFv/4z1mzeh/qmzA3UucqUbd6UfvhVIO2TMdWee+45Nba1FcgUXbsuX1oVFRVqKFn5uWrVKnV3xoQJE7KqU4Knt956q3o88MADtvSDKBcnOpZ/a9ak28XFxR3/BvvLrnJIT1y/5i4Xr/ogc2LKELJCApqSmSnKCyMoK8xDSMauSacRSbeq1+OBfCTTQF1TG2rbTzRKCiTwKSdMwPfmnIvThmfm8si15eJkXXaXbWd5bm97sg9cvnx5ryOGdN13kj+/G51gynLRtR9et8ut+p2uR9f9htfrtyvuU9w/b/Uj3bZ70/rgZdt4ruF8eTpve8aRa/hbHso8LIkWoKUeSLYB6RQQCAKhPCBa2h70bCfBTHn0Y/1Y61aCXhLglLk3d+/enXXz80sqcPoVN2HUBZ9AXl4EF44fgivPHWnr9QU3mLLNu90PHofYzxdBzW3btqkxrYVspFaXp0+fjtmzZ6ufMoRsV8FgUM2vmW1QU6xduxZz5sxRAdKbb755AL0g0g+/lIlIZ/eve0vNjSlDyUrmpRhRGsWg/HCvnz3amsCB+hb1fHhJPoqjEVx6xlDcPvMMx9tNuYsXoImIyC7cp9iH561ERIao/hvw+uPArt8DyR4yHkMRoPLSzByaPQw521cyROmKFSvwzW9+E4cPH866nMKho3DWJ+dhxLkXqxjFdeeNxnXnjcrZ4CD1DY9D7OeL4WclcGmRgObChQvVELHr1q1TQ8R2F9C0y6xZs3DXXXdh3rx52LNnj2P1EBER0fsk2/LlnZmTjbr2rEvJ0OxLQFPI++T9nT//0s7DOT9UDBEREREREVFOkgDlZV8BblgDnD8fOOlcoPxUoGho5qf8Lq/L3+V9NgQ0RV5eHr74xS+iqqoKX/3qV1FYWJhVOU2H9mHLz76KP3x3Ho7s2IZHN+7FAy9UZT0VHpFf9e3KXg77zne+g127dnUMLyvD0Mrcl26SeTYlY3P+/Pl45plnXK2bSAfJZBJ/+tOf1PMPfehDCIVCnpZDeuL6NXe5eNGH9W8cRCKZRks8ibb2OTRlyNmuAukUhrVk5susjo5CWoasaSfvr2uOqzk2pZwoQlj/5kHMmnxKzi0XJ+uyu2w7yzPh3w91j+vW7OWiaz+8bpdb9Ttdj677Da/XL5EXTNjude6Dl23juYbz5em87RmvoByYcH3m4YATrduSkhKVrXnbbbepnytWrkQqmex3+Q37/oZX/utLGPYPFyD2yfkoL8zD9eePhu5M2eZN6YefGR/UXLJkiUrhlozJxx57zLN2SGBz7ty5iMVi6guQyE9kZ7Fhwwb1fOrUqQO60GBHOaQnrl9zl4sXfdi6t1b9jDXHOzIv1RyaXQSQxqjmner5oegp6Hx/pLxfPtfQklDlRCMhbNlTY2tQ063l4mRddpdtZ3km/Puh7nHdmr1cdO2H1+1yq36n69F1v+H1+iXyggnbvc598LJtPNdwvjydtz0amN7W7YgRI/DvX1+KNwdfiLf+dxX2v/ZCVvVU//UVVL/xJ+x6/nKc/MD9uHjy2dCZKdu8Kf3wM6ODmpKVWVdXh3Hjxnka0BQSVJVUcplb84477vC0LURuk/lpzz333I7nXpdDeuL6NXe5eNEHa8jYeDKlfhbmdX+QmkYAh/NO6njeVUFeSAU148lMuLO+PUiaa8vFybrsLtvO8kz490Pd47o1e7no2g+v2+VW/U7Xo+t+w+v1S+QFE7Z7nfvgZdt4ruF8eTpvewTH1+2T29/DoGGjcdr1X0PexE+h+rmfoXnvX/pfWTqNdzY+g+kXPI9/+9cvYfHixaioqICOTNnmTemHnwXSBg/afOutt6og4pYtWzBhwoR+f1426q1bt2b12e7MnDlTZY0+++yztpRH5DVOdExEurrx5xtx5Ggb9tU0qeFjTyqNoqiP82l21tiawP76FuSHgxhVUYjBg/Lw0E3nOdJmyn2yD1y+fHmP71mwYMFx+04iIqKuuE+xD89biYjITnVNbbjpoU1qypu9NU1qypuygjCSe7fhb089iIb3MlPhZUOmzZPA5pe+9CUUFBTY2m7yBo9D7Gd0KFrm0pR5NO0KSg5UZWUlampqvG4GERGR8QoimcxMa8TZVJb3cCXbPxeUSTl7yPgkIiIiIiIiIvOtf+OgCmi2xJMqoCmXC8qL8jH8Hy7ARxf+DBP+6SsoKB+eVdn19fW4++67cdppp+FnP/sZEomE7e0nynVh04Oas2fPhi7KyspUm4iIiMhZZYURvFPbjEgoiOZ4Ck1tSRRHI/0up7ktqX5GQpmgZmlB/8sgIiIiIiLKNsCxbt26XkeGk+wuInLH1r216mesfXqaQflhhNrvqA4EQzjlvCtw0sRLseelJ7Bj3X8j3hTrdx3vvvsubr75Ztx///1YsmQJPvnJT6oRIInIB0FNmU9TFzK/pzyI/KatrQ3f+9731PPbb78deXl5npZDeuL6NXe5eNGHSaPL8fq7MZQURBBrSeBoawJDUumOEw1LMJ3EB+teVs//XHYhUoH3MzGTqbT6nJByxORTK3JyuThZl91l21meCf9+qHtct2YvF1374XW73Krf6Xp03W94vX6JvGDCdq9zH+xoW2trK954440e33PxxRc7Undf8VxDv22PBqa3dVvXlAlmxpOpE47oFIrko/KyazHqQ/+InRsexu4X1yAVb+t3W+Tf/6c+9SlceOGFWLp0KT784Q/DK6Zs86b0w8+MHn5W6DSx7ubNm9UQtER+JAfi8tClHNIT16+5y8XtPsw4ezjCoQCikZCaD1NGkZV5L7oTTifUoyt5v3xOPi/lSHkzzspuCBkdlouTddldtp3lmfDvh7rHdWv2ctG1H163y636na5H1/2G1+uXyAsmbPc698HLtvFcw/nydN72yLl12xzPjOiUap/lxpqupjuRwmKcdeWtuPSrv8KoCz4hqZxZtefll1/GRz7yEVx11VV488034RVTtnlT+uFXgXQ6y0mmcsD48ePV8LOSop2NYDCIrVu32jYnp5Q3Y8YMPPvss7aUR5QrEx3L14w1n6zcaJDtcAl2lUN64vo1d7l41Yf7172FF946hFhLHNWxzMHqiNKoGhqmU+OQn2pWT1uDBVCTYQAqQ/NAfYt6PrwkXw1de+kZQ3H7zDNycrk4WZfdZdtZntvbnuwDly9f3uN7FixYcNy+k/z53egEU5aLrv3wul1u1e90PbruN7xev11xn+L+easf6bbdm9YHO9qW7XcBzzWcL0/nbY8Gprd1u+CXW9R0N+/WNqnpbqxrBn3RcOBt/O2pFTj4l8yIUdnGGP75n/8Z99xzD04++WS4xZRt3u1+8DjEfkYPPytZkRs2bMg6qGmn73znO+rnpEmTvG4Kketk5zB48GBtyiE9cf2au1y86sOV545UQc2SaAQt8SRizZlAZXlhBGWFeZmhaAMBtIYKjxlyVjI0a9uHkykpCHecnHzy3JE5u1ycrMvusu0sz4R/P9Q9rluzl4uu/fC6XW7V73Q9uu43vF6/RF4wYbvXuQ9eto3nGs6Xp/O2R86u27LCiApqRkJBFdRsakv2OahZPGIMpt6yBDW7/ow///rHOLq35+Glu5NKpfCTn/wEDz/8MP7t3/4NCxcuRFlZGZxmyjZvSj/8zOjhZydOnKgyLbdv3+51U1RgVf7BzJ071+umEBER+cJpw4tx3Xmj1fOhxfkqQCkkYPn2kUYcjLWoLM7G1oT6Kb/L650DmvI5IeVIeURERERERETkX5NGl6ufJQWRjpGe5Abp/igd8wGc8tnv4uQ5X0fR8FOzakdzc7OKOYwbN07NEcnhVMkvjA5q3nrrrSqdeNGiRZ62Q4aBqKurU5mjdg1lS5RLkskkNm7cqB7y3OtySE9cv+YuFy/7cN15o3DFOSMQQADDiqNqWBhrjs2GlgQOxZpRFHsbJQ17cLTl/Tk05X3yfvmcfF7KyeXl4mRddpdtZ3km/Puh7nHdmr1cdO2H1+1yq36n69F1v+H1+iXyggnbvc598LJtPNdwvjydtz2Co+t2xtnDEQ4FEI2EOq4vyIhP/ZF5fwBDzv4wLr77IUy44W6cdFJ2o0PJUKp33HEHzjjjDPz3f/+3Y9ujKdu8Kf3wM6OHnx07dqzK1ly/fj2+/OUv495773W9DZIKvmLFCpWlOX/+fNfrJ9KB7CB+97vfqecS2A+FQp6WQ3ri+jV3uXjZB9n/3nbJOJQX5uHRjXvVkDDFHcPRxpFKJDAFe9R7j4ROQlFhVJ2YWCRDUwKaTsyx4OZycbIuu8u2szwT/v1Q97huzV4uuvbD63a5Vb/T9ei63/B6/RJ5wYTtXuc+eNk2nms4X57O2x4NTG/rVqazuXD8EDXdTWlhBNWxVjXiU34khEH5vYdbJLPTGiFKhrINhsL4zGdvxK0rv4of/vCHuO+++1BfX9/vdu/Zswef/exn8d3vfhdLly7F5Zdfbuu1DFO2eVP64WdGBzXF4sWLMWfOHPUPWcZKlrsW3CJfIJIlKl8ekqV55513ulY3kU5kAuuzzz6747nX5ZCeuH7NXS5e90H2w9efPxpTx5Tjqe3v4aWdhxFFSAUvA+kkao5mJmwfMiiKdCCk7ri8aPwQNYemk0POurlcnKzL7rLtLM/tbS8/P7+jvp7eQ7n/vaIrU5aLrv3wul1u1e90PbruN7xev11xn0Ju0G27N60PdrQt2+8Cnms4X57O2x7B8XV75bkjVVCzpOOm6QQO1LegvDCigp6h4PHBRBmiVjI0O095Y83FKdcfCgsLcffdd+OWW25Rw8r+13/9F9ra+pcBKv785z/jYx/7GC699FIVE5k6dSrsYMo2b0o//CyQlvFZDTd79mw8/vjj6qLmjBkzsGbNGhQX936RUjZqmZOzv0PGxmIxVeeGDRvU8LdSr2SLXnbZZQPoBZF+Dh06hGHDMsEAS3V1NYYOHepZm4iIelPfFMf6Nw9iy54a1DfH0dSWRGFeCKUFEUw+tQIzzhqu7rYkIiIiotzH81YiInLCI6/uVSNCpZHGoYZWFdgUkhwpGZsFeSGEAgEk02k0tyVVhqYViZGA5tDifDXljYwQJTdid5d5+bWvfU0NKTuQEI7EKf7zP/8Tp512WvadpazxOMR+vghqSrr2mDFjVLDRCjJKBqXc+VBSUmJbUPPtt99Wdz+sXLlS/W7VNW/ePCxfvty2/hDpgl/KREREREREpDOetxIRkRPk2v8DL1ThmdcPqN8bWuKoa4qjNZE64WdkDk4ZctbK0LzinBFqypyehomVzEsZjfLpp5/Ouq3hcFjFKCRIOnz48KzLof7jcYj9fJFfW1paiueee64jyCg/JfhYXl6u0q9lmNjXXnstq7LlczJvpoxRPW7cOBXQtOLEUtesWbMY0CQiIiIiIiIiIiIiMoRc+5eApGRaCglUjqooxCnlBSiJhlEQCakgpvyU3+V1+bsV0JTP9RbQFB/84Afx29/+Fr///e9x3nnnZdXWRCKBBx54QMUvvv71r6OhoSGrcoh04ItMTYtkXU6ZMqUjsGnp/MVRVlam5r+UhwxTK+nZ8lzU1dWhpqZG/dy1a5d6dNY5mCnPZajbZ5991rX+Eel6p0k8HlfjwIsvfvGLiESyG9bRrnJIT1y/5i4XnfvgZdvcrNvJuuwu287ydN72aGC4bs1eLrr2w+t2uVW/0/Xout/wev2Sc5ghYfZ2r3MfeK6hX9k81yCn1u2Ogw14avt7eGnnYSSSJw63hEMBXDR+iJpD87ThvU+P15XEHGSavS9/+cvYsWMHsiX7QMnalOzNvLw8X23zbveDxyH2C8NHJk2ahM2bN6tA5e7duzuCmZ0DnLW1tdiyZYsKgIq1a9d2W1Z3seDO5Ukm6F133eVQT4hyi/ybsO4AGsh9FHaVQ3ri+jV3uejcBy/b5mbdTtZld9l2lqfztkcDw3Vr9nLRtR9et8ut+p2uR9f9htfrl8gLJmz3OveB5xr6lc1zDXJq3UqA8vaZZ+DmCyux/s2D2LKnBvXNcTS1JVGYF0JpQQSTT63AjLOGo7Qw+yCaNTLkpz71Kfz0pz/FPffcg4MHD2YVaJOA3ve//3013+acOXPUVHx+2OZN6Yef+SpTs7P58+dj1apV6nnXFO++LJLu0sLlc5LpKUPdTpw40cbWEumpr3eapFIp9bqQ9/e2kzwRu8ohPXH9mrtcdO6Dl21zs24n67K7bDvL03nbo4HhujV7uejaD6/b5Vb9Ttej637D6/VLzmGGhNnbvc594LmGfmXzXINMW7dHjx5Vgclly5ap59maPHmyStKaNm2aEculJ273g8ch9vNtUFNs27YN9957r0rZFr2NX90da/HJELWLFi3CLbfcYns7iXTFL2UiIiIiIiLSGc9biYjIdLJfk4zL5cuXq+FVszVz5kzcd999TNiyEY9D7Jeb4XSbyD9OmTezqqpKDRU7duxYFaTs66O0tFSle0sZO3fuZECTiIiIiIiIiIiIiIhcI0GzH/zgB3jzzTdx3XXXZV3OunXr1BR+N9xwg5q+j0hHvs7U7E59fT02bNiATZs2oa6uDjU1NeqnlY0pw8uOGzcOU6ZM4R0L5Ht9vdMkmUziL3/5i3r+gQ98AKFQKKv67CqH9MT1a+5y0bkPXrbNzbqdrMvusu0sT+dtjwaG69bs5aJrP7xul1v1O12PrvsNr9cvOYcZEmZv9zr3geca+pXNcw3yy7rdunWrGlVS4hzZikQiuO222/CVr3xF7TNNWC7C7X7wOMR+YQfKzGmSfXnNNdeoBxHZt7P4n//5H/X87LPPHtCFBjvKIT1x/Zq7XHTug5dtc7NuJ+uyu2w7y9N526OB4bo1e7no2g+v2+VW/U7Xo+t+w+v1S+QFE7Z7nfvAcw39yua5Bvll3Uq25fr169VDgpsyDV9/yTC2kv35s5/9DAsXLsQXvvCFnF8upqxfv2NQk4gcJxMun3baaR3PvS6H9MT1a+5y0bkPXrbNzbqdrMvusu0sT+dtjwaG69bs5aJrP7xul1v1O12PrvsNr9cvkRdM2O517gPPNfQrm+ca5Ld1O2PGDEybNg2PPfaYyrjMZkjZhoYGfPWrX8WPf/xjfPzjH8fFF1+c08vFpPXrVxx+loiyxvR5IiIiIiIi0hnPW4mIiIDW1lasWLEC3/rWN3H48JGsyzn99NNx77334uqrr0YgELC1jSbicYj9GIomIiIiIiIiIiIiIiIyVH79bnzpnBiqvnYOvvrx0SjMyy409Pe//x2zZs3CBRdcgD/84Q+2t5OoNxx+1iZTp05Vj/nz5+Pcc8/1ujlERERE5DK523L58uU9vmfBggXH3aVJRETUFfcpRGQN+9hb0OCjH/0oiouLXWsTEeUYGahzy0OZB4CSPOCbHx+BBVPC+Oa6Q1i1sQHJVP+LffXVV9VQtP/4j/+IJUuW4AMf+ID9bSfqhm+Dmr/+9a9VuvWuXbvUo7KyErfeeivuuOOOrMobM2YMHnzwQVXm5MmTsXTpUlx66aW2t5soF8nE0vLvQ8i/s0gk4mk5pCeuX3OXi8598LJtbtbtZF12l21neTpvezQwXLdmLxdd++F1u9yq3+l6dN1veL1+ibxgwnavcx/saFtzczM2b97c43skyaJrUJPnGs6Xp/O2RwNj1LqVgOZL9wNvPpX5vTUGNNcCiRaclAcs/0Qh/v1DefjK+qNY+9fWrKr47W9/i6effhqf+9zn8I1vfAOjR4+Gzoxavz7lu6DmT37yEyxatAh1dXXqd2tK0aqqKixcuFA9zyawuWbNGvVz5cqVWLZsGaZPn66yNh944AFb20+Ui+TfWU1NTcdzr8shPXH9mrtcdO6Dl21zs24n67K7bDvL03nbo4HhujV7uejaD6/b5Vb9Ttej637D6/VL5AUTtnud+8BzDf3K5rkG+W7dSnamFdA8ehBoycREgACQXwxEinB6SQhrbkni1aojWPjUAfzh7Xi/q5Hl9NBDD+HRRx/FF7/4RSxevBgVFRXQkVHr16cCaR+tublz56rgo2RlSibl7Nmzj5nMVhbFuHHjsGPHjgHXJYHNu+++G1OmTMGGDRtQUlIy4DKJcnWi41QqhXfeeUc9P+WUUxAMZjdmu13lkJ64fs1dLjr3wcu2uVm3k3XZXbad5bm9fjlUoHt0/l7xkinLRdd+eN0ut+p3uh5d9xter9+uuE9x/7zVj3Tb7k3rgx1ty/a7gOcazpen87ZHA2PMuq3+G/DE/C4BzQBQUAEUlAPB0HEfSScT+N22fVj01H68fjCRddVlZWUqsCkBzoKCAvh5/fI4xH6+CWrOnDkTzz33HO666y7cd9996jW5W6C+vv6Y90nA046gppBhbWUoWtlAZQJdItPwS5mIiOh9vABNRER24T7FPjxvpVzG7wIiytrz3wZ2rM8MOduwPxPQHDQcSCWBeCOQSgDpFBAIAsGwytpEQSkQCCHZHMMvX9qNrz7XgH31WUy42e7kk0/GN7/5TTU0bSh0fBDVD3gcYr8cvc2gfyRjUrIlZXhZK6ApJFPTiunKT3nIkLF2kQDp7t27cfjwYVx77bW2lUtERERERERERERERHScphpg1wuZ5zKHpsRAJDNTMjabDgHxJiDZlglsyk/5XV4/UqUCoKFIHj73kZPx938bgu9+vBzlhdnNYvjuu+/i5ptvxgc/+EE89dRTHO6VbGF8UHPbtm1qKNgZM2ZgyZIlx/xtxYoVuOaaa1BaWtoxJO2dd95pa/2Sai0B1dWrV+OJJ56wtWyiXCFp/X/961/VQ557XQ7pievX3OWicx+8bJubdTtZl91l21meztseDQzXrdnLRdd+eN0ut+p3uh5d9xter18iL5iw3evcB55r6Fc2zzXIN+v2rd8ByTiQaAbajmYCl/I70pkApzyX1xJt7/9NBRzTmczOuj3qeTQSxB0fzsOuez6IhTNHIT8vklVz3njjDVx55ZX46Ec/ildeeQVeMmL9+pzxQc1FixahvLxczaXZHXldJobduXOnGprWCZMmTVLB03vvvdeR8ol0l0gksHbtWvWQ516XQ3ri+jV3uejcBy/b5mbdTtZld9l2lqfztkcDw3Vr9nLRtR9et8ut+p2uR9f9htfrl8gLJmz3OveB5xr6lc1zDfLNut33auZn/buZbEwZYlaGmlVBzFaZPDPzO1KZn/K7vC5/l+FpRXNN5nOSuBVsxLc+PQ63feFfMHHixKznoXz55Zfxm9/8Bl4yYv36XHZ5wzlChn6VLEkJbJaUlHjaFskCPe2007Bnzx6ceuqpnraFyG2BQKBju5fnXpdDeuL6NXe56NwHL9vmZt1O1mV32XaWp/O2RwPDdWv2ctG1H163y636na5H1/2G1+u3K7mGMWvWrF7fQzQQum33pvXBjrZFIpFeryPKe5you694rqHftkcDY8S6lSFnm44A8ebM75KFmZZMTRHIBCtVwFL6J39LvR/klOxFeX8onMnilL8n2yCL4oMn5eGDX/oSJkyYgK9//et48skn+9UsST6TqQK9ZMT69blA2uCBjL/zne+ofyRVVVUYM2aM183B+PHj1TyeXYfBJcpVnOiYiIjo2H3g8uXLe3zPggULjtt3EhERkXN43kpERL7zsyuA/a9lMi9VsDLdHsgMAcFwJpbZlUSJJKtTsjbV++V9ASAVB/KKgYpKoGgo8E9rj8m8lISyP/7xj32O19g9/Z/ueBxiP6OHn12/fr2aK1OHgKaQtmzdutXrZhARERERERERERERkYkkS1NpnydTopjBSCb78kTJifK6/F3eJ7+kJcDZPuekmo8TQF7hMR+58MILVWDziSeewJlnntljk0aNGoV/+Zd/GXDXiIwOau7atUvNZ6kLCWpKm4iIiIiIiIiIiIiIiGzVVJMZflZ0DNIpQc0+hoKC7Rmdwppf08rgjJYd93YZwvXTn/40/vKXv2DVqlUYOXJkt8V+61vfQjQazaJDRD6aU1MCiDLcqy7KysoY1CRfisfj+OlPf6qe33zzzd3O9+BmOaQnrl9zl4vOffCybW7W7WRddpdtZ3k6b3s0MFy3Zi8XXfvhdbvcqt/penTdb3i9fom8YMJ2r3MfeK6hX9k81yBfrNu3fgeEo0Brw7GvS4CztzkkVWJnsn2OzfaAqPqRQrzuIH7aNBx48MFul0s4HMbnP/95XH/99fjBD36A++67D7FYTP3tnHPOwT/90z9BBzm/fsnsoKaoq6uDLnRqC5GbZOregwcPdjz3uhzSE9evuctF5z542TY363ayLrvLtrM8nbc9GhiuW7OXi6798LpdbtXvdD267je8Xr9EXjBhu9e5DzzX0K9snmuQL9btvleBaCnQcCAzpGw6AATSmaxLGV62O9JPlY3ZPv/mcVJIt8ZwsDUBNBxEuvot4ORzui2qsLAQixcvxrx583DvvffiRz/6kQpwhkLt2Z8ey/n1SwikDV5z48ePx7hx4/Dss89CB1OmTEF9fT127NjhdVOIXJ3oOJVKYffu3er52LFjEezrcAdd2FUO6Ynr19zlonMfvGybm3U7WZfdZdtZntvrV/aBy5cv7/E9CxYsOG7fSWZ9r3jJlOWiaz+8bpdb9Ttdj677Da/XL3l/3upHJmz3OveB5xr6lZ3L5xrknpxft499BqjbCxx6C0i2ZIaSlexLIfNlBrsEFyWYKQ+LihYdHzJKBfKxu/zD6vnYvFoEp9wITL6x1+zP9957DyeddJIaptaP65fHIfYzOqg5c+ZMPPfcc0gm2//Rekj+oUiAdcaMGdoEWYkGil/KRERE72NQk4iISD88byUiIl/55Syg8RBQswtoawCCee1DyrbHSALhTGBTgoxJyc5M9BjMfF8AKCgDCsqB/JLMS2d9Erjojt6HtfUxHofYz+jhZydOnKiCmjJGsoyP7KWlS5equxEmTZrkaTuISF91TW1Y/8ZBbN1bi7qmOJrjSRREQigrjGDS6HLMPHsESgs5zjsRERERERERERF1I1KQ+RmSrEwJ/6QzGZpqZFkJbiYAKwlMDTfbBwHJZgwAiRagYT8QbwYGDQfefAooHAxMucm5/hD5Kah566234jvf+Q4WLVqE2bNno6Sk/Q4Cl23btg0rV65UQc25c+d60gYir9P6d+7c2TEs9ECGhLKjHN3sONiAJ7e/h5d3HkYiefwdUe/UNuP1d2N4ZONeXDh+CK48dyROG14M05i6fgfKhOWicx+8bJubdTtZl91l21meztseDQzXrdnLRdd+eN0ut+p3uh5d9xter18iL5iw3evcB55r6Fc2zzXIF+tWMill+FkJasrQsxLYlGCm/J4KZubWPOHcmRY1GWf70yAQykMqXIidwXFAawPGN++FWioS2NzyEDD6AmDYmcgFOb9+KbPtmUrGRJZszdraWjUxrRdkDk0JqIrKykpMmDDBk3YQeSmRSODRRx9VD3nudTm6kNG/H3l1L25fvR0vvHVIBTRb4klUx1rwbm0T9tU0qZ/yu7wuf5f3yfvlc6aNHm7a+rWLCctF5z542TY363ayLrvLtrM8nbc9GhiuW7OXi6798LpdbtXvdD267je8Xr9EXjBhu9e5DzzX0K9snmuQL9btqPMzP6NlmWFhJYgZrci8JsPOhvPaMy+7Ezh+KFkJigYCSOSV4tHmi/Bo6uNISK5cSx3QGsu85/XHkStyfv2S2ZmaYvHixZgzZw7WrFmjfv/Vr37lakBzypQp2LVrl8rSlIxRIj+S7X/kyJEdz70uRwcSkHzghSo88/oB9XusJY76pjhaE8cP+9AcTyHWkkB+OKiGny2JRvDoxr2obWrDbZeMy/llYeL6tZMJy0XnPnjZNjfrdrIuu8u2szydtz0aGK5bs5eLrv3wul1u1e90PbruN7xev0ReMGG717kPPNfQr2yea5Av1u0ZHwO2/DzzPBzNDBkr/Sg9FWipbQ9EpjOvdSRMSDCzm0xNlekZUr8HosUY2ZwJYgai5UBLNdBcm5lfc9fvgQtuy2SJai7n1y8hkDYt1acbM2bMUHNrykYqz1esWIFTTz3V0Tqff/55zJ8/H1VVVapeydLcsWOHo3USuY0THWdPMi0lMJlGGodirSpoKWRfOig/jMK8EIKBAFLpNJrakjjamug4zigpCGNocb4cTuC680bj+vNHe9sZIiLq2AcuX768x/csWLDguH0nEREROYfnrURE5DvPfxvYsT4TwJQ5MCVIWXwSkF8MNB4GGg/KOKyZYWk7z5kpQ7HK9UeZd1PIXJwS1JTApXzekkoANbsygc+yUzPB0/Pno+70WVj/xkFs3VuLuqY4muNJFERCKCuMYNLocsw8e4RK2PATHofYz/hMTSFBTBkfWaxbt04FGJctW4Y77rjD9rpisZjKyJQ5NDuzMkWJiGQOTQlois4BzfLCCMoK8xAKHnuXUHE0giGpNOqa2lDbFEesOfP+YcVRVc7UMeVGzrFJRERERORXLS0t6ibpnowbNw7RaNS1NhEREVGOOGdWJqgpwch4c2aoWAluJlqBeGP7PJvx9gzNUGa+TcmmUPNttgc0O7I0ZSjbLhmY8nkJkErQtKUeLdE8/P2VZ/H1P56qps/q6p3aZrz+bgyPbNyLC8cPwZXnjuS1TMqaL4KaEsSUYObMmTNV1qQkpy5cuFA9ZL7Lu+++e8BzXUpmpgRP165dq363EmClvvvuu49zaRJRhye3v9cx5KwV0BxRGlUZmicigc7Bg/KRHwnhQH2LCmwWROIq4PnU9vdw+8wzXGs/ERERERE5S26Ytq4v9JT9z6AmkdkaGxuxadOmHt8zdepUFBUVudYmIsoBw84EJt8IbHkIGDQ885oENpuPAIm29qFnJVNThpgFkIxnfldpmlZAsz2jsnAwEOnmeCNShHRrDK0tLdjX1IRY6BASxWm0xJOINccRT6aQSgOSuxEJBVFSEEEUIbzw1iH1kNHnrjtvFIeApX7zRVBTTJ8+HatXr1bza1qBTSuD0sqilPdMmjRJHQxIILSsrEy9XlFRgZKSEnVSUVNTg7q6OjVPphxUbNiwAVu3bu2op3Mw0wqe3nXXXZ70mUgX8Xgc//3f/62ef+Yzn0EkEvG0HC9JtuXLOw+3P493ZGj2FNDsTN4n75eMTfm8BDVf2nkYN19YmfPDN5iwfp1gwnLRuQ9ets3Nup2sy+6y7SxP522PBobr1uzloms/vG6XW/U7XY+u+w2v1y+RF0zY7nXugx1tk6Dmiy++2ON7zj777OOCmjzXcL48nbc9Ghhj1q0ENZuOAG8+lQlsRgoyc2BKtqYV0BSSndkRVwxmsjM7MjTLgILB6mk8HcR/12QStz5T8RrCwaDKymyTzM4gEE42Y19NE1oTEhw9VnM8pRI78sNBdf2yJBpRo8/VNrXhtkvGuRrYNGb9+phvgppi1qxZxwQ2RecpRSVAKY/+6DolaedyZRjaJUuW2NJ2olwm/x727dvX8dzrcrwk48rLDl/uWmpLpNSNUTLkbH/I++ua4+ogQcqRu5zWv3kQsyafglxmwvp1ggnLRec+eNk2N+t2si67y7azPJ23PRoYrluzl4uu/fC6XW7V73Q9uu43vF6/RF4wYbvXuQ8819CvbJ5rkK/WrVx0vOiOTKalZGzKULTyOLITSLS0z6cpmZoyBG17MFPNrdlOPicBzY54B7AvXtbxvKGpFXmpNNKBABIybVYqgtZU5lqnJGUU5oUQDASQSqfR1JbE0daEupZZHWtV1zOHFufjmdcPoLwwD9efP9q1xWLM+vUxXwU1rcDmzp071bCz27ZtO+YugGw34q5lSIanZH9OmzbNljYT5bpwOIy5c+d2PPe6HC/JRNlChmEQspPvOodmb+T98rmGloQqJxoJYcuempwPapqwfp1gwnLRuQ9ets3Nup2sy+6y7SxP522PBobr1uzloms/vG6XW/U7XY+u+w2v1y+RF0zY7nXuA8819Cub5xrku3UrcYspNwGjLwBefxzY9XsgnN8e0JRghmRpBjNzamY+kJkrU+bQ7DLkbDiQxtyyP6vniWQS8ZajkDSN1nQYyXQasfQgNbqcJGN0vdYpI80NkcBnU5safU6m1RLDiqMqY3PqmHLX5tg0av36VCDt43D0smXL1HyXMpzsQFOcrcUoQdNVq1ahtLTUplYS6evQoUMYNmzYMa9VV1dj6NChnrVJdwt+uUVNjv1ubZMaemF4Sb7asfeXzMcpdzYVREI4ubwAoyoK8MANkx1pMxER9Y3sA5cvX97r/Gdd951ERERdcZ9iH563Ui7jdwER2UqGn133NeBvv0U62Yp0W5OaRbM5WITmQCFaQoMQCGWyLGWI2PAJEjEO1jeipEmyHdN4Jz0UrcjD/0Y/if8bNLPXJkjG5oH6FvXcui566RlDcfvMM2AiHofYr1M+sf/IfJcyR+aDDz6IsWPHqsCk9eiLzu+fN28eqqqq1PC2DGgS0Yk0xzN3QslE2UKGYchGqP1zMoSDkGEciIiIiIiIiIiIiLpVUI6qCXfhvdBJqEqNwNFAIeKIoCkdRR2K0ZIMoLktiSNH2/D2kUYciLWgpcscmTLUbKClDgGk0YqICmgiGMZrhRf0qQky+pxkdIq6psxIdi/tPIz69udEvWF+LaACkvLYvXs31q5di/Xr1/c6t2ZlZSWmT5+uhrHlMLNEPUulUti7d696Pnr0aASDQU/L8ZJkVgrrRicrKNlfMqxDppxMQXIHVa4zYf06wYTlonMfvGybm3U7WZfdZdtZns7bHg0M163Zy0XXfnjdLrfqd7oeXfcbXq9fIi+YsN3r3Aeea+hXNs81yM/rVhKzHt24Tw33ekPyHExOb0YDilGBGhSnY2hKhtGEAjWipZVMIVNfyaOiKE8NK7uvrQyNTQ0Ym2pQf69PD1I//5w/CY3Bvg8fK2XVNcfVHJsyv2YUIax/86ArU2uZun79hGusE8nWvOuuu7Bu3Tq1ccujtrYWW7ZsUQ/JxJTf5XWZl1MyPBnQJOpdIpHA//t//0895LnX5XiprP1OpEgoOKAMS7lrKlNO5iCjtKD/Q9jqxoT16wQTlovOffCybW7W7WRddpdtZ3k6b3s0MFy3Zi8XXfvhdbvcqt/penTdb3i9fom8YMJ2r3MfeK6hX9k81yC/rlsJaD7wQpUKaIqn8RG0JVOoTRUgli6UN2BYugZl6XqkUwn1N3lYSRU1jW04GGvF/6udhLWtFyOBEGIoQgMK1fyZL+df3K/2yGckY1PEmjMZmlv21MANJq5fv2GmZi9kKNmJEyd63QyinCZ3+FjjhA9k/lq7yvHSpNHleP3dGEoKIoi1JNQ48jJRdtcJtHuSTKXV54SUIyafWoFcZ8L6dYIJy0XnPnjZNjfrdrIuu8u2szy31284HO51Xgx5D5n9veIlU5aLrv3wul1u1e90PbruN7xev0ReMGG717kPdrQt2+NLnms4X57O2x4NjInrVjI0n3n9ANJI41CsFTtbhuGxwDTMCTyHmkC5GgmuON2IChxFGY7iaLpADUmbSgYRDqRQFGhFpCmOIYFM4LEpUIiadCYz87eRmdgXHt3vNhXkhVQWaDyZCZzWtwc3nWbi+vWbQLqvE0gSEXXBiY77r66pDTc9tAmJZBr7aprUMAsyjvzgQfl9LuPI0VbUNsWRHw5iVEUhwqEAHrrxPJS2Z4ESEREREVFuk/Oq5cuX9/ieBQsWHHc+RsfjeSsREfnZjoMNuH31dvW8OtaikixEeUEY84L/g4/E/6h+L0o3YlC6AXnpTHBRBY2s0FEgAAn/tQUiaAyW4CgKVSbnutR5eKr4WhRF+39NsrE1gf31LR3XNwcPysNDN50H0/A4xH4cfpaIyEUyZvyF44eo51YQUgKUVuZlb+R98v5MWZnPXzR+CAOaREREREREREREdIwnt7+nfsZa4h0BzRGlUQwujuLxwjl4NnqFeq0xUISDwRE4GBqunrcF8tEWyEMz8tUQtfsDw9TfY+kC9f4nAtOxMv1ppLJslzW0rWSJisK8kA29JT/wxfhXsVgMGzZswKZNmzB16lRcffXVXjeJiHzsynNH4oW3DqEkGlGTYceaEzhQ36IyNiXo2d1QtDLkrGR5WgHNkoIwitvvgvrkuSNd7wMRERERERERERHpS64lvrzzcPvzzDVFuf5ozWcpGZjPRj+GN8L/gI+2vYgJ8dfQlgZqgu9Pc5VIpdV1yUAaCAXCeCl1DjYPugyvNQ+XCSrR1JbsuEbZH81tSfUzEspcBy1tn2KLCH4Par722muYNm0a6urqOl6bMWMGnnnmGU/bReQn8Xgcv/rVr9Tza6+9FpFIxNNyvHba8GJcd95oNTn30OLMsLMS2JSAZV1zXB1YyLjyoUBA3bUkO3nJ0LRGfJCApvU5KUfKM4Ep69duJiwXnfvgZdvcrNvJuuwu287ydN72aGC4bs1eLrr2w+t2uVW/0/Xout/wev0SecGE7V7nPvBcQ7+yea5Bflu36984qKbAkqSKtkRKYpgqoaIrmRPz4fBn8JvUp3F+26s4K/EGBqWPIppuRXMwH/vbotiaOgMJDEVbMIQ3W4ehpCCiMj/lmuWQVLrbJI0TkSCpNWqdlCMmn/p+INVJJq1fvzI6qFlfX49JkyapCV87Tx26fv16FeycMGGCp+0j8gv597dr166O516Xo4PrzhuF2qY2NUn3sOIoCiJxdceUzLEpk2TLoysZY16GnLXufrrinBGqHFOYtH7tZMJy0bkPXrbNzbqdrMvusu0sT+dtjwaG69bs5aJrP7xul1v1O12PrvsNr9cvkRdM2O517gPPNfQrm+ca5Ld1u3VvrfoZa85kaUoiRU/Bx8ZgMZ6PTsfzmH7M6wdjLWhqacXs5Gb1uwRJSweF1LVKuZYpGaGDB2USMPpC3i+LVj4fjYQQDgUw46zhcINJ69evjA5qLlmypOO5BDY7b6g1NTWetYvIb8LhMK666qqO516XowP5TrrtknEoL8xTGZsSqCzuGI42jngyjVQ6rcaVl2EY5K4l2clbJENTAprWd5sJTFq/djJhuejcBy/b5mbdTtZld9l2lqfztkcDw3Vr9nLRtR9et8ut+p2uR9f9htfrl8gLJmz3OveB5xr6lc1zDfLburWGnI0nUwOat1JGlDvaEsQWnIbyojyUIBPALC2MoDrWqkafy4+E3h/WtgeSoWlNryXJG+Ki8UNUWW4waf36VSBtcDh6ypQp6ufWrVuPCWqWl5dj9+7dKCkp8biFRLnt0KFDGDZs2DGvVVdXY+jQoZ61KRftONiAp7a/h5d2HlZDQpyI3LUkO3mZQ9OUIWeJiIiIiOh4cl61fPnyHt+zYMGC487H6Hg8byUiIr+68ecbceRoG/bVNKmMypNKoyjqQ+Cxq8bWBPbXt6jMylEVhYhGgmiJZwKl1Q0talota75OGd62u2xQGXJWMjStgKZMryWj14nvzTnX2GudPA6xn9GhaAlmrly5EmPHjsW8efNUIFOGo121ahUDmkSkDdlp3z7zDNx8YSXWv3kQW/bUoL45ribaljuoZKJsGVdehmFw664lIiIiIiIiIiIiyl0F7aO+WTFGGRUuG8n2z8mIcmJocT4uHD9UjT4nz4UENiVgWdccVxmbkt0ZCgTUZ5vbkipD06peAprW52Q0OlMDmuQMo4OaZWVl6ue0adNQVVXldXOIfCuVSmH//v3q+UknnYRgMOhpObqSgOWsyaeohx+Zvn79vFx07oOXbXOzbifrsrtsO8vTedujgeG6NXu56NoPr9vlVv1O16PrfsPr9UvkBRO2e537wHMN/crmuQb5bd3K8K7v1DYjEgqiOZ5SCRQy/VV/SVAygDSGBI+iMBFHabRYTYtV29SGZ14/oDIuCyJxNdytZIQ2tCTUoyvJ9JQ2WW244pwRqhw3mbR+/croNVZZWYktW7Z43Qwi30skEvjJT36iHvLc63JIT1y/5i4XnfvgZdvcrNvJuuwu287ydN72aGC4bs1eLrr2w+t2uVW/0/Xout/wev0SecGE7V7nPvBcQ7+yea5Bflu3k0aXq58lBZkgomRLyjCw/SHvl88FkcJHkn/G2bFNmHhKiZru77ZLxqlMSyGBShma9pTyApREwypLVIKY8lN+l9fl71ZAUz4nn7emDXSLSevXr4zO1JQMzV//+tfQgfwjEZ///Oe9bgqR62TnVFpa2vHc63JIT1y/5i4XnfvgZdvcrNvJuuwu287ydN72aGC4bs1eLrr2w+t2uVW/0/Xout/wev0SecGE7V7nPvBcQ7+yea5Bflu3M84ejkc27kUUmQCjZFHKvJaDB2WGfu0Leb8MG6s+H4xClshlZw7vWD7Xnz8aU8eU46nt7+GlnYdVXdH2YW+7CocCuGj8EHzy3JGeDTlr0vr1q0A6neVAyjlg165dGD9+PB5//HFcddVVnrVD5vIcN26cSmVm9J9MwomOiYiIiIiI7CfnVcuXL+/xPQsWLDjufIyOx/NWIiLys/vXvYUX3jqEWEsc1bFW9dqI0qia97I3kqF5oL5FPR9ekq+yLC89Yyhun3lGt++vb4pj/ZsHsWVPDeqb42q428K8EEoLIph8agVmnDVcTb/lJzwOsV/Y9OFnb7nlFpUdOWnSJJx66qmetse6A4CIiIiIiIiIiIiIiMhJV547UgU1S6IRtMSTiDVnApXlhRGUFeYhFAx0O+SsZGjWNsXV7yUF4Y5hYyXL8kQkYDlr8inqQeQUo4OaYsWKFdiwYQNmzJih5tcsLvYmrZmIiIiIzFZTU4Nf/epXPb7n2muvRUVFhWttIiIiIqLc1dzcjL/85S89vucDH/gACgoKXGsTEeUWGeZV5q98dONeDC3ODDsrgU0JWNY1x1XGZkFeCKFAAMl0Gs1tSZWhaY3vKQFN63NSjlfDxhL5Jqgptm7dissuuwxjxoxRc1u6PRRtXV2d+skLWORXMuzy2rVr1fNZs2YhHA57Wg7pievX3OWicx+8bJubdTtZl91l21me2+tX6pOhZXp7D5n9veIlU5aLrv3wul1u1e90PbruN7xev0ReMGG717kPdrStoaEBv/vd73p8j1zv7BrU5LmG8+XpvO3RwJi4bq87bxRqm9rwzOsHMKw4ioJIHHVNcTXHZkNLQj26kjk0ywojHRmal589FMHdf8Svdv8xp5eLievXb3yxxmTYV8nSXLZsGa655hrMnDkTixYtwqWXXupK/Zs3b3alHiJdpVIpvPXWWx3PvS6H9MT1a+5y0bkPXrbNzbqdrMvusu0sT+dtjwaG69bs5aJrP7xul1v1O12PrvsNr9cvkRdM2O517gPPNfQrm+ca5Nd1GwgEcNsl41BemKcyNiVQWdwxHG0c8WQaqXQawUAAkVAAJQURRCOhjs9LhuY1E4bjvvt+lfPLxcT16ze+CGpaFi5cqKLv8+fPx7Rp0zBu3Dj1+9y5czFhwgRHh8Al8rNQKIRPfOITHc+9Lof0xPVr7nLRuQ9ets3Nup2sy+6y7SxP522PBobr1uzloms/vG6XW/U7XY+u+w2v1y+RF0zY7nXuA8819Cub5xrk53Urgc3rzx+NqWPK8dT29/DSzsOIInRM8LKzcCiAi8YPUXNoypCzyWTSiOVi6vr1k0A6bY2ObJ633377hH+rqqpSwcbHH3+847XKykpMmjRJ/RSDBw9GWVlZ1kPOHjlyRKUy79q1C7KYJYi6Y8eOrMoj0pEMsTds2LBjXquursbQoUM9axMREZFXZB+4fPnyHt+zYMGC4/adREREXXGfYh+et1Iu43cBETmlvimO9W8exJY9NahvjqOpLYnCvBBKCyKYfGoFZpw1HKWFmaFnKXs8DrGf0ZmaEqCsr6/v8T2dY7oS6JQApJ0MjhkTEREREREREREREVGOkYDlrMmnqAdRLjE6qFlRUaEyJntLu3YyCGmVz+Am+Zls/3JXipC7ULr+u3O7HNIT16+5y0XnPnjZNjfrdrIuu8u2szydtz0aGK5bs5eLrv3wul1u1e90PbruN7xev0ReMGG717kPPNfQr2yea1BfcN2avVxM6YefBWEwaxhZ2TC7e1gbceeHXTrXQeR38XhcDZciD3nudTmkJ65fc5eLzn3wsm1u1u1kXXaXbWd5Om97NDBct2YvF1374XW73Krf6Xp03W94vX6JvGDCdq9zH3iuoV/ZPNegvuC6NXu5mNIPPzM6U7PrfJhW0FKCndnOldlXkiFaU1PTa6YokV8UFhZqVQ7pievX3OWicx+8bJubdTtZl91l21meztseDQzXrdnLRdd+eN0ut+p3uh5d9xter18iL5iw3evch4G2LRgM9lqGvMeJuvuD5xpkGq5bs5eLKf3wq0Da4HFR7777bixbtkw9l6zJBx98ELfccourbZA5OmfOnKl+jhs3Djt27HC1fiIncaJjIiKiY/eBcrdnTxYsWHDcvpOIiKgr7lPsw/NWIiIi8gqPQ+xn9PCzgwcP7ghoLly40PWAppUVKnUTERERERERERERERERUXZ8MaemmDFjhmftmDp1qvopw9ESERERERERERERERERUf/4Zk7NzgFOL9tB5EeJRAJPPvmken7llVciHA57Wg7pievX3OWicx+8bJubdTtZl91l21meztseDQzXrdnLRdd+eN0ut+p3uh5d9xter18iL5iw3evcB55r6Fc2zzWoL7huzV4upvTDz3yTqamDuro6r5tA5IlUKoW//OUv6iHPvS6H9MT1a+5y0bkPXrbNzbqdrMvusu0sT+dtjwaG69bs5aJrP7xul1v1O12PrvsNr9cvkRdM2O517gPPNfQrm+ca1Bdct2YvF1P64WdGh6HHjh2LFStWqOdjxozRoh1EfhQKhXD55Zd3PPe6HNIT16+5y0XnPnjZNjfrdrIuu8u2szydtz0aGK5bs5eLrv3wul1u1e90PbruN7xev0ReMGG717kPPNfQr2yea1BfcN2avVxM6YefBdLpdNrrRhBRbjp06BCGDRt2zGvV1dUYOnSoZ20iIiLyiuwDly9f3uN7FixYcNy+k4iIqCvuU+zD81YiIiLyCo9D7Gd0piYRmeWee+7p02tERESC+w0iIuor7jOIiKg/uN8gIvIGMzWJyPE7TeRrpr6+Xj0vLS1FIBDIqr7uPsevMHPYtZ2YxoTlonMfvGybm3U7WZfdZdtZntv7DWbVuEfn7xUvmbJcdO2H1+1yq36n69F1v6HbuQb3KfZhhoS+32um94HnGvqVncvnGuQenb9XvGTKcnG7HzwOsV/QgTKJiI4Rj8fxgx/8QD3kOVF3uJ2Yu1x07oOXbXOzbifrsrtsnbcX0ge3E7OXi6798LpdbtXvdD3cbxDpw4R/Pzr3geca+pWt8/ZC+uB2YvZyMaUffsbhZ7vx9ttvY+vWrdi1axeOHDmiftbV1aGyshJlZWUYN26cen7ZZZd53VSinBGJRLxuAuUAbifmLhed++Bl29ys28m67C5b5+2F9MHtxOzloms/vG6XW/U7XQ/3G0T6MOHfj8594LmGfmXrvL2QPridmL1cTOmHX3H42XbPP/881qxZgw0bNqggZl9Nnz4dc+bMwc033+xo+4h05Hb6PIf2ICKi/uDws0RElKvnGtyn2IfDvhGRH/YbRKQnHofYz/fDz/7617/G1KlTMWPGDKxcuRJVVVVqB9TXhwRB582bh8GDB+P+++/3ujtERERERERERERERERExgn7eYhZCWRaWZnWnTT9nRjW+lxtbS0WLlyIJUuWYNWqVbjqqqscaDURERERERERERH5QUtLi0rA6IlMkxWNRl1rExERkZd8makpQUfZ4UtAs3Mw0wpo9iVD02J9Th7yek1NDWbNmoXbbrvNs/4R6ZZi3/nfiTzkNaLOuJ2Yu1x07oOXbXOzbifrsrtsnbcX0ge3E7OXi6798LpdbtXvdD3cb5AXDh8+3KfX/MaEfz8698GutsViMaxdu7bHh7zHibr7gucaZBpuJ2YvF1P64Xe+y9SUOSdkmFkJQHYOYloqKytRVlamflZUVBz3eQlaSjC0rq7uuLk3O5e3YsUKbN68GRs3bnS8T0REREREREREREREREQmC/sxoGmR4OP06dPVMLTyc+LEif0uc/fu3WpezS1btmD16tUq2GkFN+W1K664As8884yt/SAiIiIiIiIiIiIiIiLyE98MP7t48WKVPWkNHytDxErQcd26dbjrrruyCmiKsWPH4pZbbsGDDz6osjglsCllWdmf69evx7XXXmtzb4iIiIiIiIiIiIiIiIj8wxdBzW3btmHp0qXquQwrKxNsW8FHu0mwVIadlfKtAOqaNWvwxBNP2F4XERERERERERERERERkR/4YvjZ2bNnqyFhp02bpgKMpaWljtcpwc2dO3eqoW1liFrJ5rzqqqscr5fITalU6rjXDh8+3OPvJ3otW5zM2QxObye5yoTlonMfvGybm3U7WZfdZbuxXJzcb0hbGxsbe32PNVUBmfe94iVTlouu/fC6XW7V73Q9ubbf8PJcg/sU+8ioWt295vdzSa+/10zvg11ty+a7gOca7pTXHb9/r5hA5+8VL5myXLzoR3fld3dNnfoukLbGSTXUqlWrMH/+fIwbNw47duxwvX6ZY1OGqI3FYli2bBnuuOMO19tA5JQ333wTZ599ttfNICIiIiIiIiIiIiLS3htvvIGzzjrL62bkLOOHn5VhZ+VuJZnb0gtlZWUqO1Rix/fee68nbSAiIiIiIiIiIiIiIiLKZUYHNWXY1127dmHhwoUYM2aMZ+2YPn06rrnmGpW1+dprr3nWDiIiIiIiIiIiIiIiIqJcZHRQc8WKFSpLc/HixV43RbVBsjVXr17tdVOIiIiIiIiIiIiIiIiIcorRc2rOnDlTBTWfffZZ6GD8+PFqbk9d2kM0UIlE4ri5aisqKhAMGn2/BBERERERERERERFRj1KpFGpqao557bTTTkM4HPasTbnO6CUnQ8/Onj0bupg0aRK2bdvmdTOIbCNfvpzUmIiIiIiIiIiIiIjoeMOHD/e6CUYxOp1KIuCSGamLyspKFWglIiIiIiIiIiIiIiIior4zOqhZV1fndROIiIiIiIiIiIiIiIiIaICMDmpKZmRVVRV0sXXrVtUmIiIiIiIiIiIiIiIiIuo744OaEkjUhQw9y6AmERERERERERERERERUf8YHdScOHEiNmzYgFgs5nVTsG3bNgY1iYiIiIiIiIiIiIiIiLJgdFBz7ty5SKfTuO+++7xuChYtWoRAIID58+d73RQiIiIiIiIiIiIiIiKinBJIS9TPYOPGjcPbb7+Nuro6FBcXe5alOXnyZJSXl+PIkSOetIGIiIiIiIiIiIiIiIgoVxmdqSkkM1LittOmTfOk/t27d6u6JUtz3rx5nrSBiIiIiIiIiIiIiIiIKJcZH9RcuHAhxo4diy1btuCKK65wtW7JEJ05c6bKEi0rK8OSJUtcrZ+IvCPz+cpNFZItLjc1yEOez5gxA8uWLVPfC0RERN2RedhlnyHTFxARkVnWrl2rzgms8wQZ0Ul+X7lyJc8RiIjohHiOQETkk6CmWLFihcrWXL9+PU4//XTs2bPH8Toff/xxtaOpqqpSJyqrVq1yvE4i0uMgUy5KyGPz5s2YPn06li5d2pGpLcFOOQCVixecY5eIiLqSi9pyDCn7E3kQEZEZ5DxAzgFmz56NSZMmqesTtbW16gZs+V3ODeTvsh8gIiLqjOcIREQ+mlPTIkGE73znO+q5BBnlhEGyOMeMGWNrPc8//7wKYMgJiyxaqWvWrFl47LHHbK2HiPSzdetWNdx0ZWWlupFBLk50dyDaOZgp75ULGZLNTURE/iMXJWT/IRe3u17IlmPINWvWeNY2IiKyh3UOIMf8cuwv5wBdSZbm5MmT1X5BboiUm7OJiMifeI5ARHRivglqCjmJsDImJdgoJItK7pSUn9kEOGOxmApgbtq0SQ0jY90tYwU0JaghfyMis8lFCBnq2gpS9kS+MyST08LAJhGR/1h3WltkHyAXsTsfT/KCBRFR7ut87C8Xp+XaQ29DCwoJalqjvRARkT/wHIGIqHe+CmoKCWDK0LAScLQCj51JcMF6iM5BBmt+C9mJ1NTUqJ+d57ywFqVVtpQhd9WUlJS41Dsi8vKmidWrV2P37t19Ck7K+zvfbce7sYmI/MXaB8jx4pQpUzr2HZKlI8ePghcsiIhynwwpK9cN5Ibn3m5+7HqeIMPT8sZHIiL/4DkCEVHvfBfUFMuWLcPdd9/dEdDsugi6Bjq7091i61yeBE855CyRP8hFCrlYIUNPy7DW/flMZzIHb3dDURERkX/wggURkVnXHmQqnP5kXso+QPYFgjc+EhGR4DkCEdH7gvAhCTps3rxZDTdrZWt2fshrvT3EiT4nJx0MaBL5h2RoiiVLlqihpfoyabvcbdd16CkZToSIiIiIiMzQOSDZ07CznUlGp6XrPGpERERERH7ny6CmdaIgWVEPPvigmgevp2DliR6ic6BTgqUyPMwtt9zice+IyE3WMFKSfSlz5lh3Vvema1amzLFDRERERES5TzJqOt/s2J8RWTq/lzc+EhERERG9z7dBTYsM57Jz506VaSXp+6WlpX3K1LQeEhyVISclmHnfffepzxORv8gcu51JcLMv2ZoyAXxP5RARERERUW6Smx0t/Z0Xs3NQkzc+EhERERG9L4wcE4vFVLBALv7LT8m2tAII1usVFRXYsWNHv8qVgKY8xLZt29TwtJ3Ltk5EpGwJRMhJxjXXXONIH4kot8iQs53voJbvCs6NSURERETkX5s2bep4LtcR+qNzELRzcJSIiIiIyO/COgYsrceRI0c6nneX+WQNFyskY1KGkZ02bVqfh348kYkTJ6oHEVFfM75lCFqZ80aCmZ3nzumJ3DjRWX8vdhARERERkb7Dz1r6e8Nj5/OCvowAQ0RERETkF1oFNSUwuXv37hP+3QpiygmBZFVOnTq1I5hJRL1nE0oGsgyV7Aa5o1iCe51vTJB/u/KQtkggsL/DMOlM+trXYOaJLlDIciEi0gH3GURE5AWT9j8DCUZ2rVPaxf0gEZG5+wwiIsrhOTW7zlnZ+bWFCxeqzCaZA1Pmr5ThXxnQJOr9DmHJXpaDLzngkoeTli1bpoZolgM6qVMO7hYvXqwO/ORmBBkietGiRSgvL1fv8eudx7Ieug4lZQ2BTUTkFe4ziIjIC6bvfwZ6kVvaQ0RE/thnEBFRDmVqikAgcMzvEsyUHcSqVatQWlrqWbuIco0cRMlBVee5Hp2ur/PBm9yEIAd53Z3Ay0Hg/Pnz1U85MFy6dKl6v5/IULWdyfcc5+EkIq9wn0FERF7g/qdvnL5gT0SUC7jPICIiLYOanYOZEuCUHcLy5cu9bg6R9uQgS+5W27RpkzqI6jyHi9OkLpnP1jrZXrNmTY9Zh9OnT1dZ19ZdbnJQKr/3d/jWXNa5r3JALDduEBG5hfsMIiLygl/2P3YHIZmpSUR+5Jd9BhERGRDUtAKasrNgQJPoxGRoixOdMFsHW07fwSb1dz7Qs4bf6Iv169erO9jkQFUyF+W5H+5kk6FLOg9HIgfHnHeBiJzGfQYREXnBj/sfu4OQzNQkIr/w4z6DiIhyfE7NziRVn4hOzDrAkoDYpEmT1KTkEiCTSdLl59SpUx1vw+zZszvaYbWhPzrftSZ3spk+94A1XIpF1pPc0UdE5DTuM4iIyAt+3P8wCElElB0/7jOIiCjHMzWtLE3ZYYwZM8br5hBpTf69eEmG1JCHReYW6C8J6MlBojWMiBw8btmyBaaS/ln6c7cfEdFAcZ9BRERe8OP+x+5RWDiqCxH5hR/3GURElONBTYvMpUlEeuuccSgn2tkG6ObOndtxsCc/5SEHgL3pPGG70yorKwc8TKx8r1n9lIBmf+/2IyLKZdxnEBGRH/c/dqioqHClHiIivzNhn0FEZDptg5oTJkzwuglE1AProMwykCFU5SCx84GjBPz6Mpm6XJx26wL1QOfFkbkU5NGXCeaJiEzDfQYREflp/9M1CDnQ4Wh5kwwRkT/OWYiIKAfn1JShZ3nnCpH+uh6MDWReA8lo6cwK/vWmqqpKDU3ixkPmb8j2YoJMYm9ln8uk8QxoEpHfcJ9BRER+2v8MdB/QNQjKTE0iIn+csxARUQ4GNcWUKVO8bgIR9WL16tXH/D7QmxG6HvBJINAEcpefzJ8gFzbkgvpA7vQjIspV3GcQEZHf9j+dA5v9zeDv+n7eKENE5DyesxAR5QYth58d6AH75ZdfDrvJPEx33nmn7eUS5SIZvq/r3cNdD9b6Sw4WOw8LaEJGo/Rn2rRpatnIpPC9fbfJMuUFCyIyDfcZRETkx/2P3Ky9YcOGrIaf7VzHQNtMRET67zOIiCjHg5qDBw8e0OcPHz6shrGVnZHc4dh5pySv90SGDLNIcEGGeWGQgehY1sm5nQd7XYdU6q6OXCLfO5MnT1b96ktAU4Yikbk25SCXiMgk3GcQEZEf9z9yY7T19/5mana+hsHpeYiIzN9nEBFRjgc1BxpElABCV9u2bcODDz6IVatWqcBm5+Bl53oXL16s7poZO3bsgNpAZDInAm9d/913vpstF/UnoCnkfbwLm4hMxH0GERH5cf/TedqJgWRqSnCUiIjM3mcQEVGOz6nZ9U4WO0ycOFFN+Lxz506UlpaqwKaVtSk/JQAhd0/eddddDGgS9aLrgZgd2czdZWjLfJS5SL5PZJn0NaApNm/erD5HRGQa7jOIiMiP+x/JsOx802Jf91NdA6Bz5szpdzuJiCi39hlERJTjQU0nyUmFpPt3zdR87rnnPGsTUa4f7NlxI0J3B4y5eBfb7NmzO75T+noQLBcu5MCWmZpEZCLuM4iIyK/7n/nz5/d72MHO75NRpDgdDhGRP/YZRESUw8PPOk3umJSHBBEkS3PevHkoKSnxullEOaO/wydlK9cO9uSixdq1a9V3ypIlS/q0DCVD3LpwMWXKFFfaSUTkJu4z9FxeRESm02H/s3DhQnVeIG2RkaPk99489thjHc+XLl1qWzuJiEjvfUZPeI5AROTzoKY1v4WV8s85KogGdiBlx93D3d0Fd+TIEeSKZcuWYeXKleq59bO/eBc2EZmG+4z+L6/OFzo4PBURUe7vf2QEF5lmQr7f5TxBboA8EbnZUW6StAKaHMmFiMhf+4zu8ByBiOhYvg1qSiBTghBCsjaJqG8ks9AtuZJ1IxceFi1aNKAy+D1ERCbiPgM9XriWNlsXUaqqqo4bmlD+LhfC5WY8a04eucAimf3cbxAR5cb+R76vJUAp5wsyssuJvsOlHGsqCwl89iWrk4iIzNpn8ByBiKh3vg1qdr5bxo5x0on8gkNe9DxEVLZ4FzYRmYj7jBNbs2aNytjpehd419+tzJ7Oy1QujvOCBRFR7ux/JEAp39sStJQL0RK0lACnvCbf851vkpRhanvK5iQiInP3GTxHICLqnW+Dmp13Bk7Pp1lfX4+7775bzd/5wAMPOFoXkUl3sOl0YNnbQScRER2P+4wTk4vW8iAiIn/sfySjpra2Vl2ElvOHadOmqc/KtQm5wVEuRkswk1NSEBH5d5/BcwQiot75Nqjp9s5RdkgMahKdGE/eiYior7jPICKiXN3/SOCSmZhERObjOQsRkTOCDpVLRERERERERERERERERGQLBjVdxDt0iMwZNpCIiLzDfQYREXmB+x8iIuor7jOIiJzBoKYLuBMjk1RUVHjdBCIiyhHcZxARkRe4/yEior7iPoOIKLcwqOnihNPcSRIREREREREREREREREZEtS0goCm2Lp1q9dNIMrJbGQO2UxEZB7uM4iIyAvc/xARUV9xn0FEpC8tg5qmBQEfe+wxr5tApP0BWHc3M1RWVjpSFxERuYP7DCIi8gL3P0RE1FfcZxAR5ZYwNJNOp7FixQr1fPr06Y7V03nH8sQTT6h6nahD+rJt2zbbyybyipsHYIMHD3atLiIish/3GURE5AXuf4iIqK+4zyAiyi3aBTUDgUBHYNMKbjpJ6po1a5aj5ROZeBdb56E47BgyuruhPTgsBxFR7uM+g4iIvMD9DxER9RX3GUREuUPL4WetwKbTD4vTdUh/iExSUVFh+1wDR44cOe61KVOmDLhcIiLyFvcZRETkBe5/iIior7jPICLKHVoGNa1AoNMPt+oiMs2kSZNsL7O7A0bONUBElPu4zyAiIi9w/0NERH3FfQYRUe7QNqjpBgYdibIzderU414b6F1sXYf2kAM9DstBRJT7uM8gIiIvcP9DRER9xX0GEVHu0Dao6cbws249iEwzffr0417btWvXgMrs+nnevUZEZAbuM4iIyAvc/xARUV9xn0FElDvC0IwEASV7UnYmixYtyukvfLmj58EHH8SqVau8bgqR48NybN68eUDDdXQ92Js9e3bWZRERkT64zyAiIi9w/0NERH3FfQYRUe7QLqgpAU3ZYaxbtw4mWLFihfrJwCaZZtasWVi7dm3H71VVVQO6AaDrsB5z5swZUPuIiEgf3GcQEZEXuP8hIqK+4j6DiCg3aDn87Ny5c2ES7rTIRIsXLz7m9w0bNmRdVtfPyoEk5xkgIjIH9xlEROQF7n+IiKivuM8gIsoNWgY1TfuSr6io6HaCaKJcJhnVnYfh2Lp1a9ZlrV+//pjf58+fP6C2ERGRXrjPICIiL3D/Q0REfcV9BhFRbgjqHAQ0hWlBWsptdgbXu97FtnLlyqzK6fw5OYDsboJ2IiJyH/cZRETkBe5/iIior7jPICLyFy2DmqbqOpY6kdOOHDniaPkyfEbnu9iWLl3a7zKWLVt2zO9r1qyxpW1ERNQ/3GcQEZEXuP8hIqK+4j6DiIi0CmpOnDhRPUzLbJTMU6tvRG7qbqiMgQyf0R05OLP+ze7ateu4g7feAv2LFi065mCxsrLS1vYREVHfcJ9BRERe4P6HiIj6ivsMIiIKpNPptNeNICJ7yQHdihUruh0mQw7M5KBKhr6w68BK6ps8efIxB4Byd1tvB3rTpk3rOPiUNi1cuNCW9hARUd9xn0FERF7g/oeIiPqK+wwiIrIwqEmUw+Tur84HdNkOcdw5O/q55547ZqiNvpKDttmzZ6u72Ho7eOvPe4mIyB7cZxARkRe4/yEior7iPoOIiHoT7vUdRKQ1OcCzDtYGMnTzQOd8lQPEqqqqjgNQ+blkyRLMmTOn4+42+fuGDRs67lqTu9w4FAcRkXu4zyAiIi9w/0NERH3FfQYREfWEmZpE5Ii1a9fiscceU3epycM6KJUDOxkSZO7cuVndKUdERObhPoOIiLzA/Q8REfUV9xlERHpgUJOIiIiIiIiIiIiIiIiItBb0ugFERERERERERERERERERD1hUJOIiIiIiIiIiIiIiIiItMagJhERERERERERERERERFpjUFNIiIiIiIiIiIiIiIiItIag5pEREREREREREREREREpDUGNYmIiIiIiIiIiIiIiIhIawxqEhEREREREREREREREZHWGNQkIiIiIiIiIiIiIiIiIq0xqElEREREREREREREREREWmNQk4iIiIiIiIiIiIiIiIi0xqAmEREREREREREREREREWmNQU0iIiIiIiIiIiIiIiIi0hqDmkRERERERERERERERESkNQY1iYiIiIiIiIiIiIiIiEhrDGoSERERERERERERERERkdYY1CQiIiIiIiIiIiIiIiIirTGoSURERERERERERERERERaY1CTiIiIiIiIiIiIiIiIiLTGoCYRERERERERERERERERaY1BTSIiIiIiIiIiIiIiIiLSGoOaRERERERERERERERERKQ1BjWJiIiIiIiIiIiIiIiISGsMahIRERERERERERERERGR1hjUJCIiIiIiIiIiIiIiIiKtMahJRERERERERERERERERFpjUJOIiIiIiIiIiIiIiIiItMagJhERERERERERERERERFpjUFNIiIiIiIiIiIiIiIiItIag5pERERERERElBO2bt2KQCDQp8eyZcu8bi6R7TZs2IBx48Zh/vz5MI30qy//tuV9RERE5E8MahIREREREREREeUACWbu2rULK1euRF1dndfNISIiInJV2N3qiIiIiIiIiIjsUVZWltXfiHI1U1kCmtb2bdo23lufGMQlIiIiBjWJiIiIiIiIKOfMmjULa9as8boZRK557LHHOp7PmzcPptmyZUuPf5ehZ4mIiMjfGNQkIiIiIiIiIiLSnAw5a5k7d+6Ay5PMR8n8rKmpUT/l9yNHjnQ8t/4mz1esWGFkIJWIiIhyC4OaRERERJTzZsyYgQ0bNrhWnwyNVllZiSlTpmDy5MmYM2eOcUPAERGZPCdh5+BQbyZNmtRrBpnbpP3Sj/5Ip9OOtYfcGXrWGn5VjkFkuxyIRYsWYdmyZX1+P4d+JSIiIh0EvW4AEREREVGukQt7cnHRuqhcXl6ugpv9uUhORES5Qb7v165dC51IQIr8RTIlOw+9bMd23R/Tp08fcJ1EREREAxVI81Y9IiIiIjIgyCjDo3V+LvOsnSjIKFmVS5cuVZmWfc2wtMqVn5s2bVKZod1dEJTyFi9ejIULF8Jp0ga5sC3tkIyNVatWDThzg4hIZ/J9JzeRDGROze72GevXr+/IWpPv8a5ZaRLQkffoQL77ZYQC+b7vbj8kbZUbbiSbr/M+Tn6n3CU3UFnbZVVV1YDXp5S1efPmjn8DUuaJjm2EDpcPrTk1pe/SXiIiIvIfBjWJiIiIyFgnGlrNznmhJHAqAVKZd6ozudgsF9uduohsXdTuSoZIZGCTiExlR1DzRGR/IfsNKVfq6fq9Xltbq8VQ47Nnz1Y/JRjVdeh1HYfKJXv3+U4H9DoHT3UL6jOoSURERBx+loiIiIiMdaL5xuwMNEpwVC6sdQ1gygXxcePG9Wu+KjuGHlyyZIkj9RERma7zzS7dDe+pwxDjEmySoXBPtH/r7zyblBs6B++9WMfd3URFRERE5AUGNYmIiIjIWBUVFf16fSDkArgEN7sOOyvBRyurxk5dM4h6ez3XyDLTbQ47IjJb5yzM7gJHnec09Mrq1atVO080v6ET+zeCFuvdzvk0ewqad83SFJxPk4iIiHTBoCYRERERGcuLYQJlKNquwyFKcM7uwKbMB9qf13ONLDOZu5SIyAuSed91KG+5aeRE8w26RQKrc+bM8bQN5P7Qs1agUbZJJ+dG7TqcsYXD2hMREZEuGNQkIiIiIrKZZFF0ndPM7sCmBE+7C+J293qu6S5LhIjIbbpla1pBVQ4x6y+dt7m5c+c6Wld382YyS5OIiIh0wqAmEREREZEDJKuh68VBOwObUr4MdytzwMlz+bl7925PslPtVlNT43UTiIi6zYjsPAyo22Qf0l0GKZmt81Dsned9dStTk/NpEhERkU4Y1CQiIiIicohkN3SdY1MuTq5cudKW8uXitmRwSFao/DQhoCm8Ht6RiEjId2rX+Qslk/xEQ3Q6Tb7nmaXp34CmBLOd3M/Ltt3dvNzM1CQiIiKdMKhJREREROQgGQ62a1aNXJTmEKsn1t1FVSIiPw9BKzd7yHej05l6pJfHHnus47nTAW3Op0lERES5gEFNIiIiIiKHrVq16rjX7Jxf0zSbNm3yuglERB1Zal2z4yR7zu0bUySQ2l1byD+Zmt0Nh2wnzqdJREREuYBBTSIiIiIih0mWQ9cLg5IRYdcwtKbxamhHIiJd59aU+ngzjH8Dmm4EtDmfJhEREeUCBjWJiIiIiFwahrarRYsWedIWncnwihyal4h04vUQtFZmKIee9ZfO25jTAW3Op0lERES5gkFNIiIiIiKXsjW7zkslFxGZrXnizBQiIh3Id3dlZWW3c1y6FdyaNWuWK3WRHuT4oHPmpNNDz3I+TSIiIsoVDGoSEREREXmY7dNdBqefLVmyxOsm0P/f3t37ynHl+eG+FMbwzzC8yxfPpMaQmTeTKIceA5QWMBw4oUiHdkAK4z+AAqPFRgTp3AClxClJpY44ApyTVObNOILD9YKkYBi7wRp7f/j04HCKh9Uv9dLVVd3PA7R0eW93ddWpU1XnnO95AXa6f0/RCaMEt9q+n+PVnN54iqlnracJACyFoCYAAEykbaRFRvpYQ/LDKRYB5qZt6tcppqBNcCsBLQGm0/Ls2bP3P08R0LaeJgCwFIKaAAAwkTRM11MYhtGaf3Dnzp1D7wJAq7bAYjqlZBrafUrg1Fqapz317L6nHraeJgCwJIKaAAAwobbGSSM1/zASxShNYM6++uqrSUdrlqCpqWdPd+rZKdZStZ4mALAkgpoAADChzz//vPX3pxzY/Oabb86+/fbbQ+8GwEZtIyabAaixJWCa0f1tI/w5Xs1A+e3bt/f+fdbTBACW5BeH3gEAADgl60Y+pFFxWyNimSLu7du3q//n369fv/7gd9lGcy2uIVPfZZ9evny5+ne2X0ZSpoE9x5H1ttoa+TOq6Nq1a2f37t3b+D3Z3wQ0s5bmXGSfsj859vxcpuQrgYUcc9J4zBEs5VyW85hzWp/rpPO6aYrb9jlTZV6+fPn9uUrD+JSjbrIPaZjPKLN16ZgRSPsM1mzbh7wy8m5pjffpAJBrPNdmOcc5jl2nKE3eyjaa+aWkR/LI/fv3V/mHdsm3zXtW0jP/3seIupynnI+plPxQ7j9v3rz56P6U+9C6vJZr7cmTJ+9HmJZ7UfO6z9rSh8hfc7gn7SJp3ZzS+FAjNdetp1nuHy9evPggv5TznPvp1M8bAODEnAMAwBFLkbd+vXr1anb79Omnn2793NWrV1s/23zdvHmz9369fv36/O7du++39cUXX5w/fPjw/NmzZ+fPnz9fpVv+//jx49X7Ll68uHpf3lPk5/wuf2+TbeTz2c9tx9L19e7du97Hns82jz37V469Pt5yvvK3oZKeuxzbvXv3Wve5pGPyRt6Tfc1+Zd9z/prbyHv2nffz3Umb5vdmP5J+2b/sbzMf529j71O9D/k5313OZX5u/j3ntZmH5yrnu+x39jlp18yT285vncfLZ7KdOj2STnOVYxzjfrfOtu22XbNJw7GV79l0X6uv8bz63pdyzne5F7XljeY1V/JmuebrfFrSN8+bKczhntRFeYbuK3/Xkr92KSclP9bP7bb7RzMd93GOm98NAJwmQU0AAI7aHIOa64KThwxqlgbtrgGe8rk0YKbxuOxHW1BzXePpoYOaaazNce9y7DneZgN9jntIMLVvULPscxqTN+XnNCrXDc77CFjle5oBlm2Bsbw/x1TSsi1o21UzyLtLcCJ/a15TUwR9hyjnsc6jdbq3BRJKfilB3nWBr2Zga4yg/TEGNaMO0g25/6yTe+i2YOmhg5o55rIPSbPks03br59h++xMMId7Uh/N+/Wm9BxL87m9rjzS7AyRn9ftV9KsuY2k5dj3VEFNAEBQEwCAozbHoGZbQ/Qu+5UG5LzS+JqGyLYgZ59G/tIQme31GVmR/a4b+deN1Mz2173atrHp/fVrSINul+BkvquZ9kMbbsv+Zxtp5G8LmDQb2EtQp0uje51XxmwsrwOzyYO7pmUzKDJktFudB7ukTT36aIpAQt9rtO24mkG+tsb+ZtBiU1Cnznv5eY7mENSsgzf76CywS4ByzKBm816Ua6DtGJvHWa65rp0B6n1OEG/sgPAc7kl9JO2nvv7q0dvN424+67Z1oCnqfDN28FFQEwAQ1AQA4KjNMajZ1ojYpzG62QDat5G/GfAYMlVcHVhZF9TcpA7m7XukTNnnPg3Xafiu93esfNU2erOkRfneriOc6vMzVoN5Pcqnb5CpNIT3+Xx9bH1Gf9WjWQ99j2gb4bypEX/dvaSZlzYFa9fdk+aUDnMKarbde3eZQrzrdbXN2EHNTVOhNoOa5fj7Bv3apjEdK7A5h3vSGOnd5xnaR1vnqOxHs6NRl4B924wMY47IFdQEAD459JqeAABwai5evNj6+7dv33baztWrV8+++OKLQfty586d1f/v3r272l5fn3766dm9e/fOluSrr75anYtnz551/mw+9913333wuxs3bpz9/PPPg/cr53Tduch35O9d0zrnp7nN7OejR48G7ef333+/SsMi+9UnLePhw4erY8o2v/32250/9+OPP5599tlnH+xDn3z4ww8/fJTOc/HgwYPV/7/55pud7ylPnjw5+/3vf3/25Zdfrv79/PnztfeKpOG6NO96TzoVuZbqazTpmDQfw+PHj1f35ENru5Zev369uuZyT0m+6iP3iWb6Jd2a1/GS70lDz3vRPI59yXOgLc/m3OR85O9Jvy55Mfei5I22exgAwBgENQEAYCb6BMSGBCLTWFu+c4wG1Pv3758tRRqp05ibwOS6IPM2N2/e/KDxNmk5VuNt3Shc73Pf/a0DX31lP+o802yQ7xtESH7eFLyr1fvQN4CRPNAM4ORcfv3112dzUAIqmwIL9b3jd7/73fu0SZps6vywKR9cv369xx6fhrb8MfQaKOeyef4OrX7GlM4QdUeAruqAaO4pQ665udyThux/CTDmfjS0w9Iuks/a5HhLQLN+bvTJM+uCpwAAfQhqAgDAxK5cudL6+4yA6apvQK4OZowRvJiqIXYMaezO/vZpsN0UyN3niJ40NKeRve85L6P2miPL+qqDB6Xxf6hsJw3gCbhvkwBIs6E8Qckh10PbuTx0Q3yCDkmPLgHN8ruc3+Tvvnk8nxuSnseu7ZyMcf1nG3O6l7blgSH3oSL3i3okaI59XaBtCfekIZoB2Fu3bp1NYd1I29z3ctx97x2XL1/+6HdDnjcAAE2CmgAAMBNTT/W4j0bGuYwu2qQEfPL/S5curabZ69uQXgce9tX4ncb+bcGtbdoa+PsE7TJSq847Q6ceToAy56Lkn20jrNqmTB06UrgtkDTGyLshysjTTdfVy5cvd54iuU3b6LiMFO47IvhUtOWXMsryGKae3XTcY+1f2zXb5xkyh3vSUM3nxlSjxNfl1b7TeG9iKmsAYCyCmgAAcKKajYzrAiNdLWG6ymYgrwQ4M4qxT4AvDfx1sPDFixdnYxsa0Fw3eqbPlMf1FLtDR7smaFCCtsW2c1HvQ4JwY4wqrAMqU62lt87Tp09X/980am9d54RdR9Ml/2aUeIIYyWMJpL569coozR20BZ/6ToHcnIJ0LlMftxlzBGk97XPkPtD1upvDPWmI5nqsbWtS7sOmKWGH5OE49Ah3AOC4CWoCAMBMtAWdpvq+sUahTNEYO9S6Bte+IyzroOa+GnTr6WO7agtSdd3XuqF/jBGSbaOFNu1X/lafq9u3b5+NoW3k3aGmTcxx5vu3BZHagui5DrsEwZOHEwTNfWBoQOiUtKXVkEB40j/nboxpU5fynGq7dpMXl3RPGqo5FfxUo3TXjdIcY2rhtrSac54GAJZFUBMAACb25s2b1t9fu3Zt0v1oNjImSLTvNcPmYuzG1amCmvtYY6/rlIBtwYahgey2IMmmc9QWgB8rbdq+d6xRzF2V63HbdJxtwYk5j/Q7Nm1BqL730gToTu3ctQVxcw/ddRrfOdyThmoGwsfqoNFnPc22kbN9CGoCAPskqAkAADMx9XSP9ci/MuXeGKOXho4q3Kd1U5XuI2g4pkNPB1qmxhw7zdqCOJsCO20BozFHCNfbylSsh1BGYG5K44xQa5tC+NatW3vdN/6oLejcZ+R7gng5l6d47tryeFvQba73pCHK+s4l8DfVbAdtnTXGGCW6LhgtqAkAjEVQEwAAJrZuJN/UjX5tDZhpuP3ss88GjdrMelxzn8IygarSeJx0zz73bUyug4191qncZg4NwvsKJmZkUEZb5RjLNKjrRgu1rQM3drC3HqV1qPXhMmIr6bDp3LcFEJIehw6An5IE0er0LgHKLhIIbdvWKcgzp7bLSM053JOGagbAp3purptWe4xRom3B6CVMSw8ALIegJgAATGxdY/fUa2qum2oujZ0ZfXThwoVVkDMNx/sI1B1SGqoT2Dw/Pz97/fr17IOwcwh0tDVWf/7556NsO/kw5yGvTcGDtkDH2AHfOq27TtE7luTJbWsLtp2TuY84PkZtHUS6jnrPffbUpp7dlGebIxjnfE8a6unTp+9/nur8r5tSe4zgY9s9eqopdQGA0yCoCQAAE1s38usQoxkSNNkU0EvDfAKcly5dWq35eaxBzj7KqMFDjeSb2hQBxV2nZN3nPsxlpGbfczLnqZ+PVVswqssUtLnPJpg+984V+7LuGt527c3hnjREc0RvGRU6hX12hmgbAaqjBQAwpl+MujUAAGCrtobaQzb6ZerVNMpvG1mU/c57yvvSAJv9TtDzWBstc8xpeM5onTTWnlIQc44jSNuC6QmyZ1Txvkw9gnpXbVPxxrFei3NW1kJsBnTKvWKXQFXuwae4lmZ9L6mv76Rf184+cxjVvquc92LKUbr76gyxbspg088CAGMS1AQAgAmtC4gdenRVRhVlH7755pudg3bNIGcaLb/77rujaLxMkOzJkycfrYtXgrhZ/62MqknAK2nWdarJpZnLyNy2qWAzuu3+/ft7+865BknWrae5pJFqxyRBqTowlfvqtimEc23lXGY67FOWe2l9n9k09fNc7kljTT075SjdfY2mbAZpi1MdfQwA7I+gJgAATGjdSIY5jK5K42NeCeqlMX7dvq5rJE2wL59rW19u7tJAnsDkgwcPPmgsT5A2gYqMoloX3Jpr0GtM6wLdU49ibAtklFFyp8Z6mvOSe0Qd1Mw9ZVtQM+851Ty87T66KXA5l3tSX81OMzn3U3VG2OdoymaQdi4dtgCA42NNTQAAmFDbaJw05s6pQTuBzQRM3r17txp5kSDlrvuXRv1Hjx6dLUlGWmbN0Py/NDInOJRzlVeO/xQCl31Il8Oxnub8roU6qFxGYW6SjiBTTj167JZyT2quuXr79u3Fd4ZIx6a2IPSpT6sMAIxPUBMAACbUNpJhro1+aRxOgDONrwnunZ+fr/6fkUebGkGXMh1rRvpcu3btgyBsjjmB3DT8zinQPNdAwdRTQLaNZjqGaSi7sp7mPLUFJ5vBq1pZp9cUne3X8aYA5VzuSX1lRoRiytkN9tUZIlO2t92PlhJkBgCWQ1ATAAAmsm4kQ4KAS5FA371791ZBvwQ5EwBsC/6lcX/XtTkPoUyX29zHBMwStBVg2H1Kx01r3u1DWwP51Psw184R1tM8vNw76jzaDF61BTynnHp0ztqu403pMpd7Uh/NPJHzP2Xgb1/rabbl86+++mrwdgEAaoKaAAAwkbaRDGkEP1SDdkZTtjVwdpH9TyAwgc7atrXkxnbhwoWdRogmkHnjxo0PAsxpVM5xCC7Me1RURtYeeh/mwHqa89U28n5dYDPBaVPPrr+ON62POZd70tCywJTnf1/raeaZ2taJaa6zUAAAyyaoCQAAE2kLuN2/f//sUDJC9MGDB6NsKwHMOog51yloM3qkbvjOiFPT5G3WFvCdejTu9evXD74Pc9DWGcF6msuagjYBptyHppx6dK7Wda7ZFmybwz2pj2aQe8rAX1tniDGmWW/L36aeBQD2RVATAAAmkABfHUhLo9+h121cN3Kjj4zWrKduHXP7YzUm1w3o2Wej3LZrS6MXL15Mug9tUzUuIYgxJutpzlvbdLIlgFkHgkx1/QcvX77slZ/ncE8aEtCcOvDX9jw+1NSzuR7SsWoJI2sBgHkR1AQAgAm0rZvZNrphamlQHDoFbVM9WnNuAae2kalDR8t2aZR99OjRaprcJWprpD5E0LqtEX7MPDx3bWluPc35j9ZsjlzPPSOBIFPP/kGm/u4z8ngu96Qums/9qdec3McI72yz7Tm/bQRynsV5Hs79fAEA8yOoCQAAe5aG67bpTucShBizUTHH1Aw6vX79+mwu0vBaN+omGDR0tOzbt2/PTsFcgom3b9/eaaTXvvLMoVlPc/7aRmA2g1lZSzP3Huftj+lR22UU61zuSbtKOaD5vJ1y6tl1z/mhebCtc9Yu566M7nQNAABdCWoCAMAepYG1XlsyDX5zmnawLUgyxCGm1N1ltGRbo+4YjcqnNH1e2+ibfYy0yQimzz77rPVvuXbqDgHpJLCvDgl37tw5m5O2AO7nn39+kH2hXfJnfR9sBsgTCLKW5vqpeRPo2rXTzxzuSX2Ct1NPPbuv9TTbAtLbRiDnWsirbTpxAIBtBDUBAGBP0lB748aND36XBrzvvvvubE7GbgC+du3a+5+vXLmy8+cuX77cO1hYpr+rt9HUNmq0ua997WuU4ClPo5xRPNevX995P5KHx57quIyqmtNIonXTRc9pH1kf2Mm1UoKbbSOOl2Dskelt9496GvMl3JN20ex8MfXUw/tYT7MtIL3LCOQyStP0ywBAH4KaAACwB2noy6iOZoNfGvuydtgcRybUo0mHaAYPu4wEqUfmdGk8LwGtTaN72oJeQ89Ftlk36h7zdLRJ33qUcRqoxxytWvLipgbvjM6qz12XQEiX9Vfn1PC+bj3NQ4yOPmZj5Oe2UeAZ1ZaAW9tIzqUYc3rX3D9LgKtIQKzrc2MO96SuU89OPVvDPtbTbBv9ucvsB+XeOuX0uwDA8RDUBACAkaWh9te//vUHQbQ0vCagOZd1NPc5sqXZeNplJEjbdI27KoHETY3hbWk/tOE76TbHIPU+ZaRxfcxto6X6SnAy53FbYOOHH374KPAwViAj23n06FHrVLeH1BZEGDp6jD8q+WeMjgm5RurAVclXcwqUd5X78lij+9eNZl3qPWnXaVqnDmjuaz3Ntmf0tkBpCTi3dUwBANiFoCYAAEfrEGsdJrCSKU2b373PgOZYx5hAZD1iZuh0rF0bTOvG0C4jghLs2Za+bVPNvnjx4qyvEqCo13PcdE7evHmz+Ibc7H99zMn3YwQ6kp5pKN9l1GUCDPX7su7dGEpAZOzRn0O1pfHQqch6wQAAUdxJREFU0VZ8fO8aazTiuuDl0tfTHCMom7xc5+fcV/o8J+dyT9qkGaydeurhfa2n2fas2/bcn+u9FQBYDkFNAACO1rrRNvuYHjSN4Aku1I29GZGxzyln62MZEuS8c+fO4P1pTvvXtdEyjaF1Ou0aaM37tjW0t011N2SawjTOZp/zqhvi140yTT7ZZWRdvU9jBK/bttF3uznme/fuffC7pP+Q/UyaJU0T8Nk1IJ59aL43QYwEIYZIMCSvMk3oXCRt2/KV9TTH0xzdNzQfrbuntf2ur7Zn2b6nv04wLPlwSAeCts/nWh4ygnEu96Rd1sKdw0jNMe4bbYHRTXk799Wkac7T0jv3AACHI6gJAMDRWjeNXZdpTXdpLEwwM+tnNhsO02CX0REZPbLPxru6sbKMNOoqwZs0vA4Z9ZXPl8BoGoH7jASpA6G7TEVYgg/bRj/lPNSN3tGncb4Z+GprpF43Qii/3/Z9Scf6PCbPDs23bfvUNoKny7lqpmf2r15HtusatMkzXaefzDE00z9BiL5rxJbgePLS3EbTrbu2l7o249zkumwGnobko02dKcaaejbXW9uI0jGnEm+TThm55nKt9An8ludM8z6R+8gYI/fmck+qNfPR1AHNaMsnn3/++eDt1rMfbCrr5Fwk76esYZQmADDIOQAALNy7d+/OX79+vXq9evXq/Pnz5+f37t07T3G37XXx4sXzx48fv//Mrq9s+9mzZ+cPHz48/+KLL1bbadt+vnsf6v3IPrR9f36fv+d9eX/Sp01z/8s28/PNmzd77dvVq1fff/8Qn3766QfHk/3a9L1d07wt3XJOd5X3Ju2Sz4qkcXN7SYta9jGf23Reky/r429uM38v5zWvbddEuR7KPrdtN+e7mV82bXddetT7mW3tKu/NvuVz6/LqLu7evfvBfuTfXZR7RtfPTaXtnjb0Wlui5Jdm3u0j+azc83K+110beeV6TB7PddQlX7ftb98mmPo5lPvApn2unwF9ruuivh+V66Nc912ul+ZzorxyLGObyz2pLQ2bz40p5Pva8sgYxxV1Plx33sv7+ubDYtMzFgA4DYKaAAAs3rrg3pSvNLClIXWshsJ1wbs+r3WBj9LI2GyULoHNHM+uja/NBuQxArpJw7rhuy2wWRrI02A8VoBoU4NrGrpLMLutgTyN821ByKRjgi9tx7GuwXnX17qAQPm+vq+ukh71OUu+2pSe+VvZz77BqVrSs7kfOVfbAtY5J+Uz+wiw7PM+N+f9nXNQsw6Ad3n1CUqV/NVnf8s9eYzXmEHNSFrkGst7NqVL7ul1oDGf6RMkXto9qfnsbuvUsm/1c6k8m8ZS58/6GZd/l7LGGOd7H8cAACzLL4aN8wQAgNOTKdYyhVqm4cv0dG1rKu7zu+Py5ctb37vL2mrZXnMquEyN9/r169U0cZkiMH/P9ImZZq4cY7ab92Q60zKtXdIg2xljKsx8Z9YhzVS2ZU3NTA2Z78/28/98b74/35spfrvKvt6+ffvswYMH778j28txJg1y7Enj+lgzJem6KYXzt3ymTC9bptsrx5TPrZt6sM953WVKxX1tt5bzknTKNItJ2xx7maI3f8u1kn0p60KWV/62KV26Sn7IfmRazEwZWdbEy6ttP8qUvPlcptSc0xqatTrP5d9zmyJ3aXa9PoZcG5FrInlwyLSbzfO/y/VcPwPGWJe3luvmp59+Wt2rc8/M9ZNrOffR7GOusRcvXnywNnKuw/v37+99Gta53JOax962rvO+td3Txpz+NemUe2151uX5V9brzJTZSd+k6XfffWeqbABgFBcS2RxnUwAAwJKkEToNkesab9MYmQbgBHuaazqmITgN1mmgzDb2GdTNd6bBNAHFsg/5/jRIb9r3LnKcCW41jzPBgNIYm2PL+mMJIO2yPmpJtzSoRwLfpxZ8yvl68uTJB+ctkpYlOF3WV5t6P0qnhOTh5N9dz+uhZd/Luo+55nJdzDkIuy85/lxTkeu/T6cGdpe0bq7JmOulbY3JtudFeVYkn+Zay/k6VJ491D0pAd7yXUmbEvCbUo4r5ybHluD6Pp5HOcYES/Msbd5nyxrFY7lw4cLq/9l2ecYCAKdFUBMAAABYBEHNeQY1+ViCewlqRoJ87969O/QuLZ6gJgDwyaF3AAAAAACOSTP4e4ipZwEAjpGgJgAAAACMqLmeZllzEgCAYQQ1AQAAAGAkZe3OMvVs1uwEAGA4QU0AAAAAGMmTJ08+WIcUAIBxCGoCAAAAwEi+/fbb9z/fvn37oPsCAHBMBDUBAAAAYKSpZ3/++efVz1evXjX1LADAiAQ1AQAAAGAEjx8/fv/zzZs3D7ovAADHRlATAAAAAEbw9OnT9z9//fXXB90XAIBjI6gJAAAAAAP97ne/+2Dq2bwAABiPoCYAAAAAH/n973//wb/fvn17sH1ZgmfPnr3/2ShNAIDxCWoCAAAA8FFAs4w6LH788ceD7c/Spp61niYAwPh+sYdtAgAAALDAUZkJZL58+fLs4cOHre/58ssvV6MQM7XqxYsXV783zeqHU89++umn0gQAYA8ENQEAAABO2LfffrvzdKkJ3uXV9OrVq1Ug75Q9fvz4/c+3b98+6L4AABwrQU0AAAAA3o+8vHz58tb3lvU16ylqT9X333///ue7d+8edF8AAI6VoCYAAADACUsQTiBunIBmRqyW4DAAAOP6ZOTtAQAAAMDJePLkyfufd53GFwCA7gQ1AQAAgEWOjrtw4cLa16NHjw69i5zgSM1bt24ddF+W7Nq1axuvaQAAQU0AAAAA6KG5pujNmzdNPQsAsEfW1AQAAAAWY9egkeASU0g+e/z48dmrV6/OHj58eOjdWXxa7nLdurYB4HRdOD8/Pz/0TgAAAAAAAACsY/pZAAAAAAAAYNYENQEAAAAAAIBZE9QEAAAAAAAAZk1QEwAAAAAAAJg1QU0AAAAAAABg1gQ1AQAAAAAAgFkT1AQAAAAAAABmTVATAAAAAAAAmDVBTQAAAAAAAGDWBDUBAAAAAACAWRPUBAAAAAAAAGZNUBMAAAAAAACYNUFNAAAAAAAAYNYENQEAAAAAAIBZE9QEAAAAAAAAZk1QEwAAAAAAAJg1QU0AAAAAAABg1gQ1AQAAAAAAgFkT1AQAAAAAAABmTVATAAAAAAAAmDVBTQAAAAAAAGDWBDUBAAAAAACAWRPUBAAAAAAAAGZNUBMAAAAAAACYNUFNAAAAAAAAYNYENQEAAAAAAIBZE9QEAAAAAAAAZk1QEwAAAAAAAJg1QU0AAAAAAABg1gQ1AQAAAAAAgFkT1AQAAAAAAABmTVATAAAAAAAAmDVBTQAAAAAAAGDWBDUBAAAAAACAWRPUBAAAAAAAAGZNUBMAAABgoX7++eez77///uyrr746++yzz84uXbp0duHChdX/r127dvb111+v/p73bfLll1+ePXr0aLL9BgCAri6cn5+fd/4UwML87ne/W1XSd3X37t2zx48fj/KdFy9eXP378uXLa9/79u3bD/797t27Qd8NAAActwQpv/nmm7Nvv/32g9+n/pG6x+9///uPPnPv3r2z+/fvv6+jFCUoOkY9aEo//vjj6jjzevPmzSpNUrfKv8vPDx8+XB0XHJr8CgDD/WKEbQAcnTQMJCB58+bNwdsqPaK39Ywu6gYGlikNQ2lkSgX1iy++WDUOXb169dC7BQDAEShByCL1lozITLmzKXWQlEfT4fLBgwerkZip63z33Xcf1HVSbl2iO3furAJFsATyKwAMZ/pZ4CSkcp+B6c3X69evz549e7axwrFrIHLbd7569WrVK7pNAl0JeGV/8l6jNI+nkan0jk8jUqYCAwCAoRKYLAHNdIhMXSP1mjqgWf7+6aefruoiqWeU+k8+XwKZCXK2jepcghxzgrM5xjE7h6Y8n6l7M41vOrsuNX04jfwKAKfE9LPAyUtFNRWKtgBmKh3Pnz8f7btSGU5wq3xXKjSbAqssU85xWw/cBK+XMJVQ8mcCsWOMVAYAYDwJQGZEZukcmYBm1+BI6iQlUJdgZ7ZZ6idLm362lkBtvS5o1zJ4PQo2ksY6nzLH/AoAp8ZITYCzs7Nbt261jqRMYCeV2rGk4SFrZBSZ9onjs26E75CRv1N6+vTpByNNAQA4vHSaKwHNSOfLPqO9UifJLDH5fwIqSymj7qJZ1+or0/TWkkb12qVdZRtj1i1ZvjHyKwCcGkFNgEaFom3Nw6HT0LYFUMOUM8erbeqvTb+fmzRyAQAwL6mXFOmQOXS99jFnpJmToemyrw6KOg6yj/wKAKdGUBOgoW0q2FRemw0IQ5VApsrLcQfIE7RuSsNT/bu5Oqbe+gAAxyAzyDSXN7h///7gbaY+suSpZtcZ2nF0Xx0UdRykjY7OANCNoCZAQ4JObdPQZpogUwXRpWKa9Y3S+z0NRWnAWNLUQnqPAwDMSzP4mODaWIGQrN2ns+U0HRR1HAQAGO4XI2wD4OgqsQlg1oGdjNYcswGB47eU6WZrL1++PPQuAADQ0OxgOfbsH998880Ha3WeutJBMaNjUydMmX6MwK+OgwAAwxmpCXCgaWhhjtLYohc5AMB8NKedjStXroy6/Vu3bo26vWORYOaYI1l1HAQAGE5QE6CFaWg5VfI3AMC8vH379oN/v3nzZvSRiUudYWQpdBwEABiHoCbAhmlo23rlZrSmCinH6sGDB4feBQAANkxbuo9pTL/88svRt8kf6TgIADAOQU2ADUxDyyn59ttvBewBAGbm8uXLH/w7az2OzUjN/dJxEABgHIKaABuYhpZTkR7/X3/99aF3AwCAlulhm9IJ7dGjR6PXe9gPHQcBAMYjqAmwhWloOXbJx6YcAwCYp+vXr3/0u2+++Wb0ukgdPGU4HQcBAMb1i5G3B3C009B+9tlnrdPQtk1Ryx+mxUravHz5clWZT3qloSQB4tu3b5/dvXt3bcNJejOn8v/69evWgHLZfraZbb9582b189u3b99/V36+f/9+60jbph9//HH1mU3byb4muL1J3p9t5f3Z77btZBvZVlfZRkYGP3/+fPVztlUasZI+6Vmf9GpOG/bVV1+t/r8tf2a7AvQAAPOVMnPKeylrNt24cePs1atXo33PDz/8sLbsTXc6DgIAjE9QE2AHaURIMCrBtrZpaG/evLnX709ANY0YJQhYr6tTJNhVKtAJoG0K6CUomEr2pm2W4Nn5+fnO+5o0qnuOJ31KA0mOI3/PujLfffdda9o9fvx46/ckiJcA31AJ6NUNRH0kvev8MVRJq5yrnKdbt26tjjs/53yVAGcClzmXyaf5OZ9Jvlw3jVgJkGa7m9Lw2rVrW/cxeWxbwBcAgGFSBqxH/KWsmHpCgpFjjLLcZQralCNLHSEdApsd+EqHw3fv3n20P/nckydP3ncCzHtTP8gr5dhmfeEQxu6geEwdB/fZwXKbkm9KJ9RmR9mMYM73jjV1cupGzTpS+a7Uu3JsJZ8eQyfjpF3O0dzX0m3eN3IMzTrxpvOeY8/1mmMv95q8P52eTbUNsHyCmgA7SqCtLQiUymoqA1NM11Qqj2NWjsfaZioaqRg102ddYDXflcBb3p+KYbOyWxoUtkmalwp1qaz0ke2kotpstOgjDUo5lnw++WSMClxpDEjea2tAKRWy/C37nvfvEohMQLmcp5Jv1x33tnx95cqVHY4GAIAhyswhdV0k5eZLly6t/p7y9T4Dg6W82UWzw2P2rdSbShk+5ea88p78LeXeQwQ3x+igeGwdB/fVwXKbUldsno/SyTh1jwSd8935e17JN0mrvt+X4ywdXUsezXGWY0xQrXxXjr3v7DtTqTsZp45ajufFixer42wez7qOxofUbFso5yP7mpHpZd/rdoQix541h/P3nKscd67Lp0+fvu+QbrYtgIU7BzhxuRXevXt3p/c+f/589f76dfPmzc7f2fUzzX349NNPW/fj3r17569fv955W+/evTt/+PDhR9u5ePHi+ePHj1d/38WzZ88++vyrV692/lz2u8jPZTtdjiXnsD6OHFtXze9vpusY20mads1nu6Rj0xdffPH+s8knu0pa1/vbJf0BYGp//dd/fXSvv/u7v+ucDvnMtu328fPPPx88Pbq+jt26ukjzlfJfyqF579hSN0hZM99x9erVtfuQ9+VV6iyp96wrV6asW9dt+pS9m+rt7VIGz3uyn82ydNeyfL439aDma9226vfVrz71mDE163e7pF/Ob53uXeoiRb6rmW45J5vqpM26cZ/6db4vn01+3nTN5G/N/Uo+2bWuvI/8uss52JR2ue6a13COZy5K3suxtN03yjlrO+f5d36fbdSSFuUcDr3HAHBYF/KfQwdWAQ7pwoULq56Wu0x5Gukl2NaLN73/dp2+Jd85pIdgel3++te//mB0XXouZqqnPprHlB6uXaawKutfNvcjPSh37WFdPl/SLz3Ny3FtWlOzls/ks03bpuDddH7G6CndPJZNIy7Xfa5LvmzLGzmXu66zlF6wda/xLukPAFP7y7/8y7Njk/Lhn/3Zn3X6zP/8n/9zNfpkk7/4i7/ovC8pp/7VX/3V2ZL0Oc6lKaOQdpXyYJk6c+ypJlPezLqe9SwrKX9mlFUZxbfL9+b9zXw8pK5Ulu7oWgbfls59trPEMnZZpqScyy4jIPO5MmtNl7pIW5p3Se9Sp0xeS72yy2d2rXPVdfDUe3/66afBMzaNkV/z+VyLZd92qQfnvfnuMqq4S9rtO+9tu/6baZb35f3lfLbl2eYsSIXmcIDlMv3sifqHf/iH1foXsEmmdvnkk08OvRuLmYY2heQxKjW7yHekotOs9A2ZPjb7Xqaf6RLQTEWiXtsnlYoulfQcRz6T7aTy1fc4ss9lKquhUgkaY53NpEPX7aTCVY6hNCYMzRsAAByHMgXttkB2kbJoXqVsmHLu7du3V+XFofWWMhVnXWYt00Z2Cd6lPtAMVOT4st1DBVnKdLTHsCZmVyX4kzzSdUrXnMe6822fjsNdA3vlvWU72z6b/FmCoLt2Ii115eTTZlAw+fyQcixlnyIBvl069uZ4cn2VoHuZBvpQ0x7nOErni20dGpprDGdplbKua467zrM5T23TZpc1RgFYHkHNE5WA5q9+9atD7wYz97//9/8+++Uvf3no3ZilVHzqynsKxVmLY6r1GbLIfR242qUC16YEaFOB2bVgX3pmN6UC1acHeNIzlamk3xBZL2PpDQ/Nhpu+PbhToRPUBAA4TqVDYJ81IEuQM8GLsk7nkIb9tvJq6hYp03YtyyZg1AyIJciSMm2fmVfG0KeD4tIdooNlvrOZl1Of7FKnLWu9lnO1y5qXJXBXOrPuGrzN+1LnLZ0K8t2HzKNt5ylrZHbJ483jybGk00Pf9UmHyDlM/tmlPaV5bynrb5ZOFrWspbmuQzQAy2QIFkAP6ypaqQyU6Xb2LYXwOoDYdarSIo0OpQK6qzSE1AHELhWoulKSY1l6QHIML1++fP9zPRq4S3qqpAEAHK+U+/sEDpsSSMqyB7uO+lzXqbCWOkWfjo4pv6bjZl3nOLXA4jF0sOwakBxSp62nb802t9WjSqArQbx8vm0k367Hl5GCh5J9aR5rn04K9TV3iOPJvSjnMO0Jfeqx+ey6toy2e9ShRqMCMA5BTYCeUtlqK3B3qRANlUp+W8/rLhJITENGXZnZ9pm6Z3h6eA4JpE2ZbkvRN0gdc16nBwCA4RI4zNSXCUSlLD50KYqxDCnXZ8RbXaeo6zwcTwfL+twmT3epx2Qf2zrGbtr3vL/+TOrDux5vHbDPtqbq2NyU/a2v2z6zNmVUZvN8NUfrTiVBxjIKdhdt+7cumJ5tlnRJ3uqzZikA8yKoCTBA29QoKWB36Z06RCpUdYWxayCsVIS6FOzbem8OPebr168P+vyxaFbiUznum67ZTluvVAAAjktZg+78/Pzs1atX7wMEXaTMOWTEZtPQMmhdL0mZ2GjN4+tg2bY2bNcA9rq81qeDZ5cgbr39vgHgIerRhkNm67l169bWKVv3pQSUu3SyfvHixUfHvumcJy/n/phOIAKaAMtnTc0TdeXKldV6ibAtn7DbNLR1D8n8Oz2U+0y71FUK/83KX767SwU07+06yrKtwWPosRpZ+Mc1UZrpm/OZSl7Xxqmp1nYFAGA+Ul7Mq6zxVwKCGc25bTRZ1rdv6zQ5tazpV6/JmE6VyrfTriNaOlj2CW5mO9tG+7VNAdq1o2vyavJ6M7+kfr6pbpnP5O91ILLLd9efT7Bsam0zJ/WVKXib0jliKiV/ddn/upPDFO0uAMyHoOaJ+uSTT85++ctfHno34CikEJ6ejHWlLUHNd+/e7f37U2mre7SmgrNLD8RUVFMZ61JRbVujpGtP8DaHbjyZi3I+m/kp5ykVzaRzGnlSaRsjzQEAOG4pN+bVDHImmNQW4Ez5M4HNQwcPy3SYzfLwWKNImU8Hy3o0YN+Rhtm31JEydW62sUuAK0H+1NcTHCtTkg6pj049XWvb9Xvt2rXe26uDwFNOp5vz1nX0ZHOa5JJvATgdgpoAI0ilrS5Il2loh0zbs4tUvlJxa1Y8dl0nolTeuvRsbKvgmDp2XN99913rWkT1mqlpWEjaJ+/NoVc9AEzpt7/97dmx+ZM/+ZPOn0lD9j7S4s///M/PfvOb34y+XeYR5Ezgqq28WaaCPPQsKinj1vWOlIN17DuODpZta2EO2WYZobyr5O8hoxEPXe9qCxoPuWbrz759+/ZsKj/99FOn9Mx9oM47RmoCnBZBTYARpBCd6VLqHsRTTUObimez0l+CX5sqdqkIZH/bpv3p2gt1SK9QPpa8lPOybU2Zcp7L1EPJZ33WUAKAJfrVr3516F2Yhf/v//v/Vq+x/emf/uno22Re5c1MmdlWjk95ct8dM7dJebYOaubfyrnH0cGyraPsoQPpQwKyU6tHKg5Nv3pt0imPr2uAuM47ZWQ3AKfjk0PvAMAxVf7aCtNtFcKxtVUitzVElEBY16le2tYLUYkYX6YISw/cro0D6UWdEcIAALBJgiBtI76mnHpynStXrnz0uzdv3hxkX061g+U2pXNl6ruXLl1aBTfrtQ671CnbzvmhNI8tgf8c34ULF1av/PvQ18i6jsZlH7u+cnxL8eLFiw/+bZQmwOkxUhNgJAk+HXIa2vv3738wsi+VsE3fmb+lwto1IDnlVDSnLucnr0ePHq3OV72W6To59+m9O2RKJQAA5iNBlH003qesWS9lkTLnoaegbauj7FoWZpwOljn/WWN111F7pYNlOs1uq/u2bfPQHWWz/6nPl86/Ra6P1OczIjBpklGNCXYeMrDZdi1kndCxzHnUbJ3u1tMEOD2CmgBHMg1tWf+k/t62kZipCKQi1CfQWk9NwzSNCnnlnOXcJVhZzuGm3sVTBNMBANivlOlTrnv37t1eAj/1UhZx6KBmW53j0FN+npp9drCcU0fZ5P1cX83jK4HMHH+bQwdg25zCiMW2qX9P4bgB+JDpZwEmmoZ231OC5jvrSte6aYNSKU0jRZ8KQNuxaWCYRs5Z6fmcKZvOz89XPXIT8Gw7L2lQOPTUSAAAjGNfgaDUCeoA5qFHRbYd6xwDSacgdY3UPfJKPST1kW0B79LBcs4dZVOHzSi/vEp+z2jMBGNTx1oX0JyDU62Tt62nCcDpEdQE2EMFI4HNWipK+w5s1tvPd9brmqSyk5Gkffcla3XssiYK/ZTpvro0QiV4nZ77bUHsXdbDGSJTTE2xbiwAwKnbZ6CxDg4cOkDS9v1znhLzFIzZwfLQQblcS6nHNPcvQcwENJcQKGu7FuY0+nVf6il2jdIEOE2CmgB7nKpn6pFzbb2s6+lHyxohbdPS7vodtUwvxDgSIKynEd5VGhSyDkyTkZoAAMeh7qw4proOcegA4ps3bz763ZUrV85OxaE6Dk7VwfKQHWUTPE36No8zdeO6HjVnbdfnoTsiTMF6mgCEoCbAkU1DW28/QcxmBSdBzgRc+07flApU/dl9NrAcwqErhEMCkTm3CW4e8/kBADhFL1682Nu26yDToad6bSu/GpV1PB0s287lVFMe5xib9b3k9boj8Ny1BfMOPWX0EtbTHFrPT35O/sn98sKFC2eXLl1aBcj7XjMA9COoCXCAaWj3qW0E5tOnT98XwseYBvfWrVsf/W5o4GyMQOJYjS+HrhAmLYbsQ90jep/Hc+gAMADAqcgSElOV6a5fv352SHUwLOX8JUwLegym6GDZ1lF2itl/cmz18bXV2ceoA6UOlmDXPupLbcG8fXZ6mIP6vHUdTZ42kBs3bgxefzXrwSZ4n9HJP/3006runXOdAKfOxADTENQEOMA0tPuUymH9nSXIlR6oKfwP7eXc1hPxyZMniw4kFnOpiAxttGqe412Cvamc9ZG1W/p+FgCAbspSEmNrBkTaAk6HLo+3dao8ZofsODhVB8v6nA793uZ21tWl2kZk9qmv77J+ZfLxo0eP9rLWZa7ROqg31rIjOQf7us8ccj3NdPTu01mjTFec9M0+JA+lg0XukXllPxLkTOfyvkFTALoR1ATYsVIy9jS0+1SPxEzFJBW7vMaY/jYVqLryN7TiMzQoGnVwrW0tnin2YwxD96OZ53YJOrbl0V0aU/KetjVxAAAY37o1CodqBkSm7pS5S+BpqdM7LrXj4BQdLNvO6RijkR88eLA2vwwd7Ten2Wrqe8FYnXOTdvteMqeP+twl0Lir5Kucsz7r1N65c2fVnpL03hRIzSjOfMdYwWUA1hPUBE5aqYzss1KybhrafUphu66glQJ82/S0Y1SikobpidpHPjtGb9D6mPuc17n0Sk2ldEjFtNnLedepurpOAVXSt29jAAAA3ct4fcvc66QRvlluvn///qDtDR1tV5fHU39ZanlzqR0Hp+hg2dZRdoy1LZN/1gWf6rTvm6/mMMtQ0q7e/6F12TLKdaqODdnfsj7lpkBqfY+KLqMuE+hOnbjr6M7Ux0ugvZ5WuSn7XtY5ncvMTwDHTFATOGnNtSb3Gdg8xDS0bZWC7MNYo0ZTgaornaks9EnHBFzHSP9Skeg7AjeVquxHXdkZK2903U56hfZVKlNd8l193K9evdr4/tIL1fpGAADTyUiqMUcDNTsrJoA4tL4wJCBWj7DLvuxrdOpUlthxcKoOlm1T1Q4ZrVlG5O1zZG/b/m2qd+5zxG1dHx963KnPj9GxYRfpnJE2i5JXUhdfd1/L9K61Xe9TOV/Jy33uI+Vetu1abAaT1Y0B9k9QEzhZdWVnSABpjtPQto3IHHsamXxH83v6TOmSykwqL2M0VtQBvK4V4uSH7Ed9nvr2xK0/13U63FS++vS2bR53l3S9ffv2B//e1lhW1hNZas95AIClSme+MabqbAYSxgogZr/6lJ/bRqEmmDG0DnWoDopL7zg4RQfL1CPqgFW+t29a57NtIxib39fUp3NAAn/1cbXtbwl0ds2/XY49eat5zQ6ZPalcfzm2KfJeCaDW+7BuVqd6n3Yd8Zw8kXTqOkqzmY+33c9KZ5D8v8/3ANCNoCZwclIwTfDq0qVLHxSEU/nO1CcpMO9jOpmpp6HN9zUrW6nA7aOAncBWcyqWVAx3DZ6m0lQCiWONZK0bYnZt7EnDUNKobVqZHFOXRqPkq6RBXdEqAdwusp0un0neLQ0QOZYuAce6Apttrfvu8rcpevECAPDx6Kx0JhzSabEut//www+jdcKsZ1DZJuXm+jPb1rDbV8fCsbez1I6DU3WwTB2kWQcrgaiuypqGm+rcbddLl7pWaSuoA7Fto28TvN7lHA7NZ0m7Zl26z0jucv1N1WaR72sLSt66deuj3+V4sl/1/WmXNpvS4bptpOcumt+R9Fn3nblm3717N8r0yQDs4BzgBDx//vw8t7yur4sXL46+L1988cVq2zdv3jyf8rgfPny41+96/PjxB2mX43z9+nXre/P7HH9zv/K7Ov3XfX7XNC7nMOmwTr7j008/Pb969er5u3fvVr8r+1a/8p5sO3/P8dbfme8amr+yL+Xvr169er8v9+7d23rcz549e78Pd+/e7ZV2SY/mceTn7Efbe5IeAACcT1bOLmW8Zpkt/0+ZupRld5H3N8ulm8rLm+Q76zJuKZOmXLvLPuU9zTJwXnVZe9d9SZm5rdydfeqynaRz23b6plN9fOu2U+pEXfZ3TPV+dj3mZr7cpf7SVJ+7LvXlUv/bZV9Th6nrZLvk01K3Lt9R1xmb56xcF5vSYKz8WtR5dtdt5JwlTdrqffu0Sz4raV6OpXnfyjnfpJyfIcfU1i6QtMp563svAGA4QU3gJJTCcArqu772FdRM5aUUhKdQKm1dGjn6ynfUBf/8O5WPVETy/1LhzH41KxhjBjWjriCmgp7vTwNJvS/Zx2b6rAtqNl910LA0AHTJX3nVynaaDTnNylszPctx5Hdlm0nXoY0gJdBbn8ekaaks53uGnB8AALoHNZtl1ragSOl819aQn7Jbyo7NoE5dJh8jqJntNQMlm8qmqac1y8b5TJdgQd+OhfvqoLj0joOH7mDZ3MYu+SHnseSzXfNNqY/XgapNny/XWR24rM9pqWsmHdvyx1j5ddfOCjkPm+ps5f1TBzSjWa9sa6so94a6c3azA3PbvaVZlx0aeEyabDs/dVsCAPt3If/ZZUQnAMuUaXYzbVPfKVf6yFQyT58+XX1npmjJK1PFZPqdvDLtTz2VVN6T6X+bXr9+PXjapUwR9Pz589X0SVnXpExzk+1mWqe2fck0NZmy5/Lly6v9bv4/+5ifr1+/vpe1RvLd2be2qZoyfW2OJdMbleMo6ZpjyJQ4Y04xnDTIFDrlHOY7y/lrm6YXAIDxpTyb8lfKh21lsJTT8reUv7usx7due13k+1LfqKfdTDm5TCOa6UhThswUmaW8n3J+c+3NlGmzrEHX/fnss89W5fwu0+Zmv+pj77qdks5dmtRyrCnrl3X6oqz/WNYNzM8p7x9q6tmSDqkDZH3A5pIhZX8///zz9/uXY3rx4sWq3lDqCkOXFsl28n3NqW9zXjI1afJPpmfNPpY6Uanrdp06OcdV6jpFtpW8m+/JtnNsyaf5Xdt0yNmPGzdufHTd5f3Zp/o8jpVft72/XHfN/cm+X7lyZXXtNZcZyXk+1LSpuR6yn2U9yuSt1NlzDeT36467fC6S18rU1UnzHNe69O8j31OmsV0n+//TTz+NNn03AJsJagIcsRToU8BPpWDuC9bvK6gJAABLVta+TNl4mwRMnjx58r5DX+mY1uxgmDUex1rPflNQs/meBw8erPap7vCYjoIJGMy9rjKmOXccnFMHyxJQSn6u06rZQXVofbF5zbTlzxzXpusl+5RzmrSJbe8/VEfj0sG3pF/2M4HEQwfiyvVQ0j/7k3yUTg6bOhHn/c37yqZOy0OVTgcln7TJd5Y8AMB+CWoCHLGymP0uDSCHJqgJAADLsktQE+CYlNHMzdHEof0CYBqfTPQ9AEysTCmTnooAAAAADJNOGwlqpgNHc6TrulGcAIxLUBPgSJV1McpaKAAAAAC0y+jLjD7PLFLbgpQJbmpvAZieoCbAERfGs5bHodfIAAAAAJizBDEz01Wm1c7MV1mzc5vPP//8/c+ntDYwwCEJagIsxFdffXV24cKFVY/BTCu7yffff78qiN+/f3+y/QMAAABYorqdZZf1MRP8LKM2dSgHmIagJsACPHr0aBWoLIXmL7/8cuP706MwvQRTsAYAAABgN2lPefjw4c7L/uhQDjCdX0z4XQD09Pz5849+l+BmW8/BBD8zbUoWrV+SjCwFAAAAmFrpFP769eudRmlmyZ+0y2TZn7wAmIaRmgALUI+4zLQmbYXsBAbv3LmzKlAvbZRmmbZl2+8AAIB5ePv27U6/A1jC6My8svTPLgHNrL+Z9z979myS/QPgDwQ1ARagOd1sgpk//PBD6/tS+L58+fLiCtUZWfrNN9989PtUEvI3AABgGbOtmIEFWPIsWWlTuXTp0moZoGZ7RDpdJ5j52Wefrdoq7t271zqrFgD7deH8/Px8z98BwAhSaE4BOms23L1796OGgwQ0s7B9pp2d+yjNVAxu3LjRqdEjo1Mjx7fLVDAAAMD+pIE/dZC6E2LK6ulkOfc6CcA6ua89ePBgdZ/LK+0WubfllfverVu33rdRADAtQU2ABUnhOWtmpoHg9u3bq0J0egYmmJnehPl5CQG/VBDSu7FrJSAViV3XtwAAAMaThv2U4ft0TMxMM4KcAAAMJagJsDAJYGa0ZgKDaVhIgK9MfQIAALAPqXtcu3atV8fEdL7M2nMAADCEoCYAAAAAAAAwa58cegcAAAAAAAAANhHUBAAAAAAAAGZNUBMAAAAAAACYNUFNAAAAAAAAYNYENQEAAAAAAIBZE9QEAAAAAAAAZk1QEwAAAAAAAJg1QU0AAAAAAABg1gQ1AQAAAAAAgFkT1AQAAAAAAABmTVATAAAAAAAAmDVBTQAAAAAAAGDWBDUBAAAAAACAWRPUBAAAAAAAAGZNUBMAAAAAAACYNUFNAAAAAAAAYNYENQEAAAAAAIBZE9QEAAAAAAAAZk1QEwAAAAAAAJg1QU0AAAAAAABg1gQ1AQAAAAAAgFkT1AQAAAAAAABmTVATAAAAAAAAmDVBTQAAAAAAAGDWBDUBAAAAAACAWRPUBAAAAAAAAGZNUBMAAAAAAACYNUFNAAAAAAAAYNYENQEAAAAAAIBZE9QEAAAAAAAAZk1QEwAAAAAAAJg1QU0AAACAhfr555/Pvv/++7Ovvvrq7LPPPju7dOnS2YULF1b/v3bt2tnXX3+9+nvet8mXX3559ujRo8n2GwAAurpwfn5+3vlTAMBe/fjjj2e///3vV683b96sGqHevn27+nf5+eHDh2d37949OwXSg65+97vfrfJGM8/k5+SVkme+++67s5s3bx56VwGglzzPvvnmm7Nvv/32g99fvHjx7PLly6vnXu3evXtn9+/fX72nqQRFU5Z6/Pjx2u/0fAVgiTy/4Hj84tA7ADBVQCS9lvcljQJXr15dNR6kh/MXX3xx9umnn+7t+zh+d+7cWeVb/kB60FVGpbQ15gLAMShByCKNsHn2pR7SVBpt05j74MGD1UjMBEHrhtsER3fh+QrAEnl+wfEw/SxwMureyF0/W7/qxoIEXNJYkAaBMu1TGg22TfPEtI0/mYIr03El+DznAm0apNLQlOD4kLx7LKQHXckzf5RnUyrxbVMSpkE8jdtzvh8C8KHUMUpAM8+4V69enT179uyjgGb5e56FGaH57t271fsiny+BzC7PAc9XAJbI8wuOh+lngZOVIGQq8mnsraWQkwp/Rl9uU3o/55Wpmtq2l2kx05DAfHqzRwqyadxZguTVeo2j5LdTnW5VejBGnsl9/pinF8p9L6Ocd+1ck4p+0qmtURyAeUgAMh1VInWVBDS7Ns6m3lI6+KWOkm2WZ8W26Wdrp/h8BWD5PL9guYzUBE5WCVy2SUPBLgHNZu/nFHyeP39+lr4idWCljN40EmY3aVRJY/yYMt1W2/fUaxDNVQLj/JH0OF77uP5PMc+ksTodOZKeeSal0TvPp/J6/fr1Kk2az7p0yml+DoD5dcosAc1I3aPPaJPc+/McyP+Hzixzas/XUyo7ARwzzy9YLkFN4KStawTI2phDpHdzGhna1vUU2Nzu6dOnq0b1MdNqXWPNkhrudw20nwrpcZz2cf0XpzDNUO5pedYkQJkRl2m0zjOpXuc5109G5+Tv9UwCaRj1vAKYn4y+L3LvHloWqusrfZ3C8/VUy04Ax8zzC5ZJUBM4efsqxKQxuR4JWhqblxRIO4Q0so9t3XSKS5pmUYH7Q9LjOO3j+h+rw8oS3LhxY9WJJqMz01i9S4N3einXUw2mYdTzCmA+0lkl9/fi/v37g7eZZ0SXqWZP+fl6qmUngGPm+QXLJKgJsEeZkrYOmqWBuF7bkQ/toxE9jfb1SKX0cK9/BxyWIFp/meo8Dd557nRtpE4QtB6xWTriAHB4zft67vNjde7K/d/sF8um7AQAnBJBTYAJGpnbelpb92S9fU07mTXlMnIpjUJlPTlgXkyd1j/dsi5aGqb7TidYr7HZ3C4Ah9WsO4zdKa+tvsJyKDsBAKdEUBNgz9ZNb/rgwYPJ92UpXr58udfzoUc6nOb1f8xKJ42hDdNtn8/zyigQgMNpTjsbV65cGXX7t27dGnV7TEvZCQA4JYKaABNo602dxgm9aj+WNNF4DqfJ9d/ft99+u/p/Om0M0fb5nJOnT58O2i4A/b19+/aDf79582b0GU2WtM48f6TsBACcGkFNgAmsGxVY97rmw6m1gNPi+u8nU5pHGqTHeK60dcR59uzZ4O0C0E/dEXIfHSO//PLL0bfJ/ik7AQCnRlATYAKXL19u/b2Rmh8zLS+cLtd/P2UNzQQ3P/vss7MLFy68H7nZR9tonRI4BeDwdYl93JON1FwmZScA4NQIagIc0NhTRy1dGuFNnwSnyfXfX1sHma+//rp3x5lr166NsFcAjDk9bFOel48ePRr1O9pG6TNvyk4AwCkS1AQ4wDo4hYbjP0rjexrhgdPj+h9mXYNm35E8ZhcAmJfr169/9Ltvvvlm9IBWHTxlvpSdAIBT9YtD7wDAKVjX4NDWQHGq6WMdH1i+rOeYQNrr169XnTk+//zzs3v37m38jOt/f43Q64KTACzvPp+RlPW6yTdu3Dh79erVaN/zww8/nF29enW07bEfyk4sscwPAGMxUhNgAi9fvvzod2kw6DPNUyoP6ZmdddMuXbq0Wjst/8+oz/TW/f777wfvb7aR6YwyrVW2+dVXX60qzuU72yrRpbdw9qPsU95XN760fdevf/3rvYwAyjbLsSTNyrHkOLKf2cch687V8l1l+81zk3/nu7elxaEkT2X/1u33qa2lN3Z65P3leir5sFxP5Xppy/9psMrn8t7yvrIvyWdj5t2m5NO2e0z+nd+37WtZyzGvx48fvx+dXrZziOu/r2a6l+OfIt2HaBupkQbwvuujrZtdQJAUYF73+jyz85wda8Rm6ib7Gq156OdrWzk95avsT8orQ8rpx1J32pcp0+eQdWhl/vVl/qXXReeQhw+RVlNcN0toazn082uf6dnMn7ukY/JEMx3y+Wxnrm1dHLFzgBN38eLF89wOm69nz56Ntv3Xr19/tP28Hj582Gk7r169Ov/0009Xn7169er53bt3zx8/frza12yr/C2vHFP+Nub+Nl9ffPHFB5/Jd5X9unfv3urfzf2p9yX7nP3P+7d917ZXvm+dfMe2z/dNp+Ldu3cffU+OPfuV85K/Jb2aaZdz2UczTcfY93y+mf9v3rz5Pk9l/5v7nfeNeV2MYSnpsUs+z3XXlLxTvqd5rWc/mtsbcq3Xki+bx1iu55KPm9+b95V9Lvk/6dXM283roplWU13/bervrM9h/p00nTLdx5L9LPs45D4TOd629B5T9q9cV9nv+lmcfw85BoBjtOnZmedWXZ441H7N5flal9ObdZVSh6rLPs+fPz/ZutM+TJE+c6hDhzJ/t3aUpdRFD52HD5FWU143h25rmevza1+SPs06Y9Ix+91M5+SvTXXEZv7L50reXPc52AdBTeDk7Tuo2RZYSyGii2aheFNFO39rHk8KKSkIdpH353MpLK6rmDUL7aUi1gzSlt81X839yLZLwbC81lUQ6vfVr03B4aRbClbNgm79GlLwbKtcbErvnJ9SAehT4BsriJeKWXNbm/a7Wehtq7Ad0lLSo1S26v1d18CR799WKarzdNdOEuvuMdvugfX7yjG13Zea6dTcv6mu/66V1kOk+1y13TPHuvaTZruc8+STQzXOA8xVnrfbGtdLg2/X4NwQc3y+Nsss2+pQdcN5lzrUMdWd9mGK9JlDHTqU+Xfbv6XVRQ+Zhw+RVlNfN4dua5nj82tfcmzlem6rZzWv+zoN8+9194ycl3Kupu44w+kS1OT8r//6rw/yevPmTa/9zecOtc99/Pzzzwfb37//+7/vvL//9//+3/NTs8+g5rpefV0aakvBIpWkXTQLFKViO6Rwmc/WBb1SQC4NK3V6tTWIb0vTtrQau0G7bfRR30BYva0u2ynntGtFY4wgXio7zfyxS6G7zgNzCWwuNT1KhaAtr+dv2fYueb++Lvs2XtaNFtu2U79/Xbo3K+/bjmeK639TpbX0Sp8y3ees7bk1tIJeBzNLb+ek35gNIJyWbWXhv/u7v+u13b/5m7/ZuN2//du/3Us9pm85/O3btxu3+3/+z//ZSz0mf+8j+7NpuzmePk6lHrNuNP0hg5xze77uMuJkW9A4z6k+ZZFjqjvtw1Tpc+g6dCjzH2dddKo8fIi0msN1M3Vby9yeX/tS8ua2Z2KzjaWkRUnTtlGwJVDafMEULuQ/h54Cl8P6y7/8y4N87y9/+cuz//yf/3Pnz/3X//pfz/7mb/7m7BD+4i/+ovNnnj17dvZXf/VXZ4fw29/+9uxXv/pVp8/8j//xP87+zb/5N2enJHPB1+vQ5LzdvHlz0HazzczvX69F8erVq53X0sxnM0d91kV7/vz5zt9d1tdprt/5+vXrs77KvPlF2Z+yb1lPoynvrddz2Jam5Vibss/Z932e7+z73bt3O20jaw00103os418Ptvp8tmc0+ZaBV2/t07jnI+clz6fvXfv3tnDhw/PDmmp6ZH8l3xY5/Wsa/HgwYOzn376aaf1rMp6PUXuK7m/dFHfK5J+9fW8Le2zr+v2Oem0yzU81fWf72jek3O+sxZQ0nHKdJ+zcm+q9a0yJL/fuHHjg2t1DvcPTqMek/v6n/3Zn3Xe7n/5L//l7G//9m/X/v3f/tt/e/av/tW/Gr0e85vf/KZXOfy//bf/dva//tf/Wvv369evn/27f/fvRq/H/Mt/+S9X6yh19d//+39vXW+++Bf/4l+c/cf/+B87b/eU6jFJ975rmeW5dfv27dUzf6z1M+f0fG2mTZ9tNOs92e8ffvhh57pb2zaWXnfah32nz1zq0Mr8x1sXnSoPT5lWc7lupm5rmdPza1+6nNtmXTDHkfTIZ9vyUds9Lt69e7e39bmh+OTQOwBwjFJg/fWvf/1B4SgP9S4BzSiFhnymy8LbeX+zgJz9SEGrr7YKSgo7Key1VYbqBvEc+9Ag8ViGVvRTCW0WslMw7BpIK4vZx5SVsWbFK7777rtO6dY8h8lPS18M/lDpkeuhzofJF6kIpdKwawWgvqby/XUHjW3u3Lnzwb+blbFNmtd4vrPeTjH3hrXcw3IsU6f7nLXdk1KJHfIsbDaG5TkooAkwTJ5bXRt5i9yT87xPQ2Segft4hh3q+ZryWDPYm4BkVynbl+devj9B0q77cUx1p33Yd/rMpQ6tzH+8ddF95+FDpNUcrps5tLUcY/0wz7Ecyy6B8WbeznGUz7al5dOnTz/6Xd4roMkUBDUBRpRCWAqgeTULMSmIpbdS116+pZCQQmEKZ116w9cF5/QG7evy5csfFfRSqLl///7aQl16gOW40yiQHm7HIIXk+hzs0sN10+jCbLMezbsPyQ/N78n561rYrM/3kDx1aHNLj3x/7g+puA2pTG8a+dIWcGrmxbaGl3Xq/cy9b4p8PLY06Eyd7nOW/FCfxxxvnwaBbKt+FvYZ7QJAu5RBU94e0oEojccJbvYd9Tmn52sJ1hapg/RtWG2W8fJcXBfIWUfd6bDpM5c6dJtTLfPPre415zx8qLQ69HUzl7aWY6sf5jmfNElgvM8zMZ9dF1iur4PQeZWp/GKybwJYYCPBNim8ppCURtu2wlIe/ikU9WlsyDbr3l2lErHL9upCWLaVCk2Xwtk65Zg39ZrL94zxXXNS92jN8XU5tyXd2n6/zxFt2X6zx2P06d2fwn0KwuUYkh/z89J64s0xPXJt7jqlUFPyTfPe06XSVn9flzzY9t4cf98RfYeS87Wu8WFf6T5nbY22ffJl0iNTztbbEdAEGFfKopnmL+WI1F/6BifTkNxnir85PV/rxvA+31+kLJe0KOXFpOuQetSp1p0OkT5zrkOfapl/jnWvuebhQ6XVHK6bubS1HFv9sHSk2HX0f1sati1NEtlmeVbm+HMOxypHwDZGagK0SAEsD+ZtrxT00nMpwc08xFNYSAE/AdGsP5bGgbGDVV0KR23T3YwhBZ1sew4ViKkk7eqGol2n7dnUk22KKTrr3nJDzt2tW7e2Tjkyd3NNjz7TjNX73WWam7r3aNd8WAeoXrx4cbZEU6f7XJVevGMEIusRmknjY55GD+DQ0vibe3bqH2Wa76737zRajjlic8rnaz16LOkxtJ5SB0m7lvtPve40t/SZQx36VMv8c617zTEPzy2tprpu5tbWciz1w/Js7BKkra/vpN+mNEybZ8oe6WAloMmUBDUB1hQm82De9ZWpZfMQL40IY/TkXDctzPXr13feRv35IQu2106tJ3HbNBpdzkU5p3Wv1hT89h3UrHt7DgkuZEqXpuT5pZljeow1gu3Nmzc7v3fsBpq59Eade7rPUSrddQ/c3PP6XBuZsqrOC0NGywDQTelkmTJJ6inpbLlr/SQj9sdoiJ36+VpPdTjG99fplY4/6fg61vbYT/rMvQ59imX+Oda95pqHD5VWh75u5tTWckz1wzJ9b5d8VHdy9exirgQ1AWYsjRClUJXCWP49pPffmL3Frl27dnZK6p6NfXtNpsCeCkWZ4rjrOhFdtTW+DDl3daVgSOPOIcw1PfYd2KaddG8fjZL7VJ+phPOMqXtV5xlm2lmAw0mDZHMmmfx/XSNl7uNd14889PM1AZa6ETYzBoyhPo4+04aeat3pkOkz5zr0qZU951r3mmMePnRaHfK6mVNbyzFdoxml3XX0ZD2ye6znKYzNmpoAM5YC1ZDeh/ucwueYCnt91mcY0kg/ZSN/W+PLkHNXfzZTLy/JXNPjENdTer+O2RCwxHvCEvd5bAlCNvNB34Bm20iZTWuwAHAYZV23TEtXd2rpuo7aHJ6vbWWZddMQDl0jbUi5SZljuvRRh55PmX+uda85nttDp9Whrpu5tbUc0736p59+6nRe0kGoPhdGajJXgpqc/fa3vz3I9/7iF/2y33/4D//h7P/9v/93thR//ud/fvab3/zmIN/dpzL3+eef72VfmN66hdLHckyFvW3aKoFLOf66p93Qfa/vK3NYK+IY0uPKlStnU6uPux7l0HXqqSU+Pw6R7nOSKa4yXewYAc1oW4vN2iocsh7zJ3/yJ722+5/+0386+4d/+Ie1f/9n/+yf7aUe80//6T/ttd1//+///dnf//3fr/37P/kn/2Qv9Zh//I//ca/t/ut//a83PjP+0T/6R722u8Tn0CFlOrpMD9g2EijPgyGziUz5fM1onH2V0+vG4JR9+gZ8l1J3OJS5pM++69CnVuafa91rjnl4yWk15LqZW1vLMdUPuwaa63OR4LC1oJkrQU3OfvWrX50tyVi9Lqfyp3/6p2dL0rcxhcNIhSSF31Tm83N6301VsD+lwk3behBLKey25YdTnv5Kenw4gq65bkvX9XHqtByy5gvTyzOjOYoyjddDApDZXlseunDhQqfnSnqp6xHMoesx//yf//NF1WMuXbq0qHpMgsJ9A8ObqMd0l4bj3HfrEZtzmtJxm7Znz1j1lLZrtm9Q85TqTn1MmT6HrEOfWpn/lOpeQ/Pw3NNqX9fNkttajs2LFy8++Lc6GXMmqAmwMGlkSONDvYh8ChypsKQ3VSraqYSngWJfjRJL62AwRFthfSkNE22V1rYe7UvvVb0r6fFH5V5RT6u2S+Wlvq+kcWNJx37qcs5v3Ljx/t95pgwNSj958qT1913ulclD8hFAu12f0V3l/p/tNp/tQ0YkTq1rgGaovo34c6475dyPsW5a1mzta9/pM5c69KmV+U+p7jU0D88xraa4bpbc1nJs6vNnPU3mTFATYEEFjBQcm4XdUphc1xitMDiOOa3VMQY97j50yumRSupnn332wWi9XdIj09Jt+jfzlYaDnPPSgJDGkjGugbaGmPS8nlNjE8BSpUE5Zf53797tpXxfr68cSwlqTj3C7tjqBcdOHXp+Zf5TrnstJa2mvG7cU+ehbQph1ypz9smhdwCAzVKwSA+pvEqhMj3isoh7GqNN+bh/c+5ZvU1b5eKYp1faRnp8KPeS5hqKWRNx2zo7eU+z4TP3oSU0evJhQDPXQp4jY1VW24Ka8gXAuPbV+JtnQX3PnnoEJIxJHXoeZX51r2Wl1SGumyW3tRyTtvU0Yc6M1ASYsRQkmwXKSEEyPS05rQpGX6l41hXWNIgdYw/kXUiPj+Ue8+jRo/f/zrSk69Y1LCNFirFG+TGNnNs8T0pAc8ygY31PFNAEGN8+R0+mAbNZ51hSWbcOwJbOO/sIIh/j8y3HNGRd7blRh55PmV/dazlpdajrZsltLceknupYHZ+5E9QEWMgUgZHKZqaK4Y+SRqkA7LOwfe3atZ0WtF9K5eiUKwnS42NpsMi9JeugZPq5pE8qtGncTGUm+T/5Pb21SyU3v8+96NANe1Nc/8ci5zTnNumVgObYDSR1w++h8wbAMcp9fF8NjfV9eyn38bbn2ViBgLYy4tJHFbWVnfLvY6ljqkPPq8yv7rWMtDrkdbPktpZjYj1Nlsb0swAzlcpGs1CZirnK2GG0NR4tZUqutsLoUvZ9H6THx5WXHH8aNpLPE+zKK5XY3H/SmzsNIOmtnXtQpq0q0w8tpbGTPzxPcq77BjTTuHXhwoWN10rdyKsHPsD4Xrx4MVnD8lLu423l9LECAW0jNU3JN2/q0PMq86t7LSOtDnndLLmt5ViMsZ7mrs/d3GNS3rh06dL7Trdt+5P7Ud6XOmgC7vkcNAlqAsy00lH3lPruu+86b2eXgkWp3OgxuV4qcnXDzsuXL8+WoK0wus8GsbmTHh8qldVmY0Ua6/L79JA9Pz9fvd69e7dq2Hj48KHGvIVJhTBBybIeTp9G6nKNbGrUqre79JEsAHOU+/m+1HWB69evny01EDBWOb1uWDcd37ypQ8+vzK/uNf+0OvR1s+S2lmNRn/+uHRlS38x01tskMJl7S+47uc/kPCdg2Szb5D35XfJEOlXknnT//v1VvmlOiQ2CmgAz1NYrrs+i7G29i2vpGZWembu8d46mqkjeunXro+8dowdhtrPPBqoUSOtCaV1o7SvHv7Qec9Lj4+t/KSMx2iylIelQcm9Pnkyj1A8//ND7XJdpazcxchdgGvsqazQbz9samZcUCEhj6T5GrmQ009Idc9lJHXp+ZX51r/mn1Ryum6W2tRyLoetpPn36dGtHqJyLBCbLOr7J6+W837lzZ/X/5I0EPUvHirwneaUEwpOHj/kZRjeCmgBH2FOqWNIDv++onhRyphgRlIJUbYwC8oMHD1q3PaYUCJvapvjoY6m95aTHh9dP7hOHvlfM/fpfolT6kieHjNAs0ot2W2/927dvf/Bv00YBTFOO2Uf9o0+D9iFlqsyxAwF1+TDP0UzVORfKTh87xTr0Esr86l7zTqs5XDdLbms5BnUeyEjJXeU85dxv6/STumkCn806Zamf5vPJnzlf9ZTXmY2hWa9cSkcS9k9QE2CG6gJh34LlkhqV2xrcdykY5z1ti8uPLeegbuAZY52JFO72PZVV9rvOQ0N7tZZej0tr9Arp8UelUSu9Kw9p7tf/EiumqRiWNZPGGKmy7TlU38eW9PwBWJLcXzOaYeznRvO5m6nelqTe36TR0GBAXc6fW5ooO33sFOvQSyjzq3vNO63mcN0sua1lrsralVmTclPwv37+d51+PoHIBCq3pfOTJ08+2o/m92Z/M4qzzn/NfJXnntmBKAQ1AY5UW8+2Tb2a5tBjt+taCqUQNFXBpu45mQLWkB6EpVfbFL0H60rB0O9M4XWODTy7kh5nH1w7c1gTaO7X/1KkETc9WtMwUE8lNOS+9/nnn298Xz2CpW3aPgDGkef2WNMS1mXc3MuXMvVskf2ty+lDGsTz/Gqmb8oa9WjQOVB2Gt8S69BLKPOrex13Wo1x3Sy5rWVu0vEpAcQSEEzAcF2ZIYHE2q5lgKRx6p7bZpAoHY3qwHXzmZW/tQVGy7O3LKcChaAmcPLaCvVv3rw5O6Qx1lJI4bUuNLQdaylszqHxoi7EbBthVNJl27SIm3Sp1OW81IW+zP/ft2KYz7b1xtxVl+9N2jYLm/ls317+ZYRA9n1I2o9tyelxqHtO2d8cf6aZKZW/U7n+D32vH1vy4o0bN1Y/5zwmuNnnlbxQevaW3uG73KfqRoNjWucIYG5yvx5jer5mY2dbcHApz9c0fDbrPjmuvqM1y/pexRidhI6l7DRnS6hDn2qZf251rzmbOq3mct3Mpa3lGOqHJZC9bSRtWaeyzhu7jvpPGie/bhulmftNW/5rPqPXlT3y+/Pz89Xz7RivdwY4Bzhh7969O8+tsH7dvHnzoPv18OHDj/bp+fPnO3/+8ePH5xcvXlz93NxG+V3T3bt3z69evbpxe69evRq0P7t69uzZB9+xbb+++OKL808//bTTdyQNmt9x7969zvuZzwzNL9n3fDZ5cMp9z74OOY/Z35yX7EuXfd+HJafHWPecOg26bmfdPXDTK9+ZY861l+/L/WqM+8EU1/9c0n0fci7r/Rrz1eX508wrh75PAByD5r01r+a/U5bvK8/v5nZT5u9jTs/XlA2GPIfqeljKJ10dU91pH/aVPnOrQ9fbUeY/nrroFNf4VGk1t+tm6raWuVyjY1l3rbelRc5HyR/N/d/luZc03vU6zDlNPllX/mjLK7CNoCZwslIQLYWdtlceuocsKKewVxcKd9mfUjgoBdG6MNwsoJQCz6ZgUNKp2TjQrDTvo3Jef9e673j9+nWnhoYcawptbee6z3EMKWyXfLfr92bf6+8b0tBSp8Ou20ial4pR30avMSw5PfKZdfkw37vrPWdTfu5672qryPZ5JR1yXobcN/d1/c8x3cdUGi3GOI9tr10a7ZqaaZT7XZfjyL1UxRbgQ21BzDzbSiNk/p/n+ZDnf5/y8Fyfr806XsoWu35+jDQ5lrrTvuw7feZSh57jtTGXMv/S66JTXuNTpdVcrpsp21rmeI2Opd6PtrQo566co+b9YVv9rZznIddh8/vm0EGY5RHUBE5CHrYpmA0ZxZLPdmmc3Ucj9baCcin81YXH5nHn5xSu8p4UxuvG49JA0jWtymeGVpSbDTRlu3Vhqbxnl97IfY5jVznW5va3nZ+ke6lcbCtk9933ugfcrpXaFMSTrtvef6hK5JLTo1xnXfc93zFGGvSpOA597Zru+7z+l5DuY6kbEMZ+9Xn2NfNUzsWm6yl/K+/f5f4IcMpBzWYDaVtHrzwT8v628knut3nONesY+blL2W4pz9dmumwrE9adXbukyTHVnfZh6vQ5VB16KdfGXMr8S6qLHvoanyKtDnndTNnWsoRrdAwlyJr0aAuqJn3WHVfZ37Z8m3xXAvpD62vN7+p7H+G0/WLI1LUAS5I53zN3f9+1I/P5TYudjy37+fr169UaCFksPnPg55X1czJnfeaTz5pn2a8XL168n6c+a74057TPdrKgdtZZy3vzyqLhkfe3rb3SN63GSKOseZB9+uqrr1Zz7Jd1P8p6CGXe//y8bX2b7Es5ll33v8uaDWUx86wjl30q5yffd+vWrdX5yZoMOY4sgp5t5/05vm371HXfu+5/1h26e/fuah2E5J3sf1lPIft45cqVVf7LMZV1NfL+5MVDWHJ6lP3ouu/1eh77SIMcT9apaK6bmFfbdzS3U+5H6+Qek/cnXQ91/c853ce27+/qs35J8lXuh7k/5lzmfth8dkWuqVxP+XvSN/nl/v37s1jjGWCOcm9t3iPLGph57ub/T58+XZVjdl1rM5/p+qxeyvO1pEueQ0mP/JxXKVOUsl2eQ6VMU9IzZbwujqXutC9Tps+h69BzvTbmVuZfWl30kNf4FGl1yOtmyraWOV+jY8o5zD7mPP36179e5YfPP/989bucs/y+7fmfv+VZkr/n/zkHSfPIeqfJXzmPyStd1yqtNddu3bYmJ7S5kMhm618AmJUU1p48ebL6fylkphCVwsT169dXhY16cfamFKBScCiV2W3vn4Psb7NQnWPI8aZg3LXiNIUU/nKO6v3NK4W/7PfQwt8+ZD/TCJaCava7FNLLvievpCB8KoGGU0mPVA6blcwcb9f8mfTJPSn3ldJI0jSkwrO065/tz6/ScFwaAfLsyjlNpVllFmC93D/z/MtztUudIWWY5n23lGVu3749+3rAVGW7pEueQUmTPp145kTZ6WOnWIdeWpn/VOpeY5gqreZ43Sy1rWUOz4RyHsvzLp1INz3v8v4HDx68/1wzjceos2W76XwT2ad3794N3ianR1ATAODEpMdreuJGKiZj9dwvPTuLrj1yAQCAcSjzA3OTe1LuTWPflzgtnxx6BwAAmE56RpbGjfSMHLMSkV7DzSnbSu9OAABgOsr8wBw170VlelvoSlATAOCEZD2WIlPPjK1ev2XXdb0AAIBxKPMDc5Q1UAtLkNCXoCYAwInI2iPpSV3sa02g5hodu6z/BQAAjEOZH5ijsh5qsfS1rDkcQU0AgBPx9u3bD/59+fLlvXzP9evX134nAACwP8r8wBz97ne/e/+zgCZDCGoCAJyIukFjX2vfNLf7+eef7+U7AACAjynzA3NfT9PUswwhqAkAcCIuXrz4QY/IJ0+ejP4dmU6m2QNTZQUAAKajzA/MUfOe8eWXXx50X1i2C+fn5+eH3gkAAKarSDQrEFn/5urVq6Nt/6uvvjr7/vvv3zduNHtjAgAA+6fMD8xJOkJcunTp/b+FpBjCSE0AgBOSRod79+69//dnn3022pRU33zzzfvGjTSaPHv2bJTtAgAAu1PmB+bk5cuX73+2niZDCWoCAJyYhw8frl6lx+S1a9fOvv32297bSwNJeoI/evTofSUlvbUz9RUAADA9ZX5gTh0t0glCRwjGYPpZAIAT9eOPP57duXNn9f9IBSM9r2/durVT40SmtXr8+PH7ntqRHuGl8QQAADgsZX4AjomgJgDAiUtDRRol8v8ijR3pTZke3aWxIz2837x5s2oQyfQx+Xd579dff3129+5dPbUBAGCGlPkBOAaCmgAAvJce2C9evFg1YmSKqbdv375vyEjjxeXLl1f/v379+mptnjKNDAAAsAzK/AAslaAmAAAAAAAAMGufHHoHAAAAAAAAADYR1AQAAAAAAABmTVATAAAAAAAAmDVBTQAAAAAAAGDWBDUBAAAAAACAWRPUBAAAAAAAAGZNUBMAAAAAAACYNUFNAAAAAAAAYNYENQEAAAAAAIBZE9QEAAAAAAAAZk1QEwAAAAAAAJg1QU0AAAAAAABg1gQ1AQAAAAAAgFkT1AQAAAAAAABmTVATAAAAAAAAmDVBTQAAAAAAAGDWBDUBAAAAAACAWRPUBAAAAAAAAGZNUBMAAAAAAACYNUFNAAAAAAAAYNYENQEAAAAAAIBZE9QEAAAAAAAAZk1QEwAAAAAAAJg1QU0AAAAAAABg1gQ1AQAAAAAAgFkT1AQAAAAAAABmTVATAAAAAAAAmDVBTQAAAAAAAGDWBDUBAAAAAACAWRPUBAAAAAAAAGZNUBMAAAAAAACYNUFNAAAAAAAAYNYENQEAAAAAAIBZE9QEAAAAAAAAZk1QEwAAAAAAAJg1QU0AAAAAAABg1gQ1AQAAAAAAgFkT1AQAAAAAAABmTVATAAAAAAAAmDVBTQAAAAAAAGDWBDUBAAAAAACAWRPUBAAAAAAAAGZNUBMAAAAAAACYNUFNAAAAAAAAYNYENQEAAAAAAIBZE9QEAAAAAAAAZk1QEwAAAAAAAJg1QU0AAAAAAABg1gQ1AQAAAAAAgFkT1AQAAAAAAABmTVATAAAAAAAAmDVBTQAAAAAAAGDWBDUBAAAAAACAWRPUBAAAAAAAAGZNUBMAAAAAAACYNUFNAAAAAAAAYNYENQEAAAAAAIBZE9QEAAAAAAAAZk1QEwAAAAAAADibs/8fhvSEuoe1oeoAAAAASUVORK5CYII=",
|
|
"text/plain": [
|
|
"<Figure size 1920x1440 with 1 Axes>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"plot_force_distance_comparison(rr=[r1, r2], ff=[fmag1, fmag2], ll=[\"PM (smoothed)\", \"P3M\"], L=L, Np=Np, Npm=Npm, a=Newton_prefactor, title=\"Particle's contributions to total force\")#, ss=[\"o\", \".\"])"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "f26ada41",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "p3m",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.13.3"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 5
|
|
}
|