2336 lines
684 KiB
Text
2336 lines
684 KiB
Text
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "340c92c6",
|
|
"metadata": {},
|
|
"source": [
|
|
"Tristan Hoellinger<br/>\n",
|
|
"Institut d'Astrophysique de Paris</br>\n",
|
|
"tristan.hoellinger@iap.fr"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "94047ef1",
|
|
"metadata": {},
|
|
"source": [
|
|
"# P3M force diagnostic"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "cd240b53",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Set up the environment and parameters"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 1,
|
|
"id": "1dfed55e",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# pyright: reportWildcardImportFromLibrary=false\n",
|
|
"from wip3m import *"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 2,
|
|
"id": "aea2278a",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"workdir = ROOT_PATH + \"results/\"\n",
|
|
"output_path = OUTPUT_PATH\n",
|
|
"\n",
|
|
"L = 64 # Box size in Mpc/h\n",
|
|
"N = 32 # Density grid size\n",
|
|
"Np = 32 # Number of dark matter particles per spatial dimension\n",
|
|
"Npm = 64 # PM grid size\n",
|
|
"n_Tiles = 8 # Make sure Npm/n_Tiles >= 6\n",
|
|
"\n",
|
|
"go_beyond_Nyquist_ss = True # for the summary statistics\n",
|
|
"\n",
|
|
"force = True\n",
|
|
"force_hard = True\n",
|
|
"run_id = \"notebook1\"\n",
|
|
"\n",
|
|
"# Good set of parameters for the force diagnostic\n",
|
|
"# nPairsForceDiagnostic_spm = nPairsForceDiagnostic_p3m = 3\n",
|
|
"# nBinsForceDiagnostic = 30\n",
|
|
"# maxTrialsForceDiagnostic = int(1e9)\n",
|
|
"\n",
|
|
"# Faster force diagnostic\n",
|
|
"nPairsForceDiagnostic_spm = nPairsForceDiagnostic_p3m = 3\n",
|
|
"nBinsForceDiagnostic = 20\n",
|
|
"maxTrialsForceDiagnostic = int(1e8)\n",
|
|
"\n",
|
|
"# Simulation parameters\n",
|
|
"# nsteps_spm = 200\n",
|
|
"# nsteps_p3m = 200\n",
|
|
"nsteps_spm = 20\n",
|
|
"nsteps_p3m = 20"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 3,
|
|
"id": "28a4e070",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Automatic reloading of modules\n",
|
|
"%load_ext autoreload\n",
|
|
"%autoreload 2\n",
|
|
"\n",
|
|
"from os.path import isfile\n",
|
|
"from pathlib import Path\n",
|
|
"import numpy as np\n",
|
|
"\n",
|
|
"from pysbmy import pySbmy\n",
|
|
"from pysbmy.power import PowerSpectrum\n",
|
|
"from pysbmy.field import read_field\n",
|
|
"\n",
|
|
"from wip3m.tools import get_k_max, generate_sim_params, generate_white_noise_Field\n",
|
|
"from wip3m.params import params_planck_kmax_missing, cosmo_small_to_full_dict, z2a, BASELINE_SEEDPHASE\n",
|
|
"from wip3m.plot_utils import * # type: ignore"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 4,
|
|
"id": "3f0eaa51",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"k_max = 2.721\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"corner = 0.0\n",
|
|
"RedshiftLPT = 19.0\n",
|
|
"RedshiftFCs = 0.0\n",
|
|
"ai = z2a(RedshiftLPT)\n",
|
|
"af = z2a(RedshiftFCs)\n",
|
|
"k_max = get_k_max(L, N) # k_max in h/Mpc\n",
|
|
"print(f\"k_max = {k_max}\")\n",
|
|
"cosmo = params_planck_kmax_missing.copy()\n",
|
|
"cosmo[\"k_max\"] = k_max\n",
|
|
"\n",
|
|
"wd = workdir + run_id + \"/\"\n",
|
|
"simdir = output_path + run_id + \"/\"\n",
|
|
"logdir = simdir + \"logs/\"\n",
|
|
"if force_hard:\n",
|
|
" import shutil\n",
|
|
" if Path(simdir).exists():\n",
|
|
" shutil.rmtree(simdir)\n",
|
|
" if Path(wd).exists():\n",
|
|
" shutil.rmtree(wd)\n",
|
|
"Path(wd).mkdir(parents=True, exist_ok=True)\n",
|
|
"Path(logdir).mkdir(parents=True, exist_ok=True)\n",
|
|
"\n",
|
|
"input_white_noise_file = simdir + \"input_white_noise.h5\"\n",
|
|
"input_seed_phase_file = simdir + \"seed\"\n",
|
|
"ICs_path = simdir + \"initial_density.h5\"\n",
|
|
"simpath = simdir\n",
|
|
"\n",
|
|
"# Path to the input matter power spectrum (generated later)\n",
|
|
"input_power_file = simdir + \"input_power.h5\"\n",
|
|
"\n",
|
|
"# Paths to the force diagnostic CSVs\n",
|
|
"OutputForceDiagnostic_spm = simdir + \"force_diagnostic_spm.txt\"\n",
|
|
"OutputForceDiagnostic_p3m = simdir + \"force_diagnostic_p3m.txt\""
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "4f013d1f",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Generate the parameter files"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "88742aca",
|
|
"metadata": {},
|
|
"source": [
|
|
"The first preparatory step is to generate all the parameter files required for all the simulations.\n",
|
|
"\n",
|
|
"To this end we use the `generate_sim_params` function defined in `params.py`."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 5,
|
|
"id": "dd3f8a0c",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"common_params = {\n",
|
|
" \"Np\": Np,\n",
|
|
" \"N\": N,\n",
|
|
" \"L\": L,\n",
|
|
" \"corner0\": corner,\n",
|
|
" \"corner1\": corner,\n",
|
|
" \"corner2\": corner,\n",
|
|
" \"h\": cosmo[\"h\"],\n",
|
|
" \"Omega_m\": cosmo[\"Omega_m\"],\n",
|
|
" \"Omega_b\": cosmo[\"Omega_b\"],\n",
|
|
" \"n_s\": cosmo[\"n_s\"],\n",
|
|
" \"sigma8\": cosmo[\"sigma8\"],\n",
|
|
"}\n",
|
|
"\n",
|
|
"lpt_params = common_params.copy()\n",
|
|
"lpt_params[\"method\"] = \"lpt\"\n",
|
|
"lpt_params[\"InputPowerSpectrum\"] = input_power_file\n",
|
|
"lpt_params[\"ICsMode\"] = 1\n",
|
|
"lpt_params[\"InputWhiteNoise\"] = input_white_noise_file\n",
|
|
"\n",
|
|
"spm_params = common_params.copy()\n",
|
|
"spm_params[\"method\"] = \"spm\"\n",
|
|
"spm_params[\"EvolutionMode\"] = 5\n",
|
|
"spm_params[\"TimeStepDistribution\"] = 0\n",
|
|
"spm_params[\"ai\"] = ai\n",
|
|
"spm_params[\"af\"] = af\n",
|
|
"spm_params[\"RedshiftLPT\"] = RedshiftLPT\n",
|
|
"spm_params[\"RedshiftFCs\"] = RedshiftFCs\n",
|
|
"spm_params[\"Npm\"] = Npm\n",
|
|
"spm_params[\"nsteps\"] = nsteps_spm\n",
|
|
"spm_params[\"n_Tiles\"] = n_Tiles\n",
|
|
"spm_params[\"RunForceDiagnostic\"] = True\n",
|
|
"spm_params[\"nPairsForceDiagnostic\"] = nPairsForceDiagnostic_spm\n",
|
|
"spm_params[\"nBinsForceDiagnostic\"] = nBinsForceDiagnostic\n",
|
|
"spm_params[\"OutputForceDiagnostic\"] = OutputForceDiagnostic_spm\n",
|
|
"spm_params[\"maxTrialsForceDiagnostic\"] = maxTrialsForceDiagnostic\n",
|
|
"\n",
|
|
"p3m_params = common_params.copy()\n",
|
|
"p3m_params[\"method\"] = \"p3m\"\n",
|
|
"p3m_params[\"EvolutionMode\"] = 4\n",
|
|
"p3m_params[\"TimeStepDistribution\"] = 0\n",
|
|
"p3m_params[\"ai\"] = ai\n",
|
|
"p3m_params[\"af\"] = af\n",
|
|
"p3m_params[\"RedshiftLPT\"] = RedshiftLPT\n",
|
|
"p3m_params[\"RedshiftFCs\"] = RedshiftFCs\n",
|
|
"p3m_params[\"Npm\"] = Npm\n",
|
|
"p3m_params[\"nsteps\"] = nsteps_p3m\n",
|
|
"p3m_params[\"n_Tiles\"] = n_Tiles\n",
|
|
"p3m_params[\"RunForceDiagnostic\"] = True\n",
|
|
"p3m_params[\"nPairsForceDiagnostic\"] = nPairsForceDiagnostic_p3m\n",
|
|
"p3m_params[\"nBinsForceDiagnostic\"] = nBinsForceDiagnostic\n",
|
|
"p3m_params[\"OutputForceDiagnostic\"] = OutputForceDiagnostic_p3m\n",
|
|
"p3m_params[\"maxTrialsForceDiagnostic\"] = maxTrialsForceDiagnostic"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 6,
|
|
"id": "1d617059",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"[09:22:32|\u001b[1;36mINFO \u001b[00m]|\u001b[38;5;147m(wip3m.tools)\u001b[00m Generating parameter file...\n",
|
|
"[09:22:32|\u001b[38;5;113mSTATUS \u001b[00m]|Writing parameter file in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/example_lpt.sbmy'...\n",
|
|
"[09:22:32|\u001b[38;5;113mSTATUS \u001b[00m]|Writing parameter file in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/example_lpt.sbmy' done.\n",
|
|
"[09:22:32|\u001b[1;36mINFO \u001b[00m]|\u001b[38;5;147m(wip3m.tools)\u001b[00m Parameter file written to /Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/example_lpt.sbmy\n",
|
|
"SPM nsteps = 20:\n",
|
|
"[09:22:32|\u001b[1;36mINFO \u001b[00m]|\u001b[38;5;147m(wip3m.tools)\u001b[00m Time-stepping distribution file: /Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/nsteps20_ts_spm.h5\n",
|
|
"[09:22:33|\u001b[38;5;113mSTATUS \u001b[00m]|Write timestepping configuration in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/nsteps20_ts_spm.h5'...\n",
|
|
"[09:22:33|\u001b[38;5;113mSTATUS \u001b[00m]|Write timestepping configuration in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/nsteps20_ts_spm.h5' done.\n",
|
|
"[09:22:33|\u001b[1;36mINFO \u001b[00m]|\u001b[38;5;147m(wip3m.tools)\u001b[00m TS.ai = 0.050000, TS.af = 1.000000, TS.nsteps = 20\n",
|
|
"[09:22:33|\u001b[38;5;113mSTATUS \u001b[00m]|Read timestepping configuration in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/nsteps20_ts_spm.h5'...\n",
|
|
"[09:22:33|\u001b[38;5;113mSTATUS \u001b[00m]|Read timestepping configuration in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/nsteps20_ts_spm.h5' done.\n",
|
|
"[09:22:34|\u001b[1;36mINFO \u001b[00m]|\u001b[38;5;147m(wip3m.tools)\u001b[00m Generating parameter file...\n",
|
|
"[09:22:34|\u001b[38;5;113mSTATUS \u001b[00m]|Writing parameter file in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/nsteps20_example_spm.sbmy'...\n",
|
|
"[09:22:34|\u001b[38;5;113mSTATUS \u001b[00m]|Writing parameter file in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/nsteps20_example_spm.sbmy' done.\n",
|
|
"[09:22:34|\u001b[1;36mINFO \u001b[00m]|\u001b[38;5;147m(wip3m.tools)\u001b[00m Parameter file written to /Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/nsteps20_example_spm.sbmy\n",
|
|
"P3M nsteps = 20:\n",
|
|
"[09:22:34|\u001b[1;36mINFO \u001b[00m]|\u001b[38;5;147m(wip3m.tools)\u001b[00m Time-stepping distribution file: /Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/nsteps20_ts_p3m.h5\n",
|
|
"[09:22:34|\u001b[38;5;113mSTATUS \u001b[00m]|Write timestepping configuration in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/nsteps20_ts_p3m.h5'...\n",
|
|
"[09:22:34|\u001b[38;5;113mSTATUS \u001b[00m]|Write timestepping configuration in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/nsteps20_ts_p3m.h5' done.\n",
|
|
"[09:22:34|\u001b[1;36mINFO \u001b[00m]|\u001b[38;5;147m(wip3m.tools)\u001b[00m TS.ai = 0.050000, TS.af = 1.000000, TS.nsteps = 20\n",
|
|
"[09:22:34|\u001b[38;5;113mSTATUS \u001b[00m]|Read timestepping configuration in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/nsteps20_ts_p3m.h5'...\n",
|
|
"[09:22:34|\u001b[38;5;113mSTATUS \u001b[00m]|Read timestepping configuration in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/nsteps20_ts_p3m.h5' done.\n",
|
|
"[09:22:34|\u001b[1;36mINFO \u001b[00m]|\u001b[38;5;147m(wip3m.tools)\u001b[00m Generating parameter file...\n",
|
|
"[09:22:34|\u001b[38;5;113mSTATUS \u001b[00m]|Writing parameter file in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/nsteps20_example_p3m.sbmy'...\n",
|
|
"[09:22:34|\u001b[38;5;113mSTATUS \u001b[00m]|Writing parameter file in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/nsteps20_example_p3m.sbmy' done.\n",
|
|
"[09:22:34|\u001b[1;36mINFO \u001b[00m]|\u001b[38;5;147m(wip3m.tools)\u001b[00m Parameter file written to /Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/nsteps20_example_p3m.sbmy\n"
|
|
]
|
|
},
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAb0AAACMCAYAAADof3f4AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAANTFJREFUeJztnQdcFMcXx390aSJFQEUsIMauiBpr7D3RRI3GHluCGnv9xxIr2MXeeyyxxBrR2LvG3jsxCqLY6Qrc//MGD++ou8cdnNz7fj77udu93XdvZmfnzbx5M2ukUCgUYBiGYRgDwDi7FWAYhmGYrIKNHsMwDGMwsNFjGIZhDAY2egzDMIzBwEaPYRiGMRjY6DEMwzAGAxs9hmEYxmBgo8cwDMMYDKb4jElISEBISAhsbW1hZGSU3eowDMMw2QStsxIeHo78+fPD2Ng4Zxo9MngFCxbMbjUYhmEYPeHx48dwc3PLmUaPenjKRObOnVtjOcW/KI7Qp6Gwz2uPpQeWpnrOo6UmSIg0gbF1PAr1jNf4v7Qhh3XRrRzWRbdyWBfdytEnXaTwaKkpEiKNYZXbDB3HV4OmvHv3TnSClHYhRxo9pUuTDF5mjJ6yK2xsYgxHe8dUz3luEYeED8YwtkiAo73m2aYNOayLbuWwLrqVw7roVo4+6SKFMIt4xH8wgqWFWabqcSUZDXVxIAvDMAxjMLDRYxiGYQwGNnoMwzCMwcBGj2EYhjEYPutAFl3y5+o/sWnxJrwKewWPEh74pmQfuNuWTPP8K2evYNOiTbh77S5ePn+JCUsnoEajGrL+8/d5v+N44HH89+A/WOSyQKmKpdBrZC+4e7hLlrFj7Q7sXLsToU9CxX5hr8Lo3L8zqtSpgsywfv56LJ2yFK26tULf3/pKvm7VzFVYPXu12rGCHgWx5vAaWf8fFhqGJX5LcO7wOcREx6BA4QIYPn04ipcrLllGu2rt8OzJsxTHW3RugQETB0iSER8fj9WzVuPvP//Gq+ev4OTihEZtGqFTv06y54pGRURhxfQVOLHvBF6/eI1ipYuJvP2i3BcalzOaq7Ry5krsWb8HEe8iUNqnNAZOHgjAVZacY3uPYde6XeL3d2/eYenepfAs5SlLn7gPcVg+bTnOHj6Lp/89hbWtNbxreKNO3m7IDWfJulAZOrTrEMJCwmBqZgqvMl7oPqw7jOAlK02qzBw5E7t+34XWtX1Ru3hryTL8B/lj35Z9arIqfVUJP/pMlq3Lo3uPRJmmc+Pj4lGoWCF0qjIGeYxdJcup414n1fS1rNILDWu0kSQjOjIaS/yXiHL47vU75CuYD9/9+B2KoWmqsqXqRnUnpe/8sfOiLJatUhb9xveDW5G0pxNkBdzTS4VDOw9h4YSF6DKgC5bsWSKM3tytIxEe/TrNa2KiYuBR0gP9J/bX+H+pELXs0hLzt8/HtN+nIS4uDsM6DkN0VLRkGXld86LniJ5YvGcxFu1ehArVKmBUj1EIuhOksV63r9zGrvW7ULREUY2uJ8O79fzWpG3u1rmyrg9/E45fvvsFpqam8F/jj1UHV8F3tC9s7GxkyVm0a5GaHtN/ny6O125WW7KMDQs3iIYFPbyrD60WjZKNizZi28ptkMu0YdNw/vh5jJw9Eiv+XgGfmj4Y0n6IMPCalrONCxN1Geg3EAt2LkAuq1yiDH2Iey9LDv1eulJpkb70SE8ONU7uXb8nGgSL/1qM8UvG4/HDx1i0fYwsXdyKuqH/+P5Yvn855mydA9eCriJN4VFvZMlRQg3Lm5duigaLnPQoqVy7slo5Gj13tGw5wf8Go1+rfqIBOGvTLCzbt0zkk5mpmSw5qnrQNmz6MBjBCOWL1pQsY/74+Th35Bx+DfhVlOlW3VshYEwArt4/lWYeZCSXGl+je44WjZ2Jyydiyd4lcCngIsq3nPpMF3BPLxU2L9uMZj80Q5Pvm4j9QX6DcGLXGZy+HYjGedumeg31pDLbm5q6dqra/ogZI/BthW9FS6pclXKSZFRroD7PpcewHqLnRw95keJFZOtErcBJ/SZhiP8QrJ27FppgYmoCB2cHaAoZGud8zhg+Y3jSsXzu+WTLyeOYR21//YL1yF8oP8p9KS1viRvnb6B6w+qoWq+q2KcK+ODOg6JhIIfYmFjRm5q4bGLSve06qCtOHTgl7lf3od1llzOqaLYs34JOv3RCjYaJLe6Rs0biu4rf4cr9k/B2qydJDtGwVUPxGfo40WOQFunJscltg+nrExsWSvpP6A/fr33xKvwZnGzyStKlfsv6avu9R/fGXxv/QnDYQ3g5Osh6BqlBMWfMHPGsjfxxpKz0KDEzN0ulPMfJkkM9YPr9519/TjpG3otbt+KQECFdTnI9Tu4/CS/3cnDKnZ/WrJIk48aFG2jUuhHKVy0v9r/u8LXoBf8begelXdP2VqUn90nQE9y8eFM05pT1DnkcWlVshUM7Don6Nbvgnl4yPrz/IIxMxRoV1ebxfeHujaBnN7NUl8jwSPGZO49mc1fIFUe9Vmpxl/IupZGM2aNm48u6X6JizU/5IZfgoGC09mmN9tXbY2K/iXgWnNLFmB6n/j6F4mWL47effxONgJ5NemL3+t3I7H0mF2WTtk1kuSVL+ZTCxZMXRY+FuH/zPq7/c120/uVA7qyE+ASYW5irHSe39rV/rkETqFVNLiXVskuGp0T5EngYkrVlNy0i30WKnoilhbxeuup9o3tvndsabnk9ZC9b6DfAD21/aqtRA1DJ5TOXRTnsXLszZv1vFt6+fitbjzOHzoge7NCOQ4Us3298hXsxM9C9J7nVSic21qVSqmIp8YxRg4AaTpdOXRJGq0RhzZ95uk+EavmmepQaDJqWb23BPb1kvH31VlRG9k72asdtrewR+iKxossK6MGY99s8MSYj9wF9ePsh+rTsg/ex72FpbSncSuRilAsZTHJPkVtQU0pUKCF6aOTGIb//mtlr0L91f9ECtLKxkiQj5HEIdqzbgTY92qBD3w6iVzV37FwxvtO4TWON9KIKhsYZGreWd3373u0RFR6FLnW6iMUMqKxQr6zBtw1kyaG0U2Wzds5aFPIsJFYDohYwtY6pxa9ppUckL7u0/+5e2q75rOJ9zHss9lsMny/qwNLcOqknIoXTB05jfN/xiI2OhaOzo3BNK47YqfWKMmLDgg0wMTER49KaQo2bmo1rCk9DyKMQLJuyDCM6j0DfurMl9yHevHgjPCikT7eh3fDTyJ+Ee3FMrzHo32YaPO0raKQbjTVaWVuhfLEaQIz06/qN74cZI2bg+8rfC68MGafB/oPhHlxWVv6qQnEI5M6kOIDBfoOFm33Lsi0Iexom6oHshI2enhIwKgBBd4Nkj38RBYsWxLLAZaJSP/bXMTH4PvuP2bIM3/OQ58Lo0tiieS713ogcVN0fNDZasnxJEVByePdhNGsnzcWhSFCInl7P4T3FPgV80BgluWA0NXp/bfoLVWpXgZNrynGd9Diy+wgObD+AUXNHify8f+M+5o+bD0cXR9m6kOtx6tCpaFO5jTCgXqW9ULdFXeFpyGlQUMu43uPE93b1+wGJHQHJlK9WXpRpapTu3rBbyBrYfA6skfoKSsm5c/UOtq7cKsboM7M4fd1v6iZ9L/pFUbF1qNkBd4tdgZejj+QGLVGtYTXRkCMoSIjcjCeu7IZnbc2M3t4/9qL+t/VhZmouozkB/LnqT9y6dAuTlk+Ci5sLrp69ioDRAejZxF5ympJDDdJxi8eJcetvyn4jyjd5IKg+oN5kdsJGLxl2DnbiBlE0nSrhUa+R21LzcSk5UIE7ffA0AjYHIG++xHEPOZALQdlbIGNBPaOtK7aK1ptUqOKlPOjV9FMgA/Vq6IGgyNb99/eLVrNcKPiEordC/g2RfA217CmyTRXaP773ODSBIlsvnriIcUsSK2E5LJq0CD/0/iGp8qNKj9y1ND4o1+jRPaJ7TAP71Hskw0mVuSbjlYRD3sTySfeNZCmhfQdrzYKQtGnwQoNDMXPjTISssUaCTKNnaWUp8ou2kt4l0bFWR5y8FoiGpTpIuv7auWuih9W2alu18rw1eDEOnd+GiT+tgybQmDDVGWFvQuAlzf6K86lHVbiYeiPU3dMd525e1UgPei4fP3iMMfPH4MPf8saWl01dJrxBynFqapyS2/7Amc3waqSZ0VPWPcrGN5UBGlMnNy4dz07Y6KViMCgkmsZtlOG31DK7898l1CrZUqf/TS0gGmQ/EXgCs/6YpXHll5pcpY9dKt7VvYULUpUpg6cItwVV+poYPILcOuQWavBdA1njaPRAq/Lk4RPRKtWEwD8CxQNYtW7iQy4Hcq8lf20J7VNvVFOoQqeNolT/OfaPcHdpApUXMnxUdpXTC2hc+NblW+hUvzmy0+DRGBFFKdrZ2yEkWdCHJlB+x8VLL9MNWjVIMS5NEaDe7vVQpai8MTBVyF1HYf521g6y6hialpKiTAc9gUNuF409F1RveZb0xK2/42Tdn7gPcamW6QSFnP5i2tC4sjJ9d6/eRbch3ZCdsNFLBXI5+A/2F4WIggAoIi72Qwy+LN4o3cqcwpCVPH38VLi+bPPYCt+21KCRgzsOiog+8s3TPDCCBu0pwEEKS/2XonKdynDJ74KoyCgc3H4Ql09fThEZKmXMKflYIvnlc9vnljXGuHDiQlStXxWuBVzx4tkLMeeKetL1WnyKJJRyP/p+2xfr5q1DneZ1RCVOwQyD/AdBLtSACdwcKKLVqLUtF0rLurnr4JzfGUW8iuDejXsi2lcZ6SuHc0fPAYpEdzSVnUWTF4lGRXqyMipnrbu3FuOE1CMiI0jzAJ2cnVDOs7raOE9Gcmhu3vPg5+KeETR3lHgbmRu2cJIkh3roY38eK8aFJ6+cLHpWVKbfRsbBMt4O5jDJUAaVN8rv6g2qi0hFcm9uX7MdYc/C4F2nlqy8IYOriomZCXJbO8AlD72eLCFjXfLkFnNOazWpJRoXwY+CsXjyYpHXJQr7yMpfCqYZ32e8mLtG04poTI8idwe0niErTcqGzdE9R+E7ylejMlPuy3LCg0F1DO3T1Kn9W/fjuxqfIks1kUtDAdS4pGfl4Z2HYrikeqPqqFSrErITNnqpQK4rerioghaT00t6oG+rychtRa25hDTHDAa2pUnAiSwYv0B8UuU6YuYISf9LoerEwO8/ySEoEESq6+z1y9fwG+gnKheaDEzuNzJ4PrU0d1NkBmoJT+w7UVSi5NYpU6mMmIeYfPpAelCreMKSCWJQfE3AGjF5ts/YPrKDR4gLJy4IdyRFbWoCDfqTIaExV3Ib0lwvCvGmBQA0iWSkQAiKmrO1s0WtprVEUAyNh6RFRuWsnW87REdHY8bIGcKtVManDKasnYKIXerjPBnJoWg+6tkrmdB3gvhsWrUTmpbtKklO14FdhRyiZ+Oe6vn49Qx8YVc2QxmDJg8SPaKxW8aKKEkyPLQgwZwtc6A4Ulgt0EIbz2B6Mijk/sGtByJghPKWXMg0t5J6Ls/Wy8tfCoYhebToAwVlUaAXjYE53iotO00UcEbeHBoPlpumETNHYMy8MeLZoqlJ9JySB4Um/5eObA5FYgC5RnIpYGXBhAWJ7nZnRzENhuYiZjdGiuweVcwE9P4kOzs7vH37NlOvpCjgVgAhwSFwdHXElnNbUj3nVgDNnzGGsU0CSvTXvK2gDTmsi27lsC66lcO66FaOPukihdsB8YiPMIKVnRl+nPJpUr2u7AHP02MYhmEMBjZ6DMMwjMEg2+jVrl0bAwakvjhv165d0bKltAjHf//9V8yXuXz5MrKVhHjg47qExvFxifupnGP8McZafKZ2jsT/yrQc1kW3clgX3cphXXQrR590IRLikefpNTg/OCY+U8hR+R/Ev9f8f7KrpxcQEIBVq1bhs+HmTmB2aRhFJa4QYB7zDl/+0RNO/55OOoW+0zGLmHCxT5/Jz5GCNuSwLoaTJn3SJSemSZ90yelpKv/XKJQ8MkN8qspR/k71LiHq4dmlE+vlz8Xo0SBinjzSo/KyFcrYPzoD79QnSVtEvkSpg/7ihtBG3+lYWudIQRtyWBfDSZM+6ZIT06RPuhhqmoqeW5Xq73j3NLFe1qHhy7TR27NnjzB2v//+ewr3Js2Jmjp1Kjw9PWFhYQF3d3dMmjQpzcWRu3Xrhi+++AL//Zc4J0hnUBc6kFbsTwxctTQFrMwSP5ULFHmeWiI2go6ZIhamRjHiM+mc00thHBsJ4w8xaW+xkfA8nUk52pCRE3XJiWnSJ11yYpr0SRcDSZMqyv2C17an+J/E+vjjZILAETpzdcqeskBjeuXLl8fs2bOxfv16/Pzzz+KzefPmwui9efMG27cnJmj48OFYunQpZs2ahRo1auDp06e4ffs2evToIcb0ihQpgkuXLqFEiRL44YcfxLF9+/Yhb97Ul96KjY0Vm2qIasGCBeVPWQg6DqzOnhUqGIZhmJSsez4PHZ1VXlDdZTdQpKb+TFmYP38+evfujV27dgmDl5zw8HAxxkc9vS5dusDDw0MYPjJ4qkRERKBZs2YICwvD4cOH0zR4hJ+fn0iUciODpxER6b/aZnFccwz70BPnE9TfzJweUQoLFI5ZLzb6rgnakKFvclgX3cphXXQrR5900ZacqGzUJU5hDL8P7fDj+6GIVphnqp7WFI1mHG7ZsgXPnz/HyZMnUalS6kvK3Lp1S/TK6tVLf7kp6uG5ubnh0KFDsLS0TPfckSNHYtCgQSl6erKxUV8WrMaKCDyLUMDFxggnutngQLw3/lF8gWrGN+ED9RXvt78Yi5ZOnxYqjmq7BvEFv0TU+3hg6iVxLLz/ZcSbJy6xZPL4DKw2pVytIzU54S6VMi1DW7qkJUefdOH85fw1pPz93NNEmBolYEv8V3gJO9xXFEAZoyBsfTEJ0Ql2MDeOQnr1dLYavQoVKuDixYtYsWIFfHx8Un1VR0YGTEnTpk2xbt06nD59GnXrpr6MjhIaF6Qt0xSqBtCbhWnQFAph6JSQs/eOItGQetnEANGUtk8e4E8330jIsCreHDA2gcn7T4u82to4w8r8Y9bS7yr/la6cOEXmZWhLl7Tk6JMunL+cv4aUv595mpR4GT/B6QQ7Uc+WQRBaOf0KdRL/R9TTOkAj9ya5KskVuWPHDvzyyy+pnlOsWDFh+A4ePJiuLF9fX/j7++Obb77B0aNHkSUYmwCNlesKqhvsZ3DAO1jDxEiBok1Tn4+YdE1j/0RZH3GwNhdb2v+VsRxtyNCpHH3SRQM5+qRLqnL0SRcN5OiTLqnK0SddDDRNxY2eiG93EgqmHeqS7H/0JpDlzp07Yr9t27ZiP3kgy7hx48S4Hv1WvXp1MW5348YNdO/eXS2QRSlv9OjR2Lt3rxj7y5K1NykslqI4VaYtxNq646r3JITYV0SL8gUSz9k7FAgP/XRd7gKJN6XkN/L+K7NyWBfdymFddCuHddGtHH3SJR051yv5I8ShMspEnUO+4+r1r0b/I9ceKGTy1VdfKfr375+0f/PmTYWzs7Ni0KBBii5duihatGiR9Ft8fLxi4sSJikKFCinMzMwU7u7uismTJ4vfgoKCRHzqpUuXks6fMWOGwtbWVnHy5ElJurx9+1bIoE+NiY9TKB4eUyiubk78pP3kRL9VKMbmTtzu7E/9HCloQw7rols5rItu5bAuupWjT7pIkSOl/pWIVHsge0zvyJEjavs03eDZs9SjbOhFhL/++qvYklO4cOEUr42nIBXVQJUsgbrQGYXFqnazC1fTvNutDTmsi27lsC66lcO66FaOPukiRY6U+lfL8Pv0krHs+EPY5jJFw5KusFf6qo1MgGINP31PhZgP8eiy4pz4vrpbZeQyS+W8DORoQ0aWytEnXSTI0SddJMnRJ10kyNEnXSTJ0SddDCxNx++F4crjN2hcOh88nT8FEmYFbPRUSEhQYMb+u4j+EA+fwg6fjJ5ZLqDD5vSvVShwNuhV0vdUyUCONmRkqRx90kWCHH3SRZIcfdJFghx90kWSHH3SRVty9EmXdOQsOx6Eo3fDRB2b1UaPXy2kwpPX0cLgmZsao5CDVXarwzAMkyMp7morPu+GJi5qnZWw0VPhzrPEG+CZ1wamJpw1DMMwusDLxVatzs1KuGZX4e7HG6BshSTxPhKYlC9xo++aog05rItu5bAuupXDuuhWjj7pko6c4kqjFxqeIqBR1/CYngp0A1RbIWp8SLZEjqZoQw7rols5rItu5bAuupWjT7qkIYfG8Wghr9dRH/Ai4j3y2mphpS2JcE8vlZ6el0vWDqwyDMMYEpbmJklxE8p6N6vgnt5HPsQn4EFYRNo9PQlYphaymw0y9E0O66JbOayLbuXoky7akmOpB7pQPfvvyyjcDg1HdU8nZBVs9D5iamyEkyPq4m5oBArkkbZYtipW5qa4NaFxpnTQhgx9k8O66FYO66JbOfqki7bkWOmJLoMbFseQRsVR2NEaWQkbvY/QmyKcbXOJjWEYhtEtKQIGswge02MYhmEMBu7pfWT+4fuIiI1DK2+3lCsEGBkDhWp8+p7Gkjy+6y6I7ws7VkxjSZ705WhDRpbK0SddJMjRJ10kydEnXSTI0SddJMnRJ10MNE0rTwbhRsg7DGlYHK52WeNlY6P3ka0XnuDhi0hU93BKafTMLIEf96R7PS3Dc/hOWNL3VMlAjjZkZKkcfdJFghx90kWSHH3SRYIcfdJFkhx90kVbcvRJFwlyNp57LCaoNyuTL8uMHrs3P7ZY/n2ZOHHSy5WnKzAMw2QFXq5ZvzKLVowevUh2wIC03jIO8cJYChS5fPly0rGTJ0+iTJkyMDMzQ8uWLZFdxCcosO1iMBIUgI2FKRyszDWWo+Tsw1dq+1kpQ9/ksC66lcO66FaOPumiLTnxeqRLsY9etYO3nuH0g5ca66LTN6dn9Db11IiPjxdvTXdycoKpaaJHtUqVKvDy8oKfnx9sbGzEtfTGdVXDqOs3pwdef4pxu27i6duYpGP57HJh7NclxSsvkqDlc2aXSfw+4Bpgbp1CztidN/DsXazGcrQhI8vl6JMunL+cvzk4f3NimgKvP8XIbdfEqizpytCyPdC5e/P9+/cwMTGBq6trksEjHjx4gLp168LNzQ158uRBVkMZ7rvuoprBI0Lfxojj9LsaUS8TtzTkqN58uXK0ISPb5OiTLmnI0SddZMvRJ13SkKNPusiWo0+6GFCaAj/KUDV46crQIrKNXmRkJDp37ix6Z/ny5cOMGTNSvBF9woQJ4hyytr169VJzbyq/v3z5Et26dRPfV61ahXHjxuHKlStiX3lMV1AXmnp4qXVxxfvmAdGKCY/5gKj3cYh6H48ohUXiRt/FsTjxO52XGTnakJF9cvRJF85fzt+cl785MU3hGcggqH7WlatTtnuzd+/e2LNnD1asWAFnZ2f873//w9GjR4UBIxclGb3Xr19jzJgxSWN11NMrUqQILl26JMbxyNVZvHhxjB8/Hm3bthVd0tGjRyMwMBAHDhwQ19AxS0v1lVFiY2PFptqdLViwoGz3JvmOf1h6Rk6yGYZhGB1SK8oUx6zikvY39PwSVT0cte7elDVlISIiAsuXL8e6detQr149cWz16tXCRakKuS0HDx6ctE+9OyVKVyf15khB+k5Qz5Hcn8r91KDxP+oRZpbn4eouTYZhGCZ7KfbBBMcQp/N6WpbRo3E4GqOjIBQlDg4Ootemio+PD3TByJEjMWjQoBQ9PbkkX2oseHFPxEe+gom1Awr8tDTpeN8mgGc+ozTl3H+qwLy9n/a7v7WAjcIIEUYKLLeLlSRHGzL0TQ7rYjhp0iddOE2fR5rupyEjxkjd6airJSF1Mjnd2lo3C4haWFiILbNULuIgooRo0FT4oePeQ/EhVnwqcbAxgndhSxgbp10AvAsrYG8djdeRiTfLDEYwhxHMVM7JSI42ZOibHNbFcNKkT7pwmj6PNHmnIUNpMukqmqhO9XS2B7J4eHiIeXVnz55NOkbjd3fv3s20Iubm5mJqQ1ZgYmwkwmKJtG5v+xrm6d58gn7vUDP9eX0ZydGGDH2Tw7roVg7rols5+qSLtuR8LroYffyk+pnq6Ww3ejTu1r17dwwdOhSHDh3C9evX0bVrVxgbZ37mAwXABAUFiQjPFy9eqAWs6AKaB7Kwo3eKpW+oldK3sQV8PKR1guk8Ot/e2khjOdqQoW9yWBfDSZM+6cJp+rx1cbXLJeplTebp6Sx6k4JZfH19sW3bNtja2oqAFYrmVE5OJ+NFq7OortBCgSzK6E06j6C5eXQ+GU2CjFyHDh1w8OBBvHnzBitXrkz6TVeT0wkKi3XNnx8vnoXCLq8jtv2zOcPWTmokJChwY3Y8jKONkWCZgFIDTGTL0YYMfZPDuuhWDuuiWzn6pIu25CTomS43AxJgFGUEUxtT9JhaU+Menk6iN5W9vbVr14pNCfX8UovUVEKGMLltJcOmCo3VbdmyBVkNZbC5aWJP1dQkseutCXQdXZ+QCTnakKFvclgX3cphXXQrR5900ZYcY33TxRiggS1zEyOduTRV4bcsSOTP1X9i0+JNeBX2Ch4lPNBvfD+UKF9C8vVXzl7BpkWbcPfaXbx8/hITlk5AjUYfX7khkd/n/Y7jgcfx34P/YJHLAqUqlkKvkb3g7uEuS86OtTuwc+1OhD4JFfuFvQqjc//OqFLnU1SuXNbPX4+lU5aiVbdW6PtbX8nXrZq5Cqtnr1Y7VtCjINYcXiNbh7DQMCzxW4Jzh88hJjoGBQoXwPDpw1G8nHp0cXq0q9YOz548S3G8RecWGDAx7fVlVaGx6dWzVuPvP//Gq+ev4OTihEZtGqFTv05iqo4coiKisGL6CpzYdwKvX7xGsdLFRP5+Ue4LjcsaNUBXzlyJPev3IOJdBEr7lMbAyQPJuSRLzrG9x7Br3S7x+7s377B0L0U+F5YsI+5DHJZPW46zh8/i6X9PYW1rDe8a3ug1ohf5gmTpQuXo0K5DCAsJg6mZKbzKeKH7sO4wgpcsOarMHDkTu37fhda1fVG7eGvJMvwH+WPfln1qsip9VQk/+kyWrcuje49EmaZz4+PiUahYIXSqMgZ5jF0lyajjXifVtH1bqyfqlWgnWZfoyGgs8V8iyuG71++Qr2A+fPfjdyiGprLSRPUnpef8sfOi7JWtUhbNPfrA0Ux+FL6m8FsWJHBo5yEsnLAQXQZ0wZI9S4TRG9ZxmKiEpBITFQOPkh7oP7G/xnpQgWrZpSXmb5+Pab9PQ1xcnNAjOipalpy8rnnRc0RPLN6zGIt2L0KFahUwqscoBN0J0kiv21duY9f6XShaoqhG15PR3Xp+a9I2d+tc2TLC34Tjl+9+EXM9/df4Y9XBVfAd7QsbO3lvzVi0a5GaLtN/ny6O125WW7KMDQs3iIYFNYxWH1otGiYbF23EtpXbZKdr2rBpOH/8PEbOHokVf6+AT00fDGk/RBh4TcvaxoWJugz0G4gFOxcgl1UuUY4+qEQvS5FDv5euVFqkTxNdqGFy7/o90RhY/NdijF8yHo8fPsav3X+VnSa3om7oP74/lu9fjjlb58C1oKtIU3jUG42eQ2pc3rx0UzRY5OpCVK5dWa0cjZ47Wrac4H+D0a9VP9EInLVpFpbtWybyyszUTLIMVR1oGzZ9mGh4VShWU5Yu88fPx7kj5/BrwK+iTLfq3goBYwJw9f4pyXKosTW652jRwJm4fCKW7F0ClwIuCNg8DLEf5NVhmYF7ehLYvGwzmv3QDE2+byL2B/kNwtlDZ7F3016079NekgzqRWWmJ0VMXTtVbX/EjBH4tsK3olVVrko5yXKqNaimtt9jWA/R86OHvEjxIrJ0ohbgpH6TMMR/CNbO/eTyloOJqQkcnDMXnkyGxjmfM4bPGJ50LJ+7/MHwPI7qPYz1C9Yjf6H8KPel9Py9cf4Gqjesjqr1qop9qoAP7jwoGgdyiI2JFb2picsmJt3froO64tSBU+J+dR/aXXZZo4pny/It6PRLJ9RomNgCHzlrJL6r+B2u3D8Jb7d6kuQQDVs1FJ+hjxM9BnJ1scltg+nrExsVSvpP6A/fr33x6svnSb0ZKbrUb1lfbb/36N74a+NfCA57CC9HB1nPITUo5oyZI563kT+OlJUmJWbmZqmU6ThZcqgXTL///OvPScfIe3HrVhwSIqTJSK7Dyf0nUb5qeTjlyZckQ4qcGxduoFHrRuJa4usOX4te8L+hd1DatYYkOU+CnuDmxZui8aasZ8jDcOTPVrhw/xDqO2XN23a4p5cBH95/EEalYo2KSccoWpXcMDcu3shW3SLDE98BmDuPZkE8Slcc9WSp1V3Ku5Ts62ePmo0v636JijU/5Y9cgoOC0dqnNdpXb4+J/SbiWXBK92JGnPr7FIqXLY7ffv5NNAR6NumJ3et3I7P3nlyUTdo2keWWLOVTChdPXhS9FuL+zfu4/s910fqXA7mzEuITYG6hHt5Nru1r/1yDJlArm1xMquWZjA+56h+G3ER2E/kuUuS1pYV1pu4b3Xvr3NZwy+sh69qEhAT4DfBD25/aym4AqnL5zGVRDjvX7oxZ/5uFt6/fytbjzKEzogc7tONQIcv3G1/hXtQUuu9nDp1B03bqLkkp0FAKPWPUIKCG06VTl4QRK1G4oqz7QqiWZ6pLzUzM8CD0OrIK7ullwNtXb0XFY+9kr3ac9mlsLbugh2Leb/PEeIwmD+fD2w/Rp2UfvI99D0trS+FaIjejHMhYknuKXIKaUqJCCdE7IxcOjQGsmb0G/Vv3F61BKxsryXJCHodgx7odaNOjDTr07SB6VXPHzhXjO43bNNZIN6pgaNyhcWt517fv3R5R4VHoUqcLjE2MRfmhXlmDbxvIkkPpp8pm7Zy1KORZCPZ57XFoxyHRWqYWv6YVH5FaeX53T7q7Xhe8j3mPxX6LUbdFXWH0EtQX4M+Q0wdOY3zf8YiNjoWjs6NwTSuO2Kn1aDJiw4INYqlEGpvWFGrc1GxcU3gaQh6FYNmUZRjReQT61p0tuZ/x5sUb4UUhfboN7YafRv4k3Itjeo1B/zbT4GlfQbZeNM5oZW2FWo1r4cFiedeSq37GiBn4vvL3wjNDxmqw/2C4B5eVnL8Ue0DuTBr7H+w3WLjVtyzbgtcRYXgblVguswI2ep8pAaMCEHQ3SKPxL6Jg0YJYFrhMVOrH/jomBt9n/zFbsuF7HvJcGF0aWzTPpdmLdwlVVwiNlZYsX1IEkxzefRjN2jWTLEeRoBA9vZ7De4p9CvigMUpywWhq9P7a9Beq1K4CJ9eU4zrpcWT3ERzYfgCj5o4S+Xn/xn3MHzcfji6OsnUh1+PUoVPRpnIbYUC9SnsJo0Deh5wEBbWM6524ru7ASQPx3wr5MspXKy/KNDVUd2/YLeQNbD4H1pC2aPGdq3ewdeVWMW4vN+BIlbrf1E36XvSLomLrULMD7ha7Ai9HH8mNWqJaw2qiIUd4lvIUbsYTV3bDs7Z8o7f3j72o/239j8+ruqs1I/5c9SduXbqFScsnwcXNBVfPXkXA6AD0bGIvOU3UAB23eJwYp/6m7DeiPJPHoVSRylDE6f7lsUl6ZNk/fabYOdiJm5M8aIX2HfLqZpmcjKDCdvrgaQRsDkDefHk1kkFjDsreAhkL6hltXbFVtN6kQJUu5UGvpp+CGKhHQw8DRbruv79ftJjlQoEnbkXcEPJviKzrqGVPkW2q0P7xvcehCRTZevHERYxbIn+B80WTFuGH3j8kVX5U6ZHLlsYH5Ro9ukd0nylYiXqPZDipMtdkvJJQllm6dyRLrTxbaxaIpC2DFxocipkbZ4ooTrmVMmFpZSnyi7aS3iXRsVZHnLwWiIalOki6/tq5a6KH1bZqW7UyvTV4MQ6d34aJP62DJtCYMNUjYW9C4CXxpQF0PvWoChdTb4S6e7rj3M2rsnWg5/Lxg8cYM3+M7GtpbHnZ1GXCG6Qcp6YGKrntD5zZDK9G0tdaprpG2dim+05j6D9W9kVBB/UoW13CRk+CcaDwZxqjUYbeUiuM9r/t8m2W6kK+dBpgPxF4ArP+mKVxxZeWbKXPXQre1b2FC1KVKYOnCBcGVfiaGDyCXDrkEmrwnTxXII2j0UOtypOHT0SrVBMC/wgUD2TVuokPuRzIvZZ8lSLap96oplCFThtFqf5z7B/h7tIEKjNk+Kj8Us9BOTZ86/ItdKrfHNll8Gh8iCIU7ezttCab8jsuXnqZbtCqQYqxaYoA9XavhypFE4PYNCHsaZgI87ezdpBV79C0lBRlOugJHHK7aOS1oHrMs2TiPZd7j2hLrUwnKBJ7pHKhcWRleh49u4tm3j8iq2CjJwFyL/gP9heFhgb8KfqNQnMbf99YVmVOIchKnj5+KtxetnlshZ9batDIwR0HRTQf+eZpDhhBA/YU3CCVpf5LUblOZbjkd0FUZBQObj+Iy6cvp4gOzWi8KflYIvnoc9vnljXGuHDiQlStXxWuBVzx4tkLMd+Ketb1WnyKIpR6j/p+2xfr5q1DneZ1RCVOwQyD/D+9lUMq1KgJ3BwootWotS0XSs+6uevgnN8ZRbyK4N6NeyICWBn9K4dzR8+JN2uSO5rKz6LJi0TDIj1ZGZW11t1bi3FC6hGREaR5gE7OTijnWR2IkS6H5uY9D34u7htBY9xxz+NgCyfkscmToQzqnY/9eawYF568crLoVSnLdFy8JYzxqUynJ4fKHOV39QbVRbQiuTe3r9mOsGdh8K5TS1beJDe6JmYmyG3tAJc8NI8sIWNd8uQW805rNaklGhfBj4KxePJikdclCvvIyl8KphnfZ7yYy0bTimhMjyJ3B7SeIateoUbN0T1H4TvKV+MyQ9HL5MGgeob2afrU/q378V2Nn2XJIdc/NSbp2Xh456EYIinnWQ0lCurmzTypwUZPAuSmogeJKmQxOb2kB6asnSLLvUnjBQPb0gTgRBaMXyA+qWIdMXOEJBkUpk4M/P6THIICQeS4zV6/fA2/gX6igiFXErnfyOD51Mq6gqfaCp7Yd6KoQMmlU6ZSGTEPMfnUgYygVvGEJRPEIPmagDVi8myfsX1kB48QF05cEO5IitrUBBr0J0NC467kNqS5XhTiTQsAaBLNSIEQFDVna2eLWk1riaAYGh/RtKy1822H6OhozBg5Q7iZyviUEeU5Ypf5x2pdmhyK5qPevZIJfSeIzyYVO+Nr504Zyug6sKuQQfRsnDgWq2TA99PVgjXSkzNo8iDRIxq7ZayIkiTDQwsSzNkyB4ojhdUCLbTxHKYng0LwH9x6IIJGKG/JhUxzK7sN6YZn6+XlLwXDkDxa+IGCsijYi8bEHG+VTkqTlPRQwBl5cmgsOC0ykjNm3hjxbNH0JHpWyYNCk/9LRzaHIlK6HApWWzBhQaJ73dlRTHupbNweyLppevLX3tQntLH2JlHArQBCgkPg6OqILec0XwrtVgDNnzGGsU0CSvQ3zTYZ+iaHddGtHNZFt3L0SRdtybmlR7rcDohHfIQRrOzM8OMU9UnzurAHPE+PYRiGMRjY6DEMwzAGAxs9hmEYxmBgo8cwDMMYDGz0GIZhGIOBjR7DMAxjMLDRYxiGYQyGz3pyunKKIc3PyAzKxV1pRYiXr19qLCc61gQJ701gHBuPl6/js02GvslhXXQrh3XRrRx90kVbcqL1SJeoWFMkvDeGUaxZpupy5bUZTT3/rCenP3nyBAULZt1r5hmGYRj95vHjx3Bzc8uZRo96aCEhIbC1tc3Uq0AY6S0pamRQocrMCjiMdDjPsx7O888zv8mUhYeHI3/+/CkWx84x7k1KWHoWndENVDC5MshaOM+zHs7zzy+/aRmyjOBAFoZhGMZgYKPHMAzDGAxs9BjJWFhYYOzYseKTyRo4z7MezvOcnd+fdSALwzAMw8iBe3oMwzCMwcBGj2EYhjEY2OgxDMMwBgMbPYZhGMZgYKNn4MyfPx+FCxdGrly5UKVKFZw7dy7Nc5cuXYqaNWvC3t5ebPXr109xfteuXcXqOKpb48aNsyAlOTPPV61alSI/6TpVKBZtzJgxyJcvHywtLcV9uXfvXhakJOfld+3atVPkN23NmjVLOofLePocO3YMX3/9tVgZhfJm+/btGVwBHDlyBN7e3iKC09PTU5T7zNzH9GCjZ8Bs2rQJgwYNEuHCFy9eRLly5dCoUSM8f/48zYL5ww8/4PDhwzh9+rRYOqhhw4YIDg5WO48qgKdPnyZtGzZsyKIU5bw8J2iVCtX8fPTokdrvU6dOxZw5c7Bo0SKcPXsW1tbWQmZMTAwMHbn5vW3bNrW8vn79OkxMTNCmTRu187iMp01kZKTIZzJSUggKChKNijp16uDy5csYMGAAevTogX379mXquUkTmrLAGCaVK1dW9OnTJ2k/Pj5ekT9/foWfn5+k6+Pi4hS2traK1atXJx3r0qWLokWLFjrR1xDzfOXKlQo7O7s05SUkJChcXV0V06ZNSzr25s0bhYWFhWLDhg0KQyezZXzWrFmijEdERCQd4zIuHTIxf/75Z7rnDBs2TFGqVCm1Y23btlU0atRIa/dRFe7pGSjv37/HhQsXhCtMdS1T2qdenBSioqLw4cMHODg4pOgROjs7o3jx4vD19cXLl5q/riknoWmeR0REoFChQqJn3aJFC9y4cUOtlRwaGqomk9YfJPeP1PuYU9FGGV++fDnatWsnes+qcBnXHnQvVO8RQb045T3Sxn1UhY2egfLixQvEx8fDxcVF7TjtUyUqheHDhwu/vWphJLfPmjVrcPDgQUyZMgVHjx5FkyZNxH8ZOprkOVWqK1aswI4dO7Bu3TrxZpFq1aqJ12oRyusycx9zKpkt4zRmRO5NcrWpwmVcu9C9SO0e0dsXoqOjtVJX5Zi3LDDZh7+/PzZu3ChavKqBFdQqVlKmTBmULVsWHh4e4rx69eplk7afL1WrVhWbEjJ4JUqUwOLFizFhwoRs1S2nQ708KsOVK1dWO85l/POGe3oGipOTkxigf/bsmdpx2nd1dU332unTpwujt3//fvHAp0fRokXFf92/fx+GTmbyXImZmRkqVKiQlJ/K6zIjM6eSmfymYAxq1HXv3j3D/+EynjnoXqR2jyiAi6KRtfHcqMJGz0AxNzdHxYoVhYtGCbnOaF+1Z5EcihSkHkZgYCB8fHwy/B9yw9F4B4XTGzqa5rkq5Oa5du1aUn4WKVJEPPiqMsktRFGcUmXmVDKT35s3b0ZsbCw6duyY4f9wGc8cdC9U7xHx999/J90jbTw3asgOfWFyDBs3bhRRfqtWrVLcvHlT0atXL0WePHkUoaGh4vdOnTopRowYkXS+v7+/wtzcXLFlyxbF06dPk7bw8HDxO30OGTJEcfr0aUVQUJDiwIEDCm9vb0WxYsUUMTEx2ZbOzznPx40bp9i3b5/iwYMHigsXLijatWunyJUrl+LGjRtq94Vk7NixQ3H16lURWVikSBFFdHS0wtCRm99KatSoISIIk8NlPGMojy5duiQ2MjEzZ84U3x89eiR+p/ymfFfy8OFDhZWVlWLo0KGKW7duKebPn68wMTFRBAYGSr6PcmCjZ+DMnTtX4e7uLowZhQWfOXMm6bevvvpKhGcrKVSokCjEybexY8eK36OiohQNGzZU5M2bV2FmZibO79mzp0YFMycjJ88HDBiQdK6Li4uiadOmiosXL6aYtjB69GjxO1UM9erVU9y5cydL05RT8pu4ffu2KNf79+9PIYvLeMYcPnw41XpCmc/0Sfme/Jry5cuLe1S0aFExVUfOfZQDv1qIYRiGMRh4TI9hGIYxGNjoMQzDMAYDGz2GYRjGYGCjxzAMwxgMbPQYhmEYg4GNHsMwDGMwsNFjGIZhDAY2egzDMIzBwEaPYRiGMRjY6DEMwzAGAxs9hvmMGTt2rHinG73Zm16qSW/xprfZMwyTOvwSWYb5TPm4YLx4oWyBAgVw8+ZNdOnSRbzjkIwfwzAp4QWnGSYH0b59ezg7O2P27NnZrQrD6CXs3mSYz5RHjx6hT58+KF26NOzt7WFjY4M//vgDbm5u2a0aw+gtbPQY5jMkLCwMlSpVEm/snjlzJk6cOIFTp07B2NgY5cqVy271GEZv4TE9hvkM2bVrF+Lj47FhwwYYGRmJY/PmzRNBLOXLl89u9RhGb2GjxzCfIY6Ojnj37h127tyJkiVLCiPo5+cnAlry5s2b3eoxjN7CgSwM8xmSkJCA3r17Y/369bC0tETHjh0RExMjxvl2796d3eoxjN7CRo9hGIYxGDiQhWEYhjEY2OgxDMMwBgMbPYZhGMZgYKPHMAzDGAxs9BiGYRiDgY0ewzAMYzCw0WMYhmEMBjZ6DMMwjMHARo9hGIYxGNjoMQzDMAYDGz2GYRjGYGCjxzAMw8BQ+D/maY4QR2ov7QAAAABJRU5ErkJggg==",
|
|
"text/plain": [
|
|
"<Figure size 500x100 with 1 Axes>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAb0AAACMCAYAAADof3f4AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAANTFJREFUeJztnQdcFMcXx390aSJFQEUsIMauiBpr7D3RRI3GHluCGnv9xxIr2MXeeyyxxBrR2LvG3jsxCqLY6Qrc//MGD++ou8cdnNz7fj77udu93XdvZmfnzbx5M2ukUCgUYBiGYRgDwDi7FWAYhmGYrIKNHsMwDGMwsNFjGIZhDAY2egzDMIzBwEaPYRiGMRjY6DEMwzAGAxs9hmEYxmBgo8cwDMMYDKb4jElISEBISAhsbW1hZGSU3eowDMMw2QStsxIeHo78+fPD2Ng4Zxo9MngFCxbMbjUYhmEYPeHx48dwc3PLmUaPenjKRObOnVtjOcW/KI7Qp6Gwz2uPpQeWpnrOo6UmSIg0gbF1PAr1jNf4v7Qhh3XRrRzWRbdyWBfdytEnXaTwaKkpEiKNYZXbDB3HV4OmvHv3TnSClHYhRxo9pUuTDF5mjJ6yK2xsYgxHe8dUz3luEYeED8YwtkiAo73m2aYNOayLbuWwLrqVw7roVo4+6SKFMIt4xH8wgqWFWabqcSUZDXVxIAvDMAxjMLDRYxiGYQwGNnoMwzCMwcBGj2EYhjEYPutAFl3y5+o/sWnxJrwKewWPEh74pmQfuNuWTPP8K2evYNOiTbh77S5ePn+JCUsnoEajGrL+8/d5v+N44HH89+A/WOSyQKmKpdBrZC+4e7hLlrFj7Q7sXLsToU9CxX5hr8Lo3L8zqtSpgsywfv56LJ2yFK26tULf3/pKvm7VzFVYPXu12rGCHgWx5vAaWf8fFhqGJX5LcO7wOcREx6BA4QIYPn04ipcrLllGu2rt8OzJsxTHW3RugQETB0iSER8fj9WzVuPvP//Gq+ev4OTihEZtGqFTv06y54pGRURhxfQVOLHvBF6/eI1ipYuJvP2i3BcalzOaq7Ry5krsWb8HEe8iUNqnNAZOHgjAVZacY3uPYde6XeL3d2/eYenepfAs5SlLn7gPcVg+bTnOHj6Lp/89hbWtNbxreKNO3m7IDWfJulAZOrTrEMJCwmBqZgqvMl7oPqw7jOAlK02qzBw5E7t+34XWtX1Ru3hryTL8B/lj35Z9arIqfVUJP/pMlq3Lo3uPRJmmc+Pj4lGoWCF0qjIGeYxdJcup414n1fS1rNILDWu0kSQjOjIaS/yXiHL47vU75CuYD9/9+B2KoWmqsqXqRnUnpe/8sfOiLJatUhb9xveDW5G0pxNkBdzTS4VDOw9h4YSF6DKgC5bsWSKM3tytIxEe/TrNa2KiYuBR0gP9J/bX+H+pELXs0hLzt8/HtN+nIS4uDsM6DkN0VLRkGXld86LniJ5YvGcxFu1ehArVKmBUj1EIuhOksV63r9zGrvW7ULREUY2uJ8O79fzWpG3u1rmyrg9/E45fvvsFpqam8F/jj1UHV8F3tC9s7GxkyVm0a5GaHtN/ny6O125WW7KMDQs3iIYFPbyrD60WjZKNizZi28ptkMu0YdNw/vh5jJw9Eiv+XgGfmj4Y0n6IMPCalrONCxN1Geg3EAt2LkAuq1yiDH2Iey9LDv1eulJpkb70SE8ONU7uXb8nGgSL/1qM8UvG4/HDx1i0fYwsXdyKuqH/+P5Yvn855mydA9eCriJN4VFvZMlRQg3Lm5duigaLnPQoqVy7slo5Gj13tGw5wf8Go1+rfqIBOGvTLCzbt0zkk5mpmSw5qnrQNmz6MBjBCOWL1pQsY/74+Th35Bx+DfhVlOlW3VshYEwArt4/lWYeZCSXGl+je44WjZ2Jyydiyd4lcCngIsq3nPpMF3BPLxU2L9uMZj80Q5Pvm4j9QX6DcGLXGZy+HYjGedumeg31pDLbm5q6dqra/ogZI/BthW9FS6pclXKSZFRroD7PpcewHqLnRw95keJFZOtErcBJ/SZhiP8QrJ27FppgYmoCB2cHaAoZGud8zhg+Y3jSsXzu+WTLyeOYR21//YL1yF8oP8p9KS1viRvnb6B6w+qoWq+q2KcK+ODOg6JhIIfYmFjRm5q4bGLSve06qCtOHTgl7lf3od1llzOqaLYs34JOv3RCjYaJLe6Rs0biu4rf4cr9k/B2qydJDtGwVUPxGfo40WOQFunJscltg+nrExsWSvpP6A/fr33xKvwZnGzyStKlfsv6avu9R/fGXxv/QnDYQ3g5Osh6BqlBMWfMHPGsjfxxpKz0KDEzN0ulPMfJkkM9YPr9519/TjpG3otbt+KQECFdTnI9Tu4/CS/3cnDKnZ/WrJIk48aFG2jUuhHKVy0v9r/u8LXoBf8begelXdP2VqUn90nQE9y8eFM05pT1DnkcWlVshUM7Don6Nbvgnl4yPrz/IIxMxRoV1ebxfeHujaBnN7NUl8jwSPGZO49mc1fIFUe9Vmpxl/IupZGM2aNm48u6X6JizU/5IZfgoGC09mmN9tXbY2K/iXgWnNLFmB6n/j6F4mWL47effxONgJ5NemL3+t3I7H0mF2WTtk1kuSVL+ZTCxZMXRY+FuH/zPq7/c120/uVA7qyE+ASYW5irHSe39rV/rkETqFVNLiXVskuGp0T5EngYkrVlNy0i30WKnoilhbxeuup9o3tvndsabnk9ZC9b6DfAD21/aqtRA1DJ5TOXRTnsXLszZv1vFt6+fitbjzOHzoge7NCOQ4Us3298hXsxM9C9J7nVSic21qVSqmIp8YxRg4AaTpdOXRJGq0RhzZ95uk+EavmmepQaDJqWb23BPb1kvH31VlRG9k72asdtrewR+iKxossK6MGY99s8MSYj9wF9ePsh+rTsg/ex72FpbSncSuRilAsZTHJPkVtQU0pUKCF6aOTGIb//mtlr0L91f9ECtLKxkiQj5HEIdqzbgTY92qBD3w6iVzV37FwxvtO4TWON9KIKhsYZGreWd3373u0RFR6FLnW6iMUMqKxQr6zBtw1kyaG0U2Wzds5aFPIsJFYDohYwtY6pxa9ppUckL7u0/+5e2q75rOJ9zHss9lsMny/qwNLcOqknIoXTB05jfN/xiI2OhaOzo3BNK47YqfWKMmLDgg0wMTER49KaQo2bmo1rCk9DyKMQLJuyDCM6j0DfurMl9yHevHgjPCikT7eh3fDTyJ+Ee3FMrzHo32YaPO0raKQbjTVaWVuhfLEaQIz06/qN74cZI2bg+8rfC68MGafB/oPhHlxWVv6qQnEI5M6kOIDBfoOFm33Lsi0Iexom6oHshI2enhIwKgBBd4Nkj38RBYsWxLLAZaJSP/bXMTH4PvuP2bIM3/OQ58Lo0tiieS713ogcVN0fNDZasnxJEVByePdhNGsnzcWhSFCInl7P4T3FPgV80BgluWA0NXp/bfoLVWpXgZNrynGd9Diy+wgObD+AUXNHify8f+M+5o+bD0cXR9m6kOtx6tCpaFO5jTCgXqW9ULdFXeFpyGlQUMu43uPE93b1+wGJHQHJlK9WXpRpapTu3rBbyBrYfA6skfoKSsm5c/UOtq7cKsboM7M4fd1v6iZ9L/pFUbF1qNkBd4tdgZejj+QGLVGtYTXRkCMoSIjcjCeu7IZnbc2M3t4/9qL+t/VhZmouozkB/LnqT9y6dAuTlk+Ci5sLrp69ioDRAejZxF5ympJDDdJxi8eJcetvyn4jyjd5IKg+oN5kdsJGLxl2DnbiBlE0nSrhUa+R21LzcSk5UIE7ffA0AjYHIG++xHEPOZALQdlbIGNBPaOtK7aK1ptUqOKlPOjV9FMgA/Vq6IGgyNb99/eLVrNcKPiEordC/g2RfA217CmyTRXaP773ODSBIlsvnriIcUsSK2E5LJq0CD/0/iGp8qNKj9y1ND4o1+jRPaJ7TAP71Hskw0mVuSbjlYRD3sTySfeNZCmhfQdrzYKQtGnwQoNDMXPjTISssUaCTKNnaWUp8ou2kt4l0bFWR5y8FoiGpTpIuv7auWuih9W2alu18rw1eDEOnd+GiT+tgybQmDDVGWFvQuAlzf6K86lHVbiYeiPU3dMd525e1UgPei4fP3iMMfPH4MPf8saWl01dJrxBynFqapyS2/7Amc3waqSZ0VPWPcrGN5UBGlMnNy4dz07Y6KViMCgkmsZtlOG31DK7898l1CrZUqf/TS0gGmQ/EXgCs/6YpXHll5pcpY9dKt7VvYULUpUpg6cItwVV+poYPILcOuQWavBdA1njaPRAq/Lk4RPRKtWEwD8CxQNYtW7iQy4Hcq8lf20J7VNvVFOoQqeNolT/OfaPcHdpApUXMnxUdpXTC2hc+NblW+hUvzmy0+DRGBFFKdrZ2yEkWdCHJlB+x8VLL9MNWjVIMS5NEaDe7vVQpai8MTBVyF1HYf521g6y6hialpKiTAc9gUNuF409F1RveZb0xK2/42Tdn7gPcamW6QSFnP5i2tC4sjJ9d6/eRbch3ZCdsNFLBXI5+A/2F4WIggAoIi72Qwy+LN4o3cqcwpCVPH38VLi+bPPYCt+21KCRgzsOiog+8s3TPDCCBu0pwEEKS/2XonKdynDJ74KoyCgc3H4Ql09fThEZKmXMKflYIvnlc9vnljXGuHDiQlStXxWuBVzx4tkLMeeKetL1WnyKJJRyP/p+2xfr5q1DneZ1RCVOwQyD/AdBLtSACdwcKKLVqLUtF0rLurnr4JzfGUW8iuDejXsi2lcZ6SuHc0fPAYpEdzSVnUWTF4lGRXqyMipnrbu3FuOE1CMiI0jzAJ2cnVDOs7raOE9Gcmhu3vPg5+KeETR3lHgbmRu2cJIkh3roY38eK8aFJ6+cLHpWVKbfRsbBMt4O5jDJUAaVN8rv6g2qi0hFcm9uX7MdYc/C4F2nlqy8IYOriomZCXJbO8AlD72eLCFjXfLkFnNOazWpJRoXwY+CsXjyYpHXJQr7yMpfCqYZ32e8mLtG04poTI8idwe0niErTcqGzdE9R+E7ylejMlPuy3LCg0F1DO3T1Kn9W/fjuxqfIks1kUtDAdS4pGfl4Z2HYrikeqPqqFSrErITNnqpQK4rerioghaT00t6oG+rychtRa25hDTHDAa2pUnAiSwYv0B8UuU6YuYISf9LoerEwO8/ySEoEESq6+z1y9fwG+gnKheaDEzuNzJ4PrU0d1NkBmoJT+w7UVSi5NYpU6mMmIeYfPpAelCreMKSCWJQfE3AGjF5ts/YPrKDR4gLJy4IdyRFbWoCDfqTIaExV3Ib0lwvCvGmBQA0iWSkQAiKmrO1s0WtprVEUAyNh6RFRuWsnW87REdHY8bIGcKtVManDKasnYKIXerjPBnJoWg+6tkrmdB3gvhsWrUTmpbtKklO14FdhRyiZ+Oe6vn49Qx8YVc2QxmDJg8SPaKxW8aKKEkyPLQgwZwtc6A4Ulgt0EIbz2B6Mijk/sGtByJghPKWXMg0t5J6Ls/Wy8tfCoYhebToAwVlUaAXjYE53iotO00UcEbeHBoPlpumETNHYMy8MeLZoqlJ9JySB4Um/5eObA5FYgC5RnIpYGXBhAWJ7nZnRzENhuYiZjdGiuweVcwE9P4kOzs7vH37NlOvpCjgVgAhwSFwdHXElnNbUj3nVgDNnzGGsU0CSvTXvK2gDTmsi27lsC66lcO66FaOPukihdsB8YiPMIKVnRl+nPJpUr2u7AHP02MYhmEMBjZ6DMMwjMEg2+jVrl0bAwakvjhv165d0bKltAjHf//9V8yXuXz5MrKVhHjg47qExvFxifupnGP8McZafKZ2jsT/yrQc1kW3clgX3cphXXQrR590IRLikefpNTg/OCY+U8hR+R/Ev9f8f7KrpxcQEIBVq1bhs+HmTmB2aRhFJa4QYB7zDl/+0RNO/55OOoW+0zGLmHCxT5/Jz5GCNuSwLoaTJn3SJSemSZ90yelpKv/XKJQ8MkN8qspR/k71LiHq4dmlE+vlz8Xo0SBinjzSo/KyFcrYPzoD79QnSVtEvkSpg/7ihtBG3+lYWudIQRtyWBfDSZM+6ZIT06RPuhhqmoqeW5Xq73j3NLFe1qHhy7TR27NnjzB2v//+ewr3Js2Jmjp1Kjw9PWFhYQF3d3dMmjQpzcWRu3Xrhi+++AL//Zc4J0hnUBc6kFbsTwxctTQFrMwSP5ULFHmeWiI2go6ZIhamRjHiM+mc00thHBsJ4w8xaW+xkfA8nUk52pCRE3XJiWnSJ11yYpr0SRcDSZMqyv2C17an+J/E+vjjZILAETpzdcqeskBjeuXLl8fs2bOxfv16/Pzzz+KzefPmwui9efMG27cnJmj48OFYunQpZs2ahRo1auDp06e4ffs2evToIcb0ihQpgkuXLqFEiRL44YcfxLF9+/Yhb97Ul96KjY0Vm2qIasGCBeVPWQg6DqzOnhUqGIZhmJSsez4PHZ1VXlDdZTdQpKb+TFmYP38+evfujV27dgmDl5zw8HAxxkc9vS5dusDDw0MYPjJ4qkRERKBZs2YICwvD4cOH0zR4hJ+fn0iUciODpxER6b/aZnFccwz70BPnE9TfzJweUQoLFI5ZLzb6rgnakKFvclgX3cphXXQrR5900ZacqGzUJU5hDL8P7fDj+6GIVphnqp7WFI1mHG7ZsgXPnz/HyZMnUalS6kvK3Lp1S/TK6tVLf7kp6uG5ubnh0KFDsLS0TPfckSNHYtCgQSl6erKxUV8WrMaKCDyLUMDFxggnutngQLw3/lF8gWrGN+ED9RXvt78Yi5ZOnxYqjmq7BvEFv0TU+3hg6iVxLLz/ZcSbJy6xZPL4DKw2pVytIzU54S6VMi1DW7qkJUefdOH85fw1pPz93NNEmBolYEv8V3gJO9xXFEAZoyBsfTEJ0Ql2MDeOQnr1dLYavQoVKuDixYtYsWIFfHx8Un1VR0YGTEnTpk2xbt06nD59GnXrpr6MjhIaF6Qt0xSqBtCbhWnQFAph6JSQs/eOItGQetnEANGUtk8e4E8330jIsCreHDA2gcn7T4u82to4w8r8Y9bS7yr/la6cOEXmZWhLl7Tk6JMunL+cv4aUv595mpR4GT/B6QQ7Uc+WQRBaOf0KdRL/R9TTOkAj9ya5KskVuWPHDvzyyy+pnlOsWDFh+A4ePJiuLF9fX/j7++Obb77B0aNHkSUYmwCNlesKqhvsZ3DAO1jDxEiBok1Tn4+YdE1j/0RZH3GwNhdb2v+VsRxtyNCpHH3SRQM5+qRLqnL0SRcN5OiTLqnK0SddDDRNxY2eiG93EgqmHeqS7H/0JpDlzp07Yr9t27ZiP3kgy7hx48S4Hv1WvXp1MW5348YNdO/eXS2QRSlv9OjR2Lt3rxj7y5K1NykslqI4VaYtxNq646r3JITYV0SL8gUSz9k7FAgP/XRd7gKJN6XkN/L+K7NyWBfdymFddCuHddGtHH3SJR051yv5I8ShMspEnUO+4+r1r0b/I9ceKGTy1VdfKfr375+0f/PmTYWzs7Ni0KBBii5duihatGiR9Ft8fLxi4sSJikKFCinMzMwU7u7uismTJ4vfgoKCRHzqpUuXks6fMWOGwtbWVnHy5ElJurx9+1bIoE+NiY9TKB4eUyiubk78pP3kRL9VKMbmTtzu7E/9HCloQw7rols5rItu5bAuupWjT7pIkSOl/pWIVHsge0zvyJEjavs03eDZs9SjbOhFhL/++qvYklO4cOEUr42nIBXVQJUsgbrQGYXFqnazC1fTvNutDTmsi27lsC66lcO66FaOPukiRY6U+lfL8Pv0krHs+EPY5jJFw5KusFf6qo1MgGINP31PhZgP8eiy4pz4vrpbZeQyS+W8DORoQ0aWytEnXSTI0SddJMnRJ10kyNEnXSTJ0SddDCxNx++F4crjN2hcOh88nT8FEmYFbPRUSEhQYMb+u4j+EA+fwg6fjJ5ZLqDD5vSvVShwNuhV0vdUyUCONmRkqRx90kWCHH3SRZIcfdJFghx90kWSHH3SRVty9EmXdOQsOx6Eo3fDRB2b1UaPXy2kwpPX0cLgmZsao5CDVXarwzAMkyMp7morPu+GJi5qnZWw0VPhzrPEG+CZ1wamJpw1DMMwusDLxVatzs1KuGZX4e7HG6BshSTxPhKYlC9xo++aog05rItu5bAuupXDuuhWjj7pko6c4kqjFxqeIqBR1/CYngp0A1RbIWp8SLZEjqZoQw7rols5rItu5bAuupWjT7qkIYfG8Wghr9dRH/Ai4j3y2mphpS2JcE8vlZ6el0vWDqwyDMMYEpbmJklxE8p6N6vgnt5HPsQn4EFYRNo9PQlYphaymw0y9E0O66JbOayLbuXoky7akmOpB7pQPfvvyyjcDg1HdU8nZBVs9D5iamyEkyPq4m5oBArkkbZYtipW5qa4NaFxpnTQhgx9k8O66FYO66JbOfqki7bkWOmJLoMbFseQRsVR2NEaWQkbvY/QmyKcbXOJjWEYhtEtKQIGswge02MYhmEMBu7pfWT+4fuIiI1DK2+3lCsEGBkDhWp8+p7Gkjy+6y6I7ws7VkxjSZ705WhDRpbK0SddJMjRJ10kydEnXSTI0SddJMnRJ10MNE0rTwbhRsg7DGlYHK52WeNlY6P3ka0XnuDhi0hU93BKafTMLIEf96R7PS3Dc/hOWNL3VMlAjjZkZKkcfdJFghx90kWSHH3SRYIcfdJFkhx90kVbcvRJFwlyNp57LCaoNyuTL8uMHrs3P7ZY/n2ZOHHSy5WnKzAMw2QFXq5ZvzKLVowevUh2wIC03jIO8cJYChS5fPly0rGTJ0+iTJkyMDMzQ8uWLZFdxCcosO1iMBIUgI2FKRyszDWWo+Tsw1dq+1kpQ9/ksC66lcO66FaOPumiLTnxeqRLsY9etYO3nuH0g5ca66LTN6dn9Db11IiPjxdvTXdycoKpaaJHtUqVKvDy8oKfnx9sbGzEtfTGdVXDqOs3pwdef4pxu27i6duYpGP57HJh7NclxSsvkqDlc2aXSfw+4Bpgbp1CztidN/DsXazGcrQhI8vl6JMunL+cvzk4f3NimgKvP8XIbdfEqizpytCyPdC5e/P9+/cwMTGBq6trksEjHjx4gLp168LNzQ158uRBVkMZ7rvuoprBI0Lfxojj9LsaUS8TtzTkqN58uXK0ISPb5OiTLmnI0SddZMvRJ13SkKNPusiWo0+6GFCaAj/KUDV46crQIrKNXmRkJDp37ix6Z/ny5cOMGTNSvBF9woQJ4hyytr169VJzbyq/v3z5Et26dRPfV61ahXHjxuHKlStiX3lMV1AXmnp4qXVxxfvmAdGKCY/5gKj3cYh6H48ohUXiRt/FsTjxO52XGTnakJF9cvRJF85fzt+cl785MU3hGcggqH7WlatTtnuzd+/e2LNnD1asWAFnZ2f873//w9GjR4UBIxclGb3Xr19jzJgxSWN11NMrUqQILl26JMbxyNVZvHhxjB8/Hm3bthVd0tGjRyMwMBAHDhwQ19AxS0v1lVFiY2PFptqdLViwoGz3JvmOf1h6Rk6yGYZhGB1SK8oUx6zikvY39PwSVT0cte7elDVlISIiAsuXL8e6detQr149cWz16tXCRakKuS0HDx6ctE+9OyVKVyf15khB+k5Qz5Hcn8r91KDxP+oRZpbn4eouTYZhGCZ7KfbBBMcQp/N6WpbRo3E4GqOjIBQlDg4Ootemio+PD3TByJEjMWjQoBQ9PbkkX2oseHFPxEe+gom1Awr8tDTpeN8mgGc+ozTl3H+qwLy9n/a7v7WAjcIIEUYKLLeLlSRHGzL0TQ7rYjhp0iddOE2fR5rupyEjxkjd6airJSF1Mjnd2lo3C4haWFiILbNULuIgooRo0FT4oePeQ/EhVnwqcbAxgndhSxgbp10AvAsrYG8djdeRiTfLDEYwhxHMVM7JSI42ZOibHNbFcNKkT7pwmj6PNHmnIUNpMukqmqhO9XS2B7J4eHiIeXVnz55NOkbjd3fv3s20Iubm5mJqQ1ZgYmwkwmKJtG5v+xrm6d58gn7vUDP9eX0ZydGGDH2Tw7roVg7rols5+qSLtuR8LroYffyk+pnq6Ww3ejTu1r17dwwdOhSHDh3C9evX0bVrVxgbZ37mAwXABAUFiQjPFy9eqAWs6AKaB7Kwo3eKpW+oldK3sQV8PKR1guk8Ot/e2khjOdqQoW9yWBfDSZM+6cJp+rx1cbXLJeplTebp6Sx6k4JZfH19sW3bNtja2oqAFYrmVE5OJ+NFq7OortBCgSzK6E06j6C5eXQ+GU2CjFyHDh1w8OBBvHnzBitXrkz6TVeT0wkKi3XNnx8vnoXCLq8jtv2zOcPWTmokJChwY3Y8jKONkWCZgFIDTGTL0YYMfZPDuuhWDuuiWzn6pIu25CTomS43AxJgFGUEUxtT9JhaU+Menk6iN5W9vbVr14pNCfX8UovUVEKGMLltJcOmCo3VbdmyBVkNZbC5aWJP1dQkseutCXQdXZ+QCTnakKFvclgX3cphXXQrR5900ZYcY33TxRiggS1zEyOduTRV4bcsSOTP1X9i0+JNeBX2Ch4lPNBvfD+UKF9C8vVXzl7BpkWbcPfaXbx8/hITlk5AjUYfX7khkd/n/Y7jgcfx34P/YJHLAqUqlkKvkb3g7uEuS86OtTuwc+1OhD4JFfuFvQqjc//OqFLnU1SuXNbPX4+lU5aiVbdW6PtbX8nXrZq5Cqtnr1Y7VtCjINYcXiNbh7DQMCzxW4Jzh88hJjoGBQoXwPDpw1G8nHp0cXq0q9YOz548S3G8RecWGDAx7fVlVaGx6dWzVuPvP//Gq+ev4OTihEZtGqFTv05iqo4coiKisGL6CpzYdwKvX7xGsdLFRP5+Ue4LjcsaNUBXzlyJPev3IOJdBEr7lMbAyQPJuSRLzrG9x7Br3S7x+7s377B0L0U+F5YsI+5DHJZPW46zh8/i6X9PYW1rDe8a3ug1ohf5gmTpQuXo0K5DCAsJg6mZKbzKeKH7sO4wgpcsOarMHDkTu37fhda1fVG7eGvJMvwH+WPfln1qsip9VQk/+kyWrcuje49EmaZz4+PiUahYIXSqMgZ5jF0lyajjXifVtH1bqyfqlWgnWZfoyGgs8V8iyuG71++Qr2A+fPfjdyiGprLSRPUnpef8sfOi7JWtUhbNPfrA0Ux+FL6m8FsWJHBo5yEsnLAQXQZ0wZI9S4TRG9ZxmKiEpBITFQOPkh7oP7G/xnpQgWrZpSXmb5+Pab9PQ1xcnNAjOipalpy8rnnRc0RPLN6zGIt2L0KFahUwqscoBN0J0kiv21duY9f6XShaoqhG15PR3Xp+a9I2d+tc2TLC34Tjl+9+EXM9/df4Y9XBVfAd7QsbO3lvzVi0a5GaLtN/ny6O125WW7KMDQs3iIYFNYxWH1otGiYbF23EtpXbZKdr2rBpOH/8PEbOHokVf6+AT00fDGk/RBh4TcvaxoWJugz0G4gFOxcgl1UuUY4+qEQvS5FDv5euVFqkTxNdqGFy7/o90RhY/NdijF8yHo8fPsav3X+VnSa3om7oP74/lu9fjjlb58C1oKtIU3jUG42eQ2pc3rx0UzRY5OpCVK5dWa0cjZ47Wrac4H+D0a9VP9EInLVpFpbtWybyyszUTLIMVR1oGzZ9mGh4VShWU5Yu88fPx7kj5/BrwK+iTLfq3goBYwJw9f4pyXKosTW652jRwJm4fCKW7F0ClwIuCNg8DLEf5NVhmYF7ehLYvGwzmv3QDE2+byL2B/kNwtlDZ7F3016079NekgzqRWWmJ0VMXTtVbX/EjBH4tsK3olVVrko5yXKqNaimtt9jWA/R86OHvEjxIrJ0ohbgpH6TMMR/CNbO/eTyloOJqQkcnDMXnkyGxjmfM4bPGJ50LJ+7/MHwPI7qPYz1C9Yjf6H8KPel9Py9cf4Gqjesjqr1qop9qoAP7jwoGgdyiI2JFb2picsmJt3froO64tSBU+J+dR/aXXZZo4pny/It6PRLJ9RomNgCHzlrJL6r+B2u3D8Jb7d6kuQQDVs1FJ+hjxM9BnJ1scltg+nrExsVSvpP6A/fr33x6svnSb0ZKbrUb1lfbb/36N74a+NfCA57CC9HB1nPITUo5oyZI563kT+OlJUmJWbmZqmU6ThZcqgXTL///OvPScfIe3HrVhwSIqTJSK7Dyf0nUb5qeTjlyZckQ4qcGxduoFHrRuJa4usOX4te8L+hd1DatYYkOU+CnuDmxZui8aasZ8jDcOTPVrhw/xDqO2XN23a4p5cBH95/EEalYo2KSccoWpXcMDcu3shW3SLDE98BmDuPZkE8Slcc9WSp1V3Ku5Ts62ePmo0v636JijU/5Y9cgoOC0dqnNdpXb4+J/SbiWXBK92JGnPr7FIqXLY7ffv5NNAR6NumJ3et3I7P3nlyUTdo2keWWLOVTChdPXhS9FuL+zfu4/s910fqXA7mzEuITYG6hHt5Nru1r/1yDJlArm1xMquWZjA+56h+G3ER2E/kuUuS1pYV1pu4b3Xvr3NZwy+sh69qEhAT4DfBD25/aym4AqnL5zGVRDjvX7oxZ/5uFt6/fytbjzKEzogc7tONQIcv3G1/hXtQUuu9nDp1B03bqLkkp0FAKPWPUIKCG06VTl4QRK1G4oqz7QqiWZ6pLzUzM8CD0OrIK7ullwNtXb0XFY+9kr3ac9mlsLbugh2Leb/PEeIwmD+fD2w/Rp2UfvI99D0trS+FaIjejHMhYknuKXIKaUqJCCdE7IxcOjQGsmb0G/Vv3F61BKxsryXJCHodgx7odaNOjDTr07SB6VXPHzhXjO43bNNZIN6pgaNyhcWt517fv3R5R4VHoUqcLjE2MRfmhXlmDbxvIkkPpp8pm7Zy1KORZCPZ57XFoxyHRWqYWv6YVH5FaeX53T7q7Xhe8j3mPxX6LUbdFXWH0EtQX4M+Q0wdOY3zf8YiNjoWjs6NwTSuO2Kn1aDJiw4INYqlEGpvWFGrc1GxcU3gaQh6FYNmUZRjReQT61p0tuZ/x5sUb4UUhfboN7YafRv4k3Itjeo1B/zbT4GlfQbZeNM5oZW2FWo1r4cFiedeSq37GiBn4vvL3wjNDxmqw/2C4B5eVnL8Ue0DuTBr7H+w3WLjVtyzbgtcRYXgblVguswI2ep8pAaMCEHQ3SKPxL6Jg0YJYFrhMVOrH/jomBt9n/zFbsuF7HvJcGF0aWzTPpdmLdwlVVwiNlZYsX1IEkxzefRjN2jWTLEeRoBA9vZ7De4p9CvigMUpywWhq9P7a9Beq1K4CJ9eU4zrpcWT3ERzYfgCj5o4S+Xn/xn3MHzcfji6OsnUh1+PUoVPRpnIbYUC9SnsJo0Deh5wEBbWM6524ru7ASQPx3wr5MspXKy/KNDVUd2/YLeQNbD4H1pC2aPGdq3ewdeVWMW4vN+BIlbrf1E36XvSLomLrULMD7ha7Ai9HH8mNWqJaw2qiIUd4lvIUbsYTV3bDs7Z8o7f3j72o/239j8+ruqs1I/5c9SduXbqFScsnwcXNBVfPXkXA6AD0bGIvOU3UAB23eJwYp/6m7DeiPJPHoVSRylDE6f7lsUl6ZNk/fabYOdiJm5M8aIX2HfLqZpmcjKDCdvrgaQRsDkDefHk1kkFjDsreAhkL6hltXbFVtN6kQJUu5UGvpp+CGKhHQw8DRbruv79ftJjlQoEnbkXcEPJviKzrqGVPkW2q0P7xvcehCRTZevHERYxbIn+B80WTFuGH3j8kVX5U6ZHLlsYH5Ro9ukd0nylYiXqPZDipMtdkvJJQllm6dyRLrTxbaxaIpC2DFxocipkbZ4ooTrmVMmFpZSnyi7aS3iXRsVZHnLwWiIalOki6/tq5a6KH1bZqW7UyvTV4MQ6d34aJP62DJtCYMNUjYW9C4CXxpQF0PvWoChdTb4S6e7rj3M2rsnWg5/Lxg8cYM3+M7GtpbHnZ1GXCG6Qcp6YGKrntD5zZDK9G0tdaprpG2dim+05j6D9W9kVBB/UoW13CRk+CcaDwZxqjUYbeUiuM9r/t8m2W6kK+dBpgPxF4ArP+mKVxxZeWbKXPXQre1b2FC1KVKYOnCBcGVfiaGDyCXDrkEmrwnTxXII2j0UOtypOHT0SrVBMC/wgUD2TVuokPuRzIvZZ8lSLap96oplCFThtFqf5z7B/h7tIEKjNk+Kj8Us9BOTZ86/ItdKrfHNll8Gh8iCIU7ezttCab8jsuXnqZbtCqQYqxaYoA9XavhypFE4PYNCHsaZgI87ezdpBV79C0lBRlOugJHHK7aOS1oHrMs2TiPZd7j2hLrUwnKBJ7pHKhcWRleh49u4tm3j8iq2CjJwFyL/gP9heFhgb8KfqNQnMbf99YVmVOIchKnj5+KtxetnlshZ9batDIwR0HRTQf+eZpDhhBA/YU3CCVpf5LUblOZbjkd0FUZBQObj+Iy6cvp4gOzWi8KflYIvnoc9vnljXGuHDiQlStXxWuBVzx4tkLMd+Ketb1WnyKIpR6j/p+2xfr5q1DneZ1RCVOwQyD/D+9lUMq1KgJ3BwootWotS0XSs+6uevgnN8ZRbyK4N6NeyICWBn9K4dzR8+JN2uSO5rKz6LJi0TDIj1ZGZW11t1bi3FC6hGREaR5gE7OTijnWR2IkS6H5uY9D34u7htBY9xxz+NgCyfkscmToQzqnY/9eawYF568crLoVSnLdFy8JYzxqUynJ4fKHOV39QbVRbQiuTe3r9mOsGdh8K5TS1beJDe6JmYmyG3tAJc8NI8sIWNd8uQW805rNaklGhfBj4KxePJikdclCvvIyl8KphnfZ7yYy0bTimhMjyJ3B7SeIateoUbN0T1H4TvKV+MyQ9HL5MGgeob2afrU/q378V2Nn2XJIdc/NSbp2Xh456EYIinnWQ0lCurmzTypwUZPAuSmogeJKmQxOb2kB6asnSLLvUnjBQPb0gTgRBaMXyA+qWIdMXOEJBkUpk4M/P6THIICQeS4zV6/fA2/gX6igiFXErnfyOD51Mq6gqfaCp7Yd6KoQMmlU6ZSGTEPMfnUgYygVvGEJRPEIPmagDVi8myfsX1kB48QF05cEO5IitrUBBr0J0NC467kNqS5XhTiTQsAaBLNSIEQFDVna2eLWk1riaAYGh/RtKy1822H6OhozBg5Q7iZyviUEeU5Ypf5x2pdmhyK5qPevZIJfSeIzyYVO+Nr504Zyug6sKuQQfRsnDgWq2TA99PVgjXSkzNo8iDRIxq7ZayIkiTDQwsSzNkyB4ojhdUCLbTxHKYng0LwH9x6IIJGKG/JhUxzK7sN6YZn6+XlLwXDkDxa+IGCsijYi8bEHG+VTkqTlPRQwBl5cmgsOC0ykjNm3hjxbNH0JHpWyYNCk/9LRzaHIlK6HApWWzBhQaJ73dlRTHupbNweyLppevLX3tQntLH2JlHArQBCgkPg6OqILec0XwrtVgDNnzGGsU0CSvQ3zTYZ+iaHddGtHNZFt3L0SRdtybmlR7rcDohHfIQRrOzM8OMU9UnzurAHPE+PYRiGMRjY6DEMwzAGAxs9hmEYxmBgo8cwDMMYDGz0GIZhGIOBjR7DMAxjMLDRYxiGYQyGz3pyunKKIc3PyAzKxV1pRYiXr19qLCc61gQJ701gHBuPl6/js02GvslhXXQrh3XRrRx90kVbcqL1SJeoWFMkvDeGUaxZpupy5bUZTT3/rCenP3nyBAULZt1r5hmGYRj95vHjx3Bzc8uZRo96aCEhIbC1tc3Uq0AY6S0pamRQocrMCjiMdDjPsx7O888zv8mUhYeHI3/+/CkWx84x7k1KWHoWndENVDC5MshaOM+zHs7zzy+/aRmyjOBAFoZhGMZgYKPHMAzDGAxs9BjJWFhYYOzYseKTyRo4z7MezvOcnd+fdSALwzAMw8iBe3oMwzCMwcBGj2EYhjEY2OgxDMMwBgMbPYZhGMZgYKNn4MyfPx+FCxdGrly5UKVKFZw7dy7Nc5cuXYqaNWvC3t5ebPXr109xfteuXcXqOKpb48aNsyAlOTPPV61alSI/6TpVKBZtzJgxyJcvHywtLcV9uXfvXhakJOfld+3atVPkN23NmjVLOofLePocO3YMX3/9tVgZhfJm+/btGVwBHDlyBN7e3iKC09PTU5T7zNzH9GCjZ8Bs2rQJgwYNEuHCFy9eRLly5dCoUSM8f/48zYL5ww8/4PDhwzh9+rRYOqhhw4YIDg5WO48qgKdPnyZtGzZsyKIU5bw8J2iVCtX8fPTokdrvU6dOxZw5c7Bo0SKcPXsW1tbWQmZMTAwMHbn5vW3bNrW8vn79OkxMTNCmTRu187iMp01kZKTIZzJSUggKChKNijp16uDy5csYMGAAevTogX379mXquUkTmrLAGCaVK1dW9OnTJ2k/Pj5ekT9/foWfn5+k6+Pi4hS2traK1atXJx3r0qWLokWLFjrR1xDzfOXKlQo7O7s05SUkJChcXV0V06ZNSzr25s0bhYWFhWLDhg0KQyezZXzWrFmijEdERCQd4zIuHTIxf/75Z7rnDBs2TFGqVCm1Y23btlU0atRIa/dRFe7pGSjv37/HhQsXhCtMdS1T2qdenBSioqLw4cMHODg4pOgROjs7o3jx4vD19cXLl5q/riknoWmeR0REoFChQqJn3aJFC9y4cUOtlRwaGqomk9YfJPeP1PuYU9FGGV++fDnatWsnes+qcBnXHnQvVO8RQb045T3Sxn1UhY2egfLixQvEx8fDxcVF7TjtUyUqheHDhwu/vWphJLfPmjVrcPDgQUyZMgVHjx5FkyZNxH8ZOprkOVWqK1aswI4dO7Bu3TrxZpFq1aqJ12oRyusycx9zKpkt4zRmRO5NcrWpwmVcu9C9SO0e0dsXoqOjtVJX5Zi3LDDZh7+/PzZu3ChavKqBFdQqVlKmTBmULVsWHh4e4rx69eplk7afL1WrVhWbEjJ4JUqUwOLFizFhwoRs1S2nQ708KsOVK1dWO85l/POGe3oGipOTkxigf/bsmdpx2nd1dU332unTpwujt3//fvHAp0fRokXFf92/fx+GTmbyXImZmRkqVKiQlJ/K6zIjM6eSmfymYAxq1HXv3j3D/+EynjnoXqR2jyiAi6KRtfHcqMJGz0AxNzdHxYoVhYtGCbnOaF+1Z5EcihSkHkZgYCB8fHwy/B9yw9F4B4XTGzqa5rkq5Oa5du1aUn4WKVJEPPiqMsktRFGcUmXmVDKT35s3b0ZsbCw6duyY4f9wGc8cdC9U7xHx999/J90jbTw3asgOfWFyDBs3bhRRfqtWrVLcvHlT0atXL0WePHkUoaGh4vdOnTopRowYkXS+v7+/wtzcXLFlyxbF06dPk7bw8HDxO30OGTJEcfr0aUVQUJDiwIEDCm9vb0WxYsUUMTEx2ZbOzznPx40bp9i3b5/iwYMHigsXLijatWunyJUrl+LGjRtq94Vk7NixQ3H16lURWVikSBFFdHS0wtCRm99KatSoISIIk8NlPGMojy5duiQ2MjEzZ84U3x89eiR+p/ymfFfy8OFDhZWVlWLo0KGKW7duKebPn68wMTFRBAYGSr6PcmCjZ+DMnTtX4e7uLowZhQWfOXMm6bevvvpKhGcrKVSokCjEybexY8eK36OiohQNGzZU5M2bV2FmZibO79mzp0YFMycjJ88HDBiQdK6Li4uiadOmiosXL6aYtjB69GjxO1UM9erVU9y5cydL05RT8pu4ffu2KNf79+9PIYvLeMYcPnw41XpCmc/0Sfme/Jry5cuLe1S0aFExVUfOfZQDv1qIYRiGMRh4TI9hGIYxGNjoMQzDMAYDGz2GYRjGYGCjxzAMwxgMbPQYhmEYg4GNHsMwDGMwsNFjGIZhDAY2egzDMIzBwEaPYRiGMRjY6DEMwzAGAxs9hvmMGTt2rHinG73Zm16qSW/xprfZMwyTOvwSWYb5TPm4YLx4oWyBAgVw8+ZNdOnSRbzjkIwfwzAp4QWnGSYH0b59ezg7O2P27NnZrQrD6CXs3mSYz5RHjx6hT58+KF26NOzt7WFjY4M//vgDbm5u2a0aw+gtbPQY5jMkLCwMlSpVEm/snjlzJk6cOIFTp07B2NgY5cqVy271GEZv4TE9hvkM2bVrF+Lj47FhwwYYGRmJY/PmzRNBLOXLl89u9RhGb2GjxzCfIY6Ojnj37h127tyJkiVLCiPo5+cnAlry5s2b3eoxjN7CgSwM8xmSkJCA3r17Y/369bC0tETHjh0RExMjxvl2796d3eoxjN7CRo9hGIYxGDiQhWEYhjEY2OgxDMMwBgMbPYZhGMZgYKPHMAzDGAxs9BiGYRiDgY0ewzAMYzCw0WMYhmEMBjZ6DMMwjMHARo9hGIYxGNjoMQzDMAYDGz2GYRjGYGCjxzAMw8BQ+D/maY4QR2ov7QAAAABJRU5ErkJggg==",
|
|
"text/plain": [
|
|
"<Figure size 500x100 with 1 Axes>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"reset_plotting() # Default style for Simbelmynë\n",
|
|
"\n",
|
|
"generate_sim_params(lpt_params, ICs_path, wd, simdir, None, force)\n",
|
|
"\n",
|
|
"print(f\"SPM nsteps = {nsteps_spm}:\")\n",
|
|
"file_ext = f\"nsteps{nsteps_spm}\" # \"spm\" is already in the filename\n",
|
|
"generate_sim_params(spm_params, ICs_path, wd, simdir, file_ext, force)\n",
|
|
"\n",
|
|
"print(f\"P3M nsteps = {nsteps_p3m}:\")\n",
|
|
"file_ext = f\"nsteps{nsteps_p3m}\" # \"p3m\" is already in the filename\n",
|
|
"generate_sim_params(p3m_params, ICs_path, wd, simdir, file_ext, force)\n",
|
|
"\n",
|
|
"setup_plotting() # Reset plotting style for this project"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "4cbfc7f9",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Generate the initial phase"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 7,
|
|
"id": "ac1596ef",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"generate_white_noise_Field(\n",
|
|
" L=L,\n",
|
|
" size=N,\n",
|
|
" corner=corner,\n",
|
|
" seedphase=BASELINE_SEEDPHASE,\n",
|
|
" fname_whitenoise=input_white_noise_file,\n",
|
|
" seedname_whitenoise=input_seed_phase_file,\n",
|
|
" force_phase=force,\n",
|
|
")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "b1dfa6e3",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Generating the input power spectrum\n",
|
|
"\n",
|
|
"The second preparatory step is to compute the initial power spectrum to be used in the simulations, given the cosmological parameters and prescription specified in ``params.py``. The power spectrum is saved in `input_power_file`."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 8,
|
|
"id": "3c2cf19b",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"[09:22:34|\u001b[38;5;113mSTATUS \u001b[00m]|Setting up Fourier grid...\n",
|
|
"[09:22:34|\u001b[38;5;113mSTATUS \u001b[00m]|Setting up Fourier grid done.\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m[09:22:34|\u001b[38;5;113mSTATUS \u001b[00m]|Write power spectrum in data file '/Users/hoellinger/WIP3M/notebook1/input_power.h5'...\n",
|
|
"]|Computing normalization of the power spectrum...\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]|Computing normalization of the power spectrum done.\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]|Computing power spectrum...\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]|Computing power spectrum done.\n",
|
|
"[09:22:34|\u001b[38;5;246mDIAGNOSTIC\u001b[00m]==|\u001b[38;5;246mL0=64, L1=64, L2=64\u001b[00m\n",
|
|
"[09:22:34|\u001b[38;5;246mDIAGNOSTIC\u001b[00m]==|\u001b[38;5;246mN0=32, N1=32, N2=32, N2_HC=17, N_HC=17408, NUM_MODES=464\u001b[00m\n",
|
|
"[09:22:34|\u001b[38;5;113mSTATUS \u001b[00m]|Write power spectrum in data file '/Users/hoellinger/WIP3M/notebook1/input_power.h5' done.\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"# If cosmo[\"WhichSpectrum\"] == \"class\", then classy is required.\n",
|
|
"if not isfile(input_power_file) or force:\n",
|
|
" Pk = PowerSpectrum(L, L, L, N, N, N, cosmo_small_to_full_dict(cosmo))\n",
|
|
" Pk.write(input_power_file)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "5f00a570",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Running the simulations\n",
|
|
"\n",
|
|
"We are now ready to run the actual simulations using the Simbelmynë executable. Warning: the following may take some time, even in relatively low dimension, and should not be run on a login node."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 9,
|
|
"id": "9a1ac822",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"[09:22:34\u001b[00m|\u001b[38;5;227mCOMMAND \u001b[00m]|\u001b[38;5;227msimbelmyne /Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/example_lpt.sbmy /Users/hoellinger/WIP3M/notebook1/logs/lpt.txt\u001b[00m\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]|\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| .-~~-.--.\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| : )\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| .~ ~ -.\\ /.- ~~ .\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| > `. .' <\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| ( .- -. )\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| `- -.-~ `- -' ~-.- -'\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| ( : ) _ _ .-: ___________________________________\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| ~--. : .--~ .-~ .-~ } \u001b[1;38;5;157mSIMBELMYNË\u001b[00m\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| ~-.-^-.-~ \\_ .~ .-~ .~ (c) Florent Leclercq 2012 - SBMY_YEAR \n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| \\ ' \\ '_ _ -~ ___________________________________\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| `.`. //\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| . - ~ ~-.__`.`-.//\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| .-~ . - ~ }~ ~ ~-.~-.\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| .' .-~ .-~ :/~-.~-./:\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| /_~_ _ . - ~ ~-.~-._\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| ~-.<\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]|\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]|2025-06-24 09:22:34: Starting SIMBELMYNË, commit hash bab918a5347585bc2fb9554e442fd77ad3ae69cc\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]|Reading parameter file in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/example_lpt.sbmy'...\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]|Reading parameter file in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/example_lpt.sbmy' done.\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleLPT: Initializing snapshot...\u001b[00m\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleLPT: Initializing snapshot done.\u001b[00m\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]|LPT snapshot initialization: 0.001 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleLPT: Returning initial conditions...\u001b[00m\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Reading field in '/Users/hoellinger/WIP3M/notebook1/input_white_noise.h5'...\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Reading field in '/Users/hoellinger/WIP3M/notebook1/input_white_noise.h5' done.\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Reading power spectrum...\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Reading power spectrum in '/Users/hoellinger/WIP3M/notebook1/input_power.h5'...\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Reading power spectrum in '/Users/hoellinger/WIP3M/notebook1/input_power.h5' done.\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Reading power spectrum done.\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Generating Gaussian random field (using 8 cores)...\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Generating Gaussian random field (using 8 cores) done.\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Writing field to '/Users/hoellinger/WIP3M/notebook1/initial_density.h5'...\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Writing field to '/Users/hoellinger/WIP3M/notebook1/initial_density.h5' done.\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleLPT: Returning initial conditions done.\u001b[00m\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]|LPT initial conditions: 0.004 CPU - 0.003 wallclock seconds used.\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleLPT: Evolving with Lagrangian perturbation theory (using 8 cores)...\u001b[00m\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Computing Lagrangian potentials, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Computing Lagrangian potentials, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Computing Lagrangian displacement field (using 8 cores)...\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Computing Lagrangian displacement field (using 8 cores) done.\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Changing velocities of particles...\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Changing velocities of particles done.\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Displacing particles...\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Displacing particles done.\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleLPT: Evolving with Lagrangian perturbation theory (using 8 cores) done.\u001b[00m\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]|LPT evolution: 0.051 CPU - 0.024 wallclock seconds used.\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleLPT: Computing outputs...\u001b[00m\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Writing field to '/Users/hoellinger/WIP3M/notebook1/lpt_density.h5'...\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Writing field to '/Users/hoellinger/WIP3M/notebook1/lpt_density.h5' done.\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Writing header in '/Users/hoellinger/WIP3M/notebook1/lpt_particles.gadget3'...\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Writing header in '/Users/hoellinger/WIP3M/notebook1/lpt_particles.gadget3' done.\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Writing snapshot in '/Users/hoellinger/WIP3M/notebook1/lpt_particles.gadget3' (32768 particles)...\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing block: 'POS '...\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing block: 'POS ' done.\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing block: 'VEL '...\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing block: 'VEL ' done.\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing block: 'ID '...\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing block: 'ID ' done.\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Writing snapshot in '/Users/hoellinger/WIP3M/notebook1/lpt_particles.gadget3' done.\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleLPT: Computing outputs done.\u001b[00m\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]|LPT output: 0.005 CPU - 0.005 wallclock seconds used.\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]|ModuleLPT: 0.060 CPU - 0.033 wallclock seconds used.\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]|Simbelmynë: 0.062 CPU - 0.033 wallclock seconds used.\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]|Everything done successfully, exiting.\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;227mCOMMAND \u001b[00m]|\u001b[38;5;227msimbelmyne /Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/nsteps20_example_spm.sbmy /Users/hoellinger/WIP3M/notebook1/logs/nsteps20_spm.txt\u001b[00m\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]|\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| .-~~-.--.\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| : )\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| .~ ~ -.\\ /.- ~~ .\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| > `. .' <\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| ( .- -. )\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| `- -.-~ `- -' ~-.- -'\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| ( : ) _ _ .-: ___________________________________\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| ~--. : .--~ .-~ .-~ } \u001b[1;38;5;157mSIMBELMYNË\u001b[00m\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| ~-.-^-.-~ \\_ .~ .-~ .~ (c) Florent Leclercq 2012 - SBMY_YEAR \n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| \\ ' \\ '_ _ -~ ___________________________________\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| `.`. //\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| . - ~ ~-.__`.`-.//\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| .-~ . - ~ }~ ~ ~-.~-.\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| .' .-~ .-~ :/~-.~-./:\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| /_~_ _ . - ~ ~-.~-._\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| ~-.<\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]|\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]|2025-06-24 09:22:34: Starting SIMBELMYNË, commit hash bab918a5347585bc2fb9554e442fd77ad3ae69cc\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]|Reading parameter file in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/nsteps20_example_spm.sbmy'...\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]|Reading parameter file in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/nsteps20_example_spm.sbmy' done.\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleLPT: Initializing snapshot...\u001b[00m\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleLPT: Initializing snapshot done.\u001b[00m\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]|LPT snapshot initialization: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleLPT: Returning initial conditions...\u001b[00m\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Reading field in '/Users/hoellinger/WIP3M/notebook1/initial_density.h5'...\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Reading field in '/Users/hoellinger/WIP3M/notebook1/initial_density.h5' done.\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleLPT: Returning initial conditions done.\u001b[00m\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]|LPT initial conditions: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleLPT: Evolving with Lagrangian perturbation theory (using 8 cores)...\u001b[00m\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Computing Lagrangian potentials, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Computing Lagrangian potentials, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Computing Lagrangian displacement field (using 8 cores)...\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Computing Lagrangian displacement field (using 8 cores) done.\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Changing velocities of particles...\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Changing velocities of particles done.\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Displacing particles...\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Displacing particles done.\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleLPT: Evolving with Lagrangian perturbation theory (using 8 cores) done.\u001b[00m\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]|LPT evolution: 0.051 CPU - 0.028 wallclock seconds used.\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]|ModuleLPT: 0.052 CPU - 0.028 wallclock seconds used.\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleP3M: Evolving with P3M...\u001b[00m\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Read timestepping configuration in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/nsteps20_ts_spm.h5'...\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Read timestepping configuration in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/nsteps20_ts_spm.h5' done.\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|OutputForceDiagnostic: /Users/hoellinger/WIP3M/notebook1/force_diagnostic_spm.txt\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|OutputSnapshotsBase: particles_\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin sPM step 1/20, time_kick:0.050000, time_drift=0.050000.\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 1/20 done.\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End sPM step 1/20, time_kick:0.073750, time_drift=0.097500.\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 1/20: Density: 0.006 CPU - 0.059 wallclock seconds used.\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 1/20: Potential: 0.011 CPU - 0.006 wallclock seconds used.\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 1/20: Accelerations (long-range): 0.066 CPU - 0.018 wallclock seconds used.\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 1/20: Accelerations (short-range): 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 1/20: Kick: 0.006 CPU - 0.002 wallclock seconds used.\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 1/20: Drift: 0.001 CPU - 0.001 wallclock seconds used.\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 1/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 1/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 1/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 1/20: Total Evolution: 0.090 CPU - 0.085 wallclock seconds used.\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin sPM step 2/20, time_kick:0.073750, time_drift=0.097500.\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 2/20 done.\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End sPM step 2/20, time_kick:0.121250, time_drift=0.145000.\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 2/20: Density: 0.007 CPU - 0.003 wallclock seconds used.\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 2/20: Potential: 0.009 CPU - 0.003 wallclock seconds used.\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 2/20: Accelerations (long-range): 0.067 CPU - 0.021 wallclock seconds used.\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 2/20: Accelerations (short-range): 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 2/20: Kick: 0.008 CPU - 0.006 wallclock seconds used.\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 2/20: Drift: 0.002 CPU - 0.004 wallclock seconds used.\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 2/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 2/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 2/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 2/20: Total Evolution: 0.094 CPU - 0.037 wallclock seconds used.\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin sPM step 3/20, time_kick:0.121250, time_drift=0.145000.\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 3/20 done.\n",
|
|
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n"
|
|
]
|
|
},
|
|
{
|
|
"name": "stderr",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"HDF5-DIAG: Error detected in HDF5 (1.14.6):\n",
|
|
" #000: /tmp/hdf5-20250207-38588-gjrv3m/hdf5-1.14.6/src/H5Adeprec.c line 202 in H5Aopen_name(): unable to open attribute\n",
|
|
" major: Attribute\n",
|
|
" minor: Can't open object\n",
|
|
" #001: /tmp/hdf5-20250207-38588-gjrv3m/hdf5-1.14.6/src/H5VLcallback.c line 1125 in H5VL_attr_open(): attribute open failed\n",
|
|
" major: Virtual Object Layer\n",
|
|
" minor: Can't open object\n",
|
|
" #002: /tmp/hdf5-20250207-38588-gjrv3m/hdf5-1.14.6/src/H5VLcallback.c line 1092 in H5VL__attr_open(): attribute open failed\n",
|
|
" major: Virtual Object Layer\n",
|
|
" minor: Can't open object\n",
|
|
" #003: /tmp/hdf5-20250207-38588-gjrv3m/hdf5-1.14.6/src/H5VLnative_attr.c line 164 in H5VL__native_attr_open(): unable to open attribute: '/info/scalars/time'\n",
|
|
" major: Attribute\n",
|
|
" minor: Can't open object\n",
|
|
" #004: /tmp/hdf5-20250207-38588-gjrv3m/hdf5-1.14.6/src/H5Aint.c line 514 in H5A__open(): unable to load attribute info from object header for attribute: '/info/scalars/time'\n",
|
|
" major: Attribute\n",
|
|
" minor: Can't open object\n",
|
|
" #005: /tmp/hdf5-20250207-38588-gjrv3m/hdf5-1.14.6/src/H5Oattribute.c line 498 in H5O__attr_open_by_name(): can't locate attribute: '/info/scalars/time'\n",
|
|
" major: Attribute\n",
|
|
" minor: Object not found\n",
|
|
"HDF5-DIAG: Error detected in HDF5 (1.14.6):\n",
|
|
" #000: /tmp/hdf5-20250207-38588-gjrv3m/hdf5-1.14.6/src/H5A.c line 1022 in H5Aread(): can't synchronously read data\n",
|
|
" major: Attribute\n",
|
|
" minor: Read failed\n",
|
|
" #001: /tmp/hdf5-20250207-38588-gjrv3m/hdf5-1.14.6/src/H5A.c line 987 in H5A__read_api_common(): not an attribute\n",
|
|
" major: Invalid arguments to routine\n",
|
|
" minor: Inappropriate type\n",
|
|
" #002: /tmp/hdf5-20250207-38588-gjrv3m/hdf5-1.14.6/src/H5VLint.c line 1786 in H5VL_vol_object_verify(): identifier is not of specified type\n",
|
|
" major: Invalid arguments to routine\n",
|
|
" minor: Inappropriate type\n",
|
|
"HDF5-DIAG: Error detected in HDF5 (1.14.6):\n",
|
|
" #000: /tmp/hdf5-20250207-38588-gjrv3m/hdf5-1.14.6/src/H5A.c line 2193 in H5Aclose(): not an attribute ID\n",
|
|
" major: Invalid arguments to routine\n",
|
|
" minor: Inappropriate type\n"
|
|
]
|
|
},
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End sPM step 3/20, time_kick:0.168750, time_drift=0.192500.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 3/20: Density: 0.012 CPU - 0.010 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 3/20: Potential: 0.010 CPU - 0.018 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 3/20: Accelerations (long-range): 0.062 CPU - 0.018 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 3/20: Accelerations (short-range): 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 3/20: Kick: 0.006 CPU - 0.002 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 3/20: Drift: 0.001 CPU - 0.001 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 3/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 3/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 3/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 3/20: Total Evolution: 0.092 CPU - 0.049 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin sPM step 4/20, time_kick:0.168750, time_drift=0.192500.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 4/20 done.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End sPM step 4/20, time_kick:0.216250, time_drift=0.240000.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 4/20: Density: 0.011 CPU - 0.004 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 4/20: Potential: 0.009 CPU - 0.004 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 4/20: Accelerations (long-range): 0.066 CPU - 0.019 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 4/20: Accelerations (short-range): 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 4/20: Kick: 0.006 CPU - 0.003 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 4/20: Drift: 0.001 CPU - 0.001 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 4/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 4/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 4/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 4/20: Total Evolution: 0.093 CPU - 0.031 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin sPM step 5/20, time_kick:0.216250, time_drift=0.240000.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 5/20 done.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End sPM step 5/20, time_kick:0.263750, time_drift=0.287500.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 5/20: Density: 0.008 CPU - 0.004 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 5/20: Potential: 0.008 CPU - 0.005 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 5/20: Accelerations (long-range): 0.064 CPU - 0.018 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 5/20: Accelerations (short-range): 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 5/20: Kick: 0.005 CPU - 0.002 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 5/20: Drift: 0.001 CPU - 0.001 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 5/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 5/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 5/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 5/20: Total Evolution: 0.087 CPU - 0.030 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin sPM step 6/20, time_kick:0.263750, time_drift=0.287500.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 6/20 done.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End sPM step 6/20, time_kick:0.311250, time_drift=0.335000.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 6/20: Density: 0.008 CPU - 0.003 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 6/20: Potential: 0.010 CPU - 0.005 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 6/20: Accelerations (long-range): 0.062 CPU - 0.032 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 6/20: Accelerations (short-range): 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 6/20: Kick: 0.006 CPU - 0.003 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 6/20: Drift: 0.001 CPU - 0.001 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 6/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 6/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 6/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 6/20: Total Evolution: 0.086 CPU - 0.044 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin sPM step 7/20, time_kick:0.311250, time_drift=0.335000.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 7/20 done.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End sPM step 7/20, time_kick:0.358750, time_drift=0.382500.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 7/20: Density: 0.010 CPU - 0.003 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 7/20: Potential: 0.009 CPU - 0.004 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 7/20: Accelerations (long-range): 0.062 CPU - 0.018 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 7/20: Accelerations (short-range): 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 7/20: Kick: 0.006 CPU - 0.003 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 7/20: Drift: 0.001 CPU - 0.001 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 7/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 7/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 7/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 7/20: Total Evolution: 0.089 CPU - 0.029 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin sPM step 8/20, time_kick:0.358750, time_drift=0.382500.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 8/20 done.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End sPM step 8/20, time_kick:0.406250, time_drift=0.430000.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 8/20: Density: 0.007 CPU - 0.003 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 8/20: Potential: 0.009 CPU - 0.004 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 8/20: Accelerations (long-range): 0.066 CPU - 0.030 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 8/20: Accelerations (short-range): 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 8/20: Kick: 0.007 CPU - 0.003 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 8/20: Drift: 0.002 CPU - 0.001 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 8/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 8/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 8/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 8/20: Total Evolution: 0.092 CPU - 0.041 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin sPM step 9/20, time_kick:0.406250, time_drift=0.430000.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 9/20 done.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End sPM step 9/20, time_kick:0.453750, time_drift=0.477500.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 9/20: Density: 0.014 CPU - 0.007 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 9/20: Potential: 0.008 CPU - 0.005 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 9/20: Accelerations (long-range): 0.065 CPU - 0.031 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 9/20: Accelerations (short-range): 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 9/20: Kick: 0.006 CPU - 0.009 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 9/20: Drift: 0.001 CPU - 0.002 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 9/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 9/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 9/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 9/20: Total Evolution: 0.094 CPU - 0.053 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin sPM step 10/20, time_kick:0.453750, time_drift=0.477500.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 10/20 done.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End sPM step 10/20, time_kick:0.501250, time_drift=0.525000.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 10/20: Density: 0.009 CPU - 0.004 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 10/20: Potential: 0.008 CPU - 0.004 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 10/20: Accelerations (long-range): 0.061 CPU - 0.019 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 10/20: Accelerations (short-range): 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 10/20: Kick: 0.006 CPU - 0.002 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 10/20: Drift: 0.001 CPU - 0.001 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 10/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 10/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 10/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 10/20: Total Evolution: 0.085 CPU - 0.031 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin sPM step 11/20, time_kick:0.501250, time_drift=0.525000.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 11/20 done.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End sPM step 11/20, time_kick:0.548750, time_drift=0.572500.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 11/20: Density: 0.005 CPU - 0.008 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 11/20: Potential: 0.008 CPU - 0.007 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 11/20: Accelerations (long-range): 0.061 CPU - 0.021 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 11/20: Accelerations (short-range): 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 11/20: Kick: 0.006 CPU - 0.004 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 11/20: Drift: 0.002 CPU - 0.001 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 11/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 11/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 11/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 11/20: Total Evolution: 0.082 CPU - 0.041 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin sPM step 12/20, time_kick:0.548750, time_drift=0.572500.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 12/20 done.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End sPM step 12/20, time_kick:0.596250, time_drift=0.620000.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 12/20: Density: 0.007 CPU - 0.005 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 12/20: Potential: 0.009 CPU - 0.004 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 12/20: Accelerations (long-range): 0.061 CPU - 0.025 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 12/20: Accelerations (short-range): 0.000 CPU - 0.001 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 12/20: Kick: 0.006 CPU - 0.007 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 12/20: Drift: 0.001 CPU - 0.001 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 12/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 12/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 12/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 12/20: Total Evolution: 0.084 CPU - 0.041 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin sPM step 13/20, time_kick:0.596250, time_drift=0.620000.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 13/20 done.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End sPM step 13/20, time_kick:0.643750, time_drift=0.667500.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 13/20: Density: 0.006 CPU - 0.002 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 13/20: Potential: 0.009 CPU - 0.003 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 13/20: Accelerations (long-range): 0.061 CPU - 0.015 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 13/20: Accelerations (short-range): 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 13/20: Kick: 0.006 CPU - 0.002 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 13/20: Drift: 0.002 CPU - 0.001 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 13/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 13/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 13/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 13/20: Total Evolution: 0.084 CPU - 0.024 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin sPM step 14/20, time_kick:0.643750, time_drift=0.667500.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 14/20 done.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End sPM step 14/20, time_kick:0.691250, time_drift=0.715000.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 14/20: Density: 0.011 CPU - 0.003 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 14/20: Potential: 0.009 CPU - 0.004 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 14/20: Accelerations (long-range): 0.059 CPU - 0.017 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 14/20: Accelerations (short-range): 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 14/20: Kick: 0.005 CPU - 0.001 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 14/20: Drift: 0.001 CPU - 0.012 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 14/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 14/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 14/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 14/20: Total Evolution: 0.085 CPU - 0.038 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin sPM step 15/20, time_kick:0.691250, time_drift=0.715000.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 15/20 done.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End sPM step 15/20, time_kick:0.738750, time_drift=0.762500.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 15/20: Density: 0.013 CPU - 0.009 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 15/20: Potential: 0.012 CPU - 0.008 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 15/20: Accelerations (long-range): 0.066 CPU - 0.032 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 15/20: Accelerations (short-range): 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 15/20: Kick: 0.007 CPU - 0.009 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 15/20: Drift: 0.002 CPU - 0.003 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 15/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 15/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 15/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 15/20: Total Evolution: 0.101 CPU - 0.061 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin sPM step 16/20, time_kick:0.738750, time_drift=0.762500.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 16/20 done.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End sPM step 16/20, time_kick:0.786250, time_drift=0.810000.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 16/20: Density: 0.010 CPU - 0.004 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 16/20: Potential: 0.009 CPU - 0.003 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 16/20: Accelerations (long-range): 0.064 CPU - 0.018 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 16/20: Accelerations (short-range): 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 16/20: Kick: 0.006 CPU - 0.003 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 16/20: Drift: 0.001 CPU - 0.001 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 16/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 16/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 16/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 16/20: Total Evolution: 0.089 CPU - 0.028 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin sPM step 17/20, time_kick:0.786250, time_drift=0.810000.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 17/20 done.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End sPM step 17/20, time_kick:0.833750, time_drift=0.857500.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 17/20: Density: 0.014 CPU - 0.003 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 17/20: Potential: 0.010 CPU - 0.005 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 17/20: Accelerations (long-range): 0.063 CPU - 0.023 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 17/20: Accelerations (short-range): 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 17/20: Kick: 0.007 CPU - 0.003 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 17/20: Drift: 0.001 CPU - 0.005 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 17/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 17/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 17/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 17/20: Total Evolution: 0.095 CPU - 0.040 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin sPM step 18/20, time_kick:0.833750, time_drift=0.857500.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 18/20 done.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End sPM step 18/20, time_kick:0.881250, time_drift=0.905000.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 18/20: Density: 0.008 CPU - 0.003 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 18/20: Potential: 0.010 CPU - 0.015 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 18/20: Accelerations (long-range): 0.061 CPU - 0.034 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 18/20: Accelerations (short-range): 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 18/20: Kick: 0.006 CPU - 0.005 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 18/20: Drift: 0.002 CPU - 0.004 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 18/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 18/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 18/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 18/20: Total Evolution: 0.086 CPU - 0.061 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin sPM step 19/20, time_kick:0.881250, time_drift=0.905000.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 19/20 done.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End sPM step 19/20, time_kick:0.928750, time_drift=0.952500.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 19/20: Density: 0.012 CPU - 0.006 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 19/20: Potential: 0.011 CPU - 0.022 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 19/20: Accelerations (long-range): 0.065 CPU - 0.019 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 19/20: Accelerations (short-range): 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 19/20: Kick: 0.007 CPU - 0.002 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 19/20: Drift: 0.001 CPU - 0.001 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 19/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 19/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 19/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 19/20: Total Evolution: 0.096 CPU - 0.050 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin sPM step 20/20, time_kick:0.928750, time_drift=0.952500.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 20/20 done.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End sPM step 20/20, time_kick:1.000000, time_drift=1.000000.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 20/20: Density: 0.016 CPU - 0.011 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 20/20: Potential: 0.017 CPU - 0.007 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 20/20: Accelerations (long-range): 0.119 CPU - 0.048 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 20/20: Accelerations (short-range): 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 20/20: Kick: 0.013 CPU - 0.017 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 20/20: Drift: 0.003 CPU - 0.012 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 20/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 20/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 20/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 20/20: Total Evolution: 0.168 CPU - 0.096 wallclock seconds used.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Running force diagnostic for 3 random particle pairs per distance bin...\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing total force on each particle (before removing any)...\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing total force on each particle (before removing any) done.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 18: [11.341, 19.050]. Total: 1 / max 60 pairs...\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 18: [11.341, 19.050] done. Total: 1 / max 60 pairs. Trials 0 / max 100000000.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 19: [19.050, 32.000]. Total: 2 / max 60 pairs...\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 19: [19.050, 32.000] done. Total: 2 / max 60 pairs. Trials 2 / max 100000000.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 18: [11.341, 19.050]. Total: 3 / max 60 pairs...\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 18: [11.341, 19.050] done. Total: 3 / max 60 pairs. Trials 3 / max 100000000.\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 19: [19.050, 32.000]. Total: 4 / max 60 pairs...\n",
|
|
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 19: [19.050, 32.000] done. Total: 4 / max 60 pairs. Trials 4 / max 100000000.\n",
|
|
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 18: [11.341, 19.050]. Total: 5 / max 60 pairs...\n",
|
|
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 18: [11.341, 19.050] done. Total: 5 / max 60 pairs. Trials 5 / max 100000000.\n",
|
|
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 19: [19.050, 32.000]. Total: 6 / max 60 pairs...\n",
|
|
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 19: [19.050, 32.000] done. Total: 6 / max 60 pairs. Trials 6 / max 100000000.\n",
|
|
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 15: [2.393, 4.019]. Total: 7 / max 60 pairs...\n",
|
|
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 15: [2.393, 4.019] done. Total: 7 / max 60 pairs. Trials 25 / max 100000000.\n",
|
|
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 17: [6.751, 11.341]. Total: 8 / max 60 pairs...\n",
|
|
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 17: [6.751, 11.341] done. Total: 8 / max 60 pairs. Trials 39 / max 100000000.\n",
|
|
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 17: [6.751, 11.341]. Total: 9 / max 60 pairs...\n",
|
|
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 17: [6.751, 11.341] done. Total: 9 / max 60 pairs. Trials 100 / max 100000000.\n",
|
|
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 17: [6.751, 11.341]. Total: 10 / max 60 pairs...\n",
|
|
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 17: [6.751, 11.341] done. Total: 10 / max 60 pairs. Trials 138 / max 100000000.\n",
|
|
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 16: [4.019, 6.751]. Total: 11 / max 60 pairs...\n",
|
|
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 16: [4.019, 6.751] done. Total: 11 / max 60 pairs. Trials 149 / max 100000000.\n",
|
|
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 16: [4.019, 6.751]. Total: 12 / max 60 pairs...\n",
|
|
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 16: [4.019, 6.751] done. Total: 12 / max 60 pairs. Trials 189 / max 100000000.\n",
|
|
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 16: [4.019, 6.751]. Total: 13 / max 60 pairs...\n",
|
|
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 16: [4.019, 6.751] done. Total: 13 / max 60 pairs. Trials 237 / max 100000000.\n",
|
|
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 14: [1.424, 2.393]. Total: 14 / max 60 pairs...\n",
|
|
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 14: [1.424, 2.393] done. Total: 14 / max 60 pairs. Trials 258 / max 100000000.\n",
|
|
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 15: [2.393, 4.019]. Total: 15 / max 60 pairs...\n",
|
|
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 15: [2.393, 4.019] done. Total: 15 / max 60 pairs. Trials 755 / max 100000000.\n",
|
|
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 13: [0.848, 1.424]. Total: 16 / max 60 pairs...\n",
|
|
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 13: [0.848, 1.424] done. Total: 16 / max 60 pairs. Trials 997 / max 100000000.\n",
|
|
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 14: [1.424, 2.393]. Total: 17 / max 60 pairs...\n",
|
|
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 14: [1.424, 2.393] done. Total: 17 / max 60 pairs. Trials 1323 / max 100000000.\n",
|
|
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 15: [2.393, 4.019]. Total: 18 / max 60 pairs...\n",
|
|
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 15: [2.393, 4.019] done. Total: 18 / max 60 pairs. Trials 1403 / max 100000000.\n",
|
|
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 14: [1.424, 2.393]. Total: 19 / max 60 pairs...\n",
|
|
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 14: [1.424, 2.393] done. Total: 19 / max 60 pairs. Trials 2719 / max 100000000.\n",
|
|
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 12: [0.505, 0.848]. Total: 20 / max 60 pairs...\n",
|
|
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 12: [0.505, 0.848] done. Total: 20 / max 60 pairs. Trials 3386 / max 100000000.\n",
|
|
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 13: [0.848, 1.424]. Total: 21 / max 60 pairs...\n",
|
|
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 13: [0.848, 1.424] done. Total: 21 / max 60 pairs. Trials 7223 / max 100000000.\n",
|
|
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 13: [0.848, 1.424]. Total: 22 / max 60 pairs...\n",
|
|
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 13: [0.848, 1.424] done. Total: 22 / max 60 pairs. Trials 11516 / max 100000000.\n",
|
|
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 12: [0.505, 0.848]. Total: 23 / max 60 pairs...\n",
|
|
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 12: [0.505, 0.848] done. Total: 23 / max 60 pairs. Trials 11684 / max 100000000.\n",
|
|
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 12: [0.505, 0.848]. Total: 24 / max 60 pairs...\n",
|
|
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 12: [0.505, 0.848] done. Total: 24 / max 60 pairs. Trials 14546 / max 100000000.\n",
|
|
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 9: [0.106, 0.179]. Total: 25 / max 60 pairs...\n",
|
|
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[09:22:37\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:22:37\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:22:37\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:22:37\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 9: [0.106, 0.179] done. Total: 25 / max 60 pairs. Trials 75794 / max 100000000.\n",
|
|
"[09:22:37\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 10: [0.179, 0.300]. Total: 26 / max 60 pairs...\n",
|
|
"[09:22:37\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[09:22:37\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:22:37\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:22:37\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:22:37\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 10: [0.179, 0.300] done. Total: 26 / max 60 pairs. Trials 96044 / max 100000000.\n",
|
|
"[09:22:37\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 11: [0.300, 0.505]. Total: 27 / max 60 pairs...\n",
|
|
"[09:22:37\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[09:22:37\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:22:37\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:22:37\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:22:37\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 11: [0.300, 0.505] done. Total: 27 / max 60 pairs. Trials 147659 / max 100000000.\n",
|
|
"[09:22:37\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 11: [0.300, 0.505]. Total: 28 / max 60 pairs...\n",
|
|
"[09:22:37\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[09:22:37\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:22:37\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:22:37\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:22:37\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 11: [0.300, 0.505] done. Total: 28 / max 60 pairs. Trials 260936 / max 100000000.\n",
|
|
"[09:22:37\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 11: [0.300, 0.505]. Total: 29 / max 60 pairs...\n",
|
|
"[09:22:37\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[09:22:37\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:22:37\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:22:37\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:22:37\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 11: [0.300, 0.505] done. Total: 29 / max 60 pairs. Trials 268425 / max 100000000.\n",
|
|
"[09:22:37\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 10: [0.179, 0.300]. Total: 30 / max 60 pairs...\n",
|
|
"[09:22:37\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[09:22:37\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:22:37\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:22:37\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:22:37\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 10: [0.179, 0.300] done. Total: 30 / max 60 pairs. Trials 376024 / max 100000000.\n",
|
|
"[09:22:37\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 9: [0.106, 0.179]. Total: 31 / max 60 pairs...\n",
|
|
"[09:22:37\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[09:22:37\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:22:37\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:22:37\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:22:37\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 9: [0.106, 0.179] done. Total: 31 / max 60 pairs. Trials 445798 / max 100000000.\n",
|
|
"[09:22:37\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 9: [0.106, 0.179]. Total: 32 / max 60 pairs...\n",
|
|
"[09:22:37\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[09:22:37\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:22:37\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:22:37\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:22:37\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 9: [0.106, 0.179] done. Total: 32 / max 60 pairs. Trials 446516 / max 100000000.\n",
|
|
"[09:22:37\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 10: [0.179, 0.300]. Total: 33 / max 60 pairs...\n",
|
|
"[09:22:37\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[09:22:37\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:22:37\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:22:37\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:22:37\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 10: [0.179, 0.300] done. Total: 33 / max 60 pairs. Trials 496837 / max 100000000.\n",
|
|
"[09:22:37\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 8: [0.063, 0.106]. Total: 34 / max 60 pairs...\n",
|
|
"[09:22:37\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[09:22:37\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:22:37\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:22:37\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:22:37\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 8: [0.063, 0.106] done. Total: 34 / max 60 pairs. Trials 3841544 / max 100000000.\n",
|
|
"[09:22:37\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 8: [0.063, 0.106]. Total: 35 / max 60 pairs...\n",
|
|
"[09:22:37\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[09:22:37\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:22:37\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:22:37\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:22:37\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 8: [0.063, 0.106] done. Total: 35 / max 60 pairs. Trials 4274706 / max 100000000.\n",
|
|
"[09:22:38\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 8: [0.063, 0.106]. Total: 36 / max 60 pairs...\n",
|
|
"[09:22:38\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[09:22:38\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:22:38\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:22:38\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:22:38\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 8: [0.063, 0.106] done. Total: 36 / max 60 pairs. Trials 6977458 / max 100000000.\n",
|
|
"[09:22:41\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 7: [0.038, 0.063]. Total: 37 / max 60 pairs...\n",
|
|
"[09:22:41\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[09:22:41\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:22:41\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:22:41\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:22:41\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 7: [0.038, 0.063] done. Total: 37 / max 60 pairs. Trials 46420423 / max 100000000.\n",
|
|
"[09:22:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 7: [0.038, 0.063]. Total: 38 / max 60 pairs...\n",
|
|
"[09:22:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[09:22:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:22:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:22:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:22:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 7: [0.038, 0.063] done. Total: 38 / max 60 pairs. Trials 76404409 / max 100000000.\n",
|
|
"[09:22:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 7: [0.038, 0.063]. Total: 39 / max 60 pairs...\n",
|
|
"[09:22:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[09:22:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:22:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:22:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:22:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 7: [0.038, 0.063] done. Total: 39 / max 60 pairs. Trials 81147169 / max 100000000.\n",
|
|
"[09:22:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 6: [0.022, 0.038]. Total: 40 / max 60 pairs...\n",
|
|
"[09:22:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[09:22:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:22:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:22:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:22:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 6: [0.022, 0.038] done. Total: 40 / max 60 pairs. Trials 84122810 / max 100000000.\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Running force diagnostic done.\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Box: Density: 0.193 CPU - 0.153 wallclock seconds used.\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Box: Potential: 0.196 CPU - 0.137 wallclock seconds used.\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Box: Accelerations (long-range): 1.320 CPU - 0.478 wallclock seconds used.\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Box: Accelerations (short-range): 0.003 CPU - 0.003 wallclock seconds used.\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Box: Kick: 0.129 CPU - 0.087 wallclock seconds used.\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Box: Drift: 0.031 CPU - 0.053 wallclock seconds used.\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Box: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Box: Diagnostic: 7.915 CPU - 9.469 wallclock seconds used.\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Box: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Box: Total Evolution: 9.786 CPU - 10.380 wallclock seconds used.\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleP3M: Evolving with P3M done.\u001b[00m\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModulePMCOLA: Computing outputs...\u001b[00m\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Writing field to '/Users/hoellinger/WIP3M/notebook1/nsteps20_final_density_spm.h5'...\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Writing field to '/Users/hoellinger/WIP3M/notebook1/nsteps20_final_density_spm.h5' done.\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Writing header in '/Users/hoellinger/WIP3M/notebook1/nsteps20_spm_snapshot.gadget3'...\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Writing header in '/Users/hoellinger/WIP3M/notebook1/nsteps20_spm_snapshot.gadget3' done.\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Writing snapshot in '/Users/hoellinger/WIP3M/notebook1/nsteps20_spm_snapshot.gadget3' (32768 particles)...\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing block: 'POS '...\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing block: 'POS ' done.\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing block: 'VEL '...\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing block: 'VEL ' done.\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing block: 'ID '...\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing block: 'ID ' done.\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Writing snapshot in '/Users/hoellinger/WIP3M/notebook1/nsteps20_spm_snapshot.gadget3' done.\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModulePMCOLA: Computing outputs done.\u001b[00m\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]|PMCOLA output: 0.015 CPU - 0.005 wallclock seconds used.\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]|ModulePMCOLA: 9.815 CPU - 10.418 wallclock seconds used.\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]|Simbelmynë: 9.869 CPU - 10.448 wallclock seconds used.\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]|Everything done successfully, exiting.\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;227mCOMMAND \u001b[00m]|\u001b[38;5;227msimbelmyne /Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/nsteps20_example_p3m.sbmy /Users/hoellinger/WIP3M/notebook1/logs/nsteps20_p3m.txt\u001b[00m\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]|\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| .-~~-.--.\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| : )\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| .~ ~ -.\\ /.- ~~ .\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| > `. .' <\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| ( .- -. )\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| `- -.-~ `- -' ~-.- -'\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| ( : ) _ _ .-: ___________________________________\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| ~--. : .--~ .-~ .-~ } \u001b[1;38;5;157mSIMBELMYNË\u001b[00m\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| ~-.-^-.-~ \\_ .~ .-~ .~ (c) Florent Leclercq 2012 - SBMY_YEAR \n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| \\ ' \\ '_ _ -~ ___________________________________\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| `.`. //\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| . - ~ ~-.__`.`-.//\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| .-~ . - ~ }~ ~ ~-.~-.\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| .' .-~ .-~ :/~-.~-./:\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| /_~_ _ . - ~ ~-.~-._\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| ~-.<\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]|\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]|2025-06-24 09:22:45: Starting SIMBELMYNË, commit hash bab918a5347585bc2fb9554e442fd77ad3ae69cc\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]|Reading parameter file in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/nsteps20_example_p3m.sbmy'...\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]|Reading parameter file in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/nsteps20_example_p3m.sbmy' done.\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleLPT: Initializing snapshot...\u001b[00m\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleLPT: Initializing snapshot done.\u001b[00m\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]|LPT snapshot initialization: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleLPT: Returning initial conditions...\u001b[00m\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Reading field in '/Users/hoellinger/WIP3M/notebook1/initial_density.h5'...\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Reading field in '/Users/hoellinger/WIP3M/notebook1/initial_density.h5' done.\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleLPT: Returning initial conditions done.\u001b[00m\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]|LPT initial conditions: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleLPT: Evolving with Lagrangian perturbation theory (using 8 cores)...\u001b[00m\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Computing Lagrangian potentials, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Computing Lagrangian potentials, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Computing Lagrangian displacement field (using 8 cores)...\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Computing Lagrangian displacement field (using 8 cores) done.\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Changing velocities of particles...\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Changing velocities of particles done.\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Displacing particles...\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Displacing particles done.\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleLPT: Evolving with Lagrangian perturbation theory (using 8 cores) done.\u001b[00m\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]|LPT evolution: 0.051 CPU - 0.021 wallclock seconds used.\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]|ModuleLPT: 0.051 CPU - 0.022 wallclock seconds used.\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleP3M: Evolving with P3M...\u001b[00m\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Read timestepping configuration in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/nsteps20_ts_p3m.h5'...\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Read timestepping configuration in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/nsteps20_ts_p3m.h5' done.\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|OutputForceDiagnostic: /Users/hoellinger/WIP3M/notebook1/force_diagnostic_p3m.txt\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|OutputSnapshotsBase: particles_\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin P3M step 1/20, time_kick:0.050000, time_drift=0.050000.\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 1/20 done.\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End P3M step 1/20, time_kick:0.073750, time_drift=0.097500.\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 1/20: Density: 0.008 CPU - 0.003 wallclock seconds used.\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 1/20: Potential: 0.008 CPU - 0.004 wallclock seconds used.\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 1/20: Accelerations (long-range): 0.062 CPU - 0.015 wallclock seconds used.\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 1/20: Accelerations (short-range): 0.249 CPU - 0.038 wallclock seconds used.\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 1/20: Kick: 0.006 CPU - 0.002 wallclock seconds used.\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 1/20: Drift: 0.001 CPU - 0.002 wallclock seconds used.\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 1/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 1/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 1/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 1/20: Total Evolution: 0.334 CPU - 0.063 wallclock seconds used.\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin P3M step 2/20, time_kick:0.073750, time_drift=0.097500.\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 2/20 done.\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End P3M step 2/20, time_kick:0.121250, time_drift=0.145000.\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 2/20: Density: 0.009 CPU - 0.004 wallclock seconds used.\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 2/20: Potential: 0.010 CPU - 0.006 wallclock seconds used.\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 2/20: Accelerations (long-range): 0.071 CPU - 0.046 wallclock seconds used.\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 2/20: Accelerations (short-range): 0.261 CPU - 0.042 wallclock seconds used.\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 2/20: Kick: 0.008 CPU - 0.010 wallclock seconds used.\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 2/20: Drift: 0.002 CPU - 0.003 wallclock seconds used.\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 2/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 2/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 2/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 2/20: Total Evolution: 0.361 CPU - 0.112 wallclock seconds used.\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin P3M step 3/20, time_kick:0.121250, time_drift=0.145000.\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 3/20 done.\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End P3M step 3/20, time_kick:0.168750, time_drift=0.192500.\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 3/20: Density: 0.005 CPU - 0.003 wallclock seconds used.\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 3/20: Potential: 0.012 CPU - 0.006 wallclock seconds used.\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 3/20: Accelerations (long-range): 0.065 CPU - 0.042 wallclock seconds used.\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 3/20: Accelerations (short-range): 0.264 CPU - 0.047 wallclock seconds used.\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 3/20: Kick: 0.011 CPU - 0.010 wallclock seconds used.\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 3/20: Drift: 0.001 CPU - 0.001 wallclock seconds used.\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 3/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 3/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 3/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 3/20: Total Evolution: 0.359 CPU - 0.110 wallclock seconds used.\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin P3M step 4/20, time_kick:0.168750, time_drift=0.192500.\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 4/20 done.\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End P3M step 4/20, time_kick:0.216250, time_drift=0.240000.\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 4/20: Density: 0.010 CPU - 0.007 wallclock seconds used.\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 4/20: Potential: 0.011 CPU - 0.005 wallclock seconds used.\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 4/20: Accelerations (long-range): 0.072 CPU - 0.037 wallclock seconds used.\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 4/20: Accelerations (short-range): 0.268 CPU - 0.045 wallclock seconds used.\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 4/20: Kick: 0.010 CPU - 0.011 wallclock seconds used.\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 4/20: Drift: 0.002 CPU - 0.002 wallclock seconds used.\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 4/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 4/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 4/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 4/20: Total Evolution: 0.373 CPU - 0.107 wallclock seconds used.\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin P3M step 5/20, time_kick:0.216250, time_drift=0.240000.\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 5/20 done.\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End P3M step 5/20, time_kick:0.263750, time_drift=0.287500.\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 5/20: Density: 0.009 CPU - 0.007 wallclock seconds used.\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 5/20: Potential: 0.013 CPU - 0.008 wallclock seconds used.\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 5/20: Accelerations (long-range): 0.066 CPU - 0.079 wallclock seconds used.\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 5/20: Accelerations (short-range): 0.256 CPU - 0.083 wallclock seconds used.\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 5/20: Kick: 0.008 CPU - 0.054 wallclock seconds used.\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 5/20: Drift: 0.001 CPU - 0.001 wallclock seconds used.\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 5/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 5/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 5/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 5/20: Total Evolution: 0.354 CPU - 0.231 wallclock seconds used.\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin P3M step 6/20, time_kick:0.263750, time_drift=0.287500.\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 6/20 done.\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End P3M step 6/20, time_kick:0.311250, time_drift=0.335000.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 6/20: Density: 0.009 CPU - 0.007 wallclock seconds used.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 6/20: Potential: 0.012 CPU - 0.007 wallclock seconds used.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 6/20: Accelerations (long-range): 0.073 CPU - 0.038 wallclock seconds used.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 6/20: Accelerations (short-range): 0.283 CPU - 0.091 wallclock seconds used.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 6/20: Kick: 0.007 CPU - 0.004 wallclock seconds used.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 6/20: Drift: 0.001 CPU - 0.001 wallclock seconds used.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 6/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 6/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 6/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 6/20: Total Evolution: 0.385 CPU - 0.147 wallclock seconds used.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin P3M step 7/20, time_kick:0.311250, time_drift=0.335000.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 7/20 done.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End P3M step 7/20, time_kick:0.358750, time_drift=0.382500.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 7/20: Density: 0.007 CPU - 0.011 wallclock seconds used.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 7/20: Potential: 0.009 CPU - 0.007 wallclock seconds used.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 7/20: Accelerations (long-range): 0.072 CPU - 0.033 wallclock seconds used.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 7/20: Accelerations (short-range): 0.273 CPU - 0.051 wallclock seconds used.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 7/20: Kick: 0.009 CPU - 0.011 wallclock seconds used.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 7/20: Drift: 0.002 CPU - 0.001 wallclock seconds used.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 7/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 7/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 7/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 7/20: Total Evolution: 0.371 CPU - 0.114 wallclock seconds used.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin P3M step 8/20, time_kick:0.358750, time_drift=0.382500.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 8/20 done.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End P3M step 8/20, time_kick:0.406250, time_drift=0.430000.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 8/20: Density: 0.013 CPU - 0.003 wallclock seconds used.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 8/20: Potential: 0.010 CPU - 0.005 wallclock seconds used.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 8/20: Accelerations (long-range): 0.070 CPU - 0.033 wallclock seconds used.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 8/20: Accelerations (short-range): 0.264 CPU - 0.049 wallclock seconds used.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 8/20: Kick: 0.009 CPU - 0.017 wallclock seconds used.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 8/20: Drift: 0.002 CPU - 0.001 wallclock seconds used.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 8/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 8/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 8/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 8/20: Total Evolution: 0.367 CPU - 0.107 wallclock seconds used.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin P3M step 9/20, time_kick:0.406250, time_drift=0.430000.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 9/20 done.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End P3M step 9/20, time_kick:0.453750, time_drift=0.477500.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 9/20: Density: 0.011 CPU - 0.005 wallclock seconds used.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 9/20: Potential: 0.011 CPU - 0.004 wallclock seconds used.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 9/20: Accelerations (long-range): 0.074 CPU - 0.027 wallclock seconds used.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 9/20: Accelerations (short-range): 0.275 CPU - 0.062 wallclock seconds used.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 9/20: Kick: 0.010 CPU - 0.008 wallclock seconds used.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 9/20: Drift: 0.002 CPU - 0.001 wallclock seconds used.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 9/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 9/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 9/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 9/20: Total Evolution: 0.383 CPU - 0.107 wallclock seconds used.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin P3M step 10/20, time_kick:0.453750, time_drift=0.477500.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 10/20 done.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End P3M step 10/20, time_kick:0.501250, time_drift=0.525000.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 10/20: Density: 0.014 CPU - 0.006 wallclock seconds used.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 10/20: Potential: 0.010 CPU - 0.005 wallclock seconds used.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 10/20: Accelerations (long-range): 0.082 CPU - 0.033 wallclock seconds used.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 10/20: Accelerations (short-range): 0.285 CPU - 0.062 wallclock seconds used.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 10/20: Kick: 0.007 CPU - 0.006 wallclock seconds used.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 10/20: Drift: 0.001 CPU - 0.003 wallclock seconds used.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 10/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 10/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 10/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 10/20: Total Evolution: 0.400 CPU - 0.114 wallclock seconds used.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin P3M step 11/20, time_kick:0.501250, time_drift=0.525000.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 11/20 done.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End P3M step 11/20, time_kick:0.548750, time_drift=0.572500.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 11/20: Density: 0.013 CPU - 0.004 wallclock seconds used.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 11/20: Potential: 0.009 CPU - 0.003 wallclock seconds used.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 11/20: Accelerations (long-range): 0.069 CPU - 0.022 wallclock seconds used.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 11/20: Accelerations (short-range): 0.295 CPU - 0.083 wallclock seconds used.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 11/20: Kick: 0.006 CPU - 0.004 wallclock seconds used.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 11/20: Drift: 0.002 CPU - 0.001 wallclock seconds used.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 11/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 11/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 11/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 11/20: Total Evolution: 0.394 CPU - 0.116 wallclock seconds used.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin P3M step 12/20, time_kick:0.548750, time_drift=0.572500.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 12/20 done.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End P3M step 12/20, time_kick:0.596250, time_drift=0.620000.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 12/20: Density: 0.018 CPU - 0.004 wallclock seconds used.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 12/20: Potential: 0.009 CPU - 0.044 wallclock seconds used.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 12/20: Accelerations (long-range): 0.066 CPU - 0.016 wallclock seconds used.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 12/20: Accelerations (short-range): 0.320 CPU - 0.053 wallclock seconds used.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 12/20: Kick: 0.008 CPU - 0.003 wallclock seconds used.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 12/20: Drift: 0.002 CPU - 0.005 wallclock seconds used.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 12/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 12/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 12/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 12/20: Total Evolution: 0.422 CPU - 0.125 wallclock seconds used.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin P3M step 13/20, time_kick:0.596250, time_drift=0.620000.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 13/20 done.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End P3M step 13/20, time_kick:0.643750, time_drift=0.667500.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 13/20: Density: 0.014 CPU - 0.004 wallclock seconds used.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 13/20: Potential: 0.009 CPU - 0.008 wallclock seconds used.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 13/20: Accelerations (long-range): 0.069 CPU - 0.019 wallclock seconds used.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 13/20: Accelerations (short-range): 0.293 CPU - 0.079 wallclock seconds used.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 13/20: Kick: 0.007 CPU - 0.005 wallclock seconds used.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 13/20: Drift: 0.002 CPU - 0.001 wallclock seconds used.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 13/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 13/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 13/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 13/20: Total Evolution: 0.394 CPU - 0.115 wallclock seconds used.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin P3M step 14/20, time_kick:0.643750, time_drift=0.667500.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 14/20 done.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End P3M step 14/20, time_kick:0.691250, time_drift=0.715000.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 14/20: Density: 0.011 CPU - 0.004 wallclock seconds used.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 14/20: Potential: 0.015 CPU - 0.021 wallclock seconds used.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 14/20: Accelerations (long-range): 0.065 CPU - 0.018 wallclock seconds used.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 14/20: Accelerations (short-range): 0.319 CPU - 0.072 wallclock seconds used.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 14/20: Kick: 0.006 CPU - 0.002 wallclock seconds used.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 14/20: Drift: 0.001 CPU - 0.001 wallclock seconds used.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 14/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 14/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 14/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 14/20: Total Evolution: 0.418 CPU - 0.116 wallclock seconds used.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin P3M step 15/20, time_kick:0.691250, time_drift=0.715000.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 15/20 done.\n",
|
|
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End P3M step 15/20, time_kick:0.738750, time_drift=0.762500.\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 15/20: Density: 0.017 CPU - 0.028 wallclock seconds used.\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 15/20: Potential: 0.022 CPU - 0.014 wallclock seconds used.\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 15/20: Accelerations (long-range): 0.068 CPU - 0.042 wallclock seconds used.\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 15/20: Accelerations (short-range): 0.298 CPU - 0.059 wallclock seconds used.\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 15/20: Kick: 0.007 CPU - 0.011 wallclock seconds used.\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 15/20: Drift: 0.001 CPU - 0.001 wallclock seconds used.\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 15/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 15/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 15/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 15/20: Total Evolution: 0.413 CPU - 0.154 wallclock seconds used.\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin P3M step 16/20, time_kick:0.738750, time_drift=0.762500.\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 16/20 done.\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End P3M step 16/20, time_kick:0.786250, time_drift=0.810000.\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 16/20: Density: 0.015 CPU - 0.006 wallclock seconds used.\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 16/20: Potential: 0.009 CPU - 0.005 wallclock seconds used.\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 16/20: Accelerations (long-range): 0.065 CPU - 0.021 wallclock seconds used.\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 16/20: Accelerations (short-range): 0.321 CPU - 0.094 wallclock seconds used.\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 16/20: Kick: 0.008 CPU - 0.003 wallclock seconds used.\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 16/20: Drift: 0.001 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 16/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 16/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 16/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 16/20: Total Evolution: 0.420 CPU - 0.129 wallclock seconds used.\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin P3M step 17/20, time_kick:0.786250, time_drift=0.810000.\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 17/20 done.\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End P3M step 17/20, time_kick:0.833750, time_drift=0.857500.\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 17/20: Density: 0.017 CPU - 0.005 wallclock seconds used.\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 17/20: Potential: 0.013 CPU - 0.046 wallclock seconds used.\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 17/20: Accelerations (long-range): 0.086 CPU - 0.036 wallclock seconds used.\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 17/20: Accelerations (short-range): 0.319 CPU - 0.072 wallclock seconds used.\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 17/20: Kick: 0.008 CPU - 0.011 wallclock seconds used.\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 17/20: Drift: 0.002 CPU - 0.002 wallclock seconds used.\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 17/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 17/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 17/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 17/20: Total Evolution: 0.445 CPU - 0.171 wallclock seconds used.\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin P3M step 18/20, time_kick:0.833750, time_drift=0.857500.\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 18/20 done.\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End P3M step 18/20, time_kick:0.881250, time_drift=0.905000.\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 18/20: Density: 0.014 CPU - 0.005 wallclock seconds used.\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 18/20: Potential: 0.011 CPU - 0.005 wallclock seconds used.\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 18/20: Accelerations (long-range): 0.078 CPU - 0.024 wallclock seconds used.\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 18/20: Accelerations (short-range): 0.330 CPU - 0.075 wallclock seconds used.\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 18/20: Kick: 0.012 CPU - 0.006 wallclock seconds used.\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 18/20: Drift: 0.002 CPU - 0.001 wallclock seconds used.\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 18/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 18/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 18/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 18/20: Total Evolution: 0.445 CPU - 0.115 wallclock seconds used.\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin P3M step 19/20, time_kick:0.881250, time_drift=0.905000.\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 19/20 done.\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End P3M step 19/20, time_kick:0.928750, time_drift=0.952500.\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 19/20: Density: 0.016 CPU - 0.004 wallclock seconds used.\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 19/20: Potential: 0.010 CPU - 0.005 wallclock seconds used.\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 19/20: Accelerations (long-range): 0.071 CPU - 0.026 wallclock seconds used.\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 19/20: Accelerations (short-range): 0.342 CPU - 0.081 wallclock seconds used.\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 19/20: Kick: 0.006 CPU - 0.003 wallclock seconds used.\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 19/20: Drift: 0.002 CPU - 0.003 wallclock seconds used.\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 19/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 19/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 19/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 19/20: Total Evolution: 0.446 CPU - 0.122 wallclock seconds used.\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin P3M step 20/20, time_kick:0.928750, time_drift=0.952500.\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 20/20 done.\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End P3M step 20/20, time_kick:1.000000, time_drift=1.000000.\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 20/20: Density: 0.034 CPU - 0.010 wallclock seconds used.\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 20/20: Potential: 0.020 CPU - 0.007 wallclock seconds used.\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 20/20: Accelerations (long-range): 0.132 CPU - 0.034 wallclock seconds used.\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 20/20: Accelerations (short-range): 0.727 CPU - 0.247 wallclock seconds used.\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 20/20: Kick: 0.013 CPU - 0.007 wallclock seconds used.\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 20/20: Drift: 0.001 CPU - 0.001 wallclock seconds used.\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 20/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 20/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 20/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 20/20: Total Evolution: 0.927 CPU - 0.305 wallclock seconds used.\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Running force diagnostic for 3 random particle pairs per distance bin...\n",
|
|
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing total force on each particle (before removing any)...\n",
|
|
"[09:22:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[09:22:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:22:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:22:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:22:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing total force on each particle (before removing any) done.\n",
|
|
"[09:22:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 19: [19.050, 32.000]. Total: 1 / max 60 pairs...\n",
|
|
"[09:22:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[09:22:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:22:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:22:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:22:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 19: [19.050, 32.000] done. Total: 1 / max 60 pairs. Trials 2 / max 100000000.\n",
|
|
"[09:22:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 19: [19.050, 32.000]. Total: 2 / max 60 pairs...\n",
|
|
"[09:22:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[09:22:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:22:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:22:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:22:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 19: [19.050, 32.000] done. Total: 2 / max 60 pairs. Trials 3 / max 100000000.\n",
|
|
"[09:22:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 19: [19.050, 32.000]. Total: 3 / max 60 pairs...\n",
|
|
"[09:22:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[09:22:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:22:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:22:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:22:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 19: [19.050, 32.000] done. Total: 3 / max 60 pairs. Trials 5 / max 100000000.\n",
|
|
"[09:22:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 18: [11.341, 19.050]. Total: 4 / max 60 pairs...\n",
|
|
"[09:22:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[09:22:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:22:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:22:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:22:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 18: [11.341, 19.050] done. Total: 4 / max 60 pairs. Trials 13 / max 100000000.\n",
|
|
"[09:22:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 17: [6.751, 11.341]. Total: 5 / max 60 pairs...\n",
|
|
"[09:22:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[09:22:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:22:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:22:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:22:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 17: [6.751, 11.341] done. Total: 5 / max 60 pairs. Trials 19 / max 100000000.\n",
|
|
"[09:22:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 18: [11.341, 19.050]. Total: 6 / max 60 pairs...\n",
|
|
"[09:22:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[09:22:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:22:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:22:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:22:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 18: [11.341, 19.050] done. Total: 6 / max 60 pairs. Trials 22 / max 100000000.\n",
|
|
"[09:22:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 18: [11.341, 19.050]. Total: 7 / max 60 pairs...\n",
|
|
"[09:22:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[09:22:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:22:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:22:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:22:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 18: [11.341, 19.050] done. Total: 7 / max 60 pairs. Trials 31 / max 100000000.\n",
|
|
"[09:22:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 17: [6.751, 11.341]. Total: 8 / max 60 pairs...\n",
|
|
"[09:22:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[09:22:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:22:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:22:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:22:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 17: [6.751, 11.341] done. Total: 8 / max 60 pairs. Trials 39 / max 100000000.\n",
|
|
"[09:22:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 17: [6.751, 11.341]. Total: 9 / max 60 pairs...\n",
|
|
"[09:22:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[09:22:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:22:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:22:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:22:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 17: [6.751, 11.341] done. Total: 9 / max 60 pairs. Trials 47 / max 100000000.\n",
|
|
"[09:22:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 16: [4.019, 6.751]. Total: 10 / max 60 pairs...\n",
|
|
"[09:22:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[09:22:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:22:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:22:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:22:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 16: [4.019, 6.751] done. Total: 10 / max 60 pairs. Trials 266 / max 100000000.\n",
|
|
"[09:22:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 14: [1.424, 2.393]. Total: 11 / max 60 pairs...\n",
|
|
"[09:22:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[09:22:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:22:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:22:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:22:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 14: [1.424, 2.393] done. Total: 11 / max 60 pairs. Trials 337 / max 100000000.\n",
|
|
"[09:22:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 16: [4.019, 6.751]. Total: 12 / max 60 pairs...\n",
|
|
"[09:22:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[09:22:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:22:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:22:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:22:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 16: [4.019, 6.751] done. Total: 12 / max 60 pairs. Trials 374 / max 100000000.\n",
|
|
"[09:22:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 16: [4.019, 6.751]. Total: 13 / max 60 pairs...\n",
|
|
"[09:22:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[09:22:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:22:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:22:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:22:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 16: [4.019, 6.751] done. Total: 13 / max 60 pairs. Trials 429 / max 100000000.\n",
|
|
"[09:22:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 15: [2.393, 4.019]. Total: 14 / max 60 pairs...\n",
|
|
"[09:22:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[09:22:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:22:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:22:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:22:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 15: [2.393, 4.019] done. Total: 14 / max 60 pairs. Trials 578 / max 100000000.\n",
|
|
"[09:22:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 15: [2.393, 4.019]. Total: 15 / max 60 pairs...\n",
|
|
"[09:22:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[09:22:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:22:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:22:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:22:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 15: [2.393, 4.019] done. Total: 15 / max 60 pairs. Trials 590 / max 100000000.\n",
|
|
"[09:22:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 13: [0.848, 1.424]. Total: 16 / max 60 pairs...\n",
|
|
"[09:22:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[09:22:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:22:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:22:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:22:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 13: [0.848, 1.424] done. Total: 16 / max 60 pairs. Trials 883 / max 100000000.\n",
|
|
"[09:22:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 15: [2.393, 4.019]. Total: 17 / max 60 pairs...\n",
|
|
"[09:22:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[09:22:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:22:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:22:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:22:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 15: [2.393, 4.019] done. Total: 17 / max 60 pairs. Trials 1015 / max 100000000.\n",
|
|
"[09:22:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 13: [0.848, 1.424]. Total: 18 / max 60 pairs...\n",
|
|
"[09:22:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[09:22:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:22:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:22:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:22:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 13: [0.848, 1.424] done. Total: 18 / max 60 pairs. Trials 2224 / max 100000000.\n",
|
|
"[09:22:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 13: [0.848, 1.424]. Total: 19 / max 60 pairs...\n",
|
|
"[09:22:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[09:22:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:22:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:22:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:22:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 13: [0.848, 1.424] done. Total: 19 / max 60 pairs. Trials 2297 / max 100000000.\n",
|
|
"[09:22:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 14: [1.424, 2.393]. Total: 20 / max 60 pairs...\n",
|
|
"[09:22:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[09:22:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:22:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:22:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:22:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 14: [1.424, 2.393] done. Total: 20 / max 60 pairs. Trials 2696 / max 100000000.\n",
|
|
"[09:22:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 14: [1.424, 2.393]. Total: 21 / max 60 pairs...\n",
|
|
"[09:22:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[09:22:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:22:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:22:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:22:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 14: [1.424, 2.393] done. Total: 21 / max 60 pairs. Trials 2989 / max 100000000.\n",
|
|
"[09:22:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 12: [0.505, 0.848]. Total: 22 / max 60 pairs...\n",
|
|
"[09:22:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[09:22:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:22:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:22:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:22:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 12: [0.505, 0.848] done. Total: 22 / max 60 pairs. Trials 4095 / max 100000000.\n",
|
|
"[09:22:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 12: [0.505, 0.848]. Total: 23 / max 60 pairs...\n",
|
|
"[09:22:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[09:22:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:22:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:22:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:22:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 12: [0.505, 0.848] done. Total: 23 / max 60 pairs. Trials 9232 / max 100000000.\n",
|
|
"[09:22:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 11: [0.300, 0.505]. Total: 24 / max 60 pairs...\n",
|
|
"[09:22:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[09:22:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:22:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:22:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:22:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 11: [0.300, 0.505] done. Total: 24 / max 60 pairs. Trials 10727 / max 100000000.\n",
|
|
"[09:22:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 12: [0.505, 0.848]. Total: 25 / max 60 pairs...\n",
|
|
"[09:22:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[09:22:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:22:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:22:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:22:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 12: [0.505, 0.848] done. Total: 25 / max 60 pairs. Trials 12649 / max 100000000.\n",
|
|
"[09:22:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 11: [0.300, 0.505]. Total: 26 / max 60 pairs...\n",
|
|
"[09:22:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[09:22:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:22:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:22:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:22:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 11: [0.300, 0.505] done. Total: 26 / max 60 pairs. Trials 46788 / max 100000000.\n",
|
|
"[09:22:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 11: [0.300, 0.505]. Total: 27 / max 60 pairs...\n",
|
|
"[09:22:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[09:22:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:22:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:22:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:22:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 11: [0.300, 0.505] done. Total: 27 / max 60 pairs. Trials 49060 / max 100000000.\n",
|
|
"[09:22:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 10: [0.179, 0.300]. Total: 28 / max 60 pairs...\n",
|
|
"[09:22:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[09:22:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:22:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:22:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:22:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 10: [0.179, 0.300] done. Total: 28 / max 60 pairs. Trials 273797 / max 100000000.\n",
|
|
"[09:22:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 10: [0.179, 0.300]. Total: 29 / max 60 pairs...\n",
|
|
"[09:22:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[09:22:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:22:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:22:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:22:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 10: [0.179, 0.300] done. Total: 29 / max 60 pairs. Trials 357678 / max 100000000.\n",
|
|
"[09:22:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 10: [0.179, 0.300]. Total: 30 / max 60 pairs...\n",
|
|
"[09:22:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[09:22:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:22:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:22:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:22:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 10: [0.179, 0.300] done. Total: 30 / max 60 pairs. Trials 394189 / max 100000000.\n",
|
|
"[09:22:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 9: [0.106, 0.179]. Total: 31 / max 60 pairs...\n",
|
|
"[09:22:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[09:22:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:22:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:22:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:22:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 9: [0.106, 0.179] done. Total: 31 / max 60 pairs. Trials 1152112 / max 100000000.\n",
|
|
"[09:22:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 8: [0.063, 0.106]. Total: 32 / max 60 pairs...\n",
|
|
"[09:22:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[09:22:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:22:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:22:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:22:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 8: [0.063, 0.106] done. Total: 32 / max 60 pairs. Trials 1269857 / max 100000000.\n",
|
|
"[09:22:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 9: [0.106, 0.179]. Total: 33 / max 60 pairs...\n",
|
|
"[09:22:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[09:22:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:22:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:22:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:22:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 9: [0.106, 0.179] done. Total: 33 / max 60 pairs. Trials 1368444 / max 100000000.\n",
|
|
"[09:22:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 9: [0.106, 0.179]. Total: 34 / max 60 pairs...\n",
|
|
"[09:22:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[09:22:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:22:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:22:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:22:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 9: [0.106, 0.179] done. Total: 34 / max 60 pairs. Trials 1602007 / max 100000000.\n",
|
|
"[09:22:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 8: [0.063, 0.106]. Total: 35 / max 60 pairs...\n",
|
|
"[09:22:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[09:22:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:22:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:22:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:22:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 8: [0.063, 0.106] done. Total: 35 / max 60 pairs. Trials 2651678 / max 100000000.\n",
|
|
"[09:22:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 8: [0.063, 0.106]. Total: 36 / max 60 pairs...\n",
|
|
"[09:22:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[09:22:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:22:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:22:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:22:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 8: [0.063, 0.106] done. Total: 36 / max 60 pairs. Trials 4072639 / max 100000000.\n",
|
|
"[09:22:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 7: [0.038, 0.063]. Total: 37 / max 60 pairs...\n",
|
|
"[09:22:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[09:22:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:22:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:22:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:22:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 7: [0.038, 0.063] done. Total: 37 / max 60 pairs. Trials 6067914 / max 100000000.\n",
|
|
"[09:22:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 7: [0.038, 0.063]. Total: 38 / max 60 pairs...\n",
|
|
"[09:22:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[09:22:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:22:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:22:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:22:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 7: [0.038, 0.063] done. Total: 38 / max 60 pairs. Trials 8527588 / max 100000000.\n",
|
|
"[09:22:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 7: [0.038, 0.063]. Total: 39 / max 60 pairs...\n",
|
|
"[09:22:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[09:22:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:22:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:22:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:22:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 7: [0.038, 0.063] done. Total: 39 / max 60 pairs. Trials 9677024 / max 100000000.\n",
|
|
"[09:22:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 6: [0.022, 0.038]. Total: 40 / max 60 pairs...\n",
|
|
"[09:22:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[09:22:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:22:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:22:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:22:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 6: [0.022, 0.038] done. Total: 40 / max 60 pairs. Trials 30096576 / max 100000000.\n",
|
|
"[09:22:57\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 2: [0.003, 0.005]. Total: 41 / max 60 pairs...\n",
|
|
"[09:22:57\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[09:22:57\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:22:57\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:22:57\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:22:57\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 2: [0.003, 0.005] done. Total: 41 / max 60 pairs. Trials 58644581 / max 100000000.\n",
|
|
"[09:22:59\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 6: [0.022, 0.038]. Total: 42 / max 60 pairs...\n",
|
|
"[09:22:59\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[09:22:59\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:22:59\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:22:59\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:22:59\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 6: [0.022, 0.038] done. Total: 42 / max 60 pairs. Trials 83237642 / max 100000000.\n",
|
|
"[09:23:00\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 6: [0.022, 0.038]. Total: 43 / max 60 pairs...\n",
|
|
"[09:23:00\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[09:23:00\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:23:00\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[09:23:00\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[09:23:00\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 6: [0.022, 0.038] done. Total: 43 / max 60 pairs. Trials 98905108 / max 100000000.\n",
|
|
"[09:23:00\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Running force diagnostic done.\n",
|
|
"[09:23:00\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Box: Density: 0.264 CPU - 0.127 wallclock seconds used.\n",
|
|
"[09:23:00\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Box: Potential: 0.234 CPU - 0.217 wallclock seconds used.\n",
|
|
"[09:23:00\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Box: Accelerations (long-range): 1.476 CPU - 0.639 wallclock seconds used.\n",
|
|
"[09:23:00\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Box: Accelerations (short-range): 6.243 CPU - 1.480 wallclock seconds used.\n",
|
|
"[09:23:00\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Box: Kick: 0.165 CPU - 0.185 wallclock seconds used.\n",
|
|
"[09:23:00\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Box: Drift: 0.032 CPU - 0.030 wallclock seconds used.\n",
|
|
"[09:23:00\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Box: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:23:00\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Box: Diagnostic: 24.168 CPU - 12.683 wallclock seconds used.\n",
|
|
"[09:23:00\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Box: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[09:23:00\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Box: Total Evolution: 32.582 CPU - 15.362 wallclock seconds used.\n",
|
|
"[09:23:00\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleP3M: Evolving with P3M done.\u001b[00m\n",
|
|
"[09:23:00\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModulePMCOLA: Computing outputs...\u001b[00m\n",
|
|
"[09:23:00\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[09:23:00\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[09:23:00\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Writing field to '/Users/hoellinger/WIP3M/notebook1/nsteps20_final_density_p3m.h5'...\n",
|
|
"[09:23:00\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Writing field to '/Users/hoellinger/WIP3M/notebook1/nsteps20_final_density_p3m.h5' done.\n",
|
|
"[09:23:00\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Writing header in '/Users/hoellinger/WIP3M/notebook1/nsteps20_p3m_snapshot.gadget3'...\n",
|
|
"[09:23:00\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Writing header in '/Users/hoellinger/WIP3M/notebook1/nsteps20_p3m_snapshot.gadget3' done.\n",
|
|
"[09:23:00\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Writing snapshot in '/Users/hoellinger/WIP3M/notebook1/nsteps20_p3m_snapshot.gadget3' (32768 particles)...\n",
|
|
"[09:23:00\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing block: 'POS '...\n",
|
|
"[09:23:00\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing block: 'POS ' done.\n",
|
|
"[09:23:00\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing block: 'VEL '...\n",
|
|
"[09:23:00\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing block: 'VEL ' done.\n",
|
|
"[09:23:00\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing block: 'ID '...\n",
|
|
"[09:23:00\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing block: 'ID ' done.\n",
|
|
"[09:23:00\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Writing snapshot in '/Users/hoellinger/WIP3M/notebook1/nsteps20_p3m_snapshot.gadget3' done.\n",
|
|
"[09:23:00\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModulePMCOLA: Computing outputs done.\u001b[00m\n",
|
|
"[09:23:00\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]|PMCOLA output: 0.014 CPU - 0.010 wallclock seconds used.\n",
|
|
"[09:23:00\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]|ModulePMCOLA: 32.608 CPU - 15.385 wallclock seconds used.\n",
|
|
"[09:23:00\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]|Simbelmynë: 32.661 CPU - 15.407 wallclock seconds used.\n",
|
|
"[09:23:00\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]|Everything done successfully, exiting.\n"
|
|
]
|
|
},
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"0"
|
|
]
|
|
},
|
|
"execution_count": 9,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"pySbmy(f\"{wd}example_lpt.sbmy\", f\"{logdir}lpt.txt\")\n",
|
|
"pySbmy(f\"{wd}{file_ext}_example_spm.sbmy\", f\"{logdir}{file_ext}_spm.txt\")\n",
|
|
"pySbmy(f\"{wd}{file_ext}_example_p3m.sbmy\", f\"{logdir}{file_ext}_p3m.txt\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "acd604ca",
|
|
"metadata": {},
|
|
"source": [
|
|
"The logs can be monitored in the corresponding files in the `logdir` directory."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "3060305c",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Plot results"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "fafb43e2",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Plot the evolved dark matter density fields"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 10,
|
|
"id": "73d9e5cd",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"thickness = 1\n",
|
|
"[09:23:00|\u001b[38;5;113mSTATUS \u001b[00m]|Read field in data file '/Users/hoellinger/WIP3M/notebook1/nsteps20_final_density_spm.h5'...\n",
|
|
"[09:23:00|\u001b[38;5;246mDIAGNOSTIC\u001b[00m]==|\u001b[38;5;246mranges=[np.float64(0.0), np.float64(64.0), np.float64(0.0), np.float64(64.0), np.float64(0.0), np.float64(64.0), np.int32(32), np.int32(32), np.int32(32)]\u001b[00m\n",
|
|
"[09:23:00|\u001b[38;5;113mSTATUS \u001b[00m]|Read field in data file '/Users/hoellinger/WIP3M/notebook1/nsteps20_final_density_spm.h5' done.\n",
|
|
"[09:23:00|\u001b[38;5;113mSTATUS \u001b[00m]|Read field in data file '/Users/hoellinger/WIP3M/notebook1/nsteps20_final_density_p3m.h5'...\n",
|
|
"[09:23:00|\u001b[38;5;246mDIAGNOSTIC\u001b[00m]==|\u001b[38;5;246mranges=[np.float64(0.0), np.float64(64.0), np.float64(0.0), np.float64(64.0), np.float64(0.0), np.float64(64.0), np.int32(32), np.int32(32), np.int32(32)]\u001b[00m\n",
|
|
"[09:23:00|\u001b[38;5;113mSTATUS \u001b[00m]|Read field in data file '/Users/hoellinger/WIP3M/notebook1/nsteps20_final_density_p3m.h5' done.\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"# thickness = N // Np # \"1 particle per voxel on average\"\n",
|
|
"thickness = 1\n",
|
|
"print(f\"thickness = {thickness}\")\n",
|
|
"DELTA_SPM = np.zeros((N, N), dtype=np.float32)\n",
|
|
"DELTA_P3M = np.zeros((N, N), dtype=np.float32)\n",
|
|
"for i in range(thickness):\n",
|
|
" slice_ijk = (N // 2 + i, slice(None), slice(None))\n",
|
|
" DELTA_SPM += read_field(simdir + f\"nsteps{nsteps_spm}_final_density_spm.h5\").data[slice_ijk]\n",
|
|
" DELTA_P3M += read_field(simdir + f\"nsteps{nsteps_p3m}_final_density_p3m.h5\").data[slice_ijk]\n",
|
|
"DELTA_SPM /= thickness\n",
|
|
"DELTA_P3M /= thickness\n",
|
|
"diff_p3m_spm = DELTA_P3M - DELTA_SPM"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 11,
|
|
"id": "cd6e5652",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"max(DELTA_P3M) = 15.284065246582031, min(DELTA_P3M) = -1.0\n",
|
|
"max(diff) = 11.20693588256836, min(diff) = -7.942346572875977\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"print(f\"max(DELTA_P3M) = {np.max(DELTA_P3M)}, min(DELTA_P3M) = {np.min(DELTA_P3M)}\")\n",
|
|
"print(f\"max(diff) = {np.max(diff_p3m_spm)}, min(diff) = {np.min(diff_p3m_spm)}\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 12,
|
|
"id": "c9da7aa9",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAACUcAAARrCAYAAACq3IXEAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAuIwAALiMBeKU/dgABAABJREFUeJzs/Qm4HOd5IObWWbDvABeJlEgCIC1Llm0Ri7xM5FgEYGksjW1JAKnMllkM0OYkN7nOEDD0xDczubkmQVmZZDJ5RiCtmWRyM9cEIHMyqy0AlD2exbYAkLItyZIIgKQokhKJcwAQ+9nu87VTUKPRZ//6dJ867/s8zYNz2P11dXXVX19Vff//d42MjIwUAAAAAAAAAAAAFdPd7gUAAAAAAAAAAABoBcVRAAAAAAAAAABAJSmOAgAAAAAAAAAAKklxFAAAAAAAAAAAUEmKowAAAAAAAAAAgEpSHAUAAAAAAAAAAFSS4igAAAAAAAAAAKCSFEcBAAAAAAAAAACVpDgKAAAAAAAAAACoJMVRAAAAAAAAAABAJSmOAgAAAAAAAAAAKklxFAAAAAAAAAAAUEmKowAAAAAAAAAAgEpSHAUAAAAAAAAAAFSS4igAAAAAAAAAAKCSFEcBAAAAAAAAAACVpDgKAAAAAAAAAACoJMVRAAAAAAAAAABAJSmOAgAAAAAAAAAAKklxFAAAAAAAAAAAUEmKowAAAAAAAAAAgEpSHAUAAAAAAAAAAFSS4igAAAAAAAAAAKCSFEcBAAAAAAAAAACVpDgKAAAAAAAAAACoJMVRAAAAAAAAAABAJfW2ewEAAAAAAACA2enUqVPF/v37ixMnThTHjh0rzp49e/3/rVy5sti0aVOxbt26YuPGjbV/b9iwoa3LC7SGtgDoZF0jIyMj7V4IAAAAAAAAYPaIwoedO3cWhw4dmvRrt27dWuzYsaPYtWtXS5YNmDnaAmA2UBwFAAAAAAAATGqEmBj9JYoiYiSYGAEmfsbv8f+OHDkyoThREBEjzQCzk7YAmC26270AAPW2bdtWdHV1tfyxatWqYv369bWELSrSn3zyyVqSlu3hhx+e1HLF8nSaWDeTXb8AAMy93LdTyckBAKA15zNR/BDFDCdPniwOHjxY7Nu3r/b74cOHixibIX6PqbTGElNvAbOXtgCYLRRHAXNSWbEe8x7HMJ9xwyRuGMWNo/h3/TzIM6lcnk6yZ8+edi8CAAAVzH07lZwcAADGVna4iOKHsabC2r17d9Hf31/7OdaUWsDspC0AZhPT6gEdJW7M9PX13fDvqDKPBKuZqDSPivNNmzaNW3VeH7P8GVXrMaRnsxtC27dvr8WO4T8zP0+85xNPPHF9+RvfOxLAeE4niHUTVf8xDGrcJGoUyxo31GId1a//6awzgKooLwxE+xn/Lo8/0V5GOxmPaGOjLZ3pdjOW6emnn76+bPGoX67NmzfXjoPac2itquW+ExHvHcsQyxK9QqP9KZenbIfi88XoTQ8++OCEPudE3lNODjB3ycsB8kVni2hPo9hhoqLtjaL/+vOdyHGPHz/eoqUEWk1bAMwmiqOAWSESpfLmRb3xqtEnKi4+xc2gZjeist6jXnyW+Exxgau8AFYvEsmMG0HTFdOu1N/EqidZBWguRhuJNn4yU1bFzY54TfbxplG05fE+5c31aMvLIoQQ7XoUK9T//zg+6rkFM6tquW/Z/sR7NuaU44n2J9ZHK9ohOTlAtcnLAVoj8tIYhXaquWiZ10aurV2D2UtbAMw2iqOAWSEuZEUFeqPozZ2ZNMX7xM2Hxh7Z2T3Hy6Sx7P3XePMrLniNNbzoTCiXMT53sxtZrbpxBjBbNR5D4thRjvSxevXq68+JRzl6S6O4GLB3796WHANi2cppomLZoh0frQd6LGOMQlIuY7T38XxgZlQp921sT6LdKdvH+FlffFS2kdHeNE5rN167NRVycoBqkpcDtFa0r1HMGW3lZEaLAapFWwDMOlEcBdDp+vv7o5Dzpsfx48db8n7bt2+/6b02bNiQ+h4RM97n5MmTN73XunXrRtpt//79IytXrqz9e+vWrTct48GDB9u9iAAd4/Dhw9fbx7Jtn8ixbffu3U2Pb9Huxv/PEHHiuFLGjvZ9ovbt23fDcTBrmYC5kftGvljfNk5m+eO59W1X+Yj2NpOcHKBa5OUAM9vWTqSdBapJWwDMNt3tLs4CmIiZns7i4MGDN/XKjyr46GmYLXoHRu/Fxp6BjT34Z1r0RHzwwQfbugwAs0H04o7jQxyroud5HEMmMrJJPD9GATl58uRNz4+Ya9eundQUIKONOBI9uMo4kx1hJHrKxzLW9wYDWq8KuW9M2RcjY9S3jY0571jKYfkb28dYpsZRpTLIyQFmP3k5wMwoR+ELrcjNgdlBWwDMNoqjAEYRF9Eab0zFRbE9e/akv1cMkd6oncOklzeCmi0XADe2l+UNmKNHj05puqu4ARMFAI035eMGSsSOn1MVhQnlDZiYNmoqUy/FjZjyc5WfF6iezNy3zCOjfTt9+vSUpwIsb26P1bZlkpMDzF7ycoCZU19I+thjj7V1WYD20RYAs43iKIBRxAW1vXv33vT3J554Ir0HebPe4AcOHCjaJar8m/WeB+DmmxxhsiOiNCpv4jQWJsRNjy1btkx51JYobCg99dRTU16++uKAiBmxgWrJzH3LtjFuME93FKzISZvdQG7FDWE5OcDsJS8HmDn1bWQUjmqLYG7SFgCzjeIogDGM1pNv586d6Ulk9BysF8lk/cWzmRQX2/RQBxhbWTBQ34N7useCuJnTKN5jshcX4hhSP9pLLON0ChTi5nz9cSpiT6fnPFDd3DcKeuIGcuSTWdMDlje868V7ZOfKcnKA2UleLi8HZl59e6stgrlLWwDMJoqjAMYQF6yaXViLC2LZU3l0yjQe5WebyhDvAHNJDBcdx4l9+/alxYxjTrPjzmQvLsSy1T8/4+Z6/YgyEdtw2VA9Gblvmb9Gu7Vq1aqUKfBGu9HdilxZTg4w+8jL5eXAzKvvwNBYCArMHdoCYDZRHAUwjtGGY8++SRIX3Rp7D0bP+5mutI/P1WxZAPie6DEe7XOzKaimq9lFhHivyUztFL3n63uXxyPjeFh/bDBUNlTTdHPfY8eOXW+34hH5bMYUeM1y0+yproOcHGB2kZfLy4H2aJySunEKUWBu0BYAs4niKIBxbN68uenf4yZJqxPJMJmLbhni/ZpNXQLAzUUCrRjRY7Sb4RMtTGi8OdI4RdR0l63+xpAbMVA90819mxURxQhI0y1kanYzOXsk15KcHGD2kJfLy4H2iPaxsWOF/BXmHm0BMJsojgIYx2i9+lpxM6bd03iUveJN3wEwumgn4yZ/Y4/tTKNNazWRkUsajxujFTpMRWOsgwcPpsUGqp379vX1FbOFnBxgdpCXf4+8HGiHxlH7om1UFAFzj7YAmC0URwGMY6wLbNnTa8QFvcYbUnHRrVW94ptduMvsyQhQRfVDQ8eJftxEz57aabQpqMrpqsa7QVQvY+qOUmNPsFgXMz3VFNDZue9obc6mTZuKbK26ES4nB5gd5OXfIy8H2iFy1mZTUrdixgWgc2kLgNlCcRTALOipPhNJZFxEi4tpzd4fgO8pb47HzY5on2MKi40bN6a21VMduaX+BtFoN06mo1lxQ7P3BOauZiNX7Nu3b9qFTM3av8ybzI3k5ACdT14+/nsCtFqz0U6jYHWmOhYAnUFbAMwGiqMAxjFWz7tW9FZvlkTOxDQeBw4cqH2eZkPGA/A9Z86cafr3PXv2pL3H6tWrm/59vN7ghw8fbulxqlm8L33pS6nvAczu3Ddu/Pb399fy13icPHmy2L17d0uWqxWjUZXk5ACdT15+I3k50AnTaY038h5QTdoCYDZQHAUwjr6+vqZ/b1VP9WY3Q6K6Pnto+GY3e5rdBAJgYjJ7Qo1282S0G0CjTe/RimNV47K1+vgEzL7cN9qJyCvjkdEOjdbORC/UVpGTA8xe8nKAmRNtUbPOENEWtzJfBzqLtgCYDRRHAYxjtItLmcOhN2qWLLayp3p5o8f0HQDjW79+fdO/Z/YGH60n+po1ayZ1zBqtp/t0NN7YabzxA8xu7ch9x/P000/f9LeZGF1JTg7Q2eTl8nKgs0eMKac8BeYGbQHQ6RRHAYxjtGHJW3nTollv8Zhio1XiJk9cVGvVaFgAVfLggw82veGSOdLHaL3dx2qnmxU0tGL618YbO3HDaLxpRYDZox2573iaXUTdt29fy99XTg7Q2eTl8nKgM0Qbt3379lHPIzJH9AM6l7YA6HSKo4AJiYsrUd0dCczGjRtrvfNWrVpVdHV11R7xe/SsHq36O173xBNPFLPRkSNHml4Ea3VP9cYksvwOWiG+t7nQQz22wdh+J7LNjrdN7Nmz5/q+UL8fxBza8T4uSEK1T/SPHj16/TgQv8dN+swb9VO5CdPsNa3ood7sxo5e6lAd7cp9x1qexrwqlmempp6Tk+eTkwNZ5OXycqC9or2LnCvyr7FyZFNqQbVpC4DZQnEUMG5SExfooxAqEpf4/aGHHqpdaDp48GBx/Pjx4vDhw7WL0nGhJ37GBen6Qqj4d1zsPnnyZDHbRCLX7IL6TPRUb3ZjpBXTeJQ3nGbqBlM7xOeLxDy2z9iG48JpX1/f9YK/+H+jTSFTL7bl2BfKmy0Rq5zSJS6Mxu/lTZp4XvwEqimml4rj38jISNHf31/s3r17RkZuGWtaq2jXZqKHejN6fkE1tDP3HU2zfCrOQ2aKnDyPnBxoBXn5jeTlwEy1NZGLNeZ2o40YEzleqzoYAO2jLQBmG8VRwKiioCmSmpg6Im6IxIWmuOAUF5oiuYkkJy4Gxc+4iB83CeJCVPyMRCiSokh0ZvPF6Mcee+ymv8VnHy25yxTrtfHiWbOe89MVN5eavVeVRG/ySMxjO45tNLbj+Fl+j/H/yueMlrSXCX6IOFHsFzHKAsHy9/oLpHGzJvYDgIyRW8YbtWWmipCb9Xo3MgdUQztz39HORxqLZeJcY6wb0tnk5Hnk5MBsJC8HuLGNKYvay/Yx7guUuV3ktKPls7P5HgFwI20BMFspjgJGTVAiuYmet3GheTI97yIJitfEUN6zeZjMuIjeeDMm1sdTTz01Y8vQrOd4FKtlqvr0HWWPhbh50rgdN46C0OymSayfxhs5EafZEPqR8Me2X///4uSgyusXyBfHnmY3NcZrS5q9Zs2aNcVMOHPmzIy8D1Dt3Lde5F6NF02jMKodIyvJyadPTg7MRvJygOKGfGrt2rXXp0OOnCuKQSNHry+C2Lt3b9PXRx43lamUgc6iLQBmM8VRwE1itKdyWryo8m52wXk80VP36NGjxWxVTsNQrywUm8ne3K2exqMcwrRdowHM1FzX8d01K/Br3LbL5zcWCZY3WCZaJNi47USyb2h7YKKatfPRDo3XVs9UO9PsOKiNg9mtU3LfxqH5628uR8/Tdk05JyefHjk5MFvJywG+l0fV5+dx7f/06dNN7xuMlbO3YnpqYOZoC4DZTnEUcJOdO3deT16mUhhVisRoMiNOdVqC1/hZ2nFzKNZ/43cQPRezLna1q/f9TCmT7LGGam38Tp9++unr20F5EycS/MlM3/Lggw/e9LfGHvEAo2k2Gslova3q9fX1Fe1i+g6YvTop9y2Xp35qtZi6qH7qtXaQk0+PnByYreTlAH/WUaC+s0Dk5WOdK8TfR7snkJlDAzNLWwBUgeIo4KZey+WFlIwp8SZy0ahTREIWN4Yae4ZHAteum0Ot7Kke33OMEjCbpz4cTzk861g3mxovHMZ2EI+yd3qMnjbZ777Z88u5twHGa7ca26XRRtroJO28AQTM7tw3LoiWI1etX7++tjzRDkYRTORhU8nFWkFOPnVycmA2kpcD/Flxe/30V5Gjx4iu4xlr+tFy1FRg9tAWAFXR2+4FADpL2UM3bNq0adrx4oJ09Pbu1IvQccE9li0utjcuYyx39CyeTO/kVoibCM2mhJhur+eIUX4/VS70m8xNmNKWLVtqP+PG4FRHT4t1Wx9fTwg6QbQl0dbFtjlbL5qvXr26tl/GZ6li+9VsVA1DTQNVyX3LIqjIi0bLw8rcdzoj2LaCnHxq5OTQnLy888nLgbmuHMGzPq86evTohF4bx4fR7gnE/YdOLzQFvkdbAFSJ4ijgphsm2aIXdKuKo2IKwLggN1Fx0bG8+NjsInwkdjH9QifdkGlWYFb2MJ/OBciqT99RFvqN1Qv/2LFjTf8e6zfWz3S2gWbbV/ytE0Y+YG6K7a/+RHY2f476qZaqJI49jW1HXCSY6Oc0hQZU32zPfcsLo82WJdr2eMSF13hEkVb0Mo3l64T8SU4+NXJyuJm8vPPJy4G5LnLcxhFfYpSYyeRQ8fpm9wRacf8BaA1tAVA1iqOAG9T3WIyL1BkXuDJGoBrNVBOoSN7iInv5c/PmzbXP2u5RoiaTQEYSOtXvp7z5NNawprNdub7GWkejbT/xmlbcpHIThk64qRtt+2y/WB+fpWrtV7TJjTfJylFcAKqS+8Z7j9euxTEqiqMee+yxWlsfj+3btxdPPfVU23MpOfnkycnhZvLyziYvB+a6ODY1FrZHPj7ZnDdeM1Zb26wAPopTswuIy/OguEcR04rH55gN+WCsh2ajGDaKz3L69OkZ+UwxDfpERmKNY6YRgWa/drYFrdLJbYx9HmaG4ijgBtETvbw4F710M4qjWnnTpeo9rcdKIOOm0VSHdI/XxffSKaNjZYsbLLEdj7f9fulLX2r69+kOla/XA50qplGiMzVebIj22fcFzMXcNy7wxUW1+JzlCLQxNVs82n3BTU4+OXJyGJ08r3PJy4G5LkarbSzenWqBaOS6zXKy0Qoi4kZ8mTtGJ+6xpuMuixHKf9erHz23vLEfyxG5eyum8o73iNw13qO++LnsnBKf6aGHHprUfZJ47kTWRfwtOpa0uog31t1oRRLl5yxHOa7q+c1c0862oFU6uY2xz8MMGQGos3Xr1pFoGsrHwYMHU+JGrF27dk07RuNj//79I7NVLP/27dsn/PxYf42ff6rfz8qVKye17hq3i8xtoxX27ds3oe0j1kPj59q9e/e03z/etzHuunXrph0XqKbGNiPappMnT046TrQzjW1PtIfZop1sfJ8NGzakvw/MdVXLfaeqMQ+N3zPJyVtHTg7MNvJyYK47fPjwTe3KdK7pN2unJpvDZrR1x48fr8VpzDunm3PGMSLOJcpjRuTrETOOJ9Hul/+v/lwmlmW6+XV8/sbjVavFsa3x87Tq+Eb7dWJb0Cqd3MbY5yFf90wVYQGzQwz72Nhjrqx2nm4v68bYTK/34lR7U0fv+6guf/DBB4uqKnt1jtVLPdZBs8r7vXv3Tvv9jx8/ftPfOnXKRqC9mk2nFFM06XED8L28rr5NjFw2enu2ayoqOfnEycmB2UReDvBn00g3ms7oJDGd93Q1ywvL0VwmKnLA+BwxFVV9bhrTWG3cuHFK5xbx2nLKqThe9Pf31/LfeJ8YNSZGvC3/Xo7+G+cA8X7NzikmohxFN0ahqh/JJpa/cfrvTDEiToxkE+872jJRLZ3YFrRKp7YxwT4P+UyrB9ygHO6xMRGKC/6RJIw1P/BY4kSA6SnnKq5PpMqbKpOZX7icLnE2zK0+VbENjzdFSbPksZwferqaxVYcCDTT2DbEhbSMKW1nWjmMMkArxLlEXFAsxQ2ILVu2NC1+aTU5+cTJyYHZRF4OzHUxjXXjFErTzVdHe+1kYjZ77lSXKV4X7Xu0+WWuGEUAca4R5xYTjRt5bhQ9TGTa84hZdqYoO6HHui7fc6rifWMZGs8vWmG2Te8e2/Fo04HNhuN41vlQ1dqCVunENqYZ+zzkUBwF3CAOzlH5W3+QLQ/gZY+GOCjGwb3qF/M7UWMCVJ5UTaZaO5LbqherxbY5XmJY9mRvfN101c8znR27laIIMpa72XoBWiOOpfXtxXRvwDgmA1UVBTbRPtYXu8T5SdmJY6bJySdGTj55cnJoD3k5QFE89thjExo9JqNgs92FnJGHr1q16vrvcQzYuXPnhPLzOA+Jc4F47mQ6kseoMvUzdEScKLKa7Gg85TEmvpv6c5I4v2iVAwcO1Ao7Ypk7XTma12zXziLtudQWdGIb08g+D7lMqwfcJBLysRL7SOKjUCoO7pFsxkE5DsTtmtpiLmmWhE7mhlB8d5FMTXUEsCppVU/yZnFjnXf6UPxVOGmE2SROZuvbi4yLHs0uKJw5c6bI1ux47wYQ0GqNo9uWuW07LtbJyfPIyW8kJ4eZJy8H+LNCnca8OiNf7dTRYuL9G0dFifsbEyk2KAtH4v5IjAYz0fOReM/G40tjh4vJiLy2ccro+uKrLLFO4r06PY+uWj7drqKUudYWdGIbMxr7PORQHAU0FRXMExk2MZLNZsVSrZzvdi5rlgBNZpjY+F4ffPDBYq5rZU/yp59+uiVxWy3mkAZmRpxk1t/kz+oN1s4LClXt6QV0jtFGrY3elzNNTp5DTn4zOTnMLHk5QHtyp05oq8pZMsYbMadR42i2Md33RDWeQzTGm26njVaMqhsxpztq0EyK0Xxnc1FH5BCxnbSrI81cbAs6rY0Zi30epk9xFDDmQTAu3E8mmSyLpaK372R6TtD6nupx8yFOtiQ2zU86s+bybhb7oYceKjpdVXrVQKern6Y2xBDFWRcZml1QmKlRHaM4GqDVmrWXzXq2zgQ5+fTJyW8mJ4eZIy8HaH3uNNoId50wWsxo5xbj5WONn2m0gv9m1qxZk5r/NXZun8jyT0Z57jKbOnbErCgnT54sRkZGZuWjv7+/lpO0q8BrLrYFndbGjMU+D9OnOAoYU1SoRzIZRVKTvUgUB+YokGrF0I5zWbPEZCLrOJ7TrJf7XBS9QRtlXASNbb5Zot/pvdRjmU2LCa0XJ6v1PQrjYkdmm9zsgkIrRqBoFrPKFzOAzrF58+YJ925tNTn59MnJbyQnh5kjLwf4nsg/mnU2yMidmrVTmzZtKjrZeB0vmhWttHP0m8YRhjJHkolzl4jv2DI3aAtmxnQ7d9nnYXoURwETEgfEuHgdlevllHsTvXAUvaKnM382489PXlZ0j8VwmN9z4MCBm/4Wo51NV7Mbc7GfdHoyqYARWi/a6Whnypue2TdgRisaaMVN1mYxqzwMNtA5Rms3Y1qkmSYnnz45+Y3k5DAz5OUAMzeaZ7MRTTLyvSzNPuN4o7A0FiLESEUTXVfRCb3RdEcIajy3yMwpnbvMLXO5LeikNmY89nmYHsVRwKQP5lEoFQfJuIAUQ33GzzgJGKuCfM+ePS72tnEaj3J4zXbNVd1JYj20qid5sxtzsyGZbMXc1MCNomd6efLbihswYaaG3G7W28sIKMBMGO2Gb7umIpOTT52c/GZycpgZ8nKA8XPprLYk2tlWxW6V8QpBIl+NDuRlR/Ldu3dPa11PN/+N19cfdybSYWMi4twljjOdPvoqebQFM2O6xWb2eZgexVHAtEUSEycBcUIQxVIxslSzxCYuSLfrxkXVNBvacqwe83GhPb6Tds1VPRd6QIw2v3Onz88cy2y/hNbasWPH9SGTW3UDJjSL24rpO5rdzHZ8AcoOEatWrSq6urpq02tPd7j4RmPla+2YjkxOPnVy8hvJyWFmyMsBbnbmzJmWtSXHjh276W+ddON9qu1oOYrsZHPXxhw4q9NEY0eAjKL7iBGzhzB3zOW2oFValavZ52HqeqfxWqCCYnSnmOt3OheIIqmPR9wcaZxOL0aY0iM2R1zgbxyNK27GNDupiikrYt1T1Ir4GmVcEJ2t03fExWHmjjhxipPR2XzzLUYNif1qvBELO2mdlzfKW3kDpv4Eu/77bcV33Rhzrvb0Am5u7+pz07j5HAVSMXVE1gXVsaYKirapHe2RnHxq5OQ3kpPPPfLymScvB2iuWfvUbHrQqWjsLNFJI6iO1rmiVce0Zh1H9u7dmxI7ChriXkwpjnfx+aaTA8c5TrNpAKmuudoWzMY2xj4PU6c4CrhBHFDj4ByjP01XXCBbs2bNDQfpOMAqjmrNDagQ67YxsYweKZEYqfoe/UQ0Y37rZqMEPPTQQ0Uni30ze0QHOle0A1WY3rQ8sZwNN2GiQLhc5zNxA6bZTZjskVSaxYuiaoDRjjGZnSPGGnWjXcUvcvKpkZN/j5x87pGXzzx5OcDkZHRuaDZSaCdNddxs+VqZq9ffIynfK+t4VI5kVf+ZomPGVD9P5NRGvKWT2oKIER1s4mc5RXts97F88YhzvvIcPLbf2N/aXejTyjbGPg9TZ1o94CYZ89OWYrq9ZjcGmL5myUp502W8mzNzVaybVsztPtr0HeMlo/G6xtHVRhPfbST1MQJDOV1N/Izfo6d5/Y2g+Pf69evHXA/xmom+93TFuhlt2Sd6MyhixMXseH6cPMXyxw20+JwRq1lv+/h88ZzG94zXZ9yAyvxOZkKcNDWb/mc2iravky6oNVOeiGfegInta7z9ttm+kNlLvdkw2Bk3s4HZbazjamYbNNaN5XZdxJOTT56c/M/IyedmTh7k5TNLXg4w+dFZM45RjSOFljfzO0WzDhyNBUxZIuepvycS6yG7A3nj8Xg6I9Y+9thjaaNaMXt0YltQjkgdOU7kUbFdRj7X399fnD59unjqqadqo1uV5wNxrhI5WCeMztrqNsY+D1M0AlBn5cqVI9E0HD9+PC3myZMnazHLx/79+6cUpz7GdGN1glj+7du3TyvGvn37blon8bdSf39/7W+HDx+e1vts3br1pvc5ePDgyGwTy9z4OWKbn65du3bdFDfW2XjWrVtXe+5YYl/csGHD9e0lPkPsU/HdxiP+f3znESueF/tEuQyNdu/e3fS7nMxjMmL5YpnL18Z6im0xljk+R/16i+WK50/muxttfcc6iO81HvGZ4/d4fbmeytfE+ppKW5f5nVBNsQ2U33nW8bQ8lo7X9pbtfqva6/rt2XYNrTWbct/GfL/+Ecf7LJFHNHuP6eRzcvKZJyeXk8vJmSnycoCp5bLR1k1X/fE+HpEPTFXj8k0nVuPxodV5dRwP6tfFdM89IreqP9eo1/iZpnLsK49zE80FqY5OawvK8/94/USWo/F8sCptjH0ectmKgabFUaMdbKeq/uLvVBOL2XSDaCIyToaa3YiKZLHxgvR0VeVGTLMbJtP9Dur3m8lsm+V3N9YNm+wTgPis9Y/G7zU+R+NzGh9TuXkZNyNGW/5I2Mv1Fz9He178PdZptE31N3cab+TEe0WcsbbPxovIk2nvZvKkjNkptotWFBqXJ6MT2e7KG4VZJ/RjbdMZbShQjdy32fJmXUwd62LtdNsiOfnMk5PLyYOcnFaTlwNMTLOb39NtN5sVBoxVgD2exljTaU/rjw+tPs+K9VBfGJLRcWSsQonGY8NU3i/W7WivUyhRbZ3UFtQXmU9mGerPUarSxtjnIZetGLhBedCeSA/byR5gp5tYzLYbROPJunjVeLGtPmGM/5dx8a0qN2IaeylkbEOjjWAw0Zt7o73/TJ0ANN7MyFCfNNffGJzISdJYN2PGWu+xrZe9widygtX4+omcOMz0SRmzT31vwOmODjJamzGZ505mP5xqOzobjwUwW8y23Le+sCIekVdk3owOzYoxptsWyclnnpz8ZnJyOTm55OUAE9dspLvptp2NN+ynmws3Lt9U40VbWV+0MF4x92RE7hTrrSwkr8/dIw/JOjcaq1CisRBlKh004jWjLatCiWrrpLagvJ842XOj+o5LVWlj7POQq3uq0/EB1VY/B3aG9evXX//3mjVrUmPPdY1zC5fzGce8yjEn80MPPdSW5eo0Z8+ebTrX9HTnum82d/T27dvHfd3TTz9d+/nggw+OOs9zuXwbNmyY8PJMZ27pDLHNxbzeo80p3kx8vt27d1//nppt0+N9b/G+fX19xdGjRyc0F3q8vn5dxXzkTzzxxJivma3fCTNny5YttXYmtvvpti2NIuZEtu2wa9euG36PZYp9qxXt6ETaO2BuKNueOO719/fX2q3JHC+nc47SCW2RnHxi5OQzQ07eed8JM0teDjBx0aY1HlOb5WuTaaPimF5v7969U443neWIzxHnEHv27ClWrVpVy4/KdjjazdOnT6e0n/F54/7Htm3bajlUvF957hLrdvPmzRM+dkxHvNe6deuu/x6f9dChQxN+fSzz6tWr08/jmB06qS0o95/67Xki4vkztf3OZBszGvs8TJ7iKGBUjYnLdJw8efL6vx1ovyfjolizC/kHDhyo3SCYyWSw0zW7mRYJ/2QT7EZxA6DReDcS4jXxiIu0o50Yz4YTgGbqb8JE4j/R5a8/MYrPPpUCzYMHD07qQkPc/KlfvjiJafZ91i/XbPxOmBlxASy2n9gOs2/AhGPHjhWbNm2a0HNjP2i8ERPHhelqjFHeQAWoz39aVYAQx+FmuXPG+8nJZ46cfGbIyTvvO2HmyMsBJq8xb4o2dKriWF4v8uHswqAopu7q6hrzEYUKZcFSPD9y/sgHos2MzhyTzVnGEm39/z1Tz/VH2WEk3jPWSbksY+U5rfgum3UiGE08dyIF8lRXp7QF5X4SHS8mK6NjUqe1MWOxz8MkJY9EBcxy9UM+xlD4WeqHkZ0rU4tMZIjSrHU82hQjow23ORen8GgcwjVryoqpTN9Rfl9jDadcP+xyK4f5z1wfjVMGTHa46PrpaCbyuTOmJ2gcGnasfXKmvhNmn7J9aVW7WE45M5l54xuHws443tRP3TGVYZqB6ue+ZXuYMYXcRPLR6U5PJCefeXLysd9HTi4nZ3rk5QA59wXiMZEpcsea0mqqx+tmGvO8aEvj3GgijzgmRD40lc+TpXEq4emcH4w1xdZoU6NN5LOXrxvruabYmhva3RY0bsOTff9yO61KG2Ofh1y2YmDMxCfrglIZd6oXepsd4GfDDaKJnBBlx5tu4lrVGzH1Fw8zb1Q1S5wncmIw1vNm8gQg80ZM43za071ZNp6sC8yN7V6zG0jtOCljdihvsrXqeBRtRnmTcrLvEcUJ07k5OtZxZrYef2G2mM25b3lczVzW0XLd6bRrjXFbuZxy8u+Rk4+//HJyOTlTIy8HmJ7Gm+BT6fBQX2Q93Y4MY+V6WUVXM6mx/Y6cbyrnCeMVSjQ7b5hIvh3Hk/HyUIUSc0MntAX15wbx+sjDJpuzVaWNsc9DLtPqAWPauXPntGPEHLflVBVTnfZitOEzM6bAaIf6IUVjyM3pajYVxFjTQ2Ss/6kMadou5fzPjTKG2G9cx+NN71AOU/rUU0+NGbM+7saNGyc1v3dMFzHTU0bU7+dTXbcxBG29qUzjkTENzmOPPVaJ74SZ2e7L9jyGIY7tYrqPGI45HuUQzfHvcijpyU4fE8fc+u1uOsf0xul5GqcHAXLN5tz36NGjtWNm5DwZeW585vo2qBRD1E/32Conn1ly8taTk49NTl5d8nKA6WtsUyI/nswUcJFflc+P43VMKUdxQ15WfyyIHKvZeU67ptkyvRad1BbUnxtEvh95WOR6E8n9I087fvx4MZfY52ESkoutgFmusSJ7uj1Xo/dDGXMyw46P18uuFT1QZkqz6TYyevo19vDN6kXeOARqRq/gmdasF3/W0PONVflj9aQoe7JOpLdFsylH4nWT6SUxk73UG7frqYwA0LitjRcja3ts7AEx2rYxU98Js0P09m7WNrbyMZUehfXH4an29qrf9uO4286h6GGumO25b7SR9SPHTvVYGe1Nq0YakpPPPDn56OTkcnKmTl4OkKs+r4p2ayKj3TW2T63MlTptVJfJaDYKy2SPBxMZRaZ8Xv37jPU9xvc1kbzcKDJzSzvbgtHOf8u40QbEfjDd0aRnQxtjn4dctmJg1ANoHDzLg99UkoE4wE62wCou7MTr4hHvHxfQR7s5VH/xuJzXt3xtp1wYjc9TrsdIDBsTlMYLyZHkxGeeSlLXeEFwKurXX8SLG0RjLXMnr/t6zbah6U5XMdpNntH2lXJfmugNg5k6AchaJ1lTck7m4kDj/jNVzdZ1s/U60ydldK7yBLJVN1tGe0xVY3HBZG6UugEDrVW13He06YfiEe3JZI6RsS4a29r4Pf4+WXLyziAnH52cXE7O1MjLAWYmb4vfm7U7cbytb9ciF2hF+9TJhQuT1ey4NZl1NtFCicbvcKyO6/HciXRsVygx97SzLRht2vqxzomr2MbY5yGXrRi4QbNRnsoDYCQ3E70ZUfbGncjF1LF6/LbjYlWmZr1aJ/qYyo2fMgGdSvLWLNGZzet+vO0qY2SAZj20Yx+qT/zj3+V2MNmbBTNxAtAYYyriMzYuTyxL/H2yj4km8I3LPt1RE5otf7tPyuhc02nbp/qY7jYe+1d9WxXb51gXKRqLGjrpogBUSdVy3/HOC+IR+Wq0o/XFPKX4d+Ro9e1PfTs01YIfOXlnkJOPrjHGVMjJ5eRzkbwcoHUiV2/M3yLPjb/Fo74QInKvzLyuUbNzg9mqWU48mWLZiRZKNCsoHyvmRArLFUrMTe1sC5p1mhovT5vKdYNObmPs85CrdzJT8AFzQ8wDvG/fvhvmGD558mRt/tlt27bV/n/M+Rvz/Mb8vaGvr6/2nJgru5xPOObRjjj1c2lPZhnC6tWrJ/yaWIbS2bNni04y0c9TfoapLn+s75h7uf77m+qyTmb9d/K6b/xM5e/181ZP18GDB2v7x5NPPln7/GvXrq1t/zEHdrk/xDzdk/1eIkbMyR3zz4+3XmPfi0fsb7E85b45E+q//1Isc/b3NpOafabZ9J1QPdPdfmJ/iu3w0KFDxWOPPVbbNletWlXbpuPYHvGbHctj+422K54HtE7Vct96u3fvrj2eeOKJYv/+/bX8KHKmeEzEdM4pGsnJ20tO3lpy8ubk5GSTlwNzRbQ7cbyNXCrarKeffrp23I22KUR7FfcNHnroodpPpn4ciXUb50zZ7xPfYXkcCfE9Nn5X8X2Wz4VOawsi7+nv76+d48X1hPrtuZn4/3Hf8vjx43Num7bPwwQlF1sBs9x4vSqjN1tUKTerCC+HsI/K8E6cxoG5q+xpGdtpbLut2j6jJ0PEL3szxM/YJzKmdBhtFIXRHhN9z4xe6o3Tx8RjJtqAzN67jT1QJtIbo1XfCcyE2B5jZMeybWzs+RX/zzYLtEI5OlTkSM3aoPhbObIU1SInH52c/M/IyZmL5OUAs2dUl8itol0u74FkjKxb5qvZo8iEWMbx8szJfBajyNAJ4nyvzJ1Gy/kbRxKeLW1MM/Z5yNUV/5loIRUA0H5R3R+9Nep7kTbrjXr69Olxe3p3dXXd1AN7smIZNm7ceMPfopdrq3tl1y979HSIHiEZsUL0RImRBdrxnQAA0Pnk5H9GTg4AtFpjjhAjocQofDOpHJm0ftTKyFMiX5mMGAEnRjttNNFbtTHa4N69eyc00lQsazx/tPyw/P8xMs9EcqMYhaZxZFK3mGm3yP1jP4zts95k9s9OaGNGY5+HXN3J8QCAFiunl4kbD5GMxg2AxuFRI9GN6VwyRcxmNxma3XCJYXZns8lMa9TO7wQAgPaQk7eenBwA6BTl1M2Nf5usZlMCt6poO+I25kL1xSKx/PH/FY3TaSYyfXb9OUAUMsU5QP223GyfrTr7PIxPcRQAdKBOPAGIXhhbtmy56e/NkunZdOLR7KZRszm3O/E7AQCgdTox/5OTd953AgBUX4y+kuHMmTPTLgifjMZRquoLuqJootkoVtBOkafHiEVx3jMZce7QONrTbO8sMhX2eRib4igA6DCz8QQgbjzU6+vrK2aLxvUcN04ae97Pxu8EAICpm435n5y8OTk5ADBd69evn1Ah93ia5SCNOVymiF1fJB75VDkFceSKrXxvmI6pTDUe23P9tNzHjh0r5hr7PIxNcRQAdKjZdALQOPf0VJa9XRqX9cEHH5zwcyfCSRkAwOw1m/I/Ofno5OQAwHQ0FkJFbnH06NFJx2k2PfJkRnKZyuiX9TlQOXpMPBr/Dp1ksh0iRjsnmu3s85BLcRQAdKiZPgEYr2f5WP8/bl7U90iY6rLXf4Y9e/ZM+PnTmRYjep/XG+t9nZQBAMwtcnI5OQBAORpLjGw5MjJSK9ZuNq3xeLlS48hRUXQ1lRGoJqOx+CryrgMHDphei44W+0qzYsLx1E9T2TgS7Vxhn4fRKY4CgDl8AjCZk/iTJ0+OGi/i7N2796bhWqeinC6j2XDVo5nqlCH1c26H7du3j7nOnJQBAMwtcnI5OQBAiDwr8pCpFhg89thjN/3tqaeemnQh+pe+9KVJvW/kPY0FWPE3+RCdrtk+M576AsRNmzYVs5l9HvIpjgKAOXwCUJ8Qj3eDIZLxsRLo3bt33/D/J9PLvPEzx42dyQzzGss2lRsk9csY7zmRCxJz/aQMAGCukZNPjJwcAMjWbGTK6YxWOR2RZ0XBQRR2NxZ3TyQPeeKJJ2742759+yY1alSZ/0QB+2TXQWNB11QKvKZaCA9TFdv6ZM8vyim4y9HeZlMb08g+D/kURwHAHD4BeOihh274vXFo53ox9Oq2bdsm9N4hlnuyFwriNXGhIC4OtHqajDghqD+pOHjw4IROmGbipAwAgM4hJ584OTkAkKlZQXSMjDlWvtRKR48erRU0RQ4Tec9EChbiOY05UhSgR7HVRMTro5i8vrhq48aNkxohtLHgfTIF8KX9+/ff9LfGgi/INtH9LES7UJ77NNteZ0MbE+zz0DpdIzE5LgDQMSL5XbVq1fXfo+f38ePHJ3QBP5L2cuqLsabcGO29IklulvRG4h03YSaSNsRz609a4iZE3ICYyLJHkh/PjZsi4+nq6rr+7/JzxsWJibw2TpLqe0vEa2L6jk74TgAAaD85uZwcAJhZkRtEzlLmL8eOHRuzKKKcJqrMBWL0yZkogI5l2rlzZ61YuxxpM3KaZvlFFHNHTlZfaBF53niFCpHLRaF6vG68Io3IvWL64PoC+WZiGWMdR741Xq4Wz41RY+Kzxs+xitJjHcSonOW6j8L/sXI6GEt9zl9u27EPxPY93tTbca4UP0c7r+jkNsY+DzMkiqMAgM7R398fdztqjw0bNoxs3bp1ZN26dSMnT54c83Xx/+N58bqDBw9O+P327dt3/f3icfz48ZuWJ+Lu3r17wjHrlyUe4722XIbt27dP+D3qlznWU7znypUra+trrHW1a9eu66+L5zd+3k74TgAAaC85+cTIyQGALJGrlLnBZB5lfjBeTpAt8orIScr3j3wj8pPIcyKfqs/DyhxrostY5mWT+fzjiXwrnj+RZSiXfSrfRSw7TFWZ88f2FP+uP3eIfSi2r8OHD9e249im9+/fX/t7uQ+OdV7RyW2MfR5mhpGjAKBDe0dE5f3p06drP+ur/Ddv3lzrHRC9FuK50cMheglEb6X4W/QCmMx89eVwqDFUaymGdY73iV4K0Ztpor2/x4obn+PBBx+s9eCIf0fs6Okdnyt+j54Rkxnetb6XeixfxCqHqY6eFhEr/h3rJN4rejvEMLllb5D4jBOdKqQd3wkAAO0jJ58YOTkAMNdFfvP0009fn4qrzHPKUWci74pcxciVMDGR85dTWJZi34rzhvop7+J8IEZQilFv45xjIiPlAnOb4ihSxMEoLjg1Jn9xYIqEL4bXKxPAVi5DXOiKi1/lMpQHxjiAxvvHgVECCswG7TgBKG+61Lfl0WbGDYe4aTEdcUMiLhLExYJyeNbyAkHEn8rxodmNmFK8T3yW+mNC+X6xnuKG0GSHwHVSBgAwt8jJxycnBwAAAGYDxVFMS/Q+rO/xV17kikc5J2n93Kjl/Mt79+5Nm5c1Lu7F/M5jzQtbLy6IRY9JF8YAZrexbsQAAACtJycHAAAAZoPudi8As1MUPK1fv75WZBSFUNETsL+/vzh58mRtBKn4PUZxit/j7+WQ7FHAFAVVa9eurRU1TVeMBhU9ACNuvEdchIt6v/IR7x+9B+tHi4qehPWvAwAAAAAAAACgmowcxaTFaFBbtmyp/fupp56a8LDrURQVxVT1onBpKsPCR1FTLEMsS4wAFcVY402XF+8dy1AvXhPFXKbaA5h99FIHAID2kpMDAAAAs4HiKCZdlBSjPq1evXpKRUUxYlOM3FQvRpiaaIFVaePGjbXCqBgtKgqjJurJJ58sHn744Rv+FtP7nT59Om2aPwBmhhsxAADQXnJyAAAAYDYwrR6TsnPnzlqBVBQ0TWW0pRgparSYExUjQNWPGDUZUUzVOFJVvHcUWwEAAAAAAAAAUC2Ko5iwKCI6dOhQ7d9RTLR+/fqbRoEaT/QibByhKeLGiE4TcerUqdrUeOV0eFMRBVqNhV1lXABmp8kU2QIAAPnk5AAAAECnUhzFhDUWQkVBUUyTFz8no9mIUxMtdCpHnorRo6aj2esfe+wxF/IAZqm+vr52LwIAAMxpcnIAAACgUymOYsJGK4IqR5OaTnHUsWPHJvTacoSpmB5vOpq9PgqjDhw4MK24AMyMxmNPtOEx5SoAADAz5OQAAADAbKE4imkVNbVj5KqtW7emXGyLKf4aHTx4cNpxAWjNMWDHjh21EQtjWtf4d6OY8jUe8Zz4/5Md2RAAABidnBwAAACYrXrbvQDMHlGU1Mz27dsnFafZ1HWrV68e93Xl1HtxMS4utIX9+/dPeRSpZkVWjVMHAtAZ4tgRPdNXrlxZ+7382ShuvsQjnr93794ZXkoAAKguOTkAAAAwWymOYsLiotfx48eLnTt31oqKYuSlffv2TXpEqWa9BpuN4jSR1z388MO1IqepjGoVvRwBmB2iEHdkZKTdiwEAAHOWnBwAAACYrRRHMSlRxBQFUtPRrMjpoYcemtKIU+VoT1MZPWq00api+Vo5heCH3/+/pcX6w6Hn0mL97LL3pMVaPG8oLdb8nuG0WAsSYy3uzfuM567lNMU/vPpCkeWexW+lxXrHkjfTYn338qq0WF97Ky/W739nRVqs587OS4v13a430mKdH3k9LdaFi8+nxVqy5IfSYl24MP0pW0u9C+5IizV49dWOXK7/6T2bU+LctfhSkeXlS4vTYn21Py/WS+fzYr0+kBaq6C260mLdMi/vRumRK/82LdaF5/LyLma//2TTP06L9dzgF9Ni/Y3bfiQtVk933r740Tu/kxbrn7zwzrRYm24/nxbrn5++JSXOR+7Jy3c/eOu302Ktf/sLabHOns1ZV+GZb/1AWqzff635yEVTcfRy3vRvAyMX02LN61qSFqvv/O+kxVq1/ANpsc5e+P20WPMWviMt1sCVV9Ji3br0J9Ni/aOkU6D+gQU5gYqi+LFbTqbF+tt/+ONpsf7gat557A/23JkW62LeJaVifnderN+78q/SYl3+o4NpsaiGV/vzrlvO78k7l11+rT8t1sDiNWmx/oeVefnSh772h2mx/pMFedca/9W5nDxuXk9eQ/jAOxamxXrrqb+TFmt4KO++xtc+9itpsd6xbH5arJ7uvP168by8bWJFb966H+zKuyXfO3wtLVbRXf1SgXmv/UlarIv/9l+mxDm6+ZEiy2//4I+lxfobL+XdI5nXnbcvvndeX1qsa8venhbr7NWhjmy7Vi3Nux9RNYmnTzC+ZtPWxYhUE5mab7Th2icyJR8AAAAAAAAAAHOP4ihm1MGDN/ca2rt374ReG1PoNSuYimn1pqKvr3mVqWIrAAAAAAAAAIBqUBzFjIlp8Z588smbpunbvXv3hF4fRVBRXFVOeRe/Hz16dNQRpcZz8mTzIb+nGg8AAAAAAAAAgM5S/YlE6Rh79uy5qQip2UhSY4np9yYyBd9EnDhx87ypUx2FCgAAAAAAAACAzmPkKGbEoUOHbhg1Kgqjjh8/fn0UqHY4cuTITX/btm1bW5YFAAAAAAAAAIB8iqOYkcKoHTt23DCV3unTp9taGNU4vV9polP8AQAAAAAAAADQ+UyrR0ucPXu2NjLT/v37r4/QFKNFPfXUU2nT4k3Hvn372lYY9cK3/1lx8tX/a0qvXX/Hzxb33vlz6csEAABV9/Kr/6z41mv/fEqvfefbf6a46w55OAAATMVnHv/V4n984rEpvfaXdu8t/ptf/lT6MgEAMLcojiJFTEd36tSpoq+vr1YYVa+TiqLCiRMnastaL0axalYwBQAAAAAAAADA7KU4ihQxVV7jNHlRgFQ+Ylq9eM7DDz9c7Nq1q2innTt33vS3gwcPtmVZAAAAAAAAAABoHcVRpBhr1KUYqWnPnj216fWiOCoe8fyZmsau3pNPPllbnsbCqCjcAgAAAAAAAACgWrrbvQBUXxQeHT58+IYCqiiWWr9+/U3T27VSTPcXhVn1Ypk6Zbo/AAAAAAAAAAByGTmKGRMjRZ05c6Z44oknar9HYVQUSEXh1NatW1v+/jG1X712jV51750/V3sAAAAz5647fq72AAAAZtZ/88ufqj0AAKBdjBzFjIqCpJUrV97wt23btrV8BKlyWr92F0YBAAAAAAAAADBzFEcx4/bu3XvT36JAqlWefPLJ66NVBYVRAAAAAAAAAABzg+IoZtyuXbtu+luMHFVfwJTlxIkTxcMPP3z99/379yuMAgAAAAAAAACYIxRHVUBMF9fV1TXtx0yJafUap9YLjz32WOr7RMHVli1brv9+8ODBpoVZAAAAAAAAAABUk+Io2mLdunU3/e3s2bO1Qq8MEWvjxo21n+Hw4cPF9u3bU2IDAAAAAAAAADA7KI6iY4qjyiKmzMKoGKHq+PHjxdatW6cdFwAAAAAAAACA2aW33QtATqFRq6eLi0KjPXv2FAcOHKj9/uCDDxb79u1rOj3edIqjYiq86Yqp9CJOWRg12nu1y7zukbRYw4MDabEGh/NqJb9+dkFarI23nU+LtXT+UFqsSwN562th73BKnFcv5633N6/OT4v17StL02IdP7MsLdbQcN50oq9cWJQW62TxR2mx3rr45bRYRZGzndZ0521fl66eTotVjCS2z8OX02IVw3lt148t+EharCW9r6XE+b9evr3IsmTeYFqs1y/m7dfXEo+xAyN5x/67F+Ut17ev5MW6peddabGg3l2L8trTY2cvpMX61lt57c2r1/KO1+euvCMt1pZ39KXFOjeQdxnjXSsvpcT5wJrXiyz/5vV3psW66/ytabF+6+W8WHcsy8uTLg70pMU6f+2babEGL38rLVYxkrdfd/XmtTcXBl5OizUykpfDFUXeNjEymLet/nDP2rRYi3u+nhLnP55ZVWT5o/4fSov17at55+r3996RFutiXhpRPHBnf1qsVy8uzIs1/MG0WNDolqE/m+EhQ393Xvv1ateKtFjzr+Y1FB974VharPce/9/TYg2tyssJ77r3oylxDqzbUGS55+Xn0mJ1/Wd/Ny3WW9fycqUNa/LywUyXBvJy3oU9ebnE1ZG83DJxsYquwWtpsUbm551jd1/Ky3GGlqxJizVwR16uOnDxUEqcj5z9vSLLtotfS4v1rfN5157vWj4vLdbI5byc9+yn/6u0WCu/P+88r/dDP58WqygWJ8aqFsVRFRDFP/v372/pe+zYseOGKe+efPLJWgHSVEd6WrOm+UGtnAZvqrZt21acOHGitk6iMGqqxVsAAAAAAAAAAMx+ptVjXFGwVF8YVYq/TXWkpzNnzjT9+3SKmcoCrqkWRh06dKjo6upKGb0KAAAAAAAAAID2UxzFuMYqFprqSE+jvW6qU+A9/PDDteKmDRs2THnEqC996UvTWgYAAAAAAAAAADqL4ijGNVahURQjZRZcxbR4k/XEE0/UpvmLZTl69OiUR58qp+MDAAAAAAAAAKAaFEcxrtEKhvbv3z/lmMeOHbvpb1HUtHXr1knFiaKoPXv2TGvEqPplmmqxFwAAAAAAAAAAnUdxFBOyffv22s8oXtq3b19x8uTJYteuXVMeNarZtHqTjXfkyJHadHqxTFEYNR3lMhk5CgAAAAAAAACgOhRHMSF79+6t/ezr6yt27949rSKiZiNOxYhPUXQ1mSnwYgq+KNo6fPhwMV3le2/evHnasQAAAAAAAAAA6Ay97V4AZoeYbi5Gdopp7GK0pqlOqRejMz3xxBM3/f2pp56a1ChPW7ZsuR4viqSmIgq94vURr2TkKAAAAAAAAACA6lAcxYRFQdSxY8dqBVJRWBQFTTHi02Ts2LGj6ahN5bR944lipo0bN16fli+m1ssuAgMAAAAAAAAAoBpMq8ekHD9+vFZAdOjQoWLt2rW1QqnJFEY1FjNFYVRM0zeVwqhsRo0CAAAAAAAAAKgWxVFMqUAqCpqiSCmm2Fu1alXt52ijOEUh1fr162s/SzHi1OHDhydcGBV27tx5wxR42RRHAQAAAAAAAABUi+IopiRGfDp58mSxa9euWpFUjCC1bdu2oqurq1YsFcVQ8YjfY8SosqgpiqLitf39/cXWrVsn9Z6tGjGqZEo9AAAAAAAAAIBq6W33AjB7xUhL+/fvrxU7xahRMRLUsWPHaoVQZTFUPCcKoqIQKoqnJlsQVS/iAwAAAAAAAADARCmOYtqi+Gn79u21BwAAAAAAAAAAdArT6gEAAAAAAAAAAJWkOAoAAAAAAAAAAKgkxVEAAAAAAAAAAEAlKY4CAAAAAAAAAAAqqbfdCwBzzdBIV1qs93W/Py3WcDGQFuuupVfTYl0c6EmLdeby/LRYvd0jabFev7ggJc614bx617uWXU6LdWkob7lOnV2SFutq4nK9OnQtLdb8rrzPuGTxe9JiXbz01bRYixauT4s1OPxWWqyBobztfvmCd6fFum9hXqyPr30jLdbvvrYqJc7XzuW0geFt84fTYl0eyjv+fHXotbRYV7supcW6Y3BdWqyXi1fTYi0ulqXFgnoLe4fSYn185U+nxfrDy/1psf78moVpsS4O5F0u+J1v5xwzOnWb+H8//wNFlnODeeeLP7v2zbRYVxJz5//tO6+nxRoYOZkWa9n8vOPiha68/Wfwat4xds3Sn0iLdWEob7kGu/Parh+Z90BarO+758fSYr3/tu+kxfrHL9yTEuf4W3nXNd4qzqfFurd7RVqsL1z6V2mx3jPvp9JivZF4fepPzubtP/MSrw1Co543TqXFuqU773z9P8x7V1qs96/Oa1cvL8rbt996YFdarKuDeZ/xvS/+bkqc7z/3lSLLsdcupsXa/Pa8a7yDI/PSYn2zL+/ezfIFefviLYvyYl0bzttOF/fmnQfNSzz3H16Uly+NdOV9xpGv/l5arIGTefcj5n3yU2mxBv7y30mJ05936l+8cuZKWqy7V+Tlqa9fHEyLdfeVvP1n9ab702LN/4EfTYs1sGBpWixGZ+QoAAAAAAAAAACgkhRHAQAAAAAAAAAAlaQ4CgAAAAAAAAAAqCTFUQAAAAAAAAAAQCUpjgIAAAAAAAAAACpJcRQAAAAAAAAAAFBJiqMAAAAAAAAAAIBKUhwFAAAAAAAAAABUkuIoAAAAAAAAAACgkhRHAQAAAAAAAAAAlaQ4CgAAAAAAAAAAqCTFUQAAAAAAAAAAQCUpjgIAAAAAAAAAACpJcRQAAAAAAAAAAFBJiqMAAAAAAAAAAIBKUhwFAAAAAAAAAABUkuIoAAAAAAAAAACgkhRHAQAAAAAAAAAAldTb7gWAuea5oZNpsT6y/M60WN+5tCAt1roVF9NiXRzozGbqu4nr6z8MfD0lzi3FO4ss9/WkhSouDeTV4b5ydTgt1otdOes99BTz02KtKm5Pi/XCpf+QFmv+wrzta0H3irRYl6+eTovV3bssLdZ/uuD702L9wrvzPuMzL789LdbvnbuWEmfJSF6D09WV194cG/pGWqwrw31psZZ257URZwZH0mL1D51Ki3Vr94+mxYJ6p97Ky99+8s6zabHOvr4mLda6FW+mxfrOpbz85spQXvv8p31L02L97tV/kxJn7bwPFFl+6b68c6lNq15Pi/XM6VvSYp27+tW0WHcs+PG0WN8dyluuwauvpsXq6s3Lna+M5LVd1wbeSIs1MpyTV4Z3LM6L9TPv/E5arOP9ed/jb/T9TkqcpfPuKrL8xVvyzheffO2302IViecHt/fOS4v1b/uG0mKtKLrSYr0y8s20WNBoZHAgLdbAy19Ji/XuD7wvLdbVzz+eFuueH/9wWqyhNXenxXqzZ2VarO+u+09T4izLu1xcrPqV/zwt1n/9T/O207936WtpsdYsyrvfcvv8vP36W5fyrlG9bWneMfvyYN4Gdm1B3v6zaCQvl7g4mBaqWPZDW9NinbhzW1qsH/uDz6fFOv+en0mJM687L4f7wZcOp8V68wd+Oi3WigV5ufjQHx9Pi3XhA381LdbS3/snabFeX3pvWqy1i9JCVY6RowAAAAAAAAAAgEpSHAUAAAAAAAAAAFSS4igAAAAAAAAAAKCSFEcBAAAAAAAAAACVpDgKAAAAAAAAAACoJMVRAAAAAAAAAABAJSmOAgAAAAAAAAAAKklxFAAAAAAAAAAAUEmKowAAAAAAAAAAgEpSHAUAAAAAAAAAAFSS4igAAAAAAAAAAKCSFEcBAAAAAAAAAACVpDgKAAAAAAAAAACoJMVRAAAAAAAAAABAJSmOAgAAAAAAAAAAKklxFAAAAAAAAAAAUEmKowAAAAAAAAAAgEpSHAUAAAAAAAAAAFRSb7sXAOaaayMX02KduzovLdbV4a60WMMjebGGEpfr2nBePeiVobxYy4vbUuIsHVlYZOm/MpwWa2HvlbxYXXmHrWvDb6XFWtC9Mi3WLcXStFgvLXhbWqwlPXekxRpIbAe7uhakxfqh+R9Ni/U33vWttFiXh/La+q/0L06L9Z2R4ylxuou8z/fK1bx2cEGxJC3Wou5labHuKG5Pi5XX0hfFSDGUFutq10BaLKjXm5dWFs99Z0VarG8PXenIHPWOJdfSYv2HV/NypXetupAW66tnfiglTndiv7OLgz1psb721q1psZbmLVYxdPW7abFe734uLdb75m1Li/X8gqtpsVbN+76OzG8ud+Xluz3z16TF2rH29bRY87vz8pv/+NqqtFiLet/ecefE//TNvO1hXk/eMfbW7vvSYl3K2xyKM0VeO/j1q8+nxVq+IG99QaOhN76dFqv/x/9KWqxrA3lnxm+78+60WF/57/4/abFu338wLdbKI/8wLdbVDz2SEufaUN53OHQtr7Hf+dF702J1X7uUFmu4mJ8W683BvGt6qxflnVMlnvoXS+blLVfv+dfSYg0uz8kHw7f6885disTrvO++JS/WyNs/lhbrrq6cbeLq0EiR5cr9fyEtVpHYDmbuP4M/uiMt1sXLg2mxen7iP0+L1ZuYkzA6I0cBAAAAAAAAAACVpDgKAAAAAAAAAACoJMVRAAAAAAAAAABAJSmOAgAAAAAAAAAAKklxFAAAAAAAAAAAUEmKowAAAAAAAAAAgEpSHAUAAAAAAAAAAFSS4igAAAAAAAAAAKCSFEcBAAAAAAAAAACVpDgKAAAAAAAAAACoJMVRAAAAAAAAAABAJSmOAgAAAAAAAAAAKklxFAAAAAAAAAAAUEmKowAAAAAAAAAAgEpSHAUAAAAAAAAAAFSS4igAAAAAAAAAAKCSFEcBAAAAAAAAAACVpDgKAAAAAAAAAACopN52LwAwdV++ej4t1pJiSVqsW6/MT4vVf3VeWqwrw2mhitdHLqTFGi6GUuK83vWdIsvAxVvTYi3ozdse1i29lhbr+XMDabHOXvmjtFi3LL83LdbtxQ+nxeot8vbFbw+9khbrloX3p8X6ydsup8V66VJem/rlM0vTYr1cfDct1sXLf5oSZ97824ost/fmbfPXiisd186Hb458LS1Wb9fCtFhdRU9arDPFa2mxoN6rifnb/fMXpMV6bfB0WqxT59amxfrjc3k53IXENvXYlatpsYaKnNzyW8N5ueCnT9+RFusTa1anxfrw3W+mxTp8tist1sDll9JiXZ43mBZr6by70mKdG8r7jAMDfWmxentXpsW6szcvp784lJfTL+rJO2c8PvSNtFj3db03Jc4fDR4usizpzruGcPbq82mxBhfd3ZHnUpn79YYFH02L9bWR59JiQaOe+zamxVpx5H9Ni/XGA4+kxera/BfSYq3c+Mm0WFcHR9Jizf9Q3voaSVqsa0N5n++WJw+lxVozP2+5vv43H0qLtfJ/PZAWa1Fv3vgb37mYl4vfsjjvGtWFa3k3lVYsfltarMtX8q41Hnv1XFqsv/aOvPP1/3LlT6XF+h/OfSUt1vzP/2pKnJ6HPlVkGRjOa28uDeRt86sW5u2L8y73p8Va2LMiLdaSL+UdN4rN2/NiMSojRwEAAAAAAAAAAJWkOAoAAAAAAAAAAKgkxVEAAAAAAAAAAEAlKY4CAAAAAAAAAAAqSXEUAAAAAAAAAABQSYqjAAAAAAAAAACASlIcBQAAAAAAAAAAVJLiKAAAAAAAAAAAoJIURwEAAAAAAAAAAJWkOAoAAAAAAAAAAKgkxVEAAAAAAAAAAEAlKY4CAAAAAAAAAAAqSXEUAAAAAAAAAABQSYqjAAAAAAAAAACASlIcBQAAAAAAAAAAVJLiKAAAAAAAAAAAoJIURwEAAAAAAAAAAJWkOAoAAAAAAAAAAKik3nYvAMw13UVPWqxvDz6XFuve3h9Pi/W7l76bFmtdcVdarL7iUlqs7sTa0qxtYqB4q8jSPdKVF6sYSYu1dP5AWqxbeu5Li3WmK2+/7unKW18PLF+eFuvyYN5nvO3SB9Ni/citF9Ji3bnkalqsE28uS4v1+sUFabFuK/JiXVv8gZQ4F0feKLLcVtySFmtgZCgt1htdecfFS0OvpsXq7c7bTru75qXFujJyNi0W1LtW5LXzv3n2d9NivWfeT6XFevVC3r74jZG8c423deXlXb1F3mdcVqxJiXN2+HSRZWH3krRY37fyclqsuxblxepd+I60WCPDefv1xeJiWqxfuOPtabF+//V3p8X6nSv/R1qsne/Ia7tuW5R3nvcvXro1Ldbdy/OuISwrBtNivVK8khJn8FpejvrGwJtpsebNvy0t1ptDX0+Lde3Kt9Jidffm5eFvW5QWqjh/La+9gUbDi1akxRr88/9lWqxbu/OugRbHnk0LdeH7fjot1p1L8/LnTL09Oev+St4htujpytseTv8XfzEt1hf/9QtpsT46nHfteSAx1qWBvOtwy/7w82mx+n7wE2mxvvJGXm65btXCtFib7shrn1+Zn3cP4e9++mfTYl0dyttWFz70qZQ4fZfztvlX37qWFmvpgrzvsO9K3mecPy9vO028BVe89cdfTou16u53pcUqlv1IXqyKMXIUAAAAAAAAAABQSYqjAAAAAAAAAACASlIcBQAAAAAAAAAAVJLiKAAAAAAAAAAAoJIURwEAAAAAAAAAAJWkOAoAAAAAAAAAAKgkxVEAAAAAAAAAAEAlKY4CAAAAAAAAAAAqSXEUAAAAAAAAAABQSYqjAAAAAAAAAACASlIcBQAAAAAAAAAAVJLiKAAAAAAAAAAAoJIURwEAAAAAAAAAAJWkOAoAAAAAAAAAAKgkxVEAAAAAAAAAAEAlKY4CAAAAAAAAAAAqSXEUAAAAAAAAAABQSYqjAAAAAAAAAACASupt9wLAXLOq6460WBeGX0yL9crIN9JiXRs+lxbr9Z5labGuFJfSYg0V19JiLSqWp8RZUCwusizrmpcW643LPWmx1izKW+/v7rktLdbVrrxYFwfTQhUbbs/bF9+z/EJarNsXXEyLdXkob1s99FJe+3zm8vy0WAt7hvNiDebtj2eu/XFKnMGrrxZZ/nTJUFqspd1vS4u1vFidFuuu3q1psb5bnC060bnijXYvAhU1mJi/DQ30pcV6cd7X0mKdHLiSFuu93ZvTYr2auF+fHfl2WqyeIud4PTIyUGR5d2/eMePot0bSYt22+GparLXzPpAWa+nIwrRYRd7qKn545etpsf72ht9JizVvcd5lwOHBf50W62994efSYn3zYldarLtzTtVr7ulakxbr9y4dTYkzPJB3vnj7yo+kxVpWrOnIvPJdS34yLdYrxZm0WL9z9ctpsQaH866bQaOLC/NynJHEY3beVZKiGNn40bRY913Ia78Ge96eFuviQN41qsuDOV/k1aG8DeKO3stpsRb8L7+RFuuv/i9poYo3LuVdfB4azlv3axLz1O8c/d20WH9v298tqu7R7+Zc4w0DidvEgpVL02ItWdDTcdv9yoV5y/S2Iu9a0EhP3v2WMyOL0mIt6u3uyLbr/F/JayNGevPOZW9Ni1Q9Ro4CAAAAAAAAAAAqSXEUAAAAAAAAAABQSYqjAAAAAAAAAACASlIcBQAAAAAAAAAAVJLiKAAAAAAAAAAAoJIURwEAAAAAAAAAAJWkOAoAAAAAAAAAAKgkxVEAAAAAAAAAAEAlKY4CAAAAAAAAAAAqSXEUAAAAAAAAAABQSYqjAAAAAAAAAACASlIcBQAAAAAAAAAAVJLiKAAAAAAAAAAAoJIURwEAAAAAAAAAAJWkOAoAAAAAAAAAAKgkxVEAAAAAAAAAAEAlKY4CAAAAAAAAAAAqqbfdCwBzzf0Ll6fFOv3Wq2mxfnjBR9Ji/furv5kW61rPlbRYZ4deTIs1r3tZWqxlXWtS4ryrJydO6O0aSYt1ZSivDvf81Xlpse5deSEt1qlzS9JiDQx3pcUaTIy1ovdqWqxbFp5Li/Uf3rw7LdZrFxemxTo/kLfd37ZwMC3WK8WZtFib5+ccN+YvKNJcGhlOi9Wb2IfgWpG3XNdGhtJiLSuWpsVa0NWTFutKcSktFtT7iSV5udJvXMzbr396ybvTYj39xj9Ni/X1xXn5zfkrX0mL1dWdd7ye17sqJc4v3fWjRZbT5/KO+9+8mJcL/sm1vPOyD67I+w4vDOSdt3z50kBarK+ez9t/PrL8YlqsoSt551O/+833p8V69sIbabGGu/JypTOXb02L9crI+bRYdy/alhLnjkU5bWD2ecbqxBz1UvFWWqznhn8/LdaC7hVpsX5i/g+nxXpzIO+4AY0W9uRtX13DeflS7+ljabEu3v0jabGuLbo9LdbQ1bxzl+GRvNzr6lBOrK4n/laRZu+n00Kdu5qYk1zK2+ZXL8q7LXzLwJtpsb7dnXe+Pm/3P0iLVTz+3rRQf23LPWmxNj/1mbRYz1/J276Wzs+7Prj4Z3amxco704t9O6dNXTo/79rzG915950X9eQt1+C1vOPPt87nfYuL5uXlJO+49HJarK7BvOsuxfKNebEqxshRAAAAAAAAAABAJSmOAgAAAAAAAAAAKklxFAAAAAAAAAAAUEmKowAAAAAAAAAAgEpSHAUAAAAAAAAAAFSS4igAAAAAAAAAAKCSFEcBAAAAAAAAAACVpDgKAAAAAAAAAACoJMVRAAAAAAAAAABAJSmOAgAAAAAAAAAAKklxFAAAAAAAAAAAUEmKowAAAAAAAAAAgEpSHAUAAAAAAAAAAFSS4igAAAAAAAAAAKCSFEcBAAAAAAAAAACVpDgKAAAAAAAAAACoJMVRAAAAAAAAAABAJSmOAgAAAAAAAAAAKqm33QsAc83pyyNpsbp7V6TFennkTFqskZGrRSea170sLdatXfekxXrP/KUpcd657EKR5eJA3uHhjUsL0mKtX5n3GX9w1cWOXF8Le4fSYi2flxfr9atL0mK9fDlnmw9vXJ2fFuvsQHdHVp//m0tfTov1470b02INJB3OXhj+bt53OPLttFjv7bo/LdY7F+Qd+y8N5rU3/UPDabHOF1fSYp0dejEtFtQ7cyXvmNHduyot1pcuXU6LlXkEWtK1Oi3Whd68PPzOee9Pi3VHsSYlzpJ5fUWW2xbnnUs9e+k7abH+2/XL02J98NavpsX6f514X1qsH1qU10bctjDvvOWLf/Ln0mLdufBsWqyBkbz2ZiAxj1hV3J4W6x+98v9Ni/XJ2/9aWqzfuviNlDgvX/vdIsvI8LW0WG8tytuv//Ktb0+L9Y3+H0mL9fJgXlv/3YG0UMVz1/51XrDiryfGogrmnck7zxta8ba0WFfX/mharJ60SEWxqLsrLdaFa3nn/kvm5R3/rw7lXLd8+0f/fEqc0DWQd252JvGa5btP/JO0WH/wd/5pWqxrv3U4LdbAQN52uiYxr/+fzx5Pi/X72z6aFuv1f7I/Ldbih38tLdb8nry269tJ5+vhHf0vpcU615WTX15LvC67oDevbX7z8mBarLueP5AW69qf+0tpsa4mrvuh5Xk5yVtdC9Ni3ZIWqXqMHAUAAAAAAAAAAFSS4igAAAAAAAAAAKCSFEcBAAAAAAAAAACVpDgKAAAAAAAAAACoJMVRAAAAAAAAAABAJSmOAgAAAAAAAAAAKklxFAAAAAAAAAAAUEmKowAAAAAAAAAAgEpSHAUAAAAAAAAAAFSS4igAAAAAAAAAAKCSFEcBAAAAAAAAAACVpDgKAAAAAAAAAACoJMVRAAAAAAAAAABAJSmOAgAAAAAAAAAAKklxFAAAAAAAAAAAUEmKowAAAAAAAAAAgEpSHAUAAAAAAAAAAFSS4igAAAAAAAAAAKCSetu9ADDXvNnVlxarq3t+WqzB4lparO7uRWmxzo28mhZrVdc702K9rVieFuvWRZdT4gyPdBVZertH0mLdsTTn84X3rb6QFuvuRefSYvW+YzgtVk9X3rr/6vmlabFefCNvm1/Qk7e+rgzl1Xkv781brpcGBtNivavr/rRYK+bnLdfG23P2oXe/tbjI8k/fzDsunixOp8VaPXx3WqzbFl1NizVyeUFarFeH8trUweG8th7q/f7gH6XF6uqelxarr/h2WqyiO+8Uv2/oVFqsBT1r0mLdUqxKi7Xhls5rb64l5jYPLL4rLdZf++Fn0mLNv/ViWqydl1YXnej33shbrtNvLUyL9Y4lS9JiXR3O21YHR15Pi3Wu6420WEuXbkiL1ZN4jv1Xb8vZt89cvq/I8v9785+nxZpX5G3zPXmXSYqP3JO3bf2L07elxXpp6FJarOGhvPYZGr25NC8vWdmVd23j0mDetaAFPZ05FsHQSN4x6Fre6iruWJD0PQ4O5MQpiuLi4rz2eelI3nb6Sz/394pO9D8tzzsvvjCQt3F9+628beKdy/OuW77/V/5SWqyRxO3+W1fyttWly/OuzV5K3Caursq7Nvutl8+nxLlnZV7OOz+vmS/uXJq3Xw+89q20WF/56IfTYr3nX/ybtFjFUF6o7q7EkxdG1ZnZGgAAAAAAAAAAwDQpjgIAAAAAAAAAACpJcRQAAAAAAAAAAFBJiqMAAAAAAAAAAIBKUhwFAAAAAAAAAABUkuIoAAAAAAAAAACgkhRHAQAAAAAAAAAAlaQ4CgAAAAAAAAAAqCTFUQAAAAAAAAAAQCUpjgIAAAAAAAAAACpJcRQAAAAAAAAAAFBJiqMAAAAAAAAAAIBKUhwFAAAAAAAAAABUkuIoAAAAAAAAAACgkhRHAQAAAAAAAAAAlaQ4CgAAAAAAAAAAqCTFUQAAAAAAAAAAQCUpjgIAAAAAAAAAACqpt90LAHPNwmJxWqxF89+ZFuuO4va0WJcXvCct1vDIQEeu++G0SEWxcmHOZ7xwLa9JvzLYkxZrXk/e2jr87TVpsV6/eEdarFUL8rbTdyy7nBbr4kDe9/jlM0vTYi1MLM1evWAwLdalobwFu6Nnflqs7q6RtFjfv/qtotPctyJvm//w5e9Li3UxsR28NJi3bV0bzot1aSgtVHFxpC8vGLRIb9fCtFjL5t2TFuuekfvSYn130cq0WJeLtzoyp79cXEuLtXReTkP4e99eXXSire88kxbrV//jh9Ji/e+vnUuL9Z7uu9Jibb49b7lePJd37pnp331nWVqsdyzMSyTWFivSYp0vLqXFemfX3Wmxvm9V3vb1vpU5sS4P5V1DuDz4sbRYX7lyNS3WH343b19cOi/v3PONwbxYLw8/lxZreLDzzhepjuGRvGsbmXq6utJizR/Jy1NHEq8rDSeu+oGhvGBX5i1IifMnaz9SZFl9Ia99XvIP/uu0WP/g+SfTYn311h9Ji3XqXN42v2ZRXl4ykLjRLzz9+2mx3vzAX0+L1Zt4ff2uxP36wkDevaAFvXnt8+XBvOW693/+Wylx7n7o54os/e/Ly8VPJ+7Xt39sd1qs+85eSIt1LbGNGOpelBbrWuK+yOiMHAUAAAAAAAAAAFSS4igAAAAAAAAAAKCSFEcBAAAAAAAAAACVpDgKAAAAAAAAAACoJMVRTfz6r/968cUvfrHdiwEAAAAAAAAAAEyD4qgmHn/88WLLli1FT09P8clPfrL48pe/3O5FAgAAAAAAAAAAJklxVBMvvPBCcezYseLnf/7niy984QvFhg0bive///2KpAAAAAAAAAAAYBZRHDWKKIjav39/0dfXV/z2b/92MTQ0VPvbI4880u5FAwAAAAAAAAAAJkBx1ARs3bq1OH78ePH0008Xv/Ebv1EbRQoAAAAAAAAAAOhsvUUFPfvss8WJEyeKkydPFqdOnSpWrlxZbN68uTby06ZNm4rly5dPKe727dtrhVIbN24sPvzhDxe/9Vu/lb7sAAAAAAAAAABAjkoVRz3//PPFzp07a4VRjQ4dOnT931EkFUVO27ZtKx544IFJvUcUWh0+fLi49957i2eeeab42Mc+lrLsAAAAAAAAAABArspMq/fcc8/VRnSKwqiRkZGb/n/8rXzEFHlPPPFErTiqp6eneOihh4rf/M3fnPB7rVu3rlaE9dnPfjb5UwAAAAAAAAAAAFkqUxy1Y8eO68VPjcVQ5d+6urquP+r/X4wqFa+fTKHUT/3UTxXHjh1r+ecCAAAAAAAAAADm8LR6n/70p4tTp07V/h3T5UWh0+rVq2tT4J09e7b2/770pS8VR44cqf1eiiKpUllAFYVS5RR8Dz/8cLF9+/amU++V7wcAAAAAAAAAAHSmShRHPf3007VCp8OHDzctZKp3+vTpWpFUPLe+WKpZodT+/ftrj7Bhw4badHrxiMKoKKCKQiwAAAAAAAAAAKAzVaI4KoqVRhvhqdHatWuLnTt31h7hueeeqxVXRbFTORpUWShVFkmF48ePFydOnLghVowsBQAAAAAAAAAAdKbuogJi9Kdt27ZN6bX3339/8fjjjxcvvPBCrQDq0UcfLVasWHG9MCoKpcpHiL/HY9euXcXHP/7x1M8BAAAAAAAAAADkqURx1MqVK1PiRKHUvn37ir6+vlqhVIwuVRZKlY+YVu/gwYPFP/yH/zDlPQEAAAAAAAAAgNaoxLR6UbB08uTJ1JhRKLV///7a49y5c7WCqZiSD6Zr6cjCtFjv6ro/LdbgyHBarBVdt6bFen34q2mxzvTMS4v1/qX3pMVaNn8oJc7FgZ6UONmxvnUh71BztRhMi/XKSN62NTRwLS3WHRfflRZraZHX3uRFKoq+obzvsfta3va1vDdnXwxvXsvbh+5aMpAW6/8eCDPFC2cXpcR549KCIss7ll9Oi/X27u9Nr9xJbeqL5xenxco78hfF/K685Vow791psaDe24q70mJ9YHXeMePVC3l9ll69lnfMOHvlj9JidfcsSYtVzFufFupn73wlJc5bicf9F84uTYv1D17M207nF3nnUueHvpUW64XELPUbr+Wtr/f0rEiL9fLQpbRY54vvpsW6u/u2tFjzu/Jy+leGTqTFuqP3J9NivWPxlbRYf3RueUqcY6/nbafvvfWttFi3Xc5rb755Ni1U8e9eW5UWa6Ar7xrC23rekxZrcNl9abGg0cLevJz3rad+JS3W6p/5ZFqs/lvfmxZraCjzjD3Pyf6849m/eNf7U+L8ct+fFFkuD+at9+Ff+vtpsc7Py9t/3pEWqSiWXXo9LVZfcXtarHf3nEmL9drbN6fFKobzrjWuufRqWqyXet+WFuutq3nnVAsSjxtr/uWvpcW68yfelxLn0qa82aluOfPNtFgXFuXVQvzpm3nX6r//r//3abEyD7HLu/I+4+IFedfXqfjIUZs2bSqOHDnSsvgxepTCKAAAAAAAAAAAmF0qURy1a9eu4sSJE8VLL73U7kUBAAAAAAAAAAA6REcUR33oQx8qHnrooeLXfu3XihdffHHSr9+wYUNxzz33FDt27GjJ8gEAAAAAAAAAALNPRxRHHT58uDh06FCxZ8+eYv369cWaNWtqxVK//uu/PuFiqf379xfHjh0rnnnmmZYvLwAAAAAAAAAA0Pk6ojhq3bp1xcjIyPVHf39/rVjq4YcfvqFY6jd/8zeL8+fPN42xdevW4tFHHy22b99efPGLX5zxzwAAAAAAAAAAAHSWjiiOWrlyZe1nV1fX9UdoLJaKafNWrVpV3HfffcUv/uIv3lQstW/fvuKBBx6oFUopkAIAAAAAAAAAgLmtY0aOKtWPIDVasdTJkyeLJ5988oZiqb1799YKoj7/+c8XO3furBVIfeYzn2njpwIAAAAAAAAAAIq5Xhy1evXq6//ev39/7bFr165i7dq1oxZL1f89iqWeeOKJWkFUFEsdP3689vfdu3cX73//+4svf/nLbf18AAAAAAAAAADAzOstOmhavRhBKkZ9CuXPc+fOFUeOHCkOHz5c+3nq1KnrrytHlApRDFU6ceLE9QKqY8eOFRs2bKiNMvXggw/WCqiWL18+g58OAAAAAAAAAACYs8VR69evv2l6vdKKFSuKT3ziE7XHZIqlyt/L0aUOHjxYe4Qolooiqc2bNyuWAgAAAAAAAACAiurtpGn1yhGkxjLZYqlmo0vFtHsxulQpirKiSGrbtm21wql77rkn9fMBAAAAAAAAAABztDgqCpNGGzlqPFMdWap+Gr6TJ0/Wnvfkk09eL9Iqi6Xip2IpAAAAAAAAAACYfTqiOCoKnIaHh9NiTbdYqr+/vzh06FDtURZLbdq06Xqx1Pve976UZQUAAAAAAAAAACpeHNVKUy2Wqi+YimKpeG48Sjt27Ch+4zd+Y8Y+BwAAAAAAAAAAMDmVL46aTLHUsWPHihMnTtzw/NFGlzp48GBx9uzZ4rd+67dmcOkBAAAAAAAAAICJmnPFURMplooiqXJkqdGKpaJQKp4DAAAAAAAAAAB0pjlfHNWsWGrLli21x3jFUuVzAAAAAAAAAACAzqM4apLFUuHo0aO1n4qjAAAAAAAAAACgcymOmgJFUUzH/K6etFjXRobSYp3vupQWa7AYSIt1S899abFWjaxKizWvJ2/dXxnsTomzsHe4yPLG1bztdPGfzUaa4s2Rt9JiXRx8JS1WV1fOdxjO9q5Ji7WyeGdarEsjg2mxlnbnpR/zu/O2++Eib2N95+K8dnDZ/Lx1f+rs4rRYhy98JyXOD/XcVWQ5d2VeWqx3r7mYFmvTLefTYr381qK0WKvnjaTF+uZA3r64qrg1LRbUu29+XhvxwtmFabFeGc7Lwy+OvJEWq6trflqsRb1vS4v1iTsvp8Xq7crJ6VctzDtWD+Q1zcW93belxfrS0PG0WJcv/WlarFd6X06L1dO7Mi3W24rb02JdK66mxXpP951psS4P5h371y3Jy53fPviBtFjvWXM2LdaX+5amxfo/3sg5l12deFn4losL0mLdszyvnb9zad7+809ezjsuru9dkhbr9GDeur9/4fK0WNBoed8302IN/6X/Ki3WlaWJx+yredeLLySeY+ddtSyKjX/8f6bF+j+Tcomll79bZFmQuD0kpvVF/5W8bWt+T971z3OL8tbX5cRt/q3Feeef84fzvsnl8/P2xkvz35EW650DefdcFs3Ly3Fuf/VLabG6fuJn0mKdv/XdKXHeuJR3HWHRrfemxeq9nLcvfvWNC2mxblmcl4vfujjv/mfXlbz9Z+QPnkmLVfzUz+fFqpjMvAgAAAAAAAAAAKBjKI4CAAAAAAAAAAAqSXEUAAAAAAAAAABQSYqjAAAAAAAAAACASlIcBQAAAAAAAAAAVJLiKAAAAAAAAAAAoJLaUhz1a7/2a8XmzZuLT33qU8WLL77YjkUAAAAAAAAAAAAqri3FUZ/97GeL48ePF/v27SvWr19fK5T6zGc+U5w/f74diwMAAAAAAAAAAFRQW4qjDhw4UGzZsqUYGRmpPaJQavfu3cWqVauKD3/4w8UzzzzTjsUCAAAAAAAAAAAqpC3FURs2bCgOHz5c9Pf310aRit/LQqn4+/bt24uenp7ik5/8ZPHss8+2YxEBAAAAAAAAAIBZri3FUaUVK1YUu3btKo4dO1acPHmyePTRR4u1a9deL5Q6ePBgsW3btmLNmjXFI488Ujz//PPtXFwAAAAAAAAAAGAWaWtxVL0oitq3b1/xwgsv1KbZ27lzZ614KoqkYoSp/fv3Fxs3bizuu+++4lOf+lTx4osvtnuRAQAAAAAAAACADtYxxVH17r///loxVF9fX22avU984hPXR5OKEaaiiGr9+vXF5s2bi8997nPF+fPn273IAAAAAAAAAABAh+nI4qh6W7ZsqU2vNzw8XBw4cKDYunXr9UKpGGEqpuVbtWpV8eEPf7h45pln2r24AAAAAAAAAABAh+j44qh627dvL77whS/Uptl7/PHHiw0bNlwvlIoRpuL/9/T0FJ/85CeLZ599tt2LCwAAAAAAAAAAtNGsKo4qrVixoti9e3dx7Nix2jR7jz76aLF27drrhVIx0tS2bduKNWvWFI888kjx/PPPt3uRAQAAAAAAAACAGTYri6PqRVHUvn37ihdeeKE2zd7OnTtrxVNRJBUjTO3fv7/YuHFjcd999xWf+tSnihdffLHdiwwAAAAAAAAAAMyAWV8cVe/++++vFUP19fXVptn7xCc+cX00qRhhKoqo1q9fX2zevLn43Oc+V5w/f77diwwAAAAAAAAAALRIb1FRW7ZsqT3Ck08+WRw6dKg4cuRI7fcYYWrXrl21R0y/9/DDDxcf+9jH2rzEzBXzu7rSYp0trqXFuq1Ynhbr1WIgLda93WvSYi3oHkmLNTg0nBbr3NWcpvjiQF6T3l9cSYv18vBX0mJ1Jdb0jhR532FXMS8t1lDi/vON4k/TYv1Q97vTYt2xOK/tWjJvMC1Wd17zXNyyKO8z/vvXVqbFOjOSt1xvXP79lDinFuV9vsXXlqTFeu/yvCL6e5d9Jy3WG3fPT4v16qW8WK+/tjYt1vBIXvsM9V6/lpdHfHno99Ji3d2zsehEH132kbRYr1zLO8h2d59Li/X8udtS4rx5OS8XPDV8Ji3Wa4NfTos1NJR3XOyetyItVm9vXqzhkby88mvDf5gWa9vCzWmxFvTmnWssTczDF/YOpcUaurwgLdavv9qfFqtvIO/cbODiyZQ4by3Oy9++feGn02I9+gPPp8W6867TabFWzt+aFuvi4NW0WPNeXZUW6ytX8q4FQaP+VfemxTp3Je+4sfhqXqy8K89FcU/vpbRY3x7Ou1Zy7Y3vpsXa9bPflxJnZMGyIsulwbzrET2J94F6Eq9ZLkwM1pN4MfXyYN4eNDySF2vVtbzzs/4i715X4kcsinl5+9BzL+edN65fk3etZChxhb1teKTjvsOzeZf8i3O/sCMtVteRvNm8lp86lhZr1Rt/khar6Mq71njhx/5iWqyFaZGqp1IjR40miqC+8IUv1KbZe/zxx4sNGzZcH1EqRpjavn170dPTU3zyk58snn322XYvLgAAAAAAAAAAkGBOFEeVVqxYUezevbs4duxYbZq9Rx99tPa3slDq4MGDtZGk1qxZUzzyyCPF88/n9VQCAAAAAAAAAABm1pwqjqq3du3aYt++fUVfX19tmr2dO3deL5SKEab2799fbNy4sbjvvvuKz3zmM8WLL+YN/QYAAAAAAAAAALTenC2Oqnf//ffXiqGiUCpGj4pp9srRpGKEqRhtav369cXmzZuLz33uc8X583lzpgIAAAAAAAAAAK2hOKrBJz7xieLAgQO10aM++9nPFhs2bLheKHXixIli165dxapVq4oPf/jDxTPPPNPuxQUAAAAAAAAAAEahOGoUMcVeFEIdO3asVij1+OOP16biKwulDh8+XBthqqenp/jkJz9ZPPvss+1eZAAAAAAAAAAAoI7iqAkWSsXUei+88EJtmr1HH3209reyUCqm4tu2bVuxZs2a4pFHHimef/75di8yAAAAAAAAAADMeYqjJilGj9q3b1/R19dXGz1q586d14ukYoSp/fv3Fxs3bizuu+++4jOf+Uzx4osvtnuRAQAAAAAAAABgTlIcNQ1btmypFUMNDw8XBw4cKLZu3Xq9UCpGmIrRptavX19s3ry5+NznPlecP3++3YsMAAAAAAAAAABzhuKoJNu3by++8IUv1EaP+uxnP1ts2LDheqHUiRMnil27dhWrVq0qPvzhDxfPPPNMuxcXAAAAAAAAAAAqT3FUshUrVtQKoY4dO1YbPerxxx+vTcVXFkrFVHxRSHXLLbcYSQoAAAAAAAAAAFpIcVQLRVFUTK33wgsvFMePHy8effTRWvFUFEn19fXVCqgAAAAAAAAAAIDW6G1RXBrcf//9tce+ffuKo0eP1v72wAMPtHuxAAAAAAAAAACgshRHtcGWLVvavQgAAAAAAAAAAFB5ptUDAAAAAAAAAAAqSXEUAAAAAAAAAABQSYqjAAAAAAAAAACASlIcBQAAAAAAAAAAVFJvUWEvvvhicerUqWLdunXFPffcM6nXfv7zny9++Zd/udi2bVuxZ8+e4u67727ZcjK3rF9+JS/Y+cVpoe5cNJAW65VLQ2mxvjN8LS3WexZ2pcW6OtSTFmtNb85nvDY0XGRZVCxIizWvK287vTb8Vlqs4aGLabFGuq525JF5XrEwLVbe1lUUy+YPpsW6O7FNvTCQVzPeldfcFC+MvJYWa7DIa+tHhi+nxOkvXi+yDBf3psVaPT/n84ULA3nt4Lcu5LXP567mNTg/uCLveN3TNZIWC+r98Kq8/fqt/s1psd4s8tr5u7p+IC3WpcR899bevP16WW/eucYffHdFSpzB4bwDf28xLy3Wgp5VabEuj+TluyODeceM4ZG8vHLZvMldNxpLV5G3/wwXedvXD9+adz61sCfvDOFLr+fsi+GWRXnbat/Zr6bFGho6X3SazHPigcR28M67T6XFev7rG9Ji/UHidnrnsrzz2LcvyYv17jV554vQaEFP3jWXBYm55VfeuJQW6yduy2sLuy+cSYvVtXhJWqxv/ubvp8Va/o+fSYnTP5KXdxWJlyPmJ17jnd+TeL7RnRerJ/HezYoF84uONJKX8y79rb+fFmvoo/91Wqx/9628PPXtyxZ05HY/lLhv9yTtQ7mfL+8D/sNDf5oW66NfyTtmfOtcXnvztrRIRXH5be9Ni7XiWyfSYhXv+nN5sSqmkiNH/fqv/3px3333FevXr68VN8XPRx55ZFIxtm7dWnz84x8vfuM3fqNWXPXJT36yeOutvItIAAAAAAAAAABAa1WuOOpDH/pQsWvXruLkyZPFyMjI9cf+/fuLZ599dsJxVqxYUezbt6/o6+srnn766eILX/hCsXLlyuKLX/xiS5cfAAAAAAAAAADIUaniqAcffLA4cuRIrRAqdHV11R6lmGJvKrZv314rknrggQdqI0opkAIAAAAAAAAAgM5XmeKo5557rjh06FCtMGrnzp3F/ffff9NzNm3aNK33OHz4cK1AKoqlTLEHAAAAAAAAAACdrTLFUXv27Ck2btxY/PzP/3zt94MHDxbLly+vTakXdu/eXbzvfe+b9vtEgdSqVauKHTt2TDsWAAAAAAAAAADQOr1FRUaNOnr0aK1wqbRu3bqiv7+/OH36dLF69epixYoVae8XhVa/+Iu/WLz44ovFPffckxYXAAAAAAAAAADIU4mRo2IqvRBT3jVau3ZtamFU2LVrVy3mk08+mRqXqTly5EhtJK8YOSxG9erq6irWr19fbNu2rXjiiSeKs2fPtnsRAQAAAAAAAABog0oURx07dqzYunXrjL7npk2biuPHj8/oe3KjKHwqi6CiQCpGC9u7d2+tWG779u1FX19fbbrFKJiK55w6dardiwwAAAAAAAAAwAyqxLR6UfSyefPmGX3PDRs2FJ///Odn9D353vddX+wU0xxGUdTKlStvem4UTT388MO1n1FItW/fvtrzAQAAAAAAAACovkqMHBXTpkXhy0xas2aNkYja4MSJE7Xp88p1f/DgwVrBU7PCqBAjip08efL6yGIxklQUSwEAAAAAAAAAUH2VKI6KwpgzZ87M6HtGwc1oBTm0rghuy5YttZ+hnD5vIg4fPlybdi88+eSTtSn5AAAAAAAAAACotkoUR0XRS0ybNpMOHDhwvdiGmbFjx47rhVExreGuXbsm9foopirFCFJG/gIAAAAAAAAAqLZKFEetXbu2Nt3aW2+9NSPvd/To0VqRjuKomRPFb/UFcHv37p10jJhaL4qq6outAAAAAAAAAACorkoURz300EPFyMhIsXPnzhl5v4cffrjo6uqqvS8zI0Z6KsV0hhOdTq9R/XcWBXXxAAAAAAAAAACgmipRHFUWyhw8eLD43Oc+19L3iuKacjq2j3/84y19L5oXMcUIUFPVWFRVP9UeAAAAAAAAAADVUoniqBCjRsXoUbt27WpJgdT58+drhVFRgBWjRsX7MDMaC5g2b9485ViNUyE++eSTU44FAAAAAAAAAEBnq0xx1BNPPFGbbi1E4dKHP/zh4qWXXkqJ/Zu/+ZvF2rVri0OHDtV+j/fZt29fSmzGd+DAgRt+37Bhw7TiNRZIld8rAAAAAAAAAADVUpniqBUrVhSPP/54bfSocPjw4VoRTBRJPfvss7WRnybjxRdfLH7t136tuO+++4odO3YU/f39tdgxatRTTz1VLF++vEWfhHoxheHZs2fHLG6arMbiqthWAAAAAAAAAACont6iQmLEqJMnTxaf/vSna0VMUcwUhS9l8UsU1URhTPxcs2bN9ZGmQhTgxGujGOfYsWPXC3LKYqsy3u7du4uPf/zjbfqEc8+RI0du+tt0i6NWr1497nu00v+9SXVcdeO14bxobwx9PS3Wqu4fTYt14Vpek9fVlfdFvnZhYUqcy4M9RZaFiVvXLcU702INdg+kxXpzwby0WFeH+tNiDY5cSYvV1ZX3PT4//FxarFf716fF2nh1WVqse1deTIs1vzuvjXhbcXtarKvFYFqsN3tXpcTZsmh6x/V6P/K2vrRYCxLbm6++dUtarDcvz0+Lde5qXjt4bSivvVm98FpaLKj3zXOL02J98JYLabG+2rc2LdYXz+ZNG/7Ksrw8/D+Z94NpsZ57o/M6Kn3jQt55xrVich27xtJT5B0zeruXpsUa6s07ZoyM5OU2QyN5x/6rw99Ji/Wv3/pqWqzfvrQkLdaPzduWFmtJT17uvPlt59JiLXzzbWmxbp//gbRYL1z9Jylx1i/66SLLT9yZd0780un70mI9+9287/DNK4l5+LW8PHxR71BarLOJ5wfQ6GT/1bRYd/+Lx9Jirdv+36bF+s5QV1qsgYV3pcVaNT/vmvGd//iptFjXluW0Oa9dyMvheroTv8PhvFiDw3m5UuLtqWJ+d95xI29txX2S4bRYF+blXdO78MG/lRZrJHG7P3Mp7zrc1lvyluv0UN65/5pFee3g1cGcveiNS3nral533jn2p978k7RYz57Ou1Z/z6pFabH6lrw3LdaKy3nnQa/f9sNpse5Mi1Q9lSqOCjHdXRQ2xehOUdBUX+BUFj+Np3x+qI+xZ8+e4rHH8hJvxteKUZ3qi+LCRLYJAAAAAAAAAABmn8pMq1dv//79xYEDB2oFTeVUeOWj/NtYj2bPP3jwoMKoNmgsXGosbJqKGDWs0YkTJ6YdFwAAAAAAAACAzlLJ4qiwffv24oUXXig+8YlPXC9wCvWFT6M9QvmaiBMjTkUc2l8c1Tgl3lQ0K7AyehQAAAAAAAAAQPVUtjgqrFu3rjbiUxQ37dy5s1ixYsWERo6K5+3atav2uhiBau3ate3+KHNWTJE4ExRHAQAAAAAAAABUT28xB0RxU0y1F4/Tp08XR44cqRU+ReFNX19fbTSiGE1o/fr1xdatWxVDdXBhVMa0es1Gnzpz5sy04wIAAAAAAAAA0FnmRHFUvSh8ilGk6HxRuDZTjBwFAAAAAAAAAFA9c644itljpqbUm2knTv/L4rkX/9WUXnv/PR8pNqz9aPoyAQBA1Z389j8rTr36f03ptevu+Nli/Z0/l75MAAAwF3z2f3y8ePLv7ZvSa3f9P/cUv/BLv5y+TAAAzC3d7V4A6ISRo6paiAUAAAAAAAAAMJcpjmLOWblyZbsXAQAAAAAAAACAGaA4CgAAAAAAAAAAqCTFUcw5ptADAAAAAAAAAJgbeos55vnnny+OHDlSnDlzpjh16lStUCamWVu3bl2xZs2aYuvWrcX73ve+di8mRVGsXr26qKINaz9aewAAADNn/Z0/V3sAAAAz6xd+6ZdrDwAAaJfeuVIQ9dhjjxWHDh2a0POjWOqhhx4qdu/eXdxzzz0tXz4AAAAAAAAAACBfd9WLoj70oQ8VGzdurBVGjYyMTOjR399f7N+/v1i/fn3xyCOPFOfPn2/3R6HFU+JFQRwAAAAAAAAAANVS2eKoT3/607WiqJhCryx66urqmvCjfE0UScWUe1/84hfb/ZHmnFYVLPX19d30t/iOAQAAAAAAAAColkoWR8VoUb/8y798U1FUmMjIUaG+SCqKabZu3Vp85jOfafMnm1tmsmBpzZo1M/ZeAAAAAAAAAADMjN6iYh566KHi8OHDtX/XF0SVIxFt2rSp2LBhQ60YJn5fvXp1rfgppms7c+ZMceLEidpoU6X6GLt376695m/+zb/Zls82F8X6rp9Kr9moTxlT85lWDwAAAAAAAACgeipVHLV3797i4MGDNxQ0RdHLrl27akVT999//4RjPffcc8VnP/vZ4qmnnqr9Xo4iFbFiRKMPfvCDLfscfE8Ur9UXMzUrbJqsKIJrFEVzAAAAAAAAAABUS2WKo06fPl3s27fvehFTFEVFsdSjjz46pXhRSLV///7aY8+ePcWnP/3p67Effvjh4hvf+Eb6Z+BmMcrXqVOnUmM2K7CaySn8/sX5l9NibVmUt9yL5w2mxbr7ysa0WLd2z0uLNa97KC3WmkXX0mJtuPWtlDjnB3qKLK9eXJAW62t9S9NiPTec1/b2FPPTYg0OTr9ws3S5K2/G2+Hhq2mxhgbPpcU6NfwnabH6ix9Ji/XGle9Li3X7woG0WHcv/LMRMDNcGsxrU1cUP5MS575VefvPplU3F0BP1dBI3r74h28sT4v12sWFabEW9eQdF78zmLedDl7OOwZBvd+9eCAt1i0LPp4Wa+2yy2mxLgz/fFqs71+Wdyzru5LXRszrGU6L9d9v+PcpcY6+9p4iy7E3l6XFOvjm4rRYF4bzzmOHh/K2+WIk7zz24kjetYfhoYtpsUaGLqXFGhx6JS3W7y/Lyyt/tPjJtFj//PQtabGWdOWt+ytF3jaxaNkPp8R5ZF3evvjXfuh302ItfMf5tFjf+UZe+zww/GedcTO8PJh3rt5/Le8caLjIOz+ARisX5l23LP7yf5cWanXerl0sHsxr63teeS4t1tm1fy4v1qLb02L9ypJ3p8T5+//+14osfe/582mx3rycl6euStx/Lg/knZstWpR37ezaUN5y9STu1/Pn5X3Ghb2dub4++n1r0mK9cCHvOkL/5YGOXF+Dwzmx7n/jPxZZ/stNf6voRH/37Fc6cr9+/WJe+3x5ft51/3OX83LxO1elhaqcvJa4zaJgKUTxUhTURLHUVAujGkXR1QsvvFDcc889td9PnjxZfOYzn0mJzdg2b95809+mO3pU49R8URhlWj0AAAAAAAAAgOqpRHFUFEIdOXKkNrLTjh07imPHjhUrVqxIfY8ooDl+/HhtRKkowPrVX/3V1Pg0t3Xr1pv+Nt2RpBpfP5OjRgEAAAAAAAAAMHMqURx16NCh2s8YMerpp59u2fvE6EJHjx6tFV7F6EXPPvtsy96L4vp32iiK3zKLo6KgDgAAAAAAAACA6qlEcdThw4dro0Y99dRTLX+vKJA6ePBgbfSo+Enrbd++/YbfY1rDqYqitsZp+R588MEpxwMAAAAAAAAAoHNVojgqRgKKEYbe9773zdhUbzEV23RHMGJi9u7de8PvMYXiVDW+NgqvouANAAAAAAAAAIDqqUxx1KZNm2b0PT/xiU/cND0brRGFb/XT6504cWJao4zVe/jhh6e1bAAAAAAAAAAAdK5KFEfFyD8zPfrPvffee9P0bMzc6FFPPvnklOLUvy4KrmIUMAAAAAAAAAAAqqkSxVGrV69uS6FSTK3HzIjp7+pHj9q3b9+kYzzxxBM3/H7w4MGUZQMAAAAAAAAAoDNVojgqimaOHDkyo+958uRJxVEzLIqZyhHCYkrDxmKnsUTx3J49e24orvL9AQAAAAAAAABUWyWKox588MFascxLL700Y+956NChG0YyGs/zzz9fPPvssy1dpqqLYqajR49e/z2KneJ7mEhh1JYtW24ojNq9e3fLlhMAAAAAAAAAgM7QXZUp11asWHHDyECt9PnPf744ffp0sXfv3gm/5oEHHih+6qd+qqXLNRdEQdrx48evj/q0Y8eOMUeQOnHiRLFx48baz6AwCgAAAAAAAABg7qhEcVR4/PHHa9OuffGLX2zp+5w7d67YuXNnrSBr+fLlk3ptFHCRUyAV0xpGkVNMsxdFcatWrSoefvjh4sknn6w94m9RFBWPGFUsvq/yNQAAAAAAAAAAzA2VKY7atWtX8b73va9WBNPK6fVierbVq1cXTz311KReF1O7kStGgerv768VxW3durU4duxYrSiqLJIKUQwVI03Fc8rRpgAAAAAAAAAAmBt6iwo5evRobaSgKII5cuRI8cEPfjAt9osvvlhs27at6OvrqxXbTGbUqOeeey5tObhZFMTFAwAAAAAAAAAAKlccdf78+drP7u7u4tChQ8WOHTtqIwnFCEJRNBMjPU1VTMn29NNP1+KGGIEoRoF6/vnnx31tFFLFc2M0IwAAAAAAAAAAYGZVojhq5cqVRVdX1w1/GxkZKfbv3197ZIh48R5ReDWV1wIAAAAAAAAAADOru6iAmEYvCpDqH1HI1Pi36TzK4qvpvBYAAAAAAAAAAJg5lR05KrSiKEmhEwAAAAAAAAAAzA6VKI5avXr1DaNFQSfre+t382J1f19arFULr6XF+unbhtJi3broTFqsBT157cPdiy+lxVq3JOczfuOtW4ss37/sYl6slXnr6tZX16bF+u1LL6TFWr7gXWmxLg29mharqytvgMiu7oVpsYavvpkWq//y8bRY/673dFqs+4b/07RYH1id1z5nlnifvTI/Jc6ZK/OKLF97a2VarIHhvP3nj/uWpsVa3jucFuub1wbSYr0w+B/SYt1evDctFtQbuvrdtFjHLr+VFmvHyrz25u/dm3cse/1qXtvVdy3nmBHetyLve+z61Zw29b3/Vd4yfew9v5cW61cu5n2H/+0f/GRarH/0+m+lxeruXZYWa3go7xyoqysvvykS8/CRoatpsa5e/EZarN8t8mLdufwvpMX6vq670mK9O/G8+OtnP5AS55WL54ssX3zh/Wmxek7m5btf789rB3sST6a+OZB3bXDwWt4xaOlieTits2ZR3q2o717MO5e958pLabH+i7vzjkG//OhPpMV6+69sTot16Z8+UXSab3/+n6XF2vfn/nbRif7+m3nXXF4vlqfFOn817z7Qwt688+LuDh3kYkFiMpH5Ea8O5t03W70wr63/9vm8c5d7Vi5Ii3X+ak6uOnLP/UWWf/BHn0uLdenY76TF6pmXt19fGMg7R+hO3H/mJ+7Xaxb1pMViDowcVdqwYUOxb9++2lR7UTTVTn19fUV/f3+xa9eu4sSJE21dFgAAAAAAAAAAmGsqURwVhVClZ599tli+PK/yeTpWrFhRrF27tjhw4EBx7733tntxAAAAAAAAAABgTskbz6yN1qxZc71IqlMKo0Yr3gIAAAAAAAAAAGZGd5Wm1aufXq/TdPKyAQAAAAAAAABAFVViWr3Vq1ff8LMTjYyMFOfOnWv3YgAAAAAAAAAAwJxRieKoT3ziE8XJkyc7ujjqxIkT7V4EAAAAAAAAAACYUypRHBXWrl1bdLJOXz4AAAAAAAAAAKia7nYvAAAAAAAAAAAAQCsojgIAAAAAAAAAACpJcRQAAAAAAAAAAFBJHVMc9Yu/+IvFpz71qWI22Lt3b/HII4+0ezEAAAAAAAAAAIDZUBy1f//+Yt++fcVsEMsaDwAAAAAAAAAAoHN1THHUbLNy5cp2LwIAAAAAAAAAADAGxVFTcPbs2XYvAgAAAAAAAAAAMNuKo86fP190snPnzrV7EQAAAAAAAAAAgNlYHHX06NF2L8KYjhw50u5FAAAAAAAAAAAAJqC36DA///M/X5w6daq4//77i05z4sSJ4rHHHmv3YgAAAAAAAAAAALOxOKq/v7/YvXt30alGRkbavQgAAAAAAAAAAMBsLI7q6urq6AKkTl8+5paXhy+kxeo+vzQt1nvWvJUWa3HvcFqslfMG0mKNjHSlxfpXr92dEufrfUuKLCsX5q2rty+5lhbrI3e/kRZr4atr02L9y3PfTou1tDdnewjXRvL2xQsX/qDoRMsW/kDRifqLM2mxrgyuSYt1z4rLabEuD/akxLl4LS8d/ZP+vHbwQuJyZc5j/UcDb6bFenPom2mxrl0+nRbrzJLFabGgVc4Wr6fF+pev5eUkG1cvS4s1lJjvDibGujw0Py3W7/yNnDzib/7xV1LihJ9e8om0WH/p3lfTYv3dTb+XFuudX/9gWqy/+82jabHeuTBvuc6N5LURZ8/nrfuurrz8ZtmyzWmx5nXl5XBnhl5Ii7X97XnXST5510tpsXYff29KnK+cyTtmPP/G8rRYy+YNpcVa2psX6+jV59NiDQ1dTIs1PHAuLdala99KiwWttGhe3ln2S133pMX62L2r02Ld+Z/9Z2mx/vDNvOvrP/qTH02L9dhnc+L86/f/rZxARVH8lf9iUVqsu/7xnrRY/49bfjwt1hP/6K+kxTrzF/IGurhl5HxarOGFeTlO0ZV5VS/PvO68c+xFC/JivXE5L/f64ILX0mL97Vt+Li3WXzx9PCXOySLvXOOVBT+YFuvuj+Sd591zKe8eyVDPyrRYty7OOy9e0JPXRlwdyjteM4uKo8oCJAAAAAAAAAAAgEoVR3XyqEyKtgAAAAAAAAAAYPbouOKobdu2FStWrCg6zdmzZ4tTp07VHgAAAAAAAAAAQOfrmOKoAwcOFHv27CkOHz5c7Nixo3j44YeLBx54oOg0sYyf/vSn270YAAAAAAAAAADAOLqLDrF9+/bi5MmTxfHjx4tVq1YVW7duLdasWVN86lOfKl566aWiU/zCL/xCuxcBAAAAAAAAAACYTcVRpfvvv7/47Gc/WwwPDxePPfZY8YUvfKFYt25d8aEPfah45pln2r14xdq1a9u9CAAAAPz/2fv3ILmy8zDwvFlVeKMbBaC7SZES2Q2QlEi9yAKgWNuyRiMULFmrmdmxCmj5j51VhBZASPPY2XAYMOSJFRWSjQVsTczObKwEtLTjCe+MtwEEtZ7xQ2KhRVnjkSw1CiT1IEWRhW6JFB/dRAH9QuNVlRsnG1nIx61CPr583fz9Igqounnzuycz7z35nczvngsAAAAAAKNYHFXr2LFj2ZUrV7IvfvGL2Uc/+tHsp37qpyqzSf30T/909tnPfnbQzQMAAAAAAAAAAIbYUBdHVaWZo86cOZMtLS1l586dq1x+L80wdeDAgezXfu3Xstdff72v7Zmens5u3rzZ120CAAAAAAAAAAAFLI6qNTc3V7nU3o0bN7LDhw9XLr23c+fO7Nlnn80+9alP9aUN5XK5UiAFAAAAAAAAAAAMr5ErjqrasWNHduLEiexLX/pS9pu/+ZuVgqWDBw9mH/zgB7Nf+qVf6ulsUqkw6/r16z2LDwAAAAAAAAAAjHFxVK3Z2dnswoULlaKlv/t3/272z/7ZP6vMJvXDP/zD2a//+q8PunkAAAAAAAAAAMAAFKI4qnY2qWPHjmVXrlzJvvjFL2ZPP/109lM/9VPZ7t27s5/92Z/N/vzP/3zQTQQAAAAAAAAAAPqkUMVRtfbs2ZOdO3cuW1paqvyfCqaeeeaZ7MCBA9mv/dqvDbp5AAAAAAAAAABAjxW2OKrW3Nxc9slPfrJSKPVDP/RDlUvvTU5OZj/90z+dffaznx108wAAAAAAAAAAgB4Yi+Koqunp6ezMmTOVIqnf/M3fzK5fv5597GMfyz74wQ9mv/RLv5S9/vrrg24iAAAAAAAAAAAQZKyKo2rNzs5mFy5cyG7cuFGZSeqXf/mXs507d2bPPvts9qlPfWrQzQMAAAAAAAAAALo0tsVRVTt27MiOHTuWfelLX8pefPHFSoHUwYMHs927d2c/+7M/m7388suDbiIAAAAAAAAAANCBsS+OqjUzM5P9yq/8SrayspKdO3cu++QnP5nt3bs3+77v+77s13/91wfdPAAAAAAAAAAAoA2lcrlcbucO4+TTn/50dvTo0ezq1atZqVSqLDt+/HhlpqmPfvSjg24eI2rTd/2HYbG2b/pAWKy92UfCYt0q3Q2L9aGNm8NibZlaDou1YSKu67y38k7/0q2FW29nUb6yfDUs1o7J94fF+ttPPREW6zun3wqL9W++uiss1qXXfjcsVrl8LyzWnTe/kA2j0sTGuFgbHouLVdoUFus7Nv9oWKwfeuJ+WKybtzeExHntbkyc6L5524a45+rectz5CH98K+4xXs9eDYv1tTd+IyzW49sPhMW6vvBfh8Vi9G38yKGwWFs27w2L9fRE3NhySxb3vvjF8h9nw2iqFDc++N6JD4XE+Te3PpHFWQmL9B2bfyws1t/59hthsT60/WZYrP/q6ofDYv2b158LizW58cmwWPff/kpWdJOb3x0Wa+Ve3L76Pdt/MizW4fe/ERbr1v2Y3PLz1x8byjx895Y7YbGmAtv1T16NGxNPZHFjoNde+52wWNse3x8W67WrvxIWi2J47c1bQ5gtZdnySlw/sX0i7nOEF1+J+0zvjbtxn4mvBD5fH3pia0ic+4FtenLrVFis6be/ERbrc//Zz4TFmtw4GRYr+8f/U1ionZvj2rV9Q9zncBsnY767ibYc+M3+VGCv+mZcN5htmYp7HTdc/V/CYi2/dj0kzr0fjBtrRJZ6bLn7elisyVcXw2K9tPO7w2JNB/Y3Gyfj9tPlwNdx5/aY99giMnNUg9dffz37x//4H2cf/OAHs/3791cKpKodS/pJM0rt27cv+4mf+IlBNxUAAAAAAAAAAFhHXBn0iPvEJz5RKXy6fPlyU5Vlddao2uUm3AIAAAAAAAAAgOE21sVRL7/8cqUg6vz589nNmzfrip7yCqKSdEm9dGm9j33sYwNoMQAAAAAAAAAA0KqxLI761V/91UpR1NWrV1uaJWp2drZSEPXjP/7jA2gtAAAAAAAAAADQibEpjvrMZz6zOktUKwVR09PTq7NEPfPMMwNoMQAAAAAAAAAA0I1CF0e9/vrrlWKoVBR17dq1loqi5ubmKgVRBw8eHECLAQAAAAAAAACAKIUsjvqt3/qtSkHUpUuXWiqI2rNnT6UgKs0UtWPHjgG0GAAAAAAAAAAAiFaY4qiXX3559bJ5N2/erCt+yiuISqqXzfvYxz42gBYDAAAAAAAAAAC9NPLFUZ/4xCey06dPZ1evXm1plqiZmZlKQdTRo0cH0FoAAAAAAAAAAKBfRrI46jOf+czqLFGtFERNT0+vzhL1zDPPDKDFAAAAAAAAAABAv41McdTrr79eKYZKRVHXrl1rqShqdnY2O3nyZHbw4MEBtBgAAAAAAAAAABikoS+O+q3f+q1KQdSlS5daKojas2dPZYaoNFPUjh07elaolTz++OM9iQ8AAAAAAAAAABS0OOrll19evWzezZs364qf8gqikupl8z72sY/1vH3pMn0TExPZ/fv3e74tAAAAAAAAAACgAMVRn/jEJypFUZcvX25plqiZmZlKQdTRo0f73tZezUoFAAAAAAAAAAAUrDjqwIED2dWrVx85S1Satak6S9QzzzzT93a+9NJLfd8mAAAAAAAAAAAwwsVRCwsLlWKoVASVVxQ1OztbKYj68R//8QG2MssuXbo00O0DAAAAAAAAAAAjVhxVVS2QSvbs2VMpiEozRQ3LZexOnz496CYAAAAAAAAAAACjWByVHD58ODt16lT20Y9+NBsWn/nMZ7KjR49mN2/eHHRTAAAAAAAAAACAUSyOmp6ezq5du1YpRBoGqRhqaWlptSiqdmYr6MSmDe/KhtGfl66FxdqUbQuL9cd3t4bF+tZ7O8NivblyPyzWvdJKSJw3sutZlHv3lsJibZj89rBYv/HKZFisHRs3hcWaKMW9L5TLMftDsnMq7rn/evaFsFgTGx4Li7V96/eExXrrzkthscrLb4XF+sKdT4bFuv7NuMLzx7NdIXFuZF/Jorw/eyYs1kc2hIXKlssPLxndrZdWPh0Wa6IU9yAnN+4Oi7Vcvh0WC2pNbXgiLNbGUtx72csrnwmLVS4vh8V6YvKDYbEmsrgcblc5blbpv1h5PShSXP4W6avlxbBY/+Wf3g2L9fG93xYW66vlN8NiTWyIey/btnFPWKzX3/5qNozeO/0fh8V65d4fhsUq338jLNYfvvHfh8X6oz+N+5xky+a9IXHevvX5LMpT2w+Gxfo/Tcf180tvx+W7t+99PSxWqRT3kfzExrjPuuTh9FJktrR5Mm6M/eZK3Gd6S/fict7veSqu/1q6HTdG2L0lrv+6uxyzV7x2J27v2jo1ERbr5pa474F2/MrFsFjvvf2XYbF++407YbHes317WKx7gcf1psD+5s5yXLu23HolLFZ5Y1yeunlj3Ov45r24Y/vmB38kLNbURMw+sfzWvSzK5sm4vmvL538nLNbKM3Hf3ezYHPceG1nlEVkzEvcqMlLP840bN7LFxcXK/2mHGvRPupxf7d8AAAAAAAAAAMBomBrGS+o9//zz2bC5evVqZTarT3867mx9AAAAAAAAAABgjGaOOnPmTDaMZmZmsoWFhcpl/wAAAAAAAAAAgOE3dMVRTz/9dDbM/t7f+3uDbgIAAAAAAAAAADCKxVHDLl32DwAAAAAAAAAAGH6Ko9r0zDPPDLoJAAAAAAAAAADAqBVHTU9PZ6Pi5s2bg24CAAAAAAAAAACwjqlsSNy4cSMbFaPUVgAAAAAAAAAAGFdDUxy1Y8eObFSMUlsBAAAAAAAAAGBcDdVl9QAAAAAAAAAAAKIojgIAAAAAAAAAAApJcRQAAAAAAAAAAFBIiqMAAAAAAAAAAIBCUhwFAAAAAAAAAAAUkuIoAAAAAAAAAACgkBRHAQAAAAAAAAAAhaQ4CgAAAAAAAAAAKCTFUQAAAAAAAAAAQCFNDboBMG7eN/mxsFhfXvnDsFgT2WRYrI2lzWGx7ma342KVy2Gxtk/EdZ+vrdwLifNE6VuyKG9u/EZYrO3ZjrBY17OvhcX6w1efDot1dzmu1vjJqQ+HxfrGvc+ExSpNbhrK2uy3bn8xLNaGjU+FxbpfiusjJie3hMV6u3wzLNZ7sveExLldeiyL8mbge8Yfv74xLNbGUtx7bCkw1v2VW2GxJie3hcW6u3wjLBbUenrDXwuL9eXlT4fFetfkR8JivZ69EhbrrSzuPWNv9oGwWHey5bBY28ox77H/3ta5LMq/vfObYbF2lmLeq5NXy9fCYv2rl58Ii/UdG1fCYn29/ExYrDdv/2lYrKwUlzuXNsaNzV69//mwWBsnd4bFWp58LSxWaSruuS+v3MmK7Mb9L4TF+mdf+96wWN8a+HnExETc+CBUYB8BvRS5p96Le/vPdtx+NSzWjU1PhsW6txL3Ofb05rjPEd68G5eLb98Y06733f1yFuWNze8Li1UKi5Rljwc9V8nXsm8Ni/VXdkbuW3EH9qapuGd/Oe5QzDZNlIfy/b88FZfjLAf2XRsmSkO5T9y5Xx66fr5cjjt+Xv3OHw2L9Vhg31VaXhnKfSvyddyuaqcvjJ4AAAAAAAAAAIBCUhwFAAAAAAAAAAAUkuIoAAAAAAAAAACgkBRHAQAAAAAAAAAAhaQ4CgAAAAAAAAAAKCTFUQAAAAAAAAAAQCEpjgIAAAAAAAAAAApJcRQAAAAAAAAAAFBIiqMAAAAAAAAAAIBCUhwFAAAAAAAAAAAUkuIoAAAAAAAAAACgkBRHAQAAAAAAAAAAhaQ4CgAAAAAAAAAAKCTFUQAAAAAAAAAAQCEpjgIAAAAAAAAAAApJcRQAAAAAAAAAAFBIiqMAAAAAAAAAAIBCUhwFAAAAAAAAAAAU0tSgGwDj5ou3/1VYrMc3fTgs1ht3F8NiPbnp/WGx3s5eD4v11ezVsFhvl98Ii7VcuhsSp1xeyaK8a+Lbw2LtyraGxcqybwmLVC6Hhco2TsY99xvvbw6LtWXq3WGx3pz4ZlisrBRXm11euRMW686tL4bFKi/Htet+WKQsu1uK6+s/PfFiTKDyckycLMs2b4t7X/zQxP8uLNZ7N8f1EW/c/s6wWNcnXwmLtZzdC4u1JXssLBbU+uLr/1NYrG95/H8fFuvry38UFuuvbvjBsFibJuKSpXsrpbBYL6+8GRbrjex6SJwvr9zOouzY8IGwWD80HZdX/uWbM2GxvvuJ18JivXZnQ1is5dtx+dvUhifCYt29dzMsVimbDIt1/35cu+7e/tOwWOUsLu8aVncmvz50Y5aJUlx/87W7QeOMLMs+uv1vhsXaWn7PUH4G974tfyMs1mPycHpoOfBzuG3Lt8JilTduC4u1+7VrYbHuf+73wmJNvXdvWKxt3xL3mfFKaWdInLs7476LuHcvLo/Y/hv/bViszd/z18JilX7nX4fF2vKDPxYWa+mJ7w2LNRU4LchyKW4sOzkxMZR91/2JjWGxNsY9XaE2TcaVQ2x48xshce7teFc2jBZvxnxfmUxNxO0Qb99fGcrvBt8zGZeTlO4HNmxrXB9RNGaOAgAAAAAAAAAACklxFAAAAAAAAAAAUEiKowAAAAAAAAAAgEJSHAUAAAAAAAAAABSS4igAAAAAAAAAAKCQFEcBAAAAAAAAAACFpDgKAAAAAAAAAAAoJMVRAAAAAAAAAABAISmOAgAAAAAAAAAACklxFAAAAAAAAAAAUEiKowAAAAAAAAAAgEJSHAUAAAAAAAAAABSS4igAAAAAAAAAAKCQFEcBAAAAAAAAAACFpDgKAAAAAAAAAAAoJMVRAAAAAAAAAABAISmOAgAAAAAAAAAACqlULpfLg24EjJMNH/qrYbGeefxwWKyX3vhEWKzHtx8Ii7WS3QuLtbxyOyzWlsknw2Jty6ZD4jyWPZ5FeS27ERbrrfJSWKyJ0oawWN+efSgs1vu3xu2n37gd9xj/aGUxLNaNO380lLXZExObwmJt3/C+sFhv3f9aWKzl5TfDYm3Z+N6wWP/exo+FxHkl7vDJ/jz787BY37y9EBbrvZt/ICzW3SzuvezJ7N1hsd4ObNeN7Othsb5x5R+GxWL0TX1gf1is7Y9/X1isW7f+JCxWaWpHWKxy+U5crDtxueXUtmfCYm2dinlf/PbSd2VRbma3wmK9fO9/C4u1cXJnWKyPTsQdPz/wnpthsS5/NW48tXD7/xcWq7z8RliszZs/EBZrcmJzWKzdpafDYn19OW7ccv/+62GxNkzFHUM/tOn7Q+K8dr+URflc9vmwWDffuhIWa3LjE2GxpjfEfYbwnaW9YbFeLcfl4V8tx32G8OrCPwqLRTG8eevtsFhLby+HxXpq62RYrFcD2zUR10Vn91bivgLcENiwyVJMrJ2luH4wm4j7zPLmysawWJOB+8PGybjHOPkv/puwWK/9jf88LNad5bh9fsemuD5i+52470mG1fK23WGxAruu7H5gsJWgOJsDD+zbgft85Kw63wx8X3xiS9yxuOXWK2Gxlh97V1isu5F91/atYbGKxsxRAAAAAAAAAABAISmOAgAAAAAAAAAACklxFAAAAAAAAAAAUEiKowAAAAAAAAAAgEJSHAUAAAAAAAAAABSS4igAAAAAAAAAAKCQFEcBAAAAAAAAAACFpDgKAAAAAAAAAAAoJMVRAAAAAAAAAABAISmOAgAAAAAAAAAACklxFAAAAAAAAAAAUEiKowAAAAAAAAAAgEJSHAUAAAAAAAAAABSS4igAAAAAAAAAAKCQFEcBAAAAAAAAAACFpDgKAAAAAAAAAAAoJMVRAAAAAAAAAABAISmOAgAAAAAAAAAACmlq0A2AcVNeuRsW69rN/zEsVmlyS1isN259NizW5s17wmLdvn0tLNadib8Mi3WzFNMVb9zwZBZly+QTYbE2lR4Li7Ux2xwW612blsNibd4QF+vx+3F1y7vvfktYrLc3XI+LdfcrYbHu3X41LNaN23HtylbuhYUql++Hxbq1cjss1u+WtobEee32n2Rx4o6fvZt/JCzW+ya2h8WaLIWFyl5bLofF+tN7L4TFKq/cCYsFvfLm638QFqs0uSkuVuB7xu4t3xcW65v3fzss1sr9N8Ji3Sp/OSTOFzZkYTaWtoXFemrD94TFmsgmw2J99Ik3w2JNbwzMwyfi8ojtmz4QFuv11/5tWKxb9z6dDaM3st8Li1UKGl9XlFfCQi1ncWONTy6/HhJncjKuv7nzxufCYu2c/vfDYu3Jvj0u1pa4/eGNe3F5+Bfe+mRYrOXbXw2LBb0cyz65NS4vCRwWZ08G5iUTb78WFuvutieH8nUsrcSMXUp34j6DW964IyzW42GRsuxe3FtQtvmz/zIs1tc+84WwWBOHwkJlk6W4HfXG7bjj+t7GnWGxtkwN59wngUPj0P7m7ZW4zv5O0BvHtreXsij3N+0Oi3U38I1x81Tci7j1ra+HxSpPTA1lHnE3cD9lbcPZewIAAAAAAAAAAHRJcRQAAAAAAAAAAFBIiqMAAAAAAAAAAIBCUhwFAAAAAAAAAAAUkuIoAAAAAAAAAACgkBRHAQAAAAAAAAAAhaQ4CgAAAAAAAAAAKCTFUQAAAAAAAAAAQCEpjgIAAAAAAAAAAApJcRQAAAAAAAAAAFBIiqMAAAAAAAAAAIBCUhwFAAAAAAAAAAAUkuIoAAAAAAAAAACgkBRHAQAAAAAAAAAAhaQ4CgAAAAAAAAAAKCTFUQAAAAAAAAAAQCEpjgIAAAAAAAAAAApJcRQAAAAAAAAAAFBIU4NuAIybyc3vDou1bdPesFhv3vrjsFilyS1hse7evx4WK8tWwiKVJjaHxdq68dti4pR2h8SpxMoeC4s1XY6LtbkU97Z1byVuf3jjTly77pdLYbEmA2ugPzrxfWGxNm+Ni/V64Ot4vxwX66ulr4bFemMlLlYpcJ84tPUDIXE2PbYni/K7b9wJi7UhME1+99a7YbFefXtjWKypLK6/2T71vrBYt1eWwmJBrYkNO8JiTW/bHxbrxhu/O5Q56o07fxIWKysvh4WamIrLLVfuvxES585kXL+1YzJuvPiBiafCYm2fisuTXrt9LyzWwq1NYbG+sRL3fn3r3pfDYj2246+ExZouvTcs1t3sdlis6eyJsFhfXvnDsFh37r0SFmtl5a2wWP+Xb/vrIXFu3N6QRfn/BI6lbr51JSzW4e+M6wc/v7QtLNa/vvXZsFhPb/rBsFjX7v/zsFjQ6F5cN5FtLMUFK0fOH1CKi7W8/cmwWIEfnWVTcR8jZK/eiQk2UdqeRdm+XA6LteXOzbBYG95+LSxW+f3fFRZr+u//aFisr755PyxWOYt7HVfiQmX3A4Pdmow7sLdvjOu7bsUN9bLJwO75buCxvet3/2lInNs/+JNZlNfeinvi37gbuG+dPhYWq/QzPx0W6wu7ZsJiffuNPw+L9frWbw2LxdrMHAUAAAAAAAAAABSS4igAAAAAAAAAAKCQFEcBAAAAAAAAAACFpDgKAAAAAAAAAAAoJMVRAAAAAAAAAABAISmOAgAAAAAAAAAACklxFAAAAAAAAAAAUEiKowAAAAAAAAAAgEJSHAUAAAAAAAAAABSS4igAAAAAAAAAAKCQFEcBAAAAAAAAAACFpDgKAAAAAAAAAAAoJMVRAAAAAAAAAABAISmOAgAAAAAAAAAACklxFAAAAAAAAAAAUEiKowAAAAAAAAAAgEJSHAUAAAAAAAAAABSS4igAAAAAAAAAAKCQSuVyuTzoRsA4mfrA/rBYpcD6xk2PfSQs1p23/iws1nsf/w/CYn31rcthsd697YfCYk0EvY43V76cRVku3wmL9d7J7w2L9R0btofFmt50PyzW5qnlsFgbJlbCYk1OxL3FR2YL79p6LyzWRCnwMYZFyrLPX4/bVycDH+Pvvxn33O/ftjEkzvc++UYW5StvbgqLtRK4Q1x7bVtYrC/ej3u+vr7yp2Gx3nrjalisbGJDWKh7X/hfw2Ix+kLz8Mm4/mZy47vCYi3f+XpYrI88/p+ExfqTm78aFusD03Htup29FRLn+vKXsih3770aFuvgtr8VFuvAu24OZW6zkpXCYr1/2+2wWOf+7KmwWN+9425YrO9/d9zr+Ma9ybBYX7i5NSzWpqm48dRXXt8SFuuTb/9RWKwfn/5wSJz9T76eRfnvvhQ3/vnhJ+PG17/3amAeXv58WKzXbl0Ji7VyL258EOn+l+IeI8Xw9ttvh8UqLce9N76dxY0/N0/G5SUTt+P66LemHguLtXUiro++X5oKibMc+AHOvcBYO1/947BYX/nVXw6Ltfs7nwmLteF9HwqL9Sf/9X8fFuvaL/yTsFgfe3fc8fOef/c/hMWa+IG/HRbrha/FfU/yN5Y/Fxbrq+8+EBZrJfCT/3dvjolTuhc3/rz0Utz3eT/6wV1hsd64E/ldV1iobDmuWdmuLZND+X3E49vixrJFY+YoAAAAAAAAAACgkBRHAQAAAAAAAAAAhaQ4CgAAAAAAAAAAKCTFUQAAAAAAAAAAQCEpjgIAAAAAAAAAAApJcRQAAAAAAAAAAFBIiqMAAAAAAAAAAIBCUhwFAAAAAAAAAAAUkuIoAAAAAAAAAACgkBRHAQAAAAAAAAAAhaQ4CgAAAAAAAAAAKCTFUQAAAAAAAAAAQCEpjgIAAAAAAAAAAApJcRQAAAAAAAAAAFBIiqMAAAAAAAAAAIBCUhwFAAAAAAAAAAAUkuIoAAAAAAAAAACgkBRHAQAAAAAAAAAAhTQ16AbAuNn82Hdlw2jr5LvCYt3J/iws1iv3/jAsVnn57bBYb5ZfCYt1Z/lGSJxNkzuzKBtK28JiPZU9Hhbr8Y13w2Lt3BwX69a9ybBYWzcsh8WamiiHxXrl1qawWH/w9a1hsV65FxYqeyuL2yfeyG6GxfrQxFNhsV4tfyksVpZ9MCTKf/HT/3MWpfz5uGPxP//1w2GxVsqlsFgf2bg9LNamu98TFuul7XEHY6kU9zpCrYmNcbnS5NR0WKzHN8b0p8nS7a+GxfrCnd/IhtGN7Othsf79zXtC4vzB7bh+65UsLhd8IjDf3Ty1EhbrPVvi2vUvXn4yLNbd5bj367/xntfDYv3F63G5889/Ie4cyZvlr4TFmiptDov13mxvWKxtWdyxvVKOy5WmSjHH4098+++FxHknVlio7Bde/KGwWDsn4/b5H9n0obBYny49ExZr8e6nwmKtrNwJiwWNXrsTl0tsmdoQFmvjRNz7/0rcx3DZ3Q2PDeVjLC3fD4v1zV/4T0PivPfvfDyLcnNL3Hcky6/Gjc2mNm8Mi7X4z+Pe/zf+d//XsFhP/9P/KCzW+8pxB+Od5bhYX9z3fwyLtel23HH9XU/Gfe6/ksUlhRsn4x7jpqm4nHDiTsxY76mf+OUsykd/JC5/PvKeuPF6tu3dYaG2luPy1NuluH3+bmAfcS8wkYj7VrZ4zBwFAAAAAAAAAAAUkuIoAAAAAAAAAACgkBRHAQAAAAAAAAAAhaQ4CgAAAAAAAAAAKCTFUQAAAAAAAAAAQCEpjgIAAAAAAAAAAApJcRQAAAAAAAAAAFBIiqMAAAAAAAAAAIBCUhwFAAAAAAAAAAAUkuIoAAAAAAAAAACgkBRHAQAAAAAAAAAAhaQ4CgAAAAAAAAAAKCTFUQAAAAAAAAAAQCEpjgIAAAAAAAAAAApJcRQAAAAAAAAAAFBIiqMAAAAAAAAAAIBCUhwFAAAAAAAAAAAUkuIoAAAAAAAAAACgkKYG3QAYNx+c/KthsV7Nvh4W6+ns28Ji/X7p34bFenrDXwuL9cW3FsNifaj0vWGxViZXQuJsLE1mUbZOlMJivf+x22GxPrLrzbBYn1vaHhZreSXu+Xr11qawWN8IjPXGcliobOH+fDaMSqUNYbE2TDwWFutTt34nLFa5fC8s1l+UvjMkzvUf+NYsyvZ/dzMs1r2VuHMIdm2Ke963bbwfFmvjRNw+v3flr4TFuhfYp0KtD2/98bBYO7PNYbFeyeLymxtTW8Jiff/m/0NYrN9++/8ZFmtH9mRYrL+4HdPXf+P+H2fD6PrtjWGx3rPlblisC196d1is5XJYqOzl17aFxXrrXtzY7Iv33wqL9Rc3L2TDaGpLXD745sRfhMW6d/srYbEmpuLGB0u394XE2Xj4VhZl6vfjxv3z/zIuR53I4vqu9wXm4TOluI/k72d/PSzWShY48IcGm6bixnnb//LTYbG+8VTcZ7y7NsQdQ5tuxL0H3dm9JyzW9ftxffSTHz8XEufzN+P6+ltLd8JibX3fD4XF+shPBr6GG54Oi3V/JS4Zf/NuzHckya4tcbn4neW443rn5rh2Rdq2Ie4z0NfLO8JibQr8jmrzZFysiTdfDYlz69UvZ1EuH4rLU3/n9bhxy9a348YIH9q9eSj3rS+/FvceNFmKa9e74g7FwjFzFAAAAAAAAAAAUEiKowAAAAAAAAAAgEJSHAUAAAAAAAAAABSS4igAAAAAAAAAAKCQFEcBAAAAAAAAAACFpDgKAAAAAAAAAAAoJMVRAAAAAAAAAABAISmOAgAAAAAAAAAACklxFAAAAAAAAAAAUEiKowAAAAAAAAAAgEJSHAUAAAAAAAAAABSS4igAAAAAAAAAAKCQFEcBAAAAAAAAAACFpDgKAAAAAAAAAAAoJMVRAAAAAAAAAABAISmOAgAAAAAAAAAACklxFAAAAAAAAAAAUEiKowAAAAAAAAAAgEKaGnQDYNx897a4WFumngyL9erb5bBYm7d+R1isp7LtYbG+GBYpy97O7obF+lrppZA437/x27Mo79l+KyzW+x67ExZrx4blsFjv2XY7LNY3bm0Ki3X7/mRYrKlS3HH9RnYvLNa9218Ji/We7T8SFusvX/vnYbGWt74/LNbKnW+GxcomNoSF2jEVs389Mf/lLMqXvxnXD/6tp78eFuvaW3Fv/m/djzu34TM34/qu73o87n3x2hubw2JBre/bERfrfY/dCIu1eDOuj/hm9n1hsV4tx+VKpcDzslaylbBYf7z8eyFxDk9/fxblqa1xufPUxGthsbZMxuXh2wNz+i1TcbHe93jcGOhdW+Jy59/4k/81LNbEhriO8Fu3/XBYrL+4eSEs1ubHvissVnn57bBYy4Gxtm24HxJn6ncD+/ltcX3zb//N+bBY5/7kr4XF2jgRN77+f7+8JSzWB6ceC4t19f7LYbGg0ebJUlisO5/7g7BYT+x8b1isbDnu67ZXtsd9rrQz7qnPNgS+jrfux7x3fMeGuJy3vDWuf/70zbBQ2e2nPhQW688W48ay+98T9x705O/+k7BYv/Uz58Nifdvvx+XiH9oRNy5eLg3n1/uTK3HjoOWJjWGx7sWlqtnGlZhc/EMH/+Msyn/2PT+VDaOf+cvPhsWamoh7/3kzcIcIbFZoLNZm5igAAAAAAAAAAKCQFEcBAAAAAAAAAACFpDgKAAAAAAAAAAAoJMVRAAAAAAAAAABAISmOAgAAAAAAAAAACklxFAAAAAAAAAAAUEiKowAAAAAAAAAAgEJSHAUAAAAAAAAAABSS4igAAAAAAAAAAKCQFEcBAAAAAAAAAACFpDgKAAAAAAAAAAAoJMVRAAAAAAAAAABAISmOAgAAAAAAAAAACklxFAAAAAAAAAAAUEiKowAAAAAAAAAAgEJSHAUAAAAAAAAAABSS4igAAAAAAAAAAKCQFEcBAAAAAAAAAACFNDXoBgCd+8JrW8JivXfrvbBYczu+LyzWa3dXwmK9a/rHwmJ9x+YNYbF23P5wSJwD717KouybvhkW68M7vxwWa+vmt8Ji/daXvycs1nK5FBbr06/sCIv16v37YbG+tPL72TB69f7n44KV4mrGS4H15+Vy3OtYyibDYn33k6+HxLn3uc1ZlJu3HwuLtXki7nm/eSfuef/Mq3F9xB8v/05YrG+9/dfDYv27u78ZFivLfjIwFqPu1Vsbw2J96rW4nORv7orLw//27m8Li/XqrbiPC/709rvDYn1rtjss1t3Jp0PivGvb7SzKT+75s7BYH/ixPwyLtbIzbvwz8z9+MCzWp155JizWC1+O27c+txI3PsgCc8FIX7/36WwYTZbicsuJDXF518q918Ji7dx8NyTO+RfiPiN5du+VsFg7vu0bYbHu/VHcsfjvvjYdFuvP3vqnYbEmtz0bFuubb78YFgsaff2twM82fuD/HBbrW9+8FharvGlbWKxdW+P6r798M+65L5fLYbEmJ2Ie40tvb8+ifPhf/T/CYv2Tn/wfsmH0H74/Lr954hf/VlisyR89HhbrRz4Z97n/N7cFfo0eOUTIhrJZWel+TJ6abFiO+9xlefPOsFhf2rI3JM4rX/pUFuXv/Ezcd7K/9P/6g7BYT22NO37ur8Tt9YFvZaGeDHy+WJuZowAAAAAAAAAAgEJSHAUAAAAAAAAAABSS4igAAAAAAAAAAKCQFEcBAAAAAAAAAACFpDgKAAAAAAAAAAAoJMVRAAAAAAAAAABAIU0NugGMtsuXL2fz8/OV/69du5bdvHmzsnx6ejrbs2dPtn///uzQoUPZ3NxcT9tw8eLF7MqVK6ttSNvftWtXNjMzU9n+7OxspT0AAAAAAAAAAIwPxVF05OzZs9np06dXi6GqhVDp/6Wlpezq1aurP+fPn68UKx07diw7depU5fcIly5dyo4ePbrahlppWfpJxVJpvSQVSJ08ebLyPwAAAAAAAAAAxeeyerQlFRvt3bu3UmSUCqHOnTuX3bhxI1tcXKzMIJX+TrM4pb/T8lQQlaRCpVRQ9cwzz6wWK3UjzQZ1+PDhSty0jYWFhaxcLq/+pO2fOXOmbraoNMNU7f0AAAAAAAAAACg2xVG0LM0CtW/fvsrMUKkAKhUkpcKktWaCSstTsVQqUqpKRUmpOCkVSnUi3T+1IRU6pRmgUhFU2ka6fF6tVBR14sSJyu3p/1qpOCvFSIVeAAAAAAAAAAAUl+IoWi5KOnjwYLZr165KUdTc3FzL903FSY2XskszT3Uyg1RqQyrSSkVZaaaq2pmh1pKKs1IBVa1UGJUKpMwgBQAAAAAAAABQXIqjaMnRo0crhURpxqhWCpIa1c4e1RizVamgKhVGpUKrxmKnR0nFVI0zSFVnoQIAAAAAAAAAoJimBt0Ahl8qIqrO8pSKiVJxVCpOapwNaj3psnfpMnu1xVDp9/PnzzcVLeVJMz2lS/GlbacZozqRCrTS46i9nF41bitt6IfPvvy/NC373qf/g4G0BaBVd752tWnZpm+pv9wpwLD5+Mc/3tIyxseffvmfNy37jm/7jwbSFoBW3X/li03Lpp764EDaAtAquTi1/puz/7Bp2X954mcH0haAVv2j0/+gadnfPfX3B9IWgFZ9fMzzcMVRPNLly5fr/k4FRYcOHcoWFxfbmkUqrZtmfqqVCp1aKUyqzjyVZo/qRrr/8ePH65adPn26MrNUKt4atD/8i3/RtExxFDDs7n3jM03LFEcBw+7nf/7nx3ogSLMv/OX/3LRMcRQw7Fa++aXmhYqjgCEnF6fWf/uP/u9NyxRHAcPul86cblqmOAoYdj8/5nm4y+rxSLUzLdWqzibVqrxCqitXrrR03zTDVJKKmLqRd/80g9WFCxe6igsAAAAAAAAAwPBRHMUjtTM7VC9nrkqX8WuceaoT6RJ/jS5evNh1XAAAAAAAAAAAhoviKB4pFSXlmZubaytOmqGp0a5dux55v3TpvWqR1L59+7JSqbQ6k1TU42m8dCAAAAAAAAAAAKNPcRSPND09nS0sLKzOuJT+TwVL7c4olXd5vrxZnFq53/Hjx9e83N+j7N27t6P7AQAAAAAAAAAwWkrlcrk86EYwHtKMT3mXs3vUDFSHDh3Kndnp3Llz2bFjx9pux6VLl7LDhw83LV9cXBz4JQTzniOHKDDs9F3AKNJ30cg+AYwifRcwivRd1LI/AKNI3wWMotKY911mjqIv8oqb0oxUrVyaL62Xp5VL8gEAAAAAAAAAML4UR9EXaYaoRqdOnWrpvukSenkFU7Ozsx21ZWlpKXe5YisAAAAAAAAAgGJRHEXP3bx5Mzt//nzdspmZmezEiRMt3T8VQaXiquol79LfL7zwwpozSj1Kunxenk7jAQAAAAAAAAAwnKYG3QCK7+TJk01FSHkzSa0nXX6vlUvwteLq1atNyzqdhQoAAAAAAAAAgOFl5ih66tKlS3WzRqXCqIWFhdVZoAbh8uXLTcsOHTo0kLYAAAAAAAAAANA7iqPoaWHU4cOH6y6l99JLLw20MKrx8n5VrV7iDwAAAAAAAACA0aE4ilA3b96sFEWlmZiqhVHVy+ilGaPS74N05syZgRdGffzjH89KpVLuT57a29N9AQCA2Dz8Ubm4PBwAADrnM3EAAAZtatANYLSlIqhr165lS0tLlcKoWqkQ6rnnnsvm5uayYXD16tVKW2ulWazyCqYAAAAAAAAAABh9iqPoSrpUXuNl8lIBUvUnzR6V1jl+/Hh27NixbJCOHj3atCzNaAVAd37u535u0E0AaJu+C4Ai8H4GjCJ9FwCjznsZMIp+bsz7LsVRdGW9WZfSTE0nT57MLl++XCmOSj9p/X5fxi45f/58pT2NhVGpcAuA7pjeHBhF+i4AisD7GTCK9F0AjDrvZcAo+viY910Tg24AxZUKj+bn5+sKqFKx1N69e5sub9dL6XJ/qTCrVmrTsFzuDwAAAAAAAACA3iiVy+Vyj2JDXVHU2bNn65alwqnZ2dmeb/vQoUOV2auqBjV7FQAAAAAAAAAA/aU4ir7ZuXNnZRanWouLi9mePXv6VpSlMAoAAAAAAAAAYHy4rB59c+rUqdxZnXrl/PnzCqMAAAAAAAAAAMaYmaPomzRrVJo9qlEvipauXr2a7du3b/Xvc+fOZceOHQvdBgAAAAAAAAAAw01xFAO/tN709HR248aNsG1cu3atUhhV3c7Fixezubm5sPgAAAAAAAAAAIwGl9Wjr/bs2dO0LBUxXb58OSR+ilVbGDU/P68wCgAAAAAAAABgTCmOYuDFUdUipsjCqDQb1cLCQjY7O9t1XAAAAAAAAAAARpPiKNaVCo2OHz9euRxe+km/N14WL6I4Kl0Kr1sHDx6sxKkWRs3MzHQdEwAAAAAAAACA0TU16AYw3A4fPlx3ybvz589XCpA6nelp9+7ducu7KbhKDh06lF29erVSfJUKo1KBFAAAAAAAAAAA483MUawpFSzVFkZVpWWdzvR0/fr13OXdFDNVC7g6LYy6dOlSViqVQmavAgAAAAAAAABgeCiOYk3rFQt1OtPTWvdb63J7j5Iu85eKm9Il9DqdMerFF1/sqg0AAAAAAAAAAAwnxVGsab1Co1SMFFlwlS6L166zZ89WLvOX2vLCCy90PPtU9XJ8AAAAAAAAAAAUi+Io1rRWwdC5c+c6jnnlypWmZamoaXZ2tq04qSjq5MmTXc0YVdumTou9AAAAAAAAAAAYXoqjWNfc3Fzl/1S8dObMmWxxcTE7duxYx7NG5V1Wr914ly9frlxOL7UpFUZ1o9omM0cBAAAAAAAAABSP4ijWderUqcr/S0tL2YkTJ7oqIsqbcSrN+JSKrtq5BF66BF8q2pqfn8+6Vd32gQMHuo4FAAAAAAAAAMBwKZXL5fKgG8FwS7M0pcvYpRmeOr2kXpqdaefOnU3LL168uDo7VSuzPO3bt68Sq93L8NVKhV4pRopXlWagcmk9AAAAAAAAAIBiURxFS1JRUpq1KRUyPffcc5UZn9qRZntKl8NrnLUpzUbVilTM9Mwzz+Reli+CwwAAAAAAAAAAoHhcVo+WVGdWunTpUqVIKc0k1arDhw93XRhVnTGqF7q5VCAAAAAAAAAAAMNLcRRtFUilgqZUpJQutZcuk5f+byx8qkqFVHv37q38X5VmnJqfn2+5MCo5evRo3SXwoimOAgAAAAAAAAAoJsVRtCXN+LS4uJgdO3asUiSVZpBKl8wrlUqVYqlUDJV+0t9pxqhqUVMqikr3vXHjRjY7O9vWNns1Y1RVmhELAAAAAAAAAIDiKZXL5fKgG8FoSkVLadaoNBPUlStXKoVQ1UKmNBtTKohKhVCpeKrdgqiiqj5f6f/a5ys9V+k5279/f+X5mpub62kbLl68WPeape3v2rWrUihWfb3MqAWs14+cO3eu0odU+5HUZ6Sf1IekAtrUrwBEkUPRLfsQUATycKDf5FBEsB8BRSAXB/pNDhVPcRT0wdmzZ7PTp0/XFY9Vf5aWlrKrV6/WXTowdSopkTp16lRYMpUub5guUdjqTFypIzt58qTCNqCuL6sOAKsFsAcOHKj8nmYVTElS6s+SdFtad1QSImA4yaHoln0IKAJ5ONBvcigi2I+AIpCLA/0mh+qhVBwF9Mbi4mJ5z549qQCxPDMzUz537lz5xo0bueum5ceOHausW/2Znp4uX7x4set2zM7OrsZM21hYWGhq55kzZ1bbWvszNze3ZpuB8evL0s+JEyfW7Bfm5+fr1k19C0C75FB0yz4EFIE8HOg3ORQR7EdAEcjFgX6TQ/We4ijokdRRpE6o3Y4odSaNHUmniVTqfFLnmWKkjix1Vo+SErzG7afOrZX7AsXty6r9Qav9WWPyBNAqORTdsg8BRSAPB/pNDkUE+xFQBHJxoN/kUP2hOAp6IHUeqfPq9OCvTaDaTb5qVTuwdpOwVInauP30eIa50hPoXV9W7QdS39AOZ8sA7ZJD0S37EFAE8nCg3+RQRLAfAUUgFwf6TQ7VP4qjoAfSlHHpwG+cZq5V6X7ddiLVSs3UIXZirUpPYHzUJlQpKWpXmk64tg8Z1kpxYHjIoeiWfQgoAnk40G9yKCLYj4AikIsD/SaH6h/FURAsdTSNB35KhtpVW5nebpV5SrYiOp28a4WqdIfx0DiI6/Q6xdVK804Hk8D4kEPRLfsQUATycKDf5FBEsB8BRSAXB/pNDtVfExkQ6vLly3V/X7t2LTt06FDl/3bs2bOnadn8/HxL9z1z5kzl/5MnT2bdyLv/6dOns5s3b3YVFxh+tcf/9PR0Njc311GcZ599dvX3q1evVn4A8sih6JZ9CCgCeTjQb3IoItiPgCKQiwP9JofqL8VREGytzurSpUtdd2JXrlxp6b7nz5+v/H/s2LGsG3n3Tx3YhQsXuooLDLfGAdvs7GzHsRoHkOfOneuqbUBxyaHoln0IGHXycGAQ5FBEsB8Bo04uDgyCHKq/FEdBsLzOZxAVpilxi6hGn5mZaVp28eLFruMCw6txsHbgwIGwPrGaZAE0kkPRLfsQMOrk4cAgyKGIYD8CRp1cHBgEOVR/KY6CYGtVk7c7/WbeFHO7du165P2qU+Slzmzfvn1ZqVTqKvHKezyNU/wBxdJYxZ2XzHST3LVb8Q6MBzkU3bIPAaNOHg4MghyKCPYjYNTJxYFBkEP1l+IoCJauQ7ywsLCaOKX/U8fSbuVn3jR6rSRjefc7fvx429cmrdq7d29H9wNGU+orGpOobivXG/uuVq9zDIwXORTdsg8Bo0weDgyKHIoI9iNglMnFgUGRQ/WX4ijogdTZpI6sXC5X/u/k2sR5nc6zzz7bUWVoN1WZa1WVdtopAsMtr6/odiDY2I8MU5U4MFzkUHTLPgSMKnk4MEhyKCLYj4BRJRcHBkkO1T+Ko2AI5XU4qXK0lSn00np5Wpk6D6AXZ7A09kvDkgQBxSOHolv2IWBQ5OHAKJNDEcF+BAyKXBwYZXKo1imOgiF08eLFpmWnTp1q6b5pqru8jq2TKtNkaWlprDpFGHeNg7S1EqN27N69u2nZ1atXu44L0EgORbfsQ8CgyMOBUSaHIoL9CBgUuTgwyuRQrVMcBUMmTV93/vz5pun0Tpw40dL9U2eVOsHqlJ/p7xdeeKHjZG5xcTF3eURyCAz/QDAiYcnrL5wpA0STQ9Et+xAwSPJwYFTJoYhgPwIGSS4OjCo5VHum2lwf6LGTJ082dRZ5FZ/rSdPktTJVXivyKtk7rRYFht9a1xeOZiAIRJND0S37EDBI8nBgVMmhiGA/AgZJLg6MKjlUe8wcBUPk0qVLddWdqQNbWFhYrdYcluuUHjp0aCBtAfo/CIyo5s470+b69etdxwWokkPRLfsQMEjycGBUyaGIYD8CBkkuDowqOVT7FEfBEHVghw8frpvy7qWXXhpoB9Y4DV9Vq1PxAaNlrWsB94KzZIAocii6ZR8CBk0eDowiORQR7EfAoMnFgVEkh+qM4igYcEV66rxSxWS1A6tOd5cqOwd9/c0zZ84MdQcGjOb0wQDdkkPRLfsQMEzk4cCokEMRwX4EDBO5ODAq5FDdmwqIAbQodVapMjxVojcmXKnDeu6558Ku6RlxTdDGKvZUbZrXsQHF0M+zZAw6gXbIoeiWfQgYZvJwYFjJoYhgPwKGmVwcGFZyqHiKo6CP0pR2jdPZpY6i+pOqPNM6x48fz44dO5YN0tGjR5uWpcpTgHYNulodGH1yKLplHwLGkTwc6JYcigj2I2AcycWBbsmheqAMDIWFhYXy7OxsOR2W1Z8zZ84MpC3nzp2ra0f6uXjx4kDaAvTP/Px807E/MzPTk7ipvwOIIIeiW/YhYNDk4cAokkMRwX4EDJpcHBhFcqjOTPSi4ApoX6rsnJ+fr5te7uTJk9nevXubpqHrpTQtX6owrZXaNCzT8gGjx3TBQC/JoeiWfQgoKnk40EtyKCLYj4CikosDvSSH6oziKBgyJ06cqPxUpQ4sdWSXL1/uy/bTFHyNHVhte4Di2rVr16CbANAxORTdsg8BgyIPB0aZHIoI9iNgUOTiwCiTQ7VHcRQModRxNF6P+NChQz2v9EwVpbWd5bB3YAAAteRQdMs+BADQPjkUEexHAADtk0O1TnEUDKlTp041LUsdWa+cP38+O3v27Eh1YMDoTv/bmKgBRJFD0S37EDAM5OHAqJFDEcF+BAwDuTgwauRQrVEcBUPq2LFjTctShWdtRxPl6tWrddcDPXfu3Eh0YMBoDM6Wlpaalu3Zs6cn2wKQQ9Et+xDQb/JwoAjkUESwHwH9JhcHikAO1RrFUYyNNK1bqVTq+qefCVleUnb69OnQ7aSO8eDBg6t/X7x4MbcDBYqvn4Oz3bt3921bwHiRQw0feXg++xBQJQ8HikAONZzk4vnsR0CVXBwoAjlUaxRHwYglZWk6z9rrd3Yjxdq3b9/qFKHz8/PZ3NxcSGxgNDUmT3lnuERMQ2wKYaCX5FB0yz4E9Js8HCgCORQR7EdAv8nFgSKQQz2a4igYwYr11NlEdmApIVtYWMhmZ2e7jguMtl27doVfX/369etNy/bv3991XIC1yKHoln0I6Dd5OFAEcigi2I+AfpOLA0Ugh3q0qRbWgcJ0CL2e1i11CCdPnswuXLhQ+fvIkSPZmTNnOq4GX6sTS1PWdStNeZfiVDsw1zoGkpmZmZA+5lGDSX0OUEsOVWzy8Hr2ISCPPBwYBDlU8cnF69mPgDxycWAQ5FD9pziKsZEO0nPnzvV0G4cPH66bmu78+fOVjqLTisy1rj/cbdX6oUOHsqtXr1aek9SBmcoTqDpw4EB26dKlumXVSvBONU5DnPoe/Q5QSw5VbPLwh+xDwFrk4cAgyKGKTy7+kP0IWItcHBgEOVT/uaweBFnrmp1pWacVmXnTbibddDrVjrbTDiwliKVSKbyKHhgOedNgdnu8N95/VCvKgd6QQ9Et+xBQBPJwoN/kUESwHwFFIBcH+k0ONRiKoyDIegd1pxWZa92v0yTq+PHjlU4oTRHaaWXniy++2FUbgOGW+odGV65cCe0fUzIFUCWHolv2IaAI5OFAv8mhiGA/AopALg70mxxqMBRHQZD1OoS8xKqbjjFNX9eus2fPVqbjS2154YUXOq4SrU6bBxTX3Nxc3d+Li4sdx0rJWGNClq6bDFAlh6Jb9iGgKOThQD/JoYhgPwKKQi4O9JMcajAUR0GQtQ7sbq7pnleZnjqfvCk+15M6r5MnT3ZV2Vnbpk47ZWA0nDp1qu7vvKk9W9V43zTIHOXrEQPx5FB0yz4EFIU8HOgnORQR7EdAUcjFgX6SQw2G4ijoQWV56mTOnDlTqSw/duxYx9WdedPftRsvJWFp2rvUptSBdaPapmGq8ATipUSlNllJld2dmp+fr/s79UcAjeRQdMs+BBSBPBzoNzkUEexHQBHIxYF+k0MNQBkIs7CwUE6H1czMTNexTpw4UYlV+zM9Pd1Re+bm5soRjh07Vol38eLFkHjA8ErHeW3/c+7cuY7i1MaI6BuBYpJD0S37EFAU8nCgn+RQRLAfAUUhFwf6SQ7Vf6X0zyCKsqCoUjVlmm4uVWJ2OvVdqqLcuXNn0/KLFy82Xfd4vWrMffv2VWK1O11eraWlpUqM2uuUpkrRYZoCD+iN1IdUz5BJld3tXmc9XZM4Tb1Zle4/VBXiwFCRQ9Et+xBQFPJwoJ/kUESwHwFFIRcH+kkO1WcDKMiCwksVntXKyhs3brR9/9nZ2abqzjNnzrR8/7TNVA3aGCPqBxgPi4uLdX1Ju/1Qp30YML7kUHTLPgQUgTwc6Dc5FBHsR0ARyMWBfpND9c9wtQYK2JGlzqSdqTdTx9dtB7Znz56edWApNjA+qtNoVn9amf4y9UPVPtAgEGiXHIpu2YeAIpCHA/0mhyKC/QgoArk40G9yqP5QHAU9VHt9z9SZpWtrzs/P566bkqvGzifdZ6312+kEI39S9SkwfoPB2v5pvcSqnXUB1iKHolv2IaAI5OFAv8mhiGA/AopALg70mxyq90rpn35fyg/GSbqm5pkzZyrXC601PT2d7dq1a3WdxttOnTqVnThxou3tHTp0KLt8+XLWK6lN6fEA4yddKz31Zel6wamfOnLkSOUaxNVrp6e+p3o99nQd49RXuJ460Ck5FN2yDwFFIQ8H+kkORQT7EVAUcnGgn+RQvaU4CvokJU6pc5mfn8+uXLlS6bjSsiQlSqnjmp2drXRC6X+AYXXp0qXs+eefr/Rj1b4s9WGpL0v917PPPpvNzMwMuplAQcih6JZ9CCgKeTjQT3IoItiPgKKQiwP9JIfqDcVRAAAAAAAAAABAIU0MugEAAAAAAAAAAAC9oDgKAAAAAAAAAAAoJMVRAAAAAAAAAABAISmOAgAAAAAAAAAACklxFAAAAAAAAAAAUEiKowAAAAAAAAAAgEJSHAUAAAAAAAAAABSS4igAAAAAAAAAAKCQFEcBAAAAAAAAAACFpDgKAAAAAAAAAAAoJMVRAAAAAAAAAABAISmOAgAAAAAAAAAACklxFAAAAAAAAAAAUEiKowAAAAAAAAAAgEJSHAUAAAAAAAAAABSS4igAAAAAAAAAAKCQFEcBAAAAAAAAAACFpDgKAAAAAAAAAAAoJMVRAAAAAAAAAABAISmOAgAAAAAAAAAACklxFAAAAAAAAAAAUEiKowAAAAAAAAAAgEJSHAUAAAAAAAAAABSS4igAAAAAAAAAAKCQFEcBAAAAAAAAAACFpDgKAAAAAAAAAAAoJMVRAAAAAAAAAABAISmOAgAAAAAAAAAACklxFABAlmVXr17N9u7dm509e3bQTQEAgLEiFwcAgP6ThwPjpFQul8uDbgQAwKAdOnQou3z5cjYzM5MtLCwMujkAADA25OIAANB/8nBgnJg5CgAYezdv3qwMApPZ2dlBNwcAAMaGXBwAAPpPHg6MG8VRAMDYu3Dhwurvx48fH2hbAABgnMjFAQCg/+ThwLiZGnQDAAAG7dy5c5X/0/TBe/bs6epMm6WlpWxxcbHyd/r92rVrld/T/+kMnPn5+eDWAwDA6JKLAwBA/8nDgXGjOAqAkZIS6p07d7a8/qCulX3p0qXs8OHDLa9/7Nix1cEI/ZUGaFevXq38/uyzz3Ycp5X9cnp6uuP4AACDJhcnmlwcAODR5OFEk4cD48hl9QAYOe0k0ynBT4Oyfjt58mRb6xsgDE7tADwNyDt14sSJbG5urnImzFpn2hw4cKDj+AAAw0AuTiS5OABAa+ThRJKHA+OoVC6Xy4NuBAB0e5ZDGnilAV8aUKUzaWr1e9rWNPjct29fZbtpStlaqX3PPfdc5TaDv+Gwd+/enkzve/78+aZrtaephTudohgAYBjJxemGXBwAoDPycLohDwfGkZmjABh5KbG+ePFiZWCVfk9nKtRKg7GU6PfzrIvUhryB3qlTp9a8jf5Lg/bqvtE4aItW3T8BAIpELk6n5OIAAJ2Th9MpeTgwrhRHAVAYu3btWh1sNerntcvzzo6ovd47w6N2v2j8AKFbCwsLdX+ns3AAAIpKLk675OIAAN2Th9MueTgwrhRHAVAY1TNP0mCr8WyENDjrh7Sd1A5J/2i4cOFCTwaBSeP00YcOHQrfBgDAsJCL0y65OABA9+ThtEseDowrxVEAFFLjWSrpmuuNiXmvzro4duxYz7dD99L+kPaLXkwfnOI2TlvtwwEAYFzIxXkUuTgAQDx5OI8iDwfGmeIoAAopbzDW62mEU+Kfrtfd6+t0E6O6P/TirKbGDx1cWx0AGCdycR5FLg4AEE8ezqPIw4FxpjgKgELKS+4vXbq0elZErwYWaZsS/tGQ9ofkyJEj4bHn5+fr/naGDAAwTuTiPIpcHAAgnjycR5GHA+NMcRQAhZV3tkovr7OeYjtDZrQGgUkvXrPGs2SeffbZ8G0AAAwzuThrkYsDAPSOPJy1yMOBcac4CoDCmpubq5wt049phKsDi7RNhl91P0hnNM3MzITGdm11AAC5OGuTiwMA9I48nLXIw4FxpzgKgLG6znr1Gui9GFj0Yipa4qWBWvUsll4M3BvPkEmDzcYPJAAAxoFcnEZycQCA3pOH00geDqA4CoCCy5seNvpMmerAwvTBo6F2GulevGaurQ4A8A65OI3k4gAAvScPp5E8HEBxFAAFlzdFbPQ11lO8tI3oqWjpjeeff77yf3q90v7R67NkDh06FL4NAIBRIBenkVwcAKD35OE0kocDKI4CYAzknQlRvR56hHTWjTNkRkPtFNK9eM1cWx0AoJ5cnCq5OABA/8jDqZKHA7xj6sH/AFDoa6w3Jv2nT58OubZ2OiMiJf69urZ6GrAuLS1VBhjXr1+vbCv9Xl2W/r5x40bT9bvT/dLZIGnQU103nRGSftJZG+mx9+IMkbz2p3akdlbbntqatr1///7K69LPs4tqp4/uxWvWyrXV02uS2nHlypWm5+TZZ5/NTpw4Ed4uAIBBkYvLxavk4gAA/SMPl4dXycMB3qE4CoCxGQzWTh2ckvGUhHc7GEoJfRpUNSb7EVL7Dh8+3NZ90mM8efLk6sAvnaGR2pb+TgOPNFBJP2mddFtqf/SAMG0rxa99vtNgL70Gu3fvzhYXFyuPLd2eflI7zpw505cBYfXsqOrz0utrq9d+2JCe9zTwTY89PdbUhr17967eL7WtOki8ePGiKakBgMKQi8vFE7k4AEB/ycPl4Yk8HOCBMgAUxMzMTOUnz8LCQjm97dX+nDhxoqvt3bhxoxJnfn4+9/a5ubmmba617lrxZ2dnK49pz549TbGqP2m99JPWS3+n7S4uLq75PFTXi3oeap07d648PT29Gju1JbVtLen5qG13L9XuAxcvXuzJNhpfp+rrnZ7j9Hd6rGu9Nmnd2vum9gIAjAq5uFx8PXJxAIDekIfLw9cjDwd4SHEUAGMxEMxL0tOApdtBT4q5lm4Hgo1qB3uNA4bUjvR4Wo3f2LaIQVh1sFP9Sc9Pq9K66T5p4Nsrx44dW21bL1Q/GGgcpKfH1Orgs7puddAIADAq5OJy8fXIxQEAekMeLg9fjzwc4KGJ6gxSAFB0jddYT1PdNl4Pux1pqtfGmL2UprxNU+02StMMp2lpFxYWKtPStqJxito0fW267nqn0vNw9uzZuucmTRncqrRuuk96PWqnHo504cKFpml9IzXuS+n5TVMpp+VpiuBWtls7ZXSaTrib/RMAYJjIxR+Si8eTiwMA5JOHPyQPjycPB0aJ4igAxkbewCQNPjqRBl4pUW9nsBMh71roqS1poNHuddJfeOGFumuMp0FH7WCuVWkQWTt4S4PRdp6X1P59+/atDqrzBrvdSo8tDfyTXg3eG6+tnvaP9Lyk5a0O0Hft2tUUAwCgCOTi9eTiseTiAAD55OH15OGx5OHAKFEcBcDYSIOexoQ8DWKqA4R2pMFKilU7kOqHxoFCkgZdrQ40aqW2nzp1qm5ZOqujncFHGsTVntnRyeA6DQJrt5lipp9I1Tbl7QNR8s5oqe4nrWrcnxYXF0PaBgAwaHLxenLxWHJxAIB88vB68vBY8nBglCiOAmCspIFOo06mrE3T0fZz+uD1NA7E2nHixImmwUfec7SWxnXToKeds3XSgC9vIB49EEwD/uTIkSNZL6TH0NjmNIVwen7bjdPL5wEAYJDk4vXk4jHk4gAA65OH15OHx5CHA6NGcRQAYyXvzJZ2z+qoDip6dZ3uiDNn2tE43W8626OVM2XSIKX6XHQyiFyv7e1Oh7ye2oF+rwbveWfIPPfcc23HaRz49fssLACAXpKLN5OLd08uDgCwPnl4M3l49+ThwKhRHAXA2Gkc+FSvld6qNHDs93XVe+nZZ59tWnb69OlH3i/vOuj79+9va9tpoNN4Jkl6biMHghcvXqz8n2KmM1f6cW319CFBJ9t68cUX6/4+cOBA120DABgmcvF6cvHuycUBAB5NHl5PHt49eTgwahRHATB28s6UaPVMmTTFazojYlimD46QBiyNZ2M0nv2y1jTKtdJAq5OzOtKAcmFhofIapAFVu2cttfJ69fqspsazZPIG153E6dXAFQBgUOTi9eTi3ZOLAwA8mjy8njy8e/JwYNQojgJg7OSdLdHqNdbT2SPpvpFncQyDvLNb1jtzKO+66N0MWtJ909kxaYrnSP2YPjjv2uqdPI6857Tds44AAIadXLyZXLxzcnEAgNbIw5vJwzsnDwdGkeIoAMZS3qCglcFgWqdIZ8isN4jLu2b4ercN4+D4+eefr/zfy8F73pktnZwtFBUHAGDYycXrycU7JxcHAGidPLyePLxz8nBgFCmOAmAs5V0f/VFT16ZEPZ3FUKRrq1ft3r27adn169fXXH9xcbGlGIOUzjqpnunTy8F747XVOz3TJyoOAMCwk4vXk4t3Ti4OANA6eXg9eXjn5OHAKFIcBcDYahzQpUFD41SwjQPFIg4Ck7yzMdZ7Lhqnul0rxiDVDuyPHDnSs+00nt1y4MCBkDiHDh3qql0AAMNMLv6QXLxzcnEAgPbIwx+Sh3dOHg6MIsVRAIytvDMn1jpTJg18Ll26VMjpg5Ndu3a1NNirWlpayoZddUrodLZJrwapUddWTx9CND7fzpIBAIpMLv6QXLwzcnEAgPbJwx+Sh3dGHg6MKsVRAIytvGtur3WN9QsXLlTWzbsOeRHkDezWGzzlDRyHSe3AqpeD98YzW9I+0smgs3od+Kq5ubmu2wYAMMzk4g/JxTsjFwcAaJ88/CF5eGfk4cCoUhwFwFhrHCRUz4ZpdObMmcKeIbPWGTGNg+RaeYOd9c6q6bfas516OaiKuiZ64z737LPPdtUuAIBRIBd/h1y8M3JxAIDOyMPfIQ/vjDwcGFWKowAYa3nXS2+cRrh63fWiXls9uX79etOy3bt3r7n+3r17m5YtLi5mwyKd1dSPs02uXLnS9TXRq/tXLWfJAADjQC7+Drl4Z+TiAACdkYe/Qx7eGXk4MKoURwEw1tLZHo1Jd5oWtvaMjzQwTOv06hrdwyANRhqtd8ZH3m2Ng5lBSWec9GP64LSNxuetkymmTR8MAIwrufg75OLtk4sDAHROHv4OeXj75OHAKFMcBcDYyxss1F5nPf1e5OmD864Tnga96w1q8q4j3njGyKBUB1apfZ1O6duKxsebtrfetMtrqd3XHjV9cDo7qXF9AIBRJheXi3dCLg4A0B15uDy8E/JwYJQpjgJg7KXBQuOgpjqNcDrjotcDimE8Q+bIkSOPvF/jOumskYgzZda6xn27923lMQz62urpuW+8Lv1aZ8lUpxruZLAJADCs5OJy8U7IxQEAuiMPl4d3Qh4OjDLFUQCQc531lHCnxPv06dOFvq563vXkk5MnTz7yfnnrdDqAq5We81a2v9511ZNen9nUeGZRJ9dWb3zu19vXqusW+UMJAGA8ycXrycUfTS4OANA9eXg9efijycOBUaY4CoBCaTzjoFV5g4ajR49WBoPDPn1wt2emNE5JmwYjrZyJkdZpPKMjb1DZSXs6HexUt5/a1sm1zru5tnonba4duCaHDx9ed13XXgcAhplcvH1y8fbJxQEA6snD2ycPb588HBh1iqMAKIw0IFpaWurovmng0JjIp0Q/DSaGfcrW6vXEO9F4NkqaLvnMmTMt379x3fQadHOmTLpvGmR1cpZM7eCs14P3iGurp/Y2fnCx1mAynZGT1j116lQHrQUA6D25ePvk4p2RiwMAPCQPb588vDPycGDUKY4CoBCq16nOO3uhVXmDh24S707P2Olk8NTJmTLpPmfPnq1bdvHixaZrza8nDX7SfRrPLur0saf7pjNBOhl8157t0+uzSRqvrb5///62YzR+aLHeWT1pYJxu7+WZPwAAnZKLy8Xl4gAA/ScPl4fLwwFapzgKgEJIA4i839uRN3joZkCRNzjrdJD6KO1e2zsN1Brvk8546WQa3PQcnThxoi52J69Bak+673PPPZd1M31wP85siri2emMb12pzGuin/abT5wUAoNfk4nJxuTgAQP/Jw+Xh8nCA1imOAmBkVc/y2LlzZ90AK/2elqXb2j17JF1bPO/3dtuVzmrI2/bp06dXp8mNks5SSWdc7Nu3r6W4aZ2DBw/WtS8NomoHc+1Kg8ja+6fHuN61whulgVQaXKWzT9o5S6cqPZbq4+n19MFJxLXVGwd/eQPB6qA67YvOkAEAholc/B1ycbk4AEA/ycPfIQ+XhwO0rQwAI+TGjRvl9PbVyU+676MsLCysrp9+b8X09HTlp5M2Ve974sSJjh9/aufi4mJ5z549lVgXL15c8/7z8/N1bU33ScuipG23E//cuXOr7e6mHen5a+d17kZqZ+Nr0M3zVY0xNzdXd1v1NZ2ZmQloNQBA9+TicvE8cnEAgN6Sh8vD88jDAdoz1X45FQAMXrtnUrR6Vko6E6E6bXA7ZyWk+J2c3VG9b7dnzaQzLBYWFipnVKSzU9Lf6XHs3bu3cvvi4mLdddhTW9O147s5MyZP2mY6YySdJZSud562l86ASds7cuRIpT3Xr1+vnGVy5cqVyuNO66e2d/r81V5bPcXqJk4nuplmOt03nQGT2p9en3RmV3rt0tlCaVl6PI3XcgcAGDS5eD25uFwcAKAf5OH15OHycIB2lFKFVFv3AAAGJg2c0vTItdIgqnbQmtZJUxWnwVZ1at00OEoDjP3791cGip1OeduuNLh5/vnnV9uR2pbakX5Sm9N0v91eCz1NPVy9vnmaTrmbgVm7Ux5HDdTS85SmcU6D4yS9Tum56cdjAQCgNXLxZnJxAAB6TR7eTB4O0D7FUQBQsIHguEkDpupZMtIaAAB6RS7eTC4OAECvycObycMB2jcx6AYAAHSjOgh0RgkAAPSXXBwAAPpPHg7QPsVRAMDISlPv1p4tAwAA9IdcHAAA+k8eDtAZxVEAwMhK1yRP0vXj+3XNeAAAQC4OAACDIA8H6IziKABgZK81f/ny5crvR44cGXRzAABgbMjFAQCg/+ThAJ1THAUAjKQLFy6s/m76YAAA6B+5OAAA9J88HKBziqMAgJGePnjPnj3ZzMzMoJsDAABjQy4OAAD9Jw8H6JziKAAYIUtLSy0tK7pr165lV69erfzuDBkAAPpBLv4OuTgAAP0kD3+HPBygO4qjAGDErineyrKiu3Tp0urvc3NzA20LAADjQS7+Drk4AAD9JA9/hzwcoDuKowBghM4MOXr0aNPykydPrp4xMm7TB6epg9MUwgAA0Ety8Yfk4gAA9Is8/CF5OEB3prq8PwDQw4Hfvn37HnkmTO1609PTlf9feOGFwl5zPA1602NOTB8MAEAvyMXzycUBAOgleXg+eThA9xRHAcAQSwPANLirDvBavU+Rr7n+/PPPr/5+5MiRgbYFAIDikos3k4sDANBr8vBm8nCA7pXK5XI5IA4AQF/s3LmzMtidnZ3N5ufnB90cAAAYG3JxAADoP3k4QPcmAmIAAPTF5cuXV6dTNn0wAAD0j1wcAAD6Tx4OEENxFAAwctKUynNzc4NuBgAAjB25OAAA9J88HKA7LqsHAIzcmTL79+9v65rzAABA9+TiAADQf/JwgO4pjgIAAAAAAAAAAArJZfUAAAAAAAAAAIBCUhwFAAAAAAAAAAAUkuIoAAAAAAAAAACgkBRHAQAAAAAAAAAAhaQ4CgAAAAAAAAAAKCTFUQAAAAAAAAAAQCEpjgIAAAAAAAAAAApJcRQAAAAAAAAAAFBIiqMAAAAAAAAAAIBCUhwFAAAAAAAAAAAUkuIoAAAAAAAAAACgkBRHAQAAAAAAAAAAhTQ16AbAOFhZWcmuX78+6GYAALCG3bt3ZxMTzh0pGnk4AMDwk4sXk1wcAGC47R6zPFxxFPRBGgQ+9dRTg24GAABreOWVV7Inn3xy0M0gmDwcAGD4ycWLSS4OADDcXhmzPHx8ysAAAAAAAAAAAICxojgKAAAAAAAAAAAoJMVRAAAAAAAAAABAIU0NugEwribf911ZNjnVUKP4zu+lUs2yUqnutqzutgfr18ao3v7gfrm3ZZM14evjlrLq9tIfk00xquuXamKkv2rj1q/fvGxi9XHm3ZYTo2H96jp1sXJiPLytef3JcqlpWeP/9ctq13/n94fPZqnp5ap/VR+sn3Nbdf1SVn64fsN6pdLat9Vtc7UZzevXxV8nbnW91d2uZr2aRdlEddk67a+L37jNmmB57Xm41+e0p2E7deFWn4vmWLUxGuPWx1p7m/nPxTrPwTqPrS5GwzZzn+tHbLPxtch7THnPWW6snHY3vk71+2B12drtyd0H656z+vUe/ZpU18uJ38Ky+tekeVnzPtLa+tXjr1RaWbc9q/tS7nOX08bVY+dh3NX75q2frTTtN6u3T+TFX1lnmw3/V94ymh9T9faHb1vrxKqJsXq/upL9vPXrt1Mfv3mbTQdbTay8t9Sajqf+77WWtbB+zVvNw/XyTk3I7dwfxFj/wF1Vzn0DKrV+W078utsm1m7P6rKa9Vcfe+36DevVxcrZZmOM2vUfPqaaZavPe17762MsffNO9tc/+i9rnhDGyeS3fSTLpjaueXA+zI9zDuKG3Lnya26e3pCL13U4D/Ld3Ly+epzU5Os5Y4SH+W19Hl6/fvOyiXVvy4mRs35jrr1WjMZcvHb9ai6en3fn5eSlnJy8+sgfPNc5+WXd+k059sP18/KPptwn97aaZQ25eG4u9nBRU9zcvC4vP258v10rf2rI2WpjrebMOe1pPUdtXtaYi9fnIfUx65atm9uu3cZW8928x9Y43sjbZt6YYr0cNX88sPYYITdWzuPNHb/lLlu7Pbn7YEM+Xb8sJ0aplRw+L9baeXRefpy/j7S2fmMu/qgcvjFG3m31x059zlwXf7WNNfl6w215+XHtuKFpm3XbrubMzY+pLmduyItLj4jRnIuvd1vNtlbj19y2mt/Xrt94v5qbWsm78/L1Ftd/mEvmrL/6d17nXhNj/QP3wXby3oDWzqfr8tfmjqf5ttrHlDcOaMyx8zrr+jeI+vvlbDMvRnX9/By7pj2NuXhdvv7O79ev381+4Hv/Rc1GGCcbPvzjWTa1OStN1OSeD36vWzb5ICesyUOzhvVKNftXbozqZ88PYuVtc6JuWTV3z4m1Gr8mB55saE9tjv1gvYm6Nlbz1gf/196Ws2yiYVndbavLHj491bHEwyFL87arMfPi1t1WyonfsH51nbr21HQRk9W4Ne2oLmv8v/J7KWfZ6nrNz+eDl3X1frW/V9erjTWVs2x1vXW2nbvNhvvlxaosq8atdok5r2/t8766Xs5tD7vt5vY0bqf29al7vI3PU137c+I3rFez+z/cP+ve6h4sy9b8KKhujPZw/NC0qOl+te2v2/dK641xSmvHXy9WtvbjLJVrcqXyyprLVnOq1b/TeitNy1Z/r8ZYedT69XHrPptdJ/5qrJW8WOUW27j84M+aba4s1/9fWe3B7znbLK+uv86ymm2vxqqJX/19tR21t622sab91d+r96vGrGtjTfsfrL8aY7m2PQ9uq2tjue62lZr41fXKeTEetL/utuq211lW+/yv5K2/3PwcrN5ntY058VeaH9NK7jbrH8c7cavrNz+mlQf7VzVmXdzq+rW7W942V9erv1/ebfXLqu3Lua02xoPjaPlBW2tuWm1/7bLG9arr1C7LW3/1ZcjWX391ver9srVjrdXupm0++PvtbCX7/2ZfzcaZ4igYlMmprDS5oeFTprziqIkOi6MmOiyOmuigOGrtYqd1C6DWLY7K+WJl3eKotb+wyVt/stzaFzGT6xZHPRhgrPOlS936uQl6dVm7xVGtfanQUqFSzn3rP+uKL47KH9TkffnQvH7jbbXL8gtZspxt1sd9VCFOU/vrnot1noOcx5b7ZVpAcdREx8VRzV80tPIFTO6Xe3n7ZW4hUV77yy20v9yT4qiJFpY9sjiqKX67xVHrfClSt6zN4qi8Yqc2i6PWK2zK/bJlnS9/Wi6Oyl2/w+Koxvs9sjiquu2a29b74mad2/K/DMnbZt4bxIMY631CNBFcHNXClzn17Vnvi5WGtuZ9cZNXHDXRTXFU/XrrFUcx5qp5eF6unZMfd1YcNdFhcVT9FzKPLo6qz5Pr11+7AOrRxVENJxs8sjhq7Tw9b/1qLr5ecVQ1D8/Lv/Ny8YkuiqMm2i6OysuZs7VzmfXyp5y8br2cNqI4Ku9tobUTInJuq4sRXxw1EVgc9ahxWKfFUa3k5vXL8uKvl2PX/732soYxTm4hUas5dtZRjt1ucVR+G3OWrVcclRu/3eKoFnLhnJz5kcVRLeTH6xVHPaqwKTfHXifnb6k4Knf9LoqjmnL4mlC5eXRDjNzcOS9+8235OXDj+nkdf4vFUevm/I/OtXPb2HJxVE6OvbrNbP0ceL0cvoUYj8qxm9Zb7zbGUyqM2rClheKo9QqUcgqV8mJUl60Ta2Ld+O21MT/+w/29sago97ZuiqMa4rZdHJVbrPUw/kQrxVHrFELlLXtU8VJjcdR6sSq/lzqN/+jbWl6/xeKovAKlxvXWK5yq3WZecdTqsrp9ap1tt1AcVV3nkcVRpdaKo/I/m18vfvV+zY8pf/xQWif+OrHaLo5ap9ip5eKolc6Ko9aL1XJxVIttXMkrPFqnOKqhKOnRxVE5t61bHNUcv5U21hVHrdPG3EKl1cKdnGV5xVEtxKgrVGqIlRejrvCo1eKopjY+oiBrveKonAKoh+s337ayWgS2TnFU7W0TOdt8MEZYfRw1Y5aVUk5xVHVZNX7NGK1aCFWuGVs+LICq/r96U0vLqn/XL2tx/dX/115WVxxVLeRqc9lq/HLNSmOq9n0CAAAAAAAAAACgMBRHAQAAAAAAAAAAhaQ4CgAAAAAAAAAAKCTFUQAAAAAAAAAAQCEpjgIAAAAAAAAAAApJcRQAAAAAAAAAAFBIiqMAAAAAAAAAAIBCUhwFAAAAAAAAAAAUkuIoAAAAAAAAAACgkBRHAQAAAAAAAAAAhaQ4CgAAAAAAAAAAKCTFUQAAAAAAAAAAQCFNDboBADBIn/rT38hKdUvK2cEP/8jA2gM89Av/6qWHfzw4UP9vP/b0wNoDFMPyja9nU0++f9DNAIJ88nO/Wcnhk2pe/yPf+cMDbRMQ4+cv/nnTsp/7Ce/hQLO3F3+78n+p9HA+gK0fmh1gi4Ai+cVf/MXK/6XyO+OO5L/6+z87wBYB0AnFUQCMtd/+QvoypZ7iKBgOv/ivX25apjgK6Nprr2SZ4igojPnPf7JpmeIoKIZfuPTlpmWKo4A8d679TtMyxVFAlH/4D/5B0zLFUQCjx2X1AAAAAAAAAACAQlIcBQAAAAAAAAAAFJLiKAAAAAAAAAAAoJAURwEAAAAAAAAAAIWkOAoAAAAAAAAAACgkxVEAAAAAAAAAAEAhKY4CAAAAAAAAAAAKSXEUAAAAAAAAAABQSIqjAAAAAAAAAACAQlIcBQAAAAAAAAAAFNLUoBsAY2v5flZuqlF88HupZlmptM5t1d9zljXer279yZz1q7dV75d+nWwtxoP7lB8sK9WsXyo1L6vGy7+teVm5Yf3qdupuq1u/ut47y1Zq1p94sKxcLjUta/z/nftWl9Wu/87v1bVWam6rPu31j/bB+jm3VdcvPdgb8tYrlda+rW6bq81oXr8u/jpxq+ut7j4169Usyiaqy9Zpf138xm3WBMtrz8O9N6c9DdupC7f6XDTHqo2RF7fWW3fezN1m/nNRXSfv+Vz7sdXFaGhP7nP9iG02vhb1z0/esnVi5bS78XWq3wery9ZuT+4+WPeclR/Z/vrXpLpeTvwWltW/Js3LGl+TiRbXrx5/pdLKuu1Z3Zdyn7ucNq4eOw/jrt43b/1spWm/Wb19Ii/+yjrbbPi/8lbQ/Jiqtz98+1knVk2M1fvVlezXxG3w6ht3c+I3b7PpYKvZdt5bak3HU//3WstaWL/mrebhenmnJuR27g9irH/grirnvgGVWr8tJ37dbRNrt2d1Wc36q4+9dv2G9epi5WyzMUbt+g8fU82y1ec9r/31MZa+eafmyWAclZfvPfitlXy65vam3Dnntrr75q0/uU5eXz1OanPtdWI05OHvLKnPnWuXZeve1rysMQ+v3Vb1tvr1m/P0ai5em2NXc/HaZY25eDUPf2dZKScnr8/Fc7qs+vWbcuyH6+flH025T+5tNcsacvHcXOzhoqa4uXldXn7c+H67Vv7UkLPVxlrNmXPa03qO2rysMRevz0PqY9YtWze3XbuNtY+30Zspn1/nsTWON/K2mTemWC9HzR8PrD1GyI2V83hzx2+5y9ZuT+4+2JBP1y/LiVFqJYfPi7V2Hp2XH+fvI62t35iLPyqHb4yRd1v9sVOfM9fFX21jTb7ecFteflw7bmjaZt22qzlz82Oqy7Eb8uLSI2I05+Lr3VazrdX4Nbet5ve16zfer+amVvPuBq++dm/t9WviP8wlc+Kv/p3XudfEWP/AfbCdvDegtfPpuvy1ueNpvq32MeWNAxpz7LzOuv4Nov5+OdvMi1FdPz/HrmlPYy5el68/yMWvPxjTMZ7u336np5moyXerv9cuW3mQX9bmoQ9uL63+v05nkULceeud9SYf5LQ18Vd/r1tWzbvrt1O/zZoceLKhPbU59oP1asex1faWHhwfK7W3PVhW+5gmGpbV3ba67OHjLVXz4tXhQ/O2qzHz4tbdVsqJ37B+dZ269tS8JJPVuDXtqC5r/D+5X2pe9nC9B2OFutse/F+z0erv1fVqY03lLFtdb51t526z4X55sSrLqnGrXWLO61v7vK+ul3Pbw267uT2N26l9feoeb+PzVNf+nPgN69Xs/g/3z7q3ugfLsjU/Cqoboz0cPzQtarpfbfvr9r3VXKN+ndr1cuOvF6uu/Wv3M6+++uo7Mco1+VO5mtuVG/5O6600LVv9vRpj5VHr18et+2x2nfirsVbyYpVbbOPygz9rtrmyXP9/ZbUHv+dss7y6/jrLara9GqsmfvX31XbU3rbaxpr2V3+v3q8as66NNe1/sP5qjOXa9jy4ra6N5brbVmriV9cr58V40P6626rbXmdZ7fO/krf+cvNzsHqf1TbmxF9pfkwrudusfxzvxK2u3/yYVh7sX9WYdXGr69fubnnbXF2v/n55t9Uvq7Yv57baGA+Oo+UHba25abX9tcsa16uuU7ssb/3VlyFbf/3V9ar3y9aOtVa7m7b54O+366KNp1K5XNtrA72QkqSnnnpq0M0AAGANr7zySvbkk08OuhkEk4cDAAw/uXgxycUBAIbbK2OWh7usHgAAAAAAAAAAUEiKowAAAAAAAAAAgEJSHAUAAAAAAAAAABRSqVwulwfdCCi6lZWV7Pr164NuBgAAa9i9e3c2MeHckaKRhwMADD+5eDHJxQEAhtvuMcvDFUcBAAAAAAAAAACFND5lYAAAAAAAAAAAwFhRHAUAAAAAAAAAABSS4igAAAAAAAAAAKCQFEcBAAAAAAAAAACFpDgKAAAAAAAAAAAoJMVRAAAAAAAAAABAISmOAgAAAAAAAAAACklxFAAAAAAAAAAAUEiKowAAAAAAAAAAgEJSHAUAAAAAAAAAABSS4igAAAAAAAAAAKCQFEcBAAAAAAAAAACFpDgKAAAAAAAAAAAoJMVRAAAAAAAAAABAISmOAgAAAAAAAAAACklxFAAAAAAAAAAAUEiKowAAAAAAAAAAgEJSHAUAAAAAAAAAABSS4igAAAAAAAAAAKCQFEcBMDQuX76cHT58ONu3b1+2c+fOrFQqZXv37s0OHTqUnT17Nrt582Y2bK5du1Zp68mTJyu/dyI9rvT40uM+fvx4eBshSjoW0/4+akaxb4GiKtLxWKTHAuN6TMjloT3GAwDAOJA7ABRTqVwulwfdCADGWxpQnDt3rvKFxPT0dDY7O5sdOHCg8vvi4mJlMHL16tXKuum2tO6ePXuyYZDalgZFValdqY1p4LR///7K3+lx1EqPMz2eF198se6xJQsLC9nMzExfHwM8StpHjx49urqv3rhxo2m/Hkaj3LdA0RTpeCzSY4FxPybk8tAa4wFgXKR+4eLFi9mVK1cqfUcqgEh9xq5duyrv8SlvSP2FvgKKSe4AUHCpOAoABmFxcbG8Z8+eVKRb+Tlx4kT5xo0buevOz8/XrXvmzJnyMEjtqrap25+LFy8O+uFA0zE6NzfXtK+udZwOiyL0LVAURToei/RYIEIRjgm5PKzPeAAYF+l9fHp6uuX3/dnZ2Ur/ARSD3AFgPJg5CoCBSGdYHDx4cHUK2nRW1tzc3CPvl87QSmdoJMeOHaucnTFMZ5t3Ip15kh5/OtsEBmm9mRBqDfOZ4kXpW6AIinQ8FumxQISiHBNyeahnPDA8/RPQP43Hf7pMbu1MkKlvvHTp0upsMrVS//Lcc88NbZ8IPJrcAWB8KI4CoO/SQOOZZ55ZHXCkgUMaQLQqXd+7+mHEmTNnshMnTmSj+oWKD1EYtJ07d64ei42qHwSkDwFH4cuQIvUtMOqKdDwW6bFAhCIdE3J5MB4Y1v4J6L3UV6SCiFQY0erlsU6ePFm57FatdJ/5+XmX1oIRJHcAGC+KowDou9qzKtKZWAsLC119iZGu9z2oDyA6/UIlfeiSBky1Z6LBIJRKpcr/6cuNdBzt37+/sk+nfTQtSx/6pQ//RuHLkCL1LTDqinQ8FumxQIQiHRNyeTAeGNb+Cei9ffv2VQqj2p3x5fz585XZpWqlPvGll14ayr4RWJvcAWC8TA26AQCMlzRgqA44klOnTrUdI31ImwYr1Sn+Dx8+3PbAJVo6KyQNhNKZYqldV65cWT3jJH0wsmvXrkqb0zpHjhzxYQlDoyh18kXtW2AUFel4LNJjgQhFPSbk8owz44Hh7p+A3khFn7UzRrUjFVOlAojaGaRS3pCKrdJyYDTIHQDGz8SgGwDAeKk94zR9qdDK9bvzPPvss6u/p8FHdQAyKLt37149gzx9qZLOpE0fMqef9Hv6cCRdrzx9gOLLFIhX1L4FRlGRjsciPRaIUNRjQi4Po6+o/RMQL10CKxU2VS+H14mUMzTODlONC4wGuQPA+FEcBUDfNA4O0hcQnWocrLR7lhdQHPoWGB5FOh6L9FgggmMCGFb6J6Ddwqak8ZKh7cq7/+nTp1dnnwSGl9wBYDwpjgKgbxoHBgcOHOg4VuPZWefPn+84FjDa9C0wPIp0PBbpsUAExwQwrPRPQDuqx3WaEbIbefdPhVEXLlzoKi7Qe3IHgPGkOAqAvmn8cCBdj7sbjQOPS5cudRUPGE36FhgeRToei/RYIIJjAhhW+iegVZcvX16dJSbi0ld5/U26FC8w3OQOAONJcRQAfXHt2rWmaaUbBw3tahy0zM/PdxUPGD36FhgeRToei/RYIIJjAhhW+iegHdXjORVJ7du3LyuVSl3N8pJ3Ka5qARYwnOQOAONLcRQAfZH3wUC3g45du3Y9chtAselbYHgU6Xgs0mOBCI4JYFjpn4B2iyIaHT9+PHd5K/bu3RvQKqCf5A4A40txFAB90YuzJaanp+v+7vSDDGB06VtgeBTpeCzSY4EIjglgWOmfgHY0zhbTbSFDY0FElX4DhpfcAWB8KY4CoC8aBwSNA4ZO7N69u2nZ1atXu44LjA59CwyPIh2PRXosEMExAQwr/RPQjrX6iLWKnIDikTsAjC/FUQAMZNAR8aFD3sDFWRkwXvQtMDyKdDwW6bFABMcEMKz0T0A70iX08o752dnZjuItLS3lLldsBcNL7gAwvhRHATDQaaujDcugIz3es2fPZocOHcr27t2blUqlbOfOndm+ffuyw4cPu+44BBm3vgWGWZGOxyI9FogwbseEXB5Gx7j1T0B3UhHUxYsXsz179qz+/cILL3Q8c8zi4mLu8oiZaIDekDsAjC/FUQAMZMAR8SFB3lkd169fzwYpDXrSFybpy5OTJ09WHmc6Ky198HLmzJls//792aVLlypftKR1zp8/P9D2wigbp74Fhl2RjsciPRaIME7HhFweRss49U9AnLm5uUpRU7lczubn57OZmZmOY+VdNqvTWaiA3pM7AIy3qUE3AIDiW2uK6aKdkZG+KElfpqQBVfoCJX3Ykid90ZLWSx+gVL9sST/OKoP2jEvfAqOgSMdjkR4LRBiXY0IuD6NnXPonYHjlzSaZiqiB4SR3ABhvZo4CoDBT1Q7SuXPnKl+SHDt2LLtx48aaX6YkaeruhYWF1TPT0gcpBw8eHIvnCSI5ZmB4FOl4LNJjgQjjcEzI5WE0Oe6AQVprBskTJ070vS1Aa+QOAONNcRQAhTojY1ADnHQmSPoyJX2x0qp0hnlVOvM8fakCtG4c+hYYFUU6Hov0WCDCOBwTcnkYTePQPwHDK11yt5HCKBhucgeA8aY4CoCRNUyXrpidnW3ry5TqWee1H6SkL1XSZTqAwRqmvgXGXZGOxyI9FijaMSGXB4a1fwKGU3rfb7xkVmNuAIwPuQPAaFAcBQABX6TMz893dP90hnqts2fPuh45AAD0gVweAOjE0aNH151VEgCA4aM4CoCRNSxT0zZ+KdLuWSUzMzN1y5xxDoM1LH0LUKzjsUiPBYp0TMjlgWHtn4DhdP78+crMUY2FUY05ATA+5A4Ao0FxFAA9t2vXrkE3Yajt37+/7u9Lly4ZUEEL9C0wPIp0PBbpsUAEx8T65PIwOPonoN/Se/zx48frlqVL6c3NzQ2sTUDr5A4A401xFAAM2L59+5qWXbhwYSBtAQAAWieXB4Dxcfjw4abCqBMnTgysPQAAtE5xFAAD0auzqdOlLYpwxsr8/PxA2gKjTt8Cw6NIx2ORHgtEcEw8JJeH4aJ/AnolXTr38uXLq38rjIJikDsAjA/FUQD0XK8GAktLS03L9uzZkxXh+an9sAXIp2+B4VGk47FIjwUiOCbWJ5eHwdE/Qf9cvXo127t3b1YqlYbuZ+fOnU2Xuot2/vz57OzZs6t/K4yC0SR3ABhviqMA6Ll+DgR2796dFeFs816dsQJFom+B4VGk47FIjwUiOCbWJ5eHwdE/Qf9cuXIlu3btWjaM0vtuKl7qZWFYbfHVuXPnFEbBiJI7AIy3qUE3AIDxOSuj9kuCvLMp2pX3pUORpqtNHzo5wwTWp2+B4VGk47FIjwUiOCbaJ5eH/tA/QX8cOXIkW1xcrBwfEcdZdKHyoUOHevZ+fvDgwdW/L168mM3NzfVkW0B/yB0AxpfiKAD69kFF7SAh4mzq69evNy3bv39/1g9pKu3Tp09XHkf6UOS5557reMCz1v2ccQ7j17fAKCvS8VikxwIRinZMyOWhOIrWP8GwSu936VJy4yT1J/v27VvtV+bn57PZ2dlBNwvoktwBYHy5rB4AfTEzMxMeM2/g0o+zsy9dupSdPHlydfvp78OHD3ccb60BmDPNYbz6Fhh1RToei/RYIEKRjgm5PBRLkfonYDgLo1Jh2MLCgsIoKAi5A8D4UhwFQF8cOHCgaVm3Z2U0TnmbBhz9mK72+eefb1p2+fLl8O2YehfGq2+BUVek47FIjwUiFOmYkMtDsRSpfwKGR7qUXrqkXrUwqhfFFMBgyB0AxpfiKAD6Iu/sqvQhQzca79+vszGiL5GR9zwYPMH49S0w6op0PBbpsUCEIh0TcnkoliL1T8BwOHToUHb16tXKsf/SSy/pA6Bg5A4A40txFAB9kXeG1ZUrV0IHHd1cDqMdeYObY8eOhZ1Zkhw5cqTjeDBOitS3wKgr0vFYpMcCEYp0TMjloViK1D8Bg5eO9zSjZMoX0oxR7RY8p8v1lkqlrgstgN6ROwCML8VRAPTN3Nxc3d+Li4tdnfHdeNZ3v76E2Lt37+pAKv2cOHEiO3fuXMfx0octeWepAePVt0ARFOl4LNJjgQhFOSbk8lA8RemfgME6fvx4pbgp5QedFEYlL774YuV/s8bAcJM7AIwnxVEA9M2pU6fq/k5nYnWq8b5pQNOvy1dUp95NH5qkD0vOnDnTVbzGx5IeR+MADSh+3wJFUKTjsUiPBSIU5ZiQy0PxFKV/Agbn7Nmz2fnz5yuFUS+88ELHx331cnzAcJM7AIwnxVEA9E317OzaDww6NT8/X/d3+nKjXemMjnRGWPppPLtjPekxpA86ujnDvHbK3cZpd7v9ggZGUafH4zD2LTDOhu141LdAnGE7JuTyUCzes4FBSUVRJ0+e7GrGqNpLc+VdsgsYLnIHgPGkOAqAgZ6VkT6A6ETt/dJApnoGeKvSgOeZZ56pXP87/aTf2xkEpS890vrpg9tupA9faqUvao4dO9ZVTOi1paWl0HjdHo/D1LcAw3M86lsg3rAcE3J5GCzjAaAo0owvqZAhHet5l8ptRyqYTsWdZo6C0SB3ABg/iqMA6Ks0rWztWRmdnFmdprqudfHixbZjHDx4sO5s1PR7Wtbu40gf3HZ6ZkneFzKNZ5rAoF2/fr3n2+j2eBymvgUYnuNR3wLxhuWYkMtD/xgPAEWV3ssPHTpU6T8i3sOr/c6BAwcCWgf0mtwBYPwojgKg79IgoTpFdTqrqnEQsZ70IWntGdpp0NLuGVnVM7nyYjdeFmM91cHOvn372v5SJe/D3hTP2WUMm7x9u5uppnt1PA5D3wIMz+AxvuYAACmESURBVPGob4HeGfQxIZeH/jIeAIoo9RHV9/J0/KciqU5+Uh6xd+/erFQqrc4eo++A0SF3ABgzZQAYgIWFhXJ6G6r+XLx48ZH3uXHjRnlmZmb1PmfOnOlo2ylO7bZrf9Jt7Zifn2+7PemxT09P1203xYFhkvbTY8eO5R4naf89d+5ceXFxsevtRB6Pg+5bgGK+1w/6scAwKsrxLZeHtRkPAEWVjvnG9/LIH2C0yB0AxodMDYCBDjz27NnT0iCinXVbMTc31/ThRVrWidovSNL/qW15H+Km9Rq3mx5TxAfK0KkTJ05U9tvqT6cf/tXGSPv6oI7HQfctQDHf69ttn76FcVCU41suz7gzHvCeDeMkvcfXHvPRPyk2MHrkDgDjoZT+GfTsVQCMtzT9bJp6Ok1Fm6axPXLkSGVa6mRxcTG7fPny6rT96VrgUVPUHj9+PLtw4ULl92PHjnV0XfHGx1E79W56LLt27ar83ng5gHRb2l7aLgxSdb+tTiHdjerlMBYWFrKZmZmBHo+D7FuA4r7XJ/oWKObxLZdnXBkPeM+GcXL48OHs0qVLPYs/Ozubzc/P9yw+0FtyB4BiUxwFwNBIH048//zzlS8f0k91EJIGGOnDhWeffbbtD1j7LbU5faCbrleeHsPS0lJlWXoM6bGMyuOAIilC3wJFUaTjsUiPBSIU4ZiQy0MxFaF/AmIcOnSoUtzQKydOnAgp7gQGS+4AUEyKowAAAAAAAAAAgEKaGHQDAAAAAAAAAAAAekFxFAAAAAAAAAAAUEiKowAAAAAAAAAAgEJSHAUAAAAAAAAAABSS4igAAAAAAAAAAKCQFEcBAAAAAAAAAACFpDgKAAAAAAAAAAAoJMVRAAAAAAAAAABAISmOAgAAAAAAAAAACklxFAAAAAAAAAAAUEiKowAAAAAAAAAAgEJSHAUAAAAAAAAAABSS4igAAAAAAAAAAKCQFEcBAAAAAAAAAACFpDgKAAAAAAAAAAAoJMVRAAAAAAAAAABAISmOAgAAAAAAAAAACklxFAAAAAAAAAAAUEiKowAAAAAAAAAAgEJSHAUAAAAAAAAAABSS4igAAAAAAAAAAKCQFEcBAAAAAAAAAACFpDgKAAAAAAAAAAAoJMVRAAAAAAAAAABAISmOAgAAAAAAAAAACklxFAAAAAAAAAAAUEiKowAAAAAAAAAAgEJSHAUAAAAAAAAAABSS4igAGHPXrl3L9u3bl509e3bQTaGgrl69mu3duze7fPnyoJsCADA05OH0mjwcAPnGYHgPpuj0LePr8OHD2c6dOyv9HMV4fa6O0XuW4igAGGMp6UmDmJs3b2bHjh0bdHMoqJmZmWzPnj3ZoUOHsvPnzw+6OQAAAycPpx/k4QDjTb4xON6DKTJ9y3i7dOlS5bUfh0KacXl9ZsboPUtxFACM+SAmWVhYyKanpwfdJApsfn6+kmQfP37cGUUAwFiTh9NP8nCA8TQs+UaaXWZcZxfxHkwRDUvfwmCkopuq69evZ8NgnN9nIl+f+TF5z1IcBQBjPoh54YUXDGJYM5lOZwqkMwbSVKylUqnyk35P+0+aojUlyq0OPtK+ls5AOHnyZOHPQAAAyCMPpxXycACKkG+kWSvSZXpSW0bl/cd7MAx/3wJV3mdivTAG71mlcrlcHnQjAGhNejNMVdDpJ1X9pjfRpaWlyt/V38+cOWMqU1q6HnjaZ1I1+Ozs7KCbxJBOv3r06NG6sw0eZW5uLnvuuefWHRjb/wAYRfJwIsiDaIU8HIBuDFN/n9pR/XI3vUfduHEjG2ZFfg82nqFbw7AfM3jp9U9FPMmJEycq/cYgeZ+Jf32uFfxYN3MUwAhJb5qpajhV7abK4VS5m95Mq4Obdt5QGV+pIr16PfCiJTbEnXGR+pq0f6TpkVMtfRpYpN9TUr2W1B9duHBh3djpzIOUzCdpG6nvAoBhJw8ngjycR5GHA1CUfCO9p9XOelGdKWNYFf092HiGovQtUOV9pjf2DMF7Vi8pjgIYIelNM1UJp+u+mrKUTqTrBadkJiU4586dC03sUuxUUV6dCjT9n6Y0TQlUSkqLlkQVWXrN0kD34sWLlf4mSX1O+j2dbZCS9rUS9rRvPUrqx9JPGrCkbQHAsJOH0y15OP//9u7GyGlz3wPwcuYUwEcH0EEIFQQ6AE4FkA7IUAEDHeyhArLpYJMKYNPB3lQApAPu/Hzn5WoVe1eS9a3nmfHAwtqWLVnv72+9HycNyOEAzDFvdJFOOE3+bS7W3garZ1jSuaUsNwbX0c4M5+ma68YsqwfAMr169SpLo165nZ6eTr1ZzNT5+fn34yR/78PZ2dm327dv/+M4PHR7/Phxb8/NMLJPs6++fv164+/md16+fPn9GMg5qanct8v9AGAO5HDakMNpQg4HYG55o49tWUJm3mIbrJ5hjueWi4uLbz/88MP352vymWRc2Sdl/0x5HtPODL9/vs6ozeqTmaMAFmzq9XxZ3giPSI/vPqa+zQiO9Bov0+mWqUDL7fLycneMVnu1Z2R79X7MT5lZoMkosvxORgtlVEP2eZtzUu5bfj/TeVenwAWAuZPDaUMOpwk5HIA55Y1jXDdzxxxn9dhiG6yeYU7nlnwGU6dkNlzZlCa0M8O7PaM2q086RwEs3NjTKbJMCS8lgB0bpnIxJYVKLrCkIMrFl4S1MhVo9djMNKD5//p0oFknOY9hiY/5yf6KMcJuLuaVguDFixeDPx8A9EkOpwk5nKbkcADmkDeOlZyStiwdKdLe7MszWfZ3TrbaBqtnmOrcksdMXZJOLKlNsiR4foYmtDPjeTmjNqsvOkcBLJw1wmlSbJTe8gmMxxa+P/300y7EJRidn583erwUT/X1yLNdKX6MXJ+nDx8+jPI8pbDOMaUIBmBJ5HBuIofThRwOwJR541hlW16/fn1w9o6pO3AdsrU2WD3DmOeWO3funNy6dWt3S2eozBRVZqPJ4+cGTWhnxvV2Jm1WX3SOAoCVqwbEY0NhHishKCPV6xdZbpKLOPWR62X0+9Jku5fWy7+pFKeR4nSMC2ZrHH0AABByeP/k8P7I4QDr0Gfe6HM2j8xsmc4U+zo8pNPFnGb10AbD8OeW8tnKsZ/zQz4HZ2dnu6XD8uejR49OtmDN9cwYtDPje7myNkvnKABYsQSt0ps7F1KOGeGRQJnwlsfISPUuUkjVt6E87pJk1H5Z0mRtqsuyvHnzZpTnLNPfznHKWwCALuTwYcjh/ZLDAZatz7zR92weN3WqmLojV5U2GIY/t3z79m13S2eoi4uL3YCPdGrZ2gxma65nxqCdmcbLFbVZOkcBwIpVg9bPP/981GOVMHloqtKm9t0/27mkHvNlrfU1jvJIwbtvXfkhVY/NORUtAABdyeHDkMP7JYcDLFufeaOv2TzSnlUvAl83q8dclufRBsN8zy1rs+Z6Zmjamen8vKI2S+coAFixai/uY9ftLo9Veol3te/+uSDz66+/nizFki4gHRvWxyiAU8CUgiaFgZEzAMDSyeHDkMP7JYcDLFufeeNYpRP2voumhy6kHtvxu0/aYJjnuWVt1l7PDEk7M537K2qzdI4CgBUXMSVsH3shpYSdBLg+RjVUe/YXWVuceaiG8+z7MaZKXdPoAwBg2+RwupLDAZgibww1m8eSZvXQBsP8zi1QaGem9/NK2iydowBgpbJud/HkyZOjHuv8/Px7aMua2Ldu3ToqvFV7yRdL7m2+NvX13hN8h57qtXpM5FgwigYAWCo5nK7kcACmyBtDzuaxlFk9tMEwv3MLFNqZ6T1eSZulcxQArFCCSXVk+b6LIG3sC2nHhLcHDx4ctT0Mrz4yaOhiOKM7ciuWtLwLAEAhh3MsORyAsfPGMbId183msaRZPbTBbN2czi1QaGfm4f5K2iydowBgharBJIGx2iO9i0O9wLuOMr979+7ef19ST/m1e/369T/2zdBrYVcLbsu7AABLJIdzLDkcgLHzxtCzeSxlVg9tMFs3p3MLFNqZ+Xi8gjZL5ygAVie9yN+9e7cLFc+ePdv9fWvK8ht9jfA4VAgdurjC8mWf10cyZAmXIdfCro6U+PTp02DPAwAMQw6XwzmeHA7QzJZzR99545h9kA7bN83msZRZPbTBbPm8MqdzCxTamXl5soI2S+coAA5KWEgR8PDhw5M7d+6c3Lp1a7cMQxrA9LSuTrHatzx2nqP63PkzP+ff941sTkjK/+eWtbG/fPmy+/fyOFtSDXqPHj06+vH29V5PkOtaJJV9U+ciz7zsG2kx5FrY1QInsySYwQCArZLDl0sOpw9yODCFfPbTESB5I7mj5ICSQ5JN6jMX5t9ym3PuyO/nomNeW34n59O8xvxuXleec9/z5HyY+5X3o7wX2b685ikvZPadN7oqM3G0mZFj7rN6aIP7oZ5ZprmcW6DQzszLDytos3SOAuCKNGhpiFM0pIApa/mmwc40ieXL+XyhUL5E6Lqkwz55vvIFRZ4j25Oe1Hn+58+f737Ov5diqjS+5YuN9Ay/uLg4uby83G1v+ZI/jzuHnuFjqBeXTXrU3yTHQN7PsqZwfv7jjz86T62b/bOPqXrnI5+tN2/e7P2/Y774vE6Or+ox0Oe5BQDmTg5fPjmcPsjhwNhKBkgbn/NPzgklf6Rtz5+5oJgsULJCzlU5J6WN73JhbMzckfvklteQx0ynppzn8ruHtj2/l84UuU+eK3/meV69erV7rjxHHjO/M3YnqSHyRtftyPuY52/TaXvOs3pog4+jnlm2uZxboNDOzM/9NbRZ3wBYtB9++OFbTufldnp62vmxct/yOPfv3/92fn5+8He/fv367eXLl99///Hjx7t/O0b1+XM7Oztr9HvlPdi3vXkd5ffevn37bQvyOqvvzxzleKluYzmGlmLNx1Q+R9Xzyr59dey55jrV53v69OkgzwEAfZDD5fA6OXx4az6m5HBgCmnz25xfLi8v/5GB8vOcc0dyU85x9e2u3vK6ipwDb9++fe37UT9Hj9kuzSVvlPfgutx6yMXFxd79kP04ha22weoZ9cyczi3158/t2ONijpZ+TGWflNfw6tWrQZ9LOzPP/fN44XXjPL+pAWD0IqZakLRp0NKol/vli4Pqlwlt1AuTmwJP/fcPve5qqO66bUtT3Zdtv6Aay77gt6SCYInbfJN8PqrBNsdR+cwkSNf3Vz7vQx+/UxUrANCEHC6H18nhw1viNt9EDgemUs0SuYjYRvW81abNm0PuSN6qn1vLffJ/OQc2yS7VjhNdL94uNW+Ui87HPP+hC8OHOrUMYettsHpGPTOnc4vOUcswVuco7cx898/LhdeNOkcBLFwfRUz1S4EuYaNeyLT9QqXeizuNa9vXnuc9FJa3ULwcel/m2HO7XoCW25IsvYi5bqTovs9wNVQPfSFt6lFKANCUHC6H18nhw5PD5XCgPznvtGn/6+encv+mGWYuuWPfuTX3zXnwuse/6bw5VmeCOeSNY2bzmMusHtpg9Yx6Zl7nFp2jlmGszlHamfnun7cLrxv/NfWyfgBMK+tsV9fZ/eOPP1o/Rtb7ffXq1e7vWbs7a+Pmz6ZevHhx5edffvml0f3KOuXleeuPU10Hd0vKeulzfe1Z572uHD+ML5+3sp511u/+66+//rGmfNaRfvny5T/u++HDh963p37MVo9nAFgTOXx95HDakMOBKSWDlMzw5MmT1vc/dH5aQu7Itu8752V7zs7Odv/fxNOnT6/8/Oeff7bKYUvNG3mdv//++67NShbt6tD98/qqGXkI2uB+qGfWZepzCxTamf7bmT7dX2ibVegcBbDxkFEtGFKINP0CoO7169dXGsNDBUVdQk6247ovKA6pB5sEmqU1xH1LMVctIB88eHAyJ9nX9X2U/b3vQg3Dy+c/X2SU/XBxcXHwHLDvy4V9+3Pr4RoAmpDD10cOpw05HJja+fn50RfBq50Llp470h62vQi7b/s/ffp0sva8UdqlPjLEocd48+bNyVC0wf1Qz6zLHM4tUGhn+m9ntt5mVekcBbBhpefyvkKkrXov5xQUKVBukhFZVW2+kNn3u0P3+J67ehC5e/fuyZzsK27rxwDj+O9///s9pNe/GD30eauPbogmn/MthWsAaEIOXx85nKbkcGAOqp14un7ec95o2hli7rkj59QueWzsc+fUeaOv2TyKQ49Tnqdv2uD+qGfWZepzCxTamf8zxLZtuc2q0jkKYKPqoyESELqO7jhUFDWZxrY+oqrtaLV6cPj48ePJln358uXKz3OaAjfBsDqapxSx+8Ifw0q4ro7wPD09bXSs7Pui4/Lystdtq5+H+n58AJiaHL5OcjhNyOHAHOVc1FXT9m4JuaO+TF6Xc+fQy+pNnTf6nM2jOPRYTZdHa0ob3B/1zPpMfW6BQjsz/3bg9sLarDqdowA2qj5tZB9fjNd7YDfpfd13r+Kl9VLu29BfwhyzXfXp1hNKu3zxxPGqXzgkoO9b23qfQ2t0b/GYBoCu5PB1mmtmkcPnRQ4H5qJ6sa5+Ma/t4zSZYWTuuaOvDsOfP38+Weu5ueTL7PM+ZvMYe1YPbXB/1DPrM/djjm3QzizzfPT3ws4fOkcBbFAa1vrI4SdPnvTy2PWe0JZqmNaxo3b6Uh/9kwsyWYue8eULz2pgbTMKI8fT2NOm1kcuAcCSyeHbIYdTJ4cDc1LPH5llMP9Wzyk3Sd64acmYJVjqLClj5o0hZvMYa1YPbXB/1DPbMJdahm3Rziyzc9SXGbdZ++gcBbBB+3pD97WOdL0Rv6nn9Y8//tjL8x56/q2ZYxBJwKweBy7ITCehOl94Vj8vbWcNqI8GG2JkgAIcgLWSw9dLDuc6cjgwN5nNoP6ZT5vx8OHD3e3du3etO0otOXcsJcdMlTeqs3kMMfvkkLN6aIP7pZ5ZpznWMmyLdmb4dmaLbdY+OkcBbNC+EV19hf96o5hgcF0v5/rztv3ipf7Yjx49OtmyemjqqzjtKqEwX6hNeUEmx8iDBw9Obt261dutesGpr8e8c+dO52nsm6qPWOjyfPVjauggPPdCAADakMPXSw7/Jzn8/8nhwBy9f/9+778nE+Q8m05SOU/mz5y3fvvtt87nhrnnjnv37p0swVR5oyyjNsRsHkPP6qEN7pd6Zp3mVsvMhXpmPNqZcduZrbRZ++gcBbBB+4qKvhrbfcH5uiKmHhTaThdZb3iH6FVONylIq/v39PR0kpHq2Y4lTEOaY7nPNa73PX51BEM0Xff6unPFEMWyAhyAtZLDGYMc3o4cPuxjAvOVtrvJRcicz3Mey1KtuQDbZfk9uWO5sq/SMW6o2TyGnNVDG9w/9Qxbop4Zh3ZmnHamT3dnvn3X+ffUGwDA+MYOdNf1HE4gSeipblOCyL6QUlcPLAlOW57+9tCUuFP0Ms/+/Omnn66sET9VgZnnzfP3edyX0QQ5TvOlYB+yn5oc9139+uuvV37Oc/VxbAxxfFWncl7SKAkAuIkcvh1yuBxeyOHAnKXzbNrwFy9eNB75X5bfy8W/dMBtQu5Ybt4obe+Qs3kUeY4cW/u24eLiovXjaYP7p57ZhqlqmblRz4xDO/NPc//8fVlIm7WPzlEAGzT2NIc3rVmdgFkNJPlipUmYq4elIcJTgm9CatPRdDdJD/i8vjItcIJD1kfP6Lvnz58fHSTmEERyfGV/luMs0y1PHc77viBUAnuOjSlG4fcx7XXX4qt+/hh6yuklj0IAgDo5vDk5vD05fJ7kcGDucq7OLcuxlrayicyU8OnTp8YXE+ecO5Zi7Lwx1mwe1c4uudVnJiuzerTNNdrg/qln1lnPzKGWmSv1zLC0M9O0M1tps/axrB4Ak0sYqQbBhKGbpufO71RHeCSE9D26I1/yZE3pm9Y3byLbmqnHU6zk9WZ7v379uvsCKT9nGuD8f30KzmODyNgFa/WCTIqqvL6pL8iwf0RU1/1S/1Iix2/fqset4hwAhiOHy+EMTw4HliKZ4PLycnfLBfjMDHVTG19fynWJuWNJxs4bY87mURx6rrItbWiD12+u55Wl1TNT1zJsl3ZmvHamT38vuM3SOQpgg/aF/b4C777RHE2Ki3qP6iwFcWid3wT9FANFXyOiSy/1FBS3bt1q/OXOTbK95fXlC6aEr7wnCQ35Mz+noMnf85x9Pe8Ust/KyJVSoDG9fL7rn/Gu+6b+BUNGKAEAzcjh+8nhx5PD50kOB5Yo7WJZMi/t57dv33Ztfjog7LsAlvb2UHaYY+5gnrN5FNnH+9rKMqtHU9rgYahn9lPPQHvamavPXbXldmZoOkcBbNC+LzJumqK2qX3FUJNpFRPc88VLCpIEiDxOgn9GP6fHdgqB/JkRFyXkJ8SkKDi2gMljpmjJnymOsk5wvvDpY8RIwlTZ3kzze+gxs0/KFJx5rV1HetQfv6/92kT2V0JctuGvv/7a9Ei+uamPUDpm31QfqxTjfaqfQ+7du9fr4wPAlOTwq+Twfsjh8yWHA3PVdjaTtPnlIvy+GReazvgwZe5YgzHzRplBo8tMGnOY1UMbPAz1zDrrmSlrGbZLOzNeO7PVNmsfnaMANmhf6B9yhMdNvaUT9NP4J3hk2zLSObcUNdmud+/e7QqBBPuEghQY+f++przN82Y0XJmStnzR00cAKSNR8h7cVGyVkXmR19tln9Tfj2On7W3zOrMf8/zZN23fu4wQSCE51vZuTV/TstZHMAwxGqm+rS7uAbAmcvhVcvjx5PB5k8OBuUr70fViZPJALtRXNZlpYercsQZj5Y3qbB4lI42pj1k9tMHDUM+ss56ZqpZhu7QzV5+zau4zwH1ZUJu1z7+n3gAAxpeREykMqj59+tTL0gv14Nxk9EUKiHojmm0p/z60ocJX3uNSiDQNNKVYqxZXbdQLr4yAGVq2OUE2++yPP/7oVPx9/PhxkUFqqZqMutqnXhgMMd1tnyMuAGBu5PCr5PDjyOHLI4cDc9Jm6Zi6nIfSyaCaa3Jx77pMM3XuWIOx8saUs3kU6WBSXy6t/HuX2X60wf1Qz6yznpmilmHbtDPjtjNbbbP2MXMUwAbta9gzYqKPRrE+KqG6hvch+fJkztNEdlUtQJqGqWoh2ceSHn2N3LmuUMt2HnNBJsoyIAyjHsy77qcPHz58/3v2+RD7rK91ugFgjuTwccjhzcnhw5LDgTnL5/6Y2UHqS9Lc9FhrzR1jGzpvlNk8sq+mmM3jplk9chG5PsvGPtrgYahn1lvPjFnLsG3amfHbma22WfvoHAWwURnd1ddosaIeGJqGm0zDmAZ1TaE770V9neCmqr+bkNhW9f5DToFb1mtP+OmyhMcQI4zYr49AnWOp+hk/tC53H89TzL0QAIAu5PBhyeHtyOHDksOBuevS3lVVL9rf1B6tMXdMYei8UWbxGKq9aePQNjSZaUQbPBz1zDrrmbFqGdDOjN/ObLnNqtM5CmCjXr9+fW0j3EV9qtb6c9zUw/rXX389WYtqUdj2YkU1UGS98raqFzdysWOo15epesta7n2MDFpikFqKHIPHFrjVz3eTte67Kku7hGMCgDWSw4clhzcnhw9PDgfmrjpbQRfVtvam5WTWmDumMGTemMtsHn3M6qENHo56Zp31zBi1DGhnpmlnttxm1ekcBbBRabjrvZCPWYs7X6pXg3saxfookkNKA5re2GsZ5VENCG3XGq4WPV1G3lTXSR5i5ExCYZ4jax93uWhUV47DR48e9bB1HFJdq7rLFxbV6Zjfv39/MpTqtpnFAIA1ksOHJYc3J4ePQw4H5iyf/WM6NVQvBN507lhj7pjCkHmjZIM5zVxxzKwe2uBhqGfWWc8MXct0kZnBWBftzDTtzJbbrLp//+NfAFi0NqE1RUbCdpliNQ1xRiF3adBevHhx5ec2X9bn+RLWs+0PHz7chZH0kF7yeuHVgNC293S16OnS27zeuzwjPfrqcZ7t+emnn3Z/z/6qFk1tlCmPlz4F55JkxNW7d++uzBLQ9DNW/YIh540hQ2/1mOh6fAHAFOTweZDDryeHj08OB+YuWaLrbISl3a1eHFxi7vj8+fPJUgyVN9IOlIu0OR6STeeszOpxXduoDW5HPbPtembIWmZt52G60c5M186ssc3q7BsAi3b79u1vOZ2X26tXr1o/xg8//PD9/nm8r1+/trr/27dvr2zD2dlZq/vn+ar3b3LLdt6/f3+37U+fPt1tw/n5+bc+Vd+XPEcb1W19/Phxq/tmH1bv33Z/1Lc9700fsh31463P25L0/d6OpXpsvXz5stF9Li4uvt8nx9WQqs+1tGMCgO2Rw+XwfeTwYcnhw5DDYXuq7VVup6enrR8juaPc//LyclG5o/48bfNGUW+fuz7OHPJG2qehssZQtyZZTxt8mHpGPXPddo+dt/Na6/uq7fGwBEutZ/Z95tqeM7Qzw7czx+yfrdSNy9xqAHaNXD3sHhMaq+EzjXHT4FwvYLoWEvXH6XpLcZP3pcuFjKGKmLb3re/XJl8wXfcYfXwxk/czReNQITOPvSRLLmKqx/VNn9fqhbjsoz4+V03PA22LfwAYixwuhzd9DDm8f3L4MORw2J5656i2WSJtZDlPtbn4NnXuyHYfujibHNf08fJ7hx4nHc2GPm/3nTfyvgyVNYa+5ULtTbTBV6ln1DNN7j9WZ898hg+dT7NPck7tUpfN1ZLrmWM632hnxmlnhu4c9XYFdaPOUQALksam7YjhEiDbht+b7pdAUC180og3CQlNn7+PW5dRb3MsYrq8rwlg1cc4Vl7DkAFzaUFqyUVMAnL12D70pUeOu3Ihrs0XG8eonlOO/fwCQJ/kcDm8KTl8WHL4MORw2J7q+SjnndLeNLmQlvNXyUVNZ0iYMnfktXbJcfW2pmseHOLiZN95Y4mzebTJMtpg9Uzf55W11jN9n1vq25Zjo9y67pvqYxx73ExhyfXMMZ1vtDPjtDNDd456vIK68d/dF+QDYGxfvnxptWZt5PebrheeNbmzzm/Wus164fl7bk+fPt2tb33v3r2Ty8vL3Vq7ZV3ZbEvu9/Lly86vK4+VxyjrDee5ctv3OquvJfe7bu3sbHt+P+v1znV99qb7va2ytnrZlpvWRh77NdUtZT3lNchxkTW98znPetjPnj3bvf85Zh48eLDb1+fn57vPeeTzk8/nGMpzxphr2gPATeRwObwpOZxD5HBgjk5PT3fnorOzs925qZyjkkEePXq0ywWRdv/jx4+780XOV/n39+/f735v7rmjZLK2Oe7z58+j5sEp80a1HViaT58+3fg72mD1THk91fupZ4Y/t9RVj8E2x+K+x2FZtDPTtTN9+n0NdePUvbMAmKf0ME7P3/QETk/m6jSP6dGcXsd99MzPc5SexnncLlOk5j7piX2o93nXaVe7jvCoTxF67AiPrmtrVx9niF7iW7b0ER7Vz3leQ3X0WD7j+Tn/PsYIuX0jk/pcZxsAlkYOl8M5TA7vnxwO25Q28lAbVT8/lZk6Sg7psvTVnHPHUskb3WiDh6eeWXY949wyrKXXM0PPTLQGU7YzQ+6f85W0WTpHATCZatDuczmH+tITXRvqrkVMirupi5h6MZXwRX+WXsTMUfVLiK7HPADQjBy+nxw+f3J4/+RwYOu5Y6nkjeXTBq/3vLLkesa5ZVhLr2d0jtru/nm5kjbrX1PPXAXANmVK1kwvWaaczJSSfclU4NXpePNc102T27djpoTt8/EyhXCZ9javP+8DzFWZ/jrHe5tp+QGAduTw4R9PDmdJ5HBgSGvOHVOTN5ZPG9zNms8rc6hnnFuANbdZOkcBMIkXL158//vr1697f/zT09MrP2et86W6e/du5/tW39v6e0J3fayNzv7P5xDnAwDg/8nhzcnh8yOH90sOB4YmdwxL3lgubXB3zivD1zPOLcNRz7BEv62ozdI5CoDR/f3331dGHAzVy7iMcIjLy8uTqYqOvN5jHBOU896W+5ee3Rzv+fPnu/f18ePHU2/KKrx58+b736ujswCAfsnh7cjh8yOH90sOB4a09twxB/LGcmmDu1n7eWUu9Yxzy3DUMyzRmxW1WTpHATC6L1++9DYi+zo//vjjwecc0rG9/utFz7Hvz/v377//XTHTj4yY+fr1626aYY6TLzTKlxoJ1kbNAMBw5PDryeHzJ4f3Rw4Hhrb23DEX8sbyaIO7W/t5ZU71jHPLMNQzLM2fK2uzdI4CYHT1UD7Uut3Vx3306NHJmKoBoW0BVf/9Y8NGRnqUsP3LL78c9VjQt3JM5jh/+/bt1JsDAKsmh19PDmdL5HBgaFvIHXMgbyyPNri7LZxX5lLPOLcAa2yzdI4CYHRpRKtT03748KH358goid9///37z2NPU1odXdJ2+ttq8dXXCIKzs7Pv2/Lu3bteHhOOlREH5XOa0UhLH3UAAHMnh19PDmcr5HBgDFvIHXMhbyyHNvg4WzivzKmecW6BbftzhW2WzlEATKLawzjBuu9RHi9evLhSwFSLpjE8efKk8wiPatHT13bnccpawNX1gWFK5XOaz2hGIwEAw5PDD5PD2Qo5HBjL2nPHXMgby6ENPt7azytzqmecW2DbXqywzdI5CoBJpDF99erV958fPnzYWyGTaR5/++237yMkygiHMVVHlBwzwqNaDPWxnnXej2zPzz//3NvjQhdZq76sVZ1jEwAYhxx+mBzOFsjhwJjWnjvmRN6YP21wP9Z+XplbPePcAtv035W2WTpHATDpKI8y0iPh+sGDB7sGt6uE/4T+MsVrRjacn59PMtVjnrs6dW0JETepFzzPnz/vdbtKQZf3uTo9MIwpn9VSTJcCGwAYjxz+T3I4WyCHA1NYc+6YG3ljvrTB/VrzeWWO9YxzC2zL/6y4zdI5CoBJZZTHxcXF92le0+CWYqbpyIgE8mfPnu3uV8J5edwpG+3qSIqmRUP19zJNZd8FWN7n0ss771nb0SfQhxx7kWmZy9TMAMC45PCr5HC2QA4HprLm3DEn8sZ8aYP7t+bzytzqGecW2JZnK26zbn379u3b1BsBACXAZ8RHNcinCMlUsilQSqBP+P78+fNu1MSnT5++h/H8bgqHNNZ9hP88Z5mKNgVFl2l079y5s9u+bNvl5WWj0FGm7s3vD1WEZYrgjIRJYZNiD8aSz2i+pMjnOiOwAIDpyeFyOOsnhwNzMbfcsUbyxrxog7d3XllrPePcQo7JHJulI2GZwY317J+fV95m6RwFwCwlyH/8+HFXqKSQ+PLly/diJQXK3bt3d3/++OOPu3XF01D3GfirISKaFiF12f5sX2R0xXW9rFO8lbXAE1qqa6cPoYScrgUatJXiOUW0AhoA5ksOl8NZHzkcmKupc8eayRvzoA3e3nll7fWMc8u26Ry17v3zbgNtls5RAGxeiocUSqVISrFS/q0qgSDF0r1793Y/lyKqTN17U6CI6lS/VXmuFDvZhhQ6ZZraoZViRpBljC8mMoJpzcEaAGhHDpfDGZ4cDrBd8sa0tMHrt9V6xrll227dujXawCLG2z+/baTN0jkKgM0rYb7tlLkpOJoGjLJ+eSlS8pwJGSleEjpKkXPTKJAhlCJriudmG3KcZzppI4oAgCo5XA5nWHI4APLGNLTB27Dlesa5ZbvKko85t+Ucx/L3z/9sqM3SOQoARpRiKeGirGmewilT6/7nP//pbU3zLspoFlOTM4Qc6znmM0IKAGAKcjhbJIcDEPLG+LTBbKGecW7Zpuz3LPuoY9R69s/fG2qzdI4CAAAAAAAAAABW6V9TbwAAAAAAAAAAAMAQdI4CAAAAAAAAAABWSecoAAAAAAAAAABglXSOAgAAAAAAAAAAVknnKAAAAAAAAAAAYJV0jgIAAAAAAAAAAFZJ5ygAAAAAAAAAAGCVdI4CAAAAAAAAAABWSecoAAAAAAAAAABglXSOAgAAAAAAAAAAVknnKAAAAAAAAAAAYJV0jgIAAAAAAAAAAFZJ5ygAAAAAAAAAAGCVdI4CAAAAAAAAAABWSecoAAAAAAAAAABglXSOAgAAAAAAAAAAVknnKAAAAAAAAAAAYJV0jgIAAAAAAAAAAFZJ5ygAAAAAAAAAAGCVdI4CAAAAAAAAAABWSecoAAAAAAAAAABglXSOAgAAAAAAAAAAVknnKAAAAAAAAAAAYJV0jgIAAAAAAAAAAFZJ5ygAAAAAAAAAAGCVdI4CAAAAAAAAAABWSecoAAAAAAAAAABglXSOAgAAAAAAAAAATtbofwGbWDCldZMHIwAAAABJRU5ErkJggg==",
|
|
"text/plain": [
|
|
"<Figure size 2700x1200 with 6 Axes>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"from matplotlib.colors import TwoSlopeNorm\n",
|
|
"\n",
|
|
"fields = [\"spm\", \"p3m\", \"diff_p3m_spm\"] # fields to plot\n",
|
|
"\n",
|
|
"slices_dict = {\n",
|
|
" \"spm\": DELTA_SPM,\n",
|
|
" \"p3m\": DELTA_P3M,\n",
|
|
" \"diff_p3m_spm\": diff_p3m_spm,\n",
|
|
"}\n",
|
|
"titles_dict = {\n",
|
|
" \"spm\": f\"sPM $n_\\\\mathrm{{steps}}={nsteps_spm}$\",\n",
|
|
" \"p3m\": f\"P3M $n_\\\\mathrm{{steps}}={nsteps_p3m}$\",\n",
|
|
" \"diff_p3m_spm\": r\"$\\delta_{\\rm P3M}-\\delta_{\\rm sPM}$\",\n",
|
|
"}\n",
|
|
"\n",
|
|
"npanels = len(fields)\n",
|
|
"fig, axs = plt.subplots(1, npanels, figsize=(3 * npanels, 4), sharey=True)\n",
|
|
"\n",
|
|
"ims = []\n",
|
|
"for i, key in enumerate(fields):\n",
|
|
" ax = axs[i]\n",
|
|
" data = slices_dict[key]\n",
|
|
" title = titles_dict[key]\n",
|
|
"\n",
|
|
" if key.startswith(\"diff\"):\n",
|
|
" vmin = -np.log(1 + np.abs(np.min(data)))\n",
|
|
" vmax = np.log10(1 + np.abs(np.max(data)))\n",
|
|
" if vmin < 0 < vmax:\n",
|
|
" norm = TwoSlopeNorm(vmin=vmin, vcenter=0, vmax=vmax)\n",
|
|
" else:\n",
|
|
" norm = plt.Normalize(vmin=vmin, vmax=vmax)\n",
|
|
" im = ax.imshow(\n",
|
|
" np.sign(data) * np.log(1 + np.abs(data)), cmap=\"RdBu_r\", norm=norm\n",
|
|
" )\n",
|
|
" else:\n",
|
|
" im = ax.imshow(np.log10(2 + data), cmap=cmap)\n",
|
|
"\n",
|
|
" ims.append((im, key))\n",
|
|
" ax.set_title(title, fontsize=fs_titles)\n",
|
|
" for spine in ax.spines.values():\n",
|
|
" spine.set_visible(False)\n",
|
|
"\n",
|
|
"axs[0].set_yticks([0, N // 2, N])\n",
|
|
"axs[0].set_yticklabels([f\"{-L/2:.0f}\", \"0\", f\"{L/2:.0f}\"], fontsize=fs)\n",
|
|
"axs[0].set_ylabel(r\"Mpc/$h$\", size=GLOBAL_FS_SMALL)\n",
|
|
"\n",
|
|
"for i, ax in enumerate(axs):\n",
|
|
" ax.set_xticks([0, N // 2, N])\n",
|
|
" ax.set_xticklabels([f\"{-L/2:.0f}\", \"0\", f\"{L/2:.0f}\"], fontsize=fs)\n",
|
|
" ax.set_xlabel(r\"Mpc/$h$\", size=GLOBAL_FS_SMALL)\n",
|
|
"\n",
|
|
"for ax, (im, key) in zip(axs, ims):\n",
|
|
" divider = make_axes_locatable(ax)\n",
|
|
" cax = divider.append_axes(\"bottom\", size=\"5%\", pad=0.6)\n",
|
|
" cb = fig.colorbar(im, cax=cax, orientation=\"horizontal\")\n",
|
|
" if key.startswith(\"diff\"):\n",
|
|
" cb.set_label(r\"$\\textrm{sgn}\\left(\\Delta\\delta\\right)\\log_{10}(1 + |\\Delta\\delta|)$\", fontsize=fs)\n",
|
|
" else:\n",
|
|
" cb.set_label(r\"$\\log_{10}(2 + \\delta)$\", fontsize=fs)\n",
|
|
" cb.ax.tick_params(labelsize=fs)\n",
|
|
" cax.xaxis.set_ticks_position(\"bottom\")\n",
|
|
" cax.xaxis.set_label_position(\"bottom\")\n",
|
|
"figname = f\"fields\"\n",
|
|
"fig.savefig(\n",
|
|
" simdir + f\"{figname}.png\",\n",
|
|
" bbox_inches=\"tight\",\n",
|
|
" dpi=300,\n",
|
|
" transparent=True,\n",
|
|
")\n",
|
|
"fig.savefig(\n",
|
|
" simdir + f\"{figname}.pdf\",\n",
|
|
" bbox_inches=\"tight\",\n",
|
|
" dpi=300,\n",
|
|
")\n",
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 13,
|
|
"id": "228340be",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# full_field_p3m = np.log10(2+read_field(simdir + f\"nsteps{nsteps_p3m}_final_density_p3m.h5\").data)\n",
|
|
"\n",
|
|
"# if N <= 128:\n",
|
|
"# fig = plotly_3d(full_field_p3m, size=N, L=L, colormap=thermal_plotly, limits=\"default\")\n",
|
|
"# else:\n",
|
|
"# # Downsample the grid for visualisation\n",
|
|
"# downsample_factor = N // 128\n",
|
|
"# downsampled_field = full_field_p3m[\n",
|
|
"# ::downsample_factor, ::downsample_factor, ::downsample_factor\n",
|
|
"# ]\n",
|
|
"# fig = plotly_3d(downsampled_field, size=N, L=L, colormap=thermal_plotly, limits=\"default\")\n",
|
|
"\n",
|
|
"# fig.show()\n",
|
|
"# # clear_large_plot(fig) # Uncomment to clear the Plotly figure to avoid memory issues"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "7d0df151",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Force exerted by particles on other particles"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 14,
|
|
"id": "684477ec",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"Newton prefactor = 6.37e-01\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"r1, fmag1, _ = load_force_diagnostic(OutputForceDiagnostic_spm)\n",
|
|
"r2, fmag2, _ = load_force_diagnostic(OutputForceDiagnostic_p3m)\n",
|
|
"Newton_prefactor = (L / Np)**3 / (4*np.pi)\n",
|
|
"print(f\"Newton prefactor = {Newton_prefactor:.2e}\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 15,
|
|
"id": "6a6b4e9c",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"Nyquist: 2.00 Mpc/h\n",
|
|
"Particle length: 0.12 Mpc/h\n",
|
|
"Split scale: 1.25 Mpc/h\n",
|
|
"Short-range reach: 5.62 Mpc/h\n"
|
|
]
|
|
},
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAB0YAAAVmCAYAAAANgd2WAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAuIwAALiMBeKU/dgABAABJREFUeJzsnQe4FEXW9+vCJYkEQUBdA0kUwyrJvOu7EtTVXRPBnEmGdV2UYFwj2fAZSGYxEMy7awDcNa5KUF8DSjQHkGjgEu/3/At73r59e2Z6uqu7q7r+v+cZZu7Qc+pUV/Xp6jp1TpVVVlZWCkIIIYQQQgghhBBCCCGEEEIIyTA10laAEEIIIYQQQgghhBBCCCGEEELiho5RQgghhBBCCCGEEEIIIYQQQkjmoWOUEEIIIYQQQgghhBBCCCGEEJJ56BglhBBCCCGEEEIIIYQQQgghhGQeOkYJIYQQQgghhBBCCCGEEEIIIZmHjlFCCCGEEEIIIYQQQgghhBBCSOahY5QQQgghhBBCCCGEEEIIIYQQknnoGCWEEEIIIYQQQgghhBBCCCGEZB46RgkhhBBCCCGEEEIIIYQQQgghmYeOUUIIIYQQQgghhBBCCCGEEEJI5qFjlBBCCCGEEEIIIYQQQgghhBCSeegYJYQQQgghhBBCCCGEEEIIIYRkHjpGCSGEEEIIIYQQQgghhBBCCCGZh45RQgghhBBCCCGEEEIIIYQQQkjmoWOUEEIIIYQQQgghhBBCCCGEEJJ56BglhBBCCCGEEEIIIYQQQgghhGQeOkYJIYQQQgghhBBCCCGEEEIIIZmHjlFCCCGEEEIIIYQQQgghhBBCSOahY5QQQgghhBBCCCGEEEIIIYQQknnoGCWEEEIIIYQQQgghhBBCCCGEZB46RgkhhBBCCCGEEEIIIYQQQgghmYeOUUIIIYQQQgghhBBCCCGEEEJI5qFjlBBCCCGEEEIIIYQQQgghhBCSeegYJYQQQgghhBBCCCGEEEIIIYRkHjpGCSGEEEIIIYQQQgghhBBCCCGZh45RQgghhBBCCCGEEEIIIYQQQkjmoWOUEEIIIYQQQgghhBBCCCGEEJJ56BglhBBCCCGEEEIIIYQQQjLA6tWrxcSJE0X37t3FdtttJ8rKykSbNm3k3/ieEEJsp6yysrIybSUIIYQQQlQ9AC5ZskSsXLlSvuPvxYsXV/kbn1etWiWyyqhRo8SECRNkfTt27CiGDRsmevbsmbZahBBLcGytY4thg722uVu3bmLatGlpq0oIIYSQjGLrcyHqNWTIkJzzs3HjxnLc1bp1a1nvmTNnymPwPcZi+D9CCLEROkYJISRGMOjEirwkwQC3SZMm8h2D3y5dusjBLhwkhGQZrITFQ14Qsjr86d+/v+8K4JEjR4rBgwenohMhxA4w2YZIhCBgsQYdo4QQQgiJA1ufCzH/1KtXr1zd8fyH50AvcJxiMS2YO3cu54oIIVZCxyghhGTMMVoIOEjhOGH0GMkitj4AO6DuOAf5wAppLJYghJA4oGOUEEIIITpg43MhFsdirscBGYT69etX7Tg4ROEYdcCC+qxFzRJCSBDoGCWEkBjBYHzq1KlV/l6xYoWYPn26nEDMBwanGMQ6E4yIAC0EUsA48p30MPPmzctbBpwjGAz7DZRJtsEDE1aNOmlW8Tkr6XNwXaHvO9cBFibkuwayOPwpthAD1zsekAkhJI57g3vMg8+zZ8/OpWvzQsdo9snyeIMQQoje2PZciPoiUtQhX6RovudFjMm4eJ4QYht0jBJCiGYpL1WmM8GDAAa/U6ZMkYNlPwcpBsFMnWIH7pQ5bmbMmJHZycp8dc7i8AeLITp16pT3/3Gdw7YQQkiS9wYs8vJORtIxmm1sHG8QQgjRm6w+F3ozdmCOB87gUs5BPkcqIYRkGTpGCSFEw5RzcZhmOE0wEIaj1Av3H8w+hdKsFnp4ygJlZWXVvsvq8MfPAWFDvQkh+t4b/KIT6BjNLjaPNwghhOhNFp8LMcZyz/EUiv7M5xjNl3aXEEKyTI20FSCEEFvJt9cf0ujGAaLFsFLfbyUgBsg67YVK1DNnzpy8/wdHWtA9WEzEpohoPAh7bYgTGe4skCCEkCTvDZ07d44sg5iDzeMNQgghepO150I4RN1OUTwHFkqJ26dPH9/vmc2BEGIjdIwSQohmFNtPNCqIDPWL0sCA2r0vBUkGOKSRVjntfhWXQ96Ga0q3h/1Vq1bJaxwrf7EYAtE5ziSAsx8xIUQP25w2Sdwbsnx/MQmONwgJji33ANNguwSD58me50I877np3bt3wePxTIjnRGeRvrN4Pt+ifUIIyTJ0jBJCiIVgFaFf6lzsQ8qHqGSBQ7pQdIUq8NCT74Gn0KpSYiZoU6RD8q7+ZaQOIXrZ5rThvcEeON4gJDi23ANMg+0SDJ4ne8D8jZsgC91xL8bCWaQQnjt3LqNFCSHWQscoIYRYClLq+k1cTZw40XcfUmI+fqtB8SA0adKk1HQiyeA4RBmpQwjxwnsDUQ37FCGEEBIvfnM23L6AEEKCU17CsYQQQjLoHPVbVYjvkI6TxEvS0XuYpMTqUDxEYZ8v/M0VonbgpNBlmiRCimNbZDXvDdmH4w1CgmPbPcAU2C7B4Hmyh3nz5lX5GwtguQiWEEKCQ8coIYRYDNKoYPDsfYDC30OGDJGOUxIfmCxMA05O2tvXsravDiFZss1pw3tDduF4g5Dg2HoP0B22SzB4nuxhxYoVVf7mcx4hhJQGU+kSQojl9O7d2/d7pNQl8cK9X0hSIHIHcBUxIcWhbSZZg32akODwetETtksweJ7sdYLzOY8QQkqDjlFCCLGcTp06+X6PqFHuNZqMs4qQuMG13LFjx7TVIMQIaJtJ1mCfJiQ4vF70hO0SDJ4ne2DaZEIIiQYdo4QQYjmF0pxNmzYtUV1sg45nktRDM/agYUpDQoJB20yyBvs0IcHh9aInbJdg8DwRQgghwaBjlBBCLKd169Z5/4+peOJ3VhGS1ARJ9+7d01aFEO2hbSZZg32akODwetETtksweJ4IIYSQ4NAxSgghJC9MzxIfXM1LkmLKlClyzxlGjBJSHNpmkjXYpwkJDq8XPWG7BIPniRBCCAkOHaOEEELysmTJkrRVyCwTJkxIWwViyTU8ffp00a9fv7RVIcQIaJtJ1mCfJiQ4vF70hO0SDJ4nQgghJDh0jBJCCMkLosxIPM4qruglSTBkyBD5PmzYsLRVIUR7aJtJ1mCfJiQ4vF70hO0SDJ4nQgghpDToGCWEEBJq/1ES3VlFSJxgjyFEiw4ePJiLHAgJAG0zyRrs04QEh9eLnrBdgsHzRAghhJQGHaOEEGI5hfYRpWNUPVjJC2cVIXHTt29f6RBltCghxaFtJlmDfZqQ4PB60RO2SzB4ngghhJDSKQ/xG0IIIRlizpw5ef+vT58+iepigxO6V69eaatBLKB///4yYnTatGmMFiWkCLTNJGuwTxMSHF4vesJ2CQbPEyGEEBIORowSQojlzJgxI+//9ezZM1Fdsr7vS6dOnQpG6BKigokTJ8oXrl9ew4QUhraZZA32aUKCw+tFT9guweB5IoQQQsLDiFFCCLEcpN7xo1+/fsrkI2oNkal4eMODGyLYmjRpIlP1du/eXXTr1k107NhRxIFTJt5XrlwpFi9enPvb+W7kyJF564tjJkyYIOvhyILe0BcpSoPoDScV9n1J46EVZaKO7vOAc+D+Dp9XrVoVuy5OX3DOPV4A5zOJvpAkfnV193u8sLob9VUJokQRLYpziPLjqhsWVKAs5xpy+jbqiLp17tw5b/3wG/zfrFmzjI9m1bFPI5Ua2idf34MuyAagWie3nXVsC2yN+zv0i0KLcfCbqVOn5s6p07egt9O3cE579+6tpO+kaZvTvjfpdG/wA/ZlypQp8h3jB6eNnGsLL8fWJdGPveeqsrJSebu7bSm+DwPHG1uhHVRHlu/5aV4vpvTpNGC7ZOc8pT0PQLLZ/9MeQ5v+vJjWPAUhWlJJCCEkNWCGva/WrVsnVv7cuXN9dcBr1apVkWSPHDmysnHjxlIW3rt161bZr18/+T3eO3bsWK3eEyZMUFa3xYsX562b9+VXLurfs2fP3DGO/oMHD5afne9xjF/Z06ZNq3IOVL+gRzFwTFB5cYHziPPmPQ9ob5xHvPA5zr7gbq8464u64py764q6OP0G79DF/f/4jO+jXm8O6HcoQzXo09DTWy/0cbQVynX6vPv6Rv3wnQPq6bQ3ZJqIDn3az5a77RVeaAOn7zl2y60X9Mf3KvpeUDsDnQqdUz9761w3Xln4rtQ+pINtTvPelOa9wSs3n35oH/f4AHWCvmgzbx3T6sdhzksp7V7KOFCHPq3LeIN2UB1Zvefrcr2Y0qeTgu2SvfOU9jyADs+FqoijnfFCXzLNLukwhjb1eVGHeQpCdETvOwAhhGSctB2j3kFtoYFkKQNWZ5CHwVWhQbd3EsipPwbcUYkycMZvnUGh3yDe+0CFOiTxAGPaRCUefv0G+/kG12h3d3/AQ5aKibQkHoBRL7d8XFuFdMd14X3wCPuAGjfufoT2Cdom7gdntCXa3T0RosMkqal9Op8NDTLx4J3wxss9kR2GKA6BGTNmSL3xKnQu8b33/Jd6v9LBNqd5b9LZMYq6OfYB/4d+UQicG++kW1QbWko76+IY1aFPpz3eoB2MNm636Z6vy/ViSp9OCrZLds6TLvMAhaBjdOur1DFT2v3fkZf2GNrE58Usz1MQEpUy/JN21CohhNhKWVlZte+QuiJsCrVSU2ggbYcXpMwolOIriEyk4kB6jqDpN/z2Rxk8eLBMgRIWJxWZ83n27NlSP790Q0il4qRacXQBc+fOle3hBimLRo0aVU0G2sw5Fmll8oHULkj/5wa/K7WuTrqXQrhTEK5YsULq5aRu8aJyOIAy0A/cZZXanu7zjL4UZa9M6OJNGa2qvji3SDXjyC+l73t/C9AP0R91wTl3qJff9RA01Ze3z3uvGd3RrU8DXM99+/bN2bRS+w5+17VrV2knANoCtj9sGzsy0a6wvX62FjYL/cjbN3AuJk2aFCjNot+9K+j51ME2p3lvSvPe4B3voL2cdN9OX0YKL3xXSioxb72jjGHc/bhQu4Q5L6W0eynjQB36dJrjDdrB/0PFfSXr93xdrhdT+nRSsF2C66DzedJpHiCt58I4KNTuGAN577VBt1JBOwftfzr0f13G0CY9L2Z9noIQJUR2rRJCCAlNWhGjWK3ml4InSgpOJy0v9A+TbsNPJxVpTLx4U/d4VxRCf+iRrw5+vy911WXQtGpx4BdpoHI44F6NGXZFqrtPObKKRQ+lsTLYnSLOWU0ZZnWnyhWqKnEiPwpdD0FB+3nbQIfoEVP7tHflb5RoIW+kl6qV+n4ZCdy2DufQWbUdVWdV/SlN25z2vSnue4NXrnN/d/pylPu917440WpRgQy/+4fK8+LXbirHgVkeb9AOqrWDvOene72Y0qfTgO2i/3kyZR7AxIhR3bIi6dj/0x5D6/i8mPV5CkJUYe4dgBBCMkAajlF3ihv3K+q+hM7gLcrEh9+epyr3hMk3WeMMnJ3BeqFBer5J0lIG9mk/4Mc1UekexEd9IPB7yAjbt+J4aPQ+bER5uPOTpbrfl4ozWauiDR28qZRMmCTVsU97nQ0q2sfbNlGctu5+nc/WOamwojxce2WreFBP0zbreG9SOcHmlYsJT8fOqJj89Etbpso5Gud58Wv3rDhG/cpXde5oB9XaQd7z079eTOnTacB20f88mTIPAOgYzV7/T3sMrdvzYtbnKQhRibl3AEIIyQBJO0a9+wWoGtw4g2YVexz5rYBXuZrWb5LK2fMhyLlwTx6FbbO0Jyr9VkVGxW+lr6pBs/OwE9Z5H8dDo/ccRt3Hya9fpTmJ6DwAoU1Vokv9TO3T3lXbKh9MvdeJCrvrPX+OrcN71HudXyRWVNK0zTrcm+K4Nzj46aZ6zOPtE6raz28xWZztniXHaBx9inZQvR3kPT/d68W0Pp00bBe9z5NJ8wCAjtHs9f80x9A6Pi9mfZ6CEJWYewcghJAM4B1gqJ4Qcw9m8qVrU/UgpmoyxW9gqzqVjt/A2Vm9GCTCBOfTSclSbPN6HScqk3AUqu7HzuRfmP6qur7eh3ZVfd97DpPuF34rtqNGkhdaJaz7A5Vufdq7kl61Pl7bqyLizutQwjl1HvKj3nu8EzYqVp2nbZvTvjfFOcHmN95RbQfimpyK02EM4hwHpt2nVfcp2kH1dpD3/HSvFxP7dNKwXfS296bNA9Axakf/T2oMrdvzYtbnKQhRTQ01O5USQgjRAWySjs3esUk6Nm3H5u9lZWVy43Rns3uATeSxcTo2lO/YsWOkMp0N2Tt37iw3i58+fXokedgU3rshPGSibnEB2RMnThSDBw+W5RejZ8+e8tytWrVKbmCP82kz6Gvu/gXQv1SA/oy2adKkiVK5YUE9UV83I0eOVCJ72LBh1cpyrq8kcZepum/3799fmICOfRp2PI5+5wDb169fvyp69u3bN7JML7hPwMZHvffgnuNlxowZIktk/d6EPqxSR5wjrx31u5aJudAOqreDvOeni4l92gbYLvbMA5Bs9v8kxtC6PS/aME9BiHKUu1oJIYREjqCI4+WsflO9v4x3nwgVK+X8VsCrSM9TaEVtkqvZsxTB4eyRFcfKRFV9S2V9vasl40w7F8cq6VLPexzl6x49omOfjmv1b5C6R9kjxy/SLs69+6L217Rtc9r3pqQjRuOIWiq0p2NYGDGqR5+iHYzHDtp+z0/zejG1TycN20Vfe2/iPAAjRu3p/3Hee3R8XrRhnoIQ1TBilBBCNASr2sK+sLoNK9Cx2hIr8ZzIUGf1m3cVporVbH7fYdWoyhXwqENcYMUbzpvu0TU64rcK0buiMAxYgYhVkkH6W1JAJ++qUNXXkw6rpN3nOI5Iq6gRMrb1abS/d/Wve5W1SmADvX1w+PDhSsvwiwYIK8dL1iIKsnxvcsYsccj19i+uajcf2sH8cqLaQdvv+WmRtT6dFdgu9s0DkGz2/7jH0Lo9L9oyT0GIaugYJYQQDYETM+wLDw5z586VqbTgFMVgNs5J1ZUrV/p+H2VyxU/fuB1iSJ9CwqWo8aLiAapQe6c1APd7AOrTp4/SMpD+2kvSE/ru6w/tEDUtVpAJD13QsU/7TRKo7neF+qBqp5Lqh/Qg9yOTyeq9yUkNlkQKuDjSwJFkoR2Mzw7afM9Pk6z16azAdrFzHoBks//HNYbW8XnRlnkKQlRDxyghhJBI5HO6RnHG+q2Aj/uByG+gR0p/eEK7q4gCKtR/4ogyKoazd2/ck5t+kRWzZ88WSdKmTZsqf2PPF5XXXxrtZ3Kf9q7cjjsCx69PR1n5n6StzeKqZd6b1PRh2G9OrJoL7WB8dtDme36aZK1PZwW2i53zACSb/T+ue61uz4s2zVMQoho6RgkhhESif//+JX2vK1lMVRg3flEFqh6eMJD3a5O40vmEqauqB6BikRVJr8T0PkRhkrVTp07K9MBDKvpJnBFjWenTceqTDz/5WMGtyulIW1saPF+lk882c1W7mdAOxovN9/y0yGKfzgJsF3vnAUg2+39c91oTnhezOk9BiGroGCWEEBJ58Ia9S50BHAaFSOOreiAd9wOiTpNUJoD28Fu9q3JlJvqRkwIHA/vBgwfL9NBpAF28xLU/XtqrpHHteq9ftDfaFikqoz4AwWYg3bduUSQ69mm/fpdEWkI/e6jqwZe2tjR4vsLhd51grELMg3YwXmy956dJFvt0FmC72DsPQLLZ/+O415ryvJjVeQpCVEPHKCGEkMhg4Ia9TSsrK+XkR5x7J8WBThNUppDvgUXlAxTaBQ/b6FfYPzfNPeL86htXv/E+dKQxGZDvXGNFKh78tttuO5nqKMoeQrqhY5/20ymJyWW/vj1lyhQlshk1FBzem+ycaCZVoR2MHxvv+WmSxT6dBdguds4DkGz2/7jG0KY8L2Z5noIQldAxSgghxHq4ir10/FYmZnUiP99EYFx11WHCFJMahR7C8BCEfWiQbq+srExOnGLS1GTHg259Gitw/VbheveDi4M405DS3gaH5yo8hfZhIuZAO5gMNt7z0yKrfdp02C7EZrLY/+O6z+r2vGjjPAUhKikXKbH77runVXSmwOrNd955J201CCGkZDD4xkAO71hlunLlSjnx4rwnCQd4pZNvclm3yT4VoE/mOwd+e3rEUR6uiaTPLdL2AEx+FgMPsHhh4hQghRYmWjF5asrKcd36dD59krBXfmVwRXDy8N4UnnyTebiusriAJ6vQDiaHbff8tGCf1hO2i73zACSb/T8u3XV7XrR1noIQ4x2juPlhtSFCw/FOSgPnzXGMEkKICWACBSvs8O63sg0TlZhYcTaKdyZbiJ7kG4RnkXwPQHjYiOOBw4+0HjYwUYpJTuwzVkqkFa5xvHAdQ/dhw4blJl11Rbc+nebEUL7+xgdfYjqccDUL2sFksemenxbs03rCdokXzgPoDfu/uc+LNs9TEJKZVLpw8vFV2ovOZEKICeDhB6vHnbRbeMjBwxAGT/369ZN7J2DfBNg1LJjB39hYPum9JDmYUzMIz+p5zPewiAf8pO77aYKJClyfuDbDRFrh/CECBYu5dN6fTLc+ne/BO02dmIY0WbJqU5MgX6QA+7BZ0A4mjy33/LRgn9YTtou98wAkm/0/Lt11e160fZ6CEOMdoxgwb9myha8SX3SOEkJ0Bg8+SGOHhyD3HhE9e/YUc+fOlQ9BePDB35z4NRO/QXhW0z6uWLHC93vbIo8wiYGJC1zDiAQpdcIU5wv7k02cOFHoiG59GudaN3RbJU2IKntO9IR2MD2yfs9PC/ZpPWG7qIPzAObB/m/u8yLnKQgxNJUuIYSQ7IGHn/79+1dbSYfJFawe575e2QEPst4Bt64PMFFp2rRp2ipoF02CF1Z0ow/MmTNHrgDHylR8LvYgBhvh2AWd0K1P5+t3fNAlRP3eo0RPaAfTJ6v3/LRgn9YTtkt0OA9gLuz/2XteJIQYEjFKCCEkG+CBBytD3Q9DGDhi4iRsOi6iL34rI7P68MS+mx9c49iPDNEkuNaxCtxJwYeV4PnAxIl7FbkO6NandUzLxGuBmEK+SaqsZjbIKrSDepGle35asE/rCdslGpwHMBv2f3OfF3U9T4SYAh2jhBBCItOrVy+ZNsc7SFu6dKmcQCHqwYNnmns32ZT6KF9dsxohGxVc++69g/LtFQS7oRO69el8D7pJ9Ds6lcy1zcTMiTadSbNP0w7qj6n3/LSuF/bpdGC7xGfvOQ9gPuz/5j4vcp6CkGjQMUoIISQSWAU+ffr0agM07CGi28AxS2BlLvZu0u0BKotRo/nqquN+LCrAfmCqJjBhAxBZgnPltQfoKzrtPaZbn843IZBEv8tXZ9p0/W0zKbznEvuwWX2adjB+bL3np3W9sE+nA9slHnvPeYBswP5v7vOibfMUhKiGjlFCCCGhwYOQ3yTHrFmztB3MEjV06dLF93vvvjJZQLcHoLhB1AeubZX1wzn0myRBei1d0K1PY0+3tPqdX53z6UOIjvj1YdgfRoyaBe1g/Nh6z08L9mk9YbuUDucBsgP7v7nPi7bNUxCiGjpGCSGEhKZv377VvsMeQzoPZoka8qVGmjNnjsgifntnZbWuDqr3A8ODGyZg3eiUclTHPu2nUxIP3n5l9OnTJ/ZyCVGFn23RMaUfJ66KQzuYDLbd89OEfVpP2C6lwXmAbMH+b+7zoo3zFIQY7xht1apV7kVKh+ePEJI2WCHqN6E3bNiwVPTp3r27aNOmTSpl2wgeev1WA8+YMUNkEfQvL1mf4JsyZUosD5PeB0pdoox17NN+6Q3jftDN1x46OpUIMX2ijXtAFYd2MBlsu+enCfu0nrBdgsN5gOzB/m/u86KN8xSEGO8YRb7rRYsWcRVDSHj+CCFp45cOC6vDVawSDRNBwcnF5PF7aMnqILx3796+32e1vnFEj7j3L9J1klS3Pu2nD+xjnOfMr90xAcAIAGIK+a5ZHSfadLJ/ukI7mAw23vPTgn1aT9guweE8QPZg/zf3edHGeQpCVMFUuoQQQkLhN9DyS+MRBj7cmJF+r3///tW+w8NTnA9Qo0aNEtttt51IGjyk+fXvuCYS3ROKadQ3zofhzp07VytHF3Tr05hkSvrhG/vC6RIBYCI69Wdb8Yt8g/0Ou+dZkyZNRFyYMGmVdp+mHUwGG+/5cRCkfuzTycN2CUbQ65PzANmD/d/c50Ub5ykIUQUdo4QQQkom36Av32b0quRnlbArY8NO8qoCD09+KzpHjhwZW5nDhw+PdZK6EH718lsxrTpVVVr1BdOnT1cu09tv8SCuCzr26aT73dSpU6u11+DBg4WNmGqbTSDOiU8/uxXlGvZrT1XOnaRTr5nap2kHk8G2e36a1wv7dHjYLumeJ84DZJcs9f844fOiHvMUhKiAjtEIvPzyy+Kee+6RK1rwGjNmjPyOEEKyTr4HFlUTZ9OmTRNZxnuewkwQow10GIj6DcIxSI4DrHrEQ76qFcmlgsk8b9lohzgmEgHkor5+q1JN3nPMS9oT7rr3aTx4e1dwO7+Lq8+ZtnJbFVmyzbqDfhZHH8a14R2j9OvXL5IzJq72RP3jXs2flT5NO5gMNt7z07pe2KeDw3bR6zxxHiC7mNz/bX9etHGeghAV0DFaIp999pkYOHCgqFmzptzgGEYAIe14IYwc3+H/jjrqKPH++++nrS4hhBiJ30RhltLqqEgrht/osP8GHp780u7E8WDgPICk+dA0adKkag/+WMEZB45cTOqnBdInqU6h5O7veIjTLXpExz7tt+I3jn7nlYm2MWHltiqyZJtNII4+7J2ogr2OuoK/TZs2sYxJnEiJOB1FWerTtIPxY+M9P83rhX06GGwXu+x91ucBdMfU/p80Oj4v2jZPQYgKMu0YRQQnnJhBX08++WRRI4MHYxi6yspK+QLOZ/cLaZEwoLjgggsSqi0hJEvovv9OvkkNFalvsPoMcrwr3oqdE/x/2MnFpM+33wNnKRNRzrGqUhapWNnrPfdYOKQyFRIekvHC4DvNaAOU7V3JjPZQvRoTYw3IxYNQ2tEVqh+o3BMefg+UOqBbn4bN9fY79BGVtstvQjzpNJ9po5tt1n0sEBUsLI3jmip2LZeKn51SoTfsO8Y6cTqKdOvTUaAdTAYb7/lpXS/s08Fgu+h1nrI2D0Cy0f/TGEPr9rxo4zwFIZGpzDD9+/evLCsrq6xRo4bvC//nfvXu3TuvrFGjRlX5jftz9+7dK4cMGVI5ceJE+Y6/t9tuu9xxRx55ZKL1JoSYA8yw32vVqlWVutO4ceNqenfr1i2y3NatW1cOHjy4ctq0adXkL168OO/v8P89e/YMVEYcepcC6uHVYeTIkYF/j2OLnY9CoL7e8qMyd+7cWM8r+gX6XJhrI476oo+W0j9LAXJQ144dO1amgd/5mjFjRizyVZ2zONCxT/fr16+KPqr6CHTw2vQJEyYoqaPqa8+NVzbqYLJtTvveFIetdPDKda4vVXVEH/b2t1LarhhR+kWxvoLrWGU/1qlPx9GnaAfV2kHe89O/Xkzr00nDdtHvPJk8DxDnWCdp4qyLaf0/rTG0js+LWZ6nIEQ15t4BSri5u52jbmcmHJnz5s0rKgPHuR2ijpxevXpVLlmyJO/vcDOHwcDxw4YNU1wzQojp+D28uCcMdQcDWD/dowy6MAB3JnT8zk++iRrn2CCDagwqvXIx4Ewa70RoKTrg2Cg6xzVJ59cn0KaqHvrCTtT51VfF4gM8gHvbMKpc9+R+WhOIfg/ZKurmfXhU0TfiRsc+7W0fPPyqtkeqHEp+E2eq+rWfLVdhy9KyzTrcm+J04PhdQ87EZxx9OOgEadgJwiiTXs6Yxam3V3dV96gsjzdoB9XZQd7z9bheTOrTacB20es8mToPEOdzYRr41UXl86Mp/T/tMbSOz4tZnacgRDWZd4yC6dOn5xybiOhcvXp14N/Ccep1iOIdEaSlGA785r333otQC0JI1vBOssU5oRcXfpN5YVePOatU3QM/72A833lxVsUFGezlO++YoE0Sv9WFQXRwBt5h9cX59au/qodyvxW+UR4MnEF92JWk+eqr4sHOb0Um7vlhFzbgAcN52EhzcYTfQ3CUa9tvhbBJq0x169N+dizsPQNt4m1vVdEk+SbNVN3f8tnyqLYsLduc9r0p7nuDW6bbvjn1jtLvvH04jsl/vwiHMHbakeO2gX5jKVX3qCyPN2gH1dhB3vP1uF5M6dNpwXbR7zyZOA8Q93NhkuSri+pFKCb0/7TH0Lo+L2ZxnoIQ1ZThH5FxevToIebMmSNmzZolOnToUPIG5sidXVZWJvcOxTs2hC5l7w3kF2/btq3U44UXXghRA0KIqWBvA2dvnZUrV8r3xYsXy++K7fmB/R2wvwb2NgZNmjTJ7R8S535UpdavU6dO1fZRwB5Cpezrhb0YsFcB9pZw7z8EuU79HbzH4Fx2795d2mZnY3oH7KdQynmHXJxf7znH93Hsn+DU2wFlzJ07t+DeLdANOuK4Yjj7SeAcoK1mz55dcI8J1BPnEnqg7mH7Gs5x165dq+ztAVnoE0Hloa69evXK7V+B9o2jvt729u5pEwS0IdrSzYQJE+ReIKXKwLnHeMVvn6CkQB9w7BbqgLo4+pXajn59Ar9F/zVpT5K0+nSx/RmHDBkSWh+0MfRx6uTsSxNmDzivrUUdvXs9uoGuKMd97RWys1FsuWPHS7m2k7DNad6b0rg34BkK+J0j9GP0Z7/7eCFwztCH3WMQ9OEwdjwIOEcozwHnY+nSpYHbwNEXuG0gxlF+7Y969OnTR55r59yHtZtZHW/QDka3g7znJ3+9mNKndYPtotd5MmEeII3nwjgotS7OPFLTpk1z91nn+zDPmDr1/7TH0KY9L2ZtnoIQ5VRmHER2Isrz3XffLfm3M2fOrLafaOfOnUOvgIKcpUuXhvo9IcRM8q3ki/JKOrIxzhXrWAGH1eR45Vt55qwg9a5UxPfOSjq/1amFUhXrdM695w7nwq88Jz17KXtM+KVvK+UVdfWs3/4WqG+hVYa4Zpx2LXVVY9T6RkkLgzbxpqyBPuin+doL3+MacFZfYhWtDqmcnNW83n3KnD7o9I0g5wrt5z4vpqTS06VPFwNt4F19jb8LlYF29P4GdYjS91TY2Xw6q7LlpdYvLtusw70pjXuD89t8K9+dlfa4RnBMoXOJvuIXwZCE/cT17D5/+FxsNT/a3LEdfnbeL+pGVT+2YbxBOxjNDvKen/z1Ykqf1hG2i37nScd5gLSfC1Wjoi5RbbIO/V+HMbSJz4tZmqcgRDWZjxitUaOGXN1w/vnnl/zbAQMGyN+6o0Wx0uPEE08MrcukSZPEeeedF+r3hBDzcFYxulejOavUguKsiANYfRZnNEQUsLoNq9rcK1QB6o4VeVglh1WLWNmHY3Fu8H/Dhg2TK9YKrdhzzqMfzup2P32wMtCRG/a8J3HOcc5w7vxW3AJkPYAeWJ2HVXpBVzdut912uc+l1N9ZjVpq9I4fqBNWmHpXtaIO6BN4oSwc59Qf/4d2LbXsKPUF0AP9M0pENvoq+mMp9UW74jrQ5bp2oke8q7IBdEd7Ote5s/LYub5XrFiRq587UgZ1Qx2zsMI0yT4dFJxryPZGJzn6OHq7bQx06t27t6xL1CwEGCOHsbXuaw9RCn79I4otd8tftWpVySvD47DNOtyb0rg3OBGjhR49veMIZ+yA8wXbgv/HCnp3e6RhW7x20MHRF23rjHfQR6AzvkPd/Fbo54sY9SNMP7ZlvEE7WFy+X//hPT/568WUPq0rbBf9zpNu8wC6PBeqImxdvPUpdL5M6P86jKFNf140fZ6CENVk2jEKJ+TQoUPlgD0MSH+L9EjAcYxu3rw5tD5IywsjPmXKlNAyCCHEBJwJFmdQhZeTUsSZVMEDTikpPPD7qVOn5lL8YCIRA2yTUnMVA4NU73lD/XD/QPoS0wek6Bd4CPHWDw81zmAcqWOykO7LaU/c890PGO4HD7zQrjo8cLvBQxx0Lvbg7KS9cl/j7nSP6Le4zuNKRa0DOvbpfP0uq9dZEmTdNid1rTgpU4uBvuvYF2fiFrhtJ2xL2ufd2S7B0dM91nHbevSRQtebk4rQsZ3ed3cqPFV1znqfph0MDu/5Zlwv7NPVYbvoeZ44D2APJvR/HTDpeVH3eQpCVJNpxyhulHiQHDduXMm/XbNmjVyV444WhZF68cUXQ+sDJ+0TTzwhFi5cGFoGIYQQQgghhBBCCCGEEEIIIaR0aogMg5REWEkUBm9aAJAvfUNQEC3qTolJCCGEEEIIIYQQQgghhBBCCEmGTDtGEQoeNuwbqR+8RA1rR5i8k0KCEEIIIYQQQgghhBBCCCGEEJIcmXaMhtmM2R0xivS5bvbff39FWhFCCCGEEEIIIYQQQgghhBBCkiTTjlFsHBwmdS32F0W0KXC2YMUG4WlGsBJCCCGEEEIIIYQQQgghhBBCwpNpx2jY1LXe/UUROdq5c+fI+ixevJiOUUIIIYQQQgghhBBCCCGEEEJSIPMRo07kZ9T9Rbt37x5Zn6lTpyqRQwghhBBCCCGEEEIIIYQQQggpjbJKJ1dsBhkwYIBYunSpePHFF0v6XY0aNXL7i+L04POqVatEw4YNQ+sya9Ys0aNHj8hyCCGEEEIIIYQQQgghhBBCCCGlk+mI0W7dulVLi1uMJ554IvfZcYpCTlRnZv/+/ZXIIYQQQgghhBBCCCGEEEIIIYSUTqYdo0hbC+fm2LFjA/9m+PDhvk7NKPTu3VtGrk6YMCGSHEIIIYQQQgghhBBCCCGEEEJIODLtGG3UqJHo27evuPnmm8Xnn39e9PhJkyaJefPm5dLogtatW4sTTzwxtA5In4so1GnTpomWLVuGlkMIIYQQQgghhBBCCCGEEEIICU+mHaNg6NChcl9PRI8Wco7CeYnIUO/eoiNHjgxV7pNPPimaNm0q9xadOnVqJOcqIYQQQgghhBBCCCGEEEIIISQamXeMtmrVSowfP14sWrRIRn9ecMEF4uWXXxZr166VL3zu06ePTHfrBk7Rfv36lezQvOeee0SXLl1Er169pEMWZbZt21ZxrQghhBBCCCGEEEIIIYQQQgghpVBWidBICxgyZIgYPXp0lTS5bpwIUeczHJtTpkwpKve9994TM2fOFDNmzJDvzu+BuyxEo44YMUI0bNhQUY0IIYQQQgghhBBCCCGEEEIIIUGxxjEKpk+fLvccXbNmTVEn6vDhw/P+/7vvviudnHCErl69Ove9n0PU+R7fbbfddnIf0xNOOCFyXQghhBBCCCGEEEIIIYQQQgghwbHKMereTxTRoPPmzRMrV64UTZo0kSlvsQ8p0uc2atSo4O/h3ITzNAxIs/viiy+G1JwQQgghhBBCCCGEEEIIIYQQEgYrHaOEEEIIIYQQQgghhBBCCCGEELuokbYChBBCCCGEEEIIIYQQQgghhBASN3SMEkIIIYQQQgghhBBCCCGEEEIyDx2jhBBCCCGEEEIIIYQQQgghhJDMQ8coIYQQQgghhBBCCCGEEEIIISTzlKetgIncc889vt83adJEtG7dWuy///6J60QIIYQQQgghhBBCCCGEEEIIyU9ZZWVlpcgwa9eule8NGzZUJrNGjfyBtmVlZfIdDtIBAwaIvn37Ki2bEJ3YtGmTWLhwYbUFAoWuEUIIIYQQQgghhBBCCCEk62zZskWsXLmyyne77767KC9nzGKaZN4xCgcNXosWLRItW7aMrZw1a9aIJUuWyBc6+ksvvSSeeOIJ6SgdMmSIuPnmm2Mrm5C0mD9/vthrr73SVoMQQgghhBBCCCGEEEII0Z6PP/5YtG/fPm01rMYKt3QSvt9GjRqJDh06yBdApCgYNWqUGDp0qJg5c6Z8MXqUEEIIIYQQQgghhBBCCCGEkORhvsuYGTx4sIxWRRRp796901aHEEIIIYQQQgghhBBCCCGEECuhYzQBsN8oUuvi9dRTT6WtDiGEEEIIIYQQQgghhBBCCCHWYcUeo9jnc/HixbHuMRqEHj16SF1efPHFVPUgRBXff/+92GGHHarlSN9+++1T04kQQgghhBBCSLZZvny5eOCBBwoec/bZZ4tmzZoJW/nhhx/EXnvtVeU7Pq8TQggh6d+Pv/vuO9GiRYvUdCKW7DGqCx07dhSTJk1KWw1ClC488IKHLJsfPgkhhBBCCCGExAvW+NevX7/gMXw2rQ7PCSGEEKLnnDpJFjpGE2TJkiVi9erVaatBiLFs2bJFfPvtt/LzjjvuqPVNRAddk9YhzvJUy1YlL6ocHfoJyY+N7WNSnXXQlXY2fnm0s9nGxvYxqc466Eo7G7882lmSNUzqkzroSjsbvzza2WxjY/uYVGcddIUORD/07bUZZN68eXK/UUJIODZt2iTuuece+cJnndFB16R1iLM81bJVyYsqR4d+QvJjY/uYVGcddKWdjV8e7Wy2sbF9TKqzDrrSzsYvj3aWZA2T+qQOutLOxi+Pdjbb2Ng+JtVZB111P0e2wojRhHjiiSdkxGj37t3TVoUQY8EevY0aNcp91hkddE1ahzjLUy1blbyocnToJyQ/NraPSXXWQVfa2fjl0c5mGxvbx6Q666Ar7Wz88mhnSdYwqU/qoCvtbPzyaGezjY3tY1KdddBV93NkK2WV2JghwyA8Gp1v8eLFomXLlqno8OSTT4qePXtKPQYPHiyGDx+eih6EqGb58uWiefPmVb5btmwZ9ywhhBBCCCGEEBIbeO4cN25cwWMGDhxY7XnVJvi8TgghhKQP78d6wlS6MTtEjzzySNGrV6/cd/37909VJ0IIIYQQQgghhBBCCCGEEEJspNwE5+Ls2bMjyxk5cqRo3LixiJPVq1eLlStXypS52E/UAUG5iBZF1GhaUauEEEIIIYQQtWDs//jjjxc85uSTTxZNmjRJTCdCCCGEkCRYt26d+OCDDwoes++++4p69eolphMhhBCSCccoJhqmT58eKTczHJMTJ05UrFnh8rx6tm7dWkyaNCkxHQjJItis2rEHWGhQXq6vCdNB16R1iLM81bJVyYsqR4d+QvJjY/uYVGcddKWdjV+e7nYW8pEaqdgxRN/rOGlMqrMOutLOxi9PdztLSKmY1Cd10DWKDj/++KN4/vnnCx6DABG3Y5R2lnY2a9jYPibVWQdd+TyoJ/r22l+ZOnWqfF+zZo1ckY1ITERkIop05syZMkrT7YDMt2Vqklupup22KLdjx45i1qxZomHDhonpQEgW2bJli/j0009zn3VGB12T1iHO8lTLViUvqhwd+gnJj43tY1KdddCVdjZ+ebSz2cbG9jGpzjroSjsbvzzaWZI1TOqTOuhKOxu/PNrZbGNj+5hUZx101f0c2Yr2jlGHRo0ayVerVq2qfL906VIxbdo0MWLECOkk9UaSOg7RUiJMo4DynDKRuhcpfPv27ZtI2YRknZo1a4pjjz0291lndNA1aR3iLE+1bFXyosrRoZ+Q/NjYPibVWQddaWfjl0c7m21sbB+T6qyDrrSz8cujnSVZw6Q+qYOutLPxy6OdzTY2to9JddZBV93Pka2UVSYZShkzCIvu169fFQeps78nnKpxg72DkDIXEaLdu3cXXbt2jb1MQtIEqeOaN29e5btly5aJZs2apaYTIYQQQkhSYNwzbty4gscMHDiw2niJEEJINGh/i8PndRI3vA4JIaQ4vB/riTERo0FAnmi8+vfvL/fzdEeJIgUv8toTQgghhBBCCCGEEEIIIYQQQuwjU45RhwkTJsg0tqNHj05bFUKIQhABjlU2AKtqkkqRbaquSesQZ3mqZauSF1WODv2E5MfG9jGpzjroSjsbvzza2WxjY/uYVGcddKWdjV8e7SzJGib1SR10pZ2NXx7tbLaxsX1MqrMOumYoYWumqCEyCvb2POmkk9JWgxCikI0bN8o0LXjhs87ooGvSOsRZnmrZquRFlaNDPyH5sbF9TKqzDrrSzsYvj3Y229jYPibVWQddaWfjl0c7S7KGSX1SB11pZ+OXRzubbWxsH5PqrIOuup8jW8lkxKjDqFGjxBNPPJG2GoQQhWyzzTbCFHTQNWkd4ixPtWxV8qLK0aGfkPzY2D4m1VkHXWln45dHO5ttbGwfk+qsg660s/HLo50lWcOkPqmDrmF1qFGjRtHf4hhV5QWBdpakgY3tY1KdTdKVJEdZZcZjeXv16iWefPJJsXjxYu4xSohiuHk0IYQQQmwG4x6sPi7EwIEDq42XCCGERIP2tzh8XieEEELSh/djPclsKl2HHj16pK0CIYQQQgghhBBCCCGEEEIIISRlMu8Y7dy5Mze4JYQQQgghhBBCCCGEEEIIIcRyMr3HKOjQoYNYtWqVaNSoUdqqEEIismnTJvHss8/Kz3/+859Febm+JkwHXZPWIc7yVMtWJS+qHB36CcmPje1jUp110JV2Nn55tLPZxsb2ManOOuhKOxu/PNpZkjVM6pM66Eo7G7882tlsY2P7mFRnHXSFDkQ/Mh8xCugUJSQbbNmyRXzwwQfyhc86o4OuSesQZ3mqZauSF1WODv2E5MfG9jGpzjroSjsbvzza2WxjY/uYVGcddKWdjV8e7SzJGib1SR10pZ2NXx7tbLaxsX1MqrMOuup+jmxFX3c+IYR4qFmzpjjyyCNzn3VGB12T1iHO8lTLViUvqhwd+gnJj43tY1KdddCVdjZ+ebSz2cbG9jGpzjroSjsbvzzaWZI1TOqTOuhKOxu/PNrZbGNj+5hUZx101f0c2UpZJTfgJISEZPny5aJ58+ZVvlu2bJlo1qxZajoRQgghhCQFxj3jxo0reMzAgQOrjZcIIYREg/a3OHxeJ4QQQtKH92M9sSKVbtqsWbNGrkw46qij0laFEEIIIYQQQgghhBBCCCGEECthKt0EWLlypZgxY4bYbrvt0laFEKNBgDsWGjh7B5eVlQld0UHXpHWIszzVslXJiypHh35C8mNj+5hUZx10pZ2NXx7tbLaxsX1MqrMOutLOFpa3atUquW9V/fr1I9nZH3/8UX5u0KBBKDsb5fdh2bRpk6hXr17RYyoqKoStoP477rijdeckrT5pqq5J6xBneaplq5Jnqp0lwbCxfXStc40aNUR5ebl81208S/SDjtEEWL16ddoqEJIJNm7cKG6//Xb5ediwYaJ27dpCV3TQNWkd4ixPtWxV8qLK0aGfkPzY2D4m1VkHXWln45dHO5ttbGwfk+qsg660s1VZt26d+OGHH+Rk5IYNG8T69evl97Vq1Yo0YQ/dwsqJ+vuwoNzDDz+84DHfffed+P7774Wt4BxNnTq1ynfffvutPC9ZJq0+aaquSesQZ3mqZauSZ6qdJcGwsX10rzP0gYN0m222Edtuu20u9X6a41miH3SMJsCSJUvke5MmTdJWhRDjwQ3XFHTQNWkd4ixPtWxV8qLK0aGfkPzY2D4m1VkHXWln45dHO5ttbGwfk+qsg660s0JGhn799ddVJtYYfUAIIYQQkt9xi0hRBKxhi0Nk9MR3Oi9KJMlSVsnRdOz06NFDzJw5U7Rp00YsXLgwbXUIUQY3jyaEEEKIzWDc46xAzsfAgQOrjZcIISQISJOLhdZOujonCgIp4pw0cbpFaRBCCCGEpIXj6sI7xlF4OWDMtMMOO8hXknD+XE+0jRh97733xPDhw+VDQJcuXcSIESNEw4YNS5LRp08fkSZYkTBnzhym0iWEEEIIIYQQQkhJuJ2icITWrFmTjlBCCCGEkDw44yRnIRmAcxR7bMNZipTy+HunnXZKWVOSNlo6Rt99913RuXPn3N/z5s2T+yLgoaAU5+iMGTNym+umBQNyCSGEEEIIIYQQUgrffPNNzimKfbKcyT28169fX+6ZVbduXeksdf7PJjDXsnnz5oLH2O5IxjmqqKio8h36jM3nhKjvY8XmPdHf2OcIIUkAhyfGBnCC/vzzz/KF/dgxTkIKXXyPY7D/OL5LOnKU6IWWjtG+ffvmbqy4eeIz9tQYOnSouPvuuwPLad26tXSqeknyhuyURQcpIdHBDexf//qX/PzHP/5RThDoBOwNbrT77LOPFromrUOc5amWrUpeVDk69BOSHxvbx6Q666Ar7Wz88mhns42N7WNSnXXQ1VY7iwXemLQDbsfn9ttvL1/4zu0YjOIAjCpHlR6l4k6Nlw+3Q9lGcI7QJradk7T6pKm6RtHBicIqhLfPxVln1bJtt7MkGDa2jwl1doLrsEAIUaK//PKLtEeOc/S7774TTZo0SWTP0WJ2kqSDlqMhOBfcK4qc99mzZ5ckB53b+b1bnrOiKYkXIUQduHEhohyvIA/CSQJ9+vXrJ/bbbz9x7rnnis8//zx1XZM+X3GWp1q2KnlR5ejcp4md7WNSnXXQlXY2fnm0s9nGxvYxqc466GqrncW+UwBzGI5jC1ENLVq0qOLo8u6dFUW3qLZa9/5M7MKkPqmDrknrEGd5qmXTzpIg2Ng+ptS5Tp06Mm1u48aN5d/OwjT4bb744otEdDDhPNmIlstTO3ToIPcYdUBHxQOBO71u0IhRtwzQrVs3+b1zMcQF9hVduXKlmDlzJvcYJUQRmAT4wx/+kPusE9OmTRNz586Vn++//37x2GOPiRNOOEGcdtppqema9PmKszzVslXJiypH5z5N7Gwfk+qsg660s/HLo53NNja2j0l11kFXG+0sJs8Q1eA+rlGjRqJp06a+MlXplubvCVGNSX1SB12T1iHO8uKw3TrI0aGfkPzY2D4m1RnOUCwu27BhQ5XI0Z9++kmOu+LOpGDSubKJskoNwxrhTOzRo0eVCE98Xrx4sWjZsmVgOaNHjxZDhgyRv4Uz9KWXXhKtWrUSSdO9e3cxa9Ys0aZNG7Fw4cLEyyckLpYvXy6aN29ebXVzs2bNhE3gxtq+fXu5D7KX7bbbTlxxxRXioosukvu5EEIIISQ7YNwzbty4gscMHDiw2niJEEIKpdF1niuc9G6Yz6hXr17KmulFmBSeNp6jdevWVfkO/cjmc0LUwuuQEGISSKsL/5Izlwt22223XNbRuOD8uZ5oeWdCVCecmPvvv79cGYm/58yZU5JTFLijQkeOHJmKUxQMGDAglXIJIckwceJEX6cowP7Il19+udhjjz3EQw89lMvBTwghhBBCCCFekHkKOI6EWrVqyTRwhBBCCCEkPAhYcRadOeMsLEgjdqJlKl0AZ6iTljIs7lS6HTt2VKBVND2cBxxCSDgQPe6kldpmm2202Nx77dq14vrrry96HPLWn3XWWWLMmDFyocZRRx0Vu/5Jn684y1MtW5W8qHJ07NPE7vYxqc466Eo7G7882tlsY2P7mFRnHXS10c4irZt7wm7bbbf1jbbyJv+KYmejyFGlByGqMKlP6qBr0jrEWZ5q2bSzJAg2to9JdfbqinEVfDQYWyHq/eeff05cB6IHWkaMqsIdBh13SHQh4t7PlBBb2Lhxo3Qs4oXPOgBdkBIhKB988IH44x//KLp27Spmz56dqfMVZ3mqZauSF1WOjn2a2N0+JtVZB11pZ+OXRzubbWxsH5PqrIOuNtpZJ8OMM8mICbxCMlXZ7Ki2Wvf+TOzCpD6pg65J6xBneapl086SINjYPibV2a1r/fr1q4yziqUDV1U+0Y9MO0YRqYn0uWml0PWyevXqtFUghCgEq7lvv/32UL/997//LQ444ADRp08fsWjRIuW6EUIIIYQQQswCkQveqAKk0iWEEEIIIdHBvsduMO7C+IvYR1klY3kTYenSpfJdFyctISrg5tFCfPTRR2LYsGHiueeei3RT7t+/v7jmmmuqnU9CCCGEEEKIHWzYsEE+XwBnD6y2bdtyj1ESCkz0rlu3rsp39erV803NTAghhNjA+vXrcwEqGHeBvffeOzfuigPOn+sJR0MJoVPkKiFEHbh5Pvvss+KVV14RBx10UCgZSNtw1113iTZt2sj9Sp19hQghhBBCCCH24BexQCcWIYQQQoga/MZVjBi1E46wCSFEAb///e/Fm2++KZ544gnRrl27UDLgEL322mvlqvBx48YxBz0hhBBCCCGEEEIIIYQQohA6RgkhxoDIyhdeeEG+ktgcu1SwcfeJJ54oPvzwQxkBut1224WS8/3334sLLrhARqNOnz692j5Dup6vOMtTLVuVvKhydO/TtmNj+5hUZx10pZ2NXx7tbLaxsX1MqrMOutLO5gfPCJCDV5QdkqLKUaUHIaowqU/qoGvSOsRZnmrZtLMkCDa2j0l11kFX3cf8tkLHKCHEGJDa4O2335YvndMc1KpVS5x//vli4MCB4g9/+IPYdtttQ8lZuHCh6NWrlzj44IPFq6++qv35irM81bJVyYsqx5Q+bSs2to9JddZBV9rZ+OXRzmYbG9vHpDrroCvtbHGZqmx2VFute38mdmFSn9RB16R1iLM81bJpZ0kQbGwfk+qctq6mnCfbKE9bARtYunSp3DsQOay5QoCQ8NSsWVMcdthhuc86A/2OOOII+dprr73E8OHDxfjx40Olx8XkyeGHHy6OOeYYMWLECLHPPvtoeb7iLE+1bFXyosoxqU/biI3tY1KdddCVdjZ+ebSz2cbG9jGpzjroSjtbXKYOcnTvy8Q+TOqTOuiatA5xlheH7dZBjg79hOTHxvYxqc5p65p2+cSfskrd450z5BhFWs0VK1akrQ4hyli+fLlo3rx5le+WLVsmmjVrlppOOrN48WJx1VVXiccffzxSut6zzjpLXH/99WKXXXZRqh8hhBBCCCEkPSoqKsT8+fPl59q1a8v3du3ayYw0hISJUFm3bl2V7+rVqycX7RNCCCE2goCVBQsWyM8bNmyQ7+3btxd169aNrUzOn+sJR0MJsHr16rRVIIRoABZIPPbYY2L27NkykjQMWMvywAMPyAmSIUOGiFWrVinXkxBCCCGEEEIIIYQQQgjJInSMJsCSJUvke5MmTdJWhRCjgVMQq3nw0j3YvZCunTt3FjNnzhQvvPCC2G+//UKvJh81apR0to4ZM0b+XYoOcRBneaplq5IXVY5JfdpGbGwfk+qsg660s/HLo53NNja2j0l11kFX2tnC8tyvtOSo0oMQVZjUJ3XQNWkd4ixPtWzaWRIEG9vHpDrroKvu58hW6BhNgClTpqStAiGZSXeAvTrxCrNXp066IiXukUceKebNmycefvhhsdtuu4UqBxGjl19+uYwgffDBB8XmzZsD66CaOMtTLVuVvKhyTOrTNmJj+5hUZx10pZ2NXx7tbLaxsX1MqrMOutLOFpepymZHtdW692diFyb1SR10TVqHOMtTLZt2lgTBxvYxqc5p62rKebKNcmExn332mUxzi4jOlStXKpcP2TNmzJCRYYQQ4gf2dzn99NNFz549xd133y1uuummUPboyy+/FGeffbYYO3asGDFihDj66KNj0ZcQQgghhBBCCCGEEEIIMZWySstieZFyEhGciNJKCucUI+XlwoULEyuXkLhJevNoXEvOKptatWrJqEtdCasrFlSMHDlS3Hbbbb7pcYPyP//zP1LO/vvvX7IOOraPatmq5EWVY1KfthEb28ekOuuga9I60M7SzmYNG9vHpDrroKttdhbj//nz58vPtWvXlu/IDIPj/eS5iWJno8hRpQdRz5YtW8S6deuqfFevXj25ODfLmNQnddA1aR3iLE+1bNpZEgQb28ekOnt13bRpk1iwYIH8jO0NQPv27UXdunVj0wFz5S1atEhs/pwEI9ujIRcvv/yyaNq0qRgyZIiYO3dutfzScb50Ng6EmASuJUwQ4KX7dRVW18aNG8v0WlhEcd5554V+aP3Pf/4jDjzwQBmN+sUXXyRyvuJsH9WyVcmLKsekPm0jNraPSXXWQdekdaCdpZ3NGja2j0l11kFX2tnC8tyvtOSo0oMQVZjUJ3XQNWkdUMaKFStiKU91XWhnSRBsbB+/Ov/www9CR3RoH1v6hWlYkUp30qRJYsCAAbkVAuyMhBDd2XnnncU999wjLr30UjFs2DDx3HPPhZIzbdo08dRTT4n+/fuLq6++utoKJUIIIYSEZ82aNeKll14qeEyPHj1Eo0aNEtOJEEJsAPM7mzdvLnhMzZo1Of9DSIw4ASGF8DojsO3P2rVrxRtvvJGAhoSQpDjjjDPktf3MM8+I7bffPm11CClK5h2j7777rnQIAOdGnHT2YA7ECVEDHnwRCemkisWDbtZ13XvvvcWzzz4rXnvtNTF48GDx1ltvlSwDaSLuuusu8eCDD4rLLrtMDBo0SGy77bbCpPZRLVuVvKhyTOrTNmJj+5hUZx10TVoH2ln97Oz69evFxx9/XPCYww8/XGmZWUKH6zhpTKqzDrrSzuYH8xpIlQqQZSZKiscoclTpUSrucvORpD5EH9Lqk6bqGkUH/BbzDYUoLy+XMhFN1qFDB/ndnDlzpE1UXWfV59N2O0uCYWP7+NX54Ycfltc4XvDH6OIc9eqaBsUWcpF0yLxjtFevXvIdFyguhNatW4uePXuK7t27y89NmjSJbQU3VpDPmDFD9OvXT+4bSAiJfiN5/fXX5eff/e532k8kqdQVMt58800Z/YkIUicffin89NNP4u9//7u4++67xbXXXiv69u3ru1+Rju2jWrYqeVHlmNSnbcTG9jGpzjromrQOtLO0s1nDxvYxqc466Eo7W1ymiom+qHJU6UGIKkzqkzroGrcOjlMU86Rvv/222G677XKOUd3rQjtrPmPHjpXz8osXLxarVq2SUY34+8svv5T/j7+jYnL7IHr7hRdekCmucV5wjrAlF84LrtlLLrlE3HDDDUXrDEcoHKLwt+C1ZMkSbZyjabcPHaN6kmnHKC5GXIRwirZq1UqmlHRWJyUBHK5wwkKHoUOHJlYuIVkFNzDsm+l8tk1X2LITTzxR/PnPfxb33nuvdHJ+9913JcvBBt8XXnihuO2228TNN98sTjrpJCUr2uJsH9WyVcmLKsekPm0jNraPSXXWQdekdaCdpZ3NGja2j0l11kFX2tniMnWQo3tfJvpywQUXiHHjxinflqZhw4Ziv/32k+nsjz322FCT89iK5sYbbyx6XIMGDSI5AEq5fnbZZRfx1VdfFT3uqquu8nVkqNAhDMieAb2xOGTPPfeM1UkQh+3WQQ7tbDjmz58vM6cVun5VYHL7IMPcY489pqTOsIPPP/+8OOyww7SKHE27fdIun/hTVpl0XtkEgTNy1KhRolOnTmL27Nmp6TFr1iwZoYoVUVh9QUhWWL58uWjevHk1p1uzZs1S08kmfv75Z3HrrbdKO/fjjz+GlnPAAQdIGUz1RwghhJQGxj3FJnQHDhxYbbxECCF+VFRUyElcULt2bfnerl07pVlesgLS4gVJ4WnzZCTO0bp166p8V69ePa3OCSK5nnzySfnZieDK92wLB8a+++4rP8Px6caJAMO7n+PwlFNOkY7O9u3bB9YN++ThOTmIbrjXIzNT3Ocqn4MH5wZO08aNG8u/kR3q7LPPFjpch9ADTpdSnbWEqOKBBx6Q8/GIGJ08eXKV6xjXjoqIUZNBxOjChQvlOYI9RrY6N2GuXcdeHXLIIdrtJ7xx48ZcFr4NGzbId9wb6tatG1uZnD/Xk0w7RrEyDE5JGL6WLVumpgdWR8A5S8coyRo07Pq0A1ayYmIWN/iwHHPMMWL48OG5h01CCCGEFIaOUUKISugYDQ4do9lwjAaNIt1rr73ERx99FFgGJuIfeeSRak6QqA5MJ4oU+rj3GE/CuQLH5z777CNTXrpJ0+FY7Dq8/fbbxeDBg0tuP0LiAvdY9EcHOkaL2+CwNubQQw+VTlbdFkXQMUoc9B4NRQSpLLp165aqUxQ4K7a4zyghJA5wI8UDBwZ4WAkbln/+858y3dA555yT22uBEEIIIYQQQghJiuuvv77ad3hOLXVCHg5QzAsiYskBk/1777233PMyDM7kPra4cafghPMVEaZxAUcv9vrr06dPXp1049NPP5VOUTB9+vS01SEk5wBDum2Sn9NOO02JHMcmYjGJblGjhGTeMbpy5UqZwjZtmjRpIvfww4sQEh6s5Lnuuuvky1nVoytp6NqmTRvx6KOPijlz5oiuXbuGkoEkAkgzsvvuu8uHGGy6rkOdVctWJS+qHJP6tI3Y2D4m1VkHXZPWgXaWdjZr2Ng+JtVZB11pZwuP2yEHryiJwKLKUaUHIQ5++9E5AQel9smmTZvKCXm3cxSRntj7Lqxz1OH000+v8vf48eNju36wB6C3PFXEdQ33799fvg8YMKBKCuM4bYZq2bSzenDqqafKxQ6q8KbijkrW2gd+DBV1hi1HtCg4+eSTRVro0D66j/ltJdOOUURotm7dOm01RKNGjcS0adPE1KlT01aFEGIBSN09Y8YM8dxzz4kWLVqEkrF+/XoxevRoaUPxjrRehBBCCCGEEKIDZWVlMiVsoReOIQR4ozmxD+kZZ5wRSpYTKXrxxRdX+d6b4lYl//jHP6qVpzNIYfzf//43bwQwIaXw+eefK5VXykILEg1EtMNmwuYiFTkhOpHpPUbbtm0rhg4dKs4///y0VSEkNpCSpG/fvmLp0qWJ39yTzpEOc/XLL7/Iz9tss43WD7o66AodfvrpJ7koA4ORKINJ7GcCGVilWrNmzcTrrFq2KnlR5ejQT0h+bGwfk+qsg65J60A7q5+d5R6j5l/HSWNSnXXQ1TY7W8oeo96pnCh2NoocVXoQ9Zi6x6hfPyplb9B8fRJRZ4899liV/7v//vvF2WefXXK02SWXXCKfj5GW173X6JgxY8SgQYOUXj/I6ITFytijE5+x9U0hGaUS5RrOVzYCRJBeGNGiaDe3zDhthmrZtLN6gOsM852q0rE6e1+q2mM0a+3j3YfVb4/QUurs7M3szCP7ZQWIE6+u2Bc56T1G8czoDVzhHqPpo/9oKAKIdFq8eHHaahASa1R0r1695Dv2zsg6uNHWr19fvnQfaOigK8rFIO+8886T+3vccsstgVJi+IE9R/HAiJRD//rXv3wfgOKss2rZquRFlaNDPyH5sbF9TKqzDromrQPtLO1s1rCxfUyqsw660s4Wlud+pSVHlR6EqCJfn/TbnxMOxyice+65Vf6+7777lF8/kyZNqlaOSqJcw97f4oV5BzhFAZwpXplx2gzVsmln9QDzUTpjY/uUUmcsJHG45pprhI3tY0u/MI1MO0a7devGDb5JpoFTlJAg1KlTR1x66aVysQgi6cOuhPrggw/EMcccI4444gjxzjvvKNeTEEIIIYQQQghRzXHHHVftO0R7OlHaYfBGh0aV5wX7oCKy7ayzzhKmcNttt8l37OuadGQYyR64BhxHOzET2IGjjjoql2abEF3ItGO0Z8+e0gnw/vvvp60KIcqB03/mzJnCJjZv3ixeffVV+cJnndFBVz8dkH5k+PDhYtGiRTKSNGwapf/85z/iwAMPFL179xYLFy7MW16cddFBXlQ5OvQTkh8b28ekOuuga9I60M7SzmYNG9vHpDrroCvtbH6QwQVy8IqSSjOqHFV6EKKKUvvk22+/Hak8Z8Lf4Y477lCm6+233y7lx+lgVHkNYy9X7CUIBg8eHHt5ccumnU0fXAO6Y2P7lFpnpOMFcHIjJbht7aP7mN9WMp9K96STTpL7L6bNPffcI1+EqACpc3Xo12ncSP7973/Ll+43FR10LaTDb37zG2mTEAH65z//OXQZ06ZNk3sPXHjhheKbb76Jrc6qz6cqeVHl6NBPSH5sbB+T6qyDrknrEGd5tLMkDWxsH5PqrIOutLPFZaqy2VFtte79mdhFvj6JrWa8RN2CC/touik1IqrQ9QMHgld+HKi6hkeNGlUwQld1eUnIpp1Nl6SdaGGxsX1KqTP2dXXsL9KD29Y+tvUNUygXGQcXGxykV1xxhbj55ptT0WHp0qWiX79+MjLr/PPPT0UHki3gFO3cubN1EaO4hrDHpfNZZ3TQNYgOcGpiVedrr70mhgwZIv773/+WXA42Lr/77rvFQw89JP70pz9JR6vqOqs+n6rkRZWjQz8h+bGxfUyqsw66Jq1DnOXRzpI0sLF9TKqzDrrSzhaXqYMc3fsysY9S+iSyKkUBDsCdd945FymJiCg8YxdyDAbR9Y033hBr1qwJLCfta9hJ++sXRRtHeUnJpp1ND6Sldq4r3bGxfUqtM5yjL7zwgrQTaNv27dsLW9on7fKJpY5RDHCmTp0qevToIZo2bVot/3+SNGrUKLWySXaAMxSvuXPnijZt2gibKC8vjxTdaJuupejwu9/9Tj54Pf3002LYsGHi008/Lbm8n376STz22GNi1qxZYuXKldKBX6tWLaHj+VQlL6ocHfoJyY+N7WNSnXXQNWkd4iyPdpakgY3tY1KdddCVdjY/ZWVlUmbaclTpQYgqCvVJv70K27ZtG7nMs88+W9x44425v8ePHx/IoVlI17vuukucfvrpkXWLokMp/OMf/8h97tatW+zlJSGbdjb9LfJMwMb2CVPnPn36SMeok3IcARa2tE/a5RN/rHBX44Y8Z84ccdNNN4mTTz458U2bkfaUEFX06tVLRkI3adIkbVVIxsBg4YQTThAffvihmDBhgthhhx1CyVm2bJlMrYtoVKTatWWPBUIIIYQQQggheoKIRj9URGRecsklVf7G5H++8oKCRccXX3yxMIUpU6bkPp911lmp6kLM54ILLhAff/xx2moQhRx77LG5z6+88kqquhBijWMUdOzYUSxZskQsXLhQtGzZUtx7772JlQ2nLKAji0Slf//+MoWuKaumiJlgJRPSfy9atEjccMMNvvuwBAG/7927tzjooIPEf/7zH+V6EkIIIYQQQojDDz9WiAfe/Exc/Ng8cdZ9b4s+E/4r3/E3vl/x0/q0VSQp4o5odDjllFOUyN5+++3FIYccUuW7Bx98MNK+ilhonGSqyag4kWCYP8D5UAFSEsNBtvfee4uGDRvKxdx4x99HH310lf0n8XmXXXbxlTN27Fhx9dVXi1NPPVX+Dik9cSxk4bMXpPlEuc4xKBefcSxkBdEb5eA3+K2jd9Dfl4JTlvscObqizlEd9EmXjd9A5rhx40RaoP3RV9zt77Sf6nPq9DW/Po7vkdlNBZDjLcfdVkkAu+DML9LpTXTAGseok1YX6UeHDx8uLr/8clGzZk1pFJ588kmxdu3aWMr87LPPxMiRI2ORTexi3rx5Mi00IvBsZcOGDXKvYLzwWWd00DWqDvXr1xdXXXWVWLx4sfjLX/4SOi3uO++8I/7whz+IY445RnzwwQdanE9V8qLK0aGfkPzY2D4m1VkHXZPWIc7yaGdJGtjYPibVWQddaWfzg6wskINXlAwtUeWo0iMKH369Rlz37EfijPveEY+89bn45NsfxTerK8TKnzfId/yN70+/9215HI4n2SVfn0TmLS8qHQLYSsbNbbfdFlrX0aNHy3nLJFBxDbudN/vuu2/k8iAPDpzjjz9eLF26VJ6Lt99+WyxfvlwGvUycOFEGDaD9cBycjeecc47cj9IrG46nyy67TKY6RhSus8chjvXLKAiHGJzSyP6HheLPPfeceOKJJ+T2Q/gdZMGpBKdgPqfeGWecIVq1aiXuvPNO8frrr8sti+CAcn4Px1QpDi+/c4Y6Qw7O0RdffCHOPfdc8fDDD8vyoPduu+0mbr/9dtGsWTOpk0pnXhxlY34e5wi/cZzsbnDuHCdzvpcKoMeBBx4oP6Muzz//vGw/RDtCB/Qj6Oh2yoe5hpy+gr4GJ/B+++2XO4f/7//9P/k3vj/ssMPkeQnbfs61BDlOOddee60sB/3ziCOOkH4RnL9SnPZh7YbbPqhy+powTtF9zG8rmU5wjH3y8oFoKNxIkS4SL4fWrVtH3njdATdR3LAJUZVCF052Vf3TVDZu3ChMQQddVeiAQR8GtUgPBEcpHibC8K9//UsOKs8880xx/fXXi1133TXV86lKXlQ5OvQTkh8b28ekOuuga9I6xFke7SxJAxvbx6Q666Ar7SzJx5YtW8S9ry8VU+d8lftu/aYt4qf1m8SmzVvElkohapQJUV6zhti2Dqa/aojXF/0gX7077yzOO6yVqFHDqngBa8EEPJwabu6//36lEZnYZxTOOQc43lCuX0RiIeDIQzQV5JnCW2+9lfsMx0sU4HCEw23nnXeW58GvjRB5hvMKxxUcmXA25gO/R1uvWLFCBssgcjjfFmtwIGHODQ5YlAEnimO3se1Qp06dcmVBRzjMnFTMcFxhThn7wmLeww3kwAmGFMOPP/64LB+OKjinSu0fqMfhhx8uzw2i79w6OECm039wfjCHg3kdnIco/Qp1jKtsOMDhbD3qqKPk3whgcl+zKK/Uc1UqTvtjLt8b9Yx6utvfudbDnE+njwM4RqdPn16lnzvnEFtUod/gPKBvYXFAKTbLOf8AEe0o169euI7g6EVAxMyZM8Utt9wi4gKOWKdd4QCPu00JKURZZYY3f0Pq2jVrCq8ETLL6bdq0kal8CSmVIUOGyJsTBnFux/t2222X+xv/h5TRSYLBYvPmzavtL4lBTxzgenWu6UaNGilbEZZVXePSAX0NfXLWrFmhZdSpU0cOurCAxd2Pk6qLKnlR5ejQT0h+bGwfk+qsg65J6xBnebSz4cC4p1iqr4EDB1YbLxF9ruOkManOOuhqm52tqKiQThFQu3Zt+d6uXTvfzC3euYwodjaKHFV6hHGKjn5xgZg5/3v598/rN4m1FZvExs1b8v6mVs0aomHdclFfOkmF6Na+hbj8yHaZdY7iHK1bt67Kd/Xq1TOivt5+hHvp3XffHapPfvLJJzICzO0MGzNmjBg0aFAo3eC8waJhOBMKOSKcVL2PPvpoYF1Rb0SsYb7H73dwXridr34ySkXFNeyudzEHWKHy4Hhz5pNKcRrCeeREGaLf+8l2gI2FM8oBDiM4sCEDcxPu8+6nq7ssOOucDIRIS4p6+/ULtxwsEIfTHECPjz76qGj9nN+jL/fo0UP+Ho7jd999N1DaYkTWItIxSt/HeUu6bHf7Oe2kAid6192Gfu3vh1/7l3INua9hnMcvv/yyYHmoM5zoTnlBnaPuOhazQ+42hq1EVKfbKY0ACW+/Dms33PWHE9y7iCAOvLpu2rRJLFiwoEokJ85p3bp1Y9MBz4wtWrRIbP6cBEP/0VAEsJoCnT/fCxQLw1f1IvHRvXv3QI4VVcBBiehNrBRCuWhfOL2hx6hRo+QAVnUKXci1OYWuA841Vm/hpft1pYOucemAvj9jxgzx4osviv333z+UjPXr18v0QLDTePc+sMddF1XyosrRoZ+Q/NjYPibVWQddk9YhzvJoZ0ka2Ng+JtVZB11pZwvLUzHnEFVOWnMfiBR1nKJImbvi5w3SKQoN6teuKZrWry2aNagj3/E3vsf/4zgcD/B7yCHZwt0fsc+n2ykKxwIcd2GdosVAhFexfU2LXT+TJ0+uJidOVFzDn3/+ee5zsfm5QuVdc801OSdYKZFk7gi3YnWBAwQOKa+zBilhvc4jP1379OmT+3/0K/wWjuF99tnH1ynqlfOnP/0p9z0iL53FMIXA7xApir7sOFVfeumlwHu5Qi8nEhMRj+40sEGAwzqtspMAKWT92t8Pv/YPeg3Byele2IDzWAxcB1gY4pR3/vnnB/qN49jEtRSkXs61AUelN7pepd3Yfffdc58//PBDkQQ6+Gh0H/PbSqYdo4gYLXQBFHKaqnqR+IDDEA4aOCrhjFTtkPQC56TjAEWZcOgg2g2pmHv27ClWrlwpo+gwCMQxqtIoOyl0UR4hugBbitWCiB7Fg1vLli1DycF1O3jwYLHHHnvIAeXmzZuV60oIIYQQQgjJDtgj1EmfC0cnUueChnVriZ0a1xNNt60jo0Lr1aop3/E3vsf/AxzvOEchh3uOZgM4b+BkQrpIRF0ishNOCMcpCucM5mniTFELh4Tb6eY4ToIC3RFRbkp6Scx7IkLzgw8+yH2HKHd857xKmRt95ZVX5Dv2qCwFOHTcUaDFQN9wz0kgmxW2WwsC9pp0g4XecIBjf8ggHHnkkdW2HAoCUp46fRmOslLTQLv1w3URxCGrQ9lxg3pdd911ods/iHPT4eSTT859hj0Keh6xFZUDnJZ++9u6I3Tdjs1Cx/oB24MI07jA3J+D42gnJC0yvceo15GEmzG+SyrdKG6uc+bMid1hZxsYyMIBiRzsSZXndnTCiQOHqN9en3CY9u/fX77DiQqHJo6P4oxFOVFkZAk4zWbPni0/d+nSRdSsWVPoig66JqED0jCddtppcnEANm7HgM1JJVMKSB+CATJWeo4YMUKmJ3EvZFFdF1XyosrRoZ+Q/NjYPibVWQddk9YhzvJoZ0ka2Ng+JtVZB11pZ4s7JJwxedhohKhyVOlRCk/M/SqXPhcvsP22tcU2tfNPcdWsUSYab1NL1C4vEz/8tNWZWqe8hnScPjnvK7HPbxrFrjcJD9LWF0td7weclIjQw3Nq0Ai3qMDx6qQOBZMmTcrrjPVeP+PHj098b9Eo1zB+i7SU7jTFmAvDdw7l5eXVglTylYcISrBq1aqS63HiiSfK3zuLrQvVxT2fh9/AqernjPbT1duP8Hs4kgr1L7cc73GLFy8uWjc4193OLrejLCgoF844Jw0sIg+DpKZNs+ykQBrkoIsRvO2HaOkg1xAclm5HINLTBgVloo861wfshHdvV2dxiNv2FOuX+UAQhDsluEq74dUHOsdtm726pgGDQPQk045R50aHCwBRfFOnThVdu3ZNVAc4Rbt16yajG0k44JDE+cNDJByOSZ5LlIU+4zi3kc4WDqB8oK0xqHGiSuHAxd+IKg3rAA4ySLIF3EiQvhVggYPuE0lp65qkDtgz9OKLL5aDGuwFgkjSYulx/cBK02OOOUYcfvjhcmHAAQccEEtdVMmLKkeHfkLyY2P7mFRnHXRNWoc4y6OdJWlgY/uYVGcddKWdLS5TxURfVDmq9AjCDz9WiLeWrpCfsacoQCRoIaeoGxzXsG6lWFuxUf4ejtH/LlkhVvy0XkaWEj2BU+Dcc88NdGzTpk1Fq1atZOTiDjvskHgKQ+w/6nZOwKlUaPLfuX7gDITjKGjkoUqiXMNI8aqiPJwjB5yHUh0mcMjmkx3EqVqKroXSqxaT42Q3dAgSTAOnmgNSo4Z1JEFPxzmJfgnnZDGHYJplJ0Wh9i+G037F+sntt9+e+4yU3qXWfb/99ss5Rp3z6AWRz27CpuQOul1dWLuB+juLKZYvX57IopUkxymFyid6kWnHqHNTxCAIEX5JO0Ud5ywiCPEipRnhfIMDxzEZd8Qoync7RZ2UuUHA/ovof3BuIh0DPpca9YkUuvgNU+j+H7iBYRNw57PO6KBr0jqgDKx+xwtprvEweN999+VWZpUCUuhgDwtcczfffLN8sFVZF1XnJqocHfoJyY+N7WNSnW21s3GVp1o27SwJgo3tY1KdddCVdra4TB3kJNk//vHBd2LT5kqxftOW3J6iDeqWNrWF43+s2Ch/DznYZeof//utOOuQcNuDkPjZddddA+8LiuCINCehMckPB5I7yg5OkXz7TzrXD/ZDjeJ4Susadjs04fAIWx7q7XaYdOjQQaYpDZpuFPMHcKCHqYuzB2ZQXd16Ar/ovXxymjVrVuX7YtGxSIXqjjSEgyws3jSwmLPBnpI6lp0khdrfD3f7OxnTCvU7RN26+0sYh7A3ihNt4+53uA7d/x/G+ZqU3UC6cOd8LFiwoOTUzGFIe8yddvnEQseoexUOIvnSonPnzvIde1CSYDjOSDiW4RjEOUQUJtoR3yGSLG7HKByTjh5Y0duvX7+Sfg9HKnQGiPyEgyeokxPOVJSNVLxEVEnBEmUll226Jq2DtzykDLr00kvlwpRnn302lExc508//bTo27evuPbaa0WLFi1i0TUtOTr0E5IfG9vHpDrroGvadlZn2bSzJAg2to9JddZBV9rZ/GABOGSmLUeVHkGZ+/nWeRVnX9F6tWvKNLmlgOO3qV1T/Lxhs0zFW6e8tpjz+Uo6RjNC0n3SDzy/uh2jcIz4OUbdumJR8eWXX56onl4dwlDqXGeh8uA8c5w7cMjB0Yk9LZGdqpjzBP//0UcfiTB4oziD6FqKMzjKOZ4yZUqVv52sWmHwOt3zRR7qUHaS5Gv/oBRrX+95dPwEpQDHvxts3ed2jGKfW2964KzbWZN0Tbt84k+m3dVuJ5TffpBJkWbZpoIVfnhh5RRScjrRmkmdS6TBxcsBjp1SgRPXvZ8tHK1BgEMUEcZI20uI6eBBBivZXnvtNXHwwQeHkoH9SbCfDCKv//73v1dZaUcIIYQQQgixh7XrNsr3TZu3ZqWpVytcSuK6v/4OUaNb5f7fnoiERAX7hLodZnDyFdpTcf78+eLLL79MfH9RFbhT6SISLArutK0OmAvAvAIcPUcffbQ8RvX+lN4ozlKIWudiYC4lTJrTQvvuusF8jY5lJ0mU9g+Ct786GS5LwbswwJvC2ut8jRLdGzcNGzbMfQ6znzAhqsi0Y1Q3h2SQvPFEDxDh6e5HQVPoFtpnAPuVBtkfFQ5URKe6naqEmM5hhx0mB4NPPfWU2GOPPULJ+Pnnn8V1110n2rZtK+666y6xcePWSRFCCCGEEEKIHVRs3OrI3FK59e8aJUaLOtT4dd/Jyl/lVGzk/l9ELaeffnqVv/EMm4877rijWqpRG4HzBxmj/IBzGVGGSMGK+QVEgSFVKKJxo5JG+uKguFPZAuydq8op5UQe6lh2ksTZ/khx67e4H9+X+irkY/jiiy+09okQoiOZdoxiTzrs9Yic9C1bttRCD6I/XgdmlDTMXocqIl+LpQ3FwKDYcbayYcMGMXr0aPnCZ53RQdekdShWHh5cjj/+ePHhhx/KPr7DDjuEKmfZsmXioosukqtGp06dKqPLVeualBwd+gnJj43tY1KdddBVNzurk2zaWRIEG9vHpDrroCvtbH4wBsZCQbzCjIdVyVGlR1Dq1to6jeX4Q7c4HtIS2fKrrr/6R3MRpMR8ku6T+UD6Vzfu/f+8uk6ePFlceOGFCWqX3vkqVh7Sg8I5GiRFLdIVn3POOWLvvfeWUbeq6xKHnS0F1CluvJGHOpRtGoX6yfLly6sdjz6LKNVSX4Ucn85epw5NmzYVNthZU3TVfcxvK5l2jIKuXbvKV9roogcpjtcp2aVLl9CyvHuKYu/QfGC1D/ahYArdwvzyyy/yZQI66Jq0DkHKQ259REUvWrRIrvYM8sDjB36PqGzstfCf//wnFl2TkKNDPyH5sbF9TKqzDrrqaGd1kU07S4JgY/uYVGcddKWdLb4FTdpyVOkRhIb1asn38ppbp7PWhYz0dCJEa/0qp2E97v+VJZLsk4WiH7GY141fdONzzz0n08QecsghwsTz5XbArFmzRkl5cI7C0TNmzJhq59CPjz/+WB4HR6nqtk/Tzpa6f2sYli5dql3ZJpKvff3OI/qrc3zY1913310wujcJwl4bbidu1PTMJt0TiH5w5EeIB0SguYma0hbO0SVLllSJCvVLzYv0vdjwG8cWcqDmS5uAfPLeNBRwPmWJWrVqiYEDB+Y+64wOuiatQ6nl1a9fX1x55ZWyn950001yYBcmPe7s2bPFH/7wB7nfyIgRI8Rvf/tb5brGJUeHfkLyY2P7mFRnHXTV3c6mKdsWO4uxmyO/0DFE3+s4aUyqsw660s6KogsOdZCjSo8gdNqtifjk2x/FtnXKxc/rN4l1GzaLzVsqRc0SUuri+F82bHWM1q+zVffOu9FWZ4kk+2Qhzj33XHHZZZfl/p40aVK1fUTxHSLITDxfyArl/a33bxwTtrxBgwbJl7Mf5YsvviheeeUV6VjyA3MCixcvVhotp4udjYukHFO6la2atNsXAQd+KXt1r3NSaazTbh/dx/y2oqdVJiQl4JT0Ohy9UZ+lAseq2zGKtMp+jlEcg1f//v1DlTNq1KhqemfNMYoBdfPmzYUJ6KBr0jqELQ8pQW677Tbxl7/8RVx11VW+KYaC8Pzzz8s9R84880xx/fXXi1133VW5rqrl6NBPSH5sbB+T6qyDrqbY2TRk22Jn8ZCddj80GR2u46Qxqc466Eo7W1ien8MhaTmq9AjKsfvuIKbMxl5qNWS058bNW8SPFZtE422CTzrieMSN1K5ZQ9QpryHKa5aJY3+7Y6x6k+RIuk8W4qyzzqriGEVEI1KUIprUSSWKZ9iHH344NZ2jnC/8zr0ADI6ZGjVqxFIeokjxcoCjdPz48fL8ucu/5JJLxKOPPlqyfJW6qpKzxx57KI/k9KZcbdOmjXZlhwF7cH766ady39mkKdS+fudxwYIFORugCkSduxcMYIFAnES5NtyR5UksINXhnpB2+cTSVLqElMLMmTOrfRfVMeo18n5lOA7TUtImeFPuzp07t8r/x30TJEQ1uNbwAIO+HHZvX/T9Bx98ULRr105cfvnliaR/IYQQQgghhCTD9g3qioNabY0Ga1h361r/tRUbxS8bNgX6PY7D8aDBr78/uHVT0XTbOrHpTOwF0VBHHXVUle/uuOOO3Ofbb79d/n9SUVNxoNLBg4hPOLiCACcpFke//vrrVbbnwULroDJ0x69fRK2bN91xPudkmmWH4R//+IfsP7rhdx5XrVqlvBxvYEAcZajCHdnq3TuVkCShYzQh2rZtK2rWrCnuueeetFUhBYBzUjXeDbHd0aOkNDZv3iydZnjhs87ooGvSOqgqD1HWuBaRJmf//fcPJWP9+vVyPxIMtBFNvW7dulh0jSpHh35C8mNj+5hUZx10NdXOJiGbdpYEwcb2ManOOuhKO1t4QSDk4BV1f9AoclTpUQonddo5lwYXKXXBDz9tEKt/2SjT5PqB7/H/OA7gd04a3RM7bpVHskEafbIQAwYMqPL35MmTq+w5iqxhaeqq4ny5HZOIiA1THpxuiP6Eg6sUECGIiFs3n3zyibJ9QVXb2VLx7j27aNEiEQVvutVjjz1Wy7JNolg/8Z5HRIqrxhtc4I3OVU3Ya8PrXE9iUYgO9wTdx/y2QsdoQjhRS940rUQvvE5Lr1MzDH57G8ybNy+yXBvBjQSDZLx0v6nooGvSOqgur0ePHnLiCA+Ou+22WygZsLnYvxcRpHjodPRSpWtUOTr0E5IfG9vHpDrroKvpdjZO2bSzJAg2to9JddZBV9rZ4jJV2eyotjrJPrLPbxqJ3p23OjOb1K+dc44iEvSb1evEDz+tz+0/ivcVP62X3zuRojgevwOQA3kkWyTdJ4tFNrodh3AOIQ3sG2+8ISPo/vjHP6aua9TzhTSe7jShUcp76aWXQp3jU045Jff3f//7X6GKtO3siSeeWOVvzJGEBX3OzV577VXQMZVm2aZRqH295zFfJsGoabvdIG133ITp00h37O4DttwT0rbxxB86RhPCcYjGsSqExOcYVZHr3M+5yqjRcGCvCuTnx6vYvhVpo4OuSesQR3mQc9ppp4mPPvpInHHGGWLbbbcNJeerr74S55xzjoxA/ec//ynz+6vQNWqddegnJD82to9JddZB1yzY2bhkq5JHO5ttbGwfk+qsg660s8VlqrLZUW110n3k3ENbiiP23JqCD07OpvVryz1HEQvyy4bNYsXPG8Tyn9bL9583bJbf4/9xnOMU7da+hTjvsFaJ6k2SIc4+6Y16C8Lpp59e5W/sjXnXXXfJ79O4frxE1cGdxjNIVGGh8l577bVQOvTp0yeW/fzStrNeh1fY8wPeeuutKn+fe+652pbtpVigUdrz7YXaF+fRvTjC6yQuFaQMvuCCC6p8ByezNzI1ajlx9Gl3xKg3/W+cpG1n07bxxJ+ty+pIrCxdujT3mRGjepNU+6hwjNq4d2J5ebk4+eSThQnooGvSOsRZXv369cVDDz0kV9QiNe6tt95aLT1uED788EOZruXwww8XI0eOFAceeGCqddahn5D82Ng+JtVZB12zZGdVy1Ylj3Y229jYPibVWQddaWfzg4l/yExbjio9wpT7t65tRJNtaovp876WaXHxWr9pi/hp/SaxafMWgYx58I/AIYr/q1P+fxOTiBSFU5STldkjrT5ZiIsvvliMGzcu9zdSxsJR8vbbb6euq4rz1blzZ1knsHjx4kjlYVEzHDpIkVsK7ujD3XffXYlzVAc7i3pdddVV4sYbb8ydH6QrDrO363333Zf7vPPOO4tBgwZpWzbANRJ0IQL6nTtyOUmKtS/O4yWXXJI7j07UOCKdS8VJOY2to7xgruywww7L/Y3jSr2Ogi5uCNun58yZU8Vu2HJPSLt84g9HgAmAyXebnVkmO0VVpNL1izpVsZLJO9h031wIySqNGjUSN910k1i4cKE4//zzQ09kvPLKK+Kggw4SvXr1krIIIYQQQgghZoHJznMO2VWMOWlvcVjbpqK8Zpl0fiIqtEXDumKHRnXlOyJE8T3+/3e7by9u7bO/6Pv7NnSKkpJxop1KnX+BI8mbNhJOnDAOJh056qijcp/ff//9yPIcB1IpuJ/rwziDkmL58uUl/+aGG26QzkT336UCh+bHH3+c+/vOO+/Uvmy3o9P9+3xzuklGIJaK9zxeccUVoeRcc8010mHs51hGv3enlL799ttDleF2YquOxk3DMUpIPjLtrr7nnntSLR+Oq+nTp1eJDmTEqL4k6bQOEzE6ceLEXP+ZPXu27Ftu+vfvL2bMmCG6dOki/27durXo2bOnIo0J0Yvf/OY3YtKkSeJvf/ubGDZsmFxtFwZcR08//bTo27evuPbaa0WLFi2U60oIIYQQQgiJj/Y7NpSvlb9sEM9/+L2Y98UauZ9oxcYtom6tmqJhvXLRebcm4tjf7iiablsnbXVJCakWHdauXSt0AE4JJxILepayRyJSh1522WVV/i6VtNOF5sPtiPzggw8iy8P5LTVq1NmbFOlEi7XLF198UeXvUqMg3VGMyGqVxNwj6uc41x977DGZOriUiEP3/ODAgQNL+m1aZWNvTrdDtFA7Yf9uzOkEQWX7l4L7PKJeY8eODRQ564BrApHnftGiDo8++qhMeYzoXuh59dVXl+TMRoperxNapS8DWdwcwkTMEqKUygyz3XbbVdaoUSPVV1lZWZVX586d0z4tmWDkyJHYIqTKa9WqVZFkzp07t5rMjh07RtZ12rRp1eT27NmzZDmtW7eWv23cuHHRF47r1q1bZdwsW7asWt3wXVxs2LCh8tZbb5UvfNYZHXRNWoc4yysm+7XXXqs85JBDqvXHUl7169evvOaaayrXrl2bWJ116CckPza2j0l11kFXm+xsWvJoZ7ONje1jUp110NU2O7tu3brKefPmydeHH34oX/mO3bJli/w/vPA5LFHlqNKjVDZv3ly5fv36gi8cYzOo/08//VTlZcI5GThwoO/z2scff5xan1y+fHk1vXbeeefKp59+uiQ57t+H0XWvvfaqdl6uuuqq0PUKo0M+3M/jhdoqX3k4x97zi++CgPKc333wwQcF6+I+ttg59NP1/vvvr/b7Yv3ALcfbjxo0aFC0ns7vn3jiiSq/C3pNHHXUUbnfnXLKKZVhQB2TLtvbJ/L93tEtCKW0vx9+7f/6668HvoagK85f0L7j1hu/w/kMciyun1LLGDNmjDzez9apshuOTNiLpPDqindnjOWMuTD+ipOvv/460flzEoxM5w1BClNcc2m+kNrFeQFGjOpLkhGjYfoBIpDRp1atWlX0heMQPZoGzZs3r9Lvg7z+/ve/i82bN4sNGzaITZs2VZGH7/ByrimsxsNr/fr11Y7duHGjPHbLli257/AZ3+H/kjwW9XF0dermPRb6O8cWk+t3LM6Hc378jsW7o4MjN9+x+eRuHbdsxalHvmNRhlOeWwc3heRGaXvsFfryyy+LJ554Quy5554iDD///LO4/vrrRdu2bcVdd92Va4dCbe/Wy30e/I5V2U+KtX3Sx5banmkdW+q1jL7mtA/kJ21P4rYRfsd666zSRqhuT6+uhY71O+8q+gm+8+oQZz/xq3NabV9MrvueEOS852t7vzon2U/SGkfoaiNUjyNU9ZM47g9x9RP3vd+tW5L9JGh7esdfquR6jy3URl4d4h5HuMtTfS2X0vbu/3fjnmtw/+33G++x+b7zygl6rJ/cYvp6vyumW6FjgxKmHlk5Nuz5SVJfREwdffTRMjIQr4YNG1bZi9MNIq2QWhPH4Td4OdGlcVwbyEqEslBms2bNqumFiKzjjz9ezmnsvffe8thicp00l0g9m09X5/Opp56aOzeQj3L80oki7SzOm/u8PPDAA4HbqNDnUs7ZEUcckfu/f/7znwWPLVYe2hppUTt06CCj+QrpgP/v0aOH/Pv+++8X7dq1qyIbfcQ5LziP3pTGzjl09y20vSPjzTffFH/+85/l3o045pxzzqn2e/QD9++hk6Mr2uKPf/yjOPzww2VmN28/QlQf+pfTh/D7fG107LHHyj6AlKz4HeritLXf+YEekOvs/4r9QhFRGOZaxjnIV7afDG/ZV155pSy7UHne75w9Th0QrYqoSfexaN+LLrpIRqL6yYjS/nihPOc6zNf+6BtoW7Qx2trd/t7zg/OIvYWdtLroO4jSLHTNIeoTekOHf/3rX0WvT0S/vvvuu7m6ogzY2kLnHfYGEe3IqHbkkUdWs3U4d9ADbe5kbPO7jgu1p7u//OEPf1ByLykmo5Cdcf9/EvNWRD8ynUoXRgkpS1VsuF0KzgXhVy73GLUPFfuU2gDSA7/44oti3333leky3Dnxf/nlFznIwaAI+0p+8skn8qa+xx57iJNPPjl3LJxZmGjAMUi16qRpeOqpp6Q9OOOMM3LHIg0r9nY466yzRMuWLeV3CxYsEFOmTJGDHXdaG9y8v/nmG/kQg0E2WLp0qZg8ebJMvTpgwIDcsY888oj4/PPPxUknnST1AN9//72UgcUaF198ce7YqVOnyn0wkD5i//33l98tW7ZMTJgwQe4ZgDSxDqgDBqEYkB1wwAE5e4K9GerUqSOGDh1aJYUI9vXo2rVrTod169bJc4l9dDCYccA5R45/DOD+53/+R36HSSdnb2QMQmvWrCk/z5o1S/z3v/8VBx98cO7BAxM4w4cPl58vv/zyXHlvvfWWePXVV+WeAcccc0yuPMjFby699FL58OYcO3PmTLHffvvJAZvDLbfcInXBIHe77baTsp10IxjgYX9QhzvuuEMOzpFSGql78ECEPRv80jAVA22AMm+99VY5WENfQt9p06ZNbiN6DMh32mkncd555+Xq/Pjjj8sBI9LKOM5ZpGh58MEH5YMOBrsOOBb3J9TX+T10vffee+U+qn/961+rpPv99NNP5UNQp06d5Hfou3ig2mabbeR5d3j22Wdl/TGQxR6qANcE2r5WrVpV9rHAgBqDZdTx97//vfwO15qTlsWdhgbtg8E7BvzoV84kntP2SGdcu3Zt+fk///mPeP3116Wz2r3XjHMsBtv169eXn/GQ8e9//1s+8OIBwQE6QP4ll1ySs6FBbAQWZoD33ntPXgcqbAQebNDW5eXlSm0E0gnh4QKg36DPJm0junXrlktPhesHfR42wumTqPPzzz+vzEYMGTJE1K1bV35Geh/s9RvFRjh708AWQFcwd+5cqXMhG7HDDjvI73Ct4KFu9913lw+CDuPHj5fnDg+9zj41eLjFtbjbbruJs88+O3fsww8/LN/R1x0d3DYCabrdx3755Zcl2YgTTjhB/Pa3v5Xfffvtt3KbiG233Vb2a6c8lTbC3fboJ1FshN8DaVgbgWv5d7/7Xa7OpdgIZ/IJ92Xn9yptRFzjCJ1thMpxhHt/P7fTTIWNcI8jmjZtmoqNwH0d48DTTz89N45A+wKMa50+qdJGqBxHQD/og379//7f/0tlHAEdcE2ibhgDxj2OQHnQEzqg/d17dUW1Ec52Kk45fjbC6VN+k3cAE234P/we8w14x9+oL/6GLXdfU7hecA061yGOhQzvsfgb/+cc7+A4fJ32yScXekAuji92rFuun76wC+7z43csjnPbjEI4x5Yi13us97yXemy+8x7Xse7z7gXHF2ujIHLD9BO/Y7EAHI4T3Lcc3J+94BqEnXJSWeI6gz31tifOE8rH92HbHvc3OMWgTyGdgOOwhOxC/eTCCy+U99nRo0fnjnXK8553Jx2mU3YxHZwUtjg3jr33k+vXRvl0KKU9ca909gbFPR/36nzXvVOeX19FPXHfwL0b91Tcs3E/QJ06duwox28INnDu/+g/cDLBbiONrmPLnLZHH3H3sXzn0d23MP5wHJSw3aX+HmM7jPlQP9z/gvweYwC83Gla3de9c85Qf1w31113nbj55pvleARjM9znsbUWxov4/yeffFL2X4CxF8YkTrrYsNc9fg8dMb676aabcmX/6U9/kuNLjEHwLATnmlM22gRjJ+jtJqiNQBpY6IbyAO7RuGejPIyDH3roIbHPPvuIu+++2/eaC9P+6Gdof5wHlBH093g540mM+/LdH3AucB5x7nDNYEyG5wK0IcbImP/Cc8W8efPkmA9lYmyDa8rvfu93f0A/wDjN6ScYP2HvUFxTOHc452ird955R5aPPoL641z6bVUFG+fYOeiDtN7uugVpTyfdNcD4MuyYI+w4wv2d+zfu7+N61kA/JfpRbpNDKt/DhUpggGD88pVFJxkh4cHNDZMQ3333ndAd2AJnwsS7f0EaOiSxJ4vTPgCDxzhkf/3110WPxaAGzggM6DBgx4C8oqKi5DLxMIEXnBuIInUmNP30AmEW4bjbKEjdSPJgMtppI1swrb5wLLmdK2mACbmkdMADYVxtpFKu+3xEPTdw3kTVDY6ItPsJibefmIIzXsCkj+51hn6OozhNHZK8L6E855ld9QJrp72xGEFF2zvZd9yRplHkhJ0vSXohOskWcGZg4YWfk8Y98e30M0xi+zmkVfZpBzhksKeo43Bwrtt8OjgZhQqBBUd4Nncf68j1XstwnLjlunXAsX5OLPexpZBPh1KA0wxOMDx/O1GCfriz6rnLw3gaDhc4FRwnAxaMOXskYqGQ4xzDcXDCYeEcskbBoeT0E2/bQy/nbydqK0ifco6FI8mJEizW9t5+4iy+ckeJltKehdoImddwPrC4BguY4HDH+YJjDo5iLLRBlKaz4Cqf3DAg0xauDTjzpk2bJp577jn52V025mLgLEfZ3qwKpYK6oh6wF1iAj7JwTlHWmWeemXPI++G0f5i2d9ofr1LbPsjiHfRr1A19G+cRiyHQjs55xGJLODOd/hfm+nT3Eyzagr11FlxAPpx9KBfOUu/9HDrAOYhxEd7hsMV1h8VgoNSxDMoBcBp6HeVJ4LY9hIAy5NPN6qnAyudRo0blbor9+vWT0QqtWrVSIh8rQbBaGKuHkLYUKzmwggCGAqte3ZuqE7WgXdGWbpBCNorjGW3XvXv3Kt9hlRBWe0QBq7Tdq0QAVuCnlepWJVh55URoRQEryjHYLTQgCTJ4CfvAkNax+M77AFjKse6HRfeKKpXH+p33KA+sYQajYdveORZ2esSIEXIQHWVAjhWDkAOHa9r9JIm2j9pPkmp72gj92t40G5HFfkIbkZyNwCphZ6zoRCgA94pmRHPCuUsbQRuRxrG0EWaNI6CPk4IPDlSAqCPnePf0jTtq0PudKccWk1HoWCe6qRDu6Bld6pzksXhH5iA39erVqzKZrZO++Y7VWTceWxU4eBwnDqIG3dH8SduIuOvMY/U5VmfdeOxWsGAC0b4AmXCQUUOF3GIy/I7FuAsRuQDPcvgODnRkt4prDInMIN6Ffsj0g4X4JD0yHTHqrDACCGPPt09BWLBKAi84Wp2UQHCWIn0VwtQnTpwoPyO9ENEfpBkg6eFNi+DgnlTBZALSVQE4p7yrk/xWwOEYt4ykjoWu//u//5vT1e9Yv1Wc+eT6HYsbb6Fjw+qQT65fG7mPRXlO+p585QWVq6LtHbmIdLjtttvEX/7yF+mAd+9rUQpYuYqVr0iThpV9WAVZTK+4+kmxtk/z2CDtmdaxpV7Lfu2bpD2J20b4HevtkyptRLFjQSnHQjdv+5TS9ir6CX7v1SHOfuJXZx3a3u9YPIQi9b0jz3lYLLXt8bsg12Fc/aRYGyGVG1K+FgKror2L90y1EVGO9TvvqvpJHPcHlf3Ei7vOztghyXtJ0Pb03gdVyS10rPe8e3VwT5bF0U9Q3kcffZQrL622d9cz3/fuxRiQ5f2Nnwy/77xyStGh0O9L0SHMsX5OmaBy49ZNl2ODnCOd9A17bFzXRhLHQlcnssxPV911cBZ8OCBCEM/diHhD+lQsLnYvEAnbPkHrprrti8kLKjdqnXXoJyYfG3d5qvqJSceW2iexHQFApKp724kk9C1lnBLXs4bfdyR9Mu0YdUK7gTdiLy7gKB08eLB8IaIRkYFwkGIfOkJsIM4VLxhwYw8fgHQcfjchXdBB16R1iLM8FbJxT0BqmUGDBsn9tF5++eWSZWBAhb0BkKoG+7xBVhS9dOgnJD82to9JddZBV9rZ+OVFlaNDPyH5sbF9TKqzDrrSzhbGPSmZphxVehCiCpP6pA66qtQBzlEEiWBRMfYhxLYXcZYXt2zaWRIEG9unlDo/9thj8h37v9vYPsUyXJB0yLRj1L0y2+0kTQps2IuNr3v37i3/pnPUPBAFEAfcazYcWMnjXMv5Vgjpgg66Jq1DnOWplI0U2XhIw54XcHB+/vnnJctAuo0xY8aIe+65Rxx55JEyDXcYvXToJyQ/NraPSXXWQVfa2fjlRZWjQz8h+bGxfUyqsw660s4WRtUEX1Q5Nk0EEzMwqU/qoKtKHbBVErI0IWr0zjvvlNmW4iwvbtm0syQINrZP0DqPHTs29zktx2ja7aP7mN9WMr3H6NKlS0WbNm1k58P+k9goOA2wxyQ2icYepNjUmOi5xyj2ikV/cYMH18WLF4soIGIYqZzdIKIYjvMs7jHKHOnEJJBOAyvX4CT97LPPQsvBpvTXX3+9OPPMM5kigxBCLALjnmLbdQwcOFDJnuyEkOxTUVEh9xgFTkSpe49R8n94U3j64U3haeM5KrbHKCFxXIfXXXed3GIMaTMRcMA+R4i9wB+DhRKYd/NbKJE07j1GnX1CnT1G44Lz53pSI+t7Rp500knylZZTFPTs2VOcf/758kX0JcmoYvf+t4SQ9MAD2mmnnSb3e7r11ltDX5tfffWVOPfcc8X+++8v/vnPfwbe84gQQgghhBBCCMkSiBrF4mE4Qy688MK01SGEpMTVV18t7cBee+2lhVOUEGsco9jvc9q0aWLq1KlpqyKjA+fOnSvef//9tFUhBfBGnK5cuTKWdLxMpUuIXtSpU0f89a9/lRHiV1xxhVxJHYYPP/xQHHvsseJ//ud/xNtvv61cT0IIIYQQQgghRHcmT54s38ePHy9++OGHtNUhhCQMrvvbb789l02REN3ItGNUJ+AIQ+QoBgRE7yhj1XuMYrN5L507d44s10aQ7uDuu++WL3zWGR10TVqHOMtTLTufPCyouemmm8SiRYtE3759Q6f8efXVV8VBBx0k7b6ToqMUPYge2Ng+JtVZB11pZ+OXF1WODv2E5MfG9jGpzjroSjubH2QogRy8omQriSpHlR6EqMKkPqmDrnHpcPDBB8tFx+C4446Lvbw4ZNPOkiDY2D5B6nzGGWfIaFFsK3LooYcKm9tH9zG/rdAxmiBdunQRc+bMSVsNUoCOHTsql+nnXE0ybW+WwA0Mednx0n2woYOuSesQZ3mqZReTt9NOO8kVbYgAdT/ElcoTTzwhU4ZccMEF4rvvvitZD5IuNraPSXXWQVfa2fjlRZWjQz8h+bGxfUyqsw660s4Wl6nKZke11br3Z2IXJvVJHXSNSwek1D3kkEPEm2++KcaOHRt7eXHIpp0lQbCxfQrV+YEHHhAvvPCCvP6xIMz29rGtb5hCWSVbJjEwQd6vXz/fCEJSGqNGjRJDhgyp8t2qVasip6iNQ26vXr3E9OnTqzhFka4zCyS9efSWLVvEF198IT/vuuuuoaP5kkAHXZPWIc7yVMsuVd4bb7whBg8eLB/owlK/fn0xaNAgcdlll4kGDRqE0oMki43tY1KdddCVdjZ+eVHlxN1GGPeMGzeu4DFYJe0dLxF9ruOkManOOuhqm52tqKgQ8+fPl59r164t39u1aydq1apVcJKvrKxMvsIQVY4qPcKcz02bNhU8pry8XOtrLIlztG7duirfYcuQrJ+TtPqkqbpG0SGIswFbVHXo0EF89dVX4vXXX5eOkrjqrPp82m5nSTBsbJ9CdcY45sADD5QZ2b788kuhm64YOziZ3TZs2CDf27dvL+rWrRubDt9//73YYYcdEps/J8EoD3gcUYSK1KwkPrp161btuyVLlkSKJMXv3TBaNDx4gGvZsqUwAR10TVqHOMtTLbtUeUj7gYe4Z599VgwdOlR88sknJZf5888/i+uvv15OoF9zzTVyoQwmvNLuJ0Tv6zhpTKqzDrrSzsYvL6ocHfoJyY+N7WNSnXXQlXY2P6omX6PKsWUSmJiDSX1SB12j6BDkt9tvv71499135VzY0UcfLefI8J0J55N2lgTBxvbJV2fsK9qjRw/5+aWXXhI6oEP7ZH1BkqmwVRLE6yAj+uHnAI2a/tjb7oggJYSYBwZSSKv7wQcfyDS7O+64Y+hI64svvlim2J0yZQpTahBCCCGEEEIIySxwhL799tsyggzRo3CeEEKyx+GHHy7WrFkjr3dEYRKiM3SMJgjSp0ZN9Urip2fPnlX+jpL2FhHC3ijh3r17h5ZnO0gFhEg9vPBZZ3TQNWkd4ixPtewo8pCSq2/fvmLhwoXixhtvFNtuu20oHWBbTj75ZPHb3/5WPPjgg9r3aRvR4TpOGpPqrIOutLPxy4sqR4d+QvJjY/uYVGcddKWdzQ8W10EOXlH3rYsiR5UehKjCpD6pg65J6QAnCSJHkUocC47jKE91XWhnSRBsbB+/OiMi3AkQ0skpqkP76D7mtxU6RhNk6tSponPnzmmrQYowbNiwKn/PnDkztCzvb+F0pXM8PMgDjwg7vIrtJ5M2OuiatA5xlqdatgp52DP08ssvl3vHHXTQQb57PwXhww8/FGeffbYcRP7v//5vKBkku9dx0phUZx10pZ2NX15UOTr0E5IfG9vHpDrroCvtbHGZqmx2VFute38mdmFSn9RB16R0QOQotqiZPn16bOWprgvtLAmCje3jrfPDDz8sPvroo9hSZZvcPrb1DVPgHqMJMWnSJBk5GGWvSpIMaCO85s2bJ/923sMwY8aMKn/3798/sn62pzLdZZddcp91Rgddk9YhzvJUy1YlD7/dc8895QtRn9ddd5149NFHQ8nC/guwGWeccYbci3S33XYLrRfJznWcNCbVWQddaWfjlxdVjg79hOTHxvYxqc466Eo7W1ymDnJ078vEPkzqkzromrQOcTpO4rDdOsjRoZ+Q/NjYPt466+gQ1aV90i6f+FNWaUuMd4q8/PLLolu3bvIiwKT3EUcckbZKxjNq1CgxZMiQamkpsZm7CrB6zb0X6IQJE0S/fv0iGT44W+fOnSuyBPZKbN68eZXvli1bJpo1a5aaToSkDdIDwT55F0aUQp06dcRFF10krrjiCtGkSROl+hFCCFEHxj3jxo0reAwyC3jHS4QQ4kdFRYWYP3++/Fy7dm353q5du9CZSbIM0tIVi8DAFhg1atSw+hytW7euynf16tWz+pwQQgixm40bN4oFCxbIzxs2bJDvSP1bt27d2Mrk/LmecDQUs0O0T58+onv37vJvOO3oFFXDihUrYpWPlLfu6N6RI0eGct66mTZtmhLdCCF606FDBxn9iRc+h2H9+vVi7Nix8r4B++Od0CCEEEIIIYQQQgghhBBSOplOpXvkkUeKlStXJlom0uWiTLw7ICgXkYOIOiRq8Etvi+9URYw6jsxOnTrJtsTG0XB0Dh48ONBv8Rt3RCscGyp1I4ToDxbFdO3aVTz++OPiyiuvFJ999lnJMtasWSOGDh0q7rzzTple98wzzxQ1a9aMRV9CCCGEEEIIIYQQQgjJOpl2jM6ePVtOKqeZLRgOUbyQhpXRotGB8xMO5pkzZ1b7v759+0qnNNIWq3BCQsasWbOkcxTA0YnvEE1aCDhF4QxxO0WDOlRJ8XQHDzzwgPx89tlna51SSgddk9YhzvJUy1Ylr5gcpKk69dRTxUknnSTGjx8vbrjhhlAR71999ZU499xzZRTpiBEjxDHHHMM9Ciy5jpPGpDrroCvtbPzyosrRoZ+Q/NjYPibVWQddaWfzg3kOJ5UsUsaGHRtGlaNKD0JUYVKf1EHXpHWIszzVsmlnSRBsbB+T6uzVNQ0wBiT6kWnHKJxYcKTh4nSco0leqCgTr/79+xfde4hUBU7IiRMn5v52R+DmA8fgXLtp3Lhx7jOcnO70uEFw9gXFfqOIGsV7IUcn+ptzLKBTVC24nr755pvcZ53RQdekdYizPNWyVckLKgd7hl5yySVyEmz06NHilltuCZUe96OPPhJ/+tOfxO9//3tpXw466KDQuhMzruOkManOOuhKOxu/vKhydOgnJD82to9JddZBV9rZ4jJ1kKN7Xyb2YVKf1EHXpHWIs7w4bLcOcnToJyQ/NraPSXVOW9e0yyf+lFVmuGV69OghIwvdztAkqwun2qRJk0LvMWe7YxSpa92OzbA4TlU4OEt1jPo5ayEPevXu3TsXTbp48WLZ15wUv4gqtSF9btKbR2/ZskUsWrRIfm7btq2MxtMVHXRNWoc4y1MtW5W8sHIwKfb3v/9d3HvvvVJGWBCJevPNN4t27dqFlkH0vo6TxqQ666Ar7Wz88qLKibuNMO4ptgBy4MCB1cZLRJ/rOGlMqrMOutpmZysqKsT8+fPl59q1a8t3jPP8okudhdjuTFVhiCpHlR5hzqcTAZIPRIbofI0lcY68izHr1auX+XOSVp80VdekdYizPNWybbezJBg2to9JdfbqirHDggUL5N8bNmyQ7+3btxd169aNTYfvv/9e7LDDDonNn5NgZNoxOmDAAOnIci5OVBWOMZXOqiZNmuQ+t2nTRjrMIN+dSpVki+nTp4spU6bIqFC8HEcp2h1pfPv06RPJAWsSSTtGCckamPi64oorxNNPPx1aBvYcRSrxa6+9ttpAixBCSLzQMUoIUUkpjlHboWO0OLY6RgkhhJBCaW2Tdoxy/lxPMp1K14k2hEMUzlFEDDJ6k0QF0aDF9hklhJAgYPD11FNPiTfeeEOm3X7zzTdLlrF582a5f+lDDz0kBg0aJC6//HLRoEGDWPQlhBBCCCGEEEIIIYQQk8n0MjFEcAI4RZHWlE5RQsxf8Yq0xXhFST9qi65J6xBneaplq5IXVY7ze0R6vvrqqzJydM899wylyy+//CJuuOEGee+78847cyvfiNnXcdKYVGcddKWdNcfOmtCnbcTG9jGpzjroSjubHywAhxy8ou7lHEWOKj0IUYVJfVIHXaPogN/gubPQy2vv4qyzatm0syQINraPSXXWQVfdx/y2kmnHqDvNLVKcEkLMBqmSJk+eLF/F0ialjQ66Jq1DnOWplq1KXlQ57t8j8vO4444TH3zwgdyfeqeddgqdouPiiy8We+21l0z7zQGY2ddx0phUZx10pZ01y87q3qdtxMb2ManOOuhKO1tcpiqbHdVW696fiV2Y1Cd10DVpHeIsT7Vs2lkSBBvbx6Q6p62rKefJNjKdSte9l6jKfUUJIemA6O8WLVrkPuuMDromrUOc5amWrUpeVDl+v8deSOeff7449dRTxW233SYzHqxdu7Zk2YhGOPnkk8WYMWOkjCOOOKJkGbajw3WcNCbVWQddaWfNtLNEH2xsH5PqrIOutLPFZeogR/e+TOzDpD6pg65J6xBneXHYbh3k6NBPSH5sbB+T6py2rmmXT/wpq9Q93jkCS5culSkF0flWrVolGjZsmLZKhGQKbh5NSPz88MMP4qabbhJ33XWX3CQ+LEcddZQYMWKE2G+//ZTqRwghNoNxz7hx4woeM3DgwGrjJUII8aOiokLMnz9ffq5du7Z8b9eunahVq1bKmukHsqIUi8DAgsMaNTKdKK3oOVq3bl2V7+rVq2f1OSFq4XVICDENzKstWLBAfna2oGrfvr2oW7dubGVy/lxPMn1natWqlZgxY4Z46aWX6BQlhBBiJNtvv7249dZbxaeffipOO+200HJeeOEFudf2mWeeKT7//HOlOhJCCCGEEEIIIYQQQogJZNoxCrp27SpfhBBCiOmLfbAn1bx580SPHj1CyUCSiIcfflhGHlx22WVixYoVyvUkhBBCCCGEEEIIIYQQXcm8Y5QQkq10Bw888IB8RUkpaouuSesQZ3mqZauSF1VOmN8j6vPFF1+UGRHwOQxIFzJ27FiZbh77j3pTbBF9ruOkManOOuhKO5tNO0uSw8b2ManOOuhKO1t4wRvk4BVlh6SoclTpQYgqTOqTOuiatA5xlqdaNu0sCYKN7WNSnXXQVfcxv62Up60AIYQEBTcwJwWoCTfetHVNWoc4y1MtW5W8qHKi/L5bt25izpw5YsqUKeLKK6+U+2qXypo1a8TQoUPFHXfcIa6//npx1llniZo1a5YsJ6vocB0njUl11kFX2tls21kSPza2j0l11kFX2tniMnWQo3tfJvZhUp/UQdekdYizvDhstw5ydOgnJD82to9JdU5b17TLJ/6UVbJlCCGGbB69ZcsWMX/+/NzG2DVq6Bv0roOuSesQZ3mqZauSF1WOKj3Wr18vxo8fL2644YZI6XH33ntvMXz4cHHssceKsrIyYTs6XMdJY1KdddCVdtYeO5uPiooKsXjx4oLHIDq/bt26SsvNCjpcx0ljUp110NU2Owub4hxTu3Zt+Y4tEGrVqlXtWEzlONM5GLeFHbtFlaNKj1Jxl5uPJPXREfQ5b2aYevXqaW13VJBWnzRV1yg6hLkO46yzatm221kSDBvbx6Q6e3XdtGmTWLBgQS6bmjMui/N57fvvvxc77LBDYvPnJBh0jBJCjHGMEkKKR4COHj1a3HLLLZHS4/7ud78To0aNEgcddJBS/QghhBBCSH5KcYwSUgxbHaOEEEJIobS2STtGOX+uJxwNEUIIIRmhUaNG4sYbbxSLFi0S/fr1C50W97XXXhMHH3ywOOmkk8Snn36qXE9CCCGEEEIIIYQQQghJAzpGCSFGrXj94osv5AufdUYHXZPWIc7yVMtWJS+qnLjO2U477SQmTJggPvzwQ3H88ceHlvPkk0/K9LoDBw4U3377rbANHa7jpDGpzjroSjtrr50larCxfUyqsw660s7mB8m/IAevqHs5R5GjSg9CVGFSn9RB16R1iLM81bJpZ0kQbGwfk+qsg666j/lthY5RQogxIA/8/fffL1/4rDM66Jq0DnGWp1q2KnlR5cTdRnvuuad46qmnxBtvvCEOPfTQUDI2b94s9y9t27atuOaaa8TatWuFLehwHSeNSXXWQVfa2fjl6W5nSTRsbB+T6qyDrrSzxWWqstlRbbXu/ZnYhUl9Ugddk9YhzvJUy6adJUGwsX1MqnPauppynmyjPG0FCCEkKNgku0mTJrnPOqODrknrEGd5qmWrkhdVTlJtdMghh8j0uM8++6wYOnSo+OSTT0qW8csvv4gbbrhBOkmvvvpq0b9//9zeV1lFh+s4aUyqsw660s7GL88UO0vCYWP7mFRnHXSlnS0uUwc5uvdlYh8m9UkddE1ahzjLi8N26yBHh35C8mNj+5hU57R1Tbt84k9Zpe7xzoQQbeHm0YSYB1aqPfDAA+Laa68V33zzTWg5bdq0ETfddJPo1auXqFGDCSgIIYQQQqJSUVEh5s+fLz87C9DatWsnatWqlbJmxESQum/dunVVvqtXrx7H7oQQQqxl48aNYsGCBfLzhg0b5Hv79u1F3bp1YyuT8+d6wtEQIYQQYhHl5eXi/PPPFwsXLhQ333yzaNiwYSg5ixcvFieffLI44IADxMsvv6xcT0IIIYQQQgghhBBCCFENHaOEEEKIhWyzzTZi2LBh0sF56aWXhk6LO3fuXNG1a1dx1FFHiffff1+5noQQQgghhBBCCCGEEKIKOkYJIUalAH300UflS/eNq3XQNWkd4ixPtWxV8qLK0aGfbL/99uKWW24Rn376qTjttNNCy3nxxRdFhw4dxJlnnik+//xzkQV0aJ+kManOOuhKOxu/vCzYWZIfG9vHpDrroCvtbH6wKxLk4BVlh6SoclTpQYgqTOqTOuiatA5xlqdaNu0sCYKN7WNSnXXQVfcxv62Up60AIYSUskcK0n86n3VGB12T1iHO8lTLViUvqhwd+olDy5YtxeTJk8WgQYPE0KFDxUsvvVSyDAwyH374YTFlyhRx0UUXiSuuuEI0bdpUmIpO7ZMUJtVZB11pZ+OXlyU7S6pjY/uYVGcddKWdLS4T1KxZM1U5qvQgRBUm9UkddE1ahzjLUy2bdpYEwcb2ManOaeuq+5jfVugYJYQYA25gxx13XO6zzuiga9I6xFmeatmq5EWVo0M/8YKoT0R/zpw5UwwZMkTMmzevZBnYwB5RqPfee690sl5yySWiXr16wjR0bJ+4ManOOuhKOxu/vCzaWWJ3+5hUZx10pZ0tLlMHObr3ZWIfJvVJHXRNWoc4y4vDdusgR4d+QvJjY/uYVOe0dU27fOJPWaXu8c6EEG1Zvny5aN68eZXvli1bJpo1a5aaToQQtavaEP155ZVXiqVLl4aW85vf/EZcd9114uyzz+aAkBBCCCEkDxUVFWL+/Pnys7P/e7t27UStWrVS1oyYOpZft25dle+wWLFGDX121brgggvEuHHjlMrceeedRcOGDcV+++0nevToIY499li5fYjuXH311eLGG28selyDBg3EkiVLEqnTLrvsIr766quix1111VXihhtuiF0fQgiJysaNG8WCBQtyi/pB+/btRd26dWMrk/PnesKIUUIIIYT4gkmTU045RZx44oliwoQJ8mH3hx9+KFnO119/Lc4//3wZRTpixAg5OVFWVhaLzoQQkrQTY/HixQWPadOmTawP2oQQYiNY419snT/Gmxxz6g3ukYcccoj8vHr1avHll1+KH3/8Ma9DcN9995Wf4fh0s3btWvl7vDuOvI8//lg89thj8jOeaeB4xOS3CrCA4Y477hDvv/+++OCDD3I6Q0c4Ew8//HBx2mmniUMPPTSwzM6dOwc6F/jummuuEXfffbeIk7Fjx+Z1ijr1bNy4ca4dCSGEEJNgxCghxJgVL1jxCvkA5eq00lVHXZPWIc7yVMtWJS+qHB36SSlgomH06NHSwfnLL7+ElvO73/1OjBw5Uhx88MFCZ0xrH9vqrIOutLPxy9PdzkJ2sUiXgQMHVhsvEX2u46Qxqc466GqbnS0lYtTtGIziAIwqR5UeYc7npk2bCh5TXl6u9TUWNyZEjAaNIt1rr73ERx99FOj36I9vvvmmmDx5snjkkUeqOBdxT47iUMT1+be//U288MILOUctIlPhGIQzc86cOfL/HODoHDVqVF4HabHrx4kiRf3h6HVA2Xg2U0E+HeD43GeffarUxxsdij62efPmgvKRMcjd5+K0Gapl225nSTBsbB+T6uzVFWOHpCNGv//+e7HDDjtU+Y4Ro+mj92iIEEJc4OaFqDW8ij0Ep40OuiatQ5zlqZatSl5UOTr0k1LAymw8BC9atEj069cvdFrc1157TU4SnHTSSeLTTz8VumJa+9hWZx10pZ2NX55tdtY2bGwfk+qsg660s8VlqrLZUW217v2ZmMP1119f7Ts4H0uhS5cu4vbbb5cpZ50oTACH69577x0qCw6clHBQfvHFF+L++++Xjsk33nhDOloHDRokn5Oef/55uYAcEaoADtrDDjtMHH300aGuH8cBiQw+cIY6wNn7zDPPlFyHoDqgXmvWrBF9+vTJq5PX6ZDvFaQ8laiWTTtLgmBj+5hU57R1NeU82QYdo4QQY8DKHjwM4KXzaiRddE1ahzjLUy1blbyocnToJ2HYcccd5aTehx9+KE444YTQcp588kk5MTFgwADx7bffCt0wtX1sqbMOutLOxi/PVjtrCza2j0l11kFX2tniMlXZ7Ki2Wvf+TMzBb+9MJ2VrqX2yadOm0snndo4i8rJDhw4lOUcRxYrIzTFjxsjI1bPPPrug/o8++mjOOQoQdYnnnkK6FuP000+v8vf48eOFKrw63HXXXdXKU0mcNkO1bNpZEgQb28ekOqetqynnyTaYSpcQEhpuHk0IcVZCDx48WE46hGWbbbaRaakuv/zyansGEUKIrjCVLiFEJaWk0rUdptLNbipdv0nkqClw4QT1zlMcddRRMsKzGHjGQdQnokQLOUSDlBmmHng2uuSSS8Spp54qI1bdxDWlizLffvtt+TrnnHPylsnrkBBiGhs3bkw8lS7nz/WEdyZCCCGERAIrsJEeF+mcMKAMA/YsxSps7M9zxx135AaohBBCCCGEEBIFRHG6IzidKM4HHnig6G/xjALgIETUZ9DFoCjTHakKii2mKgSes7yO0bFjxwrV4Jxgf9Gwz3WEEEKICdAxSgghhBAlq7r//Oc/i//93/8V99xzj9hpp51CycHK6r/85S/yQfzxxx+Xq5AJIYQQQgghJAp++2WOHj266O/cjlCk4S20X2iQvVGj7A167rnnVvn7vvvuE6qZNGlStXIIIYSQrEHHKCHEGJCiZdq0afKl+8bVOuiatA5xlqdatip5UeXo0E9Ug1RJ5513nli4cKEYPnx46LS4S5Yskau6DzjgADFr1iyRBllsnyzVWQddaWfjl0c7m21sbB+T6qyDrrSz+UE6S8jBK0o6zahyVOlBiCry9cnjjjuu2rFwdDrpq/Px448/Vvu72G8csMepl0WLFhXVNR+DBg0qWf9iuHXAIlVsk3LWWWdFkpmWzVAtm3aWBMHG9jGpzjroqvuY31boGCWEGAMixzDwx0v3KDIddE1ahzjLUy1blbyocnToJ3GBPUOHDh0qHZyXXnppbp+sUpk7d67o1q2b3APo/fffF0mS5fbJQp110JV2Nn55tLPZxsb2ManOOuhKO1tcpiqbHdVW696fiV2U0iexj2Yhdt5552rfqdwXrtTrB89FbrANiSodbrvtNikfaYDjJE6boVo27SwJgo3tY1Kd09bVlPNkG+VpK0AIIUGpWbNmLm0NPuuMDromrUOc5amWrUpeVDk69JO4wSrpW265RabHvfrqq8UjjzwSapXeiy++KF566SVx2mmniRtuuEG0bNkyFn1tax+T66yDrrSz8cujnc02NraPSXXWQVfa2eIydZCTRv+oUaNG6IV3JPvk65MNGjSoFgG6ePHigrLuvPNOcfzxx+f+vuqqqwI7Dv1kt23bNpCu+RgwYIDcH9Vh8uTJ4u677xZRcHR48MEHZX1L2U6lmP44Jl95cRCH7dZBju5jBtuxsX1MqnPauqZdPvGnrFL3eGdCiLYsX75cNG/evMp3y5YtU7p6khCSLd577z0ZSQpHZ1gwCXbRRReJK664wjc9FSGEJAXGPePGjSt4zMCBA6uNlwghxI+KiopcWkzH6deuXTtRq1atlDUjJoIIlXXr1lX5rl69etKprDteZxrupVGdfwDbfHgdo2PGjKmWotYLUsxir9FDDz20pGhKHI/UtG5KnYaFzpdccolcHOqwyy67iK+++ir399NPP+2bKrgUUD8s3li7dm3uuwceeECcc845kfQnhBCd2Lhxo1iwYIH8vGHDBvnevn17Ubdu3djK5Py5nug/GiKEEEJIZth///3lCueZM2eKjh07hpKBwSuiUNu0aSNGjBhRbcKHEEIIIYQQQrx4naJ+EZx+wBkKx2OpKWa9TlFvGtywnH322VX+Hj9+fGSZd911lzj99NMjyyGEEEJMgI5RQogxYGXiihUr5Ev3VYo66Jq0DnGWp1q2KnlR5ejQT9Kia9euYvbs2eKxxx4TrVq1CiVjzZo1YtiwYWL33XcX9957r/IN7W1sH5PqrIOutLPxy6OdzTY2to9JddZBV9rZwvLcr7TkqNKDEFXk65OI+vQjaqRloQhML0jDq+L6QQSpGyw8zVe/Yjhl47ns4osvDiVDF5uhWjbtLAmCje1jUp110FX3c2QrdIz+mtbvnnvukak5jjzySNGlSxeZmg8paz777LOiv3/33Xflb5DSL8jxhJDw6Q6w3wVe+KwzOuiatA5xlqdatip5UeXo0E/SBGm8Tj75ZPHJJ5+I22+/veQV2A5ff/21OP/888V+++0nnn32WWWDThvbx6Q666Ar7Wz88mhns42N7WNSnXXQlXa2uExVNjuqrdaiP/+0XIi3Jwgx/VwhHj5RiPv/uPUdf+P7n8M5joh5+PXJf/zjH9WOO+WUU2LTYfDgwdXKQmpdFdcPnpsOOeSQKt9hf9Cw3H///WKvvfYSe+65p0iCOG2Gatm0syQINraPSXVOW1dTzpNtlAtLgQNzwoQJYuLEiWL16tXV/h+Tqvje7/+8NG7cWL6Qzm/kyJGiV69e8n233XaLSXtC7KVOnTrCFHTQNWkd4ixPtWxV8qLK0aGfpA320PrLX/4iU0KNHj1apsn95ZdfSpbz8ccfyxXfhx12mBg1apQ4+OCDI+tmY/uYVGcddKWdjV8e7Wy2sbF9TKqzDrrSzpKifPOeEO8/JsRnrwuxxSeDyNqvhfj+IyHmPSREy8OE2O8UIXbaPw1NSYpMmjSp2ndXX311bNGi7jS6cGI++uijSsvo27dvlTJuu+22onul5mPs2LGhf0sIIYSYSFmlhbG8iAyFQxR4q+9s8I7v8Xnu3LlyP7SgKf1uvvlmOamL36KM8847L4YaEKIH3DyaEBIH3377rbjuuutkNofNmzeHlnPCCSeI4cOHiz322EOpfoQQ4h73jBs3ruizh3e8RAghflRUVIj58+fnFo4BZLKqVatWypppypYtQrx1lxDvTv6/7zatF2L9j0Js2ShE5RYhymoIUaOWEHUaCFHuckx3OF2Igy5EChORVbZs2SLWrVtX5bt69erJrC2648zNue+ld999dyRHJRZPeqMkvXt1qgApbTt06CC++uqr3L6izz//fGh5DRs2lKlzb7jhhqLn6fXXX/eNSi0EbA6iRf2mhx944AFxzjnnVPnOwmlkQkiGQPTmggUL5OcNGzbI9/bt24u6devGVibnz/VE/9GQ4pS5SJELh6WTVxqDCOcFouSbbtSokYwUXbVqlUzph9VbF1xwgeJaEEIIIdlmxx13FOPHjxcffvihdG6G5amnnhJ77723GDBggHS2EkIIIYSQDDlFX77+/5yi63/aGhn64zdCbPhRiE0VQmzesPUdf+N7/D+OA/gdfg85JNPA8Xf00UdX+W7MmDGxOEXhgHU7RZE+N4pTtBjeVMB33XVXyTLuuOOOWFMKE0IIITpijWN01qxZolOnTtJpCbyOULw6duwounXrJnr27Cn69esXuiw4SJGmF5O6eNE5SgghhJQO9rh58sknZYoo7wrvoCDiFPfktm3bylRZa9euVa4nIYQQQghJGESKfvqrwwl7h/6yfKsjVJQJUXtbIbZpJsS2Lba+4298j//Hcc5eo/g95JDMgojHAw88UPz444/y7wYNGshIURVpY+FwfeaZZ2QaWjxnIFITzyxwiiJKFNGbqtPnernwwguL7qNajMmTJ1eTQwghhGQdK/YYfffdd0X37t1zDlEnIhROUOwHivdWrVpV+52TbjcscK42adJE9O7dWzplmVaXkGhs2rQpN9A/9thjRXm5viZMB12T1iHO8lTLViUvqhwd+okJYK/QV199VZ6roUOHyr1ESwV7lt54441ywRImLhBF6qSoy4eN7WNSnXXQlXY2fnm0s9nGxvYxqc466Eo7mx/MazhbDtSsWbNaSs2k5KjSo+Q9RZ1IUTg5EREKx2fdhkLUaSREjZpVj6+zrRD1mgixfo0QFWt/PV4IUX/7rXJa/o57jmYApLBFukKkSHzhhRfEI488knOIAjgrH374YbH99ttHLgvO0Msuu8z3/5CWtnPnznI+MO7rB87YnXfeORehivrCGRw0GhaOXQR3wHkMG5XENRynzVAt22o7SwJjY/uYVGevrmkA+0r0w4qIUTg/3RfD4MGDZeToSy+9JNPd+jlFVYHo08svv1w6ST///PPYyiHEBrBHyvvvvy9f+KwzOuiatA5xlqdatip5UeXo0E9MAQPtP/3pT/JcYe/RnXbaKfSECfbowR4Sjz/+eMHzbmP7mFRnHXSlnY1fHu1strGxfUyqsw660s4Wl6nKZke11Yn2kfcf2/qOtLiOU7R+s63OT69T1AHf4/9xHI7H75y0uu9PSU53Egrs5+3eCsvvhb3a4JQ8/vjj5WJIOAnhNMT+pHCYIqWtCqcoQMSpOwMdXijj6aefFrvuuqtckAld4LhEet04rx+vE3TSpEmBf4vzdNZZZyV+DcdZnmrZ1tpZUhI2to9JdU5bV1POk23ouzxVEaNHjxZLliyRn5EqFyl1sRoqSbDv6PTp00X//v3lqjVCSDiwsgcR3s5nndFB16R1iLM81bJVyYsqR4d+YhqIrkAGBuyD8//+3/8TI0aMEGvWrClZDsYGkIH9hXCf7tq1a7VjbGwfk+qsg660s/HLo53NNja2j0l11kFX2tniMnWQk2j/+Gm5EJ+9vvUzIkABIkVr1w/2exy3eb0QFWu2/h7RpJ+9ujXyFBGkREvgZDz33HMDHdu0aVPRpk0bsccee0hnaVKRTHC6HnfccfKFSEw4aJ0tQa666ipxww03xHL9YNEnHLEOKBOLQYs5gXEM5igRRZu0jY+zvDhstw5ydB8z2I6N7WNSndPWNe3yiT9llU5e2YyC1BWYMEXk5pQppa0CrFGjhpg3b57Yf//oKVXgGO3Tp4+MVG3YsGFkeYToAFZENm/evMp3y5Ytkw8fhBCSBCtWrBA333yzuPPOO8WGDdhXKhw9evSQDlIV93xCiD1g3IMolkIgUsU7XiKEED8qKirkvoXASfnfrl07UatWrZQ104i3Jwgx5z4hNq0X4sdvtkZ/Ntolf6SoH1s2C7HmS+QUE6LBTkKU1xGiy3lCHNBPZAlEqKxbt67Kd/Xq1ZNzXbrjdWYiDS4iPk3CcY46HHLIIfK7UqNWMYcI52c+xypAZCocog6FHLHudMBPPvlkwYhWpOU955xzqnyX8WlkQkjG2bhxo0y5Dpw5JGQUq1u3bmxlcv5cT/QfDUUA0aGrV68WrVu3Ltkpqho4ZjF4KCWlBSGEEEKKrwjHQ/2nn34qTj/99NArwpFeH5klzjjjDPHZZ58p15MQQgghhCjgy7flW+X6H+HWFJW164vKGjW3fvZ5+QInqhNhuv7XPSi/eCsZ/Yk1IHIUka4OcFziuzjANmFeh2Yx7rvvvmq/I4QQQmwh047RadOmyQlSvOsA0uZg4pUQEg4sLli7dq186b5KUQddk9YhzvJUy1YlL6ocHfpJVmjZsqVMA4VMD0ceeWQoGWiDyZMny7Rbf/vb32R6Kdvax6Q+qYOutLPxy6OdzTY2to9JddZBV9rZwvLcr7TkqNIjMOtWb33fsnHre3m9cHKc3zlykFqXZILE+2QBLr/88ip/wzl6wQUXKNcV+4w2aNAg9/dXX31VMBIUkelffvml/F0UHXA8oq8Kvbwy42wf1bKttbOkJGxsH5PqrIOuup8jW8m0YxT7hyH6Q5e0eIhcXblyZdpqEGIsGFTfeuut8oXPOqODrknrEGd5qmWrkhdVjg79JGvgno+9cmbOnCk6deoUSgbSqaBNsDfRiSeeKFPs2tI+JvVJHXSlnY1fHu1strGxfUyqsw660s4Wl6nKZke11Yn1kU0VW98rt2x9D5sW1vmdM1m5sWrKWWI2ifbJEhyWACn4sQBTta7InuPmrrvuynvsHXfcIY499tjIOngdDvleSbaPatlW2llSMja2j0l1TltXU86TbWTeMYooTV1o3Lix1IkQEh7sh2LCnii66Jq0DnGWp1q2KnlR5ejQT7JI165dxTvvvCMee+wxuTApDIjoQFp+7F96//33i02bNgkbMKlP6qAr7Wz88mhns42N7WNSnXXQlXaWVKH81z3Ayn49j1t+dZCWivM7ZxuGWiEjTwkpwr777lvtu9tvv115ORdffHGVv/EclA9kybnwwguV60AIIYSYQlllhmN58cAxceJEcf7554f+PVLyqYo4HTBggNxjdPPmzUrkEZI23DyaEGICiACdMGGCuP7666uszi4V7BE0fPhw8ac//Sn0XqaEkGyBcQ8iPwoxcODAauMlQgjxo6KiQqa4BLVr15bv7dq1E7Vq1UpZM42Yfq4Q338kKn/+QYgNPwpRa1shts3//Jl3xPbzciE2/CRE7QZC1N9eiBZ7C9HzPpEltmzZItatqxoJW69ePSOc896x9lFHHSWef/55YSKnnnpqNSclnis++uijQL9v2LChuOSSS8QNN9xQ9Ni9995bfPzxx7m/sbgTUatunnnmGXHFFVcEKh97lZ5zzjlVvnNPI6OPFVs8Wl5ebkSfI4TYAaI3FyxYkJsrAu3btxd16/668CoGOH+uJ5m/MzVp0kTowpw5c0JHrRBCCCEkHJhYxArqxYsXi6uvvlpss802oeRgkuG4444Tv//97+X+QIQQQgghJGF2OXDre51f05Nu/FmILSUuPsfxG36uKmfXg1RqSTICFipgT9Cjjz5ajB07NpQMbM/hBft7xsG5555b5W8EZ3gZP358teMIIYQQ28i0YxROyNmzZwtdQPQpHaOEEEJIOmC1NaJGFy1aJPr37y9q1qwZSs7rr78uDj30ULn/6CeffKJcT0IIIYQQkoe9TxSiRrkQ5XWEqImo2koh1q8pTYY8vlKImnW2yoE8yCXEBTLNHHjggTIzxAsvvCAuu+wyGf0ZZlstLz/++KOIg7POOqvK31jM6UShO3VCXbzHEUIIIbaRecfozJkzhQ6MHj1avnfs2DFtVQgxFqRo+ec//ylfuu/1p4OuSesQZ3mqZauSF1WODv3ERnbccUe5Uhrpo+DcDMtTTz0l9tlnH+lk/fbbb0UWMKlP6qAr7Wz88mhns42N7WNSnXXQlXY2P0hnCTl4RdkhKaocVXoEBmlzWx629XOdRlvfK9b+XwRoMXAcjpe/b7j1veXvt6bTJZlAVZ/EPqBeB2ahfTvzsXr16mrfNWjQIJbrZ/vtt5dph93ccccdVeqE/8dxaV3DcZanWra1dpaUhI3tY1KdddBV9zG/rWTaMdqhQwcZpfn++++nrYrckwx7JPTp0ydtVQgxFuxfgZTUeOGzzuiga9I6xFmeatmq5EWVo0M/sZk99thDPPHEE3Il9WGH/TrBViLYNxz7mbdt21ZcddVVYu3aXyfaDMWkPqmDrrSz8cujnc02NraPSXXWQVfa2eIyVdnsqLY60T6y3ylb3+tsu3WPUER/Ys/QdSvzp9XF9/h/HIfj8Tv8XsrjPE3WUNEnsQ2HClasWFHtu0aNGsV2/QwYMKDK35MnT66yZ6j3/+PQoRhxlqdatrV2lpSEje1jUp3T1tWU82Qb5SLD4GaPSM0hQ4bIVBFpMXDgQLlCDPsK7L///qnpQYjpIO3l4YcfnvusMzromrQOcZanWrYqeVHl6NBPiBAHH3ywePXVV8U//vEPMXToULmXaKn88ssv4qabbhITJkyQ+5hiDIK9TU3DpD6pg660s/HL093O1q9fPye/0DFE3+s4aUyqsw660s4Wl6mDnMT7x077C7H/6UK8N/n/Ij03/ChExZqt0aC16gtRq54QNWpgNlKITet+jSj9NVIETlHndx1O3yqPZAoVfdJvb9C99tqrZDlLly6t9t3vfve72K6f4447TkakOtGueH/mmWdklOiaNWvk/3sJqwMCQIr9FseoKi8IcdhuHeToPmawHRvbx6Q6p61r2uUTf8oqdY93jkinTp3Ee++9J52jN998c0m/rVGjhow4jeLMvOeee0S/fv3kQGDkyJFyTwJCssLy5ctF8+bNq3y3bNky0axZs9R0IoSQqClOHnroIXHNNdeIr7/+OrScVq1aSUcpMkVgPEEIIYQQUoyKiorcfoDOAqt27dqJWrVqpayZfmzZvFmIWdeJsoUvbv1i/U9b9w7dvKHKcVVcMtiTFOl3nUjRPY4W4ohrtjpQMwgiVNatW1flu3r16hkxNvU605D+9fnnn09UBzgTjz/++NzfhxxySM7BWAq77LKL+Oqrr6p89/rrr4tDDz008LlAZpobbrghcJkXXHCB3BvVff622247ud/p3XffHVgOIkzPOeecKt9lfBqZEJJxNm7cKBYsWCA/b9iwdczQvn17Ubdu3djK5Py5nug/GorIsGHD5E0bTsmxY8cmWvaYMWPkvmMYxGC/UzpFCSGEEL0pLy8X5557rhwojxgxokqaq1JXhp966qmiS5cu2ux3TgghhBCSGcrKxKbDrxRb9jt1699wdjb8jRANdtoaEVpeV4iadba+4298j/93nKKIFM2wU5Soi7zceeed5bziG2+8UbJT9IcffqjmFEXUaVCnaFguvvjiKn8jix6y43i/J4QQQmwl8yPAnj17ipNOOkkOYgYPHixXSXk3T1cN9hc78sgjZZSqs5IKqfUIIdHA9YRV1HjpvkpRB12T1iHO8lTLViUvqhwd+gnxZ5tttpHjho8++kj85S9/CZ0WF5knunfvLscFyGChOyb1SR10pZ2NXx7tbLaxsX1MqrMOutLOFpbnfqUlR5UeoSgrE5sPGCg2/fluUdn6f4SoUS5EeZ2taXIb7ChEw522vuNvfI//b32EECdMEOKQi+kUzSgq++Qll1wiHZtY8BgGZKHxMnHixMC6wrEKsDdxKSD6yZv2F5Gr+D7tazjO8lTLpp0lQbCxfUyqsw666n6ObMWKUSDS2ToRHy+99JJMHXHFFVdIB6ZKPvvsM7mfKNJTIDoEnR7Rokile8QRRygtixBb0x0g+hsvfNYZHXRNWoc4y1MtW5W8qHJ06CckP2gTjCGaNGkiPvjgA3HGGWf47pETBIw/OnToIE4//XQ5XtAVk/qkDrrSzsYvj3Y229jYPibVWQddaWeLy1Rls6Pa6jT7c2WLfcWmrjeIjadMF1s6nSMqm+8tRMOdhdimqRCNdhaixd5CdDlPiDOfEeLo4dxTVHMcZ6CbUufvVPVJpK+Fg/Gxxx4rOQsd0mK709kCpMT1RosW0tVxrCLi0++8FAJZcAr9HUSHFStWiDiI02aolk07S4JgY/uYVOe0dTXlPNmGFY5ROEVnzZqVc1Q6qXXhwESKO6S8DRvFgd9h0hSRINiYHSu/nFUAKAsRq96BECGEEELMomXLlnLv0XfffVdmnwjLI488IvbYYw9x6aWXljy5QQghhBBCCrBNU7G547li03HjxcY+j4nKs/4hxOlPCNHzPiEO6Lc1cpRoj1+U5ZtvvpnbfzdpXnnlFekcxfZYRx99dKAxPI7BfKCbU045JfA+ofi9d59QLLLEHqdBGTRoUMG/g3DfffdV++7qq68uWQ4hhBCiG2WVFsXyIp1d586dc85RB3f0B6JJsR8oXtOmTRO9evWSn8Hq1avFypUr5fuSJUvky43bIYrPSJ334osvJlY/QpIm6c2jcV1t2bJFfq5Ro0boyK0k0EHXpHWIszzVslXJiypHh35CwrXPyy+/LFPtzp07N7T8hg0biqFDh8oUXUjdqwMm9UkddKWdjV8e7Wy2sbF9TKqzDrraZmeRZtdx/jhp/Nu1aydq1arlK89NFDsbRY4qPUoF53LTpk1F947HubYVnKN169ZV+a5evXpanRNEYSLjmhMRiiwthba/wn6fu+66qxxHg4cffrjavp9x9Ek4KpE9BpGb2HcUWWCwX6dfalrsRXryySdX2VsUARl+jkm3rs8++6wYNWqU+OKLL6rtS+oFjlrMX6KsQiAFMKJdsbDz+eef9z3G0eG0004Tq1atkm2Bec+PP/44r1ycg3333TfXDn369BFnn312QV285TmotrMqZdtuZ0kwbGwfk+rs1RVjhwULFsjPGzZskO+w5XXr1o1NB8yVt2jRIrH5cxIMqxyjjnMUzs6lS5fmLlq/U+A4N/Nd2Pl+4/wfIlIvv/xy5foTYrNjlBBCdJtswiIqpOf3LpYqhZ122klcd911cjIBE3iEEEIIsZNSHKO2Q8doNhyjTlQkHG2l4DhP4bzzc07GxQMPPCBGjx6dcxo6jtrddttNOhU//PDDKk5NOCRvueWWQDoiEvPGG28MdC6c+heb0oXjFFGub7/9dlEdsAcpdA/TFkgRHDQalhBC0gRpbZN2jHL+XE+sc4w69O/fX0yaNEl+9jo/g5wSP4cpfocVW0jbixQXhGQdGnZCCNk6mJ4wYYK4/vrrI6XHxWB8+PDh4s9//rPWKy4JIYQQEg90jAaHjtFsOEZNBQ5HbJGBNLtffvllzlHpOEqPOOIIGa2ZpNOWEEJIcegYJcJ2xyjAPmE333yzeOKJJ+TfYSYhndOHdLtDhgwRffv2Va4nIbqStGHfvHmzXHgAunbtKmrWrCl0RQddk9YhzvJUy1YlL6ocHfoJUdc+SDuFNFlICfbLL7+ELvfQQw+VabQOOeQQkTQm9UkddKWdjV8e7Wy2sbF9TKqzDrraZmdLTaULmQCyoqR4jCJHlR6lQsdocWx1jKbVJ03VNWkd4ixPtWzb7SwJho3tY1KdvbqmkUr3u+++EzvuuGOV7+gYTZ9sj4aKgKhOpMBbvHixTHvbqlUrebEEfTVq1Ehupg4ZixYtolOUkJjBjey///2vfDk3NV3RQdekdYizPNWyVcmLKkeHfkLUtQ/22EHUKMYVAwYMCD2ZihXocI6ecMIJ4pNPPhFJYlKf1EFX2tn45dHOZhsb28ekOuugK+1scceXs29pmnJU6UGIKkzqkzromrQOcZanWjbtLAmCje1jUp3T1lX3Mb+tcCMrIaRDFHuC4rVmzRq58fvs2bPlZuMrV66U705UKFLltmnTRnTu3JnpcglJGDgZDj744NxnndFB16R1iLM81bJVyYsqR4d+QtS3zw477CD3SvrrX/8qrrzyylxmilJ5+umnxXPPPSfOO+88ce2118q9SOPGpD6pg660s/HLo53NNja2j0l11kFX2tnCqIr8iyon6xGIxDxM6pM66Jq0DnGWp1o27SwJgo3tY1Kd09ZV9zG/rVidSpcQEg3mSCeEkOK89dZbYvDgweK1114LLQNpz/72t7/JDBfIWEEIIYSQ7ME9RoPDVLrFsTWVLiGEEJIP7jFKHDgaIoQQQgiJkYMOOki88sorMvpz7733DiUDk1o33XSTzFpx++23i/Xr1yvXkxBSOpiUx0NtoVexiXtCCCGEEEIIIYQkB1PpEkKMAQHuTk54rHLVfXPvtHVNWoc4y1MtW5W8qHJ06CckmfbBb4899lhx9NFHiwcffFBcc8014uuvvy5ZzooVK2SKXjhHb7zxRnHyyScrXfVvUp/UQVfa2fjl6W5nse0GUmcXYuDAgdVWCBN9ruOkManOOuhKO1tYnpsodjaKHFV6EKIKk/qkDrpG0QG/DRK57ZYZZ51Vy6adJUGwsX1MqrMOyVJ10IFUhxGjhBCj0h3AEYAXPuuMDromrUOc5amWrUpeVDk69BOSbPtgb4lzzz1XLFy4UIwYMSJ0WtylS5eK0047TXTp0kXuja4Kk/qkDrrSzsYvj3Y229jYPibVWQddaWeLy1Rls6Paat37M7ELk/qkDrqG1QGT/UFeqsoLgmrZtLMkCDa2j0l1TltXU86TbdAxmhBYKX7kkUeKl19+OW1VCCGEEJIy2N9pyJAhYvHixWLQoEG5fcRKZd68eaJ79+6iR48e4t1331WuJyGEEEIIIYQQQgghWaKskrG8idCkSROxZs0aMWHCBHH++eenrQ4hRm4eDXPl7KtXp04d7VM1pK1r0jrEWZ5q2arkRZWjQz8herTP559/Lq6++moxefLkSGlWEEV6ww03iFatWoX6vUl9UgddaWfjl6e7ncW4h6l0zb6Ok8akOuugq212tqKiQsyfP19+dhZNtWvXTtSqVctXns0pHpGWOEgKT5VbDpgGzhH2qfcuzsv6OTE5xaNpqXTDXIdMpWuOnSXBsLF9TKqzV1fYrAULFsjPGzZskO/t27cXdevWjU0HPDO2aNEisflzEoxsj4Y0ZPXq1WmrQIix4EaLGxVeOt90ddE1aR3iLE+1bFXyosrRoZ8QPdpnt912Ew899JCM+jzqqKNCy3nkkUfEnnvuKS699FLxww8/ZLpP6qAr7Wz88mhns42N7WNSnXXQlXa2sDz3Ky05qvQgRBUm9UkddE1ahzjLUy2bdpYEwcb2ManOOuiq+zmyFTpGEwCRoo5DdMWKFWmrQwghhBBN2W+//cTzzz8vZs2aJTp16hRKBlY93nbbbaJNmzbi5ptvFr/88otyPQkhhBBCCCGEEEIIMRE6RhNg6tSpuc+MGCUkPJs3bxb/+c9/5AufdUYHXZPWIc7yVMtWJS+qHB36CdGzfY444gjxzjvviMcff1y0bt06lIy1a9eKK6+8Uuy+++7innvuKZrmyrQ+qYOutLPxy6OdzTY2to9JddZBV9rZwqnhIAevKGn4o8pRpQchqjCpT+qga9I6xFmeatm0syQINraPSXXWQVfdx/y2QsdoDGAiEq/PPvtMDBs2TAwYMCAXMr1y5cq01SPEWHAjeeWVV+RL95uKDromrUOc5amWrUpeVDk69BOib/tgL54+ffrIvcbuuOOO0PtPfPPNN6Jv377it7/9rXjmmWcKPgykXedS0EFX2tn45dHOZhsb28ekOuugK+1scZmqbHZUW617fyZ2YVKf1EHXpHWIszzVsmlnSRBsbB+T6py2rqacJ9soF5qAyb+s5lt2T0AuWbIkVV0IMRnYic6dO+c+64wOuiatQ5zlqZatSl5UOTr0E6J/+9SuXVtcdNFF4swzzxRjxowRY8eODZUeFw7W448/Xhx66KFi1KhR4pBDDtG2zkHQQVfa2fjl0c5mGxvbx6Q666Ar7WxxmTrI0b0vE/swqU/qoGtYHTCPW+y3fnO9cdY5Dtutgxwd+gnJj43tY1Kd09Y17fKJP2WVmsQ7t23bNrNOQ2cQgFON/b4WLlyYtkqEKGH58uWiefPmVb5btmxZ6KgmQgghxfnuu+/EddddJyZNmhRp5SGcpMOHDxd77rmnUv0IsQmMe8aNG1fwmIEDB1YbLxFCiB8VFRVyIZOzMAq0a9dO1KpVK2XN9GPLli1FtwkoLy+3ejIS52jdunVVvqtXr57V54QQQojdbNy4USxYsEB+3rBhg3xv3769qFu3bmxlcv5cT7QZDTVu3Fg6ELP4csNUuoQQQgiJwg477CAdMR9//LE46aSTQst5+umnxd577y369esn0+0SQgghhBBCCCGEEJJ1tHGMtm7dukrKWXyO6xV3Gfnkg9WrVyd8ZgkhhBCSRRBBMn36dPHf//5X/P73vw8dSYDIU2TuuPLKK8WaNWuU60kIIYQQQgghhBBCiC5os8dokyZNcp/hROzWrZsYMmSI/B7RpKro37+/mDlzppSJCIkuXbookYtI0MWLF0vZ8+bNk5Gi0N/ZQ4QQEh2kOBg5cqT8jOvLSS+lIzromrQOcZanWrYqeVHl6NBPiPntc9BBB4n//Oc/4p///KcYOnSo+Oijj0qWgTRrN998s5gwYYI44IAD5PgIjlJd66xL+9DOxi+Pdjbb2Ng+JtVZB11pZ/ODeROkgwNIteu3j18SclTpQYgqTOqTOuiatA5xlqdaNu0sCYKN7WNSnb26poGTspfohTaOUey96dCrVy8xZcoU5WUceeSR0nGJhxDsqRUXcIyiDqNGjZKRHCeccEJsZRFiG4huMgUddE1ahzjLUy1blbyocnToJ8T89sGDyLHHHiuOPvpo8dBDD4lrrrlGfPXVVyXLWbFihXj++edlFCrGZqeffrrW+1Dp0D60s/HLo53NNja2j0l11kFX2llCCCGEEEKISsoq3blfUwRp3BDNiYm9GTNmiCOOOEK5U3T27Nli2rRpomvXriIJUJ977rmHzlGSWZLePBrm6scff5SfGzRooP2KpLR1TVqHOMtTLVuVvKhydOgnJJvtgwjQO+64Q0aBRkmP26FDBxnd0r17d6EbOrQP7Wz88nS3sxj3YM/fQgwcOLDaeInocx0njUl11kFX2+xsRUWFmD9/vvzsRJQidb5fhIN3KieKnY0iR5UeYZzMmzZtKnhMeXm51gu8kjhHGBO6qVevXubPSVp90lRdk9YhzvJUy7bdzpJg2Ng+JtXZqyvGDgsWLKgSydm+fXtRt27d2HTAM2OLFi0Smz8nhkWMYo9Rv88qGDBggIwURarbli1biqRAOjrQs2dPGUW63377JVY2IVkEN9qGDRsKE9BB16R1iLM81bJVyYsqR4d+QrLZPpj0Gjx4sDj//POlcxRO0jDpW959913Ro0cP6RiFgxSOUl3QoX1oZ+OXRzubbWxsH5PqrIOutLOF5ekgR+fJUGInJvVJHXRNWoc4y1Mtm3aWBMHG9jGpzjroqoMOpDo1dNxj1P05KrNmzRITJ06UkaJJOkXdzlFEvyK1LiGEEEJIkmBMNWbMGLki8swzzww9IEc2j44dO4rTTjtNLF26VLmehBBCCCGEEEIIIYRY5RhFlCiiEFRHImA/UTglTzzxRJEWcMr+8MMPYuzYsanpQEgW2Lx5s3jjjTfkC591Rgddk9YhzvJUy1YlL6ocHfoJsaN9dtttN/Hggw/KCFDsQxqWRx99VOyxxx7ir3/9qxzb2N4+tLPxy6OdzTY2to9JddZBV9rZwqnhIAevKDskRZWjSg9CVGFSn9RB16R1iLM81bJpZ0kQbGwfk+qsg666j/ltRZtUuo0aNRJz585VKhOTf3hhj880ady4sRg6dKhMZTdo0KBUdSHEZHAjQVps0KVLF1GzZk2hKzromrQOcZanWrYqeVHl6NBPiF3tg7T+//rXv8S///1vmWp3zpw5JcvYuHGjuP3228X9998vF6DBSbrNNtsIG9uHdjZ+ebSz2cbG9jGpzjroSjtbXCaIumdkVDmq9CBEFSb1SR10TVqHOMtTLZt2lgTBxvYxqc5p60rHqJ5o4xiNgylTpsi0b2mk0PWCyUc4R5966ilxwgknpK0OIUaCG5izV6/uN14ddE1ahzjLUy1blbyocnToJ8TO9vnDH/4g3n77bbl47IorrpD7sJfK2rVrxZVXXinuvPNOcd1114lzzjlHlJeXW9U+tLPxy6OdzTY2to9JddZBV9rZ4jJ1kKN7Xyb2YVKf1EHXpHWIs7w4bLcOcnToJyQ/NraPSXVOW9e0yyf+lFXqHu8cgc6dO8uVmOPGjRM60Lt3b7m3Fxy2hGSB5cuXi+bNm1f5btmyZaJZs2ap6UQIIaQ0NmzYICZNmiSdm7DrYdlzzz3F8OHDxXHHHRd6L1NCTAPjnmLPGgMHDqw2XiKEED8qKirE/Pnz5efatWvL93bt2olatWqlrJl+bNmyRWzatKngMViwZfNkJM7RunXrqnxXr149q88JIYQQu0EGrAULFuTmQkD79u1F3bp1YyuT8+d6kunR0JIlS0SnTp2ELsBJO2/evLTVIIQQQgjJgYnXCy+8UEaNXnPNNaJ+/fqh5HzyyScyK8Zhhx0m908jhBBCCCGEEEIIIUQ3Mu0YXb16tWjSpInQhdatW4uVK1emrQYhhBBCSDUaNGggo0YXLVokI9zC7n325ptvSufo8ccfn4t6IYQQQgghhGQLJCFE5HahV4YTFRJCCDGYTO8x2rhxYxk1qpuzlhASDqQ4uOWWW+Tnv/3tb7n0Ujqig65J6xBneaplq5IXVY4O/YTkx8b2QZ0feOABseuuu4r33ntPOkqxD2kYnnnmGfHcc8+J8847T/z9738XO+20U+bah3Y2fnm0s9nGxvYxqc466Eo7mx84G5AODiDVbtg09lHlqNKDEFWY1Cd10DWKDvgtUjYXAqmb3TLjrLNq2bSzJAg2to9JdfbqmgZOyl6iF5mOGEWE5uzZs4UuwEkLZy0hJDzr16+XLxPQQdekdYizPNWyVcmLKkeHfkLyY2P7OHXGnmbTpk0Tb731lvj9738fShYmSrB/adu2bcWVV14p1qxZE4uuaUI7G7882tlsY2P7mFRnHXSlnSWEEEIIIYSopKwywzkNevfuLZ544gmxefNmoQM9evQQq1at0spZS4hJm0fDXDnpqJEmW/cVSWnrmrQOcZanWrYqeVHl6NBPSH5sbJ98dcb3//rXv8SQIUPERx99FFp+06ZNxVVXXSVT9dapUycWXZOEdjZ+ebrbWYx7xo0bV/AY9HfveInocx0njUl11kFX2+xsRUVFLg29E1GKhUp+EQ7eqZwodjaKHFV6hFl8hTSdhSgvL5fRaraCc7Ru3boq39WrVy/z5yStPmmqrlF0CHMdxlln1bJtt7MkGDa2j0l19uoKm7VgwYIqkZzt27cXdevWjU0HPDO2aNEisflzEoxMj4a6desmO/+9996btipi6dKlYubMmaJz585pq0KIseBGi0l1vHS+6eqia9I6xFmeatmq5EWVo0M/IfmxsX3y1RmfjznmGPH++++L++67T+y8886h5K9YsUJceumlYs899xSPPPJI0dRbYXRNEtrZ+OXRzmYbG9vHpDrroCvtbGF57ldaclTpQYgqTOqTOuiatA5xlqdaNu0sCYKN7WNSnXXQVfdzZCuZdoz26dNHviO6Ye3atanqMnLkSHkR9OrVK1U9CCGEEELCUrNmTXHOOefIFZYY24TdIuCzzz4Tp59+uujUqZN46aWXlOtJCCGEEEIIIYQQQoh1jtFGjRqJrl27yvS1/fr1S02PJ598UkycOFFOHh5xxBGp6UGI6SAt9jvvvCNfuqTI1lnXpHWIszzVslXJiypHh35C8mNj+wStM9KwDR48WCxevFhcdtllodPivvfee+LII48U3bt3F/PmzYtF1zihnY1fHu1strGxfUyqsw660s7mB9mxIAevKDskRZWjSg9CVGFSn9RB16R1iLM81bJpZ0kQbGwfk+qsg666j/ltpVxkHEQzIH3ttGnT5D4ed999d6Llv/vuu6Jnz54yWnTYsGGJlk1I1sCN5Pnnn5ef999/fxm5pCs66Jq0DnGWp1q2KnlR5ejQT0h+bGyfUuuMsdXo0aPFRRddJK655hrx8MMPh3rYwHYDiB499dRTxY033ihatWqlXNc4oJ2NXx7tbLaxsX1MqrMOutLOFpcJou4ZGVWOKj0IUYVJfVIHXZPWIc7yVMumnSVBsLF9TKpz2rrSMaonmXeMduzYUfTt21dMmjRJTJgwQSxZskS88MILiZSNMgcMGCA/t27dWkZUEELCgxvYXnvtlfusMzromrQOcZanWrYqeVHl6NBPSH5sbJ+wdd5tt93Egw8+KAYNGiSGDh2am/gtlUcffVQuZrvgggvElVdeKZo1a6ZcV5XQzsYvT3c7i2hpR36hY4i+13HSmFRnHXSlnS0uUwc5afQPLD4vVi739LIX3e2rbrqG1SHsdRhnneOw3TrI0aGfkPzY2D4m1TltXdMun/hTVql7vLMC1qxZI1q2bJnbZxQpbUeNGiXOO++8WMrDvln9+/eX0Q84vRgEzJgxg2l0SeZYvny5aN68eZXvli1bVnAimxBCSPb597//Lfd4nz17dmgZDRo0kDL++te/ivr16yvVjxBCCNGRiv/P3nmASVEtbfjbvEvOQSVnTEQxXhURlKvXRDD+RpIBAwiimLkSzBERveg1IojpmkiiIooSRFFMgICKIGkJm3fnf+r09jI77OxO6O453f29D/1M79BTp06fMzXdXaeq8vKwZs0atZ+enq5e27dvj7S0tARrRtxISUkJcnNzDyiHwAe0hBBC/EphYSF+/vlntV9QUKBeO3XqhMzMTNva5PNzPfHF1ZDUGl2wYEFZajez5mj9+vXx4IMPKkdmvIjTVWqJSp2sNm3alHOKTpo0iU5RQgghhPiGk08+GUuXLsXMmTPVdVEs7NmzB+PHj0e7du1UFo6ioiLL9SSEEEIIIYQQQggh/sIXEaMm4qzs27evclaa3TZTOkgUaZ8+fdCzZ0+V9tbchFq1aqlXM+J0x44dKiWvbMuXL8eyZcuwYsWKsnZMh6gwZswYTJw40fG+EuIEXPFCCCGkKmQVpjg27777bvW7ESsdO3ZU11RnnXUWU+MRQgjxJIwYJVbCiFFCCCGkPIwYJb50jJrO0UGDBqn0ukJw92N9yFaRDHlP0r/RKUq8jNOGXX68Hn/8cbV/3XXXaf2AQAddndbBzvaslm2VvHjl6DBPSHj8OD529lkiQCVTxwMPPIB9+/bFLOfYY49VJRGOOuqohI8P7az98mhnvY0fx8dNfdZBV7/Z2Wgco/LMwcymkJqaGtfzjHjkWKUHsR6/OkbdNCd10NVpHexsz2rZtLMk0ePz+eef48knn8Rnn32G33//Xb13yCGH4IQTTsDgwYPVouFE4KY5Gaqr7DvtGP3zzz9x8MEHl3uPjtHE4+2roQqQqFCJ9OzSpUtZZKe5yd+xbEKwDEndKzVF6RQlxFrk+yUP1mXTfU2HDro6rYOd7Vkt2yp58crRYZ6Q8PhxfOzss9QMveuuu/Drr79ixIgRSElJiUnOkiVLcPzxx+O8885T13S0s3rKpp0lkeDH8XFTn3XQlXa2aplW2ex4bbXu85n4CzfNSR10dVoHO9uzWjbtLEnU+Nx+++3qvldKAt5www1466231CLj5s2b49VXX8XZZ5+NZs2aKedpInDTnEy0rm45T37DdxGjwUi0gdT/3LVrlyWriASpXTp58mTlHCXE6zgdMSorXkW+IO3qvNJVB12d1sHO9qyWbZW8eOXoME9IePw4Pk72WVZp3nbbbZg9e3bMMkS/888/X13PyU2h09DO2i+Pdtbb+HF83NRnHXT1m52NNmI0dKF2LMQrxyo9iPX4OWLULXNSB12d1sHO9qyWTTtLEjU+xx13HDZu3Ii5c+eqaMaKnKYTJkwo+3vGjBm47LLL4BRumpOhuiYiYnTLli1o0qRJufcYMZp4fO0YrchBalLVFzr0tEkt0XHjxtEhSnwFc6QTQgiJl6VLl6rrqE8//TRmGfKQT1bRShkDXosRQghxK6wxSqzEr45RQghxM+L0fP7557Fy5Uo0aNCg0uOCnaOLFy9WDlVSOawxSkzoGA1CDI7UIJ05cyZWrFhR6bHdunVTaXlPPfVUnHLKKY7pSIhO0LATQgixArkcff/993HLLbdg9erVMcupX78+xo8fr1L1ZmRkWKojIYQQYjd0jBIroWOUEELchVwDdO7cOeII0Fq1aqkU/YJ87vvvv3dAS3dDxygx4dVQEF27dsXNN9+MZcuWqQtI2dauXYvly5erTfbN9+UYiTKlU5QQ5yguLsY333yjNtnXGR10dVoHO9uzWrZV8uKVo8M8IeHx4/gkqs+SqeOf//ynalduAg855JCY5Gzfvh033ngjOnbsiJdffllds9kJ7az98mhnvY0fx8dNfdZBV9rZyhcViRzZ4q1bF48cq/QgxCrcNCd10NVpHexsz2rZtLP+QKIs5X5027ZtMX3eyvF5/PHHUbNmTfTq1Sui4y+++OKy/R9++MGxeqNumpM66Kr7Nb9fSU20ArrTqlWrRKtACAn6IXn77bfLVkKlpKRAV3TQ1Wkd7GzPatlWyYtXjg7zhITHj+OT6D5Le7IydvDgwXjiiSdw3333lSt1ECm//fabukl84IEHVO33vn372qIv7az98mhnvY0fx8dNfdZBV9rZqmUK8UYAxivHKj0IsQo3zUkddHVaBzvbs1o27ay3EUfikiVL4pZj1fh88sknKgJUrhOOPfbYKh2dF110EaZOnVr294cffuhYOl03zclE60rHqJ7QMUoIcQ3yA9auXbuyfZ3RQVendbCzPatlWyUvXjk6zBMSHj+Ojy59ljRvksXjyiuvxMSJE9XK2fz8/KjlSFROv379VPkDcZBKKQQroZ21Xx7trLfx4/i4qc866Eo7W7VMHeToPpeJ/5A5+fDDDyM7Oxvr1q3Dzp07sXv3brXgbtOmTeoY+VsHdPj+OK2Dne3ZYbt1kKPDPPEiTz75pHoVJ2Rl9TydGh/TPgnisBXHaGWOzg4dOpT7WzJcOoWb5mSidU10+6RiWGOUEBIzzJFOCCHECTZu3Ig77rgD//3vf+NKf3PBBRdgwoQJaN26taX6EUIIIVbAGqPESvxcY9Ss0xcOSVWpi2OUEJI4zBqdkdb0tJtDDz1UpcQ1kX2pf1kZkgbYJJIoU7/DGqPExPtXQ4QQQgghxNU0b94czz//vIoA7d+/f8xyXn31VVV/9Prrr1c3J4QQQgghxHvIQ25xdEhZhREjRihHKCEk8Ugdz2bNmuHCCy9MtCoqvb04RQUdnKLCM888g0MOOUTZrPHjx1fpFDUXU5m0aNHCZg0J8Q5MpUsIIYQQQlzBEUccgffeew+LFi3CmDFj8PXXX8e0QvSxxx5TD8vGjh2LG264AdWrV7dFX+J9ZKVvcF2fipAHsqErhAkhhMQfDVlUVFTpMampqb6IjiQVE+zouO666yqNICWxIZlcqqqdJ/WUgyPaiH+RSMbzzz8fv//+OzZs2JBodfD000+r19NOOw26IGlzg9PpVsXSpUvL/d29e3cbtCLEm/AKkRDiGuRhttSZk032dUYHXZ3Wwc72rJZtlbx45egwT0h4/Dg+bunzSSedhMWLF+Pyyy+POf2MrA6WVbhS701W5lb1cLUiaGftl0c76238OD5u6rMOutLOVu6QEDmyxZNmPl45VulBiFVUNCcl6kqisHRDh+9PPDrI8bJIobItVKadfbZaNu2sNUhUo0SIHn/88copqgsffviheh0+fHhcchI5PtOnTy/396WXXupIu26akzroqvs1v19hxGgF/Pbbb1ixYoUq0L59+3b1KgXapR5VnTp10KZNG7Xfu3fvRKtKiK+QH7AdO3aU7euMDro6rYOd7Vkt2yp58crRYZ6Q8PhxfNzWZ0kVJDeyDRo0wL///W8VvRctmzdvxrBhw/DQQw9h4sSJOPvssyNe1U47a7882llv48fxcVOfddCVdrZqmTrI0X0uE3cijhSJKoulXl5Fc1JqCeqIDt8fp3Wwsz07bLcOcnSYJ9E4QqWG47Jly1Q5FJ2coSailyApa88666y45SVifMQ2LlmypOxvWfQr98VO4aY5mWhdE90+qZikAEdGsXDhQsyaNQvz589XjtBI6dOnDwYNGoQrr7zSVv0I0RGni0fLakPzgkpWe+qcFkkHXZ3Wwc72rJZtlbx45egwT0h4/Dg+bupzqK779u3Dgw8+qGpJyX6sHHvssZgyZYpKYxStDrSz/rOzTKXrH5vjxz7roKvf7GxeXl5ZvbD09HT12r59e6SlpR1wrDzKMR/nyIKeWFNVxivHKj2ihal0IztHubm55d7LyspyzTkxr8WidYyGm5Miz3QiiDNk9+7dSDSJ+v5YpUMs30M7+2y1bL/b2WgJ/o4FI6lqW7VqVe6aWe65Yln0YLWuF1xwAV555ZW4ZCVqfILPt9Pn0y1zsiJdxWaJ414oKCgoyyqQmZlpmw5btmxBkyZNHHt+TiLD947ROXPmqOgAiRAVoj0d5hdfIklvvfVWjBo1yhY9CdERpx2jhBBCSFX89ddfuPfee2NOj2vyr3/9S10jsh4VqQw6RgkhVhKNY9Tv0DHqfcfooYceqp61WfWwX0fHqNvh95AEc/vtt6so0bp166psi+IQNRc4vP322yozjw6O0W3btpU9t5TyLJEsiNUNWRA8evRotS/3q99//32iVXINktbWaccon5/rSbKf0+VKTamBAwcqp6i5esBc5RDpZn5u586dGDNmjApZf/PNNxPdPUIIIYQQXyIrMZ988kn88MMP6jovVt555x0cfvjhuOqqq/DHH39YqiMhhBBCCKmcTZs2JVoFQkgUyOLUDz74QEVgyr6uDsdHH320LHuDrjpWhiygolOUkPjxpWNUChPLyhVJmVtR2Lfp7KxsMwl1kkrNkAEDBuDqq69OWP8I8fJqRPnBl032dUYHXZ3Wwc72rJZtlbx45egwT0h4/Dg+bupzVbrKArjXX38dS5cuxYknnhhzG88995ySJZlBsrOzo9LBamhnaWe9hh/Hx0191kFX2tnwyPMHkSNbvLWc45FjlR6EhEZ07dmzJ6bPumlO6qCr0zrY2Z7VsmlnvZs9Urjssssskefk+Iht7NWrV1nUbaKcom6akzroqvs1v1/xnWNUUlkNHz683Bch2OEpOc+7deumnJtDhw49YJP35f/luFBnabCDdNq0aTjqqKMS2ldCvIakaJk9e7ba4kmP6BddndbBzvaslm2VvHjl6DBPSHj8OD5u6nOkusr12Mcff4z33nsPhx12WExtSRo6SavbunVrPPzww8jPz49KB6ugnaWd9Rp+HB839VkHXWlnq5Zplc2O11brPp+JuzAjuvwwJ3XQ1Wkd7GzPatm0s95Coi0ls5Bw4YUXWibXifERp2jXrl3VohGpjZrIGq1um5OJ1tUt58lvpMJnTlGpN2UiDsw+ffrg1FNPVa9iXKJl/fr1mD9/PpYvX66iEnbt2lUWeSrvST71Dz/80NJ+EOJX5LvVokWLsn2d0UFXp3Wwsz2rZVslL145OswTEh4/jo+b+hyNrvL//fv3R79+/fDiiy+q+je///571G1KZpCbbrpJPaybMGGCStVLO2uvPNpZb+PH8XFTn3XQldezVcvUQU4i5oe0KbULqzqGuJPnn38+rs+7aex10DVWHYKz70Uj284+22G7dZCjwzzxAo8//nhZClqpK2kVToyPZEGSe9jx48erVMWJxk1zMtG6Jrp9UjFJAd3jnS1i3LhxmDx5ctnfEvkp78XiDK0MWf05adIkVbfUnPTy0Oy1116ztB1CdIDFowkhhLgRiQB94okncN9996lFbbHSpUsXdX3Zt29fS/Uj7kGue6ZOnVrl4szQ6yVCCKmIvLw8Fc0ipKenq9f27dsjLS0twZoRNyKp++SaJ5isrCwkJ+udPE6+A+K0MFNFWhUVJbUElyxZovZr1qyJ3bt3WyKXEFI1b7/9Ns4+++yyv638bkdDrVq1VMTlAw88gFGjRsEtmPbrrbfewllnnZVodVxNYWEhfv75Z7VfUFCgXsVJnpmZaVubfH6uJ3pfDVnEypUry5yikgJt7dq1KrrTaqeo6XBdtmyZkm+m2J01axbefPNNy9sihBBCCCHRIw8Fb775ZnVNKK8ZGRkxyfnmm29UFKpkH5FMIYQQQgghJP7naoQQYjXiiDVrF1966aVwk1P0u+++w+LFiyt1il599dU4/fTTHdWNEDfjC8eoRGxK9Kaky5WHVlIf1IkLuV9//bWsFumQIUNsb5MQQgghhEROvXr1MGXKFLVi9LLLLos5xY2UVejRo4eqU7Nu3TrL9SSEEEII8QPyYN+s/0cIIVby5JNPqlcpe9egQQO4AXF0ilN06dKlykFaGatWrVL3pISQyPC8Y3T69OnqAZVEis6dOxe1a9d2rG1pUxyx0ubOnTvx4IMPOtY2IV5Nd/D000+rTfZ1RgddndbBzvaslm2VvHjl6DBPSHj8OD5u6rOVujZv3hwzZsxQN5NSizRWXn31VXTs2BHXX3+9SpdjNbSztLNew4/j46Y+66Arr2fDIwuwRY5s8VRIileOVXoQf7Nt2zblAKgqPb2dc1JS+Moit2bNmql0m7JgTl7FGSH16UVHq5C2xAl86KGHlmtL/pb3rUoxKulL5bwGtyP9C+5TpOdLdJbnmqKfnCdTrnm+Qp95Sh/kGPl/s11p006bYbVsO+ysnEcZF6mjK6+RzKtY9BC5MgbSjmyJSFurG3KvJgwePDimz8t5lDlvzmf5LoT7Dsn7Mt/N7575/Zb3IkW+Z6tXr1Z+jUjqoYoD1SnHqJt++3XQVfdrfr9SeaV6DyApdMVgzZs3LyHt16lTR6XSldpTUsfKTfnLCdEN+QHbsmVL2b7O6KCr0zrY2Z7Vsq2SF68cHeYJCY8fx8dNfbZD18MPPxzvvfceFi1ahDFjxuDrr7+O6abnscceU45WkXHjjTeievXqluhHO0s76zX8OD5u6rMOuvJ6tmqZVZGTk1NWtzScjOLiYrWfkpISdfaEeD9P7MHuemlWIY4FWZhm1v4MRd6vak5V9D2I9jsmerz00ks444wzcO+996Jdu3bKsTFz5kzlTBE9JkyYoK7vJMtIrIjMSy65BB9++KH6+4ILLlDt1a9fH+vXr1cBHeIclk1qMIrjLJbINnFS3n333SptqNRrveKKK9C2bVsl65dfflHtPProo6pPEj33n//8R+lQGRKxNnr06IgdSJdffrmSLf3bvn27+qy0t3DhQnz88cdlx5rjK3VfTcygluzs7HJyxaH7wQcfVFqbNliOKStYTrS1Za2y14888oi6R/j9998P+D/RWRZWyhZuvCPVQ8ZexjM08trvdXVlTprnIZbvsDg05Ttz55134uijj1ZzWb6nYjfku9GmTZtyYyDz3fzuyfHCl19+qebBnDlz8P3331fpFP3f//6HF198ET/99JPawtkUCcaS77R836UuuVPofh2rk66Jbp9UTFLAwyMjFxVimMaOHYuJEycmPJ2vGD6JIO3SpUtCdSHErcWjS0pK1PdakDTVycn6Br3roKvTOtjZntWyrZIXrxwd5gkJjx/Hx019tltXuUSePXs2br31VlUeIVaaNGmCu+66C1deeSVSU+Nbk0g7q5+dleueqqJbRowYccD1EnGfzfFjn3XQ1W/Xs3l5eWVOzPT0dPUqDznT0tIq/J0yH+eIYyGc80ieQTC1nv9YtmwZunbtitzc3APqrOtkd0Lr4YnjJthJKk6MqtJHhjrKwn03RI4pO9hJJFFcEtQQzglpOjlMYnWOivyzzz5b7YvDRK4zJdNIqK5mpKU4OURPcbpEEi1mOklOPPFE5RSTz4pTpbKahOJ8MaPoxJlWWWkJsU2iizg5pYyE6dw1eeCBB1QwiOmUlXExx06i5czajsJbb72FM888U7Ul2VpkLDZu3Fih01CQvkiE3rnnnqscreH6LnM+nIxDDjkEhx12WFjHakVEamcrQ86blFuLNEX0+PHjD+hjJHqI42/kyJFl51nmmMwFeS4uTm8Zt0QG6wTPf0Ec/05GsZrff1mM8Morr0T1WdHz+OOPV/M2+PtkjoPMrQ0bNqj9iy++uMyhGXxs6KKIisY5eKFGrNHzTrl5rPhuOEWorkVFRaqUjlBQUODIYiJZGCfPBZx6fk4iJOBhxo4dG0hOTg5kZ2cnWpXA8uXLA0lJSYFx48YlWhVCLGPr1q3yy1Juk/cIIYQQr1BQUBB48sknA40aNTrgNy+arUOHDoE5c+YESkpKEt0lYiFbtmwJ3HXXXZVucgwhhERCbm5uYMWKFWpbvXq12uR3KB6WLVsW1+8XN3duMu7FxcWBvXv3ltvkPd0J7sexxx5rmVyRZcqtWbOmeu+0004LXHDBBVV+Vo4L/Ww0zJgxo+zzhxxySJXHL168uFx7P/zwQ5WfkWNEttnG33//HZFu48ePL2vrgQceCMTSJ/OzooPsh+obOj+lzYp46623Dji2c+fOgWgIPnfmuZD3EoGcBxk/sx/mORJkfKS/wXMruM+Rjp8gc9j8rMiLZL44TejYWvndrgo5l2a7scwFGY+K7IT5fTPlyrwO930VGZH0X+ZIrHY/EttCjPt78xrLvOaS6y874fNzPdFnmZgNrFixAn369FErkxJNt27dymqOEkIIIYQQdyBROrJqV6JGJfIz1rS4kv5IVrnLauXFixdbrichhBBCCIkciWyUKMVIoseCaxJKRJ6ZljPSaDNJK2siKS+rQq4XJeOE2d5VV11V6fESjdarV6+yaElpI9IUvBK1JilvBYmMjbRvFUXN3nTTTSoSLjTCVaIXgzHbC0Ui7Mx+m0jUYzTIuZOoQLPdTZs2VRl1bBdSVk3GT86JpE6ViE3z3Mj4SH8lglUiEYNTAEt0qTxDjiSiUvomUb/yeZEj8iKNMPYLL7zwQsQR6BVF/Mp4XHPNNQf8X3CK5qFDh6r0uhWdf/l+hkYMH3nkkRW2J9HWsSIR0YSQyPG0Y1SKE4tDUhdEF9GJEBJ7+ilJdyCb7OuMDro6rYOd7Vkt2yp58crRYZ6Q8PhxfNzUZ6d1lRtpqSmzdu1a5SiNNS3uF198gRNOOEE9CIk0pZYJ7SztrNfw4/i4qc866Mrr2fBIEJbIkc3DFZIIseW7Ic4qcUA888wzEcmU2qPBROLcNDn//PPLOQSDnSaV6XrPPfeU7UsKUElFGg65rjRTqIpjMRrHmLT73//+t+xvceJWVpc4HBIIImlCpU5mKJ988onqu6RPlVTExxxzTNjxCe638O6770bVF5Fr1iiVdMWJsrNyvyCOakkxLH2qTI6MnzwvDnYgy3hK+lZxjobTw0wPa6Zcrixtsp+RNNFmmttokYUTMi4VOVSD00PLfd3w4cPVHA8ldJGCjFfoPDeRtNJm6tdot2jSRPvpGkQHXXW/5vcrnnaM7tixo1zx40Qjq33oGCUkdiQPvKyEk032dUYHXZ3Wwc72rJZtlbx45egwT0h4/Dg+bupzonRt3LgxnnzySXXze95558Us55133sHhhx+uIgDC1UIKhXaWdtZr+HF83NRnHXTl9WzVMnWfR4Qkgki+G1KzMtLosVDHhllPsCpuv/32ctd5EjkYqa7SZrCj7Omnn66wDYnwDK7LGs7hUhniSAyO4qwqQrUipK6iOIUqilSV98RpI06+Sy+9tNLxkWODnUty/qKpRSlyP/300wOc0E7aWXEsS41IiVw163pWJUf6LVGlUq8yGKk3K/VBQz8vjtdgpyijRCuP+BSuu+66qD8/Z86cCqOWQ+ekjNujjz4aVo7oIIsWZBPfQKQR3TrjpmuQROvqlvPkN2Jb6u4Sdu3alWgVCCEWIkWyDzrooLJ9ndFBV6d1sLM9q2VbJS9eOTrMExIeP46Pm/qcaF3btWunHm5LFOkbb7yhIoBiWTn63HPP4eWXX8YNN9yAsWPHok6dOmGPp52lnfUafhwfN/VZB115PVu1TEJIbN8NKXFg9/PGYEdJuDSelekq6TZNp45EY4ZzvpqEc0xWhegwcODAsjbE4SaOn2jSjkr03JAhQyJurzLGjBmDs88+u+xvM0VpJMg1uZyzSKOB7bCzjz/+uHp97LHHopazcuVKFVhjRiPKq0SCLlq0qOwYiR4Wx6vA1LmVY6bKlkUG0Z4nMwVuRXPpyy+/LPe3RKBXNsbS9lNPPQUv4aZrkETrmuj2ScUkSaFReJS2bduqH/aJEydCByS3/Pr16/HLL78kWhXiIubPn49Zs2apVzPiWC6SZDv11FNVHvvKHqLayd9//41GjRqVe2/r1q1o2LBhQvQhhBBCEoGZukgcm6tXr45ZTr169VQkgawAz8jIsFRHYg9y3WM+mAqHrAwPvV4ihJCKyMvLK0thmZ6erl7bt2+v6l3HiqS37NGjh2U6EnewbNkydO3aFbm5ueXez8rKQnKy3snjgh8gi6MvmmjByjDTjppIzfdoHH+1atUqc1ZJdJjUrqwMieQMri0qEYzRproMlSE1JIPTpYqDLNiBKNccsTpfxAkU/CwnEn1DH/bLMyKrIuGCz3c0si+88EKsWrVKRV8mCtFd0rbGOhYy5yWNbjByjyD1YE35Zu1S8z3dCZ2rVn63q4oMN1Mam9G70X7/KnKdSCRv8GIFD7tXPEdhYWHZouaCgoIyx3VmZqZtbfL5uZ7ofTUUJ+I4WrFiBXRBnFqiEyGRzhdxfMomNzV9+vTB5MmTlSNUEEepPICtW7cuhg0blmh1CSGEEN8iD4X69++Pb775Rt1Ayw14rGUgbrrpJnTo0AEvvfQSa5EQQgghhNiELEizk5kzZ5b7O5YFCr169Sr3tzwbqqyNo446CrES6nQMF6EajYx4CK1VWlma0tCUvldccQUShTj7xGkZS9pWE3HYi5M7GImalYUzsoBS5EsEpFucookcCzOVtaRwjuX7JzVxKyJ4MWxwymtCiHvwdCpdWR0nK0KkcLGspkkkkgrBdHQRUhXi0D/llFOUI11W+Hbr1u2AYySVg+kQlX1xlMqxiYoeJYQQQvxOSkqKuukePHiwSqF13333xVTaQepWXXLJJeo6VhZFSdYRpt8hhBASCxIFEepM8QISnVNcXFzl77Jffz+ZWrNq7I7UCY2Ga9OmTdzjKLUmg/nss8/K/S0L5+NBImGDa6JKlF9whGplSKrgir6TEqEcy/dQHKPiDDSRxYdVOQLlGHEaRhsZaCWSYlXORbzfQYk2/eSTT8pSKQsDBgwo+1vuM0jlPPnkk3GlmJYxrGgcJbo6+HtSUQ1SQoj+eNoxKg+l7r//fkyaNCnhPxgS2ScXAozsI1UhD1CDnaLhkMhRM52uII737t27e9o5KukOXnzxRbUvD4zjSSnlB12d1sHO9qyWbZW8eOXoME9IePw4Pm7qsw66htNB0vDcfPPNuOqqq1RJB6kvlJ+fH7V8SQMmaczkukAcpEcccQTtLO2sp/Dj+LipzzroyuvZyh2DRUVFaj81NTWs46FatWrqPjFeOXZ9PlYkq4LZbjhEH93TxtqJXzNPRDonrYxurMhxEpwGNvj9UIJ1rYrQBXfBzhkz9XY85ys0qEQWVUTqGJWMKRU5RuX8B49BNOMj18Fm5Kr0tSpHrTwDvuCCC5S9tcIexWLf5Jnc4YcfHrccMwgiOKWu6RQVR1+k4+JnJHpYiLT2bbRygyO1Zc45/TuYSBL122+FronAnB9ELzztGJUou1atWqkHSePGjVMrdhIVLSrRfLJyq0uXLgnRgbgHcaILCxYsqPJYSa8rDlKzELg4R+Xz06ZNgxeRHzOzjofu+ft10NVpHexsz2rZVsmLV44O84SEx4/j46Y+66BrVTrItd+UKVNUKq077rgDL7zwQky6yjWBpF8bNGgQmjRpolK/0c46qwexBz+Oj5v6rIOuvJ6tWqYOcnSfy8R/JHpOSj25UIJrhcZK8CJ4sx6xnecrNEK1MmrXrh13e6EMHz68XErfp59+OqxDUM6HOA4l0tLK8Y9W1s6dO9GiRYu45ZgpdcXR++qrr5Z7f8yYMVHL8hviRDcXJ1x22WWWyp47d265v88444yE25xE4KY+J1rXRLdPfOgYFSRC85ZbblEr7b/66ivH21+/fr1qW1ZOmLUhCals9Z84OcWZH2nUpxxrOkYF2RfnqBfr2crKHokEN/d1RgddndbBzvaslm2VvHjl6DBPSHj8OD5u6rMOukaqg6ygl/o0Uj9UFuu99957MbX3+uuvqwgjaVMeujRu3BhWQTtLEoEfx8dNfdZBV17PVi1TBzm6z2XiPxI9J6VufCjitAtNyykPy80H5qGRlbG0YfX5kmeaiRwfcYIGp/cVJ6lE3VYU7StlLKTW4wknnJAQXU2knJsE6cQrx+SVV15REYrBEciVOYjJ/nMkSNSx1QSnsJb5Wb9+fV86vhJtZ92ka6LbJxXj+ZwisopGfpAklYEdxrAyfvvtN1UTSpxd4uSSVGqEVPXAU5C5IilyJQK0KmRuSeRoMLNnz4YXkTRIHTt2VJvuKZF00NVpHexsz2rZVsmLV44O84SEx4/j46Y+66BrtDpIWi15sLFo0SKVcinWNDwvvfQS2rVrp+ou7du3D1ZAO0sSgR/Hx0191kFXXs+GRxwoIifW+n1WybFKD0Kswk1zUgddg3UIJd6apVb0OTTa79FHH63wOLk+vuKKKyw9n7rYWTMNu4k4iKWeKgmPGWksUcdWElpfVBzxOnyPncZNfdZBV92v+f2KL0ZF0orKyo158+apfPsbNmywvc033nhDFVZfu3at+tJNnz7d9jaJ+zFrioozXdIvV1YLJpjQ6FCZ64QQQgjRkxNPPBFffvklZs2apRycsSCrxm+//Xa0bdtWXeuybgkhhBBC/IY4KT7//HPoRocOHQ547+eff7a9jXijSCXaMRh5rplorr/++nJ/V+QQlPfk2njUqFFINFKnNbQWbLxUFCE7cuTICmvWkv1zRErqWR1ZG1pfVAKiCCHuxBeOUYmmu/nmm5Vz9Ndff1VOpKuvvlpFdFrNwoUL0a9fP1UDStoTp+iAAQNw7rnnWt4W8R6hF7FyMRVJ1GjoxaqVKVV0oqSkRH1vZZN9ndFBV6d1sLM9q2VbJS9eOTrMExIeP46Pm/qsg67x6GBeI37//feqFlKsaXH/+usvtRL6sMMOw5w5c2JO40Q7SxKBH8fHTX3WQVdez4ZH7L3IkS3eWs7xyLFKD0JidVKcfvrp2s3JihxZUgYhlHh0raiNWBxlwTpkZ2fb7hiNts/Sz+AMgBKtJ/Ujg7n//vtVLU6rxz4WeZK1cNWqVXHLqaqmqDiCxTlKDsQMTrr44ostlx2uvmiibY7TuKnPOuiq+zW/X/GFY9SswzhkyBC1L18CWVkvP/DixHz22WdjdpLKaip5CCX1omTFv6Q/lUg/0ynarVs3zJw50+LeEK8i8yc0Ta4Xa4XGSlFREV544QW1yb7O6KCr0zrY2Z7Vsq2SF68cHeYJCY8fx8dNfdZBVyt0kJqhI0aMUIv37rrrLlSvXj0mORKFcN555+G4447D4sWLo/487SxJBH4cHzf1WQddeT1btUyrbHa8tlr3+Uz8hQ5z8thjjy339/bt2y3XNbQNuZ6MBVOH4DqWptPHDqLtc2g6VLN+pLBmzRpVv1UyqcQi22pdpVyG6BOvHBNxAi9ZskTt33rrreX+79VXXz3ASex3ZHGAeb4uuugiy+UHO70lItVcoKCDzXEaN/U50bq65Tz5DV9VfhVnqETSSZpbQZyX4sSUzUScUOZmOqZMzFQIEsEncuQ1OD1CcMF0c5XQggULHOod8QJDhw5V6XSfeeYZNQdlzkaCpGwOpl69evAi8t1q2LBh2b7O6KCr0zrY2Z7Vsq2SF68cHeYJCY8fx8dNfdZBVyt1qFGjBu6880714Ofee+9V1wCx3EB98cUXqtbNmWeeiUmTJqFz584RfY52NjZSU1PL5Fd2DNH3e+w0buqzDrryerZqmTrI0X0uE/+hw5yUzHGmg0aQZ48VpXqNR9fQNszyTNEiOsg1ZDByDVlRVGpVcmJ9rzIkHeohhxxSVttR6keKA0z0e/zxx5WunTp1KgtSsZJo5ZnOZEnxLAsWY5Vjcu2115Y5RWUR5aJFi8qN+SWXXHJACmQ/Y9aglfkSfP6tItjpbcX4uhk39TnRuia6fRKGgA+ZPHlyICkpKZCcnKw22Q/ezPcr20I/Eypv0KBBie6mb+jTp0+gTp06jrU3b968wIABAwLdunVT7crXqHXr1koPmVs7d+4MOI20LXqYm+jhBFu3bi3XrmzyHiGEEELi4+eff1bXk6G/s9Fscl16xRVXBDZt2pTo7hBCCImA3NzcwIoVK9S2evVqtRUUFCRaLS0pLi4O5OfnV7rJMX5G+r93795ymxvOSfC1TOfOnSs99oEHHgjUrFkzIrnHHntsOdnRIu2Ynz3kkEOqPP7vv/8u95lI9QzHaaedFhgxYsQBbQT3KRK9KjuXwbLk76oIPl7Or52MHz++XHvytyDnNRJdnUTmbehYxcIFF1xwwLiGzivZZG7ozltvveXIfJFzFTw/7OyDbvOORIZcV5nXWOY1l1x/2Qmfn+uJb1LphuZmX7ZsGVq2bFm2mih4k/eq2oRwn5MV/kyfaz8rVqxA9+7d1ao7idy1urh5KFOmTFHpl810yRLRKSmUZbylRphEEY8dOxZ169ZVx0RSG9QKpN/BUc+C6EMIIYQQ9yIlGuR68quvvsJJJ50Ucy2T//znP0qWXLPYfa1ECCGEEBIvkp4yUiR7VrNmzaAjEs14/fXXl/0taWpjTXsq0ZESJRla81PaGD9+fNnfElEpqWVjQa4ZTSTarqLo1kQSfC7NyMDnn39e7eum6xVXXIGpU6fGVPPVRPomqXKF1157rdyYP/bYY+WOlblhphL2MzL3zaji0PliBR999FG5v/v37295G4QQ5/ClY1SQ2p9yASV56SXlbWUOz3CbEOwsFYerFFM3a5kSexCH48CBA5VTVJyjTrQnF5/i9JR9Gef169dj1qxZal/S30oNW0lZMm/ePOUwFUelfEacqXYjaXdDnaKsS0oIIYR4g549e2LhwoV4//33cfjhh8ckIy8vT6XVlWuThx56CPn5+ZbrSQghhBBiBcGOzopqNQYji76aN28OXZHyCOJkNAmtERkpd9xxh3IYV+QADG1D/o4Ws06nyRNPPAHdEIfgaaedVs7RPHLkSNvqoMaDjJOMl4xbLIgD/fLLL1f7DzzwwAEpYS+77DKMGDGi3HsTJkwocxT7FUmrbNbejTYNdCR88sknZfsyvpK+mRDiXnzrGDURp5YUJ3/99deVQ6l27doRRYyamzhYxSkmDlF54CSfJ9YizsjZs2crx6Q4Q+WhnvztZFSqGf0pzlAZ7+Das8H06dNHOdzlVRCdhw0bZquOwXVIRa/p06fDqxQWFuLFF19Um+zrjA66Oq2Dne1ZLdsqefHK0WGekPD4cXzc1GcddHVKB1mQd/rpp6voUbl2jbWWuGS3kAc1HTp0UDpLRKkJ7SxJBH4cHzf1WQddeT0bHnkeIbWoZTMXeSdCjlV6EBJcNzOYyiIg//e//5U9f6lqTm7cuDFiuRUhjrhYmDt3btm+OB8ffPDBKnUNRmpVSvSh1KKPpA2JMowmMlXaDc46Jg43qekZLZFmJonHZgwfPvyAMQmOlLTaHsUjT6I6ZdxkLKKRI8efffbZZWMh1+4Vff6pp54q5ygWxJl69dVXQ0fkuXkwod9HK3jppZcqtCF21xf14++gm/qsg666X/P7ldREK6ALchFgXgisXLlSpdoVB5f8sJtOMXE6yYMoccxJRN55552XYK29i6SjDXdRZY6T3c5Raf+UU04p08NMmRsJEjkq80TmjkR0yr5El1qNRKQGp+wVx204p60XkB8ws79u+OFNtK5O62Bne1bLtkpevHJ0mCckPH4cHzf1WQddndYhOTkZBx10kHpIUqNGDXUdEPqQIRI2bNiA//u//1MP5mTBV9++fWlnSULw4/i4qc866Mrr2coxF7ikpKQkVI5VehBipsCU6LfgCMhXXnmlQgeSOMYqiqIMnZPBKTZNRGak0ZWhkXgiSxyWoZF8FSFRZW+99RYuueQSpe/o0aPRtm3bMudjZd8f0VsWx4kDrLJ0sWYbpkNN2lq6dGlEEW2SDtR0+FxwwQXK4RYJwQ5eQWREek5itRlyziQ61hzLzp07H9BHq+1RrPIkqlPKYshYyIIYGceq5IhTU5ypglzvB49FRXp88MEH5T4jyL5ENsozU10iGiWlcGiqXxlD+V7JebIC0x7YlVpZ5nYwPXr0gN9/B93U50Trqvs1v19JkkKjiVaCkFDMVMXi5BMntPzgSN1OWQko78mDQInGDEYeDFrpFDRriQoSGSypcqNBPisyTMTRbmWKWzPFb7BT1PtG6tYAAQAASURBVOnaon///TcaNWpU7r2tW7eiYcOGtv2QrV69Wu0fdthh6gGxruigq9M62Nme1bKtkhevHB3mCQmPH8fHTX3WQddE29ns7GyVsURqLMWTHrd3795KTkZGRpls2lniBH4cHzf1WQdd/XY9K6nPzSi29PR09dq+fXukpaUdcKw8yjEf9Iks8x46WuKVY5Ue0SJtSvRHZaSmpmr9HXPiHOXm5pZ7LysryxXnRJwowc7RxYsXl3O4iaOla9euOPPMMw9w5MmclGcVl156aVlkWriUvOJkk1S8tWrVUtGIprNSnCDS/u7du9XnQ52qFX1eyhVU5oiS77YsRjNliePrySefDPv9Mc+BOEXFARYJoW3MmDEjrONJjpVnSOa5ue2225SjONx3WBxPUo4smnMihJ6XeG1G8NwI7Z/V9sgKeTJvlyxZoubX3XffrZ6XBcuRuWzWSw03blXpIWNjOt6DkZSyRx55ZNmzQ7trsZpzRJB5IlQ2V8yUtJI+W57nmnNGSt5F6qA3ufDCC1W0dDTfF6tsUqJ+BxOJm/ocqqtcO/z888/q74KCAvUqNiozM9M2HbZs2YImTZo49vycRAYdo8SV2O0YDXVqxup0DK6DGotzNVLZEs0qqfWcxmnHKCGEEEIOZNOmTSq9mjxQiefS/vzzz1c3/MELrwghhDhHNI5Rv0PHqLcdoxU5IsSReNRRR6lF53LNIwsMwjlA5Hsk0YTidIkEcSiNHz++LIJU5Eta0mg+LxGbkaSgDe6XyJcameLMlMxpUupLnhuJg0f+T67vYnFmBbchjkpxIMu5M9uYM2eOctaZzrNnn322yujCaM+JeV5CndrxIo5EeeYkepjON90Jjuo0HceSnU6u4YOdmeLUk+jSWOpjynmRmqsydyrCifNlzhGzvViQ8yHf3e+//z6qz5mOuUi/h9FiOl4FN809UnFaW6cdo3x+rid0jBJXYrdjNNjpKDJjSVNXkZ5ygSsO0niRuqWSojeRTlGBhp0QQgjRB4lEuuWWW/Dee+/FLEMevsuKdnmgxt9zQghxFjpGI4eOUe87RgX5Pjz++OMqNajpRBLHkkTTRZoGV1fEiSSpVuX6TbKAmH0Tp9mQIUMsSTFaWRuSMUScPbqkW40GiTCsKFpYZ8Rxeccddxwwl82xkBTSsThEK2pHIlAXLlyI7777rszxGouz0S0EO+3tclhKFLksIpWoVnkea6WznzgLHaPEhI5R4krsdIyKQ1QcoyYSKSoRo1akuxUHpjgy40F+gMUxmqj0uYlOpbt582a137RpU61v6HTQ1Wkd7GzPatlWyYtXjg7zhITHj+Pjpj7roKuudlYeuEht86+++irmtuTBws0334ybbroJ1atXt01Xu+XoME9IePw4Pm7qsw666mpn7ZIdbSpd83GORMrEk0o3HjlW6REtdIz6wzEaC4mak27V1Wkd4m1PHFTHH3+8SgEc6tS1ui9+t7NuwUxXLDVyK6pHbDd+HB839TlUV6bSJSbevhpykJ49e6rUCKtWrUq0KiROQh2XMraxElpT1IzyjBUpnm46RefNm5dQp2gikB8vSfEiW1U3wYlGB12d1sHO9qyWbZW8eOXoME9IePw4Pm7qsw666mpnTzzxRHz55ZdqAVW7du1iaktWl8uq9rZt26paQbKy1g5d7Zajwzwh4fHj+Lipzzroqqud1UW2yLHq2jheW637fCb+wk1zUgddndYhnvakLqtEP4aLdLW6L7SzeiMRsmZa6GuuuSZhevhxfNzU50Tr6pbz5Dd86xiVfPr9+vVTD4tSUlLU64MPPhizvJYtW6qHRpImVfL2f/zxx5bqS5zj9ddfL/d3vKlvQ52j4tyMNZJ14MCBKipWamr06dMHfkNW9tSuXVttOq9G0kVXp3Wwsz2rZVslL145OswTEh4/jo+b+qyDrjrbWfl/WUAlKbMkzVjjxo1javOvv/5SNb2kjpdcP0eabIZ2lkSCH8fHTX3WQVed7awOsq2K0ohXju7RIsR/uGlO6qCr0zrE2p44waTOo2Q1sVq23fJoZ+3hhRdeUK+SljiR6W39OD5u6nOidXXLefIbvkulK6szJQWrFLkWgrsvk1RStMZS2Dw4IlBkrF+/XkX2uSnfvZuwK5VuaOpbQZyQoc7NaBBnZrAzNJZ0uqKXpPetV6+eqlNaVT9lfltVb7UymCOdEEIIcQd79+7FQw89hPvvv1/tx8rRRx+trsNOOOEES/UjhBDCGqPRwFS6VePXVLrEu0hAy913321bHUniPg499FCVVnn8+PGurztMnIE1RomJr66GBg8erJxSdevWVVGB4hQ1VwzIJn9L1Gc8iPxff/0VEydOVLIkepQ/2O5h/vz5B7wXj1NUEGdmVW1U5eSMxikqznlxxhJCCCGEmNSoUUOlxpXrVEkzJQ+LY0FS9P7jH//Av/71LxWNSgghhBBCSDxI3dDnn39eRYRWxiOPPIKLL77YMb2I3shCInGKChdeeGGi1SGEuIzYnoi4kL59+2LBggUYM2YMJk2apN4TB1N2drYtYc3SjqQvE4dWjx49ylYiEL2Rup1WE+rIlOjPaIjGKSrIcfE6cwkhhBDiTSSl7hNPPIEbbrgBt9122wElBCLl3XffxXvvvYfLLrtMrdyX9FV+ZMeOHXjttdcqPeb8888/YKEcIYQQQojbkQATiUyuDIlQrux56+23344JEyao/Zo1a6pnZg0aNKjQefr777/jnnvusUBz4gUef/xx9VpZzVlCCPF1xOgtt9yiovSCnaKCRNWZqXTlVTZJf2sV4pySlLqy4kkeiBD9CXVaWpGOtn79+hXWC43UKSo6ROoUFZYtW6Y+50UkVZI8fJRN98LVOujqtA52tme1bKvkxStHh3lCwuPH8XFTn3XQ1c12tm3btpg5cya++uornHzyyTHJkAdh//nPf9CuXTt1vW2WqvCTnRWZkhqpsk3375Lfv8dO46Y+66Crm+2s3bLl+YXIkS2eCknxyrFKD0Kswk1zUgdd49FBji8uLq50C5UZ2p5Eiprs2bOnrGZkRRn6pO59RU5TK/pipzzaWXuQhZrCFVdckVA9/Dg+buqzDrrqfs3vVzwfMbpy5UpVB+nUU09V6W2DkTqPsspbIkllFbc4RUePHm1p++LMEqesRI1KKt9zzjnHUvnEXseoFav7K3JoSjvdunWr9HNmOlyZn5E6ReWBpDhdvRoxKg9gf/rpp7J9ndFBV6d1sLM9q2VbJS9eOTrMExIeP46Pm/qsg65esLM9e/ZU1xryYGHIkCGq1kksNfEmT56M6dOnqyjUq6++WkUH0M6SqvDj+Lipzzro6gU7a6dsU05KSkpC5VilByFW4aY5qYOuTusQ3F6tWrUOWLxXUVTppk2bIooWtbovtLN6YkYQC5deemmi1fHl+Lipz4nWVfdrfr/iecfo2LFjVU3RWbNmVfj/4d63EnGAnXfeebjvvvvoGNWc4EgHO6kqna446WfPnq1WxIU69MPpLE5+s36pOOK9iPyAnXHGGWX7OqODrk7rYGd7Vsu2Sl68cnSYJyQ8fhwfN/VZB129Ymclvdk///lP5Rz94IMPVBToxo0bo5Yj1yKjRo3Co48+qh5cnX766UpP2lkSDj+Oj5v6rIOuXrGzdsnWRY7uc5n4DzfNSR10dVqH4PYk2s8MUpGI0LPOOqvcsQ8++KBKtbt48eJKo0Urkm21romUo8M80Yknn3xSvR577LERzQu78eP4uKnPidY10e2TikkK6B7vHAeSxrZNmzbKOVqVc8kJR5ikGZPXFi1aJFQXLyBRwDKuwezcuTOu1LfiYBQneqhTW9LYxoM4OM3oTxNJ6yyRFZH2LVqc+lpLerhGjRqVe08iTRo2bOhI+4QQQgixHokAlYcN//73v9X1VawcccQR6nqnX79+ldaWcjNy3TN16tRKj5GHfKHXS4QQEs7+rlmzRu2np6er1/bt2yMtLS3BmumHRF9UlZouNTVVZTDw8znKzc0t915WVpavzwnR83t44YUX4n//+x+uv/56nHbaaeq9L7/8EnPmzMF3332HF1988QCHKfE3EmksqZdnzJiByy67LNHqEBdRWFiIn3/+We0XFBSoV6lRm5mZaVubfH6uJ56+GhKHlDyEsbJuaKxIatNWrVrh6aefTrQqpJIoB6cIFzEqczZep2hVKXoJIYQQQipDbgol8nPt2rVqMVdGRkZMcr799lsVNdqnTx9VA50QQgghhJBQXnnlFeX8XLhwIc4//3wcf/zxKoPJkUceid27d9MpSsrx9ttvK6eoQKcoISRWPO0YnTdvnnJItmzZEjogukj9R+LvNLqVMXPmzLhleLW+qBkJKytqZNM92F0HXZ3Wwc72rJZtlbx45egwT0h4/Dg+buqzDrp63c5KJg2J+Pzll19w+eWXxxxhIg+5pJapPOgSZ2u8ejn5eWIvfhwfN/VZB129bmfjlSfRWrLFez0bjxyr9CDEKtw0J3XQ1WkdwrUnzk+pGym1ROX977//Hk899ZQlsq3W1Wk5OswTnTCDji644ALogB/Hx0191kFX3c+RX/G0Y1Si8nSKnhOHVVW1JYk/IkbDOWGl5q0Yy3g2J+rmVoakBpBI7Wi2u+66C8XFxSqFQWgaFnlPNumbpDuQdHWy7du374Bj5f/l2OCi1rIv78n/OXlsfn5+ma6yX9Gxor+8L32vSm5Fx8o5Mc9PRcdKKi5TB/O4cMeGkxv8422OUbhjZTPbk7arGs9QuVaPfTi5cqzIMOXJ37GOfbBeOTk5js2Tqsbe6WOjHc9EHRvtd9mqeRLrsXbbiIqODe2zlTbC6vEM1bWyY6O1EZGOkXzvQ3Wwc55U1Gcnxr5Zs2Zq1f4333yD/v37I54FYB07dsTVV1+NP//8M6Kxr6jPTs6TaMYoHOa59IKNsPo6IvjaIVi2Dr8Pds2T4N/+4OOd/C2JdDxDr7+skht6bGVjFKqD3dcRwe2FpiB1cuzDPUALvu8zz63Zp9DPhB4b7r1QOVUdW9H7FX0+Eh2q0q2yYyMlmn547dhYz49ufYtFhlXfDSfGKFRXN+kQKVWNj5U2wsqxD6drLHIj7XNFcqv6fCx9c/OxEkUsXHPNNVroZuU8ccuxkfTZCX2rklGRrqHynbjXkOcGRD9S4WHECRla2zGRSP1LOkb9Rzx1T/3E119/jY8++giHH344zj333LL3H330UfUDIvW55FxWq1ZN/cA8+OCD6NChg4o+MZF6aNnZ2bjqqqtw8MEHq/dWr16NN998Uy1MuOSSS8qOnT59usrxfumll5ZFlUuOeXloKw+Ar7jiirJjn3/+efUAV1ajSY0fs4bxSy+9hMaNG2P48OFlx7788svYsGEDzj77bKWrIJ+VtDD16tXDddddV3bs66+/rqJwZGVkly5d1HuygnzatGmoWbMmbrrpprJjpQ8//PCDSkl41FFHlTnzn3jiCZXi8JZbbik7VmpzrFq1CieffHKZDnv37lXHSrTP7bffXnasnHNJb3jiiSfipJNOKntoY9bAHT9+fFmR8AULFuCLL77AMcccg759+6r35AGOWcP5xhtvLGtvyZIlWLx4MXr06IF//vOfZe2JXPmMHCs1IczaIfPnz1dpcuS8mTz00ENKl2uvvVadD5EtD45k7Dt37lzOvj/++OMqlYqkTm/SpIl6T2qRSIoVqe8sNUuCVxfKuZPzZvZNajlJKmupAR2ciuW5557Dli1bcPHFF6ua1cKvv/6KV199FQcddJCaP2af5b0//vgDgwcPVg/+hY0bN+KFF15QdQPEEWDy2muvqd+DM888s+zzf/31lzq2du3auOGGG8qOFb1++uknnHHGGejevbt6T+auPFSTz958881lx77zzjuq31LP7+ijj1bvyXdCvkdSm+rWW28tO/b999/HypUr1Tz5xz/+od6T79oDDzyg9u+8886yY2V8li5dqlIanXLKKeo9GQtz7MeNG1dWB2vRokVq7Hv16lVWH0Ywjx09ejSqV6+u9mVF8Mcff4yuXbviX//6V9mxooPIlxozpg2NxEaYNRvEeSPfAytsRPA8sdJGDBgwAIceeqh67/fff1e1UZy2EZLe9LjjjlPvyffn4YcfVjbCnJNW2whJFW/W7fjss8/wySefxGUjpG9CcC0QqQv+wQcfWGIjJEKyefPmldqI//73v+o1ONVssI0YMmRI2fvyOyAr4KOxEeecc46q0yls3rwZzz77rFpQJPXB7LARwWNfkY2Q74nML/muyTkRuxAt8hsuusn3RmyHjHWNGjUqtREyx4LPcTQ2wow0CJ4nVtqIYNsVjrfeeksd6xUbYfV1hIl8zhxnK2xE8HVE/fr1E2IjKrqOMO8HQyOwrbIRVl9HyHdHFrw99thjCbuOED1FtlwDOnEdIbrIQy357gaPfbz3GvL7UNHYB19HmHMq9EFdsA2V/5OafeYiU/lb+iv7wbVI5eGcfF/kO2h+D+VYkRF6rIl5vInpwDXHJ5zc4OMjOdaUW5G+cn6kf5UdK8cFO9orwzw2Grmhx4ae92iPDXfe7To2+LyHIsdXNUaRyI11nsRybCRjFHps8HcjkWPvlnkSzbHBY2Q+/A+uJR9sv4LfDz7v5vt22Airxj54AUu8Yx98jnUb+1i+94m2EfL7v23bNnUtKMfHYiOsOtY871bME51tREVjH/z91uH3oSobEaxv8GeCj7XrXkOu54l+eNoxqkt6VB11IcSNyI+jPLyRHxp5aKcz8sNqPmiSh1qJQC4aTB3MFXVOjI/5UMsO2V999ZW6yLACedBlPnyKVy9BoqnimSfiVCX6IU4TXVLyO0XwQ3I3IA+og2+enMS8uZKbHqd0kBu0YKdHIsZevhNi8+bMmaMcGuKcixaJxLrjjjuUo8HMHFHRA1xBHD+ROCArGyNxYiVqnpDwBI+JX8bHfPgiDljd+yz6ibNYnIeJ1EFs09133+1Ye+K4l3uNWNOHVzX24lS1YuzNB5jyAK+iKIho5EhfI4mAr0yP0KhZQhKFOSfl2iJSB3oiMR/sx/od1EGHUMdLRc4Uk2DnSzy2y6mxD3bkxquXEKut1GGe6IQ4onT63ZHfeKuvG3SnogVWOhPsDHaaRLVLKicpEG4pogdo27atWpkrK0N1QFY8ywrTWB4ekfJMmTJFRZ4Es3PnzriiM2X1x6mnnlruPUnFLE64eJBV2qGRy7ICX2rguh1ZBW2urI4HWVEu0QcVrZIyU3GFrioMt6rLXPlkXpCYDwpCVz7pcGxFNwzRHGuughSCH65YeWxF5z2aY+MZz3jH3svzxImxj3eeODX2tBH6jb2O84Q2wr5j5W+JUJwwYYKKjIsVicq799571TVTVWOkk42QyEHpf2VI5HCDBg1oI2gjfGkjYp0nfr2OEH0kAln+NiOoJdLcPL6iSKxw0VluOLYqGZUda0atRPMQVIc+O3msvIamhJasE8EP73XSN9yxOuvGY+09tioZnCc8VnfdeKy9x1Ylo6Jj5bpLsoEJEvEp73Xq1EllSbHrGlIyg5jZRkwk049khSGJw9MRo5LORpxdOiDpslasWHGA443og6QnI4mjolRMQkWrqcMdW9FqJfkxqkiGDscG/0jGcqz88Dp5bEXnPZpjBbuOrei8e3meOD328c4TQYdjdRhP2ojwxwq0EdEfm+ixF10lfZCkD5V0Qvfff79K3x4tsnBQIrQfeeQRtQDuhBNO0GKeVDVGkawMl3MZKoM2IvpjBdqI6I/VYex5HRH9scEPBat636/Hhj7sDIfu/bDz2EjOkU76xnqszrrxWH2O1Vk3HmvvsTrrxmMTc2y4/3fyGpIkHk/HeEutEbO2S6KRHNXyZZMIREK8jKx4MVfwRrpJCr1IkBXBkrZPNqtTrliNDro6rYOd7Vkt2yp58crRYZ6Q8PhxfNzUZx10pZ3dj9QJldS4a9euVY7SihwhkSA1XKReodRg/v7772lnPY4fx8dNfdZBV9rZ8JgRk8H1zRIhxyo9CLEKN81JHXR1Wgc727NaNu0siQQ/jo+b+qyDrrpf8/sVTztGhw8fria8pFx1or5eOFauXIlnnnlG7Q8ePDhhehB96sLGk/LXz0j6qe+++05tutdV0EFXp3Wwsz2rZVslL145OswTEh4/jo+b+qyDrrSzByIp9h9//HGsWrUKhx56aMxypL6f1BaVGrKLFy+mnfUofhwfN/VZB11pZ6uWadW1cbzXxLrPZ+Iv3DQnddDVaR3sbM9q2bSzJBL8OD5u6nOidXXLefIbnk6l26pVKxU1+s0332Do0KF47bXXHNdBaoqa9SUltW+XLl0c14Ek1lkptadCkblAokfSEfTr169sX2d00NVpHexsz2rZVsmLV44O84SEx4/j46Y+66Ar7Wx4OnTogGeffRY//PADXnzxRSxatCimG8gXXnhBpSmSxYV79uxB/fr1XTdPSHj8OD5u6rMOutLOVi1TBzm6z2XiP9w0J3XQ1Wkd7GzPDtutgxwd5gkJjx/Hx019TrSuiW6fVExSQPd45ziZPXs2Bg0apNLYioPSSeeoOEV79OihUopJ+9OmTVOr3kn8SO0piQQOZufOnXE7N0Nzi4sDU8YvHiRaeNiwYQekVh4zZgzczt9//60iQ4Jh8WhCCCGEBCO3Gx999JG6dvv2229jllO3bl3cdtttuOaaa5CZmQkdkOueqVOnVnrMiBEjDrheIoSQisjLy8OaNWvK1a5q3749a1OFWTxTVWo6SeseSS1oL5+j3Nzccu9lZWX5+pwQQgjxN4WFhfj555/VfkFBgXrt1KmTrfeXfH6uJ56/GhowYABOOeUU9UBm1qxZOO2007Bhwwbb2124cGE5p6g42OgU1Z9Qx2pF0Z5WpONlKl1CCCGE+AW5FpZr8BUrVuC///0vmjdvHpMcWQQ3evRoFY0qcoqLiy3XlRBCCCGEEEIIId7G845RQSI1TebOnauclA8++KAtbUktU1kVfuqpp2LdunVl74tTluhPvXr1LK8xun379gPeE6c5iR5Z4CBjIpvuwe466Oq0Dna2Z7Vsq+TFK0eHeULC48fxcVOfddCVdjY6eZJC6JJLLsFPP/2EBx54QEWAxsLGjRtx6aWXolu3bvjggw8q1VeHeULC48fxcVOfddCVdrZyecFbouRYpQchVuGmOamDrk7rYGd7VsumnSWR4MfxcVOfddBV93PkV3zhGBVHqDhEZRLKinV5lTSm8nDm/PPPVzVIrYgQldpH8oBHUqeaXzZpb9KkSawt6hLkAZvVVORcZY3R2NMdPProo2qTfZ3RQVendbCzPatlWyUvXjk6zBMSHj+Oj5v6rIOutLOxyZM0RaNGjVKZVSS9bqxpiyQtb//+/VV2mGXLlkWtB0k8fhwfN/VZB11pZ6uWaZXNjveaWPf5TPyFm+akDro6rYOd7Vktm3aWRIIfx8dNfU60rm45T37DF45RoU+fPnj99dfLOUfN9Lrdu3dXTtJ+/fph3LhxmDNnjnKW/vbbb2qTKFBBXuVv+T85Ro7t2bOn+qxEiEo902CHqCAO2JtvvjnBvSeRIuMZSrxRo6HpeMUpylS6sSP1ddxSY0cHXZ3Wwc72rJZtlbx45egwT0h4/Dg+buqzDrrSzsYuTxYUygJCqfFyxRVXxFzz7OOPP1bXcLJI8ddff41aD5JY/Dg+buqzDrrSzhJCCCGEEEKsJCngs1hecV4OGjSozHEZ3H3zvWgIPX3BcmUF/MSJE+PWmRzIlClT1PkNrTsVr8NRal+JozyY5cuXxxVJKvJEbrCTft68efACLB5NCCGEWETODuCnD4BNS4HcnUBhLpCWBWTVBZr1Ajr2N/Y9zOrVq9XCw//9738xy0hNTcXw4cNx++23H3CNYgdy3TN16tRKj5EyG07oQghxP3l5eVizZo3aT09PV6/t27enM7UCSkpKUFRUVOVvQqyLbrxyjnJzc8u9l5WV5etzQgghxN9I9KYszBUKCgrUa6dOnWLOYhQJfH6uJ767GhowYIBaSS6pbc3ITnMLzTkdySaEyqhdu7ZyfNEp6j4qcoCGS80WKcG1ZoWBAwfGJY8QQgghHmLrj8DCCcArg4CvngE2rwJ2bQT2/W28yt/y/ssDjePkeI9y2GGH4d1338Unn3yCXr16xSRDHpI/8cQTaNOmDe655x7s3bvXcj0JIcQuKnJYiXOLEEIIIYTET0XXVVww5E98OeqSylSiACV1lzgxK3JwRrMJpqNUHK/r169XtY6IO5ExDEbqX8WKpOENTcUrEcuEEEII8Tly/blsBvDmMOCXeUBxIVCUB+z9C8jeBOzaYLzK3/K+/L8cJ8fL57yW9EUiZle+DLwzEv/YPB1fXHMwZt/4D7Q/KLZsIOIQvfPOO9G2bVsV0cm6LoQQNyARjibmc4ri4uIEakQIIeEROyVOhso2nyUqJIRojpltItg2BV9/Ef/g61GX+p+yPfPMMyo1a3BkXyRpdYO/QEOHDlWpXVu1amWbvsQZJIWbpFw2mT9/fsyyQj8rTlfWF43vx+v9999X+/3799f6h0sHXZ3Wwc72rJZtlbx45egwT0h4/Dg+bupzwnQNSnlbtG8n3t9cD0hOQf+WRUhtEWHKW7mG/OxBYM27xt/5u430ueIADUX8eXnZQGomijLr4/38HsDCL9F/7zaknjhaLlrdbWclAnb1bGDdIsP5W4r06rwOQP9bD8dNCwJ4bd5y7NpbPh1gJGzZsgVXX301JkyYgIcfflhl7oilfAaxBzfZHD/2WQdd/XY9KxELZiaq4PS61apVO+BYOcZ0mqakpMRs2+KVY5UehFiFm+akDrrGo4N8NpKU1sEy7eyz1bJpZ0kk+HF83NTnUF3z8/PL/b/obnfEaFV2kiQGX0aMhiJOTUmvK5GBkydPVjUgq0qhKw5Q+ZykzJUVUE8//TSdoh5KpxucUje4Pmi0hNYSHTZsWFy6+R35rq1cuVJtuqeU0kFXp3Wwsz2rZVslL145OswTEh4/jo+b+uy4rhWkvC3Z9TtW7qmHldm1UbL5u8hT3i5/fr9TdO8WYM/mUqdoEpBRC6jRFKh1iPEqf8v7RXko2bMFK3MPUlvJmvcNOW61sxFGzKbkbkOTI/tgxHU34M7etVAjPbab7j///BODBw/GMcccg08//TTu/hH/2Rw/9lkHXf14PWvWEzWP2bNnT6UyrbLZ8V4T6z6fib9w05zUQVendbCzPatl086SSPDj+Lipz8G6mqVWzL/Nmu52t0/0Q9/lqQlAHJs333yz2kyys7PLIkkl0q9evXoq/S7Rjx07dlgWjSlRo8G1QCWqWBzh0SKfMxFnqzjdSezIyp6TTz65bF9ndNDVaR3sbM9q2VbJi1eODvOEhMeP4+OmPjumqzjwxAEZ7IQUB17eLqQUFePk1OXKcZmy7y8gS5yYMBx9snW/zNiCV9CKw9SUJU7RPEm5nwRk1TMiTZND+pJZC6jeSEWUpuTswsnJS1X0aEpSqV7NjwEadXSXnY00YjYQQErJXpyMz4GMJBx3Yiau7pmGCYv2YurX+SiK4f5y6dKlOPHEE3HGGWdg4sSJqq4pSRxusjl+7LMOuvrxelbuabdu3aoeoslx+/btU5EOFX3GKh3jlaP7XCb+w01zUgddndbBzvbssN06yNFhnpDw+HF83NRnU1e5tpLrKnNfqFWrlmPtE71ICjDZO3EhkrZY0h8HIxG/Uj/WKrp3714WLSpyo601KvqJnnbppwN///03GjVqVO49uYlv2LBhwnQihBBCLCOalLcmqZmGg1NFegLodCZwwqj9zlGJJhWnqciSSFFxitaUyNCaVeuTv6f0M4HSz9QC2vUFet8GVyGRogc4h1EaMVsTSKsOJCUDOduBgj1AoKS0pqpsSerf2h3FuG1hAWauLohZDUmZdOmll+Kee+7BIYccEpMMue6RGqaVMWLEiAOulwghJBwFBQX4/vvvy6JHJcVb48aN0aBBg0SrphXyQDOSFJ52p8fT/Rzl5pZPQ5+VleXrc0Kshd9DQoibkDIr27ZtU9lACwuNMi4dO3ZUv412wufnesJfJuJKKkpvG0/K24qYNWtWWQSqRA2HOmIrY9euXeWcopKi2WtOUUIIIUQ7pP7nypeBd0YCMy8BXhpgvMrf8r44NaMhxpS36jg5XpDPm05A0U9qaQqmLhIpGolTVJDj5Pjgz6/7OPp+JZKwEbP1gXptDIevRMkW5xlbcprhJC0jAASS0KZBJl4bVAtfXd8KJ7fJivlh3owZM9CuTUuMvexM7PxzvTV9JISQOJCUbmZaNzOaQR7kyT0mIYQQQgiJnu3btyunqGDWHJUFaHY7RYm+MJUucRXi/Jw2bRrmz59/wP8NGTJEpdOVdLVWOCFFxoIFC1TkqCCOTnlvwIABlX5OblhPOeWUck7RMWPGxK0PMQpm5+TkqP1q1appX9w70bo6rYOd7Vkt2yp58crRYZ6Q8PhxfNzU53K67t2IpO/fMJyOUqsylF0bVU1QLJ8BtD4JOGxA1elnI0h5K0GMOQGjFly1jFpIKk15i9wd+6MgazTen/L2j+X7a2maDlaRFXGfgZyMhkBODqoV5iLJjFz96QOgy4URy0monV0923iViFnznIZGzBbmGdGiIqe4EDlIV4dVQwGSAsWS88Y4LjkFPQ9JxYLRPfDR6u0YO2ctvt2cH7WueQXFmPLC/zD99fdx66mNce2Z3ZHZqBXQrBfQsX9UY0S8a3P82GcddPXr9ayZTlce3MlxEm31xx9/qMisunXrqpRsocm/4rmejUeOVXoQYhVumpM66Oq0Dna2Z7Vs2lkSCX4cH7f0WRaY5efnK6eolEs03zMXnh188MGO6MGErXqSMMfoAw88UHbBf9VVVyVKDdfi9fMnTsjg+pyRrI6VY4YNG1buveCao+LklDqf0SDHL1++XNUblahRea3M0SmOW/NYgU5Ra5E0B+bclzqwThTIdrOuTutgZ3tWy7ZKXrxydJgnJDx+HB839bmcro0WIT25pFz9T+WAlBSsEm2YkgZk1qm6/mcwETjwCgPJeGDrCUE6AKjeAEjNMKJG5XNpWUY06eo39keRmk5TkRVaU7SyPkt7204y2kuZjvS8bKBGJrDxy7gdo47Y2UgjZvNK/6+kGIVIwgMYvr/PJXlAoEj9nzp3+XuQVKMRTju8AfoeWh8vL9mI8e9uwsbs6AuQ7swtwc3vbMbjn7yPe/s3wUXHr0RKNM504mmb48c+66CrX69nmzZtqmpgySbOUDMVpUSOisO0evXqqFmzpnpfnKRmyt1YH9aZkRMiK5YH9vF8PlaC260MXR/WJuocyXzy+jlJ1Jx0q67x6BDL99DOPlst2yp5brWzJDL8OD669lkcnqKX/Nbt3btXbWbKXEH+z9RbrqNksZkTBOtA9CFhjlFxFsmXxquOPbvxw/kTR6fp2Ax2cMYiJx7EOSr1QU1nrbxOnDgRgwYNKosmlf+XKFYzna9ElTJ9LiGEEGIjoasuK6v/Kfch4kQMrv8pUZwSlRhc/9PEipS3RflA7nbj89KepLytVt/4fzOqVWppxkNxaX3NshqdmiORrVVFzJYUGbVU1X7xgZU/xBmqbmZL644mlY5tVj0kJyfhkuNbYOBhWXjqk98xYdE+7MyNfnWuOFUvffVPPLhoGyad2w6nFc1FUiTOdEIIsQhxgrZt2xa//vprmXNUHjyadfrMh32EEEIIIaRyxBkqzknxpcgmTlE+sydJgQTF8poX9OKZl3BmEh08f4lj9uzZmDlzpooKlc104IpBlTS+gwcPjjoy1a2weDQhhJCEsWxGBaluUVr/s6bhdBQnmjjXCveVOttKL3slelRS3Ari6OpxeXnZUo/0q2cM592uDYZMqX8ZRXSncvDtkAwSAaBOC8MpK05BiV4VmSJb6pOmx+AcLdgL7P7DkCmyqzcELi6NcNUZqfUqKY33/mU4M8VhLFG4wYizOmebEe2rHL9JQEp6eWekigaWlLqpQEoqkFYNqN2s/Lnf9jN27SvApCWFePSLXOQVxa72ye1qYPJ57dCzZU2g05kVO9MJIcSmyAfTOWpiptY1nwnoEqVBCCGEEJJoTFeXvAanzTVp3LgxDjroIEd14vNzPUlojVFewMcHz19ikGjQquqMEkIIIcRGIqj/WY7MWkBV9T+D06RuWhpXyltFcqrxOZWKtzTlrTg0RT9J71sWERkD5s2dKSe9GlyBGX1bWcRsQU75cyN9DL3mlfcCpVGj6tgQr6f8HShBnawkTDolA9f2SMWdi/Lx/DcFKIlhSejHv+zFUZNWYlD3hvj3WbloK5G/oc50QgixMXJ08+bNqjaW1Mky09dFkr6S+JvgurYmutc2JoQQQuy4npLfP3FO1q5dO9HqEE0IyU1FCCGEEEKI5oSr/yn1PcM5MOV9+X8VoZhkfE4+r+S9Eb0DLxLMz5kpb00kalSQSNZYMD8nkZSCWT9VdwpzjVeJBhUqGiupH6peA+Wdv+UofaBrOjlNecHjp5ynxv8dUjsFz51bF99eWx9ndoy9XuDry/9Gp7uW4drR47H1+89jlkMIIdE+zDv44IPRuXNnHHrooeqhntQnpXOLEEIIIeRA5BpJ6rCbGR4PP/xwtGvXjk5Rok/EKCGERIPU1pFaroKkLZYfOV3RQVendbCzPatlWyUvXjk6zBMSHj+OT8R93r4OWPwQsPFLIwpSHH/ipEuvATQ/GvjHaKBuS3uULK3/WRRIwvzd7YCS1uhT/Wekxlv/85ir99e7jMSBJ+dLdNjTVu33qfkrUpNCwhFL0xyWyZHzYzoyJYpU0vtKJGuE0ahGn1sDeQ3QJ/kLpGaW3tjJOXeDnU3LMv6zsojZECdnUSAZ84uPM+RIn5Pk/02nKQ50nopMs0YpAihCCubjRKAY6NNoKd65sBY+XZeLsfPz8OXv0UdbFZUE8OQnf+KFnr1x8y234aabbkKNGqXjSqKGdlbvPuugK69nyyMOUXGSyhYs74QTTlA1SGNBIk8//9xY7HHcccdFLSfezxP72LlzJ7p3717uveXLl6uSTF7GTXNSB12d1sHO9qyWbZU82llv48fx0bXPsphMrq/McgOCXC/NnTs34dezRD/0vQsjhJAQJC/80qVGesPevXtDZ3TQ1Wkd7GzPatlWyYtXjg7zhITHj+NTZZ9/fB9Y8hjw17cHRukV5hhRmBLN+f0coMkRwLEjgY79rVXypw9UJGdJUSGWFh9q6Jr1d3QysuoYKXWlzqdsptwuFxr7kTjw5O1AEpbmGLUte9dYC4Q6RkNT3tZtDuzbZuxLfVBpW5yzEskaAaq93BZGe6mrDBkSfdrh9Cg6n0A7K47nXRsNnQtLI18lzXEwIRGiJUjG0sARhhyIvJKguZe8P22xiTicxXFaGnFagiQsRZfSz3+txvIfLVOx5KraePOnYoybtxc/b4veQbo3twB33nknnnrqKfV61VVXIS2tNBKYRAztrN591kFXXs9GLk+cprFQUFCAL774Qu2fdNJJUcuJ9/PEPuThr6RhDn0vMzMTXsZNc1IHXZ3Wwc72rJZtlTzaWW/jx/FxU591uZ4l+kHHKCHENcgKpOOPP75sX2d00NVpHexsz2rZVsmLV44O84SEx4/jE7bPciH/5jDgx3eD3isureUY5AyUtH7ipBJ/1eZvgDeuADqeCZwzbX/0ZLyU1v9MyduJ45OWA6kZSFGyA/HV/5ToV9MxGokDT3RICuD46r+V7VeZ8laiQxsfBvwyz2hjz2bDQZuaYehTBSkFu3F80grV15SsUn1an7w/0lV3O9usF7B5VeURs0lye1JgzKUAkBIoMsZZ5CinaODASN706gee89K6oylJwPFYplykKWV1SZOQlJKGcw9Nw5kdM/Dc8lzctXAftuyN/oZ1y5YtuPrqq/Hwww/jvvvuw3nnncf0llFAO6t3n3XQldez9svj9SzxGm6akzroSjtrvzzaWW/jx/FxU5910FX3c+RXkgJSjT0BSEiz+dBgwIABiVDB1cyaNUu9SgqU7du3J1od4lP+/vtvVeMmmK1bt6Jhw4YJ04kQQojFiFP0pXOBTV/ur7upIigru4QUB2nK/lqazY4GLp5jjXN05iWG0zJ7kxGlWqNphU7LKsnbDezdDKRVA2o3A+q2AAb91/i/lS8DXz1jRHTu2mD0p16biFPeljnmdqwzzlOdFkZ0Z69hwEHdDCezsHfL/hqpWfWMSNbg6MdgWbm7DCeqyBPHYo3Gxv+J07lRR7gCSYP8yiBjDsl5lfObVb98xGzOdiBnm+H8VLVZkwzHsulsLBZnvDg9k4FUcTgnAfXbAEmlY7NzvZEq2YwETpY5WFJac1ScqsXGsebcLGVvfgkeXpKDKZ/lYG9B7LdHvXr1wpQpU/CPf/wjZhmEEEKIFfB+nRBCCEk8/D3WEy0iRmfPnp1oFVyHOJUT5NMmhBBCiJ8QJ544ReWyozg/JIVuqQNUFXsMBDlMZV8cWCVASobxeZFz3vT49Ymw/meVhNb/LMjZ/3+Smnb5jJhT3irEkSnnQT4fnPJWoju7XwYsf36/c1Oco6rm6Q4jcjStuqGfOKUlAlLVzCy97gt2iooctzhFhWr1gNYnVR4xK3VTxTmqUurKVmLMq5RU43yoqM+gcZfPmU5RczyDUx+LHPmcHB8orDBdr1AjIxm3n1wDw3pWw4RFe/H017kojD7DrkrTdOKJJ+Kf//wnJk2ahMMOOyx6IYQQQgghhBBCCLENi3KaxYY49rjFvhHiN2TeSx572XT/Duigq9M62Nme1bKtkhevHB3mCQmPH8fngD5LTVEzfW6wU1QcSymZQFqpw0+cVvKq/s7c73hSUX/5xr7IEXnxUlr/M4BkFARSUVBcPptvxITW/0yvdqADTzDT1IoDTzko9yPtFpQkq62cDnKciu4M+nxwyltxaHY609gXJ2fNpobzVJyf+aWRrLv/MF7l71IHa6BGUxRUa2q01/EMQ47b7OxhpZliMmoZTl7pmzhIpfaqONPNNMdCcopyBxeUAAVFJQiUiGMzYKTbNR2joWmElfPUSKMrDnulR1IGCpAWNEbhU902qpGMx86ohTXX1cXgQ2OvGfree+/hiCOOwOWXX45NmzbFLMfr0M7q3WcddOX1rP3yeD1LvIab5qQOutLO2i+Pdtbb+HF83NRnHXTV/Rz5lYRFjC5fbtQKIoSQSCksLMTEiRPV/rhx47Qu7q2Drk7rYGd7Vsu2Sl68cnSYJyQ8fhyfA/q85DHjPyT1aVmEZqkjNBzJEkWaYaQ8FUeWco4WGo5Tkdexf3xKltb/LEzJxMS8S4FsYFzGIqQnRVkfMrT+p3LSobwDTyIbxYEnUaoS1SkOPEnTWprytjCQjIlbDQfquEaLkB4oODDlrXxeyTtvv2xJC3vCKKBafSNyVI6RTSJTpfampJCV86Yc0OlGFGVqJgpLgtq7YiTSLaxl6ZidlQjXqiJmZY6VOq4LkYaJSdcacgKPIV26bM6/ag1KHcpB6YaL84Ic3gFjjDAcKAbG4UmkS/3SCOrRtqmbhNcGVsPo4wIYOz8PC9fJ56K/AX7++efx2muvYeTIkbjllltUGQyyH9pZvfusg668nrVfHq9niddw05zUQVfaWfvl0c56Gz+Oj5v6rIOuogPRj4Q5Rrt27ZqopgkhhBBCSFXsWA/89a2xb6YmVY66CC8f5ThJe2qmNhXHqMjb+RtQt2XsejXrBWxeZTgdS32bRnrVKJyE4kQzoz/F6Sg0P7r8MZE48FKDapvu/QsoKE2fG0nKW3Fq9rgcaH4MsPoNYN3Hxvs1Sh19ocj5kyjWreZYWOcUdRw5H5Iud827xjmSKGBJVSyOYRUhK5SUpmNODRpa2Sk2HO3q/GcYtWKD0w2rtLqlKZ7FwaxqiwZ/3kyfXEkKZlWL1HDM9miWgfmXZ2LupiyMfXczVm2O3kGal5en6o5Onz4dt956K6699lpkZoYZZ0IIIYQQQgghhNhKUoCxvIQQlxSPFnNlrrJJS0tTtXZ1RQddndbBzvaslm2VvHjl6DBPSHj8OD7l+vz+TUj6frbh1BQHkyBpciUiNFJKglLpSuSjOKsOHwj86/HYlczZAbwyCIGiQhTu+kM509KyaiOpRhT1PyVtqzg4JdqwTgvD6XjRrAPTsspl8mcPGg48QZx2pgOv9L8LS9cZpqHI8FWKTJFjRopKylyJDq1q/ojcnz4ANn5pOGCl5qmk9xUHqzhtO5yOQGYd79hZOXnidJbNJDhiVs27fASKilAoEciBEqQF8pEkDlNJtytbKHLu5bzv+9twkqryE0Bhak0VSZoWKERSiczHJKP2bbguSrSzSsebDKTKiuIkNU9KdvyGV77NxfiFediwI3oHqUmzZs1w77334uKLL0ZKSow1cj2C7+2s5n3WQVdez9ovj9ez3sXp+3VdcNOc1EFX2ln75dHOehs/jo+b+qyDrvLb27hxY9/9HusOHaOEkJjx640WIYT4gsd7ALt/N1LHqui5JKOGaLQU5pVG8omTKQOodQhw3bL4dFs4wUhzK45KSW8rukmdTrM2ZWVIZKH6TKD0M7WAdn2B3rdVfHxVDrwKUt6Wi4yUTeMbxYSz9cf9EbMSCRp67sWBLdGlMsYyvmnVjPNf2bmX8RVnt6TklUheuduRY5OTgSJxaMrnpC5uBc5VcciqWqalaaPFmS9zRPZLnel51ZvhqU+34N8LtmHHjp0xd/3www/H5MmTcdppp2n9MIEQQog74f06IYQQknj4e6wnCUulSwghhBDieyT6UaIENy01IgallqWkFZWIQ0kZK/U4Q6MYnaJgr/FqrqETB1EsyOdUStRSOQVm/ts4iKD+5wGYNSirqv8ZSkwpb082ZIamzyUHIudInNLHXB0mYraLEdUr7238otR5Wpr+ONy5P6gr8MnkICf2rtII1FJHqjhJJf1ySbLhLBVkfsoxKlJUxj1l/5wXx6tyzho1bjPTknHT8EtxxTPXKMfmb7/9huLi0hTHFfDRRx9h924zRfB+vvvuO/Tv3x8nnXSSSrXbs2fPuE4lIYT4iezsbMydO7fSY/r27YvatcP8ZhBC4qagoAB//vlnpcccdNBBWtcfJIQQ4k/oGCWEuAZ56Lho0SK1Lw8RdU4/p4OuTutgZ3tWy7ZKXrxydJgnJEHjo6LkZgPrFh0YJSfs2mjU0Vw+w6grKY5AB5xs5fpcVBRShTHWiLaQz5mpdeOhUUcUd70Uiz79DEBrnJSxFCn5O8rX/0yrbji9JJ1vcA3KSOp/RujAK87dhUV/1VQOuZMOKUFKSyPlrV3ObE/bWTlnXS40torkpAAnnX89Un6dW2m64bJzv3eLivItrt4Ei/KPkEqfOCmwGCkqxa7MyZLSlL2ljlEjrDTIKZpmOEslClU5RQ90ptepUwc33ngjpk6dWmnXzPNQ2f8fddRRGDhwIO677z60bdsWfsGPv4Nu6rMOuvJ61n55br2ezc/Pxw8//FDpMSeeeKIjuhC90MF2uUnXeHTYtWsXXnjhhUqPGTFiRLlIKdpZ99hZEhl+HB839VkHXStbREsSBx2jhBDXID8kixcvVvsnnHCC9j+8idbVaR3sbM9q2VbJi1eODvOEODw+YdOy7jIcpGWpQdMMJ4wgkZGyOZCWtVyfq2cgpWhvsPIxSg35nNR2tIDiIy/C4g82qf0TGv2GlPSM/fU/JcWubKFUVP9Tzmk0BDnwigsKsHjiREOHoeOQYvNqeNrZE5BSgfO0QmRcc7aj+Pv3sLjwUOPzKSuRUrzH8NUr56g4SYNuUuW7J05R+Y6pdLpJxnySv2NxpkfJrFmz8Oabb2LYsGG4/fbbD6hD40X8+Dvopj7roCuvZ+2Xx+tZ4jXcNCd10JV21n55tLPexo/j46Y+66ArHaN6QscoIcQ1JCcno1evXmX7OqODrk7rYGd7Vsu2Sl68cnSYJ8TB8RGn6GcPAmveNf4Wx53pyAtFfDJSwzLYkSfOVIlcO2GUbc7Rcn3++T0gf7vRlplmVBy20SKfE0yd06tbo2tKiqHrlh+QnBswzpFsDtb/pJ21X17McmRcTxiF5Ix66PXpEuPzNdsAuzcZCxGSxClauinnvekolbTPcnCq4SQ1U1vH40yPgqKiIjz55JMq+mL06NEYNWoUatSoAa/ix99BN/VZB11pZ+2Xx+tZ4jXcNCd10JV21n55tLPexo/j46Y+66Cr7ufIryQFAmbBJ0IIiQ4WjyaEkChYNmN/pKik+RTnjCIpKPWr1OMsrjr1q9S8tJu3rzXS/arajAXGeymZQHIUjkRJY2umzhXnpPTv8IHAvx63VleVmri0/mdFqYlNWP/Tn4TOD1lgkLNt//+bjn/5volDNDUDSKsWkTNdrnuqSqUrjk65ZooFuc668847MWTIEKSlxbAwgRBCPEok9jc0haff4P06sRt+DwkhpGr4e6wndFcTQgghhDjhmDnAKZoEZNUH6rUBajYFMmsZ0ZTyKn/L+/L/cpwcL58TRI7Is5vjbzKiLcWZadYJLSl1kEaKSkcqJBlyRJ5EvFqNWf/zollAr2FA0yOBui2A6g2NV/lb3pf/l+PoFPUXofOjTW+g+TFAjaaG41MWJch3rmFHY6vbyliIIP8nzvR2fYFzphkLEmKIML7jjjvQpEmTmFSXG+ZrrrkGhx56KGbPng2uaSWEEEIIIYQQQuKDqXQJIYQQQuxGIi/N9LmmU1QcMRIpGg5xJFZvYESv7dlsfE7SekpKT4l+E0ePndRvDTQ5Atj8TWkkq6QYlQjQIiAlgkvI4tLjzb4IIq9uS/t0Dqr/SUhE80PSWf/0AbDxS+M7VpADpEu0aB2g+dFAh9ONz8XBoEGDcPnll+Phhx/GlClTsGePRINHxy+//IKBAwfiqKOOUjJOPPHEuHQihBBCCCGEEEL8Ch2jhBDXUFBQgIkTJ6r9cePGIT09Hbqig65O62Bne1bLtkpevHJ0mCfEgfHJ2QGsW7TfCSNk1avcKRqMHFeUD+RuNz4vjlFJCXrM1XE7bKrs87EjgTeuMKLmxMkpm0SBBoqB5DQpllFx+lx1TKlTVNX4LE0BKvLs0pV2VivZrrGzDjnTq1evjvHjx2PYsGGYMGGCSjtXWFhJ2ucwfPXVVzjppJPwz3/+U/Xr8MMPh5vR4XvsNG7qsw660s7aL4/Xs8RruGlO6qAr7az98mhnvY0fx8dNfdZBV9GB6AdT6RJCCCGE2IlEo0ldw6I8Y1MpdKN0aGbVMT5nyhB5ItduOvYHOp5p7KdkGE5OQUWO5gOFpbpIdKi8qr/zQ5yiGaWyzjTkEeJjpI7Mo48+ijVr1uD888+PWc57772HI488UkWibtq0yVIdCSHEDWRkZKBz586VbnIMIYQQQgghoSQFWKiGEOKS4tFirnJyctR+tWrVkBRDnS+n0EFXp3Wwsz2rZVslL145OswT4sD4vDMS2LwK2PsXkJdtRHxKGt1okXS6kopXUnxK/UOpm/mvx2B7nyUC9KVzgU1fGgeJA7SkWI6uRFJpTVEzUrTZ0cDFcyqOMLVSV4ehnbVfnu52Vq57JPqzMkaMGHHA9ZLJsmXLMHbsWCxcuDBmHeTB/8iRI9UK6Lp1rY0itxsdvsdO46Y+66Ar7az98nS3s8Q99+u64KY5qYOu8ehQUlKC3NzcSo/JyspCctA9AO0s7azX8OP4uKnPOugqv72NGzf23e+x7tAxSgiJGb/eaBFCSFTMvATYtRHI3gQU5gA1mgKZtaKXk7cb2LsZSKsG1G4G1G0BDPovHEGco28OA358N+i94tK6o0GXknKTkZy6v6aoGSl6zjRLnaKE6EK8jlFBbsfmzp2rHKSrVq2KWZc6derg1ltvxXXXXYfMzMyY5RBCCPEGvF8nhBBCEg9/j/WET6gIIYQQQuyksHQVtZleNthpGA2mY9GUU2CsenQEafu86cB5/wGadjFS5Eo/UjOAtMz9m/wt78v/y3FyvHyOTlFCwiKrlvv164cVK1bgxRdfRIsWLWKSs2vXLowZMwbt27fHCy+8gOJiiewmhBBCCCGEEEJIMKnl/iKEEI2RB3yff/652j/uuOOQkhKjc8Enujqtg53tWS3bKnnxytFhnhAHxicty3g163OqNLQxRm0Gy0mvBsf7rGqO9gd2/gZ89iCw4QugYJ9RV1RqiaZXB1ocA5wwCqjb0nL9otLVAWhn7ZfnJzsraeYuvvhiDBgwQEWhTpgwATt27IhajtQcveyyy/Dggw9i0qRJOP3007VNb+Wm8fFjn3XQlXbWfnl+srPEH7hpTuqgK+2s/fJoZ72NH8fHTX3WQVcuWNUTOkYJIa5Bfkg+/vhjtX/00Udr/8ObaF2d1sHO9qyWbZW8eOXoME+IA+OTVddIpSv1NgslgnRfbKl05XNCSrrxKrVGE9VncXr+63EkEh2+P7Sz9svzo52VNLg33ngjLr/8ckyePBmPPPII8vLyopbz3Xff4Z///CdOOukkJeeoo46CbrhxfPzUZx10pZ21X54f7SzxNm6akzroSjtrvzzaWW/jx/FxU5910JWOUT2hY5QQ4hokkqJr165l+zqjg65O62Bne1bLtkpevHJ0mCfEgfFp1gvYvMpwZOZlA/l7gOqNokupK7U85XNCZm3jtfnRsBo3zUkddKWdtV+en+2s1AydOHEirr32Wtx5552YMWMGSszI8ShYtGgRevXqhYEDB+K+++5D27ZtDzxo+zpg8UPAxi+Bgr1AcYGxCCO9hmFr/jHalihwN4+PH/qsg660s/bL87OdJd7ETXNSB11pZ+2XRzvrbfw4Pm7qsw666n6O/EpSIBAIJFoJQog7YfFoQgiJgJwdwCuDgOJCYNcGoCgPyKoPVG8QuYx924Dc7UBqJlCnhRF9etEsIxqVEJIw5LpH0t5WxogRIw64XoqFH374AePGjcM777wTs4zU1FQMHToUd9xxBxo3bgz8+D6w5DHgr2/31y+uCEnh3eQI4NiRRjptQggh2sP7dUIIISTx8PdYT+iuJoQQQgixk2r1gNYnGfumIzN3x/4I0KqQ4+T44M+3PplOUUJ8RufOnfH222/j008/xTHHHBOTjKKiIjz11FMqavTuwd2x55XLgM3fGE5RqX9clA8U5u3f5G95X/5fjnvjCuCNIftrHhNCCCGEEEIIIS6DjlFCCCGEELs5bIDxmlGrtDZoANiz2YgElTS5FSHvy//LcXK8fE4+r+Sd55zuhBCtOOGEE/D5559jzpw56NChQ0wy9u7di7teX4G2D23HU1/sQWFerpE+V0WNBvZv8re8L05SiXoXfnwXeOlcOkcJIYQQQgghhLgS1hglhLiGgoICPPDAA2p/9OjRSE9Ph67ooKvTOtjZntWyrZIXrxwd5glxaHwadQS6XwYsfx6o0dh4L2+XkR5XokEzagJp1aX4hOFsKNxXGlFaWvFAnKLm50SOyLMBN81JHXSlnbVfHu1sxSQlJeGcc87BmWeeif/85z+qBulff/0VtZyt+0pwzXs5ePiLZNzXOwMDOqchKUVuEZMM+yPRoqaTVBZriKM0JQPY9CXw5jDgvOlx9cOr4+OVPuugK+2s/fJoZ4nXcNOc1EFX2ln75dHOehs/jo+b+qyDrqID0Q9GjBJCXEVhYaHa3IAOujqtg53tWS3bKnnxytFhnhCHxkccmp3ONPbFyVmzqVEzVBwO+buBvZuB3X8Yr/K3vC//L8eZTlH5vMixETfNSR10pZ21Xx7tbNU1Q3/99Vfce++9qFmzZkxyft1RgkGzc3H0f3KwaEMAEOeo1DJOywRSMo0ao4KKIM3fHzkqNUrjxMvj44U+66Ar7az98mhniddw05zUQVfaWfvl0c56Gz+Oj5v67CZdiXMkBQKB0lAEQgjRu3i0mKvs7Gy1X7t2bRUtoSs66Oq0Dna2Z7Vsq+TFK0eHeUIcHh+57JKoUdlMivKAvOz9aSzFAZGSDmTWLnWcliIOUdlsnCdumpM66Eo7a7883e2sXPdMnTq10mNGjBhxwPWSnddmEyZMUDrFc/Pfv306JvWtgcObpO1/s7gIKCmVmVzqOG3aBbjiQ1d/j53GTX3WQVfaWfvl6W5niXvu13XBTXNSB11pZ+2XRzvrbfw4Pm7qsw66ym9v48aNffd7rDt0jBJCYsavN1qEEBI3W38EVr8BrPt4f92+ihDHQ+uTjZqiNqXPJYR4xzFqsm7dOowfPx6vvvpqzDLkmcH/dcnEPafUQPM6KcabRfmldUiTjGhSWcgxYglQt6V1yhNCCLEE3q8TQgghiYe/x3rCGqOEEEIIIU4jTs7etwHHXA389AGw8Uuj5mhBDpBezagp2vxooMPpQFbdRGtLCHEZrVu3xiuvvIJRo0Zh7NixWLBgQdQyZPnsCyvz8Np3eRh5dDWMO7E66maklabSLa0/Khl2P3sQ+NfjtvSDEELctjCFED9RVFSEHTt2VHpMvXr1VOp/QgghRCf4y0QIcQ3FxcX4+uuv1X7Pnj2RklIavaAhOujqtA52tme1bKvkxStHh3lCEjw+4vTscqGxaYCb5qQOutLO2i+PdjY+unfvjnnz5qlt7BVn45s/cqOWkV8E3L84B9OX5eLWE6vj2u7JyJIMuyVFQHIKsOGLmPXz4/i4qc866Eo7a7882lniNdw0J3XQNR4dxCka7QIF2lnaWa/hx/FxU5910FV0IPpBxyghxDXID8lHH32k9rt166b9D2+idXVaBzvbs1q2VfLilaPDPCHh8eP4uKnPOuhKO2u/PNrZ+JE6On379kWf65vhla/+wvh5e7AhO/pqKrvyAhjz0V48/mUy7jkpHZcckY4UuZss2Bezbn4cHzf1WQddaWftl0c7S7yGm+akDrrSztovj3bW2/hxfNzUZx10pWNUT+gYJYS4huTkZBx++OFl+zqjg65O62Bne1bLtkpevHJ0mCckPH4cHzf1WQddaWftl0c7ax3JgUJc3CULAzsAT32djwmfFWBHbvQO0k3ZJbj87Tw89EUBJvVLxumH5knF0dh08uH4uKnPOuhKO2u/PNpZ4jXcNCd10JV21n55tLPexo/j46Y+66Cr7ufIryQFAlI9hhBCoofFowkhhBDiZ1xV4+7BjkYt48I8VSM0uyAZkz8vwCNf5CC3MHaxJ7bOwpRXF+Goo46yUltCCPGO/U0QvF8ndsPvISGEVA1/j/WE7mpCCCGEEEII8TrpNYzXJCO+s3Z6APf1rYlfbmyAK7tnIjnGsM9P1uWiV69eGDhwIH755RcLFSaEEEIIIYQQQqyHjlFCCCGEEEII8TrNjzZek81qKgGgJICDa6Xg2XNq47vr6uNfHTNiFj979mx07twZ11xzDbZs2WKNzoQQQgghhBBCiMWwxighxDUUFBTg0UcfVfvXX3890tPToSs66Oq0Dna2Z7Vsq+TFK0eHeULC48fxcVOfddCVdtZ+ebSzFnL8TcD3c4ylscVJpY7RAiDZcIZ2bpSKty+ug8W/FWDMR3vxxabo8+sWFRXhqaeewgsvvIDRo0dj1KhRqFmzZtjj/Tg+buqzDrrSztovj3aWeA03zUkddKWdtV8e7ay38eP4uKnPOugqOhD9oGOUEOIqcnJy4BZ00NVpHexsz2rZVsmLV44O84SEx4/j46Y+66Ar7az98mhnLaJ+a6DJEcDmb4DkFKCkCAiUAMVFQMr+28LjW6bj86F18faafNwydy9+2lYcdVP79u3D3XffreqO3XHHHRg6dCjS0tIqPNaP4+OmPuugK+2s/fJoZ4nXcNOc1EFX2ln75dHOehs/jo+b+uwmXYlzJAUCgYCD7RFCPITTxaPFXEmbgrSRVFojS0d00NVpHexsz2rZVsmLV44O84SEx4/j46Y+66Ar7az98nS3sxIhuWPHjkqPqVevHlJTNVmP+uP7wBtXGPtF+YZjVEhKBpLTgOTylVaKigP4z/Ic3LlwH/7aG/ttY9u2bXHfffdhwIAB5cZAh++x07ipzzroSjtrvzzd7Ww45L5TFl9UxogRIw64X/UTTt+v64IOtstNusajQyzXQbSz7rGzJDL8OD5u6rMOuspvb+PGjX33e6w7dIwSQmLGrzdahBBCCCGu5Y0hwI/vqky6KA5yjiqSjGhSmKl2JVo0gH0FATzyZQEmf56PPXFkgurZsyemTJmCk046yYqeEEJ8DB2jVcP7dUIIISTx8PdYT8ovCfYp33zzDZ599ll10dyvXz91w16/fn20b98ev/32W5WfX7lypfrMrbfeGtHxhBBCCCGEEJIQzpkGNDva8H2mZgDJEsVhrpwWZ2gRUFJovCrvKVA9PRm3nVQda0c1xPXHVENaSmwrrb/++mucfPLJ6N+/P7799lsLO0UIIYQQQgghhESGJjmdnEccmNOmTcMzzzyDXbt2HfD/Ekgr71f0f6HUqVNHbZMmTcLkyZMxcOBA9dqiRQubtCfEnxQXF6uFDEKXLl2QkiIRDXqig65O62Bne1bLtkpevHJ0mCckPH4cHzf1WQddaWftl0c7awOSLvfiOcCbw4zI0ZQ0Y5PoUFV3NCihkKSaEsepiiIFGlYHHhl1IUYeORbj77gDr776akwqfPDBB/jwww9xySWXYNCgQWjSpIlvxsdNc1IHXWln7ZdHO0u8hpvmpA660s7aL4921tv4cXzc1GcddBUdiH740jEqkaHiEBVCMwnHkme6VatWmDdvHrKzs1XtnPvvvx+zZs1SbVx55ZWW6U2I35Efkv/9739q//DDD9f+hzfRujqtg53tWS3bKnnxytFhnpDw+HF83NRnHXSlnbVfHu2sjc7R86YbNUeXPAb89a2RS6jUAXoAUoO0yRHAsSOBjv3RGsArr7yC0aNHY+zYsZg/f37UKsh92H//+1+8/PLL6NWrF9544w3lIPU6bpqTOuhKO2u/PNpZ4jXcNCd10JV21n55tLPexo/j46Y+66ArHaN64ivHqKwOOOWUU1QUqOkQDXaEynvxlFytXbu2ihSVlLpjxozBkCFDsHz5cjz11FOW6E+I30lOTkaHDh3K9nVGB12d1sHO9qyWbZW8eOXoME9IePw4Pm7qsw660s7aL4921mY69je2nb8Bnz0IbPgCKNhn1B5NyQDSqwMtjgFOGAXUbXnAx7t166YWiM6dO1c5SM3V2NE+KFiyZAk6deqEcePG4brrrkNWVha8ipvmpA660s7aL492lngNN81JHXSlnbVfHu2st/Hj+Lipzzroqvs58itJgXg8gS5iwYIF6Nu3r3J8ms7Q0K7LjX29evVUWlx5nT59unJsSph1LEjE6PDhw9VG5yjxIiweTQghhBBChJKSEpVad/z48apsSawccsghuPfee1WaXZ1XnxNCEovcd06dOrXKbGGh96t+gvfrhBBCSOLh77Ge+MJdvXLlSpx66qllTlEzMrRPnz6qzujatWvVjfyyZcvUaufXX38dTz/9dFzRo8LQoUPLZD333HOW9YcQQgghhBBCdEJWQl900UX48ccf8fDDD6N+/foxyfn9999x+eWXq8Wp7733Xtz3ZIQQQgghhBBCiO8cowMHDizblxtrSXO7c+dO5QSVdLdSI9QuBgwYgJtvvlk5STds2GBbO4QQQgghhBCSaDIyMnDDDTeoxadSYiTWtLirV6/GGWecgZNPPhlLly61XE9CCCGEEEIIIf7E847R+++/H+vWrStLlSsO0UmTJql6oE4hdUdbtmyJYcOGOdYmIV6ksLAQjzzyiNpkX2d00NVpHexsz2rZVsmLV44O84SEx4/j46Y+66Ar7az98mhn3Yvcb/373//GL7/8gquuuirm2jqffPIJjj76aLXYVWS5HTfNSR10pZ21Xx7tLPEabpqTOuhKO2u/PNpZb+PH8XFTn3XQVfdz5FdS4XEmTpyo0udK5ObMmTMTpoc4RwcPHozdu3ejVq1aCdODEDcjEd/Z2dll+zqjg65O62Bne1bLtkpevHJ0mCckPH4cHzf1WQddaWftl0c7634OPvhgTJ8+HTfeeKOKIH377bdjkjN79my89dZbKuPPnXfeicaNG8ONuGlO6qAr7az98mhniddw05zUQVfaWfvl0c56Gz+Oj5v6rIOuup8jv5IU8PDILFiwQNUWbdOmTUyri2VV84oVK1R9GysQeRLBOmrUKEvkEeK34tFSC3jz5s1qv2nTpjFHHjiBDro6rYOd7Vkt2yp58crRYZ6Q8PhxfNzUZx10pZ21Xx7trPdYvHgxxo4diyVLlsQso3r16uqeavTo0ahZsybchJvmpA660s7aL8+tdlbuO6dOnVrpMSNGjDjgftVPOH2/rgs62C436Uo7a788t9pZEhl+HB839VkHXbds2YImTZr47vdYdzztGB0+fLhanbx8+fKYnJtWO0b79u2rolc/+ugjS+QRkmj8eqNFCCGEEEJiR25BJXJ03Lhx+PHHH2OWI9ehd9xxB4YOHYq0tDRLdSSE6A0do1XD+3VCCCEk8fD3WE88nUpXaotKXVGrHJvx0rp1a+WkJYQQQgghhLifffv24euvv670mJ49e6oIR7IfWSx69tln44wzzsCMGTNUalxzJXc0yAOFa6+9VtUMknqmUodUZBNCCCHEmUis3NzcSo/JysrSOpqMEEKIP/G8Y1RujnWhTp06SidCSOwX3atXr1b7hx12mNYX1zro6rQOdrZntWyr5MUrR4d5QsLjx/FxU5910JV21n55uttZcYx+8sknlR7TuXNnOkbDIOPRq1cvzJkzB/Pnz8eUKVOwZ8+eqOX8+uuvGDx4MB544AFMnjwZJ598MnRFB9vlJl1pZ+2Xp7udJSRa3DQnddA1Hh22bdsWdeQ27SztrNfw4/i4qc866Co6EP3wvGNU6ovqwq5du9RGCImNoqIivPnmm2q/Y8eOSE9Ph67ooKvTOtjZntWyrZIXrxwd5gkJjx/Hx0191kFX2ln75dHOepvg8ZG0ulIKZcKECXjqqadQWFgYtTyJ3u3duzdOP/10TJo0CUcccQR0w01zUgddaWftl0c7S7yGm+akDrrSztovj3bW2/hxfNzUZx10FR2IfnjaMSrUq1cPurBs2TKVTpcQEhuSGs38DumeJk0HXZ3Wwc72rJZtlbx45egwT0h4/Dg+buqzDrrSztovj3bW24SOT4MGDVRa3JEjR+L222/HK6+8EpPcDz74AB9++CH+7//+D/fccw+aN28OXXDTnNRBV9pZ++XRzhKv4aY5qYOutLP2y6Od9TZ+HB839VkHXXU/R34lKRAIBOBR2rZtq1LpTpw4MabPS2j1ihUrLKtRKvJOPfVUfPTRR5bIIyTRsHg0IYQQQvyMXPdEm0KORI7ci40dO1al2Y2VjIwMXHfddSoi9YBFszk7gJ8+ADYtBXJ3AoW5QFoWkFUXaNYL6Njf2CeEaAftb9Xwfp3YDb+HhBBSNfw91hN9E0BbgKwGiOcm2kruv/9+9dqtW7dEq0IIIYQQQggh2iP3TvPmzcPcuXPRtWvXmGTk5+er2qNSYkVqmObm5gJbfwQWTgBeGQR89QyweRWwayOw72/jVf6W918eaBwnxxNCCCGEEEII8QSedozKzbOsMl61alWiVVFRqxI2PXjw4ESrQgghhBBCCCGuQbLuSFmSl156CS1btoxJxq5du1T0afuWB2PGzWeh+Ke5QHEhUJQH7P0LyN4E7NpgvMrf8r78/y/zgDeHActmAN5NtkQIIYQQQgghvsHTNUaHDx+uIjXlBlhqzCQKSRshN+KyStmqtLyE+JHCwkJMnz5d7Q8ZMgRpaWnQFR10dVoHO9uzWrZV8uKVo8M8IeHx4/i4qc866Eo7a7882llvE834SFmSiy66CAMGDFBp+yZMmIDt27dH3ebvW3fiiv/uxEPzNmJSv5ro3ybpwLo/hQDysoHUTCOVbkYtYPnzQM524IRRUigo+s66cE7qoCvtrP3yaGeJ13DTnNRBV9pZ++XRznobP46Pm/qsg66iA9EPTztGW7VqpaJGJf3Srbfeivvuu89xHZ599llMmzZN3WwPGzbM8fYJ8RJSElnyspv7OqODrk7rYGd7Vsu2Sl68cnSYJyQ8fhwfN/VZB11pZ+2XRzvrbWIZH6kZesMNN+Dyyy9XqXEffvhhIz1ulKzenIczns/DP1qmYcqZTdCrTX0gOQUoKQYK9wH5e4yo0T2bjdqjNRoDa94FqtUHelyOWHHTnNRBV9pZ++XRzhKv4aY5qYOutLP2y6Od9TZ+HB839VkHXXU/R34lKeDxkZk9ezYGDRqkHJNy4zxq1KiIPyurkiUVb6xRnlLLRqJVzXqnv/zyS0xyCNEVp4tHl5SUYOPGjWq/efPm6juqKzro6rQOdrZntWyr5MUrR4d5QsLjx/FxU5910JV21n55uttZue6R6MWqsseEXi8R68bnjz/+wF133YX//Oc/Sl6snNe1Ae47uyXaN65WqlwxkLsTyN0hjzOAzDqGc1Q4ZxrQqKNrbZebdKWdtV+e7nY2HLS/+t2v64IOtstNusajQ0FBAf78889KjznooIOQnp5uSXtVQTtLEoEfx8dNfdZB1y1btqBJkya++z3WHc87RoWBAwfijTfeUM5RqU8za9Ys1KxZ0zbH6O7du1Wb8+fPVysCpF2JWu3du3ccvSBEP/x6o0UIIYQQIvDBvD6sWbMG48aNw9tvvx2zjJRkYOjxTXHHP1ugSe3Sh7gSOSpRo+IcrdnUSKvbri/Q+zbrlCeERA3tb9Xwfp0QQghJPPw91hN93fkWp7OtXbu22p87dy7q1KmjUuuKA9NKfvvtN3XhXbdu3XJO0aFDh9IpSgghhBBCCCE20alTJ7z11ltYvHgxjj322JhkFJcAUz/djLZ3fIU73/0Ne/KKgIyaQFY94wCJIBXWfbx/nxBCCCGEEEKIq/B0jVETcYouWLAAPXr0UI5KcVhOnjxZbd26dcPgwYPRp0+fmFLmfvPNN1i2bJmKQhVnqGA6RGUbMGBAlasYCSGRpz/4+eef1X779u21T9WQaF2d1sHO9qyWbZW8eOXoME9IePw4Pm7qsw660s7aL4921tvYMT7HHXecco5K5KhEkP74449Ry9iXX4J73tuonKR39G+Oocc1RLqk1JWao7IJP30AtD/NeN201HCUSi3StCwgqy7QrBfQsb+xb3Of7UIHXWln7ZdHO0u8hpvmpA660s7aL4921tv4cXzc1GcddI2n3AexD31nrcWIA1QcmKbTUl5lW758uaoD2r17d6SkpKB+/fro2bOncpYKEydOVDfUskk0qLzfr18/tGvXTh0vnxs2bFhZhGiwfHG2zpw5M9FdJ8QzFBUVqe+UbLKvMzro6rQOdrZntWyr5MUrR4d5QsLjx/FxU5910JV21n55tLPexq7xkfuxs88+G9999x2eueZkNDXT4kbJ33sKcd3Mteh87zd4/UdjASzysoHCPODLqcArg4CvngE2rwJ2bQT2/W28yt/y/ssDgYUTgK0/unJO6qAr7az98mhniddw05zUQVfaWfvl0c56Gz+Oj5v6rIOuup8jv+KLiNFQ56jU/1y/fr26YRaCy6zu3LlTOUultqgwe/bsCmVVVJo1WJ5Eo95888029YQQfyLfsWbNmpXt64wOujqtg53tWS3bKnnxytFhnpDw+HF83NRnHXSlnbVfHu2st7F7fFJTUzHkhINxYfueePT9HzB50S7szj/wPq4q1v6dh8Ev/YX7D07FlNOKcHKrXUBKOlC3lRFBmrcLKMo3tpJiQLqSlAqkpAI71gGrZgJHDweOvtpVc1IHXWln7ZdHO0u8hpvmpA660s7aL4921tv4cXzc1GcddNX9HPmVpEBFHj4fIFGe06dPr3ByRnJKKprQ8jmpXyppe7t27WqhtoToCYtHE0IIIcTPyHVPVWUzJOtM6PUScZCXBpRGcm7Atuwc/PuLJDz52d8oLI79Nvi0dumY3K8GjjikppE+t6QICEiKrFCZyUByirGJt/Tg7sDp9wONO8XdLUL8Du1v1fB+nRBCCEk8/D3WE9+k0g1l2rRpKjL0vPPOK0uBa2LWB61sMzE/26pVKyVzx44ddIoSQgghhBBCiA5IzU8hKRkNqifj4bMPwk9398CFPWN/EPHhLwXo8sQOXPraX9i4vbTmaHIqkJxmOEDl1lLuLwPFQHEBUFxo/P3HMuCVAcCyGcbfhBBCCCGEEEIcx7eOUUEcmLNmzcLatWtV2ltxbpqOzki22rVrY8CAAUrGr7/+iiFDhiS6S4QQQgghhBBCTLLqGq8p4rQEULgPrRpk4eUrO2HFrd1waqc6MYkVt+Z/v8lH+yd2Y/RHudixtxAoKTT+JzS5kESUSspdSbObsx348mngswfpHCWEEEIIIYSQBOCrGqPhEIeo1ASVLTs7G/Pnz8fXX3+NXbt2qQhQeRVat26tUuW2adMGPXr0YGQoIQ5TWFiI559/Xu1fdtllSEsrfcClITro6rQOdrZntWyr5MUrR4d5QsLjx/FxU5910JV21n55tLPexpHxadYL2LwKyKwD5GUD+XuA6o1UetuuzWtg7vVHYN4POzH2zfVYuWlv1OLzi4AHl+Ti2eW5GHdCJkYenYWs9NLUueIkDU6zW1yIwpJkPL+zF/DZZlyW8R+k9boSuqLD94d21n55tLPEa7hpTuqgK+2s/fJoZ72NH8fHTX3WQVfRgegHHaMhSBSopNeVjRCiFxKp/eeff5bt64wOujqtg53tWS3bKnnxytFhnpDw+HF83NRnHXSlnbVfHu2st3FkfDqcDiyfYeynZhqRm7k7geoNyg45tXNdnNKxDl5b9jdue3s9ftueH3Uz2fnALfPz8MRXBbjnlBr4v66ZSEkurTFaXGQ4SBFAAMX4s6Q+UAIEVrwEtDoOaNQROqLD94d21n55tLPEa7hpTuqgK+2s/fJoZ72NH8fHTX3WQVfdz5FfSQpwZAghLikeXVJSotJWC23btkWyPGzSFB10dVoHO9uzWrZV8uKVo8M8IeHx4/i4qc866Eo7a7883e2sXPdMnTq10mNGjBhxwPUScfg7tHAC8Ms8IH83sGezEc1ZsymQUfOAQ/MLS/D0p5tx7/sbsH2fODNj49BGKZjUtyb+2SHdyKwrtUYDAZQgCb8mtQQyaqFtnSQktz8V6H0bdIR2lnbWST2ihfZXv/t1XdDBdrlJV9pZ++W51c6SyPDj+LipzzroumXLFjRp0sR3v8e6Q8coISRm/HqjRQghhBAi8MG8S9j6I/DmMGN/7xYgT0qlJAFZ9YCsOkDygYmUsvfl4f4P1uGhRduQG7t/FP9omYbJ/Wrg6IOSgEDx/hS7yWlAo85G7dOLZu2vhUoIiQja36rh/TohhBCSePh7rCf6uvMJIYQQQgghhJB4kVS13S8z9ms0NuqNinMydzuwY50RRZq3GyjYa7zu2YzauRsx4aQU/DqyFoZ0z0CyCvuMnk9/K8Qx03ZiwMy9+Hmb6RhNMlLrSlrf4kLgpw8s7S4hhBBCCCGEkPCwxqhDyErFdevWYezYsejdu3ei1SHElUj6g/Xr16v9Vq1aaZ+qIdG6Oq2Dne1ZLdsqefHK0WGekPD4cXzc1GcddKWdtV8e7ay3cXR8xDGasx1Y867hHE3LMmqNinNSUuzKFkpqJg6qBzxzThZuPDoXty7IwVs/xhY++sYPBXhrTQGu6p6By05sg4Y1U9EqdzeSa2YCG78EulwI3dDh+0M7a7882lniNdw0J3XQNR4dYoncpp2lnfUafhwfN/VZB11FB6If+s5ajzFz5kzMnz9fOUcJIbFRVFSEl156SW2yrzM66Oq0Dna2Z7Vsq+TFK0eHeULC48fxcVOfddCVdtZ+ebSz3sbR8UlKAk4YtT9yNKMWUKeFsUkEaVo15QhVr/K3+X8p6erwTgdVx5vn18TiK2vj2GYpMalQHACmLcvHPx77BVcsrIOdOYXGf6jUvvqhw/eHdtZ+ebSzxGu4aU7qoCvtrP3yaGe9jR/Hx0191kFX3c+RX2HEqMPs2qXnTS8hbiApKQmNGzcu29cZHXR1Wgc727NatlXy4pWjwzwh4fHj+LipzzroSjtrvzzaWW/j+PhIGz0uB5ofA6x+A1j3sfF+jcyKj5f6n+IcLS4wnJeFuTiueQoWX1ET7/xUgFvm5+NHlR43OgoLC/Hpp5+i0/Jk3HEGMPS0+jDcr3qhw/eHdtZ+ebSzxGu4aU7qoCvtrP3yaGe9jR/Hx0191kFX3c+RX0kKBAKBRCvhdbKzs1G3bl31JRgzZgwmTpyYaJUIsQQWjyaEEEKIn4klhRzRCEmlK/U9JZWtOD4LcoD00ojR5kcDHU4Hfnwf+OoZI+Xutl+M2qSKAIoCqXh+VQHuXLAPf+6JPUVWm8Y18e9Hp2PgwIFapyIjRCdof6uG9+vEbvg9JISQquHvsZ4wYtQBXn/99bJ9RowS4kFydhgP1TYtNR6wFeYadauy6gLNegEd+xv7hBBCCCFEH+T6TGp7VlbfU5yjy2cY+8kpQImkvzVWfacmB3BVj2q48IgsPLIkB5M/24fd+dGvO167ZQ/OP/98PPDAA5g8eTJ69+4dc5cIIYQQQgghhFQOHaM2sHv3bvW6Y8cOTJs2DVOmTCkLmZb3CCEeYeuPwOrZwLpFQHFpjahgdm0ENq8yHqa1Pgk4bADQqGMiNCWEEEIIIbFQrZ5xHffLPCCzNpCzDVBJl2QrUS/V0pNw60nVMbRnFv79yT48uTQHhdFn2MWyZctwyimn4LTTTlMO0iOOOMKOHhFCCCGEEEKIr9HGMSopg7yabzk4W/G6desSqgshbkbqMb388stq/6KLLkJaWlpiFJHv9PLnjc1E0qtJCjZxkAZKUIg0vFxwKpCciovqf4c0eZgmW/fLjM0Be+f0+bKzPatlWyUvXjnazGlSIX4cHzf1WQddaWftl0c7621cMz6yuE2u42o0AXIlA1CR4RcNlBjXfqmG3g2qJ+Ph/jUx8uhquH3+Hrz8bX5MzX344Yf46KOPcPHFF+Pee+9FixYt4NfxoZ21Xx7tLPEabpqTOuhKO2u/PNpZb+PH8XFTn3XQVXQg+qGNY7R169aedRqaDl9xkDKVLiGxI9+hDRs2lO0nSAngsweBNe8af+fvNtLnimO03GFF2FDS2Agk2LUJqFYTyKhlOFNztgMnjLLdOer0+bKzPatlWyUvXjlazGkSFj+Oj5v6rIOutLP2y6Od9TauGR/J+CEL2+Q6TiJI5VouICGhASBQBBQFjDS7pbSqXYKXzs3CqGPScMv8PMxdWxR1k3I+XnzxRcycORPXXXcdxo0bh/r161vcMf3Hh3bWfnm0s8RruGlO6qAr7az98mhnvY0fx8dNfdZBV93PkV9JCmgyMj169MDKlSvhZeRU161bF9u3b0+0KoS4snh0SUkJ1qxZo/Y7deqkIs0dZ9mM/ZGie7cYUaKKJCCjJpBWXT0YKykuwZq8eqreaKekdUhOCgCZdYAajY3D5eFaj8ttVdXp82Vne1bLtkpevHK0mNMkLH4cHzf1WQddaWftl6e7nc3Ly8PatWsrPaZNmzbIzMy0tF2voMP3OOrFcd/NAnZtAEqKS0spmLfTpQveyq17S1bXhfPXFWHMR3uwcnMM+XVLqV27tnKOjhw5EllZWfDL+NDO2i9PdzsbDtpf/e7XdUEH2+UmXePRIZbvIe2se+wsiQw/jo+b+qyDrlu2bEGTJk1893usO9o4RgcNGoTZs2eXi660C7vbqEy+/F9xcew3xITohO9utKSm6JvDQpyiSUBWPSCrbrlIgTLkoZlElOZKfeEQ5+g501hzlBBCCCHELZjlFMRBKrVGBXGOlgRHhCYBSeIQlYcuSUa63UAJSpCMmd8X4bYFuVi/I/Z0WgcffDDuueceXHrppUhJqeDakxBC/Hq/TgghhGgIf4/1RJtUuvXq1SvbF4dinz59MHbsWPV+nTp1LGtn2LBhmD9/vpI5dOhQ9OzZ0xK5O3bsUKukRPaKFSuUA1T0l0hYQohHWD17f/pc0ylas6kRKRoOcZZWbwCkZgB7NhufS8sy0uqufgPofZtj6hNCCCGEkDiQBbCS8aP50cD7NwN/LAdS0gxHqCyGkxoKihJZnl76mRR1THJaNVxwfF2c+48aePrTzbh37mZsz86JWoU//vgDV155JR566CFMnDgRZ5xxRtnCXEIIIYQQQgghLnKMSmoFk4EDB6paKlbTr18/5bgUh6XcRNqFOEalD1OmTFFRsOecc45tbRHiJyT9we+//672DznkEGfTH+TsANYtMvYlAlSQSNEwTtGSAPB7YW21f0haNpLluKJ8IHe78XlxjK77GDjmaiPa1APny872rJZtlbx45SR0TpMq8eP4uKnPOuhKO2u/PNpZb+Pa8WnUCbj0XeCLp4ClTwMF+4xaoxI5Kg5SiSyVxXGyMC41E8isbbwCSAsA51w1Gqfcfhxefe01PPzww8jNzY1ahe+//x7/+te/cMIJJ6j7zqOPPtqT40M7a7882lniNdw0J3XQlXbWfnm0s97Gj+Pjpj7roKvoQPRDm1kbHBUqUZ12OEW//vprzJs3z1anqNCtWzcVPXrVVVdhwIABePPNN21tjxC/UFRUhBkzZqhN9h3lpw+MVGlFecamUuiGd2gWBZIxY0d3tcm+IkvsXNJ+GSJP5HrkfNnZntWyrZIXr5yEzmlSJX4cHzf1WQddaWftl0c7621cPT4SpXnsNcBFs4CeVwIN2gP12wENOxqOU/m7TgujhII4RSWytF1fFJ35JGZ8sQVvzJmDO++8E7/++qvKZBRrWtzPPvsMxxxzDM477zz89NNPnhsf2ln75dHOEq/hpjmpg660s/bLo531Nn4cHzf1WQdddT9HfkWbiNHWrVtXuG8Fw4cPV5Gi4qxs2bIlnGLatGnqVZyjEkV65JFHOtY2IV5E0oSZabcdTxm2aanxqlLowogUraimaCmiXr0UIz1amarJqcbnVCrebKBGJrDxS6DLhZ44X3a2Z7Vsq+TFKyehc5pUiR/Hx0191kFX2ln75dHOehtPjI/Ui5fSCJIFRBa8ybWdXC8W5ADp1Yz68pJ6t8PpalFdUmFhuT4fdNBB6r7xxhtvxLhx4/DWW2/FpMacOXPw9ttvY8iQIbjjjjvQtGlTT4wP7az98mhniddw05zUQVfaWfvl0c56Gz+Oj5v6rIOuup8jv5IUkIKeGrBy5Up0795dTZSdO3eiVq1alshdsGABTj31VJXS9txzz0UikPY3bNiAn3/+OSHtE2IXvioePfMSYNdGIHsTUJgD1GgKZMZgp/J2A3s3A2nVgNrNgLotgEH/tUNjQgghhBDiMpYsWYIxY8bg888/j1lGtWrVMGrUKIwePTr8fbWUiRBHriz+kzIPhblAWpaREaVZL6Bjf9vKPRBCnMFX9+uEEEKIpvD3WE+0SaUrUaJdu3ZVm5VIPVGp95kop6gwa9YsbNu2DQ8++GDCdCCExIk8LBICpXnhK4kWrRQzl70pR6IJCCGEEEIIAXDssceq9LgSOdqxY8eYZOTk5ODee+9F27Zt8fjjj6OgoGD/f279EVg4AXhlEPDVM8DmVcbiv31/G6/yt7z/8kDjODmeEEIIIYQQQjyENo7R2rVrY/ny5Vi2bJll0aIShSrb5MmTkUikfuott9yC++67L6F6EELiQFbQC0mlZrOkODY5ZsFtU46kWCOEEEIIIaQUyaJ01lln4bvvvsP06dNVut1YV6ePHDkSnTt3xszXXkPJV88Bbw4Dfpln1LqXmvd7/zIyouzaYLzK3/K+/L8cJ8cvmwHokWiKEEIIIYQQQryTStcOxBkpqXS//vpr6EBycjLeeOMNnHPOOYlWhRBXpgKQYtWvv/662h80aBBSUx0sk/zOSGMFvTwskvqgGbWAmuFrNxUFkvH6rsMMXeusRmpSqUN0z2ajxqjUm6rRGGh6JPCvxzxxvuxsz2rZVsmLV05C5zSpEj+Oj5v6rIOutLP2y6Od9TZ+HJ9Y+iwRoI8++igmTZqE3bt3x9x29+Y1MOXcVujdKsVInysO0HCkZqIosz5ezz3W0LVXc6SeNFq8tnAS2ln75dHOehe/pu5z05zUQVfaWfvl0c56Gz+Oj5v6rIOumzdvPmChox9+j3VH31lrAfPnz0fPnj2hCwMGDMBrr71GxyghMVJSUoJffvmlbN9RpNaSOEbFoSmO0fw9QPVGYVPqlgSAX/IblO1DniGVFBmfEzJrG6/Nj/bM+bKzPatlWyUvXjkJndOkSvw4Pm7qsw660s7aL4921tv4cXxi6bPUDB03bhyGDBmCf//733jyySdRWFgYddvLN+7FKY98h37t0jG5bw0c2TQdyKgJpFU3rmklI0rhPuN6tSgPJXu24Jfi0uvZH98HajYAelwOJ6GdtV8e7SzxGm6akzroSjtrvzzaWW/jx/FxU5910FX3c+RXPO0YXbduHYYPHw5dECftM888k2g1CHEtKSkpKq2Yue8oHU4Hls8w9lMzjRX2stK+uvGwKJSUpADOqvVD2b4id5cUFzU+L1tKmiHXI+fLzvaslm2VvHjlJHROkyrx4/i4qc866Eo7a7882llv48fxiafPDRo0wMMPP6zS495+++14+eWXY9Lho18KMPfXHbi4Z0Pce1ZdtKiZuf8/M2sZi/9ydyIlZxfOSl4IpFUzrmeXPw80PwZoFFvt01ignbVfHu0s8RpumpM66Eo7a7882llv48fxcVOfddBV93PkVzydSldS186ePRvnnnsudEDS6A4dOhTbt29PtCqEWILvUvMsnGDUWpJUuJISV8JAJZ2urLSvCll5rz4TKP1MLaBdX6D3bU5oTgghhBBCPMbKlStV+Zi5c+fGLCM9NQnXnnQQbj2tOerXSCv/n7x+JcTV+O5+nRBCCNEQ/h7riacjRuvUqaOiRnVi1y6JGCOEuJLDBhiOUXkoVJgL5O0yHhYV5QNZdYDkCkyqpM+VSNHcHcZDJUnFK59X8s5zvAuEEEIIsY68vDysXbu20mPatGmDzMygiDxCLKJr16746KOPVAmZMWPGKEdptBQUBfDQ/D/w3Od/4ZZ+zXB974ORlV66ql0W/8l1bu52I1OKXMOu+xg45mogq671HSIkCmh/CSGEEEJIrHjaMdq6dWt8/fXX0AVx0oqzlhASe052WVEjyEobiQp3FEkb1v0yI41YjcbGe+IcVQ+LdgTVaEpGSXEJtuanqzpNjbADyUmlTlHzcyLH5jRkTp8vO9uzWrZV8uKVk/A5TSrFj+Pjpj7roCvtrP3ydLezu3fvVhlqKmPEiBF8MK/x99gLfe7Tpw+WLVuGmTNn4rbbbsP69eujlpGdW4xxb/2GJxb9iXvObIlLj2mMpKQkbE1tBgSS0KhwO5KllITw0wdAlwvhBLSz9svT3c6Gg/aXeOG3RQdd49Fh27ZtmDGjtORQGC6//HKVCt6K9qqCdpYkAj+Oj5v6rIOurDGqJ/rOWosco1VdKDvJvHnzlE6EkNgoKirCtGnT1Cb7CUEcmp3ONPbFySlpxaReqESDSordvZuB3X+gaO/fmJbXH9OKB6IotbpxnOkUlc+LHI+dLzvbs1q2VfLilaPFnCZh8eP4uKnPOuhKO2u/PNpZb+PH8bGrz/KQ54ILLsCaNWvw6KOPlnsIHQ1/7CrAlS/+jCPuXY63Vu3A0zuONq5nkQLkZRsHbfwSTkE7a7882lniNdw0J3XQNR4d5GF/Tk5OpVuoQ4B2lnbWa/hxfNzUZx101f0c+RVPR4zKyllxjD733HO48sorE6qLrNqVFEfDhg1LqB6EuBlZtV6zZs2y/QQpAZwwCqhW34gclZRisskKenlYVFwABEqQhDTULMkBkpKRVKcZkFR6MyAOUdkc0N/p82Vne1bLtkpevHK0mNMkLH4cHzf1WQddaWftl0c76238OD529zkjIwMjR47EZZddhvsvOw4PvfcDcgqiX6X+w+YcnPf0arRukY0zTj0RSS1gXOeaGVMcgnbWfnm0s8RruGlO6qAr7az98mhnvY0fx8dNfdZBV93PkV9JCgQCAXiU7Oxs1K1bF/Xq1VNpbGvVKq3rlwCGDx+O6dOnq6jR3r17J0wPQqzE98Wjt/4IrH7DqLVUXBj+uJQ0oPXJRk1Rm9PnEkIIIcQ55Lpn6tSpVaZyDL1eIsQRXhqAzX/+jrve+B7PLduL4jiyeJ3bOQP3nV4fHdq1Bao3BC7WJzMT8Se0v1Xj+/t1Yjv8HhJCSNXw91hPPB0xWrt2bZxyyilYuHAhhg4ditdeey0hesyZMwfPPPOMctLSKUqIhxAnZ+/bgGOuNmotSVoxWUFfkAOkVzNqijY/GuhwOpBVN9HaEkIIIYQQP5GWhaa1MzDtvIa48ZgM3PpxEd78tjQdbpTM+SEfb//4J646LoA7L2qIpuEOzNlhXBdvWgrk7gQKc5Ue6lq4WS+gY39eFxNCCCGEEEISiqcdo8LkyZPRo0cPzJo1S0WOPvXUU462v3LlSgwYMECFTI8bN87RtgkhDiEPd7pcaGyEEEIIIYToco26a6PKXtKxYSrmXFIPS7a2xJg56/H52t1Ri5OI02mfbcaLX72Nm36/HTfffPP+rEwqk8psYN2iijOpiB6bVwHLZwCtTwIOG8BMKoQQQgghhJCE4HnHaLdu3TBkyBCVxlaK7EpK3Q8//NCRtqVNSaErtG7dGqNHj3akXUK8ihSrfvPNN9X+Oeecg9RUfU2YDro6rYOd7Vkt2yp58crRYZ6Q8PhxfNzUZx10pZ21Xx7trLfx4/g42meJ0BRnpGQxycsG8vfg2FaN8NnoI/Hutztwy5vrseavnKjF5uQXYcKECXj66adxx+23Y1jPLKR/+9L+A4ryjCwq4iANlABJyUZpCdFD+GWesXW/zNgqqbtEO2u/PNpZ4jXcNCd10JV21n55tLPexo/j46Y+66Cr6ED0Ixk+YMqUKSqtriA1PuvXr4/nnnvOtvZ+++039OvXTzlFpYSrRIuKU5YQEh8lJSX44Ycf1Cb7OqODrk7rYGd7Vsu2Sl68cnSYJyQ8fhwfN/VZB11pZ+2XRzvrbfw4Po72Wco5iEMyNdPYEFDpbeX+9F9H1se3t3fHs5e0w0G102MSv23bNoy8/np0+tdIvPb1VpTkZgO7NhibOGILcwwnqbzmBf1ffmm06vLngc8eBAKBsG3Qztovj3aWeA03zUkddKWdtV8e7ay38eP4uKnPOuiq+znyK/q68y1EnKILFixQKXXlJnDnzp2q5uiYMWNw66234rzzzkPLli3jamP37t2YP3++coDKq2A6RSdNmsTaooRYQEpKCk4//fSyfZ3RQVendbCzPatlWyUvXjk6zBMSHj+Oj5v6rIOutLP2y6Od9TZ+HB9H+1ytnpG2VqIzJa3uns1A7g4gNQPIqInUlCRceVxTXNCzER5b+AcmfrgJu/OKo25m3bY8XPDcj3jgoFRM7lcDp7TJVPKRVh1ITgFKioHCfSpiVTlKRQ+pPVqjMbDmXaBafaDH5RXKpp21X55b7WyjRo1w5513OtYecQ9u+m3RQdd4dKhZs2bZZys7xqr2qoJ2liQCP46Pm/qsg666nyO/khQQ751PEIdl3759lbPS7LbsC3Xq1EGfPn3Qs2dPlfbW3ASzboo4P4UdO3aolLyyLV++HMuWLcOKFSvK2jEdooI4XydOnOh4Xwlxgr///lvdkAazdetWNGzYMGE6EUIIIYQ4hVz3TJ06tdJjRowYccD1EiGOIbU/3xxm7O/dYqS4RRKQVQ/IqgMk718rvX1vIf79wUY8+cmfKCiK/TFBv851MPnc1jjykBrl/0McpLk7DeesRK9Kal1xjgrnTGPNUUIshvfrhBBCSOLh77Ge+CJi1EQcn3PnzsWgQYOQnZ2t3jMdpBJFOnv2bLVFS7BvWRyipuN17NixdIoSQgghhBBCCEkM4myUOp6SttZ0QopzNHe74aAsi+xMRv3UEjx0WjWM7FIft8/fi5e/zassy21YPvphF+auWYGLjmqEe89siZYNMksL+aQA1RsYEasSNSp6pGUBGbWA1W8AvW+ztu+EEEIIIYQQ4tcao6HOUYn07NKlS1lkZ7AzM5ZNCJYhqXullimdooRYi3y/tm/frjbdg9110NVpHexsz2rZVsmLV44O84SEx4/j46Y+66Ar7az98mhnvY0fxychfRbHaKczjX1xjtZsur/mqNT73LsZ2P2H8Zq/Gy3rpuDFCxpj+aj26N2pfkxNStdeWroVHe76GqNmr1XRqGWIM1YiVgWJIBXWfbx/v5wc2lm75dHOEq/hpjmpg660s/bLo531Nn4cHzf1WQdddT9HfsV3jlEzba6kwJXan+LEDHVuxrKZTlKpXbp+/Xqccsopie4mIZ6jsLAQTzzxhNpkX2d00NVpHexsz2rZVsmLV44O84SEx4/j46Y+66Ar7az98mhnvY0fxychfZYyLyeMMhykgkRo1mlhbJLONq2a4SiVV/m79P8ObX0Q/jH4Ovzf//0funbtGlPTkpL3ofl/oM3tX2HShxuRW1Baw1TS+EpKX6k5KltxIfDTBwd8nnbWfnm0s8RruGlO6qAr7az98mhnvY0fx8dNfdZBV93PkV/xpWPUROp/Sr3QYAdpcBRoZYRGjYosScf79NNPK1mEEHvIyMhQmxvQQVendbCzPatlWyUvXjk6zBMSHj+Oj5v6rIOutLP2y6Od9TZ+HJ+E9Fmcoz0uN2p5tusLpKQZzlCJIK3dzHCGyqv8Le/L/7c9BRnpaejUqROWLFmCV155Ba1atYqp+ezcYox76ze0u+NrPPf5ZhQFUozIUSHPKHODjV8COTuAlS8D74wEZl4CvHYRMpKLkZFSAqyaWWFUqdXQziZOD0Kswk1zUgddeT1rvzzaWW/jx/FxU5/dpCtxjqQAY3nLWLlyJebPn4+ZM2dixYoVlR7brVs3lZb31FNPZXQo8S0sHk0IIYQQPyPXPVOnTq30mBEjRhxwvURIwhEHo0RoijNSan0W5ADppRGjzY8GOpwOZNU94GMFBQV4euhxuPeNVdgWnB43Sjo3rYaJ/2yMM1vsQ1J6daB6QyBQAmTWNqJHwyEO29YnAYcNMOqnEkLCwvt1QgghJPHw91hPUhOtgE5IeiDZbr755rL3JC3url27ylLwxrpClhBCCCGEEEII0QJxena50NiiID09HSP7tMBlXdJx/7vf46HPspETg3/0h805OOvZ9Ti+RRqm9CvCMc1zgORUI52vpNYVZ604SMVZmpRsOETFaSv8Ms/YJDWwbBINSwghhBBCCCERQsdoFdARSgghhBBCCCGElJKWhVpZqbi3Xz1c3TMNd38WwLNfbkdxSfSiFm8oxLHP7MC5nTNw36m10CF5g+EYDaWwNOWupPkVp67USV3+PJCz3aifSucoIYQQQgghJELoGCWEuIaioiL873//U/tnnHEGUlP1NWE66Oq0Dna2Z7Vsq+TFK0eHeULC48fxcVOfddCVdtZ+ebSz3saP4+OmPofVVRyTuzaqKM6mNVPw9Dm1cEPfVrj1rfV485vtMbU154d8vL3mb1zVIwt39q6Bpg3qAGnVUZSUhv/tPRwIFOKMwAKkitN0z2agMNeoh7rmXaBafaN+qp191lA27Swh7p+TOujK61n75dHOehs/jo+b+qyDrqID0Y/kRCtACCGRUlJSglWrVqlN9nVGB12d1sHO9qyWbZW8eOXoME9IePw4Pm7qsw660s7aL4921tv4cXzc1OewujbrZbyaqW3z96BjowzMGX4olozpguPb1oqpveIAMO3rXLR9eDtu/zgfuwPVUJJWHasKm2NVURuU1GsDZNUHkGSk2t27xfigRI5u/RFWQDtLO0vcj5vmpA668nrWfnm0s97Gj+Pjpj7roKvu58iv6OvOJ4SQEFJSUtCnT5+yfZ3RQVendbCzPatlWyUvXjk6zBMSHj+Oj5v6rIOutLP2y6Od9TZ+HB839Tmsrh1OB5bPMPYlta1EcebuBKo3wDGta+HTUUfif9/twC1vrle1RKMlp6AEE97fiKc/3YzbTm+OE3v8hLTUFKQkJ6s2kJphRI2KczQty0iru/oNoPdt9vXZAmhnCXEGN81JHXTl9az98mhnvY0fx8dNfdZBV93PkV9JCgQCgUQr4Qfatm2L9evXY9q0abjqqqsSrQ4hlvD333+jUaNG5d7bunUrGjZsmDCdCCGEEEKcQq57pk6dWukxI0aMOOB6iRDXs3AC8Ms8IH+34aSUKM6aTYGMmmWHFBUH8MKXf+GOdzbgz+yCmJtq3SAT/z6rJQZ1b4jk5NJaovu2AbnbDcdsnRYqrS8ummWk+SWEKHi/TgghhCQe/h7rCSNGHWLHjh3qddeuXYlWhRBCCCGEEEIIiZ3DBhiOUYnWlHqfEr0pDtKifCCrDpCcitSUJFx5XFNc0LMRHlv4ByZ9tAnZucVRN7VuWx4ueO5HPDDvd0w+txVO6VjXaCN3hxGtKpvw0wdAlwut7yvRkuzsbMydO7fSY/r27YvatWs7phMhhBBCCHEHdIw6hDhEk5KSsH379kSrQohrkQD3PXv2qP2aNWuq75Su6KCr0zrY2Z7Vsq2SF68cHeYJCY8fx8dNfdZBV9pZ++XRznobP46Pm/pcqa6NOgLdLzPqe9ZobLwnzlGJ4hSHpUSOplUHkpNRraQEtxyXhiGd6+O+T/biiS9zUBC9fxTLN+5Fn0e+Q9/OdTH5nFboUqemEbGalw3UyAQ2fhm3Y5R21j12Nj8/Hz/88EOlx5x44omO6EL0wjN21gU6SBDIa6+9Vukx559/PurVq2dJe1VBO0sSgR/Hx0191kFXJmzVk+REK+AHJIWuCSNGCYmdwsJCPPzww2qTfZ3RQVendbCzPatlWyUvXjk6zBMSHj+Oj5v6rIOutLP2y6Od9TZ+HB839blKXcUx2ulMY1+co5JKV1LbImA4LPduBnb/Ybzm70b9akl48MyG+OmGhrj4yEzE+lxq7g870e2+Fbhk5jb8trMYKC7Y75iNE9pZ2lniftw0J3XQNR4dioqKVIrIyjY5xqr27OyLnfJoZ72NH8fHTX3WQVfdz5FfoWPUASZPnnxASl1CSGwkJyerzQ3ooKvTOtjZntWyrZIXrxwd5gkJjx/Hx0191kFX2ln75dHOehs/jo+b+lypruLZPGGU4SAVJK2u1PuULbMOkFbNcJTKq/xd+n8t66fjxYG1seLq+ujXNj0mvWTh/UvLdqLDI9tw07vbsH1vIVCQAyugnU2cHoRYhZvmpA668nrWfnm0s97Gj+Pjpj67SVfiHEkBD8fyPvvsswltf+3atZg9ezbWrVunQqYlVLtPnz746KOPEqoXIVbB4tGEEEII8TNy3TN16tRKjxkxYsQB10uEeI6tPwKr3wDWfQwUV7IqPiXNSH0ra7Rz/gYKc7DgzxoY878tWLFxb8zN18pMwS1nH47rn/sc1apVi1kOcQ+0v1XD+3ViN/weEkJI1fD3WE88XWN0zJgxyM6Wm67EEex3ln1GjBJCCCGEEEII8RRSc7T3bcAxVwM/fWDU+5TUthLFmV4aMdr8aKDD6cC8O4HNqwwnaSFwSqtkfH1LV7y+/G/c9vZvWLctL+rmd+cV49bXvsGTn7XH3XffjUsvvRSpqZ5+3EEIIYQQQgiJEU/fKUhx70TX9Awu6CuO0UTrQwghhBBCCCGE2EJWXaDLhcYWjma9DMeoOEslejR/D5KrN8L5PRvh3K4NMO2zzbjnvY3YJulxo+SPP/7AVVddhYceeggTJ07EmWeeWe6evIycHYYDd9NSIHcnUJgLpGUZ+ot+Hfsb+4QQQgghhBDP4WnHaOvWrVUa2wpvhByIEq2oXUaMEhI7RUVFZamo+/Xrp/UqcB10dVoHO9uzWrZV8uKVo8M8IeHx4/i4qc866Eo7a7882llv48fxcVOfbdNVokaXzzD2pQZpUZ7hnKzeAOmpybju5INx6dGNcf+83/HQ/N+RU1ASdRM//PADzjrrLBx//PGYMmUKjjnmmKCUv7OBdYsqTPlbtHMTPvopF1jwKfp1OQSpRww0omEtgHaWEGdw05zUQVdez9ovj3bW2/hxfNzUZx10FR2Ifni66mydOnUOcFjavQlt2rRRTtlWrVqV28z3CCGxUVJSgmXLlqlN9nVGB12d1sHO9qyWbZW8eOXoME9IePw4Pm7qsw660s7aL4921tv4cXzc1GfbdK1WD2h9krFvRmXm7lCRoya1slJx779a4oe7e6F79+4xL3ZevHgxjj32WJx77rn4afZ9wJvDgF/mGU5Rccju/QvI3gTs2qBeS/ZuxbKcQ7Bs30Eo+WWhcfyyGfIwIe5u084S4gxumpM66MrrWfvl0c56Gz+Oj5v6rIOuup8jv6KvO98CxBFpIk7LoUOHYuzYsZY5J6V+qUSASlTqvHnzsGLFCsyfP1+9N27cOIwePdqSdgghBikpKTjxxBPL9nVGB12d1sHO9qyWbZW8eOXoME9IePw4Pm7qsw660s7aL093O1u9evUy+ZUdQ/T9HjuNm/psq66HDTAclBm1jDS2Uo90z2agKB/IqgMkG48qDqmTjgfOb4+NvZvhrXmf4c1vtsfU3Jtvvol33n4TVx7XBHedWh9N0/cajtEQUgJ5ODHpa9V+SkE2kFkTWP48kLMdOGGUpIWKucu0s4Q4g5vmpA66xqNDLNdBvJ6lnfUafhwfN/VZB111P0d+JSlghjl6kPvvv185QmV1qThFp06danub4iydNm0aJk2ahAYNGqj9k08+2fZ2ibeZPXu2mkvihJdNoqF79OiBgQMHYtCgQQdERzvF33//jUaNGpV7b+vWrWjYsGFC9CGEEEIIIYS4BInEFKejsHeL4RxVJAEZNYG06kBysiyzBwr3qYjSLzbmY8xHe7F4Q/T1R02qpQE3HlsdY06ojlq1a5e2kwKUFJe1A5Q+JpE6qDUaG/vdLwN6XB5vr4lFyH1nVc94RowYccD9qp/g/TohhBCSePh7rCfJfokYFQeSE9SuXRtjxoxRUaPnnHMO+vTpg+eee86Rton3kAjkunXrqvnbrVs3FZm8c+dOLF++XP09bNgw9f/PPPNMolUlhBBCCCGEkMgRR2OnM419cT7WbGrUHBWnZP5uYO9mYPcfxqv8jQCOaV0Ln97YGe9cfSg6N60WU7M5hcC/P9mHNo/swGNfl6AgtQaQXh3IrGXoUK8NkFXfcNCKs1actoI4caVGKSGEEEIIIcTVeNoxGhxFF+wkdYrJkydj5syZGDJkCJ2jJGrE2Xnqqaeq/bVr16r5JPNY5rW8yt/iJJV9cZDK5nUkwD0vL09tuge766Cr0zrY2Z7Vsq2SF68cHeYJCY8fx8dNfdZBV9pZ++XRznobP46Pm/psu66SllbS04qDVJC0unVaGJtEaqZVQyAlE3mptZGX0RCB2sb/JWXWxplH1MeqOY/iuWefxcEHHxxT89v2FuH619ei413L8OrXW1FSElClRPOQgbysJgjUaLrfOaocswBWvxFzd2lnCXEGN81JHXTl9az98mhnvY0fx8dNfdZBV93PkV/xtGM02Blar169hOgwYMAAvP766yqV76pVqxKiA3FnpKjp6Jw1a1ZYx744SSWK1HSkej1ytLCwUDmEZZN9ndFBV6d1sLM9q2VbJS9eOTrMExIeP46Pm/qsg660s/bLo531Nn4cHzf12RFdxTkq6WnPmQa06wukpBlRoxJBWrsZCmu3wuS8CzF53wAUplQz/l+OO2caUo++CldceSV+/vlnVcpGsjfFwvptebjwuR/Rc9JKfLhmFyZv/YfaCtNrA1mlzxFydwIlRcB3s4A3hwMzLwFeGmC8vjMSWPmycUwl0M4S4gxumpM66MrrWfvl0c56Gz+Oj5v6rIOuup8jv+Jpx6g4Q8877zy11apVK2F6iHP0qquuUhshkWCmfpZ0uZKOuTLEaSqOd0Gcqbt2mbV5CCGEEEIIIcQFNOoI9L4NuGgW0GsY0PRIoG4LoHqD/cf0vNL4fzlOji+lWrVqGDt2rMqyc9NNNyE9PT0mFVZs3Iv+j32LF198EZs3bzbezKojy/yNuqPbfwX2/gVs+BzYtRHY97fxunkV8NUzwMsDgYUTmG6XEEIIIYQQzUkKMJbXEcRZJY7alStX4sgjj0y0OkRjpkyZom7shWnTppU5PStjxYoV6N69u9qX4+VzXiweLeaqpKRE7ScnJyNJVphrig66Oq2Dne1ZLdsqefHK0WGekPD4cXzc1GcddKWdtV8e7ay38eP4uKnPOugaiw6//fYb7rjjDrz00ovKpxkrF/VsiAn9aqNl2g4gUAwkpYoSQFKySvOLQImxL1GskvpX1UctRdIDyxakL+2stch959SpUys9ZsSIEQfcr/oJp+/XdUEH2+UmXXk9a788t9pZEhl+HB839VkHXeW3t3Hjxr77PdYdOkYdZNCgQahfv36VF+/E37Rp0wbr1q1T+7LqOdL6uMGG3amvtV9vtAghhBBCCCF6s2rKGbjlv0vw4feVp7itjPQU4OqjMnHb8WloUE2covJuMpBaQVSqOEaz6hq1UoVOZxo1VDV+WOhm6BitGt6vE0IIIYmHv8d64ulUurrRs2dPLFu2LNFqEI2RyE/TKSpE6hQNPXb27NmW60YIIYQQQgghbuHIgzLxwXWHY8FVjdD9oNSYZBQUA498kYc2j+3BxM/ykFMgT1FSgBpNgVqHGK/KEZoEFOUBezYDe7cYH17zLrD8eWs7RQghhBBCCIkbOkYdRBxXwU4vQkKZP39+2X6dOnWi+mywY3TevHnwIsXFxZg7d67aZF9ndNDVaR3sbM9q2VbJi1eODvOEhMeP4+OmPuugK+2s/fJoZ72NH8fHTX3WQde4dEjLUi+921XHV8Pr4bX/a4HWDYLS3UbB7nzg1oX5aPf4Hjz7TTGK0moC6dWBzFpAzaZAvTZAVn3DQZq3a79zVByjpTVHaWcJcQY3zUkddOX1rP3yaGe9jR/Hx0191kFX3c+RX6FjNAG1RgkJx9dff122LzVpoyHYkRrsYPUS8kPyxRdfqE33HxUddHVaBzvbs1q2VfLilaPDPCHh8eP4uKnPOuhKO2u/PNpZb+PH8XFTn3XQNS4dJK2tkJKG5OQkDD48HWvu6oHHBrdBgxppMenz554SDJmzE0fcuxxvf7NtfwkTiSKt3sBwkprO0fzdxv+tfiP+vlQA7Swh7p+TOujK61n75dHOehs/jo+b+qyDrrqfI78SWz4ZEhOMFiWRpNKNJY1uqCPVq3MtJSUFxxxzTNm+zuigq9M62Nme1bKtkhevHB3mCQmPH8fHTX3WQVfaWfvl0c56Gz+Oj5v6rIOucenQrBeweRWQWQfIywby9yC9eiNcd/LBuPToxnhg3u94cP7vyCkoiVqvNX/l4Oynf8BxbWphyrmtcGyb2sZ/ZNQEivKB3O1A7k4jze66j4FjrkZKei3aWUIcwE1zUgddeT1rvzzaWW/jx/FxU5910FX3c+RXkgJlSxyJ3QwfPhyzZs3C9u3bE62Kpzj11FNV7dadO3c60p5EY06bNk05H2WTKGBxYsomugwdOjTqNLgmSUlJZft9+vSJKiXu2LFjMWXKlLK/5XzEqkeksHg0IYQQQgghREtydgCvDAKKC4FdG4waoJLuViI7S9mcnY973tuI6Ys3ozh6/2gZZx9ZHxPPaYWOTaoBJUXADlmoGgDqtABSM4Few4AuF1rTL1J23zl16tRKjxkxYsQB96t+gvfrhBBCSOLh77GeMGLUQV5//XX07Nkz0Wp4KrpyyJAhZVGW4qC00xEoTkfTISrtiONy8ODBan/t2rXKYSrOSdnk/+TYaKM+g4m3Lzt27LDdMUoIIYQQ4meKiorUNVdVWT1SU3nbRYjjVKsHtD4J+GWekVZ3z2YgdweQmmFEdgJoWjsDUy9shxt6H4zb3v4Nb6zcFlNTb63ajne/244rj2uCO//ZAgeJfEmlK5GqNTKBjV8C7U8DfvoA2LTUiCYtzDXqoIpuEt3asf/+9L+EEEIIIYQQ2+AdukNMnz5dOe66deuWaFVcjzgmxfk4e/Zsx9qTSFAzPe2YMWMwbty4Cp2O4hwdNmyYem3Tpg0mT56sjk8EXqxnKwHuJSXGUu7k5ORyEba6oYOuTutgZ3tWy7ZKXrxydJgnJDx+HB839VkHXWln7Zenu50Vpygjltz9PXYaN/VZB13j1uGwAYZjVFLaiiNSan+Kg1TS3WbVAZKNRyIdmlTD7GGd8cU3P2LMBzuxeENh1LpKxOkzn/2FF7/ciptOaogxvUpQK63AiFTd+AUCLw9CSXGR0RcEUNaVXRv/n73zgJOiPP/4b3dvr99xd1RROgoiCnIg9kaxxJiogCUxaiyIif6NBeyaxIigppgYImo0iZWiiSaxAGKLhSqKBREQUDrX+7b/53nn9jgO9u52d2bvnZnf18+6c8vsM8877+yzM/Pb53mgSv4uf9IQcsXnboPb3J5b4iwh8WKnY1IHX5PxQSqV/etf/2p1nR/84AcoLNzzow+ezzLOOg03zo+dxqyDryzYqicURlPAm2++qcQy+eCJwEbiQwRJyQpdunSpEhyb9+G0GtnWmDFjmkRGKYU8YcKEmOtLpqhkj8o8RzNI5W/JHk21kNlW9oIdCQQCmD59uloWcTo9PR26ooOvqfbByu2Zbdsse8na0eE4IbFx4/zYacw6+Mo4a709xlln48b5sdOYdfA1aR9EYCy+FFj+FJDb3XhNxFHVA7TEyBz158idMiAcRvEBXoy59Db0+uorfLxwDr7YGYrb59pAGL9ZsB2P/s+DO06uw9VHVSMj3Y+ALxfTd5xijCXzGaSjAfB4AZ/f6IMqiIgrD/FZHq3cvGOcJcT+x6QOvibjg7x348aNba5j1vba4w/PZ0mqceP82GnMOvjaMg4SPaAwarEgKoJYNLNRyqqeeuqpHe2WLZBfk8USCqPCpNUZo7L95qKozGVromhzpDeoZIyKqDt79my13FbmqNlCphMzRgkhhBBCCCEkLkRgrNkNfPGKIY5K+VopZSuZnFLuVh5RIiH1g+ZBgwbhiYGd8NynDbjrzRp8VxF/A9JdNRFc/99K/OGDGtw7Ng/nDt+05x8DNYDHyB6F3CuTkrvSi1RK6Up2qwi54vMJN7YqjhJCCCGEEELixxNxcC7vaaedlvKsORGjZJvNRSnZxXJxJWIZhdH2EU1rl3K1IiiPHDlSZWFKRqa8Jv0+JRuzZQkPM3tqRrM+BSmBvHz58rjeL+9tniEsmaOt9RyV7NTi4uKmv0WElQzV9iL7Q/ZLlLayW+3YPFo+S/X19Wo5IyND+1INHe1rqn2wcntm2zbLXrJ2dDhOSGzcOD92GrMOvjLOWm9P9zgr5z0spWvvz3GqsdOYdfDVNB/ktoeIjfKIIsKoCJKhBiASVtmbkYYa1Ef8QDiIDNTC4/GhNqM7Hv6oDtNf24Ty2vgzSKOM6JmGX48vwqlDuiDDnw6PzweEQ0CgGqivFCeNFSV7NJrdKqLuyMtcHWdjwfir3/W6LugQu+zkazI+JPI55PmsfeIsaR9unB87jVkHXyVWdu/e3XXfx7rj6IxRKb1aXl7eoXWc5cMmj6uuuoqiaBx0tF4vomZUFI2m2seLiLgiqEZL/06cOLFVcdVMUdcKezogn6XMzEzYAR18TbUPVm7PbNtm2UvWjg7HCYmNG+fHTmPWwVfGWevtMc46GzfOj53GrIOvpvkgN8FEYOx9DLB6PrB+sfF67t62PTW7kVmzS35CDoR9gNePrPwiTDvNhyuO64Hpr23GH9/6Dg3B+K9XV2wJ4ntP7cD4IQHc/8N+OLJ3jvEPmflATjcji1XK+0qpX+Vbd0PIFZ/303OUcZYQ+x+TOvjK81nr7THOOhs3zo+dxqyDrzoLx27GCwcj2XnRbM2WQmUqHoJsX0TRtn5BRfSieTaqCIyJZl6ef/75TcsikKayP2pRUVHKtkUIIYQQQggh2iMC46m3Az+aC4yeDBwwDCjsA+R0NZ77HAfk9gC6HGz0H5XLehEsAXTO9ePBCf3x1S9H4eLR3RKucPvG56UYcd8K/PivX2LDrlrjRa8PyOkC5B0gdy0McTRa4leEXEIIIYQQQohpODpjtLkw1FyoTBWSLfjYY4/hyCOPTNk2SfK0FDAl8zNRRFBtLrJKn1J5tEfITLZHqBMzRkOhEN599121fMIJJ8An5ac0RQdfU+2Dldsz27ZZ9pK1o8NxQmLjxvmx05h18JVx1np7jLPOxo3zY6cx6+CrZT5IL8/hFxmPltv7+2+A3etxQmYNfFVbjCzOtAxDKAXQp3Mm/n7ZYNw47iDc8tIGvPaZIZzGyzNLdmDuip245sSeuP3M3uiS6ze2EawHancbgqz0G5Xs1mOuMXxu6SvjLCG2PiZ18JXns9bbY5x1Nm6cHzuNWQdfxQeiH44WRlv2cxRRVMTK1vo8xktzMWvAgAFNPTHHjBlj2jZIamkpXI4aNSphWy2PtdmzZ8cURpMVMlsKqU7MGJUvkrffflstH3vssdp/8Xa0r6n2wcrtmW3bLHvJ2tHhOCGxceP82GnMOvjKOGu9PcZZZ+PG+bHTmF0bZzfJj6n74dhuG+HLrDGyNyu3GoJlVgHgNW6jDDsoF69eezje/LIUU19cj+WbquPenpTk/f2b3+Gv72/DtNN64foxByJbtiFirPRAlYew5tX9iriMs4TY+5jUwVeez1pvj3HW2bhxfuw0Zh18pTCqJ44WRqNCU7ScrvR3ZPYmaYs5c+bs9beI6ckg4uj69eub/p43b17M0rxyzEYFzpKSkri203J9J2aMer1ejBw5smlZZ3TwNdU+WLk9s22bZS9ZOzocJyQ2bpwfO41ZB18ZZ623xzjrbNw4P3Yas6vj7M4v4a2LGH0+BRFHVRZniZHV6c+RlYFwGKceWIclV+Ri7mdpuO2NSqwvDce93Yq6EG7/1zd45K0t+OX3++DSoblIC1YCdeVGH9RNH+4jjDLOEmL/Y1IHX5PxISsrq+m9ra1j1vbaguezpCNw4/zYacw6+Kr7PnIrnkgqa8umGCljO3nyZCWKzpgxAzfddFNHu0RMYubMmXuVqBVKS0uTFgNFwJTM3+asW7cuqSzjiRMnKjE0ivScjZU1Om7cOCxcuFAtyzZl2+2luLi4qQRwvO9NlJ07d6Jbt257vbZjxw507drV8m0TQgghhHQ0ct4za9asVteZMmXKPudLhBDNkdsk7z4EfPGK8bf0+5TSttEMzv2RlomGunrMXlaNXy2uws7qxG+1HNo9A9PHZuLswwvhKeht9D+d9PeE7TkRxt+24fU6IYQQ0vHw+1hPHC1XNy8lmkyfSOIeoqJkc5ItvdyypO3+ttFcGI0Sb8Zo81K6yWa5EkIIIYQQQohr8XiAE24Eii81/pZenwV9jEdmAeDPVkKoepa/G/8tPd2Hnx+dja9/0RV3npyN7PTEbrl8sb0eP3ymHCfM2or315UDDTXmjo8QQgghhBAX42hhtLmgZWZfUeJcFixYYLrNllmszcvqtqS5gN+yZ2hbNLfbXGAlhBBCCCGEEJKAODryMuCcR4GDxwM+vyGGSnndTr0MMVSe5W95Xf497wCgUx/k5+XgV2PzsO6OQ3H1iQfAl+Cdl/9trMdxD6zCOQ8vwZdffmn2CAkhhBBCCHElrugxSkh7aSlamnEMde7ceZ/XpOTt/rI65bXmPUljrdeSliLqpEmT4EQaGhpUWWxBSimnp6dDV3TwNdU+WLk9s22bZS9ZOzocJyQ2bpwfO41ZB18ZZ623xzjrbNw4P3Yasw6+ahFnuw0GTr0dOOYaYM2rRr9P6TkqWZzpjRmjvY8GBp0BLLgb2LrKEEkDQI+sBsy66GD8YsyBuOWf3+CllbsS8uufSzfj5cMOw+WXX4577rkHPXv2ZJwlxAHHpA6+ahFnNbXNOEvagxvnx05j1sFX8YHoh6OF0X79+jVlAObn53e0O8SGwmjLMriJsD9xVbYTS/CUvrjR/qlSdrc9wmjz8rwTJkxw9I8CwuEw7IIOvqbaByu3Z7Zts+wla0eH44TExo3zY6cx6+Ar46z19hhnnY0b58dOY9bBV23ibFYhMPwi4xGLXqMNYVTE0rpyoL4SyOmGQ7pn4/krh+Ka5QPUPYpNmzYl5Ndjjz2Gp59+Gr/4xS9w/fXXM84S4oBjUgdftYmzGtpmnCXtwY3zY6cx28lXkjo8kUgkksLtEWIKM2fObBIPo5SWliYtCHqkXFIzJHtz3bp1SdmcPXu2EjubI79UmTp1asz3FBYWqizQ9m5/4sSJmDdvnlqW9VNVOjrVzaMlXFVWVqrlvLy8feZLJ3TwNdU+WLk9s22bZS9ZOzocJyQ2bpwfO41ZB18ZZ623p3uclfOeWbNmtbrOlClT9jlfIvp8jlONncasg6+2i7M1JcCzk4BQACjbCATrgKzOQE4XyJ2XynC62sY7n2/Drf/cgM+21CRVmejmm2/GT3/6U3Tp0sWxcTYWjL/6Xa/rgg6xy06+2i7OptC2W85nSXK4cX7sNGYdfJXv3u7du7vu+1h3HJ0xSkg87K+npxmZl/vLOt29e3er71m0aBGKi4tVZqkIq1dddVWr2aJRUVQEVyf305UvL7tkf+vga6p9sHJ7Zts2y16ydnQ4Tkhs3Dg/dhqzDr4yzlpvj3HW2bhxfuw0Zh18tV2czS4C+p8MrF1gZJhWbgVqS4C0DHgy8pDvM0qpff+IzjhzaBH+/uF23PXKN/i2NP4Sa3JNecstt+DRRx/FvffeiwsuuABeb/zNTBlnidOw0zGpg6+2i7MptM3zWdIe3Dg/dhqzDr7qLBy7mfjPmglxKCUlJR1WsrclUj43Wv9csk2l12gsO5ItKoh42loWKiGEEEIIIYQQixk6wXjOyDdK6kJSRbcC1buAcLBpNZ/Xg8uO7YGvfjkKM37YB50yE7s9s2HDBvzoRz/CyJEjm1oJEUIIIYQQQmLDjFFCWskY7UhE5BSBVIRPyR4V4VNEUnlNBFHJEo2WE5ZfCbeWVZpKEilVdPfdd+POO+9EKBRSv3JOS0vbp0G13+9XNeE//PBD9SwX/vJa83UDgYAqkSCvRX8tLesGg0H16xxZP1XryutLlixRrx111FFNrzVfV94vdnw+n3q0Znd/64pN2Z7QvHl4dF1h6dKl6nn06NFNr+1v3Vh2xYfoL5tkfuQRa13ZNx999JFaHjVqVNNrseazpV2z5z6WXVlXxr18+XLlw9FHH62eE5l7eU38EuRzGt2W1cdJW3Of6nXjnc+OWjfez7JZx0mi61odI/a3ruy36I9xZMzyulkxwuz5rK2tVTFOXj/mmGPUNuOZezOOk7q6OvUZbu6Dld879fX1asyyHZkfee6ouW/Lrrz2/vvvq+Vjjz22aR/HO/fy+rJly9T60TGn8jhpa47a069G3i8+OyFGxLtuWzHCrOPEiu8HM4+T5uvKax988IFaPu6445r2RSq/S9o7nzJ+8VVek3O7rKyslB0n0f0uy3KuJc/iQ2ZmpqXnEbKOHJPin5w/Z2RkxL/fuw1GYPhPEFnxNNJyuhu/Rq8rQ6C6DB9U9QF86TguZxN8Po8YQFpDHa4vDuGnh3bB/e9U4Y8f1qIhFH/Ho5UrV2L8+PEYN26c+pHt4Ycf3q4YIWP+3//+p5YlzkbnLhXHSTLnEdHX28JuMcLMdff3HdVyvznxWqOta0ddrjXaez1o9fdD8/sGqbgmldei19AyP7Its2KE2XMvrze/HoyuH2+MkPdbfd9Ax/MIt9yPSOY46ajvh2SvNeRZxmzWtaNV1xqyrlyzt/d60KrjRHwg+kFhlJAOyBhtrwg7duxY1TtVyunOnTsXY8aMUe+VEr9SMlcueEUQNaPkb0cjX1Kvv/66uoA/99xzm17/wx/+gJqaGtUfRsYppYOFN998E4MGDVIlo6I88sgjKC8vxxVXXIEDDzxQvbZ69Wq89NJLan9dfPHFTes+9thjqufKJZdcgr59+6rXvvrqK7zwwgvo1auX6tUT5amnnsKWLVtw4YUX4pBDDmn6ZfbTTz+tasRfffXVTes+88wz2LhxI374wx82+XrAAQfgH//4hyqrfO211zatO2fOHKxduxY/+MEPMHz48KYa8yJ0S937G264oWldGcPnn3+OM844Q50IR4/ZP/3pT+qGjZTRivLvf/8bq1atwimnnILFixer1wYPHqzWlS9nEaGjyD6XG84nnXQSTj75ZPWa3HiPZizfcccdTScUUuJZbnrIiYTcdBHkBGX69Olq+Re/+EXTmOVL/7333lMXI9/73veatid25T2ybrSUhVwgyPuGDRum9luU3/72t8qXn//852p/NJ/7IUOGNGVLC3/84x9VzwD58UCPHj3Ua59++in+9a9/4eCDD8ZFF13UtO5f/vKXvT7vcgNH5kF+bNCnTx9ceumlTf/2xBNPYPv27fjxj3+MAQMGqNe+/vprPPfcc+jZs6c6fqJ+ffHFF/juu+9w/vnnq/0tbNq0CX/7299U34Brrrmmye7zzz+vfuDw/e9/v+n9cszKup06dcL111/ftK74tWbNGpx11lnqIkqQY1d6KmVnZ6veUlFefvllNe7TTjut6YRcPhPyOZKTtdtuu61p3f/+97/qBpocJyeeeKJ6TT5rDz74YNMPFqKIjyJ6H3/88SoOCXIiGp37W2+9tenk9a233lJzLzcTTz/99CYb0XVvuukm5OTkqGW5CSfH6JFHHomzzz67aV3xQez/3//9X1N8a0+MiP4w4+OPP1afAzNiRPPjRObMrBgxYcIEHHbYYeq1b7/9Fk8++WTKY4R8x8hNeUE+P7/73e9UjIjeIJExS+aJWTFCfswjN7SFd999F2+//XZSMULmXnwRZMzih1ycvfrqq6bEiMsuuwy9e/du+nzvL0bIvMmcNPeheYy48sorm9aV74HNmzfHFSPOOeccHHHEEeq1rVu34vHHH9/rmJTtmRkjoheYYvu1115LKkbI90D0O0h+1JWbm5twjGg55nhihMy9iKPN58jMGNE8dsXin//8p1rXKTHCzPMImcfoHMsYop97M2JE8/MI6cUopDpG7O88QuYsOuao2G9mjDDzPEJu7Mi8CfK57YjzCPEheq4k+83q8wjZnpxrRj97zec+rhixvB47d56MSwpXoK+EP38W1lQWYHFwNBAEjq5aBp/HyB59KngetqAbLsxdgAcnVePaM9Pxi39uxUtLNyMR5LtbHvJjA4mbcky2FiNkzNFjUr4L5DMaT4xofpzI59aqa439nUe0B7vFCDPPI2S/t+Svf/2r2u9OvtYQX5pfO+p8rSHHTtRXid/z589P+bWGfM9GfZBjVo4RK88j5LMc3Z7YkB/mmRUjxH7zuTfjPCKKxFOZ+0RihMxH1C+JM3KfL54YIcdZ9P2FhYXq/qBV1xq8H5FYjGh+nMg+MCtGWHXPMtlrDbm2q6qqahqzHOs6XmvI533mzJlN9qLXg6m+1pC4SvSDwmgCNL8p1RwJIBLIosGCEMEM0VLET10yQjsS+YKULyLppyNf3HbwtSNryct2U+mDlWOO2t61a5cSH81g4MCB6oQ4kV5MLf1qT+/gtt6fjB/EOuQmlZz0u2l+7HZMyoV/R/sq53+p8kFuKsiFlhXbM3Pum9tI1p6cY8sNgER75wlyY6KjjxNi7XFiF6LHpGTV6T5m8e/QQw9VN2w70geJTXIDLVXbO+igg9S1hinns4NOB755XpXV9YQ7A+VANurg9YvAFwQ8XiDsA+Q3STndgIzd6JMBPPDLW9D95U/VjbvPPvssoU1L5qvczJMbq3LjtkuXLjHHLDfC5WZtImOW98v3ktwQJUQHonFDBKVt27ZBZ3jfwJr7BjLvMv9mXWuIsGPWfQMRK3WfIxI/cq0hP97R/dzOzfcNhg4dahtfSWrwRCSn2MFUVFSoZzOb7Lb2IYp+QckNMvlFhvx6p6Mb/DoR+bVHtIxsFPnFVTIipPz6Q8oONUcyHKKlAcy0K7+KcUL/F7nITqR0bqKldK0oXaNrWQpdypd0ZJlMN5S3Yumajj9O7Db3uh0njBEdvy5jRMfGCPkltPxqujXkekAECcYIxoiOWJcxQoPziF1fAavnI7xuMYLBEGQzfs+eEqeBiBdyVyYtzQfvgFOAoech3OWQJruS+SJtViRjIlHknoRcP1933XVqbpwQI0T4iPWj9SiS5SdZHG6NEXKPJJq9FkV+ZCqZZh0994wRHb8uzyN4HsHziI4/Tuw297odJ3aJEZLRG80SjiLZt5LNTToOxwujciDKQ8qRRFPPrUB+XSllCOQhN0jeeOMNVQJDPhhyAXLfffdZtm03YidhVMpONE+fFyiM7iuM3nPPPab4RAghhBCSKuSCVkqJtUbz8nuEEBdTWwqseRXY9KHqOYqGGiA9G8gsAHofDQw6A8gq3O9b5aagXFdKGcJ169Yl7IK0+PjlL3+pSjg2v2FnRxh/E7te541YQgghJLXw+1hP7H0m3E5Sof1K6RmpSS4PIVrnXQQ8qaMtops8mD2qL1KmjSQPAzshhBBCCCGEtEBEz+EXGY84kR97T5o0SfW2kr5jIm4274XeXqSHnLRokb5Y0m9N+oaxLCMhJJkkEUkMaQ3p9Sf3TAkhhBCdcIUw2pFIyRtpaCwnAnIh89prr3W0S4TYFilTIBfxwg033LBXeQXd0MHXVPtg5fbMtm2WvWTt6HCckNi4cX7sNGYdfGWctd4e46yzceP82GnMOvjKOLs38p6f/exn+MlPfoIZM2bggQceaCrlFg9ffvklzjnnHBx77LH4zW9+o3qRJuqXDscJIXY9JnXwNRkf6uvr2+wvfNJJJ5m2vbbg+SzpCNw4P3Yasw6+JnKuRqyHwmgKkH6j8guqgQMH4qWXXlIXIMQelJWVWWI3mZK/bkdOvO2CDr6m2gcrt2e2bbPsJWtHh+OExMaN82OnMevgK+Os9fYYZ52NG+fHTmPWwVfG2X3Jy8vDXXfdhbq6Orz99ttYuXKl6mkVL++//z5OOeUUDBo0SLV7sfNxQohdj0kdfGWctd4ez2edjRvnx05jtpOvJHW4oseolIaRPhxW9hhtD5I1Kr68/vrrHeqHE7Cix6j0hx0wYMA+onYyPVyE2bNnY/LkyftkEssvfO1OqmukS7iSHr7R0sc6l33SwddU+2Dl9sy2bZa9ZO3ocJyQ2Lhxfuw0Zh18ZZy13p7ucZY97uz/OU41dhqzDr4yzrbP3q5du3DHHXeoPqTJ3Dv56U9/qsr09uzZU/vjhPG3bdza00yH2GUnX5PxIZHPoV3jrJPPZ0lyuHF+7DRmHXyVWNm9e3fXfR/rDjNGU8iIESNUPxCiJyKCporOnTunbFtOQr687LLvdPA11T5YuT2zbZtlL1k7OhwnJDZunB87jVkHXxlnrbfHOOts3Dg/dhqzDr4yzrbPnjzPnTsXH330kfoR7jvvvBO3vXA4jMcffxzPPPMMfvGLXyg77ekLqMNxQohdj0kdfGWctd4ez2edjRvnx05j1sFXnYVjN+PtaAfchGQkWlWalZhDy4zT6C9KkmF/c85SuoQQQgghhBBCzGT06NF466238Morr+Cwww5LyEZtbS3uu+8+VU3p97//PcvPEUIIIYQQx0FhNIWsWLEipVmJJH4kpb45ZgjZu3fv3ue1kSNHJm3XjUjfnCVLlqhHIj103OZrqn2wcntm2zbLXrJ2dDhOSGzcOD92GrMOvjLOWm+PcdbZuHF+7DRmHXxlnI3fnmQlnHXWWVi1ahX++te/4qCDDkr4OlYyRwcPHqyySCWjNB4/COko7HRM6uAr46z19ng+62zcOD92GrMOvuq+j9wKS+mmiPnz56uM0XHjxnW0K6SNcscyT2ayP3GVAnniXySvvvqqWh4+fDh8Ph90RQdfU+2Dldsz27ZZ9pK1o8NxQmLjxvmx05h18JVx1np7jLPOxo3zY6cx6+Ar42zi9uTvyy67DBdccAH++Mc/qizQ8vLyuLfzzTff4Mc//jEeeughzJgxY597Gnv58d3T8DWUAoFawJ8FZBUCvUYDg880lglxSeyyk6+Ms9bb4/mss3Hj/NhpzDr4SmFUTyiMpoAXX3wREydOVL/cFOGN6MuoUaMwb968fYTNZErftizHK6IoS+kmhtfrxZAhQ5qWdUYHX1Ptg5XbM9u2WfaStaPDcUJi48b5sdOYdfCVcdZ6e7rH2YyMjCb7ra1D9P0cpxo7jVkHXxlnk7eXlZWl+oVeccUVmD59uhJJEymPu3LlSowfP14Jo/fff79xb2PHl/B+MhdDMncCkQi82z8HPM0yS8s2AVtXAcufBPqfDAydAHQbDDNg/CU6xy47+ZqMD4l8Dp0YZ622o8NxQmLjxvmx05h18FX3feRWPJFIJAIHIweeCJLr1q1D3759Uy6IPvroo1i4cCFkN3eUH05k5syZmDZt2l6vlZaWJi04Srnj4uLivV5bvnx5UoK22BO7UcaOHYsFCxbACezcuRPdunXb67UdO3aga9euHeYTIYQQQgghhJD9s3HjRtx11134xz/+oe5TJMpFpx2Ne08IoV+XLOOFYB1QVwaEAkAkDHi8gM8PZBYAaZl73lh8qfHweEwYDWkNXq8TQgghHQ+/j/VE+4xREReXLl2atB0p+WJ1lp5kFkp2oJRibS6ERUXRCRMmUBTVnP0JoMuWLUtKGG1ZmleyhwkhhBBCCCGEkFTTp08f/O1vf8ONN96IW265pam8XLw8+/qHmLvQg2uO74w7TsxEl4zAvivJS3XlhjAqpXQz8oHlTwE1u4ETbqQ4SgghhBBCOgTthdHnn39+n9KmggiN7UWEydmzZ5vsWevba+mnlE997LHHUuYDSRwRsJsfc5Llm4xY3rLH6KRJk5LyjxBCCCGEEEIISYYjjjgC//3vf7F48WJVjSmRH6QHQhH84e1dePJDD6aekIPrT+mOnJw8wOsDwiEgUA3UVxrZpJVbjd6jud2BL14BsjsDIy+zZGyEEEIIIYTYWhidM2eOei4vL1fZmJKJKRl4ctIuJWqjolNUgIxVCiaVFYObi7ayXck2XLRoEfLz81PmA0mcW2+9dS9hVI6zRGn5XhFd2V80cQKBgOqJI1x77bXw+/3QFR18TbUPVm7PbNtm2UvWjg7HCYmNG+fHTmPWwVfGWevtMc46GzfOj53GrIOvjLPW2zv++ONx/vnnY/DgwXj//fcT+mFwRX0EdyyswiNLG/DLs/rgsmN7IC3dA2TmAzndgNpSoLbEKLUriDgqmaO9jzGt5yghOsUuO/nKOGu9PZ7POhs3zo+dxqyDr+ID0Q/thdEonTp1Uo9+/frt9fqGDRswd+5c3H///UokbZlJGhVE48kwTQbZXnSbIoBJCd8rr7wyJdsm5iBCtjyi5ZCbl0WOl5a9RCdPnpy0f25GPluVlZVNyzqjg6+p9sHK7Zlt2yx7ydrR4TghsXHj/NhpzDr4yjhrvT3GWWfjxvmx05h18JVx1np78t6qqioMGDAAf/7zn1WZ3V/+8peqH1a8bC1vwFXPrMVvF32L6T/shx8M6wyPZI/mdAHSMoysURFH/VlGWd3V84FTb0/Yd0J0jV128pVx1np7PJ91Nm6cHzuNWQdfdd9HbsUTcdDMSJbfVVddtZdAGu3vKaKq1RQVFamSuSKqjRs3DmPGjLF8m25l5syZqtxPc+SXrbL/zTqWmvcCffTRR9WxFS/NBXk5LpYvXw4nkerm0eFwWNkXZLterxe6ooOvqfbByu2Zbdsse8na0eE4IbFx4/zYacw6+Mo4a709xlln48b5sdOYdfCVcdZ6e/uzIzcQH3roITz44IOorq5O2Mdj++dj5rn9cNzAxvsx1buA2t1Gz9GCPoDPD/xortF/lNj+el0XdIhddvKVcdZ6ezyfdTZunB87jVkHX7dv344ePXq47vtYdxwljDbPypN+niJKRYVREc369u3b0a4RkxBRVMRRq4RRobi4uClbVOzGW1KopXhrtn864NYLLUIIIYQQQghxOtu2bcOvfvUrzJ49G6FQKGE7kjkqGaSHdk8HStbLT9gNYVQE0tGTgeEXmeo3MeD1OiGEENLx8PtYT/SV85NAsvtuvvlmpik7mP2Vt02m5O3+kBLN0X6g0te2pRDbGpK13FwUlZLKThNFCSGEEEIIIYQ4F8lukPK6n3/+OSYcOzBhO/9atRtDf7UMVz6zHt/VZRkv1pUbz5s+NMlbQgghhBBCHNZjNF5EiBIxa/78+R3tCjERET9F+F64cOE+/ya9XEtKSjB27FhTREixsWjRIpU5KojQKa9NmDChTVG0eRllORanTp2atD8E6lfKn376qVo+/PDD4fP5oCs6+JpqH6zcntm2zbKXrB0djhMSGzfOj53GrIOvjLPW22OcdTZunB87jVkHXxlnrbfXHjuHHHII5l53ND46IRdT53yJdzbUxb2dcAR4/H/b8MwSD64/JgvTTs1Ep1wRSMv2rFRTAqx5Fdj8EVBbCgRqjX6kUmq312hg8Jksu0tsEbvs5CvjrPX2eD7rbNw4P3Yasw6+JlN1g1iHY4VRQTL8KIzaExEhpVxPc7GxLWQdKaPcnGjGpyAip/T5jIdoX1DpNypCuzy3JnSKcBtdV6Aoav4Xyb/+9S+1PGTIEO2/eDva11T7YOX2zLZtlr1k7ehwnJDYuHF+7DRmHXxlnLXeHuOss3Hj/NhpzDr4yjhrvb122wnUYnS/fLx1VTf89/MK3LKwDqu3xi+Q1gYimP5ODWYv24w7vufDlDOKkLHjS2D1PGD9W0AosO+byjYBW1cBy58E+p8MDJ0AdBsc97aJO9AhdtnJV8ZZ6+3xfNbZuHF+7DRmHXylMKonjhZG+/Xrh/POOw8vvvhiR7tCEkCEzqiw2VzgTMROMog4Kv1Bo2KtPE+fPh2TJk1qyiaVf5cs1mg5X8kqZflc85EG2QcffHDTss7o4GuqfbBye2bbNstesnZ0OE5IbNw4P3Yasw6+Ms5ab49x1tm4cX7sNGYdfGWctd5eu+1I5iYAj9eH7w3KwOlH9sE/Pq7Fna9sxLel9XFvd3dNGL+Yux5/ePM73PvuF7hwVDd4vR4gWGdkkYpAGgnLBgGfH8hsvCewdoHxKL7UeHg8CY6cOBUdYpedfGWctd4ez2edjRvnx05j1sFX3feRW/FEHN6I87HHHsPVV1+thKu+fft2tDvEAcybNw8vvPCCygqVR1TAFRFUyvief/75cWem2hU2jyaEEEIIIYQQF/DydUbWZtU2oz9oRj6QdwBqG0L44+ItmP76ZpTVBBM2P/zALMw4LQ/j+7cidKZlGqV0ZdvCod8HTriR4mgMeL1OCCGEdDz8PtYTR2eMCiNHjoTDtV+SYiQbtK0+o4QQQgghhBBCiGOQHp8ijErmpgij9ZVATjdkpfsw9bReuOL4Hpj+2mb8cfF3qA/Gfw/m4+9qcdpfazF2QDpmnNUdI/p1Brw+IBwCAtXG9iSbtHKr0Xs0tzvwxStAdmdg5GWWDJkQQgghhDgTx2eMCuXl5ejUqVNHu0GI4+AvXgghhBDiZuS8Z9asWa2uM2XKlH3OlwghxHbUlADPTjJK3JZtNETKrM5ATpe9VttUUoe7Xt6Iv3+0HcncbbpwVFfce3Zf9O9qlPBVAmltKVBbAjG8w9sNswLntWrD7fGX1+vEaiorK/HOO++0us6JJ56IvLy8lPlECCG6we9jPXF8xqhAUZQQZxAIBPCXv/xFLUuJbL/fD13RwddU+2Dl9sy2bZa9ZO3ocJyQ2Lhxfuw0Zh18ZZy13h7jrLNx4/zYacw6+Mo4a729dtvJLgL6n2z095RytpK5WVuCgC8bf6k81Xh/lyXoXZSJpy4dhBvGHohbXtqAVz8rTciv55buxLwVuzDlxANwx5m90TUvHcjIBRoke7QcCFW3baRkA+BiYdSt6BC77ORrMj7U1tZi2bJlra4zatSovYRRxlmezzoNN86Pncasg6/iA9EPVwijhBBnIAnuJSUlTcs6o4OvqfbByu2Zbdsse8na0eE4IbFx4/zYacw6+Mo4a709xlln48b5sdOYdfCVcdZ6e3HZGTrBEEalx6eUs60rQ6RyG0pC2Y3vl7pkxqpHHJSL/157OBZ/sRvTXlyHpZvr4vYtEIrg4cVb8OQH2zHtlM64fhSQk+4BPFJid8+2YrLwl0DVRKD4UvYhdRE6xC47+co4a709ns86GzfOj53GrIOvuu8jt+KKUrqEEGeUAgiHw/j222/V8kEHHQSv1wtd0cHXVPtg5fbMtm2WvWTt6HCckNi4cX7sNGYdfGWctd6e7nGWpXTt/zlONXYasw6+Ms5aby9uO8ueBJY/ZSxXbUe4thzfortSKQ/KqIE3PRsQG+FwU2/QSCSMeZ/V47aFNfh6V+JZEwfkeXHPKdn46TAfSrxFmOW5pNX1p3T+CN381cCh3wdOuNF14qhbS/fpELvs5GsyPiRyHsQ4q9/5LEkON86Pncasg6/bt29Hjx49XPd9rDsURlPU43TSpEnweDx47bXXOtodQkzDrRdahBBCCCEChVFCiOuQW0jvPgR88Yrxd32F0ftTeo7GIi1Tld8NpOXisTe+wC8XlWFHVShhFwZ19uLuMw/EVwMub3W9KVn/QbdOjT1KJWt05GVwE7xeJ1bD8yBCCGkbfh/rib5yvoOQdO0FCxZg6dKlHe0KIYQQQgghhBBCSGJI1qVkX4rQKEhZ3YI+xiOzAPBnG0KoPMvf0X/LyIff58U1pw/B1/eOxt1jC4yyuAmwZncY//daO0rzNlSqrFaFZLnu+DKh7RFCCCGEEGfBHqMpoKysrKNdIMQRSPmDL774Qi0feuih2pdq6GhfU+2Dldsz27ZZ9pK1o8NxQmLjxvmx05h18JVx1np7jLPOxo3zY6cx6+Ar46z19hKyI+KoZF/2PgbhT+fhi89XA+EgDs3Jgtezn6JkPj/Q/xRg6HnAG3cgz7MT94zthKuL0/Dr/3kw+/1dCIatKGbmAepKAX+WIeCung+cersF2yE6oUPsspOvjLPW2+P5rLNx4/zYacw6+Co+EP3Q96h1EOvXr1fPRUVFHe0KIbYmGAxi3rx56iHLOqODr6n2wcrtmW3bLHvJ2tHhOCGxceP82GnMOvjKOGu9PcZZZ+PG+bHTmHXwlXHWentJ2ek2GMETpmJeyaGYV3Y4gt2PAAr7ADldjecDhgGjJwM/mmsIkt0GGyKl4PGiR54Pj0w4EJ/fPRITR3SB6WR0Mp6l1K+wfvGeZeJYdIhddvKVcdZ6ezyfdTZunB87jVkHX3XfR26FGaMp4NFHH+1oFwhxBNKnt0+fPk3LOqODr6n2wcrtmW3bLHvJ2tHhOCGxceP82GnMOvjKOGu9PcZZZ+PG+bHTmHXwlXHWZnH2rNsAv7/1N2QVAmWbjCzSAIBANQ7ufgDmXDUESzZUYOqLG/D22vI2t1tRUYE5c+bs83q6z4PvHV6EHwzvgvzsdKDBY/Q/jfZAXfMqMPyiuMdJ7IMOsctOvibjg9/vb3pva+uYtb22cEWc1fyYdiNunB87jVkHX3XfR27FE4lErKhXkjQff/wxpk+frrItR40ahfvvvx/5+flx2Tj//PPR0SV0ly1bpp5lNw8YMABr167tUJ8IMRM2jyaEEEKIm5HznlmzZrW6zpQpU/Y5XyKEENey8hlgyWxDqCzbaJS7LRoAeH3qn+XeyaurSzFt/hqs3ibKaWIU5aThjjN645piDzJCVUa/09zuRhbr2Q/DDfB6nRBCCOl4+H2sJ1pmjK5cuRIjR45s+nvFihXql4AiksYjji5YsADl5W3/0tBKNNWdCSGEEEIIIYQQQlLLoDOA5U8ay2mZhkAq5W1zujRlVZx5eBFO69kd/1hegTsXVuLbivjvq5RUB3HDvPX4wyI/7h2ThYuKs4xeUnVlJg+IEEIIIYTYDS17jF555ZVKUIyKivJcWlqKW265JS47/fv3b7LT/JFK5KSe6dKEEEIIIYQQQghxPdlFQP+T95TVFWpLgPrKvVbzeSK4dEQWvrq2E2aOy0RBZmL3VTaWBnDxvAoUP/wd3vi8BGioSXoIhBBCCCHE3miZMSoZos3FxOjy0qVL47JTVFS01/uFVIujFEUJMY9AIIAnnnhCLV9++eX79KrQCR18TbUPVm7PbNtm2UvWjg7HCYmNG+fHTmPWwVfGWevtMc46GzfOj53GrIOvjLMOjbNDJwBrFwAZ+UCg1sjirNwKBOuBrALAmwZ4jN/xZ6V7cPNxGbh8RBbuf68WD39Yh/pQ/OP8eGsApz28GmMP34X7D12O4uLi+I0QW6BD7LKTr4yz1tvj+ayzceP82GnMOvgqPhD90FIYPfLII1WP0SgiZIrA2Ly8bnszRpvbEMaOHateLygogJVIX9GSkhIsXLhQLRNCkkc+x9u3b29a1hkdfE21D1Zuz2zbZtlL1o4OxwmJjRvnx05j1sFXxlnr7THOOhs3zo+dxqyDr4yzDo2z3QYDxZcCy58y+n4KIo7W7jayRzPygEgYCIfEqHoUZYYwc1wGfj7Kj7vfqsffVjWof4qXhZ9uU/eWLrzwQtx777173TcizkCH2GUnXxlnrbfH81ln48b5sdOYdfBV933kVjwRDWdGxMTx48c3ZVtGhdF169ahb9++7bbzwAMPYNq0aeq9crL7xhtvoF+/fkg148aNw6JFizBgwACsXbs25dsnxCnNo8PhMDZs2KCW5bPs9WpZDVwbX1Ptg5XbM9u2WfaStaPDcUJi48b5sdOYdfCVcdZ6e7rHWTnvmTVrVqvrTJkyZZ/zJaLP5zjV2GnMOvjKOOvgOCu3ot59CPjiFePv+gqj16j0HFWGQ0A4AKg7Vo23rTw+wGs8Pt0WwC0L6/HfL6uRKJI1IjH6jjvusOwa1k3X67qgQ+yyk6+Ms9bb0/18liSHG+fHTmPWwVcRZnv06OG672Pd0VIYjYqjImrKgSu/5psxY4bKJI2Hxx57DJMnT1bC6Ny5c3HuueeiI5g/fz4mTpxIYZQ4DrdeaBFCCCGECBRGCSEkCeR2lGSNyiOKCKN15UZZ3fpy47Vw2HiWEru+xsJn2Z2BrM5466tyTH1xA5Zu3LtHaTzk5eVh6tSp+MUvfoGcnBw4BV6vE0IIIR0Pv4/1RMtSutGSt8uXL0/KRvOSKCNGjDDBq+T8kNK6hBBCCCGEEEIIIa5HqoSNvAzofQywej6wfrHxem6m8Sx9RyWT1BPNHg0Bvlyj/K7fWOfkQQX46JbhmLdiF2775wZ8vbMx4zQOKisrceedd+KRRx7BPffco3qQpaU1u11WUwKseRXY/JGR1Sp9Uf1ZQFYh0Gs0MPhMY5kQQgghhNgCbYVRMygqKtrvcqqxup8pIW5Byh98/fXXanngwIHal2roaF9T7YOV2zPbtln2krWjw3FCYuPG+bHTmHXwlXHWenuMs87GjfNjpzHr4CvjrEvirPQcPfV24JhrDAFy04dGz1ERH3d8DohIGQkaWaSheqChysgclQxSpa96MLG4K344vDMee+c7/PI/m7CjKhS3G9u2bcPVV1+N3/3ud5g+fTp+eOxgeD4TwfYtIBTY9w1lm4Ctq4DlTwL9TwaGTjDGQuD22GUnXxlnXRJniWW4cX7sNGYdfBUfiH7oe9SalKkptaM7oq/o/igrK+toFwixNcFgEM8995x6yLLO6OBrqn2wcntm2zbLXrJ2dDhOSGzcOD92GrMOvjLOWm+PcdbZuHF+7DRmHXxlnHVZnJWsy+EXAWc/DEz6O/DT14CxvwQKegGF/RqzMiNA7W6gZL2RUVpXYQildRXw12zHNYfX4utfFOGeU3OQk+5JyI01a9aoVkzHHXs03nt1niGKSonfqm1A+WagbKPxLH/L6/LvaxcAL00Glj1plAgmro5ddvKVcdZlcZaYjhvnx05j1sFX3feRW3F0xminTp2wbt26jnZDCbM6+EGI3ZFfAvfs2bNpWWd08DXVPli5PbNtm2UvWTs6HCckNm6cHzuNWQdfGWett8c462zcOD92GrMOvjLOWm9P+zhbfClQsxv44pXGErpZRjlbESSlzK48WpCXk427f3Agrj49E7/6z0bMfm87gqH4szU+WF+BEx5chbMPzcL0cdkY0q3FLTRJIpV+qGmZhmibkW/0SxV/T7jRKBVMXBm77OQr46z19rSPsyQp3Dg/dhqzDr7qvo/ciicS4U/ZCCGJwebRhBBCCHEzct4za9asVteZMmXKPudLhBBC4kBuW4ngKI8oIoyKKBlqACJhwOMFfOlAZidDqIxSfCnW5h+H2++4A3Pnzk3YBa8HuGxUPn555kE4sCgLCIeAQDVQX2lksQqZBYZ427hd1T+1A+H1OiGEENLx8PtYTxydMUoIIYQQQgghhBBCbIxkWojI2PsYYLX0/FyMurAP69J67XtXS6rVhdOAbodhwLE/QGavI3AwgDlz5mDJkiWYOnUq3n777bhdCEeAJ5ZU4NmVX+L6MQdi6vheKMjLB3K6GRmstSVGX1RBxFERccVf9hwlhBBCCNEOCqOEEEIIIYQQQgghRG9EZDz1duCYa1Cx9J+Yt3hT7HVLwphySg80yx3FUUcdhcWLF+PVV1/FtGnTsHr16rhdqA2EMf21zXj03a2444zeuOaknsjI6QKkZTT2PC0zyv1KWV0RccVfQhxKdXU1li5d2uo6o0aNQk5OTsp8IoQQQtoDhVFCiG0IBAL4xz/+oZYvvvhi+P1+6IoOvqbaByu3Z7Zts+wla0eH44TExo3zY6cx6+Ar46z19hhnnY0b58dOY9bBV8ZZ6+3ZMs5KP8/B3wMWt17KPFafrzPPPBOnnXYann76adx5553YvHlz3HZKqoO4Yd56/OHN73DvD/riolHd4M0qAmp3GxmkIoyuX6xEXOUvcVXsspOvyfggwmhbGdhDhgzZSxhlnLVJnCXtxo3zY6cx6+Cr+ED0g8JoCtiwYQMGDBgAr9eLYFDquhBCEkFaIkcvWnVvj6yDr6n2wcrtmW3bLHvJ2tHhOCGxceP82GnMOvjKOGu9PcZZZ+PG+bHTmHXwlXHWentujbM+nw+XXHIJzj//fPzxj3/Efb++B2WVNXHb2VhSj4ufXIMHF3yLGT/sjfHdAY/0P5WHsOZVYPhF5g+AOOKY1MFXxlnr7bk1zroFN86Pncasg6+67yO3QmE0hXTq1KmjXSDE1qSlpakL1+iyzujga6p9sHJ7Zts2y16ydnQ4Tkhs3Dg/dhqzDr4yzlpvj3HW2bhxfuw0Zh18ZZy13p7b42xmZiZuvvlmXHHgWkx/6lU8vPg71Afjv4G56ttqnP6nLzBmYBZmjMtCcWY5kJsJbPqQwmiKsdMxqYOvjLPW23N7nHU6bpwfO41ZB19130duxROhZG05K1euRHFxMQoLC7F79+6OdocQ09i5cye6deu212s7duxA165dO8wnQgghhJBUIec9s2a1XspxypQp+5wvEUII0Sz+vnAxULYJmzduwF2v7cTfPq5DMnfLLhiWg99MGIL+hwwGJv0dHQGv14nV8DyIEELaht/HeuLtaAfcwPr169VzUVFRR7tCCCGEEEIIIYQQQpoTqFVPvTp58eR5nbBq2hCcOTTxezjPr6rG4HuW4brH31c3RAkhhBBCiD5QGE0BL7zwQke7QIgjCIfD+Oabb9RDlnVGB19T7YOV2zPbtln2krWjw3FCYuPG+bHTmHXwlXHWenuMs87GjfNjpzHr4CvjrPX2GGcb8WcZzx7jNtnhPdLxn58PxeJfHIGj+uYlZDIQiuCPC9ZhwIABuPfee1FdXW2mx8QBx6QOvjLOWm+PcdbZuHF+7DRmHXzVfR+5FVcXOJYPRFlZmcroLCkpMd2+2F6wYAEWLlxoum1C3EgwGMTf/vY3tXzrrbciPT0duqKDr6n2wcrtmW3bLHvJ2tHhOCGxceP82GnMOvjKOGu9PcZZZ+PG+bHTmHXwlXHWenuMs41kFapSuvD5gYComtVAZj5OHlSAD6cNx/wVu3Dbv77B2h1GZmk8VFZW4s4778QjjzyCe+65Bz/96U/h9/stGQax1zGpg6+Ms9bbY5x1Nm6cHzuNWQdfxQeiH64TRh988EGVwblixYqUbZNtXAkxB4/H01R/XZZ1RgdfU+2Dldsz27ZZ9pK1o8NxQmLjxvmx05h18JVx1np7usfZtLS0NnvDyDpE389xqrHTmHXwlXHWenu6x9mU0Ws0sHUVkFkA1JUD9ZVATjfA61PjmlDcFT8Y3hmPvbsNv/zPRuyoFPU0PrZt24arr74av/3tbzF9+nScc8459t5nmmKnY1IHX5PxIZHzIMZZF8dZh+LG+bHTmHXwVfd95FY8EZeodm+++SYmTpyosjhTPWQ5+GWbUj5l7dq1Kd02IVbC5tGEEEIIIYQQQlKNXHfOmjWr1XWmTJmyz/VqTGpKgGcnAaEAULYRCNYBWZ2BnC77rFpVF8JDC7/FAws2o7o+8fJ4xxxzDGbOnInjjz8eVsDrdUIIIaTj4fexnriix+hjjz2GcePGobS0VAmUIlSm8kEIIYQQQgghhBBCNCW7COh/8p6yukJtiZE52oLcTB/uPqsP1v36KPzspJ5I8yZ23+eDDz7ACSecgLPPPhuff/55Uu4TQgghhJD243hhdOXKlZg8efJegqgsp/JBCCGEEEIIIYQQQjRm6ATjOSPfKKmLCFC5FajeBYT37Q/WPT8dfzq/Lz6f2h+ThmYmvNlXXnkFhx9+OC6//HJ8++23yYyAEEIIIYS0A8c3vJHyuUJUEO3fvz8mTJigMkhluaioCJ06dbJk2+Xl5ViwYAGuuuoqVcKXEJIcgUAAzz//vFq+4IIL4Pf7oSs6+JpqH6zcntm2zbKXrB0djhMSGzfOj53GrIOvjLPW22OcdTZunB87jVkHXxlnrbfHONuMboOB4kuB5U8Bud2N1+rKgNrdRvZoRh7gzwG8XiAcBgLVKqP04NwIXrigE27a0Q1TXyvHW1+Vx73pcDiMv/71r3j22Wdx/fXXY9q0aSgoEHGWxIudjkkdfGWctd4e46yzceP82GnMOvgqPhD9SHN6tuj69euVKNqvXz/MnTsXRx55ZMq2L4KriLDiwy233JKy7RLiVOTHDfJ5ii7rjA6+ptoHK7dntm2z7CVrR4fjhMTGjfNjpzHr4CvjrPX2GGedjRvnx05j1sFXxlnr7THOtkCE0ZrdwBevGOKoPwuoLTV6jtZXGI+WpGWq8rujuuTjzUMjeK3iEEx7egk+/fTTuDdfV1eH+++/H7Nnz8btt9+On/3sZ8jIyDBnbC7BTsekDr4yzlpvj3HW2bhxfuw0Zh181X0fuRVHC6MvvPCCeh4xYgSWLl3aYX4UFxer55KSkg7zgRAnkJaWhnPOOadpWWd08DXVPli5PbNtm2UvWTs6HCckNm6cHzuNWQdfGWett8c462zcOD92GrMOvjLOWm+PcbYFHg9wwo1Admcjc1TK6spDhNG6ciDUAETCgMcL+NKBzE6GMBp9+8jLcEbxpRh/YxjPPPMM7rjjDmzevDluN+T+0Y033oiHH34Yv/71r/GjH/0IXslUJY46JnXwlXHWenuMs87GjfNjpzHr4Kvu+8iteCIOlqzHjx+PRYsWYd26dejbt2+HZq6KOFpYWIjdu3d3mB+EmM3OnTvRrVu3vV7bsWMHunbt2mE+EUIIIYQQQghxNnLdOWvWrFbXmTJlyj7Xq/Ft5Etg9Xxg/WIg1EoZPJ8f6H8KMPQ8oxxviwzQP/3pT7jvvvtQWlqasCvDhg3DjBkz1H0uqYrWHni9TgghhHQ8/D7WE0f/3EzSpMeOHduhoqgQ7QvBPqOEEEIIIYQQQgghNkBEzlNvB340Fxg9GThgGFDYB8jpajzL3/K6/Lus10IUFTIzM3HTTTepH+xPnTo14bK4q1atwumnn67ucS1fvtyEwRFCCCGEuBdH5/FK6ZGrr766o91AUVERzjvvvHb/qo8Qsn/C4TC2bt2qlg844ACtSwnp4GuqfbBye2bbNstesnZ0OE5IbNw4P3Yasw6+Ms5ab49x1tm4cX7sNGYdfGWctd4e42w7yCoEhl9kPBJEKohJxufPf/5z3H333XjqqacS6jn25ptvYuTIkbjgggtw7733YsCAAQn75FTsdEzq4CvjrPX2GGedjRvnx05j1sFX8YHoh75HrQlIhmb//v072g106tQJc+fOxZw5czraFUJsTTAYxOOPP64esqwzOviaah+s3J7Zts2yl6wdHY4TEhs3zo+dxqyDr4yz1ttjnHU2bpwfO41ZB18ZZ623xzibWnr16oW//vWv+OSTT/C9730vYTvPP/88Dj30UFx33XWqRB+x5zGpg6+Ms9bbY5x1Nm6cHzuNWQdfdd9HbsXRGaMiikrWKCHEGUjWtfzQILqsMzr4mmofrNye2bbNspesHR2OExIbN86Pncasg6+Ms9bbY5x1Nm6cHzuNWQdfGWett8c42zEMHToU//73v/H222+rErtLliyJ20YgEMAf//hHlX16880344YbbkBOTg7cjp2OSR18ZZy13h7jrLNx4/zYacw6+Kr7PnIrnkgitTtsgjSlLy4uxvTp0zvaFUIcCZtHE0IIIYQQQghJNXLdOWvWrFbXmTJlyj7Xqzoit+Xmz5+P2267DWvXrk3YTo8ePVSZ3ssvvxx+v5/X64QQQogG8PtYTxxdSlea0s+bN6+j3SCEEEIIIYQQQgghZL+ZJBMmTMBnn32GP//5z+jevXtCdrZt26bEYMlGffHFFxPqYUoIIYQQ4gYcXUpXTixvueUWrFq1CsOGDetodwghhBBCCCEOQtp2SJ+31rjgggtQVFSUMp8IIYTYE8nyFGHz4osvxm9/+1s88MADqKqqitvOV199hfPOO09VUCPESmpra/Hpp5+2us7hhx+OrKyslPlECCGEwO3CqPQYlZPBK6+8MqF+DWYiDX6FK664okP9IMTOSLPqaBa4/PAhLU3fEKaDr6n2wcrtmW3bLHvJ2tHhOCGxceP82GnMOvjKOGu9Pd3jrNiX0khtrUP0/RynGjuNWQdfGWett6d7nHUjubm5uOuuuzB58mT8+te/xqOPPprQd8ny5cvhRux0TOrgazI+VFZW4tVXX211nb59++4ljDLOMs46DTfOj53GrIOvvB7UE32PWpN47LHHlEAqvRruu+++DvFhw4YNuOqqq+D1eimMEpIE4XAYa9asaVrWGR18TbUPVm7PbNtm2UvWjg7HCYmNG+fHTmPWwVfGWevtMc46GzfOj53GrIOvjLPW22Oc1RcpqfunP/0J119/PW6//XbMmTMnaZtbtmxxfE8zOx2TOvjKOGu9PcZZZ+PG+bHTmHXwVfd95FYcL4wWFBSok8fx48ejc+fOuPHGGzvMl06dOnXYtglxAj6fD2eddVbTss7o4GuqfbBye2bbNstesnZ0OE5IbNw4P3Yasw6+Ms5ab49x1tm4cX7sNGYdfGWctd4e46z+DBw4EC+88AJuuukmTJ06FW+99VbCtkaPHq2EVmk7JffLnIidjkkdfGWctd4e46yzceP82GnMOviq+z5yK56IS7qxr1ixAmPHjlUCqWSR5uXlpWzbK1euVL0dCgsLsXv37pRtlxCrkdJx3bp12+u1HTt2OP4XqIQQQggh0fOeWbNmtbqO9Itreb5ECCEkOdwaf+UW3muvvYZp06a12duxNaT3tWShXnPNNcjMzDTVR+Ie3Po5JISQeOD9cz3xwiWMGDEC69evx9q1a1V9+yeeeCJl2162bFnTiSchhBBCCCGEEEIIIfHi8XhwxhlnqB/g/+1vf0Pv3r0TslNSUqIqqg0aNAj/+Mc/WOaPEEIIIa7CNcKoIGVCpPn89OnTcfPNN6s0Zvl13IsvvoiKigpLtvnNN99gxowZltgmxG3Ir2PlFzXy0D3ZXQdfU+2Dldsz27ZZ9pK1o8NxQmLjxvmx05h18JVx1np7jLPOxo3zY6cx6+Ar46z19hhn7Yncz/rJT36i+qY9+OCDqkJZImzatEnZkWQCyURtmsOaEmDlM8DL1wEvXAw8PcF4lr/l9dpS6IqdjkkdfGWctd4e46yzceP82GnMOviq+z5yK47uMXrrrbfG/LerrroKs2fPxqOPPqoeUfr3729an4WysjKVpUoIMYdAINBUpkU+3+np6dAVHXxNtQ9Wbs9s22bZS9aODscJiY0b58dOY9bBV8ZZ6+0xzjobN86Pncasg6+Ms9bbY5y1N1IGVzI/f/rTn+L+++/HH/7wB9TX18dtZ9WqVSoT9dTjj8aMi4ZjpH8tEAoY/xgOAnXlQEMNEAkCn70IvHE70KkXMOQHwKjLgazEhFkrsNMxqYOvjLPW22OcdTZunB87jVkHX8UHoh+OFkZF8CwvL49LsV+3bp3FXhFCkiE7Oxt2QQdfU+2Dldsz27ZZ9pK1o8NxQmLjxvmx05h18JVx1np7jLPOxo3zY6cx6+Ar46z19hhn7Y9kjEq1sp///Oe4++67VZndRMrjvvnehxj13oc4f2RX/Ob0zhiQVQ4E6+XmGeCRNTyAN80QS3evBd59EFjxd+Dwicaj22DogJ2OSR18TdQHr9fb5ntlHbO21x4YZ0lH4Mb5sdOY7eQrSR2eiINzeUeOHIkVK1a02pshVchuHjBggOpxSohTYPNoQgghhLgZOe+J/gI5FlOmTNnnfIkQQkhyMP62zurVq3HDDTdgwYIFCdtI8wJXj0zHnSdmoFuOiFvNbx96AI8X8KUZz5kFQG53oPhS45HC+22EEEKIzvD+uZ44usdoUVFRkwDa/NFcrLT6QQghhBBCCCGEEEJIqhg6dCieeeaZpGwEw8CfljRgwMOV+PXbdahqaP6vESASAoINxqNmt/FY/hTw7kNGhikhhBBCiKY4upSu9AttjgiV8po0lU8F0mN02bJl6pkQQgghhBBCCCGEEDshguhdb9XjkWUNuOeUbFw+IhN+T9gQRpVAGgakbG/lViA9B/jiFSC7MzDyso52nRBCCCHEfcJoQUFBkyAq/RbmzJmDMWPGpNQHEUXHjh3baklfQkj7CAaDePnll9Xy2WefjbQ0fUOYDr6m2gcrt2e2bbPsJWtHh+OExMaN82OnMevgK+Os9fYYZ52NG+fHTmPWwVfGWevtMc66C+lD+tvf/hbbt2+P+73bqyKY8ko1fvdBHe4bl4tzB6fDEw40iqNSnS0ElH8LdB5oZI72PqZDeo7a6ZjUwVfGWevtMc46GzfOj53GrIOv4gPRD0eX0pWenoKUz7311ltTLopGxdnJkyenfLuEOJFwOIxPP/1UPWRZZ3TwNdU+WLk9s22bZS9ZOzocJyQ2bpwfO41ZB18ZZ623xzjrbNw4P3Yasw6+Ms5ab49x1l1cdtll+Prrr/HLX/4Subk5Cdn4alcIE54rx7GPl+PdzZHGfqKNbasCNUBdY9W01fPREdjpmNTBV8ZZ6+0xzjobN86Pncasg6+67yO3oq+cb2KPUUGyNjuKkSNHqueSkpIO84EQJ+Dz+XDaaac1LeuMDr6m2gcrt2e2bbPsJWtHh+OExMaN82OnMevgK+Os9fYYZ52NG+fHTmPWwVfGWevtMc66j9zcXNx11124+rgu+PW9v8Ff3tmKYDj+nqAfbg7gxL8GcNYhabh/bCYO655ulNet2gFkFgDrFwPHXANkFSKV2OmY1MFXxlnr7THOOhs3zo+dxqyDr7rvI7fiiUidWYeycuVKFBcXq4zRdevWoW/fvh3ix4YNG1T2qpTz3b17d4f4QIgV7Ny5E926ddvrtR07dqBr164d5hMhhBBCSKqQ855Zs2a1us6UKVP2OV8ihBCSHIy/Jlyvv3wdsHUVvv5mE27/9xbMWd2Q8La8HuCSYen41SmZOKjAB3Q+GEjLBEZPBoZflOxQCCGEENvC++d64uhSutEeo7og/UYJIYQQQgghhBBCCOlQakvV08BCD16YkIMlkzvhlH6JFZaThNMnP27AwX+swC1v1KCstLFi2qYPzfSYEEIIIcQUHF1Kt1+/fliwYIFa7qhs0ZZ+EEISRxLcy8vL1XKnTp1UNriu6OBrqn2wcntm2zbLXrJ2dDhOSGzcOD92GrMOvjLOWm+PcdbZuHF+7DRmHXxlnLXeHuOsiwnUGs8R6X0WwagD07HoJx68/nUDpi2sxyfbQ3GbrAsCM/5Xj9kr1uP2M8P42Q8PQiZSi52OSR18ZZy13h7jrLNx4/zYacw6+Orggq22xtEZo8KYMWPUo6PRxQ9C7EwgEMAf/vAH9ZBlndHB11T7YOX2zLZtlr1k7ehwnJDYuHF+7DRmHXxlnLXeHuOss3Hj/NhpzDr4yjhrvT3GWRfjzzKePdFbgxF1w/j0g/1YMaUAfzsvH707JXbbsLQ2jJvmr8eg6/+Jv//97wiF4hdZE8VOx6QOvjLOWm+PcdbZuHF+7DRmHXzVfR+5FccLo4QQZ+H3+9XDDujga6p9sHJ7Zts2y16ydnQ4Tkhs3Dg/dhqzDr4yzlpvj3HW2bhxfuw0Zh18ZZy13h7jrEvJKjSeff5mmaONL3k9+MmRWVhzfRc8eHouCrMSy7DZtLsGl1xyCUaMGIHXXnstZVkzdjomdfCVcdZ6e4yzzsaN82OnMdvJV5I6PBEX5PJ+/PHHKCkpwamnntrRrhDiKNg8mhBCCCFuRs57Zs2a1eo6U6ZM2ed8iRBCSHIw/ppwvb7yGWDJbCBYB+xaqzJGVfZoJAR4fHsE08YM0BnvVOMPH9SocrmJcsopp2DmzJkYOXJk4kYIIYQQG8H753ri+IzR0047DcXFxRg3bhwOOeQQ6EZFRYUSbt9880188803He0OIYQQQgghhBBCCHE6g84wxM+0TCAtwxBGo0j2aLM8isIsL+4/LQ9fXd8FPx2RCW+CLdoWL16MUaNG4fzzz8e6detMGAQhhBBCSPw4Whi95ZZbsGDBArUsibFy0iVCZEcjPtx6663o3LkzCgsLm4TbAQMGwOfz4ZprrtHCT0IIIYQQQgghhBDiQLKLgP4nG8s5XZuV0xXVMwKE9+0L2qvAhyfO7YRVP++Msw5JT3jTc+bMweDBg3HttdeqrBliT+rq6vDZZ5+1+pB1CCGEEN1Ig4OZN2+e6mOwYsUK9ffYsWORn5/foT498MADSrAVYlUxfvTRRzF79mwl6kqZEUKIQTAYxH//+1+1fOaZZyItTd8QpoOvqfbByu2Zbdsse8na0eE4IbFx4/zYacw6+Mo4a709xlln48b5sdOYdfCVcdZ6e4yzLmfoBGDtAqPfaM1uIFC9J3E0EgQ8HsDr2/s9kQiGdgFeuSgb73zjx9SF9fjo2/jr68qx86c//QlPPfUUbr75Ztxwww3I9TYAa14FNn8E1JYCgVrAn2X412s0MPjMPb1RHXBM6uBrMj5IUofce22rpHVmZqYp22sLxlnSEbhxfuw0Zh18FR+Ifjg6Y3T9+vW47bbbVKaoiIyvv/56h/ojJwMiikYFUY+cYO4H+fdwOKyE3JdeeinFXhKiL/K5WLlypXrIss7o4GuqfbBye2bbNstesnZ0OE5IbNw4P3Yasw6+Ms5ab49x1tm4cX7sNGYdfGWctd4e46zL6TYYKL7UWM4/CPCkGQmjSh2NAKEGINgAhEJGBmkoYLwmoikiOLFvBj64Ih/zJmXjkM6J3WKsqqrC3XffjYG9D8Csq45F4IO/AFtXAWWbgOqdxrP8Lf1Qn5kIvHkvsONLRxyTOvjKOGu9PcZZZ+PG+bHTmHXwVfd95Fb0lfNNoKCgACUlJejXr596dCRSOlcyQaOCqIif/fv3x7Rp01TTeVkWX5cvX477779fZbnKOhMmTFACb58+fTrUf0J0QEpNR7OoZVlndPA11T5YuT2zbZtlL1k7OhwnJDZunB87jVkHXxlnrbfHOOts3Dg/dhqzDr4yzlpvj3GWKGFUskW/eAXI6w5U7TBE0EhjKd1Is+UmvI0CahgeRHDeYVk4u/ggPLEqjHv+vRHbKwJxu7G9tArXPLMGv1+wEfedXohzh2Qo2/B4jV6omQXGipLhKg/xWx4tkg7sdEzq4CvjrPX2GGedjRvnx05j1sFX3feRW/FEYtVzdQAiOEpT91mzZnWoHxs2bFD9Q6OCqDyL+CmlQmIxc+ZMlV0q60oP0iVLlqTUZ0Law86dO9GtW7e9XpP+IF27NvYnIYQQQghxMHLe09a1hlSNaXm+RAghJDkYf02+Xpdbg8ufApY9CVTvAOrKjNckQ1T1HY3eOmwUIZtrkWlZQF4PIMNoXVXVZzx+tySEmQ88oLJBE2X0QX7MPC0XJ/Zr1ss0LdMopdu4LRz6feCEG/cRR0lq4OeQEELahvfP9cTRpXTHjBmDhQsXdrQbKitUiIqiU6dObVUUFWQdaUYv75Es0ieeeCJF3hJCCCGEEEIIIYQQ1yDC4sjLgHNnA8N/DOR0M15LSwf8mUBaBuBNA7ySKSoPH+DPAQr6Al0O2SNUFl+K3NNuw5133aXaWl177bUJ93P76NsATnqiFN9/rharSzMMNTZYB1RuBaq2GytJlqsIuoQQQgghceBoYXTy5MnqRGzVqlUdmi0qjcij/USlZO706dPb9V4poyuZpSKOzpgxw2JPCdEf+SxUV1erh+7J7jr4mmofrNye2bbNspesHR2OExIbN86Pncasg6+Ms9bbY5x1Nm6cHzuNWQdfGWett8c4S/bpOTrmDmDy28AJNwOdDzayNH3pQHqOUc6204FAt0OBzgOBzE5GmduDxwPnPGqIq433vyQ75uGHH8aXX36J888/P2GX/v1ZBYb9dhN++p8wvq0XAdZjZLRGxVERRpv1HLXTMamDr4yz1ttjnHU2bpwfO41ZB19130duxdHCqIiQkjUazdhsyTfffKN6f5522mno3LmzqvcszwcffLA6aXv88cdRUVGRlA8iijbPFo3lS2uZo9IfVQTexYsXJ+ULIXYnEAjgwQcfVA9Z1hkdfE21D1Zuz2zbZtlL1o4OxwmJjRvnx05j1sFXxlnr7THOOhs3zo+dxqyDr4yz1ttjnCX7RcrVnngjcPW7wHUrgTNmAkN+CPQ9HugyCCjqDxwwDBg9GfjRXODU2w1RdT9Ia6nnn39etYiK9nmLl3AEePKDHTj4/nWYtjiM0tqIIY7WN96zWz3flsekDr4yzlpvj3HW2bhxfuw0Zh181X0fuRVHC6PCo48+ijfeeGMvUfHjjz9WYqicnEkvTym3W1paqsRLeRYRUgRNyTgtLCzEbbfdlrBAumDBgr3+vuKKKxIag/gmz4QQQgghhBBCCCGEpEwkHX4RcPbDwKS/Az+eZzzL3/K6/Hs7GDVqFBYtWoRXX5qDIw7KTciVukAYMxftwIDf7sKD71WjrqLE+If1i4Ha0oRsEkIIIcR9eCIuyOWVLE35VcD69etV385bbrlFvd586NFSt1Fa/psIpHPnzo37121er1e9X+wVFxdj6dKlCY1BRNyysjLs3r07ofcTYgVsHk0IIYQQQgghhOiHttfrK59B+MNH8cyH3+GOf32DTeXhhE317uTFr8/uix8dcyB8x1xtCLWEEEKIRmj7fexyHJ8xKkh/zlNPPVWV1hVRNCp6imAZfbSk+b/J+iUlJRg7dixeeumluPqLNrcn708UyV4VYVSyXQkhhBBCCCGEEEIIsR2bP4LX68HFR6RhzfVd8OBZXVCYnZaQKRFVL/nHeoz4zQq8+tLz7ONGCCGEkHbhCmE0mnHZXBCV5eaPTp06NT1a/lvz90yYMAGrVq1q1zYlQ1WI2pCyIYkyceJEZWfZsmUJ2yCEEEIIIYQQQgghpMOIlrwNBZDp9+DGsQdh/b1HYdppvZDpT+w25SffVePMX72CMWPGJFypjRBCCCHuIbGfZNmM+fPnY/bs2U3iZkFBASZNmoRx48ZhxIgR6Nev337ft3LlSiVESgld6UMqyPvlREtEz/z8/HYJo1Fku4kiPsr7ly9fnlCfUkKcQDAYbPosSgZ2Wpq+IUwHX1Ptg5XbM9u2WfaStaPDcUJi48b5sdOYdfCVcdZ6e4yzzsaN82OnMevgK+Os9fYYZ0nKCdQaz5HGErpeHwoy03D/Of3w85N74u5XvsFTH2xHOIHkz8WLF+Ooo47CiSeeiEsuuQQ/+clPtD4mdfj8MM5ab49x1tm4cX7sNGYdfBUfiH64ImP0yiuvbBI1payulMX9y1/+gvPOOy+mKCoceeSR6r1vvPEGvv76a7W+UFpaivvvv7/N7a5bt26vv6WUbzKMHDmSGaPE1YTDYXz00UfqIcs6o4OvqfbByu2Zbdsse8na0eE4IbFx4/zYacw6+Mo4a709xlln48b5sdOYdfCVcdZ6e4yzJOX4s4xnT+MtyXCo6Z8OKszAEz8ZhE/uLMb3jyhKeBPvvPOOup933XXXqT5uuqLD54dx1np7jLPOxo3zY6cx6+Cr7vvIregr55uYLSq9OQsLC5Wo2JoQ2hoiakrmqGSeXn311UpglX6lbWWNNqeoKPGTuqgPixYtSsoGIXbG5/Ph+OOPb1rWGR18TbUPVm7PbNtm2UvWjg7HCYmNG+fHTmPWwVfGWevtMc46GzfOj53GrIOvjLPW22OcJSknqxAo2wT4/EBAMkirgcy9760d1jMHL18zFO+sLcO0Fzfgww2VCd2InjVrFv7xj3/g5ptvxg033IDc3FzohA6fH8ZZ6+0xzjobN86Pncasg6+67yO34ok4vDP5+PHjlZgoJWiHDx9uis1p06bhwQcfVCLp5ZdfHnM9EVBlHUHK+EqmaTxCaktEiH3sscewe/fuhG0QYiY7d+5Et27d9npNfo3ZtWvXDvOJEEIIIYQQQghxO9per698BlgyGwjWAWUb5Y4ZUDRAldTdH3Lb8qWPd+PWf27AV9sby/AmQPfu3XH33Xer9lR+vz+JARBCCCEO+D52OY4vpSs1pCdMmGCaKCpItminTp1Uid14SEYUFTp37qyyXwkhhBBCCCGEEEIIsR2DzjCyRdMyjQciQG1pzNUl0eDcI7tg9V3FmHXRQHTPT0zU3L59O6655hocdthhmDdvnhJcCSGEEOJOHC2Mrly5Uj2ff/75ptuWZr0rVqxodR3pZWomBQUFptojxG7IhUtDQ4N66H4Ro4OvqfbByu2Zbdsse8na0eE4IbFx4/zYacw6+Mo4a709xlln48b5sdOYdfCVcdZ6e4yzJOVkFwH9T95TVleoLQHqWy+X6/d5cfWJPfH1HYfiV2NykZvuSWjza9euxcSJE3HMMceoXqQdiQ6fH8ZZ6+0xzjobN86Pncasg6+67yO34mhhVIRJ+WWZ9OY0G7FptvDZFuvWraM4SlxNIBDA9OnT1UOWdUYHX1Ptg5XbM9u2WfaStaPDcUJi48b5sdOYdfCVcdZ6e4yzzsaN82OnMevgK+Os9fYYZ0mHMHSC8ZyRD2TKfa4IULkVqN4FhIP7f4+8Xr0LuQ07cOcpOVh3a39ce0pP+H2JCaQfffQRTjrpJJx11llYvXo1OgIdPj+Ms9bbY5x1Nm6cHzuNWQdfdd9HbsXRwmgUK8TEjihrK9srKipK6TYJIYQQQgghhBBCCDGNboOB4kuN5dzue8TR2t1AyXpDJK2rABqqjGf5W16Xf5f1MgvQ7YAD8fD5A/HFvOlJVYr7z3/+gyOOOAKXXXYZNm/ebN4YCSGEEKItnoiDc3mllG5xcbHqM3rqqaeaavvqq6/GokWLVAmOWEyaNEn1LRAkczUUCiW1zfHjx6O0tBRLly5Nyg4hdm0eLeEq+isbv9+vPle6ooOvqfbByu2Zbdsse8na0eE4IbFx4/zYacw6+Mo4a709xlln48b5sdOYdfCVcdZ6e4yzziXV1+txI7cj330I+OIV4+/6CqPXaLAu9nukJ6mU35VMU+HQ7wMn3Cg33bBs2TJMmzYNb775ZsIuZWZm4rrrrsMtt9yCwsLGMr8WosPnh3HWenuMs87GjfNjpzHr4Kt893bv3l3f72OX4uiM0WgJ3WivUTMRsdWKEr2tISd5I0eOTOk2CdEJ+fJKT09XD52/dHXxNdU+WLk9s22bZS9ZOzocJyQ2bpwfO41ZB18ZZ623xzjrbNw4P3Yasw6+Ms5ab49xlnQYcryIqBnNHBWxs6CP8ZAMUn+2IYTKs/wd/beoKCrvaxRFBblfJvfqXnvtNQwbNiwhl+rq6jBz5kwMGDAADz74oPrbSnT4/DDOWm+PcdbZuHF+7DRmHXzVfR+5lTQ4mE6dOmHEiBG47777cOWVVyI/v/HkKUnmz5+P9evXq6zRVFFeXq5K6crJGSGEEEIIIaTjkXP0N954o82qL3JdQgghxDwYfx2C3CweeRnQ+xhg9Xxg/WLj9dzM/a/v8wP9TwGGnmeU493HnAennXYaxo0bh2eeeQZ33HEHNm3aFLdbUq3t5ptvxsMPP4xf//rX+PGPfwyfzxe3HafT0NCALVu2tLpOz549lSBBCCGE6ISjhVFhzJgxeOCBB3DVVVfh+eefT9reN998o0RWOdmaMKGxWXwKmD17ttqmCL2EuBUpR/3WW2+p5ZNPPlnrCxMdfE21D1Zuz2zbZtlL1o4OxwmJjRvnx05j1sFXxlnr7ekeZ+vr6/H555+3us5JJ51k6jadhA6f41RjpzHr4CvjrPX2dI+zsWD8dRgicp56O3DMNcCaV4FNHwJ1ZUBDDZDemDHa+2hg0BlGKd12HJMiyMkx8uijj+I3v/kNSkpK4nZLeo5eeumleOihhzBjxgycfvrppmb+2D3OSgLH3/72t1bXmTJlyl4lnRln7RNnSftw4/zYacw6+Jpse0ViDY4upSvcdttt6nnu3LnqBKaysjJhW9KnQHqWyi8Tx44di759+7a6/ooVK/Y6YRJRNVFeeOEF9Wx2r1RC7IR8kbz33nvqofuXig6+ptoHK7dntm2z7CVrR4fjhMTGjfNjpzHr4CvjrPX2GGedjRvnx05j1sFXxlnr7THOEq0Q0XP4RcDZDwOT/g78eJ7xLH/L622Ioi2PSeknd8MNN2DdunWqb6j0EE2ETz/9FGeeeaa6J7d06dKEbLTlK+OsfrYZZ0l7cOP82GnMOviq+z5yK47PGJWyKVL+QrJGFyxYgIKCAkyePFllkA4fPrzN91dUVKgeBdOnT1dCpzTsFbFTfinWGtLXVMrtNhdG5f1tian7Y9GiReq9EydOjPu9hDgJr9eL0aNHNy3rjA6+ptoHK7dntm2z7CVrR4fjhMTGjfNjpzHr4CvjrPX2GGedjRvnx05j1sFXxlnr7THOEqexv2NS7gXKfb2f/exnuPvuu/HUU08hHA7HbVuyjo466ih1f07adg0cOHDPP9aUGNmumz8CakuBQC3gzzLE3F6jgcFn7iPs6vD5YZy13h7jrLNx4/zYacw6+Kr7PnIrnogofS5AenNKxmZU2IwipWn79++PoqIidaIULQUhomb0IUR3k7xXRNVZs2bF3JZklEpm6YYNG5reK7alx0E08zMepIG8CK2S9XruuefG/X5CrGLnzp17lUQRduzYga5du3aYT4QQQgghqULOe1q7LthfCTlCCCHJw/jbNrxej81nn32GW2+9Fa+88krCNtLS0lTixV1TLkS37YuB9W8BoUDsN6j+qCcDQyfstz+qHeHnkBBC2obfx3ri+IzRKJItKmKlZIA2FzqXL1+usjH3R3PNWARR+Vse0u9TxMrLL798n/e8+OKLmDZtWpMoKkg/A2ncLiddq1atwrBhw9rt94MPPqj8KywspChKCCGEEEIIIYQQQkgSHHbYYXj55Zfx7rvvYurUqfjwww/jthEMBvHII4/gb4//BTeNOwg3jj0IuWkBozeqCKSRMODxGoKo9EgV1i4wHsWXGg8T+5USQgghpP24Jo9XskJFBJVSttGs0egjKni2fLRcR0plSKkNKb9x5ZVXqma9p512Gs4//3z13LlzZ7WOZJlGbdx///1qXfkVmfw9ZswYbNy4sd09TeUErT2lewkhhBBCCCGEEEIIIe3jhBNOwPvvv4/58+fjkEMOSchGVX0I9/x7Iwbc8QH+/PoXCFSXAYEaIFhnPNeVA2UbjUe9kayB5U8B7z4kGRnmDogQQggh7cI1GaNRcVQarotI+dhjj6nXosJnaxmjUgZX1j/vvPPU3yJWSjldEUjl5ClabjeKrD9p0iSVOdqvX7+mXqfyfllfyvfOmzcPp5xySkxfZXtXX3218k38vuKKK0zbD4TYlYaGBvW5EyQDOz09Hbqig6+p9sHK7Zlt2yx7ydrR4TghsXHj/NhpzDr4yjhrvT3GWWfjxvmx05h18JVx1np7jLPEacR7TMp9N6nQdvbZZ+OJJ57APffcg23btsW93R1VYfzslUr8/oM63HfWgTjvyCJ4JGs0UA3UVxpCaeVWo/dobnfgi1fQkF6I6a9/225frYBx1np7jLPOxo3zY6cx6+Cr+ED0wzUZo82R0rYikN58881KuIyVMSoCpvT1LCkpaRJFm4ufksX59ddfqzK5ko0qD7Er6//lL39pEkWjPP7440oglR6mY8eOxemnn65K70bL+8qzZImOGjVKiaJRYVZ8IIQQQgghhBBCCCFARkYGhgwZ0upD1iEk3p6hcp/v17/+NfLy8hKys3ZXABOf+gZH/24t3t4UBvIOAIoGAFmdRYY1Su1WbTdWXvm0uYMghBBCSLvwRJo30nQp5eXlKutTHiJ4SoZmS1HTLKRfqPQnjZWlGiU6LSLiSileQnQk1c2j5XNRU1OjlrOzs9v8HHUkOviaah+s3J7Zts2yl6wdHY4TEhs3zo+dxqyDr4yz1tvTPc7Kec+sWbNaXWfKlCn7nC8RfT7HqcZOY9bBV8ZZ6+3pHmeJXtfrZTUNWPD5dnywfhfWbq/CrqoGhCMReD0edMnNwCHdc3F0/84Y3a8IH20owYpNpSirCaA2EEKW34eCbD9G9C7E+CE90CnbDysw65iU/Xfvvfeq7/lAIJCwP987vAjTf9gPhx+YY2SOStYoIkowjaTno6bvOOCEX9gyzkq7sdra2lbXycrKgte7Jy+HcZZx1mm4cX7sNGYdfJXv3u7du6fs/jlpHxRGO4CFCxeqX6Ft2LChqX9plOZ/S6Zoy0xVQtwsjBJCCCGE6ASFUUIIIW64Xl+7vRIvr9qCBV9sx+6qBlTVBfe7XgSGSCr3tXIz/SjI8iPT79tnvTSfB8cP7IKzh/XEwd0Ty8xMFVIZ7o477sDzzz+fsA25D3/J0d3xq+/3Qa+MKqBmt/GiPwuQcrs9hgGZ+UBWIdBrNDD4TGOZEEKI7eH9cz2hMNqBNO912pwJEyaoMr1WZa0SYhYM7IQQQghxMxRGCSGE6EI0mzOapVm6exdeuP70pK7X5Zbhc0s249mPNqK0JoCSaiNDNBSOqOe97ih6ZH31pP7na8zKSU/zwu/1wOf1wO/zIr+FWHrhUb1x4VG9ksriaTl2KzJUly1bhmnXXII3l36esI2MNA+uO64Tbj06jMIs2UnS685rCKQy/nDQEEq9aUCnXsChPwCOupwiKSGE2BjeP9cTCqMasHLlSlXGV0r4HnnkkR3tDiHaBvZQKIT//e9/avm4446Dz7fvL091QQdfU+2Dldsz27ZZ9pK1o8NxQmLjxvmx05h18JVx1np7usdZCqP2/xynGjuNWQdfGWett6d7nCXtz+Z87+tdCIb23OKrryzFgtvP3mvde154HxedNLRdWZpyu/DPb63Dq59uxc6qepRWB/YIonH452kUSdO8nibxMyPNq4TK/ExDrDx9aA9cc/KAuMXR/Y3dEwmjR91Gtbwtsw8iHq9pGaqRf12LNxa9hWnz12LVlvqE7RRkenDb8Rm4ZnQmlqeNVErycZ4V8HkigNcHePaUnkVON+Dwicaj22CYDeOs9fYYZ52NG+fHTmPWwddt27bhgAMO2Os1CqMdT1pHO0CgxFAKooS078ts8eLFavnoo4/W/ou3o31NtQ9Wbs9s22bZS9aODscJiY0b58dOY9bBV8ZZ6+0xzjobN86Pncasg6+Ms9bbY5y1L9FszueWbGp6rS4QQkVtAIFQGA1V+/Z+/N/Xu7Bs+6p2ZWmK7ddWb0NJTYMqnyuiaIsEUSV6CuFWlFIprev1epCTkaayRqvqg6gPhrGjol752zUvQ22nMDsdF43unfTYw8EAirFevba6oRtysjORCR/eWrNTPZLJUPXUleG0w4owrucBeHZ5Ce5YVIuNpfH3Hy2ri2Dqwjr8cUkDik/NxRFHHIGjsRy+SNDIGpW9K+Kozw9U7wA+fgZYuwAYeRlQfOmeHW8CjLPW22OcdTZunB87jVkHX8UHoh8URpNEGojv72SqoKAAI0eOxKRJk3D55Zd3iG+EOPHzFv0RgSzrjA6+ptoHK7dntm2z7CVrR4fjhMTGjfNjpzHr4CvjrPX2GGedjRvnx05j1sFXxlnr7THO2pNoNqcIikJFXQDlNQElOEYJNluOUlkfREaeiJ6bUFrTEDNLUzIxZR0RG0XADDVmiUbL5KZ5jNK48lpDKKx0ulj16ERQlWzRmoYQDirMQpfcDFX6VkrzVtQavUq75WWq7Y3qW9hmRmdbY/cignVeIwunPBhCaX3tXhmqbY29VQKG2Oz1RPDj4VmYcMwAzPqgHPe+ugkl1fvvu9oamyvC2PzPf2Ll+29i5NgwzhoYzaqNAJEQEAwBHp/Rk1QySZc/ZSyfcKNp4ijjrPX2GGedjRvnx05j1sFX3feRW2Ep3SSZOXPmfk+kdu/ejRUrVmDhwoUoLCzE448/jnPOOadDfCTEKlgjnRBCCCFuhqV0CSGEdATPfrRJCXwiV+6sqEdFnSHKye2p3Iw0ZKf7EKwux/9+ufd9qIG/eA5FXbqoLE0PPCp7cn9Zmg+9sUZlV24qqTZsR+8cegC/16tEUUEyU0U0VTpeK/76PNJr1Ie8zDR0z89Ur0nm6LbyOrXcPT8DeZl+nDKoK24YPyjpsUuWqpT8FTFWthO985mfldbm2FvlhYuBsk1A+WYgUAPkHgBk5qOsJogZr2/G79/8DnWBfQXp9nJyXz9mjMvGUQd6DWE0igzOkwYUDQD8mUbWqGSPEkII0R7eP9cTZowmydSpU9tcZ9q0aZgwYQLmzZtHcZQQQgghhBBCCCGEJEQ0m1NoLgwWZvtRkJ3eJFrWB/ZfLrCtLE3J5lQ9O8NhVNU1inON+QDRTFFBhEklihr5jXtWiyY8NtumtP+U9SvrguiSG1E2RMQUnyVztKwmoITRd7/ehcuP76+yO5MZexSx2SUcSSpDdS+yCg1hVErcSgXdQLUSRguy0zD9nH74+ck9cfe/N+LJ97e1Wl44Fm99E8Dox8oxcWgG7huTjYEFjSKr2JIyu6UbgPRcYOHdwCcvADldDZ96jQYGn2ksE0IIIaRNmMebAmbMmIFzzz0XV1xxRUe7Qgg0GO1tAAEAAElEQVQhhBBCCCGEEEJsysurtjSVkI0Kgz06ZaJzbsY+wmBLujVma4pAWFln9MZ8pdFelAWfb0cwFEFJVQPCzRROsdzcvpTIVexPANyPG2LT2PaenpwiZkoypJTBlbK9ss6CL7abOnZ5Xf5d1mtr7G0iAqSQWWA811cC4T2ZnQcWZuDxiw/BJ3cW4+wjipAoc1fX49A/luJn/63D9qpoBmoECNUD9RVAqAEoWW+ItFtXAUtmA89MBN68F9jxZcLbJYQQQtwCM0ZTxNVXX4358+fjiSeeYM9RQhKkoaEBDz74oFq+6aabkJ6eDl3RwddU+2Dl9sy2bZa9ZO3ocJyQ2Lhxfuw0Zh18ZZy13h7jrLNx4/zYacw6+Mo4a709N8VZyRoU0W/FplKVoVgbCCHL70NBth8jehdi/JAeMTMVdSGazWksB5qyJSX7sj3kpPsQ8bSepSn7Jyo+Cqp/qOqrGe1/abBfXbQVXVayS2UL1Q1BFOYYx0k0c1QySUUwzfT7sHxjCSYUH5Tw2L2REIaVvqOWVxWeiLD06AQSylDdh0FnAMufNJbTMoFgHVBbCuR02Wu1IT1z8MxF3fDhiBDuXFiND7+Nv/+otEz989J6/H1VPW46JgM3HJOOvAwPEA4AkTAQ2gWEAkBa+h6hdu0C4yGlduXRjj6kjLPW23NTnHUjbpwfO41ZB1/FB6IfFEZTxPr169XzsmXLKIwSkgSBwJ5fl+qODr6m2gcrt2e2bbPsJWtHh+OExMaN82OnMevgK+Os9fYYZ52NG+fHTmPWwVfGWevtOT3OSvlVyTRU5WEbsxab821pLVZ/V4Fnl2zC8QO74OxhPeMrr5pCotmckl3ZEAwr3UuyLuNB1i+rDTRlaWbCp7I0o2JkVHQMtqgFK8JocyLRxp2NtJTgGivqNntDi0zTRrLSfUoYDTTOTXmzjNJEx+5DOKGxt0l2EdD/ZEN8lLK1lVuB2hIgLQPIMI4ZGcXOynpk1FXh+D7pePunHrzyZT1uX1SPNbvj7z9a1QDc83Y9/rysAXeflIErR/jh9zXaaagCgj6grtwQasWnjHxg+VNAzW7ghBvbJY4yzlpvz+lx1u24cX7sNGY7+UpShyfS8kyGWMLAgQOxYcMGXHXVVZg1a1ZHu0OILZtHS7gqLy9Xy506ddrr16q6oYOvqfbByu2Zbdsse8na0eE4IbFx4/zYacw6+Mo4a7093eOsnPe0dW4/ZcqUfc6XiD6f41RjpzHr4CvjrPX2dI+zySC+PbdkM57+8BtVdrWmPoiGUBgNQel2GYEHHvh9HmSnp6msUclWjHLhUb1x4VG9tBqPcOuLnygRd0dFnRpTXmYaujeWx21JfWUpFtx+9l6vjfvNy8jIK8T2ijolRuZnpqnyukMPzMf0c49Q61z65BLsrmrAF1srVJZnVOD0e717lautD4aM1pfNSu3upY626DMqSIau2OjXJafpter6ILaW1yEjzYteRdnonJuOpy47KvGxRyJID9epxQZv5j7CYGtjbxdSqvalycZy1XagrswYeFYRkFWA3bVhlFQ34IDwVvgiQfgjASXUBsIR/HVlAL98ux7bqhK/FTuwyIv7xmRhwtBMePyZgD/bKOkb3duSPZrb3ViWrNGRl7Vqj3HWentOjrPEnfNjpzHr4KtcM3bv3j1l989J+2DGqIV88803WLhwoeoxKhmj8sEbMGBAR7tFiG2Rz1BBQWOJGM3RwddU+2Dl9sy2bZa9ZO3ocJyQ2Lhxfuw0Zh18ZZy13h7jrLNx4/zYacw6+Mo4a709u8TZeMvgyo3QX/37c/znk62orA8iFIqoTEXVM3PPWgiEgZpACKU1DSpzsSgnHfmZfjy3ZJN67ZqTB2h1wzeazRkIGRmD2el7xNx4aC1LU/aroIZtYipFdC+2bAUq4qvxuqfVMbV77B4PGnxZMf1ob4ZqTLoNNgRHycqMCpAijtbuRrimBAhlINuTCW8kAG8kDK9kr3qgRPjJI9Px4yP8+N2HDXjgf/WoTKC64tclYUyaW42jPqjHjDO8OLl4AJDTzSjpK9mrSqiV2sHdDR97H2P4HAPGWevt2SXOksRw4/zYacw6+KrTeQTZg6uF0RdffBFLly5VomW01G1ZWeMJRIKUlJTsY6d5Uq5kjBJCCCGEEEIIIYSQxMrgZgar0K/iI7X8+afA5//Z973/DR6OCmSp94koGn233J6Ue5SeZjcrw5EIquqDqrxqXU4IXfMy8NrqbSjMTsdFo3tDF0QQFqLVaFuWt20vvmbjFmoaDLuCiM1SXjjN69mrnK6s62uWEir7rvn9rsi+CaN70/iPzbNO1Zgaty3CodApy99hY283IoxKqdovXjEESH+WEiZD9bXIidQgO1IDfyQIr2Qmt3AzJ92D20/MxOXFmfjNO/V4bFmdEujjZcm3QZzy2E6c8k4Dbh5/IIYckI1sD1AY2gVfbRk84pOU1V09Hzj1dlhBMBhsug8ai6KiIqSlufr2MyGEEA1x3TdTRUUFpk+fjtmzZ8cUL80meqI9Z84c5OfnW7YdQpxOKBRSP2YQRo0aBZ8vsV/HusXXVPtg5fbMtm2WvWTt6HCckNi4cX7sNGYdfGWctd4e46yzceP82GnMOvjKOOveOBstgyuZm1FEtKyoDaiMwZxIHYa2w04gGGnKSGzCY4h26tVIBF54msQyEQKljKzQLS9TbX9U30Jteo5Gszmj2mJU3IuX1rI0JQNXStZK5mxdVb1RKtdjbEvmJXqPS3wQkXKvxNKW6mgzovs4J33PrUgRrEWQFvIbBdHiPkVJjd0TCaNr/bdqeWfGQYh4vO0ee7uR90r/zuzORlZmRj6C/jxs3VWKHE8VPJItihDgCavdIQJpcySPtCjHh5lnZOLEo0fg8TfXYeHq7fH7AWDxmnK89VU5zhlehOtO6YlD8/OQH6lApGIXPIW5yFy/GDjmGqP/qMmfYRFF420pwDirT5wl5uDG+bHTmHXwVXwg+uEqYfTjjz/GmDFjlCC6T5N4i1KaZTvyePTRR3HeeedZsg1C3IJ8kbz++utqecSIEdp/8Xa0r6n2wcrtmW3bLHvJ2tHhOCGxceP82GnMOvjKOGu9PcZZZ+PG+bHTmHXwlXHWnXFW7qH8+a11KmNTqKgLoLwmgPrgnrQ6v5QnbeOOlgioURHM05ipqMSwRiVPhDX1gDwbwl00S1J6RIoQl5fpxyurtuCG8YOgA9FsTr/Pi9pAWGU7io/x0lqW5rgh3fHskk0oyk3HrqoGhD3GPow0Cplpje/xRTNK91dydz+aZfR9UQE0WiJZpkj6i0qPV1ln3KHdkxq7BxH0rlmrlndlHLiPK+3NUG0TOZakf6eUql09H+WfvI56pKPOU4SGcBgFqEQXVCh/0mGI7S3uRCIEL74sGo/jJwB3HPMn/GphGd7cYAjF8SD78MWVJfj3J6X4yegu+OXxERRl1WN7SRlyc3JR9OV/4TnyR/t9L+Os9fZ0jLPEPNw4P3Yasw6+UhjVE9cIoytXrsTIkSObBNHmQmhUvGxJy7IgbdHSZv/+/TFhwgTceuutqrkvISQ5vF4vDj/88KZlndHB11T7YOX2zLZtlr1k7ehwnJDYuHF+7DRmHXxlnLXeHuOss3Hj/NhpzDr4yjjrzjgrmaIiikrx250V9aioM4QiueWSm5GmMvxyIyGgtnU7e0quAulpkhfa7AfxHqiysLINEftE4BMRVV5L8xiC3+7qBiW8vfv1Llx+fP+9eph2FE3ZnFl+tV8k27JLOLJPedrWaCtLsyA7HccP7IK31uxEbqbP2P+N+zIopWEbtyf/iZgs+y2qjRpZuPtuUzRIWT8vM63JV/GhtLFvqIiewgkDu8Tcz+0du2x+d7ohrrZ0JZ4M1XYj/TtPvR1/2nUy8jcuQL+aT5GJSlR7c5GPOtlj8EQiSEMAIfjgU/miIvJLtnIEQyJfGX70TMNrF+dg0foAbl1Yh4+3xV9ftyEUwePv78TcFR5MPT4bPxldgRKkY9uSBRgy/KL9JoUwzrozzhLzcOP82GnMOviq+z5yK56IlTVkNaG8vBz9+vVTmaItxU4RL6MPIdqMV3qOzp8/H1deeWWrDXrFppSOkOdly5ap58LCQsydOxennnpqCkZHSMexc+fOvUqiCDt27EDXrl07zCdCCCGEkFQh5z3xlpAjhBDSek/RG+asUss7KuqaRNHCbL8S7KIimPQYHdrYYzQWL9UdhvJIlspGbKtKmIh7kmEqiDAqf0t2ab8uOSqT8ZJj+2JC8UHoaCTD8rKnlqq+qZtLalQWreybzrkZ+6xbX1mKBbefvddr437zMqo82UqQlP3SqyhbZWk+delRewmS0XmQ8sUbdlWr/SG30tRe9Bj7SOZC7q41NO631u4uyrZkfx5UmKUyPmUcUVE0PytNlS0WfjtpWMyyxfGMPRa7q+rbHHuiTHl6ucpo/a60RmW0ds/PwNXh51HcsAx5kUp0C+/Yq9qwiKTyaI4fAUOuD4fx7OoA7nyzHhvLE79te2C+D9eOOQhHjzgU34171PR+uTwPIoSQtuH9cz1xRcboxIkT9xJFJW1asjjHjh0bM5MzKozOnDkzrr6gGzZswF/+8hdle/z48aqEbp8+fUwcDSGEEEIIIYQQQojzeHnVlqbyuVFRtEenTJUpmijtaZ0kmY+RxtKwkmkqIp6IgWU1AfTo5MPyjSVaCKPNszlFzNtR0Sj0+X3t2kfVDSGUhtrO0hRx8sKjeqseq93yM9R2lDgq/xgBAhEjyzZamTianbs/ogJqVroP5bUBlbEZFVFFFO2aZwibsr3WerkmO/Z4M1TjpTYQapGp7ME76ScpYbTSk4d8VCATdY15y5KdrPJvVf7o3hii/I+PSMfEIX78eWkDfvNuA0pq4xdIv6sI4ZaXNmLg+7tQ+O0LGNlnMg7p0f57nIQQQohTcXwer4ibCxcuVCfCIoJKJqdkdkq/z9bK23bu3FmJqJINGg+SmTpjxgz1PhFEJRN18eLFJoyEEEIIIYQQQgghxJlIRuB7X+9qXDYELMkITEYUNcq7tk9QMsrDQvUcjVLTYIizIujpwtnDeqrn/Ey/EhaFbeV1KhtSSsW2hmThqvdmpTX15/x+o72WXHhUL5w+tAeKstPROTddZXqKgByVmWVLsrk2Nmn0cQ1HUFMfRGWdIYpKxqZkVEqmqFiU7cj2rBi7vC7/Luu1d+yJID1phWhlXxn35rTeeD3zdPX3Tm9X1VNU8DQ+JENUSuwa3UZDSiZtLuNnpHlw/TEZWHddLm45Lh2NQ46br7dXY+mjU3HmaWOxZMmSJEdKCCGE2B/HZ4xOnz5dPYtAKYJoe3t9RteTzNG+ffvGvV0pvyvZosXFxarP6Jtvvolhw4bFbYcQsoeGhgb84Q9/UMv/93//h/T0dOiKDr6m2gcrt2e2bbPsJWtHh+OExMaN82OnMevgK+Os9fYYZ52NG+fHTmPWwVfGWXfF2QWfb1dlUqV8a0MwrLIRJUswWUQYS2tHD04R6KKZotEWTIGQ8VzTYGQD6kDzbM5otmVFrZENWVYbUEKyZGeGYvjc3ixNSTC45uQBKMxOx7MfbUSa14uS6gYl+Mk+lee9yud6sFe5XRFRBenv6vdK6V0v/D6P6u0p5YmjiA8iirYns7c9Y8/xA8fWGuLfm75ilDdEEspQjRfJQpVSuiIgSyldOWZEgH0943TkhytwTMP7KPUWoSBcporoSp/RBqThYVyh3n8dHt9LFFXI/vSIEOzBr8Zk4/KjcvCbt2rx94/r2hSk98e6T5Zi9OjR6j7lfffdh64H9sHrn3yLLxa+oPbRpp4nITMjQ41FerqOH9LD9N66jLM8n3UabpwfO41ZB1/FB6IfjhZGV65ciRUrVqienwsWLGi3KNocEUaT6RV61VVXqTK+YkPK7MZTlpcQsi81NTWwCzr4mmofrNye2bbNspesHR2OExIbN86Pncasg6+Ms9bbY5x1Nm6cHzuNWQdfGWfdE2dXbCpVzxWN2ZkickV7iiZDPAJSkzDa+Hd0KTt9716QHY0IiaU1DXht9TaVdZnlD6gsW+m7KVmZ8ghWGxmSzRFRsHNjP8/2ZGmKWCl9KUf1LcQrq7bgjS+2o6SqQdnfH7K/ZB+KsCyiYKcWImgU6e0pZWwlYzNecbKtsdfUhZCeZhxDlVK2Fz6VoSpiXzRTtL0ZqvEgQuLq7yqU8CtloKV0b5dwRB3Dc7MmocKbj9PqXoPXE0ZupEplh0p+aI0n2zCw56DbC+ngGoz4EIYPB+V78MAPDsCk4zLx0MItWPRleUK+zps3Dy++9E/0Oe77OHjcxTg21KBE2ZLqAMI1YSXwylieXbJJlS+WTF0zRWTG2Y7zg1iDG+fHTmO2k68kdXgi0Z/BOZAHHngAt9xyi8rcvOIK4xdY8TBw4ECMGzeuzUbi7UHsHHzwwfjzn/+ctC1C3No8WsKVbFOQbbTnF6UdhQ6+ptoHK7dntm2z7CVrR4fjhMTGjfNjpzHr4CvjrPX2dI+zwWCwzdYbRUVFSEtz9O9Rbf05TjV2GrMOvjLOuivOTnl6uRJkviutURl3Umo1KmS1JDNYhaEVH7Vq76W6w1AWyVKlTTPS2idsiigaCIUNccoDlf03qHsehh6Yj+nnHgGdkH3/3JLNKnsyimTbirAsma4NVaX47IHz93rPuN+8jIy8wriyNJtTXhPAgi+244N1u7B2RxV2VtYrP8SOiK4Hd8vFMQO6YHTfInz0TYnqzSpliCV7UsRlEUqL+xRh3KHdk8pEbHXswTByUAMvPKjzZSM/Oz3hDNV4S0Ff9tRSlfW8uaRGCbVSCrpzrpGhKvQKbsKJ9W/j5IbFKnNUDrNdKIJ0Ye2OnerZFwk3pt0aGbhBjw+hiE+ljlZ681Hu2ZP0sWxjFR544zus3FydsN++9Ez0Ou6H6Hn02ajOKFLCthz37cnsTeQ8iHFWv/NZkhxunB87jVkHX+Veeffu3VN2/5y0D0cLo+PHj8fy5cuxe/fuhN8vWZ5r165N2hfJXB01ahRKS0uZNUocQ6qFUUIIIYQQQgghzuTSJ5dgd1VDk6h0QKdM5MToLxqPMCq3QPeXtbg/pERsgwijKlsSyEn3oV+XXFxybF9MKD4IOrJ2e6XK5nz3611KlItSX1mKBbefvde6v3zhfVx40lBTs/90HLuZGarx8NAba/DWmp2oqAtgR0W9eq1Hp8x9+uTmhCtxRt1/cXzDe+ga3glfJKSyRwMRL9IQQronqDJK/Qgp8bQiko0ybxGC3j0iaxS5rbvgi3I8tPA7bNhlbDMRfDkF6HLCRSg48gx4fIa/kmkrArb0dI1m2kp5ZZ1FEEII0Q3eP9cTR/90WcrgTpo0KeH3jxgxAosWLUJFRUXSYqbYOvLIIzF79mzcdNNNSdkihBBCCCGEEEIIcRJZjeJltHqu9LBMNc23KRmH6T6vEtUkw1FXROi7YfwgXH58f5XNGc3SLAnvm0U45ZSB6NrVGaJoa2M3O0O1vUjJWRFGRUg0MliD2FZepzJHpV9utDR0tTcP87LPV4+sYCUOr/4fBjV8jnxPFbp7yjHQsxmBsBd+TxhpCCADQWSjFlWRNIQ9e4v8IlKefmgezjn4QLy0cgfufasG26oMcT8eQtVl2P7an1Gx9F/oOe4y+Aceq36gIAKvjEUygqV8sfSclfLKhBBCiJ1xvDBaXFyc8PsHDBigfnk1d+5cXH755Un7M3bsWCxdujRpO4S4lVAohI8//lgtDx8+HD6fXn1edPM11T5YuT2zbZtlL1k7OhwnJDZunB87jVkHXxlnrbfHOOts3Dg/dhqzDr4yzrorzkoPSCmlK2U8pZSuiFuxSunGQ6QxE7StfqXSH1PWE2RNWT87I01lGqZCVEsW8VGyWqOZrZKh8sL1cAXNx773MXlYSmOXCLVSclZK/IqQKIg4WloTQFltQGWOZqX74GvsZVtXH0DXwE58GDkEz0WORV5munrf6XWvqX6kamyh3chDNTpFKpEfqUKNJwt1nkyE4YUXYWRG6pAdqYXHG8HlxVn4/hFF+P1HAcx+bzuq6+MXSGt3f4d1z9+LTr0H48DxVyDc4zA1BkF6usrYpOdsopm3jLM8n3UabpwfO41ZB1/FB6IfjhZGo7XskxEyBelRaoYwKkKrZKASQhL/Ivn3v/+tlg8//HDtv3g72tdU+2Dl9sy2bZa9ZO3ocJyQ2Lhxfuw0Zh18ZZy13h7jrLNx4/zYacw6+Mo46644O6J3IVZ/V6F6G1bUBVFVH0SXdgiabSHvDoTDiEQ8ytb+yoDKj+KlhG40X1TW8/k8KvNPyq8S+9DRsUv6cJbWNKjsShESs/wBlNUEVPZlZV1QPaL4EMKZaRvUcm1WT+RkZaplT/GlWLemHgN2LcZuTxFqIxkoQBUyEEBOpEY9WtLg8aPKk4f6zBxMOQnof8yZ+O275fjmvX8iEtqzzfZSvulLlD9+E4oGj0b+iZcA3fqpsciPFaR8sWTqJgLjLM9nnYYb58dOY9bBVwqjeuJoYbR///4qazRR+vXrh4KCAtWndNWqVRg2bFjSIq30GiWEJIbX68WgQYOalnVGB19T7YOV2zPbtln2krWjw3FCYuPG+bHTmHXwlXHWenuMs87GjfNjpzHr4Cvj7N6U1TRgwefbsWJTKcqq6pCX1U1lnt398mcY0bcLxg/pEXdmo05xdtyQ7nh2ySZkwqd6G4qQJGPunLtvX8X2Es38lOy8YCSCUCgCr8ejHs3L50qmaJMo6vGo8rl5GWn48dF9HNOP0y10dOwS4V36cErJWcmuFCExr6m0bgCBUEQdc3IMZni92O3prJZzM/3qGJSMUxFX5+Vdh9ffysD42tdQiWxURrKR5wsgN1KNNEgPUjlmPQgiDVXeXDQgvcmH1zNPx+udTsfgcwDP0DOwffHfUf352wmNp+TLj1CyZgnyDx8Dz6mXIK9/X9XTVcoXJ5JJrXuctcKeTnGWmI8b58dOY9bBV933kVvxRORncQ5l/PjxKCwsxAsvvJCwDelROm/ePGXrtdeMMhaJ8thjj+GWW27B7t27k7JDiC6weTQhhBBCCCGEWIcIg09/uBGvrt6G70prEQyLoAKkNZZ5lYzGaEaliHnHD+yi+hzaVcx76I01qkdjRV1A9TYUenTKVCVIm5MZrMLQio9atfVS3WEoi2TB7zP2TzgM7MkJbUbEKLcryKrpaUY2yQVH9cJdZw3Zb4apHeD1esezdnulyq4UITEYin37VT67UrL5+80+u/LZv+yppTigfiOGlS/E6MgnyPCG1Wd/f4Q8afjYPxzvpJ+EzWlGD9DdVfXYWVWvjv3gjnXY8eZfUfeNUVIyETw+P3qfcC4GnfYTXDnuiKayzYQQQmLD72M9cbQwOnPmTNx6661JpSvPnz8fEydOVCfCIpCec845SYmsK1euxNq1axO2QYhOMLATQgghhBBCiHlEs0IXf7kDX26rwJayOlXiVe5JiB4iz+FodqP8zwNkpnnRJTdDlaCNEs06s5uoJ0LSDXNWqeUdlXVNvQ0Ls/0oyE5vEoHbI4z+q/4wVCBbZYvKuyQrT3aHtBGVW2FyNyzSIrNUBCr577TDeuB35w+z3f5rDq/X9aG8JoAFX2zH8o0lKK8NqP652ek+dMryo7hPEcYd2n2/2ZfNfyhQV7Ebp3iW4/j0r1HgrUZmpB51ngxUeXLxRdoQfJQ+GtXePT+IkFLU28qN+CFZ0JKlKvi2fIJtC/+Kiu8Svzfpz8rFcROuwH8fvQ9ZWVkJ2yGEEDfA72M9cbQwumHDBtXX84EHHsCNN96YVAncsrIylX0qpXD79OmTsC/jxo3D66+/nrAvhOgEAzshhBBCCCGEmCMIvrxqC95buws7KutVppdkh4qo1zyjsTlKsmum22Wm+dAtP0NlkQqnD+2hSnraTdx79qNNqgSpyL87K+ubxFEZhmSOZqX7kBepwajaZa3a+Z9/BBr8udhd1YDaQMjYl/vBC6P3qDzyMtPwvSMOsHWmaBRer9uf9v5QoDlSFlp+YFFaE1B/R8v2ikAq2aYHSAZ2ug/fLV+INf95HLUlWxP2r1evXvjVr36Fiy++WOseg4QQ0pHw+1hPHC2MCpMnT1aZnt988w3y8vYtJSOvy78LY8eOxfDhw/ebeSolcIWBAweqnqP7s9UaUop30aJFuOqqqzBr1qyEx0OImwN7IBDAI488opZ/9rOfwe+Pv59FqtDB11T7YOX2zLZtlr1k7ehwnJDYuHF+7DRmHXxlnLXeHuOss3Hj/NhpzDr46oY4K7dknluyWQmBIn+KKFpWI30IwyqzMRY+hHBOxmdKF/1nw2EIwafEU8kM65ybjq55GSrzUTJHLxrd27IxW7HPZJ/8+a11eG31NvV3ZV1A7RPpORolHzU4M+3TVu2szj8KdWnGvRvp7yhikWTqyb41km09SE/zwO/zIic9TWXcSk9RO2ba7g+33ojVIXaZ6Wt7figgn3sR/msbQipTNHqnNz8rDdX1ISWWRhFhNKexNHUo0IBN772I9a8/idqamoTHMXToUNx///0488wz2/zs8HxWjzhLzMON82OnMevg65YtW3DggQe67vtYd/Zu0uBARNScO3euKofbskeoCJUiWDZnf+VyRVwVYVS+3L/++mv069dP2TzllFPa5cODDz6IhQsXqvdLxighJPEL5PLy8qZlndHB11T7YOX2zLZtlr1k7ehwnJDYuHF+7DRmHXxlnLXeHuOss3Hj/NhpzDr46vQ421IAlLK5IgDGymxsjkgPed6GRuOGSCJZYfLekmrj9W55mUpQGdW3MGbPUR3jrNw7kUzXwux05X9epl89RNysqBXROIL0iLdNO1NPH4x3Nzeo/o6Z8KFHp6x293ck9kWH2GWmryLUl9Y0qDghn+ks/54fClTWBdWjJRlpXhRkG5+bjQ3VyMlKQ0MghLpgpKmkruDzp2PAyRPx/UF5+N///of3P1yCUMDo7RsPq1evxllnnYWTTjoJM2bMwOjRo5Mac6LwfJZ0BG6cHzuNWQdfdd9HbsXxGaOCiJIigMpjzpw5yM/PV6+PHDlSlcZtjmSEfvXVV/vYmDZtmirJKyfossvkWcRWEUz3l2UqVFRUqHVk+9H3lJaWNm2fkPYgx48I8fK8fv169Vr//v3VQ4R2yUIuKChwxS9Qw+Ewtm41yrwccMAB8HrbvhjuKHTwNdU+WLk9s22bZS9ZOzocJyQ2bpwfO41ZB18ZZ623xzjrbNw4P3Yasw6+Oj3ONs8E21pWh5IaQ9Bsz10aDyLo7DEyvEoi2Yh4PCprTMTRQDiMdJ9XZYaJMHLKoK64YfwgS8Zs9RxJKdFXVm1R4mYwtGfHtKfH6JQpU9T1aqL9He2OWzNGdYhdZvu6d2a5QfMfCkTL5fp9HpX5nOnfU9Y20+9VmaQq27QuqMpFd8/PbG4c2aFKtbi7sg5fvfYkNn/4XyCyJ0M7XiZMmID77rsPBx98cMJjTgSez5KOwI3zY6cx6+Dr9u3b0aNHD9d9H+uOK4TRaCbopEmTVL/Qxx57TGWFynL0FwNCVLwMhUL7tSE9QqX0bvN1BRGlxLb8uyxLP9KlS5c2leiNrisnBi+88EJKxkvsj4igkq0sguiIESOUkC/H2Lp16/YSSQURRx999NGU++jWCy1CCCGEEEIIMa13YEUddlc3qGxPTwTYnxyhbj803r2JxHhd0kj9Xq+6ByEvSZnNXkXZKiPyqUuPsrX411LcDFSV4aBt77VLGHUrvF53HrF+KNBaFvTHm8vw9w82KiH129JaFTP6ds7Zb3/SKJVbN+DLf8/G9k9b/4y1RlpaGq688krcfffd6N69e8J2CCHE7vD7WE9cI4wKkh0qGZwibkYFzJaIACWi5v4QIUrEqf2lX++vhn5UEI0+S2/SWNmlhLQ8VseMGaOyQkXIl+OyJbNnz1bCaRRZV46xVGaPMrATQgghxM1UV1fHvHaIMmrUKOTk5KTMJ0KIPXjojTV4a81OVNQFsL2iTpXFFFEz2v+yJXvdcojspYWq/0X1US+MrLGGUBjpaV70KsxW2WOXHNsXE4oPglOQ685Zs2a1ug6FUV6vO5V4sqClt+5lTy1VQurmkhoVawqz/eicm9HmdkrWfYIvXp6F0g2r9/vvknmVmdks+zTGOjfccANuuukm5OWxVDUhxH3w+1hPHN9jtDkiLkm2nQhKkl23cuXKvf5dBCUpWRoLEZ4kU2/s2LFKHG0uhu5PX47+uzxPnTqVoihpFyLYR0VRETpjIVmi0XK6UeG+uLg45eJoqssfSO8KYejQodqXauhoX1Ptg5XbM9u2WfaStaPDcUJi48b5sdOYdfCVcdZ6e7rHWRFG33777VbXGTJkCIVRjT/HqcZOY9bBV6fG2YP6H4L3vt6lllVP0XAEaR6PEj/bFEXVC4A3EkFfX4n685twESKGRAqRVWVZ9RsNR1SpTRFGRUDZnzCqe5wlJF7sdEwm6quInvJ5bs+PHQqy03H8wC7qhxjyvh0V9SitCSDD71NZ5VIyt6hhh1q3JL0b4NnjQ9GAI3DElIfx9dLF2Pnmk2jY/e1etjt37oyf/exnrW7/kUcewa9+9Sv85S9/wV133YUrrrgCa9asiXvM7YHns6QjcOP82GnMOvgqPhD9cJUw2lxQkoeImyImyUMEpiOPPLJd4uqyZctU5qkIq83Fz/0hgqkIV9OnTzd9HMSZSD9bYdGiRW2uKyK9HMsi9gtyLMv7O6KsbioIBoN46aWX1PLgwYORnp4OXdHB11T7YOX2zLZtlr1k7ehwnJDYuHF+7DRmHXxlnLXeHuOss3Hj/NhpzDr46tg4e9rFKntLSls2BMOqp2ia14NguP0FvXwI46T0DWp5c20Bgh5fU9aoCKJKGI1EVP9BQbLK2vSLcZY4ADsdk6ny9exhPZUwmp/pb+xNGsS28jqVOVqU5UP/6s/UemXpXZtKeUsckWxTEVHzBh2Lnocfh7rPFuGrV/+K+ordcfsg2VE///nP8bvf/U7dfz3ssMP2HnNNCbDmVWDzR0BtKRCoBfxZQFYh0Gs0MPhMY7kVeD5LOgI3zo+dxqyDr+ID0Q9XCqNROnXqpL6M2yOINieaySc9RO+//35V9jQWIlJRFCXxZIuKyDljxox2Z33KulFhVJBlOe7kOHUa8gOE6Lhi/RhBF3TwNdU+WLk9s22bZS9ZOzocJyQ2bpwfO41ZB18ZZ623xzjrbNw4P3Yasw6+OjXOfvyt0Z5HsjkFafWn2vA05os2bxsai4jHg+9CRlnKcGO2aNO/RZ8jEYQbq1tJqc22/GKcJU7ATsdkqnw9uHseLjyqN55bsgld84wSuiKOiuhZWVuPvmmd4PN4UF0fRABh1DaEUFUfVD/aEPKz0tT7PMedjeuv/im2/m++uheVCFLJTx5yL/W4447DuGG9gNXzgPVvAaH9/ICjbBOwdRWw/Emg/8nA0AlAt8H7tc3zWdIRuHF+7DRmHXzVfR+5FVf1GLWKDRs2qBK78sUezT4dMGAAJk2apMRXQtpLtG+oiKLSz1YyP9sjcEpWshyDUeQEVco3Ww1rpBNCCCHEzbDHHSEkEaY8vRzfltbiu9Ia1AYkYzSibppJ9qhkebYURmPeT2vea7RFn1GfykANoyArHQcWZqFXURb+/KNiOAXG37bh9TppjsSZP7+1Dq+t3qb+rqwLqFLe0nM0FhlpXhRk+5GXafQrPX1oD1xz8gAVr3bt2oX77ruvzfueUkpXjsVYnHFYIe4/px+OOCgXCNYBdWWGQBoJG2V9fX4gswBIa9bLtPhS40GxgRBiA/h9rCeuzhg1i379+uHKK6/saDeIA4j2FJXMURE6pWdoaWlpm+9rKZ4uWLAgJcIoIYQQQgghhJD4qA0Y2ZvRyrler8fIzGpPqmgrNL3VI7aNv/w+QzjolGUIG4QQdyJipoiahdnpKnNUxM68ptK6AVV2W+KGlOGWuJGf5Vf9iaNIxumFR/Vqynzq0qULbrnlljZ/oNAWr35Witc+L8VPjszBr07NQu+CPdtUSBJpXbkhjEop3Yx8YPlTQM1u4IQbKY4SQghJCAqjhGhESUnJXn+LQBrNQm4NyVBuzQ4hhBBCCCGEED3IahQbpIRu9FlagUZv77fUSEXjbNe9/6Y3RlSfQBEwRNwQivsUWTEUQoiNkJhw0ejeGNW3EK+s2oJ3v96FTPj2EkCbk+bz4ISBXfD9YT1VOV6rkBj3txXVeP6Talx7XAFuHX8QiqTkbzgEBKoRqa9EqKEW4boa1HjLUeorgvd/L2D5mjqEjrwE44f0QKds/viDEEJI+6EwSohGSElc6V0bRUrqOrFXaKIEAgE89thjalmytP1+fU98dfA11T5YuT2zbZtlL1k7OhwnJDZunB87jVkHXxlnrbfHOOts3Dg/dhqzDr46Nc4WdDsa36psTq8qpWtkYEUay982yqFtZI/6EMJZGV+o5VfqD0UYviZdVOxJ5ldmmlcJHiJujDu0uyVj1uE4IcSux2RH+Soi5w3jB+Hy4/vj9dXf4bM3X1Qx49tuxyIrM11lmMuPKSRupFJwrA8CD75dhseXVuHW03rhyhN6oD6SjppwNnLDVciPVCAzVIX8cAQl3iIcvu0l/O7d/nh2SR8cP7ALzhzSFYtffl7Z4vksSRVunB87jVkHX8UHoh8URgnRiKuuukqV05VeoyKISo/R9iD9bZtTVFTk2J4Y0d4UurdH1sHXVPtg5fbMtm2WvWTt6HCckNi4cX7sNGYdfGWctd4e46yzceP82GnMOvjq1Dg7fEQBVm+tUdmcFXVBBENhozeoxwOfx6P6jMoLrWWNeiJAobdOLXsby/IqUTQChBrf1Tk3XT1LxlcscYNxljgNOx2THe2rxIUfDu+JL16tVHHk0YuLkZ5uxI2OpKwmiGkvbcDvFn2L/zu1J344vAhlnk6ojaShG0qQHalCdSgd1Z4cHFv7Fl5I+wneWrMT73y5DSNKeT5LUosb58dOY9bBV933kVvxRDgzJIGsxmXLlrWr96UZSK9NEQilpKw8pLysiIbyEF9ETJTMSjcj+0H2U5QZM2akpMdoqptHh8NhbNq0SS337t0bXq+cuuuJDr6m2gcrt2e2bbPsJWtHh+OExMaN82OnMevgK+Os9fZ0j7Ny3tNWb60pU6bsc75E9Pkcpxo7jVkHX50aZ/O79MDlf1+OYCiCzSU1qA+GVbZoKBxRj4ZQuNWkURFIPZEIunkr1d87wnkINxbiVf/3ANl+H/p3zVWv/XbSsJhlMHWPs7Fg/NXvel0XdIhddvI1GR8aGhqwZcuWVv/9P//5D37zm99g9+7dCft4cLdMXH/qATjh4Hx09lSgEJWoRzq+RTcE4cO1ntvgzSlEfkYa8oJlGNWvCNedfTR8vv2XCG4vbjmfJcnhxvmx05h18HX79u3o0aOH676PdYfCaAooLy9X4p2Us3n+eaOkgx1ZsWKFSjmXZ0GEUSsFyZkzZzYJorKdsWPHYtSoUWpZMiRFCIz6Iv8m67qx7KwIxYWFhXu9JvsnFfvCrRdahBBCCCECb8wTQhLloTfWqAyniroAdlTUqzKWcndGBNJAKLynpG6ciGgqWaf9uuSoMroXHtVb9RR0Goy/bcPrdaLTfVG5x/e73z6I2rqGhO2M7JOLaeN64HsHlqsfgXyHrqiNpOPpyOn4V+Qk5GeloWteBjzwODb2EULsB7+P9YSldFNASUkJ5s6da1thVITJadOm7dX70urtSQakPAuS+XjrrbfuV4QVcXTy5MnqecCAASnLlNQJKbvbnAkTJrhSICaEEEIIIYTYi7KaBiz4fDtWbCpFWU0AtYEQsvw+FGT7MaJ3IcYP6ZHS/nap5OxhPZUwmp/pR10ghIraIIKRsMoi9XmN0rmhOLVREURFWBVhQETR04f2wIVH9bJqCIQQ0i46deqkskavGbgV9zzxKv76/jZV/jtelm2swsTHv8b3D83Gb8ZkoGeXGoR9mTgmshb/Cpyk4qjQLS8Tzy3ZhFF9C2NmyxNCCHE3FEZTiF3KvYogKZmYS5cu3SsrMxXItsaMGaOyIAURlEXoi4Vkikp2ZLSUrAi48nd7e3M6geZjlWMs2lDaiUj5g6+++kotH3LIIdqXauhoX1Ptg5XbM9u2WfaStaPDcUJi48b5sdOYdfCVcdZ6e4yzzsaN82OnMVvha1QIXfzlDqzZXomdlfXqdRHzctLTVM9NWf62tBarv6vAsx99g6M7N2BU3yKcfNQwR8VZuVkvGU1y816ETKGiNoBAKKIeqt8oIko82G85XUTQy2tcN38bKYDf51PvkYypohy/si2iqPxA28ox2+mYJu7ATsekDr6m0ocDswN49MeD8MNRB+F3r63Doi8Ta9H1yhc1+O+XNbi0uAE/PSUPnQtq0CM7E9vLa5FXtwMZHj/qc7rjlVVbcMP4QQn7y/NZ0h7cOD92GrMOvooPRD/0PWodRDTzUWekFKtcMMlDMi8nTpyoylyIUCnCZGvipFmIGNpcFBXBr73bXbBgQVOWpGRQiu9uQMbZ/PgSIdkuAnwiBINBvPDCC+ohyzqjg6+p9sHK7Zlt2yx7ydrR4TghsXHj/NhpzDr4yjhrvT3GWWfjxvmx05jN9HXt9kpVOvayJ5fi9wvXYvGandhSVqcEQOmvWVkXxNaKOqzZVqnW3VJao7Iow6Ew6ta8h3dffxnPfrABVncCSnWcFeFSsjql7KNkOHXPz0RORprRbzQSgbqNFkPX9CGMMRnr1CMrDUoU7ZKbjkkje+G3k4arEpJtiaJmjNlOxzRxB3Y6JnXwNaU+BGoRjHiwrOAsnHDB/2Hx/x2KY/vnJ2RKMuqfWFaNcX/4DH9b+AUyIw3onOXDCb61OLzhc3gRwbtf70J5TSBhd3k+S9qDG+fHTmPWwVfd95FbYcZoCohmXBYVFUFXomKkiGoiMI4cOVJlYUpGprwmApzVpXRFjI36MWLECNWXNR5ESBWfBckcdXpJ2WiJ4+aiqMyXk5EL+169jFJQ7bnId7uvqfbByu2Zbdsse8na0eE4IbFx4/zYacw6+Mo4a709xlln48b5sdOYzfBVhMznlmxWWZGS97ijsl6VzA2FI009NaNSp9qCB6gXsbQ2jIr6IHL9HvT35SPN68Gc5d+ivCGCa04eYNm+S3WclWcZT2F2utpHeZl+9RBRuKS6AdUNQSUey36Rd3g9xv6SxAMRU3eGcyGJD/265OKMww/Ej4/uG3fpYcZZ4jTsdEzq4GtKffBnqT7Ivbw7gHAIx/XNwns3D8O/Vu3G1BfXY+2OurhN1jSE8fjib5C+9HwMHP8TbB/SE15fmoqjRZEarP7vn3FAxSeoLt8JT6AWtchAXVo+tuUfAf+Qs3DK8EEx4ybPZ0l7cOP82GnMOviq+z5yK56I1T+5dDEVFRWYM2eO6nkpgp9kYq5duxZ2RITR5iKcUFpaalp2opTBjYqa7SmhG4vi4uImIVrE1eXLl8OpNB+riMLxCslmwObRhBBCCHEzct4za9asVteZMmXKPudLhLgBudXw57fW4bXV29TfW8pqlSgahiGItkRuGcl9I8l8FEQ4lWURReWmtZSbFTFQSsRKNqTTkExZKfsoGU7SZzSKiMgVdQHU1EsPUkNJ7pafgUO65+HUwd0x7tDuju3D2hqMv23D63WiHS9fB2xdBVRtA+rKgYx8IO8A9U/f7K7B0x/twMNvbsHOqsSzqzKKemLIyWdhyuENONqzGr5IEH5p3LwfQp40fJI+HNWH/BDHH3M8+5ESQiyB38d6kuZWsVJKr0rGnTyiWYpWQe25bZqLriK2Jlq69/zzz28SC+VZHiKQtoWIsqkqeSxZrMmWvJ08eXKHi6KEEEIIIYQQEgvJFBVRNIIItpbVoaSmQb3e/PJY7lWL+CmvqQxSVR4xAp/Hg3SfVy3Lo6LWuEku5WYls3JU30LH3cCW8UgvvMuP748FX2zH8o0lKK8NoKYhhL5dstEpy4/iPkWuFUIJIQ6g12hDGM0sMITR+kogpxvg9akfxpw/sgtOP6wT/vHhLvz1/e2oqo+/L199yRasfHE2/vBBFnxje+LE/hkoCNfAFwmo8rryPeNVhcrlpzZAr9AmRFa9gm9W98EHgy/A0Wf+BJ7sQkuGTwghRB/S3CSIivgm/SdTLVhKujTF0dhEBcwoyZSDFUG1ucgqoqE82iIqkqeCkpKSpN4vx3D0OE40s5YQQgghhBBCrMx+NMrnAjsr6pXAJ3jhQQgRdQNcMnhEAI0i18ySHRlsFEPlvrWso3ptNoqjWf6AKjUrmZUiIjoRET0nFB+kHoQQ4igGnQEsf9JYTssEgnVAbSmQ00XFeSEr3YcrT+iOC0d1wV/e2YZnl+4ySorHyWdba3H5P9Zh3AA/7h2bgyO6+1RvZhFFo988shRSr/gwMLgOVZ/9Htu/mYPuR54Oz+ETgW6DzRw9IYQQjXCFMPrNN980ZQRGBUoRK1nfWQ9aCpejRo1K2FbLnqIiILZHGF23bh3sgPR5lWxRQbKend5TtCWBQABPPfWUWr700kvh9+v7S2kdfE21D1Zuz2zbZtlL1o4OxwmJjRvnx05j1sFXxlnr7THOOhs3zo+dxpyMry+v2qKepQRseV1AiZt+r1cJn3IZLuVxm4uiglyfp/k88IQjCITDxnvCIZzu/0LdxF4UGqJK8YowKuVmJbPS7MxJxlnGWWJ/7HRM6uBrSn3ILkKgz0l4akkZEDkSl2Iu/LUlQFoGvB6f6kUt8V7u3BbmpOH2M3vhJ8d0w+8XbcErn5QmtMkF6wJYuK4MFw1Lx92nZKNPJ5+SQpUcKhUKImGEEULY40VepBJl1dtRsuq/6Pz1QgSG/wRPfWJkrTLOkli4cX7sNGYdfBUfiH44XhgtLy9XpVTlWYiKoanM4KQA2zpS2rg57Sl925Y42jz7U8REJ2RVSlbtxIkTVQle6Z3aUgR2A/K53bLFuMmiexa2Dr6m2gcrt2e2bbPsJWtHh+OExMaN82OnMevgK+Os9fYYZ52NG+fHTmNO1Neymga89/WuxuWAEkPT1A+TJTvHuOnt88a+RpZ/i0Q8KnM0HA6js6e68V/CqA+GURcIIRM+VW7W7KxKxlnGWWJ/7HRMuvJ8dsg52PL+fGM5pwCo3w1UbkU+clESyYHH41U118MRKbUO9CrMwO/O643/OyYH0xdsx6L18QsMMqpnVjVg3uoGXHNUBm47IR1FWR5EPEZ/a28kAk8kBJ8njC6R3dhdGUFdRk94VzyNLTtONmwwzpIYuHF+7DRmHXzVfR+5FccLo1deeaXqIdq8nK0IS5JpJ8JS586d1d9FRUWml0uV7UpW38KFC0217ST21+M1WcFPhNXmwqjMgd2FURnPmDFj1L4RUbSt/qSyT5PpYaoraWlpuPDCC5uWdUYHX1Ptg5XbM9u2WfaStaPDcUJi48b5sdOYdfCVcdZ6e4yzzsaN86PbmEXEXPD5dqzYVKpEzNpACFl+Hwqy/TjyoE74wbmTkJ3hi8tXsRcMRZSA2RAMq/6hkiEalLvccgNaRNKmQoaxxdFQKIIAPHgreIgSVb2+NIRCQEVtAJl+n+rBabYwyjjLOEvsj52OSVeezx4wBBeOfAf4eiHSMroCnhBQV4a8cAUywxWoQRYqkYFw2IsMTwSZkTpkR2pxYI8I/n1xAf6z3ou7Flbg8621cW+7PgT87oN6/HVFPaYdn4VrRmch2y99rUOGeioCqQcoipSittyDnKKDcGHBKmDgWMZZEhM3zo+dxqyDr7rvI7fiiThYspYs0cLCwiZR9KqrrlJlSI888siU+iFZfvPnz8eAAQOwdu1a2JGZM2fu1btTKC0tTVp8k1K30dKwUZI9JMVe816yIibapVRuLJGzX79+SrxvjygqY5feoyIIW83OnTvRrVu3vV7bsWMHunbtavm2CSGEEEI6GjnvmTVrVqvrTJkyZZ/zJUJ06AEq5W4ls1NEzFhIadvjB3bB2cN64uDuee2yfeuLn2D1dxXYUVGHirogQuEwfF4vGkJh1UNOSuq2ljEaJRAyyulKyV3Vj9QLhMJQwu2BhVnoVZSFP/+oOK5xE+fA+Ns2vF4n2iL3/d59CPjiFePv+gqEa0rRUFdj/LOolPLVpH5IY9Dg8aPKk4dqTw7C4Qh+/2UX/O2NT1Fbsi1hNw7M9+Kuk3Pwk2FpSPfKd5QHYSnrjjAa4Ed6bhG8eT2Mlc95lD1HCSEJwe9jPUlzS4lWEZRSLYhGueCCC5QwSvbFCvGupXDYPHvUjhQXF7dbFBXcWmaXEEIIIYQQ0jryI9TnlmzGc0s2Nb0mmZ2ShSlCZLR0oQiR+Vl+VbL2rTU71ePCo3rjwqN6tdkqRjJPBbEXzRA1Nt64Qjs7zcj7RBiNvi36+1kRV4WahlA8QyeEEKIL8r1wwo1Admdg+VNARj68GfmoKiuHp64cvkhQlU8XoTLk9aPGm4sGpDe9fUH2Gfj2mNNx8qgAMt6eibcWLERZbfzfCd9VhDH55Ur84QMfpo/NwPcGiiTqR9DjVT1Iw7Vl8KZnK/+wej5w6u0m7whCCCEdhaOFUcmak4s2ee4oUVSIilRSXpegVdHSjPKvUh55f/05k+1d2lGiqOyTRYsWtXvfLFu2bJ8sXKcgPYY2bNigliWL1uv1Qld08DXVPli5PbNtm2UvWTs6HCckNm6cHzuNWQdfGWett8c462zcOD8dOWYRRf/81jq8ttrIrqmoC6C8JqD6drakNhBGZV0AB6ZVIicjDaHsrkpMLa1pwDUnD2hVHJVyvEJj5Vx4Vc/QRkFUlSpsvzjqQQQHeCqQ5vFie0QyVr1NQmt2ug9mwzjLOEvsj52OSR18TcaHRDK399reiEvg7X2MITquX4zc3DxsbjBiu5Rflx7VCAM++dLw+rAq/Ui8k34SNqf1Vuv4/Om4anQ+pg4eghfe34jZH1agVjTVOPl8Zwg/eK4GJ/bx4b4x2RjRK1N9A4XDwMaqLACF6LduMbzHXANkFcZtn3HW2bhxfuw0Zh18FR+Ifuh71JqACJEiSp577rkd6ocTez1aJYya0et1f/vbjlmjUoJZiEcUlbK7IgI7NWM0GAzi6aefVg9Z1hkdfE21D1Zuz2zbZtlL1o4OxwmJjRvnx05j1sFXxlnr7THOOhs3zk9HjlkyRUUUlRxMKXO7o6JeiaKiM+ZlpqF7fgYO6JSpnuVvnyeM4/EFjqz/FLsra9T75P1ipzWk1K0QrZYbfY5qodGMz/bgQxjj0r/CKb4v4YkYN5X8PsNSpyw/zIZxlnGW2B87HZM6+Nrh57NSnlYyMX80F5nHTYGn5zBs93VHdVoBtnu74/NIP/wtdBouC0zFb4MT8VnwAFTXB9WPe7ZX1MFbX4bcDC/uPDUPy6/tqpIi2qpsEIt3NoZw/F8rcdGccny5W8rppuHpwGl4uvRIBIMhYM2r5ow5xe8n1uLG+bHTmHXwVfd95FYcnTEqYphOmXMiWpGO2Sd2E0bluJ03b57qizt9+vR27UP5IcDChQvV8siRI+FE5OS2e/fuTcs6o4OvqfbByu2Zbdsse8na0eE4IbFx4/zYacw6+Mo4a709xlln48b56agxS0/RaPncnRX1qvenUJjtR0F2+j49P/My/QiH0lBRkaMydirqQgh56tEtL1PZGdW3MGbP0YJsP74trVXleCXz1BhnRG0jFIooYVT+29M5bv8YAqoHJeEsZUMSW30+qBK/QnGf5H9U2xLGWcZZYn/sdEzq4Ks257OSiTn8IgwYdiFeb1bdQKoXlEWrG9QFUdn4/dX0Nm+9evYhgp55Xlzy/RNw5tGH4uM35+HfXxr/Fi///KIBr3y5Cz8uzsehJ21Ep0756kdE2PSh8tG0Mafo/cRa3Dg/dhqzDr7qvo/ciici9XQciqRGz549G1dccUVHu2J7Zs6ciWnTpu31WmlpaVLZsCLoFRbuXYJCftklPTKTQQTFaLZllKlTp2LGjBmw676Ol1R9rNk8mhBCCCFuJpEScoR0BA+9sUb1CZUMG8kUFXp0ykRuRtu/la6qD2JbeZ1aNrJJ/ThlUFfcMH7Qftefu2wz/v7BRtW7VARSEUUNidODhmAYYUSQ5vUgrZVSZnI90xCSNYF0n7cpyzQnPQ29irKR5vPgqUuPQqds87NGiT1g/G0bXq8Tu34OW++HbfzARsqqSwWBByIPoXNwGw6I7EQm6rE9Uogu3irpFIqPNtXitoW1eH9z4j2p5WvmxhMLcPP3hyDvgAHApL8nbIsQ4k74fawnji6lyxK2epPKnqt2yRgVUTdZUdSOvVQJIYQQQggh1lBW04D3vt7VuBxoyhRtjygqyHqyfvP3v/v1LtWfdH+MG9JdCZeZfh8y0uSWwx4RNJqZqnrHtfJjTslSlX/1qi6jxvo+j0dlowonDOxCUZQQQhyKZFddNLo3fjtpmPohTvQ7pVt+Jg4szFI/kJFn+bvGl6fqDwQ9aSqrM8dTL91BlZ3je6fhnctyMPf8PAzqklhfavmq+/WiMgy4cyn+9J9P0NDQYPJoCSGEdASOFkalXyXL1+oL52ZfXnjhhaRtOLW/KCGEEEIIISR+Fny+HcFQRGXbSMam3DiW8rnxIOvL+6SUodgRewu+2B5z3eMHdlHLUfEyEAorsVOEURE4o68Fw5IVurdAKusFo6Kpx1hP3iO2JFtV+P6wnvHvCEIIIbZCSrZLdQKpEHDJsX0x9MB89CrKQufcdPUsf3c+9AQlkNYpgdSDXNQiFDG+Z1S1Ao8HZw9Ox7Iphfjz93NxQF5it8J3VgZw7d9XYciQIereXThsiK+EEELsiaN7jI4dOxYLFizATTfd1NGukA7OGLWLCDt37lzYnURKFd1999248847EQqFVAnstLQ9oSn6azy/36+aVT/zzDOqrMqkSZOQkZGx17qBQED9m7wmdgQ5WZX3ycmw2EjVuqr0y3PPqdcuvPBCtV7LdeX9Ysfn86lHa3b3t65sQ7YnpKen77OuPJ5//nn12kUX7emDsb91Y9kVH6K18GV+5BFrXeHZZ59VzxdccIHaV63NZ0u7Zs99LLuyrtieM2eO8uFHP/qRGk8icy+IX4L4Jeul4jhpa+5TvW6889lR68b7WTbrOEl0XatjxP7WlUf0u0jGLNsxK0aYPZ/V1dXqpoSs9+Mf/1i9J565N+M4qampUXG2uQ9Wfu/U1taqMctrMj/R+NgRc9+WXZnLp59+Wi3LvomuH+/c19XV7fU5lH9P5XHS1hy156aYvF98dkKMiHfdtmKEWceJFd8PZh4nzdetr69vOne4+OKLm9a38rtkxTc74YmEVQlCITfdB78nrO4Yhz17Mmg8kZDKupHunxGPV/19SMVK9W9f5x2hMkelt5vYyUrzYPmGHThn+AH7nfuzh/VUpXvzM+UzG1A94gKRCIIhL3zictjYnjw3hL3wyvaMkchg1M3tiMoXDeH09K9U6d1NOcNU+cQLR/dRN8utOE7EfzkmZSxybpaVlaXt3Mt4mp8fy+cnkRjRfMxyzZCZmRnX5775+88//3zk5OS06oNZ5xHNr0Faw24xwsx19/cd1XK/OfFao61rR12uNdp7PWj1tUbz+waJXpO2RfN1xXY0FkrMiNpsbe7lhzHyfXP24d32Xbe8O4LbXkZpdQNqPJn4J05X+aLn4FXkIIJ0BOBFGGneNPxoRB7OOTwXj35Ygd/+rxYV9fG3oVq3bp263/Hggw+qll2nnnpqmzFC/s3q+wapvCa1e4wwe13xo/n1iqyj+/dDstca8pAxm3XtaNW1hqwr1+ztvR606jgRH4h+OFoYnTBhAk477TRUVFQgPz+/o90hKYIllO3J0qVL8frrr+Pwww/Hueee2/T6H/7wB/UFIn0pZG43btyoXpeT0EGDBqkT0iiPPPIIysvLVV/hAw88UL22evVqvPTSSyqTVm5ARHnsscdUjfdLLrkEffv2Va999dVX6suyV69e+OlPf9q07lNPPYUtW7aoE9BDDjlEvbZhwwZ1A0AaeF999dVN68rJrvj4wx/+sMnX7777Dv/4xz9UFvu1117btK6cRKxduxY/+MEPMHz48KYa848++ijy8vJwww03NK0rY/j8889xxhln4Kijjmr6ccGf/vQndaF3yy23NK3773//G6tWrcIpp5zS5ENlZaVa9//ZuxM4KapzffxPb7PvLIPIDq4hAVljolHDolnUqwKKuYteF8Sbm0QTccm+XHFJvD+T/EXQXE1M3MAsGqOyuEQTI7JIoiJhBwUZYHZmeqaX+n/e01NjM0zP0l3Vfarq+cbO9Azdp96aqjldVW+d9/j9fpWENsnvfN26dTjrrLNw9tlnd160Mefk/da3vtV5QLFmzRq8/vrrOP300zF79mz1MzlAWbx4sXp+ww03dC7vL3/5C1577TVMmTIFX/jCFzqXJ+3Ke+S1Zr/8t7/9DatXr8aECRPU7810zz33qFi+/OUvq99H8raXuzST5xL+2c9+ptZxwYIFGDJkiPrZP/7xD/zhD3/ACSeccFRi+P777z/qxgw5UNq8ebMqZT1y5EhcccUVnf/2i1/8AgcOHFAHT2PHjlU/27ZtmzopGTp0qNp/zLgkKSzbWk7uTj75ZPWzPXv24Je//KWaN+D666/vbFdOPKXE9/nnn9/5/v3796vXlpeX42tf+1rnayWuLVu24Itf/CImT56sfib7rszlUlRUhJtuuqnztU8//bRab/ns++QnP6l+Jn8T8nckB2u33XZb52v/9Kc/YePGjWo/+cxnPqN+Jn9r8vs1b1gwyfZ54403cMYZZ2DGjBnqZ3Igam77W2+9tfPg9eWXX1bbfvr06TjvvPM62zBfKzcrmRfMZD956aWXcNppp+GCCy7ofK3EIO1/9atf7ezT+9JHmDdmvPXWW+rvwIo+Ink/sbKPkGOUj33sY+pn77//Ph566KGs9xFyA9mnP/1p9TP5+/nf//1f1UeYF9FknVeuXGlZHyGl4s2Lra+++ipeeeWVjPoI+buXWMxYhcxT/txzz1nSR1x55ZUYMWKE+lmqPkL+ZmWbJMeQ3Edcc801na+Vz4G9e/f2q4+46KKL8IlPfKKzj3jwwQeP2iet7iPME0xpW36PmfQRcqIo62s+z6SP6LrO/ekj5O9eEsrJ77eyj0juu1L5/e9/r17rlj7CyuMIuXBg7ieSBDf3Eyv6iOTjiAEDBuSkj+juOEIuqJrrbO6TVvYR3R1HFGzZggFFJ+P9WKX62cBQGybV/RURXwibKhN/32LUkc0Y0H4Ae4pOQE3BCJWoLI01qH/7RP1fUFd0hkqMyvxuI1q2oOCdffjL4OaUfcT8aSPU/HATA3sxJPg+3okfhw2RYer9eb445hckkq6PtJ6GaMfonknBDzAh/0O8Ex2MNyMjIHvPEH9zIu7611D1yUswf9pw244jZJvI7938u0ne9pmea8jfa3fbPt3jCNk3k4+P0+0jktdZ+n35G+1PH5H8fvm7s+tco7vjiL5wWh9h5XGE/N67+r//+z/1e3fzuYbEkvy3ofO5huw7Zqzy9/rUU09l/VxDPmfNGKSPkH2kr8cRycemPUk+jpC/ZXN5su03bNiQWR9x7/1SNBdXFK5EU2sp9voSv/uf42pMMv6OL2CNSozKbT/34mrE8wK4/syHcdXkJtz55xbc/2ZYlWvvL+nbZH+V/VB+1/I7S9VHyPYw11l+Z3V1df3qI2Q/M98vxxFyM6Nd5xq8HpFeH2GSz0Qr+wi7rllmeq5RUlKC5ubmznWW8x0dzzWkjzD3KTPWXJxryDYi/bg6MSp/YKNHj8Ydd9yB22+/PdfhEFGG5G4b+fCWAzg5eNaZfDBLrObzXJADimzGYG4fYSYKrG5bLhTIQaYV5KBq4MCBR93FlW5c5sFSJvtJJnGQfeQkTS6CeGn7OG2flBPvXMVq3hl65plnZi0GuQDx+c9/3pblWbntk9vItD05npcLMem0Y26jWbNm2fI7kwsr5u9NLkj89a9/VSfGcpHHJBdnyP79xCnMY7LKysqsr7N53dff8XfR6+vhw+6iEzGy5Z/qe7MEroza7AtJYNa1tOOdNxLvL84LotgfREt7VJXLNXUXjYwVzQv6UVmYh2354zHuyNvq51d+elTn37UdZJtMmjRJnWtYvRxzZIb0EVb1s9L/HDp0SF0IzqQduUArN/iZMfb3/XJR8dlnn0W2yYVk2V4mSSrJRU+JR0b78gZ5bzL/NiTZ9M4770BnyeeDdvZtfY0hnesG8vtOThZIAkkSL5JAksSQ/B0mz8uZfA69a9cuWKW8MA8HwoU4z3gJO41h2OI7QSVDJSUqPVugY95R08AiH+45rxBnTp+IH73UrBJ66Xj++ec7E2ZyjG4mRpMlr/OLL77oyOtL1DM515CksleOZ6W/ctp1A0l+5/q6AenFZyTfquhCktGXC2ZyYiOZ/VyQuzTk7j85yZAh4E501113qbu6kskdTpmMzpRtIx8cyeSkRu6uyITczZR8V0ZyWWWylty9lE7p3HRL6dpRukbXshS6lC/JZZlML5S3Yuma3O8nTtv2uu0n7CNy/1r2Eewj2Eewj+ht23/l0fV4v74N79eH0RqJo7o0D+UFHftMD6V0OzZSx0gboL4tjprGNhSGAhhWkY9hlfn42eVTetxPVPnAv+3C8jf3dLYrc5TWNrchHGlXc5VGVRrUp+YfDfrUq9RrK4oLMKg0D585YRA+d+ogjB1cot1+ovu2Zx/h7T5Crtl0TdJIAlxGmuV62/M4IvevdV0fsenXqH31AdQeaUdZvB4lRhNCRgxBRBOfbT6gBfnqdhwpryuJUp8BxOBHO4LY+GEU31/TjNXb+1YeuDuybjLiTkYwyvVSt+4n7CPYR+iynzjlOEJuoDVHCZtkQImM5qbccX1iVEgpA0mWyV05uUiOmolRuSv48OHDcCI7EqOSrDbLMJiYGPVuYvR73/ueJTEREREREdFHbv3t3/H2B42oaQyjMRxFaUEQ1WWJkqT9caAxrErplhUEMbisAOOPL8PiixMl+Hqz9UATntm0D69uO6SSoSYZOdoYjqClLYqoXJowgMFl+TixuhSfPbkas06pVnPLEZE15+u8EEuuJXNxvvoTHFy7Ag2tEZQbDRgQP6xutpF/M8drJT6BzFmtfYj5/DBU4XbgiK8If9kdwfeer8HG/ekPbJGRg5Ic/cpXvnLUXNVE5E38PNaTM8Y6Z0hqX0sCTybElqRZcmmrbKivr8/q8ohyyc6OXe4Sktr3YtiwYWmVesoWHWLNdgx2Ls/qtq1qL9N2dNhPKDUvbh8nrbMOsbKftb899rPu5sXtk4t1njSiUiVGywpDKjHa3BbFwLihRmj2yDBQEk3MMdrgL1PvE9KOmDyyqs8xnFBdihtnn4SrzhiDVZsPYP3uWnXhuqU9hlEDi1BeGFLtdU2Eyu/LnL+S/aw97bGfJbdx0j6pQ6yuOZ71+WB8+ga0hkvQ9tYfUBdO1NAtj9fD74snRoiqegSSHJUSu1IPIaC+9yGOdoRQ5mvF+WN9+OLCKjz+XgDffKEWuw639TsUmUdS5lSU+Yl/8IMfqLkjZQ7P5HWub2nHqncPYMOeOtS3RNAaiamKDBVFIfW5PfvUIZ2fhzrsJ5SaF7ePk9ZZh1glBtKPJxKj5uS5MmpTJmmWSYfle5kYOxtkPkQhkxhTbpLImYxsJX1ICQWZELzr5Oo60iHWbMdg5/Ksbtuq9jJtR4f9hFLz4vZx0jrrECv7WfvbYz/rbk7YPv25cKnrOs86tRqPrt2DAgSQH/SjLRpX6zWgREoKpiaXjE9uSlTzWR06XfKk6v0FoQCCAZ9KYvaX/K7mTB6mHn3Bftb+9tjPkts4aZ/UIVZX9bOxGB5+/QCAT2LBhBii29aguSWO4ngzYh2fawFI2XgpEy+PqEqQGr4AigJGYg7uYAF8hZW4/DNlOH86MO+5IrzyyitobW3tdzxSuvqqq67CT37yE1XB8MQTT8SlV38Ff3r3IF7rUkHB9H5dq7qZST63zxg3EBdMGIqRlfk5309I77/jbHPSOusQq1OnVnQ7zyRGxbXXXospU6Zg8eLFKlEm5VblDp6JEyfautwnnnjC1vadyq5kZW1t7TE/GzNmjC3LouySmu3mDQa6T1ytQ6zZjsHO5VndtlXtZdqODvsJpebF7eOkddYhVvaz9rfHftbddNs+yUnQ92tbsaeuBQ0tERmEguK8oBopaY6y7O7CpYyK1HGdK4ryVIwvbzmoEpMyT2hdSwT5oQBK8nu+JBD2FyJuAHWtMj9TIiEszhw3MCslbtnP2t8e+1lyGyftkzrE6tZ+dsAXrkMoegNa/v4Mmt54CMX1/1TjRCNGvqqkK0uWeQhDAX9iBFkgDygoV4lRU8H0f8fnfS2q8qBMJ3bvvfemlSB999131WPU6DFY0zgYFaMTZehlzu3G1ggisbj6rJVDDIlHjjfkZib53JbHpZOH5nw/Ib3/jrPNSeusQ6y6/468yhNzjHZnzZo1KjEq5Q3MOSgleSajSq1K2MnoR5nXcvXq1WqyX2l769atcCI75hjtrmOQbbB9+/aM2ly2bJmaVzaZjBBetGhRRu3SsVgjnYiIiIicTua/fHrTvo7RG3HUHomg9kh757/HDUPNhSknzkG/DwUdoybVhctQYl4yMX/aCMyfNlzLix+yjjc+uUk9r2kKo7E1ced6ZVFIJU67K6sr6yzJYkmiirLCIAaXJi4Y3zNvQp8SwUSUOzxfJ0pS8x7w9lPAjpeAWOJzrVuBEDDmHGD8JcDgk4/6p3379uH73/8+fvGLXyAWkzGo6Rn48c9gwFn/Dl/F8SlfIxUa5AaksoLETUjnjR+C688eq+UxBhH1jJ/HevLUiNHGxkaVNJM5R83ytmZeWJKXdvFo7rlPJLGaXD63u9GeVpTjZSldIiIiIiLqep722Nq9eGxtYg5LmXVsX31YzX1pdPy7nMrJc3UZ0ge0xwy0x+JoicTU6yQxal64lHbqWtq1vHApSUxJ3EqMg0oTJXQlOSpJz/rWiBo5WpgXQMDnQ8ww0NoeU3OKmqeykhQ13yftMClKRESOIknOz34TOP16YMtzwJ6/AeF6oL0FyCsCCiqAEZ8ETvocUFjZbRNDhw5V15RvuOEGVZLz97//fVqhHPrHn3Ho7ddQMek8jJz576gYMFiV8ZUbsVo6Pn+l7L1UeJBRpfL5+/zbH6KyKA+XTx+R4S+CiIg8lRh96qmnMG/evGMSleYJq53JS1kGk6Pdk6HsyYlMK+YYPXz48DE/kxLKREREREREQs7P7nt5u7rQKBrDkcQFyGhiBEjX0zf51i8Pn6/z4mUMhrpg2dYYd8SFSxnNKolbiVFGfhaGImreVLn42hSOqkd3I1akfG5p0ogVaYeIiMiRJOk58fLEI00nn3wyfve73+Gvf/2rqk73l7/8pf+NGHHUr/8Tmv7xIsaccynGzrgcwYIi9Xk7MKlig1nhQT635eamqaMqeXMSEZEFPJEYvfvuu9VcomZysru7d3W7o9crJk2a1Dl61yrdJVc5x6g7yGTVTz75pHouNzoEg/p2YTrEmu0Y7Fye1W1b1V6m7eiwn1BqXtw+TlpnHWJlP2t/e+xn3S2X20dGikqCUArkHmxsU6MmZSSor0tSNCDZ0I6fyY9lNKUIBnydicP2qNHnC5e5XGc555XRrJK4lRjl4qs8PprjzFAJX0n8hgI+lBf48bG2d4EIsD3/47hs+uislwpmP2t/e+xnyW2ctE/qECv72fTb+9SnPoVXX30VTz/9tLru/N577/V7GbH2MLa+8Evs/ssfcMJ5V2Dkpy5AIBjCgJJ8NRf4hw1hBFprMS36DspwBNHH7wEG+IFQYSLJO3w6cPLnU45yJW/8HWebk9ZZh1glBtKPvnuthXOJytyYcvKWjdGh3WHSNbWpU6dixYoVxyQ2Myl927UcryRFWUrXHeLxeOc8vfJcZzrEmu0Y7Fye1W1b1V6m7eiwn1BqXtw+TlpnHWJlP2t/e+xn3S1X20fm2zTL50pStDEcVfNpBjvO26IwVII0FPCr0rLmOaS8Jipf5Xwylvh3SYpWFeepOUklOSqjMCXZ+Mymfbhx9knarHPyuamMZpXErcT46rZDKEDgqLlSTX4jhormRDWeOy/+OE4ZVpX1eNnP2t8e+1lyGyftkzrEyn42s/bkc/XCCy/EF77wBTz88MP47ne/q+Yi7a/25nq8s+L/YefLy3HyF6/BcRPPwSmBffj3vDX4ePRtPGt8HvUoRaRuD3Yd8akbu+RGpsDmv6HwlaUoPmUmCk6bd8y8qOSNv+Nsc9I66xCr7r8jr3J9YnTBggWdz+VkVpJkc+bMwaxZs9RzKeVaXl5uy7IbGhqwatUqXHvttZaUiHWjmTNnHvMzGUEqI0nT1XUEKkeLukcgEFAHnOZznekQa7ZjsHN5VrdtVXuZtqPDfkKpeXH7OGmddYiV/az97bGfdbdcbZ+nN+3rLJ8rSVF1cdHvU0nQ9mjiwkWw4/vkC58yStQXNxCJx1Vy1B83EPD7EInFUVkUSszX2ZJIjErC8aozxqj5R3VY565kNKskbiXGVZsPYP3uWjVnqsxtVpQXQHlhCJOGV+B4o0R9f+Jx9pwz94b9rP3tsZ8lt3HSPqlDrOxnrWlPRqFdffXVuPzyy3HvvffijjvuQGNjY7+X2XLoA2x4+HsYfvz9mDerFNNHlyBsGJgefwOFaMdxOIC89jjg8yOKII74S1DbHkPdm39Ayd+fhW/KFag++zo5cEl7vcl5f8fZ5qR11iFW3X9HXuUzXDz5pYwWlQSonMSOHj0ay5cvx2mnnZb1OO666y5VUmHs2LGddyg4jayDjLxNVldXZ8lIzK4jamUic0kmp6uysvKoRHSm7VFqBw8exODBg4/6WU1NDQYNGpSzmIiIiIiIUpE5u658+E1EYwb21LaoRKiUw5V5NqWMrFlONy/oh089O1Y0FlcjR+UV8joxoqoIe+taVMndYZWFagTmf3xqFOZMHpblNSQiSuD5OlHuHDp0CJ+78gasf+5xGLH0y2h+ZmwRfjSjCJOHfPQzdXTSeYjiQ8QXQrOvFEd8xeonR8Z+HhMu+z58/o75AIgop/h5rCdXjxiVRKiQ0YdvvvlmzuKYPHlytyVeKUFG8CaX092+fXvabUlCtOvoXKkfTkRERERktXA43Ouxq9wcWVBQkLWYqGer3j2gkqIyr6YkRRP3aCbuFZZSuUJK06VKigoZJRqT+Tjx0ZycR9qiKMkPoikcVfN1SmJURmEyMUpkD/a/RKSzgQMHYsqlX0PZ5POx8XdLUff3F9Nq58/bW3DW9hZc9ol83Hj2AAwoL0YcfgRgoAhhlKAVIaMdlb7DCPnaUO+vQvH2P+Hlx0px9uU3cXo3IiIvJkalpKp8AJgJ0lyRcr2U2q233npUYnT16tVpt9X1vZJ05fyi7iE12eWOGiF32vg1vvtNh1izHYOdy7O6bavay7QdHfYTSs2L28dJ66xDrOxn7W9P935WSqQlH8d2Z+HChbww38ftI2VtJXG5YU+dKknbGomhMBRARVEIk0ZUYvapQ44pTdtf0raQ5KWQZKYkSYVZSkkSnT2Rc0x5jZTTlWSqP+DDkfYoygpDKjEaiSVaktK0va0z+1m9YmA/q18/mwr7X9K573JSrJnEIKMiH3rooR5fc+WVV6okoRXLc1o/K8cxRQOGYsTFizBs2nn48JXHcHDrxn7HIUcVj/29DSve2Y/Lpg7EtWdUY1BpCG0oRl08hlKjCRVGM0qMZlW5oiFQhWE7nsCza6biizPP6ffyyHl/x9nmpHXWIVbOMaonffdaixKjMoflqFGjchqHmZjjPKPdkxG9yXOKbtiwIe22ZE7XVHPMkvNFo1FVGlke8lxnOsSa7RjsXJ7VbVvVXqbt6LCfUGpe3D5OWmcdYmU/a3977GfdLXn73PPCZlXi9lev78bbHzTi/bpWHG5uV1/le/n5FQ+vxU9WbsHWA01pL1MSrkLmBRUyf2bHQNGPMqN9GFxhJk/Nt0iC1JyTVEaRCpmv08n7pA6xsp+1vz32s+Q2TtondYg1kxjkYn9LS0uPj64JAS/1s3JzlwghjkuGteC/vnQhTr/+xygbdkJa8ciNV4/87SA+/7N38cCrB9AelZuzgjgSrMRBXxUM+FBqNKMg1qxe37z+8YyOmcg5f8fZ5qR11iFW3X9HXuXqEaNSuva6667LdRhqxOgll1ziuvIF8vu1ajSmjBqdO3du5/fLli1La15QeZ9Jkq2SGCf3kL+h0tLSzuc60yHWbMdg5/Ksbtuq9jJtR4f9hFLz4vZx0jrrECv7WfvbYz/rfoH8IrS2x7Bh6yHEfQE1elNGc0riUhKWfh8QCvjVaMwCBPDyloPqMX/aCMyfNrzf21VGbwgzGSoJTlmG+qk0ZXQ8+tpsRzvSnowgNds0k65O3id1iJX9rP3tsZ8lt3HSPqlDrOxn7WtPKl7IDV7BgB8t0ZA6Phh00hSc+Y2p2LfxRWz54zK0HN7f73ab2uL4yep9+PXag/jqZ4/DRRMHoD1QjKZ4BGXxRpUcbTGKMTHyFlaufw8nfH5qv5dBzvo7zjYnrbMOser+O/Iqn2F0nL25kAyNltIqF198ca5Dcbybb74Zd91111E/k/k8xowZY+lcrOZoUWm3v3ONSnwSp13x0bE4eTQRERF5mRz3LFmypNdSjl2PlwiQ09D7Xt6O59/+UH3fGI6goSWCtmjqUlP5Qb8qpVtWkCine974Ibj+7LH9utiw8Nfr1UXKD+pa0BqJo7osXyVi5bkkYyW5KSM/JRnbExkhGonH1UXOvIAfoYBPzSsqpXTLCoIYXFaA8ceXYfHFn+hzbETUd+x/e8fzdbIb/w57tnzdXlXxQm76kmMPOVwZNaBYzVUuYpF27Pnr09j6/MNoP9KQ9nLGDSrAN2YNxYwTSzDU2C8X+/GBbzCMQAGeK7oA/7HwtoynIiCi9PHzWE+uLqUrSTEZ1UiZ6668bSYlb7sjc8GaI1ClDHLXRGxPpExxclL0zjvvZFKUiIiIiEhTj63dq5KiBgzUNIZR09imkqJy0bC0IKgSlseVF6iv8r38XP5dXlfTFFbvk/dLO/0dvSHMxKeUuy3KTxRSMi9USilc+V9PzHK5ZkpWEqTNbYkyWTK6VUweWdWv2IiIiMg9Zp1ajWDHjVNyc5ccOtS3tHf+eyCUh9FnzcE533kCl519CgqC6Y0q23YwjOse3YH5D+3Aq+8nqlWUGkfU8k5sfwerNh+wbJ2IiNzC9YnR/o46pGOTnzJP5+rVq4/5t2uuuUaVrpUkplXba82aNZ3fS6JTRvz2JSk6Y8aMo5KiixYtsiQmIiIiIiKylsx39djaPer5wcY2NIYTCcXKopAaSVFdVoDSghCK84Pqq3wvP5d/F42tURxsalPPpZ3+zJ81aUTlUclLSWYWS8lbX0dZXfhUSlRGhPY02tVMjJrJ1MTPE6Na5QKoXAiddUp1Gr8dIiIicoOKojycMW6gem6O2KxriXTeSGUKFRbjy7NG4bmvnIr/mFSEQJpVN9ftbsZ5v/gQ85c3YtehVlUFo8RoxvrdHDREROSpxKjML9mXxBolkpCVlZWdDylHJQ8pb5s8b2fXhKQkTceOTZSvkkdyG+mMKJV5QdevX9852lPmHe1p5KgsI7kEL5Oi7iaTVcvIYnnoPnG1DrFmOwY7l2d121a1l2k7OuwnlJoXt4+T1lmHWNnP2t8e+1l3enrTPvW1ubUN49s341P+rRhalocBJflHJRqTyc/l34eUF3QmR5vCEfX8mY720h29IeVvS7uMGo3Gjc45Q7uSpKn8iyRRJZkqSVIpk5c8IvXMcQO7LVvnpH1Sh1jZz9rfHvtZchsn7ZM6xMp+1t72LpgwFD4jhomR93BWaBv8iOPDhjAON7cddRNWvtGGQaUh/L8vVuDNhRWYdVJJ2nH/YXM7Pr2kBt97Zg+aGxvR0Jo4XiL3/h1nm5PWWYdYdf8deZWrE6Nz5sxRI0Y3bdqU61AcQRKdJilpm87DbCe5rXSSo7LdJMEpbZpJW0nCSpJWHvIzSYjKQ0asmtuaSVF3i8fjePfdd9VDnutMh1izHYOdy7O6bavay7QdHfYTSs2L28dJ66xDrOxn7W+P/WxuSJk3mRfr1t/+Xc3JecVDa9VX+V5+LnOBZtL2a9sOqecNre0Y4a9Vj5L8ROm33pTkBztHjtZ3xPHqtkN9jinV6A2ZI9RMjMoco0LmHI3G40eV1ZWLmNGOhKnfLwnUuPqZ3CRaVpgY4SrOnzDU8fukDrGyn7W/Pfaz5DZO2id1iJX9rL3tnVBdinmTh6EqUoPjjMMoLwh0HnvsOnwEBxrDap71I/GQulkrDh9OGhjE0nnH4ZdXjMNpw4vSWm7MAJ5cfxgX3fM3/OXx/w+NjY1ptUPO+DvONietsw6x6v478qrEbbEuJaMOL7nkElXyde3atTmN5cEHH1Rfr776auhIRlrKQ8eYZNTvE088gXXr1uHJJ59USVdJmMr2lUTopZdeqpKp5H6BQACf+9znOp/rTIdYsx2Dncuzum2r2su0HR32E0rNi9vHSeusQ6zsZ+1vj/1sdklJWhnNKYnLqFxR6+L9ula8/UEjHl27RyUXZRSEXPDrj1XvHlBtywjLcNTAev9IDCjOh9E5W2ffkpv1rRE156i0U4CAmj9rzuRhfXq/xP3yloMoKwip98vo09ojEeQF/WiLxNSIUsTkoqKRGDkqiU/1zsToUPXM99HI0byAXyVFB5Xmq3+bP21Eyt+Lk/ZJHWJlP2t/e07tZwcPHozvfve7WVseOYcOfZeTYs0khtLS0s739vQaq5bn1H72sukj8f92TcG7+xoxML8QeXkxdXOXHMdI1Qp5HPAVoQoG2n1BFKANRb42nDa8Er+84gS89M8m3L3mIN4/1PepA0xynPP3Pz6EceP+iG9/+9tq0EleXl7a60J6/h1nm5PWWYdYdf8deZXPkAlSXEySaJJAu+6663D77bfnJIadO3eqcrN+v59Dp8lVDh48qE5Ik9XU1GDQoEE5i4mIiIgoW+S4Z8mSJT2+ZuHChcccL+lGTgkfW7u3c95PkUgYRtSoSan0JhVmQyoBGFJlaE2SBJw/bbgaMdkXMupUkqs1aoREFKUFQTWHaH/JCAu5kFhWEMTgsgKMP74Miy/+RJ/f/+gbe9T6SmpT5iuV5CiQSITKGbJZIjceN9DdPd5qbX1AQTCA6rL8zpGi540fguvPTkw1QkSUSzxfJ3LKsZaBL8ZfxDzjeVVS93jfQXXD2C5jCAxfAEG/Tx2b/O6tw7j3xf2oaUq/codcI/+f//kfzJs3T12nJiL78fNYT67vAWVkoYwyvOOOO/CTn/wkp7GUl5fndPlERERERERdL9Td9/L2zgt1Us5tb22LGh0qicvWSFyNaJCv8r38XP5dXifkffL+vt5va5a/lYSrKMpL7w7qwo73ycVE0d/5sySZK0lMH3wYXFqgkpv5wcTFR8lpRqRErmHA8HUkQTuSoZIgVuV2/T5UFeVh7KDizqSoJImZFCUiIqKu5Njg8ukjcM+8CTjnpEGd853LzV3HVxZia+VnAH8Qbb58tCMPPhioQLMq9S/HHPL6uZMHYtVXP4avzxyKkvz0LunLdGTz58/HtGnTsGbNGsvXk4jIKVxdStc0c+ZMVYZVvr755pt44IEHjinlYKdM5tskoo/IBbfa2lr1vKqqSuuLTjrEmu0Y7Fye1W1b1V6m7eiwn1BqXtw+TlpnHWJlP2t/e+xn+zZnp5Sn3bCnTiUdJWEpow9a2mMoyguivDCkRmVWFIUwaUQlZp86pHNuTSGjF55/+8PEyMnGNpX8FPKrkvk8JXFpjp6UNpvboipRWtPYpkY6SPlYeX9lUZ664Neb1khMfZVRqDJCs9hoRX4sgjZ/YWKhfWTOA2qWtpXY+kP2BUliStyS3JXkpjzM0RvhaAzhiMwxKvOHJpKh8nswVRXnqblOQ0E/zhw3UM0p2peywk7aJ3WIlf2s/e2xnyW3cdI+qUOs7Gftby+5nXGDq3Dj7JNw1Rlj1DQA63fXqpu7WtrzsNOYirH1r6PJV4KBRi0q0YxoPA9t/mI0oVi9vzR0BAs+MwTzpgzEklc+xG/WHuy8Saw/1q9fr66Tn3vuuWoaswkTJqS1bqTH33G2OWmddYjV5QVbHcsTiVEhc1DKXTEzZszAqFGjcNddd+Gqq67KyrIlKWv+8RFR+iKRCH7+85+r57feeqvW8yLoEGu2Y7BzeVa3bVV7mbajw35CqXlx+zhpnXWIlf2s/e2xn+37fKCS0JN5N5s7EpudfEBpfiJB2nV+UGGOFE1OikrCT+bxlGRgMkkcDowbKhlbJ0lYVX4WasSltDN1VGWvycHCjjK8auQl4pjWug5oBTZUno04+j56VEZzJtrxpT3y1By9IXE/s2kfXt12SM1XmlwqWOYRlWRzS1tUJXMlqTyiqgjDKgsxeWQVZp1SfVSi2U37pA6xsp+1vz32s+Q2TtondYiV/az97XXXjhw7yNzoR82PXlOGD3+5Hk1hP5rj7SgxmjHIqEWtlOHFBeol83zPIogYKouCuO1zw3DF9AH4+Yt78dTfm9W85/31wgsvYOXKlfjSl76EH/7wh+qaOTnv7zjbnLTOOsQqMZB+PJMYNcvqyh0xy5Ytw0033YRrr71WTTotd8jIo6yszPJl7tq1S915Q0TWyM/Ph1PoEGu2Y7BzeVa3bVV7mbajw35CqXlx+zhpnXWIlf2s/e2xn+15jir5vqapDbVH2hMXxAz576NLY1Iq9nC0Xf27jHKUkrEvbzmoHgNL8tT7m9qinUnRIeUFaqRoKpIsHVCSj/xQAB82hFVytDAUUUlTSS7KKIieyMhVKccr85W2R4AIAmndud3aMUJUSswJSfymS5K53Y/ekFG3AdV2OklQN+yTOsTKftb+9tjPkts4aZ/UIVb2s/a316d2Bp8M35QrgNceRL2/Ss0rWmo0ozTeiHxfmyrvX2gcQQAG/IijwAhjWHkrHrmoEF8/PYTbVrfipe3hfscmx4K//vWv1VR0X/7yl3HbbbdhwIAB6a2oR+nwd5xtTlpnJ8VK2eMzXDyWV+4CSEVWWxKkDQ0Nx0xCLQlUq0royihVc3ljx47F1q1bLWmbSAecPJqIiIi8TI57lixZ0uNrFi5ceMzxUqbzgUrpWtHQ2q5K2rZ1zNeZSIoeS6UOO3KP+UE/qssKUJwXwM7DLSgrCKoko5Rhk5GikvTsq8PNbWrkqLQ5vKpIzX/18BXTekweLl+3F796fbca4SoJUsmJjhpQfMzo1J7IKM5dh4+oC4YyclNGeP7Hp0YdPeqCiMjjeL5O5ECGgbce+w6Kt/9JfVsQa1bJUZl5VOm4mUz+3zzmazNCaEAJmlCEtbua8YM1Ddj9wcG0QygvL8ctt9yCr371qygsLDz6H1tqgS3PAXvfAFrrgEgrECoECiuB4dOBkz+feE5Enfh5rCdXjxhdunTpMYnPrrrmhbdv325zVERERERERP3XdT7Q2pZ2NQdm8gWyrulFw/x5xz/K/KD76ltVSVs5F5J5SWWeThnBKeVz+0NeL+V7pU1JdEoZWhlx2VOCctap1aqcr7xWEqryXinN25+ErLxeTuPk/ZIUlYSsjOYkIiIicjSfDxMu+z5efqwUw3Y8gXCgBC1GMQLxNpQaRxAyovDDQBw+RBBEI4rRhjyVLw35fWgZPw/jT5uNcw5twCuP/gw7d+7sdwhyLV0GG0n50e9///v4j//4DwRrtwFvrwB2vAzEuikLWr8H2L8JWP8QMOZsYPwcNQKWiEhXfriYjP6Uk/1UDyFlm7LxICIiIiIiymRO0eT5QCUhKUnRoN+HgM+XGDXgg/reTBjmh/yq1Kw6HfElTv6CPp96X3NbVM1NKqMv5fuCoL9fozaFvN4su9vYmrhIJmVoe0umyhynwhxZKqNOJZ6+kNfJ6xNtJd5/5riBlpS4JSIiIso1n9+Psy+/CVtO/zHW502B4Q/BCBSgITAAB/yDsc83GPt9g3DYV4moPx/+YAj/KJyGe0u/gRcKPofLTx+N//vh1/Dee+/h3nvvxcCBieOu/vrggw9w9dVXY8KJI/H09+bA+OfKRFI0Gka86UO0Hd6NlprtaDqwE3U1e7HvUB3eP9yI2k3PIvrUtcC6h9QIWCIiHbl6xGhVVZX62jUxaSZFs1FFmElRIutEo1H88Y9/VM+/+MUvIhjUtwvTIdZsx2Dn8qxu26r2Mm1Hh/2EUvPi9nHSOusQK/tZ+9tjP/uRpzftU18bwxE1H6gkNGWUp2REo0ailG7If3RyU+YXlUSpz2cgEotDXiVJ1JDPp76PwegcYRpL89yoMC+ApnBUleIVMjdnby6YMFTNcVqeH8CJoZ0qljcbRqOtKF8lTrtL0Mr6ykhRMylaVhhU85qK8ycMhVM4aZ/UIVb2s/a3x36W3MZJ+6QOsbKftb+9dNqR68lfnHkOtn58Cl548x00bXoBZfE6fDywFUUII+zLR7OvBJuDp+KNvOloC5WpG8VumDBUzZ0u8vLy8JWvfAVXXHEF7r77btxzzz1oaWnpd/zv7tyHC5fswxljirF4dgmmH5e4sU74Ox5yRFYYa0Z7NITmtlLUHilGyUv3I1izHwM/d2tnCWA30uHvONuctM46xCoxkH703WstGjGaTBKh8rNJkyZlZfkyx+i6devUVyLKXDwex6ZNm9Tzz3/+89CZDrFmOwY7l2d121a1l2k7OuwnlJoXt4+T1lmHWNnP2t8e+9kESQi+tu1Qx/OIOq+R60uS5GzvmF9URoKmGvGpRpT6EyNF5UJWXtCPSCzxbyof6gPCkbj6t36PGu240CXleEVLe0fDPZALdvOnjcATb+zEMKNGXVFbFx+lkp4yElZGoUrCVdqWhK3MgSojRc3crSRFB5UmSu9KO+YFQCdw0j6pQ6zsZ+1vj/0suY2T9kkdYmU/a397mbQjxzgjZ0/C4vUv4BAq8dwpP0RDm6GOt4ryAigvDGHOyCo1pUCq6hllZWX44Q9/iOuvv16Vxn3wwQcRi/V+vNbVazuO4Mz7j+DCU/Jxy4wBGDawFFHDDz9kOoUwStCKkBFBlVGLfKMNteEqYP1T2H4kH9Pm3OjawUM6/B1nm5PWWYdYJQbSj6sToxUVFeqrXDiorKzEk08+iRkzZmQ1BkmKzpw5Exs2bMjqconcKBAIqL8n87nOdIg12zHYuTyr27aqvUzb0WE/odS8uH2ctM46xMp+1v722M8mrHr3gCp7K/N4tkfjKgkpCUz5Gu8Y9dlbQlP+XRKf8noziSmjTc35R+VHUg63srh/84yaI039HRe75CJdX8yfNhy1za14a/049f0gFKCuNabmHJURqPLoSkoES/lcc6ToeeOHqHacxEn7pA6xsp+1vz32s+Q2TtondYiV/ayz+tlPfnJC2rEcd9xxuP/++/G1r30Nt912G373u9+l1c4fNrfhj+/tw8WTBmDhZ4aom9UaUYRDiKMCTahAM4rQDMkF1furUPXeo3js2Y9j/hdmuTI5qsPfcbY5aZ11iFX335FX+Yxs1JPNkQceeAALFixQne6dd96Jb3zjGzmNY+zYsdi6dWtOYiCyw8GDBzF48OCjflZTU4NBgwblLCYiIiKibJHjniVLlvT4moULFx5zvNRft/7273j7g0bUNIZVGV1DJUM7yuFKklTK40pZ3V4kv15OAuNxaSlBSu6WFgQxrLKoX7EdaAyrJGZZQRCDywow/vgyLL74E316r5yKPrZ2b+fcqUKSv5KgldK8ksCVhKvMk1pWGFLzpppkpKgkRd14gY2IyAo8Xyeinrz++utYtGgRXnvttbTbKAz5ccXpg3DVp6tRUhCAVNgtiLegGrWQo81DviqEAyVqrtT42d/E5dNHWLoORE7Az2M9eWKOUWHeGZALU6ZMUV9ra2tzFgMRERERETmTlM81E5tCkoVye6uZ1DRHa/ZGXieJUXmfDDCV1uSdKklqGKrUbn/ICFQpcSskcSkmj/zoHKw3ktSUC2RTR1XimU378Oq2QyhA4KgEaLJgwKfmz5I5RZ1UPpeIrNfQ0ICVK1f2+JrZs2ejvLw8azERETnJ6aefjj//+c945plncMstt2Dz5s39bqM1EseSPx/A4+sO47/OHoLLpgxEJFiM+lg7KowmlBhNqI8W4ZTYevz38+tQe6QN//bJUSnL/hIRZYtn5hg1y+rmQi6XTeQmMqqgqalJPS8tLdV6hIAOsWY7BjuXZ3XbVrWXaTs67CeUmhe3j5PWWYdY2c/a3x772YTWjglBzbxlZ82f/tb+MVffkJJOPlWeV36mSukCqkxvf+c+lVikxK0kMyVxKXNc9Xf7VBcCN8w6EVedMQarNh/A+t21aGiNHDV/1uRe5s9yCiftkzrEyn7W/vac2s+2tbXh3Xff7fE1Z511VlZiIb3o0Hc5KdZMYpABII8//niPr7nsssuOGrjCflavflbauuCCC9Tci7/85S/xne98B/v27et3O3UtUfzoT+/jl6/X4L/POQ6f+1gpyn3NyEdEzTfaZuTjU3gTv3q9DGveq8EZ4wbiApfc6KbD33G2OWmddYjVxQVbHc3ViVHdEpIy3ygRpS8SieB///d/1fNbb70VeXn9mwPLa7FmOwY7l2d121a1l2k7OuwnlJoXt4+T1lmHWNnP2t8e+9mEwo4RlOY0onI+r86vzeGefWW+VpKh8CXmHTWMRHsdI1JlBGhJfu+nifK6uo6RrDLvp5DRnP1JXHbdPuVFeZgzeZh6uJWT9kkdYmU/a3977GfJbZy0T+oQayYxRKNRVSKyt9dYtbzesJ9NXzAYxFVXXYX58+fjp9fNxB0r1qKhNXFjXn/srWvHot/uxsOvF+L7M0rx+TEGytCCGuRhovEeft/6GQwsycfLWw6qx1FTI7TUAlueA/a+AbTWAZFWIFQIFFYCw6cDJ38+8VwzOvwdZ5uT1lmHWCUG0o+rE6OjR4/GqlWr1PNRo0ZpEQcRZcbv733+LF3oEGu2Y7BzeVa3bVV7mbajw35CqXlx+zhpnXWIlf2s/e2xn00kHt+va1XziErJMil7K4lN835n+T7Q+V1q8jphvlJ+NbHYR6V45Z8/bAijsiiEiqI8lTjtrnyujBQ1k6JlhUGUFiSSoVLi1ovbx83rrEOs7Gftb4/9LLmNk/ZJHWJlP2t/e07pZ4uKinDLF8bimgnAD3/3Npb8rQnt/c+P4t39rZj761bMHBvCN2f4UFVdgTI0oy0Wx67DRzCoNB9lBaHEPPMH38P8wjfg2/kKEOsmgVS/B9i/CVj/EDDmbGD8HGDwydCJDn/H2eakdXZSrJQ9PoNjeYkoTZw8moiIiLxMjnuWLFnS42sWLlx4zPFSfy1ftxe/en03wpGYSpDG4nH4/Yl5RttjcZXozAv4eywNJTOLSqlcw3xtR2le+bkkRuWt8vOIlNftGJUqI0cL8wIIdMxN2toeUyNFzTNISYrKhS1J0cod/zJfKBGRm/pfJ+P5OtmNf4cu9es5wJGDaKnZjr2HW3HLS1H84e+N/Z7BwSTHnJ//eCW+dNY4fLPku+p4VY45ywoC+Ne8l3Fe+HlUFedhQHEeEA0D4fpEgtSIAz4/EAgBBRVAsOCjRidfkXhoXMKVyMTPYz0xXU5ERERERKSxWadWq/k7ZR5Pmc9TEpkyclO+SopTLlTJ9z2Rf5dXyOvV+w1DjRgtzguqEamS3BxWWYTqsny1DEl+NoWjqGlsw/6GsPoq35tzisrrBpcWqPedN36IKoNGRERERA4n5Wvl2NHwY2RFAPdeNARPXnsizhiX3nygcvz57D/q8O9L1qH+xQfhb5P5Hg1c1rYCM1ueU69pa65DrHYXUL8bCDcAkZZEklS+yvfyc3m0NSYaXf8w8OpPOuaWICLqP1eX0iUiIiIiInI6KWt7xriBai4mmcOzrTEOI26o5KaUu43HDUSlvG488X1X8rpoR+JUzSsqSVIjMc+oJEVLC4I49bhyHGpuU2Vx5SGjUxtbI2oEqZTglWRqKOBDWWFIJWhNR80NRURERETOJvN41u9B1BeETJZQgDBOHlKFB/9tHP62owl3r/wA7+xv7Xez0ZiBurW/R8OmlTj3rKk4Y3IdYj4fBqIBpcYRxCM+BAJ+IL8UCBUD/gAQjwGRI4AkUyVR2rQ/MfdoSTWw+RmgaAAw5Upbfg1E5G5MjBKRY0SjUbzwwgvq+bnnnqsmh9eVDrFmOwY7l2d121a1l2k7OuwnlJoXt4+T1lmHWNnP2t8e+9mPXDBhqEqMlnUkLetbIqqMbtDv6yx1G4nHYRg+lfyURKWMEZUkqJkUlXJBMpOKJFFVCbOk+UFv+3xirqZnNu3Dq9sOoQCBoxKgyWT06pnjBqo5RU+oTm/0gNu2jxvXWYdY2c/a3x77WXIbJ+2TOsTKftb+9hzXzw6frub0bPWXoDDWjBK04hDicnsdPjW2DE8tKMWf3qnDPav34f269n43H29rwXMrX8GG10O4+exSXD3Rpya+r0Mpqiqqj12/gjKgeDDQWge01iZK7QpJjsrI0RGn53TOUR3+jrPNSeusQ6wSA+mHpXSJyDHi8TjWrVunHvJcZzrEmu0Y7Fye1W1b1V6m7eiwn1BqXtw+TlpnHWJlP2t/e+xnPyIJSBmdKWReTxnpKUlRSXpKUlSN1zSgvm+LxlXytC0SVyM+VZUxA+qSliRF5X3yfmlHSLvSvjxunH0SHr5iGv7jU6Mw/vgyDK8qxICSPPVVvpefy7/L6zJJirpt+7hxnXWIlf2s/e2xnyW3cdI+qUOs7Gftb89x/exJn1PzesaDBWj3yXQLQAWa1Nz0Qua5/9zHKvH09SfjlvOOR2VR9zfS9eZAUwQ3PlOL6ffX4zdb8lCPMjS2pyiNK6NHiwcCpcclZi2V5KhZVvftp+D1v+Nsc9I66xCr7r8jr9I3nU9E1EUgEMBZZ53V+VxnOsSa7RjsXJ7VbVvVXqbt6LCfUGpe3D5OWmcdYmU/a397uvezxcXFne339BqrSMnaupZ2PP/2h2p+z4KgHwca29AWi6v5m0R3l5NU0rSj0m1iftACNfJUdDc/qJTrnTN5mHq4/e8425y0zjrEyn7W/vZ072eJ3LxP6hBrJjGkcxzEftYB/WxRFTDmbBQ1PYvmtlJUGbWoQDPa4nmI+hPbU6ZZCAX8uHzqQJz/iUr88q81eOSNQ2iN9D8BtPlgDFc//gEmj6jHt78wAhdOGJT6xVJmN9oGtB5OjCDNLwN2vAScfn2iBLBH/46zzUnrrEOsuv+OvMpnSC0lIqI0HDx4EIMHDz7qZzU1NRg0qIeDGCIiIiJKm5y+PbZ2Lx5bu6fz+5qmNtQeaU8kRQ3576NTPJlHtOM/VBXnobosvzNLyvlBicip5LxzyZIlPb5m4cKFx5yvegnP14kobTXvIfrUtdh1+AgqY7UoMprVdA2NvlIc8ZciHPepiiRyHGp0HG/WNofx4J8/wGMbmhDLINtw0cQBWPwvo3HSkKLuXxCPArU7Ege9FSOBYAEwfQEw8fL0F0pkI34e64mldImIiIiIiBxCkpiXTx+Be+ZNwDknDUKoYwTo6IHFGFCch7ygH/nBQOcjL+RXP5d/l9cFA371Pnm/tMOkKBEREREdZfDJCE69EiX5QdT6q9DsK4HMXl9uNGJofB8GGbUoQQuKEEYpWjDYV4uppYex7Av5WL+wAl84OUVSsw9+99ZhfOwH67DgN//E/oa2Y1/gDyZGjopwQ+Lrnr+lvTwi8iaW0iUix5A70draEgdF+fn5Wl/I0yHWbMdg5/Ksbtuq9jJtR4f9hFLz4vZx0jrrECv72fTbq29px6p3D2DDnjrUt0TQGomhMBRQ815OGlGJ2acOUeVc2c+mZs4HetUZY7Bq8wGs312LhtaIejSFozjSFkVxflCVzC0rDKK8MITJI6sw65Rq9bvVgZu3jxvWWYdY2c/a3x77WXIbJ+2TOsTKftb+9hzbz06+AsGa/cD6p1Dvr0LYyEOp0Yx8o10lQ+VhJIUiT9uQh/KBVVg8txCXvn8E31ndhF17D/R70bE4sOzVD/HrN2pww4zjsWj2cHU82ylUnJhjNNae+F7mHPXw33G2OWmddYiVBVv1xMQoETlGJBLBnXfeqZ7feuutyMvLg650iDXbMdi5PKvbtqq9TNvRYT+h1Ly4fZy0zjrEyn62/+1tPdCEpzftw2vbDiGaVGMrFo+jMRxFS1sUz/59P374x3cxqDQfJw0uRPWO59OOS4f9xG7Zmg/UDl7YPk5eZx1iZT9rf3s8niW3cdI+qUOs7Gftb8+x/azPh4GfuxXbj+Sj6r1HEQ6UoDlejGC8DaU4ghCi8MNAHD5EEESTUYwwEjffyVH+5uPOh/9Ln8XxO9bh4IsPof1QYhqI/mhpj+N/ntuLpa9+iG9/fgSu+8xxqjoK/B1FMI2OOU3bW+Dlv+Nsc9I66xCrxED6YWKUiIiIiIiyOi+mCEdial7MI+1RRDqSpHL/bsDvg9/nw776MA7UH8HcjjOWn67ZigsnjVAjJYmIiIiIyGY+H6bNuRGPPftx+N95ChMjbyHuAw7F8hDvZhRcFAG8Fv84no1/Cjt9w5EX9CHvxE9i6PjT0bb5Jex/9v/hYGM35XF7cag5gq8+uR3/78UP8D8XjsKlH8tPzA/o60iQ5qVfupeIvMlncCwvETlk8mjpruLxxN1gfr9f+1INuY412zHYuTyr27aqvUzb0WE/odS8uH2ctM46xMp+tm/tSVtLXtmB59/+UH3fGI6o8rkt7VFE40mnIkbi7nL1nsR1GPh9gNwUXlEYwsCSAvj8fsyfNgLzpw3vU4w67CeUmhe3j5PWWYdY2c/a355Tj2flvHPJkiU9vmbhwoXHnK96SbbP13WhQ9/lpFjZz9rfnlP72e5ucnz6b+9gevsbODnyLnzhehSgDS1GHuqNYqw3TsJLxmQc8ZeqmxxNVcV5qCqWkaQ+XFV7D1577Q088Op+NLaln5KYdHw+7pxViJnjq4GSauC4CcAFP0Uu6LB9ss1J66xDrPLZW11d7bnPY91xxCgROYZ8eAUCATiBDrFmOwY7l2d121a1l2k7OuwnlJoXt4+T1lmHWNnP9q29R9/Yo5KiBgx1h7gkRmWEqNxlHug4MY3HpQzXR+Qyidy+KXlTmWPoYHMU7fE2HF9RqEad1rW04/qzx/Z6YqvDfkKpeXH7OGmddYiV/az97fF4ltzGSfukDrGyn7W/PTf0sxLD5dNHYOqoSjyzaQyWbTuE9+ta0RyOIhY3EOlIPIX8/sTxvQ8ozU/McV8Q+ij2XUUfx4LP7MaXJpXi4T/vxv1vhtEe6388Gz5ow6yH2zD75DjuvKQYE6d/Ermiw/bJNietsw6x6pw49rKO8eZERERERETWkjlFzfK5iaRoYpSonBqGAokTxJhhwOgcHepDyO9T5XSTTx/jMFQydF99i0qwSqJV7lonIiIiIqLskCktbpx9Eh6+Yhr+41OjUBjyoyDPj1DAr47d5bg+P+jHiMoiVJcVHJUUFX8NTkdb3I9QQSG+P7sKm75chbmfKFGVYtKx8r1GnPY/G/Cvd/4eu3btsmYlicgTOGKUiBwjFothzZo16vmMGTNyfseP7rFmOwY7l2d121a1l2k7OuwnlJoXt4+T1lmHWNnP9t7eul118BnHoaEtppKiMkpUUp6BgA+RWFxdPBHBzmToR1dFYj4DsXgUk4IfqJ+vjw5FQ2sUwUAbBpcWqISr3LXe05yjOuwnlJoXt4+T1lmHWNnP2t8ej2fJbZy0T+oQK/tZ+9tzYz9bXhTCl88Zh6qiPHVMrirDNLWhsTWKtmgce+taUJIfRGFeQI0glWP+1vYYmtv8eBXjcabvLTT5SjCqIoJfXVSIr5wzBP+z+jCef6curXh+8/hyLF/xFP5r5hh885LTMGDwEGD4dODkzwOFlbCTjtvHbk5aZx1ilRhIPxwxSkSOIR8kr7/+unro/qGiQ6zZjsHO5VndtlXtZdqODvsJpebF7eOkddYhVvazvbcX2f8efDDUnKJC7iaXBKiU3DKTovKzoMz3ctQYUajXhXzA+OABfCz4IfICiYsqDS0RNIUT7T2zaV9W14us5cXt46R11iFW9rP2t8fjWXIbJ+2TOsTKftb+9tzcz86fNhznjR+ijuPlxsXqsnw1YlQO85vCUdQ0tmF/Q1h9le/l56v8Z6jKMeFACY74itUx/6cHNeO5/zwOa776MUweUZJWLO3ROP73+W0Y89+/xeKHnkHLa0uA38wFXvwRUPMe7KLz9rGLk9ZZh1h1/x15FUeMEpFjyF09p59+eudznekQa7ZjsHN5VrdtVXuZtqPDfkKpeXH7OGmddYjVq/1sfUs7Vr17ABv21KmEZ2skhsJQABVFIUwaUYnZpw5BSX4AA8aMxzv7GtEaiasLFTJzaKKMbiIx2jlStIfaWX6/H29Hqzu+86nXS3JUlltaEMKr2w7hqjPGqLvWM10vyj4vbh8nrbMOsXq1n81mezyeJbdx0j6pQ6zsZ+1vz839rMydeP3ZY1HZMXJUjs/lEY7E0NgaQSRmqIoxfp9PJUPLCkOIhE7CqvDncG74eaB0CIJGHXzheqD1MD47yIe1/zUEy9+J4LZn92PH4fZ+x9QYjuG23+/Cz1/6AIvOHY4LJzTA98Yf8GLx57G28nxUFOd1nrOkOodwy/axi5PWWYdYdf8deZXPMDpu1SYi6qeDBw9i8ODBR/2spqYGgwYNyllMREREZN98oU9v2ofXth1CNJb6FCIY8OGMcQOxvaYZe+taUdMYVmV05efRjosj7bG4Gh+aFzx2pGhXZsldSaBKG3KBJS/gx7DKQjVvkcxvNGfyMBvWmIiIdCXnnUuWLOnxNQsXLjzmfNVLeL5ORNk+V5BqLq/24VzhzLED8O+x32Lg3hcSP2xrBFrrgGi483XtUQNL32zFD15qxqGW9NMXJwzKww0zh2HGyeX4W/6nsbxwnmR0O89ZLpgwtMepOYgyxc9jPXHEKBERERERpST3UT62dq+6C9z00V3gccjgT78vURJX7gIvQAAvbzmI3YePqDvGJQlqtiPM0aJy53hvSVHzdZIYlXfJ64Mdk4HI8iUxun53bc4So9FoFLW1tT2+pqqqCsEgT7uIiIiIyL0kuXjj7JNUNZdVmw+oY/SG1gha2mMoygugvDCEySOrMOuU6sRITeNWYP1xwPqHgfyyxEMSo+EGINaOvGAc//2ZYvzH6dX48Wst+MmL+9HS3v8E6daD7bj+sR04bXgxvj6rGZ8aVYgXi7/Qec4ij/nTRqiywDICloi8gWfoROQYckE1Ho93ltbT+YBFh1izHYOdy7O6bavay7QdHfYTSs2L28dJ66xDrF7oZ+Xn9728Hc+//aH6vjEcUXN8tqnSuEeTkrkyMlTmFSovDMIw4qg7Eka8I6EZNzraTEp49iEyead6wEhkRM23ychRIRdc+rteVpGkKEcsOfvvONuctM46xOqFfjbX7fF4ltzGSfukDrFmEkNdXR3+8Ic/9PiaCy+8EJWVlZYsrzfsZ/UgSU+5abHXGxdlPaZcCYw4HXj7KWDHS4mflxQc9bIyAD/4QhgLJ0Twg1fa8cDaBnTcd9kvG/cewb/+31Z89qRliJ1TioNDpqtYywpC6gbQupZ2VRbY7dvHCk5aZx1iZcFWPTExSkSOEYlEsHjxYvX81ltvRV5eHnSlQ6zZjsHO5VndtlXtZdqODvsJpebF7eOkddYhVi/0szJSVJKiMl7zYGObSnwKOZ8syQ+qu78lwSnlceVu8Oa2qEqaHm5qxdzgOsAPPNo2CTFfAAFfYh6izsxoH85JA4jjsrx16rm0Iz+Rkroy6FSWKWS5/V0v0oMXt4+T1lmHWL3Qz+a6PR7Pkts4aZ/UIdZMYpD37t69u9fXWLW8vsTDftaBBp8MfPabwOnXA1ueA/b8DZA5R9tbgLwioKACaK7BccEQlgw9gq9N34tvrm7GU++0pbW4F7c0wP/P76Js4nkY8JkvITy4GoNK89U5j8yVevn0Ef1qz/Xbx+HrrEOsXftB0gMTo0RERERE1O08QWb53OSkaGVRCBVFeQhI/dwkUjZ3YNxAfUs7Gls+SlbKq6Kq3i4QlMSo/EBymonauH1mvlTd5KvK9yZ+IslZIiIiIiJysMJKYOLliUeyllrgUZkXNKDmIT1pUBAr/nMs/nYgD4t+uwOvbmvs96LkBsv6jc+h4R8von76RYh99jIcN2iAOveZOqqSc44SeYDP4FheInLI5NHSXbW1Je4Iy8/P175UQ65jzXYMdi7P6ratai/TdnTYTyg1L24fJ62zDrG6vZ/9ycotas4dKZ9b05j4tyHlBWqkaG+awxEcqG9S84nG/UGYlXfzA36VJJU5Q2Xkp8xL2nNccRixjjtsAyH4fX4EAz5EYwbKCoIYXFaA8ceXYfHFn+jzellJjntYStfZf8fZ5qR11iFWt/ezOrTn1ONZ9r/6na/rQoe+y0mxZhJDOn+H7Ged089qY+NvgLXLEvOP1ssIZR9QNRbwB9Tv5pE3PsQPn92LbQfDaS8iUFSGUTP/DSeedTFmjj9ezZXaV17cPk5aZx1ilb6yurrac5/HuuOIUSJyDPnwKig4eq4BXekQa7ZjsHN5VrdtVXuZtqPDfkKpeXH7OGmddYjVzf2sjPp8bduhjueRzpGifUmKipKCEFqLinCguQ3+uE8Gi6o7syUpKiNNYzFDfS//k/lHU5H5g6IIwg8f8nyJJGpUTSrkQ1lhSH0/eWRVn9eL9OLF7eOkddYhVjf3s7q0x+NZchsn7ZM6xMp+1v722M9maO8bia9SXlfkl6qkqIgZwKfGluKZ/zoFyzccws9f+hA1Tf0vWxpracT2p/8/7P/Lb1Fz/jW48lO3obIkv0/v9eL2cdI66xCrzoljL+v5Fm0iIiIiIvKcVe8eUKMyw5EY2qNxVb5Wyuf2R1VJfmI+UBjwy1mHTxKdBqRejSQ6pWyNfJ+K/Fu0o7iNWbY3McDUh/ygHwWhgBo9OuuUo+++JSIiIiIil2itS3w1q8iEijv/SSrbqHMLnw8XTRyAZ798Cr4xayhKC9KbaqPl8H6sf/gHmDx1KlavXm1J+ESkJ44YJSLHiMViePXVV9XzM888E4GAvnOK6RBrtmOwc3lWt21Ve5m2o8N+Qql5cfs4aZ11iNXN/eyGPYkLEI2tiQsQMlK065yiPfEZcQwP70J5fgRrw4NhGAGVJI3BQCQeTyRGjcTcoz5foqxucrkjMynqRxwTgh+qZf8jdhwiMb+68FFRlBgteua4gSjveO70fdqLvLh9nLTOOsTq5n6Wx7NE9nDSPqlDrOxn7W+P/WyGIq2Jr0bH3Bwdo0VFS3tMfZVpOkRxfgDXnjkEcycPxNI/f4hH3jiIiAwr7aed7/0Ds2bNwuzZs3HHHXfgtNNOS/laL24fJ62zDrFKDKQfjhglIseQD5JXXnlFPXT/UNEh1mzHYOfyrG7bqvYybUeH/YRS8+L2cdI66xCrm/tZs3xuRJWtBYry+ncCKeNBh4Z34mS8j5AfanSojO4MqaGjUKNIhVzDkBGp7bEYovG4Wl57LN45UjTkAyYE92G8/wN1MUSSomWFQZQWJJKh508Y2q/1Ir14cfs4aZ11iNXN/awu7fF4ltzGSfukDrGyn7W/PfazGQoVJr52TKuB+Ee/A7P6jNxYKcz7OCuLgrjlvGFY+dVTceGEKlX9Jh0rV67EpEmT8K//+q/YuXNnt6/x4vZx0jrrEKvuvyOv4ohRInIMv9+PKVOmdD7XmQ6xZjsGO5dnddtWtZdpOzrsJ5SaF7ePk9ZZh1jd3M+2RhInb2alW0lI9ofMHFqTf7y6Q9sf8SPkk5lEfcgL+lAaDKrEa9yXKKsrJP8qo0mFLEkWJ8uMw4f3ooPUvCx+nx+lhUEMKk3M9zN/2gicUF3ar/UivXhx+zhpnXWI1c39rC7t8XiW3MZJ+6QOsWYSQ2FhYed7e3qNVcvrDftZlyqsBOr3AIEQIPduRo4ABWXqn+IdJxOpxoQeX5GPuy8Zhf/89GD8dOUurNkWTiuE3/zmN1i+fDmuv/56fPOb38TAgQM9vX2ctM46xKr778irfIZ5SwURUT8dPHgQgwcPPupnNTU1GDRoUM5iIiIicpv6lnY156eUt5WEoiQtC0MBVU520ohKzD51SI/lZNOx8Nfr8X5dKz6oa0FrJI7qsvzOUZr9IfP+1DS2oSDoR1F+EE1tEYysKkJNU5taF7nLWy5oyBmJeVKiUrBJedig34eiUACVxXmdMZw3fgiuP3usSpjmkhz3LFmypMfXLFy48JjjJSIiygz7397xfJ2IXGHjb4C1y4BoGKjfnThRqBqrSururm1R1Wek6ozc0BkKyM2Ux54f+I0Yhsb345WdbVi0ug3/2JdeglSUlZXhlltuwVe/+lUUFRVluHLkBfw81hNHjAJ46623sG7dOqxfvx47duxAbW2t+jpgwAA1ZH7UqFE9vn/jxo249tprVe1x+drb64mIiIiIerP1QBOe3rQPr207hGg3c+NI4vLtDxrx6No9OGPcQFwwYWivIyj7SpKu0n4oIKNH42r+nnQSo60d8/7kBf2oKs7DhOHlGDeoBK9uPYSg34/aI+2dr5UEqSRK1Zp2XNgozgugqiQfBaGPSvnKSNH504bnPClKREREREQ2O+lzwPqHEs+DBYkEaWsdUDwQgY7aueq8wJAbLj8qp5us1GhWU318akwJll87Bs++24jvrDmCI4c/7Hc4jY2NuO222/Dzn/8c3//+93HFFVcgGGSKhchpPPtXu2vXLixduhTLli1DfX39Mf8uA2nl5939W1cVFRXqIZMx33nnnZg7d676OnLkSJuiJyIiIiK3kuPQx9buxWNr93T+LByJobE10nk3tJzwS9KyrDCEAgTw8paD6mFV0lBGokrSVdpvDEfR3BbFwLjRefGhLyTJKe8T0o747MnVmDN5GK46YwxWbT6AFzcfwD8PNKkRpHL3t7RfnBdUr09elsxPeua4gWpOUauSv0REREREpLmiKmDM2cDWVYmyuk37gdZaIJiPorx8dSNmwOdT03LI+YdUm0lWaLSgzGhUz5t9JWpE6dBJM3DWJy/D7r8+ja3PP4z25t6v/3e1b98+XHPNNbjnnnuwePFiXHDBBbxxk8hBPJkYlXIqkhAVXSsJp9OBjR49GqtWrUJDQwNuv/123H333aruuCzjqquusixuIq9rb29XNx2Im2++GXl5edCVDrFmOwY7l2d121a1l2k7OuwnlJoXt4+T1lmHWO2IQY5N73t5O55/+8POUrQNLRG0ReMIIIZLAuvVz5+KTkZrJKCSlvlBvyqlW1YQUsnUupb2fpeZ7bous06tViNRJekq7cvypaTvgJLE/J69kXJVk+pfwVQ/8EffVDXiU5Kbs06pVv8u8UqCVB5C1lESpet316KhNaJGqBblBVCe70PBu39UFzC+fDX7Wbfx4vZx0jrrECuPZ+1vj8ez5DZO2id1iJX9rP3tsZ+1wPg5icRofhkQaQXC9SpBWl5QiXrkIeYLoGPQKKIdyVE5H5GRomZS9IivWD3En/POgj8YwujPXIKiU8/BjhcfR90bv0U8Ijdr9s/mzZvxL//yLxgxYgR+9atf4ayzzoLbOWmf1CFWiYH04/dayVwpjysJS7noJA+5YGQ+hPnzdJSXl6s/tLq6Olx99dXqrhGZlJmIrBOPx9XDCXSINdsx2Lk8q9u2qr1M29FhP6HUvLh9nLTOOsRqdQwyUlSSolJQtqYxrObnlKSkHKqW5gfh9xnqMbhU5vwMqp/Lv8vraprC6n3yfmknk3WpKMpT5XmFOX9pXUukcwRob+R1fiRiLe8YLSojPlPNhWomShdf/Anc96XJePjKaerr9y8YnyiLxX7Wtby4fZy0zjrEyuNZ+9vj8Sy5jZP2SR1iZT9rf3vsZzM0+GRg8hWJ5yXVQEGFmnsjEK7FMONDVMUPo8zXgiKEURg/gsrYYTWnaHJStNZfpZ6/UHAe9gZHdJ6zNMXzMOjsf8f0W36DkZ++EH7/R1N49MeePXtw9tln46KLLsJ7770Ht3PSPumkWCl7fEa6WUCHWbNmDWbPnt2ZDBVdV33SpEmoqqpSZXHl6wMPPKDmHZ04cWJay5QE7HXXXace9913nyXrQeTlyaPlb7apqUk9Ly0t1bpEhQ6xZjsGO5dnddtWtZdpOzrsJ5SaF7ePk9ZZh1itjkHmFL3xyU3quSRFZTSoqCwKqURlQMrnGom7mCO+fCl1ospFyUhOSVqKssIgBpcWqOf3zJvQ57Kz3a3LUfE0hdHY2iWebsrqfhRPOwoRQUlBAOWlZSrW/sTTU1zZfH9v5LhnyZIlvVar6Xq8RPr8HWebk9ZZh1h5PGt/e7r3s6mw/9XvfF0XOvRdToqV/az97Tm1n9WOXMd/9SfA5mcS37c1qrlG45Ew2qOJpJe60m9e7/f5EPGF0Owr7Rwp+nrep7C8cB5iBlKeQ/335CIsu+d2PPXUU2mH6vf7VRXJ733vexg6dCjcxkn7pA6xymdvdXW15z6PdeeJUrobN27ErFmz1HPZ+c2E6MyZM9V8oPJVyuF2ZZbbTde1116rEqzz5s3D5MmTWVaXKEPy91tWVgYn0CHWbMdg5/Ksbtuq9jJtR4f9hFLz4vZx0jrrEKvVMTy9aV9n+VwzKTqkvAAl+R8dskd8iRN2kyQnpbxtfiiADxsSycvCUASlBSE8s2kfbpx9UtrrIklMmbNUyvMOKk2U0JX25QJCfWtExVWYF0jM6WMYan4fues6cajtQ6iwCGXqfT7VTjpzg7KfdTcvbh8nrbMOsfJ41v722M+S2zhpn9QhVvaz9rfHftYiktA68+tA0QBg/cOJsrr5ZfBHw4g3HkakvQ0+mWdUSpcaQTQaxWgzEjdzys+fDZ2Lp32z0NrUlnTOkkiKmuc6cs4ye/oIzP7UCvztb3/DokWL8Oqrr/Y7VBmdKAOufv3rX+OGG25Q7UilSbdw0j6pQ6w6J469zBOldCX5aZKkqHRGUu525cqVqtxtd0lRq8yZMwc33XSTSpLu3r3btuUQERERkXPJHcuvbTvU8TzSOTIzOSnaE3mdvD75/a9uO6Tm7szE/GnDcd74IZDLCXIXdXVZvppzVC4kNIWjqoTv/oZEyV/5Xn4u/y6vk9fL++T90g4REREREVHaJME05UrgoqXACbOBQAgIFqCw6ni0FR+PA/5qHApUoz5QhXZfHqII4KXYRHwjcj0ebDkLNU3tfT5n+eQnP4lXXnkFzzzzDD72sY+lFW5raytuv/12jB07Fvfeey/a2vo/hykR2cP1I0bvvvtu7Nixo7NUrpTUzfYdGjLv6IoVK7BgwQI8//zzWV02kZvEYjF1x5Z5gBIIpFf33yuxZjsGO5dnddtWtZdpOzrsJ5SaF7ePk9ZZh1itjGHVuwcQjRkIR2KqFJSc80u52mQ+I47B4cTcoTUFw2H4jr7HUV4vIzllzlFppwABrNp8QM3dme66yN2t1589FpVFeWrkqIxElYe039gaQSRmIG7IXKI+hAI+lBWGUBAKJGJt3Y3TRlRgwZmfTPsuWfaz7ubF7eOkddYhVh7P2t8e+1lyGyftkzrEyn7W/vbYz9o05+hnvwmcfj2w5Tn49vwNgyrrET14GDsaDDT7SrA5eCr+7J+KfeF8dc6S3805i0lGikpStOs5i3z/xS9+EZ/73Ofwq1/9Ct/5znfw/vvv9zvcw4cP42tf+5pKjv7oRz/CZZddpsrtOpWT9kkdYpUYSD+uT4wuXrxYdWIycvOJJ57IWRySHL300kvR2NiY8+HbRE4lHySrV69Wz6dOnar9B2+uY812DHYuz+q2rWov03Z02E8oNS9uHyetsw6xWhnDhj116qskG80RoF3n8JQSUMNbt6nnBwuGJebQSSKvl/fJXdDSjpzsr99d2+fEaKp1kWPpy6ePwNRRlao8r4xElaRr8sWEZMGAD2eMHoDmtS/h0BYpJZWY0iId7GfdzYvbx0nrrEOsPJ61vz32s+Q2TtondYiV/az97bGftVFhJTDxcvWQMyeZzfPIgSas7ThnkRtPBx99r+lR5yxnjhuI8ycM7XXKD/mdX3nllSqh+dOf/lTlGxoaGvod7s6dO/GlL30JP/7xj1WuwJz6z2mctE/qECsTo3pydWJURofW19er4eq5TIoKScxKGV+pL/71r389p7EQOZXcTTVhwoTO5zrTIdZsx2Dn8qxu26r2Mm1Hh/2EUvPi9nHSOusQq5UxmOVvI7G4+lqUd+wJmwEfDuUd1/m8OzLnpyRG5a5o0dCRaLViXeSCgcxZetUZY9RIVEm6Svst7TEVb3lhCJNHVmHWKdUozvPhj23sZ6lnXtw+TlpnHWLl8az97bGfJbdx0j6pQ6zsZ+1vj/1sdvXnnKW8YyqSviosLMTNN9+spuaTErk/+9nP0N7e3u8YN27ciNmzZ2PY+OmYeMl/Ydi4U1FRFMKkEZWYfeqQfseVbU7aJ3WIVfffkVf5DMnWudR1112nEpHr16/HxIkT09ppN2zYkNZ7uyMdntxx/8ILL1jSHlGuHTx4EIMHDz7qZzU1NRg0aFDOYiIiItJp3lApkSujQSXx2RqJoTAU6Pak94qH1uJwczv21raoUrjHlReguI/ziyY70hZVc37KnDnDq4owoCQPD185zYa1I/O4Z8mSJT2+ZuHChcccLxERUWbY//aO5+tERPbavXu3Kq/7yCOPqAFR6Ro6eRZO/uLVKBowNFF9Z9xAXNCHkazkDPw81pOrR4zK3KIyr6hVic1MjRkzRiVpiYiIiEjfJGWmth5owtOb9uG1jvJNXb1f14q3P2jEo2v3dJ70SizCrJ4r83amI9bxPpk/J9XIUyIiIiIiIsrMyJEj8ctf/hI33ngjbrnlFjz//PNptbNv/Srsf+slDPvUhTjlc1fg5S0GXt5yMOXcp0SUOdcnRufOnQtdVFRUqJiIiIiIKDvSSVKme2eu3CX82Nq9eGztns6fhSMxNd+nlMiNG4nEZyjgR1lhSM3TKSe88igISXkdQ/1baySuSj2VFvQ/Udvanpi/JBRInDxLqSgiIiIiIqvJHIsrV67stXpeeXl51mIiygUp1frcc8/hxRdfVKV2161b1+82jFgUe199Ch+sfQ4jzpmPU2Zeps4r61racf3ZY5kcJbKY6xOjMr+oLmS+U3kQUXqkbv8999yjnsvdWHl5KWZQ14AOsWY7BjuXZ3XbVrWXaTs67CeUmhe3j5PWubdYM0lS9vXO3OQYbrjhBjz41714/u0P1feN4QgaWiKqLG5XkvhsDEdVuVsZpVpWEML++jAi8biKRf6tuS2KgXEDAXMIqYwCNWL4RP1r6vnfK85A3Hf0aNBY3FDvE9KOkPlzrPh99hf7WeoLL24fJ62zDrHyeNb+9tjPkts4aZ/UIdZMYmhra8O7777b42vOOussy5bXG/azlAtdt88bb7yBFStW4LbbbsP27dv73V68rQW7nv8FPvjL73DyF67Cn2KfR2VRHi6fPgK6cNI+qUOs6cxDS/ZzdWJUVFX17WJQNsjdIlJOl4jSJwfeTqFDrNmOwc7lWd22Ve1l2o4O+wml5sXt46R1ThWrJEXve3l72knK/tyZa8awfN37ankGDBxsbFNtCnl7SX5QlbSV8rZSIldGg0oCU+KpaWxTCdvK4jzsPtSCoN+vYpF/k/K/A0ryj1pe0Ei02x15vVTSlfcXhAJqfppZp1T34Td59LpYhf0s9YUXt4+T1lmHWHk8a3977GfJbZy0T+oQK/tZ+9tjP+tuydvH7/dj3rx5+NjpM3DZjf+Dfz7/ENqb+z9QKtJUi388fjd2vvQkas6/FlNGfhknDimDLpy0TzopVsoen5HJzMCaGzdunCqlu3jx4rTeLx3Zhg0bLJujVNqbNWsWXnjhBUvaI/La5NHSXdXW1nbe9KBzGQkdYs12DHYuz+q2rWov03Z02E8oNS9uHyetc0+xPvrGHpXc7E+S0jwiLisMYlBpPnzwqZGjPd2Za8aw69ARfO+F3WoBNY3hzuVVFoVQUZR31KjP5NGdksisa4l0LldGsTaHo+p95s+HlBeomDsWiPx4q3ra5i9MrFAHWYcPG8LqeXVZvirDe85Jg3Dj7JMy/n2mwyv9rBz3LFmypMfXLFy48JjjJXJen+PFddYhVh7P2t+e7v1sKux/9Ttf14UOfZeTYs0khnT+DtnPOqefpcy2z09WblHViGrrG7Bl1aOo/dtvYUQS52vpGPWxSfj10p/i05/+NHLNSfukDrFKX1ldXe25z2PduXrEqIzOXL16ddqJUSvdfffd6uukSZNyHQqRY8mH14ABA+AEOsSa7RjsXJ7VbVvVXqbt6LCfUGpe3D5OWudUscqcomb53OSkaKokpSQQByYlKRtbE68fXFqg2pk6qjLlnKNmDA+vP6SSlDIy1VzeUQnNbkgcMho0PxRQCU1ZrsQoonFDJUrlZ/JvybG3BYp6TbCac5OeP2Foxr/PdLGfpb7w4vZx0jrrECuPZ+1vj/0suY2T9kkdYmU/a3977GfdrbvtI+dnr207pJ43x0MYdNa/YdQZ/4JDrz6KPX99BkY81u/l7HpnA8444wxceOGFKtdxyimnIFectE/qEKvOiWMv88PFTjvtNDXic9OmTbkORXVY8kdw6aWX5joUIiIiItd6etM+9bVrklKSkN2N3ExOUsrr1Htbo2gKJxKNz3S0l0rySW99R3JSEpk9JUWTyevMhKiMXq0qzkNTW1R9lSSnkKTnrsNHcECNRo3gSFtUfZXv5efJSVEZ7SpktGuqhC4RERERERHZY9W7BxCNGWrKlPZoXBX6GVw9BB+f93WcdduvcNzEs9Nu+w9/+APGjx+Pa6+9Fvv29XyuSkQeTYxed911arj0zTffnNM4pGxEfX29GsFqVVleIi+KxWJYu3ateshznekQa7ZjsHN5VrdtVXuZtqPDfkKpeXH7OGmdu4vVyiSl+f5Xtx1S85OmiuGJP72EyiN70NYe6TzpldGd/SGvl/fJvKKFIT/KCoJoCkfVqFUpiytzhkqp3+ZwO8qadqO4cRcONraq15hzisrr5PVSAvi88UMwf9rwfsXAfpZywYvbx0nrrEOsPJ61vz32s+Q2TtondYiV/az97bGfdbfuts+GPXXqa2NrpPM807xJt2TwCEz+zx/i0zfej6qxE9JaZjwexwMPPKCmEfzmN7+JhoYGZJOT9kkdYtX9d+RVri6lO3r0aDVqdNWqVbjttttw++23Zz2GBx98EEuXLlWjRRcsWJD15RO5iXyQPPfcc+q53GQQCASgKx1izXYMdi7P6ratai/TdnTYTyg1L24fJ61zd7F2d2duOknK+taISlJKOwUIYNXmA5gzeVi3MXz4zt8wEsB7gapjTnr7Sl4v75NEpzxk1GdhXgDhSFyVxZWHxHKkJYwpsd3qPR9iCPzBIMoKQygIfbSdZKSoJEX7W66H/Szlghe3j5PWWYdYeTxrf3vsZ8ltnLRP6hAr+1n722M/627dbR/zJttILK6+FuUdu80qR30Mp3/lZ6h5569475mlaNq/s9/Lbm1tVfkOyT1861vfUoOz8vMTFYTs5KR9UodYmRjVk6sTo+LWW2/FvHnzcOedd6p60l//+teztuwf//jHarSqXJiS0aLf+MY3srZsIjfy+/049dRTO5/rTIdYsx2Dncuzum2r2su0HR32E0rNi9vHSevcXaw93ZmbTpJS2pGk4/rdtd0mRmW54eLjVAnc9oiR8qS3LyQRKsuMxAx17CjJ0RtmnqhK+cqoVUnQFpYVoLZ5sHr9cSWFMHyJZQUDPpw5bqCaUzTd8rnsZ9MjFx7M9nt6DTm/z/HiOusQK49n7W9P9342Ffa/pHPf5aRYM4khnb9D9rPO6Wcp/e3TGkkkwuKJU0T4U9y0Kud91eM/jcGnfhLvr30eW/70fwjX1/Q7hsOHD+OGG27Avffeix/96EeYP3++rfuKk/ZJHWLV/XfkVT5Das263Ny5c/HUU0+pzmbWrFlYvnw5SktL+7TTyhyl/S1/29jYqJa5evVqVcpXliujVj/72c9msBZE+jl48CAGD05coDXV1NRg0KBBOYuJiIjsJyVrZXSmJCLlblg58SsMBVBRFMKkEZWYfeoQlHeUpM2mhb9ej/frWvFBXQtaI3FVXlZGW/aXzN9Z09im1un4ykIMryrEfV+a3O1rr3hoLQ43t2NvbYsaZXpceQGK+1i6N5nMG7q/IazK4g6vKsKAkjw8fOU09W9SyldGrUqCtqE1ohKxkoAtLwxh8sgqzDqlOie/byIiItIXz9eJiHIj3fPSWHsbdv55Bbat+jWirc1pL18qaMogMcmDUO7x81hPrh8xapazlSSlJCxXrlyJiooKNZLzlltuQVlZmWXL2bVrl+p0li1bpr43k6IyGTKTokREROR0Ww804elN+9Q8nlKytis5+Xv7g0Y8unYPzhg3EBdkMIIxHX29M7c3gY73xTvuH5REZCqSPE0sC0e9p79iHe8zY04eeSpJTxmx2t2oVSIiIiIiItKH3DAs58ahgF8lRuV8si+J0UBePsbN/BJGnH4+tq16BDv//BSMaKIaUn9s3LgRs2fPVonRO+64A5MmTUpzTYjcyxPjeMvLy7FmzZrORKV8lQRmZWUlpk6dqkrevvXWW2m1Le+TxOu5556LsWPHqqSoOQhXljVnzhwsWbLE4jUiIiIiyh45tnn0jT248clNeHnLwc55PGsaw+ouWBktKV/le/m5/Lu8Tl4v78tWgZJsJCm7O+kVctLbWxK1J60d7wsFEsuU0aBERERERETkLFJFSZR1nNM1t0URM+/e7YO84jKcdMH1GLvwAZR9fIYkGdKKQypYTp48GV/60pewc2f/5zAlcjNPjBgVcmfEunXrMGXKlM7kqFi/fr0ql2uS0aQyH6g8xOLFizuf19fXo7a2Vn3dsWOHeiRLTojKc7kr44knnsjiWhK5WyQSwc9+9jP1/L//+78RCul70ViHWLMdg53Ls7ptq9rLtB0d9hNKzYvbp7t1lmOa+17ejuff/rCzzKyUdpWysV3J3bCN4agqByujHMsKQnhs7R7UtbTj+rPHqmMkO2NN987cdJOUEkPJP1/AJ9pjWFc8DY3hxEnvwLjRr7lN5SRZ3pd88iwlcvuyzlZhP0u54MXt46R11iFWHs/a3x77WXIbJ+2TOsTKftb+9tjPult322fWqdWqilIBAurcWM6dZTqaASV9n/taXh8sr8boSxah/PP/ii3PLMWBd/+WVoyPPvqomlrw+uuvx7e+9S0MHDgQmXDSPqlDrBID6cczidHk5KjM/yl3SZgX55JHMdTV1R2VLF2xYkW3bXU38iG5PRmRetNNN9m0JkTeJH9bTU1Nnc91pkOs2Y7BzuVZ3bZV7WXajg77CaXmxe3T3To/tnavSooaMHCwsU0lPoUc9pTkB9VoShlZKaMzJREpCT458ZM5OmX06KDSfPX+yqI8XD59hK2xyp25UspXkosSp51JSnO50bYW5AEoCGV20iurIO+XdoIBn5o3tC/rbBX2s5QLXtw+TlpnHWLl8az97bGfJbdx0j6pQ6zsZ+1vj/2su3W3fSqK8tTUMlJFSW4YlnPjupYI8kMBdQ7dGzkfldcn2gqhtGocFv3vwzgttA+LFi1S+Y10knP33nsvHnroIdXG1772NRQXFyMdTtondYhV99+RV/kMj26ZBQsW4IEHHlDPu45e6MuvpLsRD/I+GXEqZXtlkmMit8v25NHxeFy1L2S5fr++1cB1iDXbMdi5PKvbtqq9TNvRYT+h1Ly4fbqu8/aDR1Q5XCFlcs2kaGWRjM7M6zbhKIlFSfSZJ3JlhUEMLi1Qz++ZN8GyOUe72z6y3CsfflOV8pXyvpKklFj7k6Q83Nxx0hr0Y3hVkUpSPnzFNHVCmyqGX72+C6/ujaCxLapOesWQ8oI+n/R+2BBWz6vL8tUI13NOGoQbZ5/Up3W2CvtZygUvbh8nrbMOsfJ41v722M+6V7bP13XhpH1Sh1jZz9rfHvtZd0u1fbYeaProXLopjMZWa86lJf8goz9vu+02bN++Pe24jzvuOHz/+9/HlVdeiWAw6Np9UodYDxw4gCFDhnju81h3nk2MmhMR33777XjqqafU9+mUdzN/fVJu9+abb8Y111xjeZxEuvLqiRYRkVf8ZOUWdZerlM+1M+Hn9JjtOuklIiIiShfP14mIcuvRN/aoqWVU9aWmts7zRLP6UmFeAAGfDzHDUNO5yPmomamR80OpvuSDD/OnjTim+lJ7e7sa9CXJTenv03XyySerqQQvvPBCS6e+oY/w81hP+qbzs0BGdcodFnJ3hZS9HT16tEp09vVRXl6OOXPmqDa2bdvGpCgRERG5hiTtXtt2qON5pDPR15cEo5DXyeuT3//qtkNqflI7XTBhqPoq85vKyaSQZKeMBJVkZHfk5/LvZlJU3mfOTXp+R3s9kSSmnKwKOXk1lytJz12Hj+CAGm0bwZG2qPoq38vPk5Oi8j4h7TApSkRERERE5Gzzpw3HeeOHqOSm3AQrN99KZSJJfjaFE9WG9jeE1Vf53pxeRV4nr5f3yfulna7y8vLwX//1Xyqv8Z3vfCftsrjvvfceLrroIpxxxhn4y1/+YsFaEzmDp0eMdqehoQGrV6/Gm2++ifr6etTW1qqv5qhQKZU7duxYTJkyheVyyfOyfcdLLBbDP/7xD/X84x//OAKBAHSlQ6zZjsHO5VndtlXtZdqODvsJpebF7ZO8zv9sr8Qjb+xV84S+X9eq7modNaC43/N1SgJQjjaHVRaq+TP/41OjMGfyMFu3j5135qaKYfz48Vj66i41n6poCkdUQljK+aYiJ71qzpiOJKyc9F5/9tiUd+qyn2U/6zZe3D5OWmcdYuXxrP3tsZ91L6+OUHHSPqlDrOxn7W+P/ay79bZ9JPXy2Nq96vzUJOfYja0RRGIG4oYBv8+HUMCHssKQOmc2yfmoJEX7MpLzww8/xA9+8AMsW7ZMxZQuGTkqI0hPOeUUV+yTOsQq20ZKF3vt81h3/Ssg7QEyCvSSSy5RDyLS78PsD3/4g3p+6qmnav/Bm+tYsx2Dncuzum2r2su0HR32E0rNi9sneZ3DHztffZUTNiEJxf4kRYW8Xt4nd79KO3KSt353rWWJ0VTbR04e61raVZJS7rQtDH2UpJRY5NGXJGV3d+b2FIMkNSuL8tRJr7QjDytPetnPsp91Gy9uHyetsw6x8njW/vbYz5LbOGmf1CFW9rP2t8d+1t162z5yfic3204dVYlnNu1TVZQKEDjqXDBZMODDmeMGqspF/akkJHNY3nffffja176Gb37zm1ixYkVa6yPr8swzz+A///M/VZneoUOHOnqf1CHWTBLVZB8mRonIMWSC7BNOOKHzuc50iDXbMdi5PKvbtqq9TNvRYT+h1Ly4fZLX+dWWRPIwEkuMeCzKS+8EQkZnSiJSEoOioSPRamWsXbePnHzanaTsLga7T3rZz7KfdRsvbh8nrbMOsfJ41v722M+S2zhpn9QhVvaz9rfHftbd+rp95Hzvxtkn4aozxmDV5gPqhmE5N25pj6lz7fLCECaPrMKsU6pR3jElTTpOPPFENe3fG2+8gUWLFuHPf/5zv9uIx+N48MEH8Zvf/AY33HCDakcGkzlxn9QhVt1/R17FUrpElDavluYhIvKCKx5ai8PN7dhb26JGWh5XXoDiPs4vmkzm1ZR5U2RE5vCqIgwoycPDV05Dtmw90NSZpIx2JGetvDO3JzKfqp0nvURERESp8HydiMjbJO3zpz/9CbfccgvefvvttNsZMGAAvvWtb2HhwoXIz8+3NEYv4OexnpgYJaK0sWMnInKvhb9er+YW/aCuBa2ROKrL8jvLzPZHYziCmsY2FIYCOL6yEMOrCnHflyYj25ikJCIiIi/h+ToREZmlXB955BF8+9vfxvvvv592O6NGjcKPfvQjzJ8/n6Mg+4Gfx3piKV2LTJ06VT0WLFiACRMm5DocIiIioozIfJuSGA0F/CoxKonEdBKjre2J+TSkZK2QRGQuSNJT5ja1Yn5TouQT2iVLlvT4GrmzuuuJMBERZYb9L1HuNTU19Vqm8zOf+QxKS62pxkJE6ZF5Na+44gpceuml+Nnib2Px//5/qG8O97udXbt24V//9V/x4x//GHfeeSdmz55tS7xE2eDZxOhvf/tbLF26FDt27FCPMWPG4LrrrsPXv/71tO+YuP/++1WbkydPVp3DOeecY3ncRF4WiUTU35mQv9dQSN+RPTrEmu0Y7Fye1W1b1V6m7eiwn1BqXtw+yes8cdoX8fYHjWr+zcZwFM1tUQyMGwj4e553M1ksbqj3CWlHyOhMq2NlP6tf2+xnqS+8uH2ctM46xMp+1v722M+S2zhpn9Qh1kxiaG1txbp163p8jQwiSU6Msp9lP+s2jtk+hoHCdx7HouPfxNXfPw2Ln9+Ln730Adqi/S8m+tZbb+Hcc8/FSSedhF/96leYNi17U+U4cftIDKQfzyVGZeLgm2++GfX19ep7s5Lw9u3b1UTCIp3kqExqLJYtW4a77roLM2fOVKNH77vvPkvjJ/Iy+Xutra3tfK4zHWLNdgx2Ls/qtq1qL9N2dNhPKDUvbp/kdb7spEF4fP0+FCCg5geVeUbrW9oxoKTvc4rI6+VXJ+8vCAXUPJ5SstbqWNnP6tc2+1nqCy9uHyetsw6xsp+1vz32s+Q2TtondYiV/az97bGfdTdHbB+J69WfAJufUd9WBVtx94wA/nvCAHxnTTN+9VZYvaS/tmzZgunTp6vSulJiVwae6UaH7aPtfuFxnppjVIaLSwJT/khlROfcuXPh83006kF+FWPHjsXWrVszXpYkR2Vi4ylTpmD16tUoKyvLuE0ir9dIj8fjnbXwhw0bpnU9ex1izXYMdi7P6ratai/TdnTYTyg1L26fruv8v6u34uUtBzvnCRVDygtQkt/7vXUyUvTDhkR5HnN+0nNOGoQbZ59kS6zsZ/Vq2yv9LEs5Ov/vONuctM46xMp+1v72dO9nU2H/2zuvzmmmQ9/lpFgziSGdv0P2s87pZ8lF22fdQ8D6hxPPmw8A4cSAMcAH5Jfi7wf9uOWP+/Hcu41pL0JGYsrf+7e+9S2tPmd02D4HDhzAkCFDPPd5rDvPJEal5vWaNWtw00034Y477lA/q6qqQkNDw1Gvk6SpFYlRISV6payu7OT//Oc/LWmTSCdePdEiIvKKrQeacOOTm9TzmqYwGlsTZXEri0KoKMrrtqyulM+VkaJ1LYlyMWWFQQwuLVDP75k3ASdUc44hcg9emCciyg32v73j+TrZjX+HRA5Q8x7wuwVdkqI+oLAKKKwE/IHOl760pR43/3Yn3tzdlPbipHS2VOv82te+huLiYivWwPH4eawnDW9hsJ6M3JRRm1Iq10yKChkxauaF5as8pPytVSTJunPnThw6dAiXXXaZZe0SERERZYMkMedPG6GeDyrNV0lOIUnPXYeP4EBjWI0mPdIWVV/le/l5clJU3iekHSZFiYiIiIiIiLLk7RWJr22NHyVFS48DigcelRQV55xUgTdumYgnrzkF4wYlbm7ur6amJjVq9IQTTlBTDkajiZuriXTj+sToxo0bVVnbWbNmYfHixUf929KlS3HJJZegvLy8s7zuN77xDUuXX1FRoZKyTz75JH73u99Z2jaR10j5g3feeUc95LnOdIg12zHYuTyr27aqvUzb0WE/odS8uH26W+f504bjvPFD4INPjfyUsrgyZ6jcW9YUjqoSu/sbwuqrfG/OKSqvk9fL++T90o7dsWYb+1n722M/625e3D5OWmcdYmU/a3977GfJbZy0T+oQK/tZ+9tjP+tuWm+fllpgx8uJ5611ia8yUjS/yw3L8VjitQ174avfhbmjG/HuVwfi5xcOwKDi9NJH+/fvVwPQxo8fr3IiuSpaqsP20W6/IG8kRmXodmVlpZpbtDvyc5mAd9u2barMrh0mTZqkErC33367Le0TeYXcZbRixQr10P2OIx1izXYMdi7P6ratai/TdnTYTyg1L26f7tZZ5mO//uyxnSNHZa7Q4VVFGFZZiLKCIApDAZUIla/yvfxc/l1eJ+R98v7ked3tijXb2M/a3x77WXfz4vZx0jrrECv7WfvbYz9LbuOkfVKHWNnP2t8e+1l303r7bHkOiEWAaDjxUCV0Kz/6d/lZ036gdjvQchCItACxdiAeRQgR/NfUILbfUIXvnpWP4rw0Q9iyBRdffDHOOOMM/OUvf4EXt492+wUpiXpoLiVlbGW0piRHy8rKchqLjEaVIeS7d+/GyJEjcxoLkVPJRXXz78fqC+xujDXbMdi5PKvbtqq9TNvRYT+h1Ly4fVKtszy/fPoITB1ViWc27cOr2w6hAAEUhI4uvWMKBnw4c9xAnD9hqG3lc3XYPuxn7W+P/ay7eXH7OGmddYiV/az97Tm1n5VrPHPmzOn1NeQ9OvRdToo1kxhCoVCv1zjlNVYtrzfsZykXtN4+e99IfFUldJEYKWqWz205DLQc+ui1MqIzLgk8Q/0nOVT5v9L8IL732WJcNyUPP/xzO5atb0M0jQGQf/3rX1Vy9IILLlBVPU899VR4Zftot1+Q4jNyNY45C+6++241v+j27dsxatSoXIeDcePGqXlNu5b0JXIqTh5NRORNDS0RrNp8AOt316KhNYKW9hiK8gIoLwxh8sgqzDqlGuVFR18EIXIjOe5ZsmRJj69ZuHDhMcdLREREduP5OhGRxz3xb0D9HlUiV40GLTkOKCgDmg98lCyVMrryQA/ZTkMSewbg92NrnR+3vWJgxcbatMP68pe/jJ/97GfwCn4e68nVI0ZXrVql5g7VISkqJJYNGzbkOgwiIiKijEjSc87kYepBRERERERERJqJtCa+Gh1JTxktKiNFzaRoLAoYZplXH+DzJx5quKiMHI13vLfj/fE4ThiYh+Vzg3jjK9/EzQ+/hldeeaVfIZWUlODb3/62ZatIlC5XzzG6Y8cONb+nLiQxKjERERERERERERERERHZIlSY+KqSnR2JUrN8bmdSVBKiQSCQDwRCieSp35/4Kt/Lz33mFDpG4n0+P6a3vYqXnliCZ599FuPHj+9zSDfddBOr6ZAWXD1iVJKQUrpWFxUVFUyMEmUgEongF7/4hXp+1VVXHTNXhU50iDXbMdi5PKvbtqq9TNvRYT+h1Ly4fZy0zjrEyn7W/vbYz7qbF7ePk9ZZh1jZz9rfHvtZchsn7ZM6xMp+1v722M+6m9bbp7AyUUpXEpwRAK11iZ9L6VwzKeqXZGgPY+dk8KjMkanK6UpuNIpI3IdfHJoKPPIkrvrqbTj33HPxyCOPqJGg77//fsqmqqurceONN8Jr20diIP24OjEq6us7hoZrQKdYiJxIpkQ+cOBA53Od6RBrtmOwc3lWt21Ve5m2o8N+Qql5cfs4aZ11iJX9rP3tsZ91Ny9uHyetsw6xsp+1vz32s+Q2TtondYiV/az97bGfdTett8/w6cD+TUBBBdDaAMRagUBex5yikvDsGB2aiqxOPJp4JN4gKwkj0ooDKAVk0GlLHQLlg3HFFVfg0ksvxc9//nPcfvvt3eZBvve976lSul7bPtrtF6T4DBdvmXHjxmHs2LF44YUXoIMpU6agoaEBW7duzXUoRI6cPDoej2Pnzp3q+ejRo+Hv6cM7x3SINdsx2Lk8q9u2qr1M29FhP6HUvLh9nLTOOsTKftb+9nTvZ+W4Z8mSJT2+ZuHChSwXpfHfcbY5aZ11iJX9rP3t6d7PknPO13XhpH1Sh1jZz9rfHvtZd9N6+7TUAo/OA2IR4NA/gWhrIhlqSGLU11Emt5v3SbpIkqGdc4yaEnOPxuHDzsAYAAGMHjMW/lnfAwaf3Pmq2tpa3HHHHfjpT3+KtrY29bMTTzwRb7/9dtZHbOqwfSQxO2TIEM99HuvO1YnR2bNnY82aNYjFOu6CyCH5A5Qk7axZs7RJ1BJlyqsnWkRERESCiVEiItIVz9eJiAgv/gjYugqo3Q60NyeSnsIv84p2k6RMHiHaU9rIfH+wCKgYDky+IvGQsrsd9uzZg+9+97v45S9/ieXLl+OSSy6BF/HzWE8a3cJgvdNOO019NetI59Kdd94Jn8+HSZMm5ToUIiIiIiIiIiIiIiJys/FzEl99/sRoUZMkPbsmPmMdSdHu/q0reV20HYiGE9+vfxh49SdHvW/EiBF46KGHsHnzZlx88cXWrRORBVydGL3uuutUDeebb74ZjY2NOYtj48aNWLZsmXoutbaJKP3yB//85z/VQ57rTIdYsx2Dncuzum2r2su0HR32E0rNi9vHSeusQ6zsZ+1vj/2su3lx+zhpnXWIlf2s/e2xnyW3cdI+qUOs7Gftb4/9rLtpv32kxK2M5JSSuH4ZIdoxolO+j7UnyuzKnKPyPB7pISHqA3xBNVJUSun+E6PxT4xEXBKjzYk5PLH5mUSCtIuTTjpJDRjz6vbRcr8gdydGpW60jBqtq6vDtddem5MYZE7RuXPnqudjxozBxIkTcxIHkRtEo1E89thj6iHPdaZDrNmOwc7lWd22Ve1l2o4O+wml5sXt46R11iFW9rP2t8d+1t28uH2ctM46xMp+1v722M+S2zhpn9QhVvaz9rfHftbdHLF9JDFadnwiJ6rm2JQkZ2K+UDXfqJkc7VbHa/0BIBBUI0+jviAe812Ex/AviCIIhOs/So5KYrTmPehCh+2j7X7hcUG43K233op58+apOtbi8ccfz2pSdMqUKdixY4e6K0JGrhJR+uTvaOjQoZ3PdaZDrNmOwc7lWd22Ve1l2o4O+wml5sXt46R11iFW9rP2t8d+1t28uH2ctM46xMp+1v722M+S2zhpn9QhVvaz9rfHftbdHLF9JK5h0xJzjDZ9mEiQSmldSXZKQlSSo8e+qXNwqZpPVMrwSjtxGS8KDIUkQn3whQoBoz2RHA0VIhoqxT9XPYRHCr+E+pYIWiMxFIYCqCgKYdKISsw+dQjKi0Ke2j7a7hce5zOk1qzLzZo1C2vWrFE7oTxfunQpRo4caesyX3zxRSxYsADbt29Xy5XRolu3brV1mUTZxsmjiYiIyMvkuGfJkiU9vmbhwoXHHC8RERHZjefrRETUaeNvgLXLgHAD0LA3UUo3kJ/4t1hbx+hR4+ikqCRDJXkqSVQh/y4ld+W1gbzEz4sGqbbiLYfRhhA+wGA1ivR7pd/DEX/pMWEEAz6cMW4gLpgwFCdUH/vvbsTPYz25fsSokETouHHj1POVK1eqJOVdd92Fr3/965YvS+YylZGh5pyiJnPEKhERERERERERpS8cDqsb0XsyduxYFBQUZC0mIiIibZ30OWD9Q0BBeWJ0Z6QVCBZ0JDpFR2ldc4SoSoh2Gemoyu3Ka/wdyVIfjIIy1LVEUBg9BJ+kRgPtiBvAKY2v4Q/GWeq53weEAn6UFYZQgABe3nJQPeZPG4H504ZzRCXlhCcSo5IIlYTo7Nmz1R+aDJJdtGiResj8n7fcckvGc3/KCFFJwK5YsUJ9bw7EleXdcccdnFuUiIiIiIiIiMiim9LN6y89jdhnYpTIPkeOHMGbb77Z42umTp2K4uLirMVERCkUVQFjzga2rgIKK4FoODFSVJKgwfzEPKOS9PR1zCXalSq52zFXpiRN5dX5pTh4JIaG1hiqfIUoMlpQGGtCk1GJU4zNeNw4s/PtrZE4GsNR5Af9qpRuWUEIj63dg7qWdlx/9lgmRynrPJEYFTNnzsSTTz6p5hs1k6PmSE5zNKe8ZtKkSepDW5KpFRUV6udVVVUoKytTB961tbWor69X84bKh//q1auxYcOGzuUkJ0TNBOxNN92Uk3UmcptIJIJHHnlEPf+3f/s3hELZq0nvxFizHYOdy7O6bavay7QdHfYTSs2L28dJ66xDrOxn7W+P/ay7eXH7OGmddYiV/az97bGfJbdx0j6pQ6yZxCCJ0VdeeaXH15x66qlHJUbZz7KfdRtHbZ/xcxKJ0fyyxIhRGTnafiQx+lNK6wqzbK5Jch3JSVFfABFfHh6Jno9oPA9nGq8j6AOOGPkoMo4giMTrBgRaUF2UD7/Ph7hhoKU9hua2KNqicdQ0tiEciWFQaT6ef/tDVBbl4fLpI1y7fSQG0o9nEqNizpw5RyVHRfIUq5LklEd/dJ2iNbldKam7ePFiS2InosTf1d69ezuf60yHWLMdg53Ls7ptq9rLtB0d9hNKzYvbx0nrrEOs7Gftb4/9rLt5cfs4aZ11iJX9rP3tsZ8lt3HSPqlDrOxn7W+P/ay7OWr7DD4ZmHwFsP5hoKQ68bPmA4mkpxm7JEg7cqTquUqYdvybmnM0BAM+7MVxidf5fIjGDQSMREI14DOQH/Cj3B9BacFHSUh5PjBuoL6lXZXebWxNJFAHlxaokaNTR1XaMueoDttH+/3CozyVGDWTo9u2bVMldDdu3HjUMO10d9KubchIUxmFOmPGDEtiJqKEYDCISy+9tPO5znSINdsx2Lk8q9u2qr1M29FhP6HUvLh9nLTOOsTKftb+9tjPupsXt4+T1lmHWNnP2t8e+1lyGyftkzrEyn7W/vbYz7qb47aPJEZbDgObn0kkR8ONibK6iH1UMtfX8byTP1E+t6OEbjC/FLMj61R5XMOIIR434Ec8kSPpGHEa9uUfs+iA34cBJfnIDwXwYUNYJUcLQ4kE6jOb9uHG2Se5cvs4Yr/wIJ/h4ZT1XXfdpeb/lNK4mdaxNn+Nknh94IEHUF5eblGURPo6ePAgBg8efNTPampqMGjQoJzFRERERJQtctyzZMmSXue463q8REREmWH/2zuer5Pd+HdI5FCSx5BRo/Jo2AtEWmBE2wEjpkaDykO9TJ77AvD5/Qj4fDI4FCgagGh+FXbVtqhm2mOSHAWqfXUoRQuO+IpR66/C9uBY/H8lX0kZwuHmNjVyVOYcHV5VhGDAh4evmKbmH3Ubfh7rqUvRaG+R+T9lztD7778fo0ePVslN89EXya+/9tprsX37dlWql0lRIiIiIiIiIiIiIiLSimQ4p1wJXLQUzYMmoT1moN0IdCZEIwgighCiCCJm+BCJGaiLFeBgcAjCeVVobIuqZKj58COGErSq9zb7S9TXzcFTewyhoihPhSFzjsp8o9GYgVWbD2Rh5YkSOI4XUElNeezcuRMrVqzAqlWrep1rdMyYMZg5c6YqycuSuUTZEY/HsWfPHvV8xIgR8Pv1vbdDh1izHYOdy7O6bavay7QdHfYTSs2L28dJ66xDrOxn7W+P/ay7eXH7OGmddYiV/az97bGfJbdx0j6pQ6zsZ+1vj/2suzl1+8hAr8d2FuGZxqvwfd8ulPkaUGXUIqAmDjXQhhDi8KMVBWjxlcCQMrrtQH1ti2RWccAYgJhhoAqHUOU7osaZtvvy0I48xHxBvJE3vcflS1ndkvwgmsJRNLZGUBAKYP3uWsyZPMx120diIP044y81S2TU6E033YSVK1eqHVYedXV1WL9+vXrIiFD5Xn4u85TKSFMmRYmyJxqN4pe//KV6yHOd6RBrtmOwc3lWt21Ve5m2o8N+Qql5cfs4aZ11iJX9rP3tsZ91Ny9uHyetsw6xsp+1vz32s+Q2TtondYiV/az97bGfdTcnbh9Jit738nY8tnYPmv2leN0/EYeNEuw3BqLdCCJu+FFrlOEDYxBqjVKE4z5VMlcSoaIlBqwxPo2XcQby0Y5yNKmfN/sSo0XfCk3EEX9pr3EU5iXmLJURqaKhNeLK7eOU/cJrOGK0F1IW97TTTst1GESkKj34OuuvZzovsBdizXYMdi7P6ratai/TdnTYTyg1L24fJ62zDrGyn7W/Pd372WAw2OvcMPIa0vfvONuctM46xMp+1v72dO9nidy8T+oQayYxpHMcxH6W/azbOHH7PLZ2L55/+0MYMHCwsQ3Lw5/EZP96NKEIhb52lOEIhqAWjb5S1BsliBh+VTJXyt0aMszO8KEMjfAjjmrUqQK8MreoPMSf887qUxwyb6mImwnX9pgrt49T9guv8Rl9nVCTiKgLTh5NRERERERE2SbnnUuWLOnxNQsXLjzmfNVLeL5ORERdbT3QhBuf3KSe1zSG0RhOjGa8Iv8lXGwkphasitei2Diinsu8oy2+Qhwx8hE1/CoZWoRwx5yiiVlJZV7Ren+Vev0LBefhhYLP9SmWxnAENY1tKAwFcHxlIYZXFeK+L02G2/DzWE+8fZmIiIiIiIiIiIiIiMjFnt60rzMpaSZFh5QX4LW8L+K41hac3v5X1Pqr0Gbko8RoQp4RQbHRgmK0yNSiqgyvOcquHSE1orQVJSrJ9Hrep/BC/nl9jqW1Y4RoKJAYUVleGLJ8fYk8nRhtbGzE6tWr8eabb2Lq1Km4+OKLcx0SERERERERERERERGR7epb2vHatkMdzxPzeVYWhVCSn0gRLS+ch0Z/Gc4NP99ZGjcP7SiJNyOIKHwwIKlMmYe0wShCuy8fcRjwxw2sKvwcVhWcJ3Vj+xRLLG6guS2RmC3rSIhOHpkYdUqUDa5PjL711luYMWMG6uvrO382a9YsPP/88zmNi4j6LxKJ4PHHH1fPL7vsMoRC+t5JpEOs2Y7BzuVZ3bZV7WXajg77CaXmxe3jpHXWIVb2s/a3x37W3by4fZy0zjrEyn7W/vbYz5LbOGmf1CFW9rP2t8d+1t2ctH1WvXtAzRMajsTQHo2rHGZFUd5HL/D5VBncd4Mfw2faX8HEyFtoN6BGkCZriQJ/8X9SFdKNxVrwnPFJNMTGYkA/5tKUJK1M8Jgf9KMgFEAw4MOsU6rhxu0jMZB+XJ0YbWhowKRJk9QEt8lTqa5atUolTCdOnJjT+Iiof+TveMeOHZ3PdaZDrNmOwc7lWd22Ve1l2o4O+wml5sXt46R11iFW9rP2t8d+1t28uH2ctM46xMp+1v722M+S2zhpn9QhVvaz9rfHftbdnLR9NuypU18bWxOJOhkpGvAfm8zcGxyB3wT/Db+P/wumt7+BU6LvosRoRoHRhrAvHwfiRTiIxJyZjxuT0R73I68lgvxQoHP0aU9kpGhdx4jViqJEovLMcQNR3vHcbdtH9/3Cq1ydGF28eHHnc0mOJu+ItbW1OYuLiNITDAZx0UUXdT7XmQ6xZjsGO5dnddtWtZdpOzrsJ5SaF7ePk9ZZh1jZz9rfHvtZd/Pi9nHSOusQK/tZ+9tjP0tu46R9UodY2c/a3x77WXdz0vYxy+dGYnH1tSgv0OPrj/hL8WLBTLyImUf9vKm1HflNHyBmAD5/AMGO3OqHDWFVmldGoXaXcJXyuTJS1EyKlhUGUVqQSIaeP2Eo3Lp9dN8vvMpnuDhlPWXKFPV1w4YNRyVGKysrsXPnTpSVleU4QiJnO3jwIAYPTtwhZKqpqcGgQYNyFhMRERERERG5m5x3LlmypMfXLFy48JjzVS/h+ToRESW74qG1ONzcjr21LWiLxnFceQGK+zDCs6sjbVHsbwh3fi9J0OL8ABpbE3OGShpGRo4W5gUQ8PkQMwy0tsfUSFEzEyVJ0UGl+fDBh/nTRuDy6SPgVvw81pMfLiYJ0euuu06Vzh01apRKikpp3dWrVzMpSkRERERERERERERErlcYSowQNQdzxtMcLyeJzkR7fpXglPYGlxaguixfzRkq/9wUjqKmsU0lUOWrfG/OKSqvk9dLUvS88UMwf9pw61aSqI9cPY63oqJCfZ0xYwa2b9+e63CIKEPxeBz79+9Xz4877jj4/fre26FDrNmOwc7lWd22Ve1l2o4O+wml5sXt46R11iFW9rP2t8d+1t28uH2ctM46xMp+1v722M+S2zhpn9QhVvaz9rfHftbdnLR9ZD7P9+taEQr40RqJo6U91lnKtj9a26KoQjOK/QHklwxAQV4Q4UhctSWPcCSm5jGNxAyVfPX7fAgFfCgrDKGgIzkrZKSoJEXNSp9u3T4SA+lH379UC4wZMwbr16/PdRhEZJFoNIoHH3xQPeS5znSINdsx2Lk8q9u2qr1M29FhP6HUvLh9nLTOOsTKftb+9tjPupsXt4+T1lmHWNnP2t8e+1lyGyftkzrEyn7W/vbYz7qbk7bPpBGV6qskKIWUtpV5P/tDXt/a3o7ZwXfw6djf4YeBS6eOwD3zJuCckwYhGPCp5OfgsgIcX1mI4VVF6qt8Lz+Xf5fXyeulfK6dSVFdto/u+4VXuXrEqIwU/e1vfwsdyB+fuPrqq3MdCpFjyYdleXl553Od6RBrtmOwc3lWt21Ve5m2o8N+Qql5cfs4aZ11iJX9rP3tsZ91Ny9uHyetsw6xsp+1vz32s+Q2TtondYiV/az97bGfdTcnbZ9Zp1bj0bV7UICAKmkr84zWt7RjQEl+n9uQ10tJ3CPIR9DvQyDgw6xTqlFeFMKNs0/CVWeMwarNB7B+dy0aWiNqVGpRXgDlhSFMHlnV+VovbR/d9wuv8hky8aZL7dixA+PGjcNTTz2Fiy66KGdx7Ny5E2PHjlVDtXmHALkJJ48mIiIiIiKibJPzziVLlvT4moULFx5zvuolPF8nIqKufrJyC17echCN4Yia+1MMKS9ASX7v4+dkhOmHDWH1XOYJlbK5MvpTEqKUGj+P9eT6UrrXXHONGqW5e/fuXIfTeXcCERERERERERERERFRtlwwYaj6WlYQQllhIhkqyc7DzW0py+rKz+XfzaSovM+cm/T8jvaInMbVpXTF0qVLsXr1asyaNUvNN1paWprrkIiIiIiIyAVqa2vx+OOP9/iayy67DFVVVVmLiYiIiCgbWltb8Y9//KPH13z84x9HYWFh1mIiop6dUF2K+dNG4LG1ezCoNFFCt7E1irqWCOpbI2rkaGFeAAGfDzFD5hONqZGiZs1RSYqa75N2pD0iJ3J9YlRs2LABn/3sZzFq1Cg112e2y+rW19err7wgQpQZKUW9YsUK9XzOnDkIBvXtwnSINdsx2Lk8q9u2qr1M29FhP6HUvLh9nLTOOsTKftb+9nTvZ6V9KY3U22tI37/jbHPSOusQK/tZ+9vTvZ8l6i8n7ZM6xJpJDE1NTXjuued6fI1ci01OjLKfZT/rNk7cPvOnDUddSzuef/tDDC4tQGEogvqWiJpztCkcVY+uZE7SiqKQGinqM2I43b8N/p3vIzp5qNbrrMP24fmgnvTday0uYSujRe+66y5ccsklmD17Nm6++Wacc845WVn+unXrsrIcIreLx+PYsmVL53Od6RBrtmOwc3lWt21Ve5m2o8N+Qql5cfs4aZ11iJX9rP3tsZ91Ny9uHyetsw6xsp+1vz32s+Q2TtondYiV/az97bGfdTcnbh+fz4frzx6LyqI8NXJUkp3yCEdiaGyNIBIzEDcM+H0+hAI+lBWGUBAKdL5/3uRh2L76ZWw5rP8667B9dP8deZUnEqOmRYsWqTsDFixYgBkzZmDs2LHq+0svvRQTJ060tZwvEWUuEAjgi1/8YudznekQa7ZjsHN5VrdtVXuZtqPDfkKpeXH7OGmddYiV/az97bGfdTcvbh8nrbMOsbKftb899rPkNk7aJ3WIlf2s/e2xn3U3p24fSY5ePn0Epo6qxDOb9uHVbYdQgMBRCdBkwYAPZ44bqOYUHTOwCG8VOGOdddg+uv+OvMpnGGaFaPfZtWtXyn/bvn27Slg+9dRTnT8bM2YMJk2apL6KAQMGoKKiIu3yuYcPH1ZDtXfs2AH5NUsiduvWrWm1R6QjKR03ePDgo35WU1ODQYMG5SwmIiIiomyR454lS5b0+JqFCxcec7xERESZYf/bO56vk934d0jkHg0tEazafADrd9eioTWClvYYivICKC8MYfLIKsw6pRrlRaFch+lI/DzWk6tHjEqSs6GhocfXJOeFJVkqSUwruTjvTEREREREREREREREDiZJzzmTh6kHkRe4OjFaVVWlRm72NmzczkSm2T4TpESZk78juctGyF01Xf9+daJDrNmOwc7lWd22Ve1l2o4O+wml5sXt46R11iFW9rP2t8d+1t28uH2ctM46xMp+1v722M+S2zhpn9QhVvaz9rfHftbdvLh9nLTOOsTKvJCe/HAxsySu7PDdPcwdM/lhleRlEJE1IpGIKtMiD3muMx1izXYMdi7P6ratai/TdnTYTyg1L24fJ62zDrGyn7W/Pfaz7ubF7eOkddYhVvaz9rfHfpbcxkn7pA6xsp+1vz32s+7mxe3jpHXWIVbdf0de5eoRo13nBzUTn5IwTXfu0L6Skaq1tbW9jlglov4pKiqCU+gQa7ZjsHN5VrdtVXuZtqPDfkKpeXH7OGmddYiV/az97bGfdTcvbh8nrbMOsbKftb899rPkNk7aJ3WINd0Y/H5/r++V11i1vL5gP0u54MXt46R1dlKslD0+w8VjeW+55Rbcdddd6rmM3rz//vtxzTXXZDUGmbN09uzZ6uvYsWOxdevWrC6fyE6cPJqIiIi8TI575O7jnixcuPCY4yUiIsoM+9/e8XydiIgo9/h5rCdXl9IdMGBAZ1J00aJFWU+KmqNTZdlERERERERERERERERElDuemGNUzJo1K2dxTJ06VX2V0rpERERERERERERERERElH2emWM0OUmayziIKH3RaBRPP/20en7BBRcgGNS3C9Mh1mzHYOfyrG7bqvYybUeH/YRS8+L2cdI66xAr+1n722M/625e3D5OWmcdYmU/a3977GfJbZy0T+oQK/tZ+9tjP+tuXtw+TlpnHWKVGEg/nhkxqoP6+vpch0DkaPF4HP/4xz/UQ57rTIdYsx2Dncuzum2r2su0HR32E0rNi9vHSeusQ6zsZ+1vj/2su3lx+zhpnXWIlf2s/e2xnyW3cdI+qUOs7Gftb4/9rLt5cfs4aZ11iFX335FX6ZvOt8Do0aOxdOlS9XzUqFFaxEFE6QsEAjj33HM7n+tMh1izHYOdy7O6bavay7QdHfYTSs2L28dJ66xDrOxn7W+P/ay7eXH7OGmddYiV/az97bGfJbdx0j6pQ6zsZ+1vj/2su3lx+zhpnXWIVfffkVf5DMMwch0EETnTwYMHMXjw4KN+VlNTg0GDBuUsJiIiIqJskeOeJUuW9PiahQsXHnO8REREmWH/2zuerxMREeUeP4/15OoRo0RERDr73ve+16efERFRetjPEhHZi/0sEZG92M8SEVmPI0aJyDF3vEh31dDQoJ6Xl5fD5/NBVzrEmu0Y7Fye1W1b1V6m7XT3en4s60OHv+Nsc9I66xAr+1n729O9n+WIJef/HWebk9ZZh1jZz9rfnu79bCrsf3vn1REqOvRdToqV/az97Tm1nyXn/B1nm5PWWYdY5bO3urrac5/HuvPnOgAior6KRCK499571UOe60yHWLMdg53Ls7ptq9rTYTuTfby4fZ20zjrEyn7W/vZ02M5kHy9uXyetsw6xsp+1vz0dtjORlZy0T+sQK/tZ+9vTYTuTfby4fZ20zjrEqvvvyKtYSrcbu3btwoYNG7Bjxw4cPnxYfa2vr8eYMWNQUVGBsWPHquef/exncx0qkeeEQiE4hQ6xZjsGO5dnddtWtafDdib7eHH7OmmddYiV/az97emwnck+Xty+TlpnHWJlP2t/ezpsZyIrOWmf1iFW9rP2t6fDdib7eHH7OmmdnRQrZQ9L6XZ48cUXsXz5cqxevVolQvtq5syZmDdvHq666ipb4yPSkVdL8xBZhSVxiIjsxVK6RET2YildffF8ncgdeN2AyNn4eawnz5fS/e1vf4upU6di1qxZWLZsGbZv364+XPr6kETqtddeiwEDBuAnP/lJrleHiIiIiIiIiIiIiIiIiLoR9HK5XEmGmqNDzTtt+jsBr/m+uro6LFq0CIsXL8YDDzyAiy66yIaoiYiIiIiIiIiIiHIrHA6rASY9kenICgoKshYTERFRX3hyxKgkLuWDWZKiyQlRMynal5GiJvN98pCf19bWYs6cObj++utztn5Ebi07kPz3Jg/5mY50iDXbMdi5PKvbtqo9HbYz2ceL29dJ66xDrOxn7W9Ph+1M9vHi9nXSOusQK/tZ+9vTYTuTfQ4dOtSnn7mJk/ZpHWLNNIbGxkasWLGix4e8xqrl2bkudrWnw3Ym+3hx+zppnXWItbsyuqQHz40YlTkmpGSuJDHlj0EkJzrHjBmDiooK9bWqquqY90viUxKq9fX1x8xFmtze0qVLsW7dOqxdu9b2dSIiIiIiIiIiIiIiIiKingW9mBQ1SQJz5syZqqSufD3ttNP63ebOnTvVPKPr16/Hk08+qRKmZoJUfnbeeefh+eeft3Q9iIiIiIiIiIiIiIiIiKh/PFNK99Zbb1WjOM1SuFLuVhKXK1euxE033ZRWUlSMHj0a11xzDe6//341mlSSo9KWOQp11apVuOyyyyxeGyIiIiIiIiIiIiIiIiLqD08kRjdu3Ig777xTPZcSuTIxuJnAtJokXKWErrRvJmGXL1+O3/3ud5Yvi4iIiIiIiIiIiIiIiIj6xhOldOfOnavK286YMUMlKcvLy21fpiRIt23bpsr0SrldGVV60UUX2b5comyKx+PH/OzQoUO2LKu7du1alhtizXYMdi7P6ratas+uddZ10nqv0eHvONuctM46xMp+1v72nNDPSjxHjhzp9TXmVBuk199xtjlpnXWIlf2s/e05oZ9Nhf1v76SqWXc/c/P5hg59l5NizTSG/v4dsp/NPC6Tm/+OnUSHv+Nsc9I66xBrquV1d02dsstnmDVfXeqBBx7AggULMHbsWGzdujXry5c5R6XcbmNjI+666y58/etfz3oMRHbZvHkzTj311FyHQURERERERERERESkvXfffRennHJKrsPwNNeX0pUSunJnksz1mQsVFRVqlKrkn2+//facxEBERERERERERERERETkda5OjEoJ2x07dmDRokUYNWpUzuKYOXMmLrnkEjV69K233spZHERERERERERERERERERe5erE6NKlS9Vo0VtvvTXXoagYZNTok08+metQiIiIiIiIiIiIiIiIiDzH1XOMzp49WyVGX3jhBehg3Lhxaq5TXeIhylQ0Gj1m7t6qqir4/a6+54KIiIiIiIiIiIiIqEfxeBy1tbVH/eyEE05AMBjMWUwEuPq3L2V0586dC11MmjQJGzduzHUYRJaRDpwTRRMRERERERERERERHau6ujrXIVAXrh7WJZl4GaGpizFjxqhkLRERERERERERERERERFll6sTo/X19bkOgYiIiIiIiIiIiIiIiIg04OrEqIzQ3L59O3SxYcMGFRMRERERERERERERERERZZfrE6OSjNSFlNFlYpSIiIiIiIiIiIiIiIgo+1ydGD3ttNOwevVqNDY25joUbNy4kYlRIiIiIiIiIiIiIiIiohxxdWL00ksvhWEYuOOOO3IdCm6++Wb4fD4sWLAg16EQEREREREREREREREReY7PkMyhi40dOxa7du1CfX09SktLczZadPLkyaisrMThw4dzEgMRERERERERERERERGRl7l6xKiQEZqS+50xY0ZOlr9z5061bBkteu211+YkBiIiIiIiIiIiIiIiIiKvc31idNGiRRg9ejTWr1+P8847L6vLlpGqs2fPVqNVKyoqsHjx4qwun4iIyAoyX7fcaCRVGORGH3nI81mzZuGuu+5Sn3NERGSdHTt2qH5WpuMgIvK6FStWqONO81hUqnHJ98uWLeNxKBGRxXgcSkRe4PrEqFi6dKkaNbpq1SqceOKJ2L17t+3LfOqpp9SHyPbt29WB+wMPPGD7MomIiKw+IZKLTvJYt24dZs6ciTvvvLOzAoIkTOVkSS5OcQ5tIiJryIV+OY+QPlgeREReJceacpw5d+5cTJo0SV3TqaurUze+y/dy/Cn/Lv0mERFljsehROQVrp9j1CQXbu+++271XBKVcgAto0lHjRpl6XJefPFFddFYDuDlVyvLmjNnDp544glLl0NERGSnDRs2qFLwY8aMUTf3yMWn7k6akhOi8lq5UCVVEoiIqG/kopP0uXLBv+vFfTmPWL58ec5iIyLKFfM4U44r5fhSjjO7ktGikydPVv2o3LgnN8UTEVHf8TiUiLzKM4lRIQfV5shNSVgKGf0idx/K13SSpI2NjSoJ+uabb6ryLubdNGZSVC4ky78RERE5hVxkkjL0ZqKzJ/IZKCNKTUyOEhH1jXk3vkn6Tbmwn3xOwQtSRORFyceXcrFertf0VvJRSGLUrGxCRESp8TiUiLzOU4lRIUlQKXMrSUszeZlMLuiaD5F8Ydecu0I+IGpra9XX5PkszF+l2ba0IXfdlJWVZWntiIiIrLmR6Mknn8TOnTv7lOCU1yffXco79omIemf2m3LOMGXKlM7+VkY/yTmE4AUpIvIiKY8r11rkRvPebtLreiwqpXZ5gx4RUc94HEpEXue5xKi46667cMstt3QmRbv+CromS7vT3a8tuT1JwLJ8LhEROY1chJKLUVIWXkrO9+c9yWSO7e5KnhERUc94QYqIvEyu18hUSP0ZASp9pvSdgjfoERGlj8ehROQVfniQXOhdt26dKp1rjhpNfsjPenuIVO+Tg3AmRYmIyIlkpKhYvHixKmGWXF4nFbm7tGuJMynBQ0RERETUH8lJzZ5K6CaTkaWmrnPkERERERF15cnEqHngLKNZ7r//fjWPWk8Jz1QPkZwslYSrlG255pprcrx2RERE6THLlckoUJnfybz7vjddR4fKfFBERERERH0lo5SSb8rrT/WR5NfyBj0iIiIi6olnE6MmKbOybds2NUJGSgSUl5f3acSo+ZAEq5QblIToHXfcod5PRETkVDKHdjJJkPZl1OjYsWN7bIeIiIiIqCdyU56pv/OEJidGeYMeEREREfUkCIdpbGxUF2jlgqt8lVGf5kVb8+dVVVXYunVrv9qVpKg8xMaNG1Wp3eS2zQNzaVsu/spB9yWXXGLLOhIREeWKlM9NvstePvs4VygRERER2e3NN9/sfC7XXvojOZGanGAlIiIiItI6MWomPc3H4cOHO593N2LFLH0rZOSmlMSdMWNGn8v+pXLaaaepBxERkRcrKUg5XZmfSRKiyfM89URuJkrW34tZRERERORtUkrX1N8b85KPPftS7YSIiIiIvEurxKgkN3fu3Jny381EqBwgy+jOqVOndiZEiYjIW6MaZWS/lDHPBrnrXBKEyTfryGeRPCQWSSb2t9yXzmRd+5oQTXUBSn4vRORc7GeJiJzBTf11JgnNrsuUuPi5QURWcFM/S0REms4x2nUOz+SfLVq0SI1IkTlBZT5PKWXLpCgRkbfuIpeqAHKiICcH8rDTXXfdpcqny8mHLFNORG699VZ1kiI36Ej59ptvvhmVlZXqNV69O122Q9eSZWZ5eiJyFvazRETO4Pb+OtOL/pzvnogy5fZ+lojIy7QaMSp8Pt9R30tCVDr/Bx54AOXl5TmLi4iIckcO+OUEIHnuS7uXl3yiITfmyAlJdxdo5IRlwYIF6qucxNx5553q9V4iZXeTyec25yUlchb2s0REzsD+um/sTmAQkXuxnyUicj/tEqPJCVFJkkpnv2TJklyHQ0REWSQnBHJ35ptvvqkO+JPnG7KbLEvmqzYvpixfvrzH0Y8zZ85U1QzMuzrlBEq+728pWidLXlc5eZObmYhIb+xniYicwSv9tdWJTI4YJaK+8ko/S0REmidGzaSofBAwKUpE5A1SDibVBRHzxMDuOzZl+cknJWbJmr5YtWqVumNTTqpkBKU898Kdm1LuJ7mEj5zIcb4TIj2xnyUicgYv9tdWJzI5YpSIeuLFfpaIiDSeYzSZlAMgIiJvME8GJKk2adIkXHvttSrJVldXp75OnTrV9hjmzp3bGYcZQ38k36Upd266fc4Ps8SQSbaT3MFKRHpiP0tE5Axe7K+ZyCSibPJiP0tERBqPGDVHi8qHwahRo3IdDhERZbH/zyUpQyMPk8zp0V+SFJQTGrP0jpzorF+/Hm4l62fqz92tRJQb7GeJiJzBi/211RVHWMGEiHrixX6WiIg0ToyaZG5RIiKibEke+SgXUtJN8l166aWdJybyVR5ystIbmSMkW3d4jhkzJuOSt/I5ba6nJEX7e3crEXkP+1kiImfIdX9thaqqqqwsh4jIq/0sEZGTaZsYnThxYq5DICIijzBPIEyZlIOVE5rkkxxJGiaXuElFLtZn64J9pnM4yRwm8hBy4Z8jRYmoN+xniYicIVf9dddEZqaldXljChHpSofjYiIir9NujlEpo8s7W4iIKJu6njhkMp+IjBJKZiYQe7N9+3ZVzicbD5k3Jd2LRStWrOis6rBq1SomRYmoT9jPEhE5Q67660z7zK6JVI4YJSJd6XBcTETkddolRsWUKVNyHQIREXnIk08+edT3md6g0/XkRJKJbiB3tcq8JXLhShIMmdzZSkTewn6WiMgZctlfJydH+zvyvuvreXMKEemKx8VERLmnZSndTA9gzz33XFhN5iT6xje+YXm7RESUW1JWsesd5l1PLPpLTmySyzW6YWSlrM+MGTPU72b9+vW9flbL75QXpIhIsJ8lInKGXPfXcpP86tWr0yqlm7yMTGMmInJrP0tERBonRgcMGJDR+w8dOqRK8soHjdw1mPyBIz/viZS+MskFXSm/wgu7RETuZV58sfLEpGvpru6W4STyOTp58mS1Xn1Jikr5Hpl7VE7IiIjYzxIROUOu+2u5Id389/6OGE2+7sPpmYhIV7nuZ4mISOPEaKaJSLlo29XGjRtx//3344EHHlDJ0eQEaPJyb731VnVXzejRozOKgYiInMGO5F3Xz7HkuzedqD9JUSGv4536RGRiP0tE5Ay57q+Tp2nIZMSoJFiJiHSU636WiIg0nmO0650uVjjttNPU5Nbbtm1DeXm5So6ao0flq1z0lTsSb7rpJiZFiYg8pOtJgxVVArqrfCDzczqRfD7K76SvSVGxbt069T4iIsF+lojIGXLdX8tIz+Sb6/rar3dNos6bN6/fcRIReaGfJSIijROjdpKDbCkp0HXE6Jo1a3IWExER6XNiYsXNOd2d3Djxrs25c+d2fkb29YRNLkzJSRhHjBKRif0sEZEz6NBfL1iwoN/lIJNfJxXAOB0SEelKh36WiIg0LaVrN7kLUR5y4VZGi1577bUoKyvLdVhERJQD/S3TlS6nnZjIRakVK1aoz8jFixf36XcolRfMC1NTpkzJSpxEpD/2s3r+voiIdOyvFy1apI49JRap+iXf9+aJJ57ofH7nnXdaFicRkRv72Z7wOJSIvMKTiVFz7gqzrADnnyAi8qbuDvqtuMO8u7s+Dx8+DKe46667sGzZMvXc/NpfvFOfiAT72f7/vpIvZLEMGhF5sb+WaiUyLYP0h3IsKjfqpSI35cnNfGZSlFVLiEhXOvWz3eFxKBF5iWcTo5IMlQu/QkaPEhGR98gIx2xxykgmubB08803Z9QGP1eJyMR+Fj1ezJeYzYtk27dvP6ZspPy7JAfkpk5z/ii5gCaj8tnXEpFb+2vp3yTJKcekUsUkVZ8n7ZhTP0jytC+jS4mIckWnfpbHoUTkdZ5NjCbfTWNFPXciInIelonpuRRZuninPhGZ2M+mtnz5cjUSqutIga7fmyOmkn+nkjDgBSkicnN/LUlO6eck8SkX5iXxKUlS+Zn0i8k380nJ3Z5GlRIR6UCnfpbHoUTkdZ5NjCZ39HbPL9rQ0IBbbrlFzWd633332bosIiLS845NnU6CejtBIiKyCvvZ1ORCvjyIiHSgY38to5Tq6urURXk5Rp0xY4Z6r1zPkRvx5OK8JEQ5hQMROYFO/SyPQ4nI6zybGM32B5982DAxSkTkDbw4Q0RkL/azRETe6a8l+ckRoURE3eNxMRFR//nTeA8RERERERERERERERERkaMwMZpFvIOHiMgbnFbOkYjIadjPEhE5A/trIiJ7sZ8lIuo/JkazgB9QRER6qqqqynUIRESuxn6WiMgZ2F8TEdmL/SwRkT6YGM3i5Nr8ACQiIiIiIiIiIiIiIiLKDb/OiUS32LBhQ65DICKiHI/yZzl1IqIE9rNERM7A/pqIyF7sZ4mIckPLxKjbEolPPPFErkMgIqIsnix0d4PPmDFjbFkWEZHO2M8SETkD+2siInuxnyUi0kcQmjEMA0uXLlXPZ86cadtykj80fve736nl2rEMWZeNGzda3jYREWUumycLAwYMyNqyiIh0wX6WiMgZ2F8TEdmL/SwRkT60S4z6fL7O5KiZILWTLGvOnDm2tk9ERHrftZlcvsaKcu7dlcNhKRsi8ir2s0REzsD+mojIXuxniYj0oGUpXTM5avfDZPcyZH2IiEhPVVVVls/xcfjw4WN+NmXKlIzbJSJyIvazRETOwP6aiMhe7GeJiPSgZWLUTCba/cjWsoiISF+TJk2yvM3uTm44xwcReRX7WSIiZ2B/TURkL/azRER60DYxmg1MXBIR0dSpU4/5WaZ3bXYthyMnJSxlQ0RexX6WiMgZ2F8TEdmL/SwRkR60TYxmo5Ruth5ERKSvmTNnHvOzHTt2ZNRm1/fzbk0i8jL2s0REzsD+mojIXuxniYj0EIRmJJEoozjlg+Lmm292dGcud/zcf//9eOCBB3IdChER9aOUzbp16zIqcdP1xGTu3Llpt0VE5HTsZ4mInIH9NRGRvdjPEhHpQbvEqCRF5cNg5cqVcIOlS5eqr0yOEhHpa86cOVixYkXn99u3b8/oppiupXDmzZuXUXxERE7HfpaIyBnYXxMR2Yv9LBFR7mlZSvfSSy+Fm/ADiYhIb7feeutR369evTrttrq+V056OL8HEXkd+1kiImdgf01EZC/2s0REuadlYtRtHXhVVVW3k2ETEZEepFJBcumaDRs2pN3WqlWrjvp+wYIFGcVGROQG7GeJiJyB/TURkb3YzxIR5Z5f50SiW7gt0UtEpAsrbzjpetfmsmXL0mon+X1ysiNzZhMRORX7WSIiZ2B/TURkL/azRETuoWVi1K261nwnIqK+O3z4sK3tS8mZ5Ls277zzzn63cddddx31/fLlyy2JjYgoG9jPEhE5A/trIiJ7sZ8lInI3rRKjp512mnq4bYSljIA1142IiNLTXXmZTErOdEdOJMzPoB07dhxzotHbzS8333zzUSc2Y8aMsTQ+IiI7sZ8lInIG9tdERPZiP0tE5G4+wzCMXAdBRESUipx8LF26tNvSMnISIScAUi7GqpMAWd7kyZOPOlmRuzl7OymZMWNG54mSxLRo0SJL4iEishv7WSIiZ2B/TURkL/azRETewMQoERFpQe52TD75SLf8eHLVgTVr1hxVnqav5ARj7ty56q7N3k40+vNaIqJcYj9LROQM7K+JiOzFfpaIyNuCuQ6AiIgo+WTEPLHIpKx6pnM6y8nM9u3bO0+W5OvixYsxb968zrs55d9Xr17deZem3NXJ8jVEpDv2s0REzsD+mojIXuxniYi8iyNGiYiIerFixQo88cQT6q5MeZgnUHISImV0Lr300rTuDCUiogT2s0REzsD+mojIXuxniYjsx8QoEREREREREREREREREbmeP9cBEBERERERERERERERERHZjYlRIiIiIiIiIiIiIiIiInI9JkaJiIiIiIiIiIiIiIiIyPWYGCUiIiIiIiIiIiIiIiIi12NilIiIiIiIiIiIiIiIiIhcj4lRIiIiIiIiIiIiIiIiInI9JkaJiIiIiIiIiIiIiIiIyPWYGCUiIiIiIiIiIiIiIiIi12NilIiIiIiIiIiIiIiIiIhcj4lRIiIiIiIiIiIiIiIiInI9JkaJiIiIiIiIiIiIiIiIyPWYGCUiIiIiIiIiIiIiIiIi12NilIiIiIiIiIiIiIiIiIhcj4lRIiIiIiIiIiIiIiIiInI9JkaJiIiIiIiIiIiIiIiIyPWYGCUiIiIiIiIiIiIiIiIi12NilIiIiIiIiIiIiIiIiIhcj4lRIiIiIiIi+v/bu3+fOa79PvwPL24QB0ZskYpvG5js7E6iUn4dgJKBIEUaikyZFKLg/AEUWBmpCDJ9DIpNypC8bRpTApKapEp3vELK2CApG4kTI4b5xfu5OfTh4eyPmZ3ZnZ19vYAVHz3P7uzMmZkz55zP+QEAAACLJzAKAAAAAAAALJ7AKAAAAAAAALB4AqMAAAAAAADA4gmMAgAAAAAAAIsnMAoAAAAAAAAsnsAoAAAAAAAAsHgCowAAAAAAAMDiCYwCAAAAAAAAiycwCgAAAAAAACyewCgAAAAAAACweAKjAAAAwFH44Ycfzi5cuLDV6/79+4feXRjdd999d3blypWzr7/++mxpclzb3Nt5HwDAUAKjAAAAAHAEEhD91a9+dfbtt9+e/fTTT4feHQCAo/PzQ+8AAAAAwBAfffTRoL/BsY6YTlC0XN9Lu8Y3HZNAMAAwBoFRAAAA4Ohcv3797MmTJ4feDdibR48evfv51q1bZ0vz4sWLtX/PNLoAALsSGAUAAACAmcv0ucXNmzd33l5GYGYE6uvXr8//zf+/evXq3c/lb/n5wYMHiwzGAgCnR2AUAICj98UXX5x99913e/u+TPN2+fLls6tXr559+umnZzdu3FjcdHYAS16jsQ4wbfLJJ59sHMm2b9n/HEcfb9++nWx/2M80umUq2ZRBcl3u4ptvvjm7f//+1u83jS0AsBQ/O/QOAADAsUnjYBooS8P0xYsXzwOkfRraATgOye9/+ctfns1JglqclozYrKeRHuO67uPzzz/f+TsBAObgwltdBgEAWECgMlO91T9n3blVgcqM7rx37975iM9tR3qW7ebfZ8+enY9Q7WpUzPbu3Llzdvv27bOpZR/SOJ79yMiRhw8f7jyCBGDOkt+lI8oua4x2PTOePn36bvRc8vF2dFyCQnnPHCTvz0wJye+7nkPZ13TayajC+hmX/+d4pRNWuS5fvny58/nMtp4/f/7uHsg2V5VtYg7Nh2WN0Rx79hcAYAiBUQAAFmvVNHFjrpOV4GuCrFmHq5YG6zTYT9UQXRrGW5nuUXAUWKoxAqOr5HmR50a2m+9p8/U3b97MYtr0L7/88vzfBLTaaeTnOO0v4z7zpw4K1gHYuXUMEBgFAMZgKl0AABZr1fprYwYrE2BN41wbBE2j+pUrV3qt3zXGNIp3796d5PsAlq7uMNM1VekcpktPwCrT+q56vvVdd5TjUHcAOMQ57uqIBQBwrARGAQBYrEuXLvX6/S7SiJ4AaTuFbgKYZXTPmNqRTJt+f2ySZnNb0w9Ytno0aFfwqV7j8VAeP358vp+r1nuc4vnG2SzO+5jri64LvLejRcP6ogDAkgiMAgCwWIeY8jDT6rZTOybAN3ZwNOuj9vn9sUmaZS1XgEPIDADttOTpeLJq/cV9SXD2xo0bB90H9j+NbglW5pqccq3YdmrmwhT9AMCSCIwCAMDIMpqjXeNt7OBoArBdgeCu3x+brtEqAPs2t1GjJTBrutzTUl9zN2/enPS7utYRNVoUAFgagVEAAJhARle0DYxjBkez/UzdmzXx8nP+/fHHHw8ySnZsr1+/PvQuAHSOzKynNN23PEO6RrKybPW08vU6uPsaMWp9UQBgaQRGAQBgIhll0a45mgbOb7/9dpTtp4E8I0kyOjX/LiEoGoeeqhIgkqe26zlmRPuq6UanlnzeaNHTDYomID7lcz7Xdtc65UaMAgBLIzAKAAATytS27eieNGybLna1roZZgFOeTjcdRpI3Tj1ikHl59OjRu5+nDopbXxQAOBUCowAAMLGHDx9+8Lsx1xtdmmfPnh16FwDejZZrR+llFN++O7ckGNu1L5zOiNGuqZ3HZH1RAOBUCIwCAMDEMtqibVzMyIyxptRdmkNNUwkw17VG83061JxuUHQfQXHriwIAp0JgFAAA9jSlbuubb745yL7MWaaKNM0wMCeHnk63jFA1je5pqa+xqYPi1hcFAE6JwCgAAOxp1Gi7TlcaIo0aXT1CBmAOkndfvny5c83PfQXIrl+/vpfvYh5SPqhHcE49ja71RQGAUyIwCgAABxx11DWS9JTdvXv30LsAsFX+vY+OHCVA1vX9LFc9VfM+ptG1vigAcEoERgEAYE+6RnxkxJE1Nd+fLhJgbrqmsd3HdLoJkCUoJkh1Wp48efLu530Exa0vCgCcEoFRAADYkzRut9MxhlGjv/bVV18dehcAOnUFJ9OxJVPqTinBV2uLnvY0ulNPo2x9UQDg1AiMAgDAHnU1cBox+usRMUaLAnP25Zdf7nXUaAm8mkb3dKfR3cfastYXBQBOjcAoAADs0Weffdb5+1MOjn7zzTdn33777aF3A2CtrpGbdRBrbAm6ZpaBrpkGWK462H7z5s3Jv8/6ogDAqfn5oXcAAABOyaoRGGmY3NQQWaa7e/369fm/+f+XL1++97tso16bbJdp/LJPz58/P///bL+M6EwjfY4j6491BQoyuunKlStnt2/fXvs92d8ERbO26Fxkn7I/Ofb8XKYXLMGJHHPSeMyRNOVclvOYc9qe66TzqimXu/Y5035eunTp3blK4/o+R/9kH9K4n9Fuq9IxI6GmDPhs2oe8MgLw2AIA6USQezz3ZjnHOY5tp1vNtZVt1NdLSY9cI3fu3Dm/fuiW67bOs5Ke+f8pRvblPOV87Eu5Hkr+8+rVqw/yp+RDq6613GuPHj16N9K15EX1fZ+1tg9xfc0hT9pG0rqenvlQI0ZXrS9a8o9nz569d72U85z8dN/PGwCA3t4CAMCCpcjbvl68eDG7ffrkk082fu7y5cudn61f169fH7xfL1++fHvr1q132/r888/f3rt37+2TJ0/ePn369Dzd8u+DBw/O3/fRRx+dvy/vKfJzfpe/d8k28vns56Zj6ft68+bN4GPPZ+tjz/6VY2+Pt5yv/G1XSc9tju327dud+1zSMddG3pN9zX5l33P+6m3kPVNf+/nupE39vdmPpF/2L/tbX8f529j71O5Dfs53l3OZn+u/57zW1/Bc5XyX/c4+J+3qa3LT+W2v8fKZbKdNj6TTXOUYx8jvVtm03a57Nmk4tvI96/K19h7Pa2i+lHO+TV7UdW3U91y5Nss9316nJX3zvNmHOeRJfZRn6FTXdyvX1zblpFyP7XO7K/+o03GKc1x/NwDAUAKjAAAs2hwDo6sCnIcMjJZG8b5BovK5NIKmAbrsR1dgdFUD7KEDo2nwzXFvc+w53rqRP8e9S0B2aGC07HMapNddz2mYbhutpwh65XvqIM2m4Fren2MqadkV+O2rDhRvE+DI3+p7ah+B412U89heo226dwUjyvVSAsWrgmd1cGyMwP8SA6PRBvp2yX9WSR66KeB66MBojrnsQ9Is19m67bfPsCk7JMwhTxqizq/XrwqpCQAAdFJJREFUpedY6uf2qvJI3aEiP6/ar6RZvY2k5dh5qsAoADAGgVEAABZtjoHRrsbsbfYrjdB5pQE3jZldgdIhgYLSmJntDRnhkf1uAwWrRoxm+6teXdtY9/72tUujcJ8AZ76rTvtdG3/L/mcbCRR0BV3qRvoSGOrTcN9eK2M2uLfB3VyD26ZlHVjZZdRdew32SZt2FNQ+ghFD79Gu46oDhV0BgzrwsS4w1F57+XmO5hAYbQNAU3Q42CbIOWZgtM6Lcg90HWN9nOWe69uhoN3nBALHDirPIU8aImm/7/uvHUVeH3f9rNvUCador5uxA5gCowDAGARGAQBYtDkGRrsaIoc0aNeNqEMDBXXQZJdp79rgzKrA6DptQHDqETtln4c0fqfxvN3fsa6rrlGkJS3K9/YdadWen7Ea3dvRRkMDVaUxfcjn22MbMgqtHVV76Dyia6T1ukDAqrykvpbWBXxX5UlzSoc5BUa78t5tpkPve19tMnZgdN20rnVgtBz/0MBh15SsYwVH55AnjZHeQ56hQ3R1sMp+1J2V+gT9u2aGGHNksMAoADCGn/VflRQAANjFRx991Pn7169f99rO5cuXzz7//POd9uWrr746//fWrVvn2xvqk08+Obt9+/bZMfnyyy/Pz8WTJ096fzafe/jw4Xu/u3bt2tlPP/20837lnK46F/mO/L1vWuf81NvMft6/f3+n/fzlL395noZF9mtIWsa9e/fOjynb/Pbbb7f+3A8//HD26aefvrcPQ67D77///oN0nou7d++e//vNN99snac8evTo7Fe/+tXZF198cf7/T58+XZlXJA1XpXnfPOlU5F5q79GkY9J8DA8ePDjPkw+t6156+fLl+T2XPCXX1RDJJ+r0S7rV9/Ex50m7nveiPo6p5DnQdc3m3OR85O9Jvz7XYvKiXBtdeRgAwFwIjAIAwEwMCartEsxMg2/5zjEaYe/cuXN2LNLQnQbhBDdXBao3uX79+nsNwEnLsRqA24bldp+H7m8bPBsq+9FeM3Wj/tBARK7ndQHAVrsPQ4MguQbqIFDO5ddff302ByUosy440eYd33333bu0SZqs60Cx7jq4evXqgD0+DV3Xx673QDmX9fk7tPYZUzpUtJ0J+mqDqslTdrnn5pIn7bL/JUiZ/GjXTk/byHXWJcdbgqLtc2PINbMqAAsAcCgCowAAsGcff/xx5+8zEqevoUG9NiAyRgBkX425Y0iDefZ3SKPvumDwlCOL0lidhvqh57yMHqxHuA3VBiBKAGFX2U4a0RO03yRBlLqxPYHNXe6HrnN56Mb8BC6SHn2CouV3Ob+5vode4/ncLum5dF3nZIz7P9uYU17adQ3skg8VyS/aEak59lXBumPIk3ZRB3Fv3Lhxtg+rRvwm38txD807Ll269MHvdnneAACMTWAUAABmYt/TVk7RUDmXUU7rlKBR/r148eL5lIFDG+Pb4MVUDegJGGwKkG3SFSQYEvjLiLH22tl1GuUEOXMuyvWzaaRX1/Svu45Y7gpGjTECcBdlBOy6++r58+dbT/fcpWuUXkYsDx2ZfCq6rpcy2nMJ0+iuO+6x9q/rnh3yDJlDnrSr+rmxr9Hqq67VoVOSr2NabgBgTgRGAQDgRNUNlauCK30dw9SbdTCwBEkzmnJIkDBBgjbg+OzZs7Ox7RoUXTWKZ8j0ze10wbuOuk3goQR+i03not2HBPLGGN3YBmX2tbbgKo8fPz7/d93owVUdHLYd1ZfrN6PVEwjJNZZg7IsXL4wW3UJXAGvodM71dKpzmca5y5gjWdsprCP5QN/7bg550i7q9Wm71uicwrrpbXe5huPQI+0BADYRGAUAgJnoClzt6/vGGg2zjwbdXa1qtB060rMNjE7VKNxOhdtXV6Cr7762wYIxRmp2jVpat1/5W3uubt68eTaGrhGAh5oCMseZ798UiOoKxOc+7BNIzzWcQGrygV2DSqekK612CaYn/XPuxpgC9lieU133bq7FY8qTdlVPa7+v0cKrRouOMU1yV1rN+ZoGAE6PwCgAAOzZq1evOn9/5cqVve5H3VCZQNPUa6jNxdgNtPsKjE6x5mDf6Q27Aha7BsO7Ai3rzlFXEH+stOn63rFGU/dV7sdNU4t2BTjmPOJwaboCWUPz0gT5Tu3cdQWCk4duOyXxHPKkXdXB9LE6eQxZX7RrBO8QAqMAwNwJjAIAwEzse+rKdgRimT5wjFFUu45unNKqaVenCDyO6dBTm5ZpPsdOs65A0LrgUFfQacyRyu22Mq3sIZSRoOvSOCPluqZDvnHjxqT7xt/rClwPGYGfQGDO5Smeu65rvCtwN9c8aRdlvesSPNzXrAtdHT7GGK26KqAtMAoAzInAKAAA7NmqEYX7bjjsagRN4++nn3660+jRrE829+k4E+wqDdBJ9+zz0AbpNmA5ZN3OTebQqDxVQDIjlDLqK8dYpnRdNWqpa128sQPG7WixQ62Xl5FjSYd1574rCJH0OHQQ/ZQkENemdwly9pFgate2TkGeOa1tRozOIU/aVR1E39dzc9UU4WOMVu0KaB/DFPsAwGkRGAUAgD1b1WC+7zVGV02blwbTjIK6cOHCeaA0jc9TBPsOKY3dCY6+ffv27OXLl7MP5M4hWNLV4P3ZZ5+Nsu1chzkPea0LQHQFS8YOGrdp3Xe64bHkmty01mLXOZn7yOcl6upk0nf0ffLZU5tGd901W4+knHOetKvHjx+/+3lf53/V9OBjBDC78uh9TQ8MALAtgVEAANizVSPQDjGqIoGXdUHBNO4nSHrx4sXzNVCXGigdooxePNSIwn3bR1By2+llp9yHuYwYHXpO5jyN9VJ1BbT6TKebfDYB+bl30JjKqnt40703hzxpF/XI4jI6dR+m7FDRNRJVZw0AYG5+fugdAACAU9PV2HvIhsNMI5uG/U0jnLLfeU95Xxpxs98JnC614TPHnMbrjBpKg+8pBULnOJK1KyCfQH1GN09l3yO5t9U1rXAs9V6cs7I2ZB0UKnnFNsGu5MGnuLZom5e093fSr2+HoTmMrt9Wznuxz9HCU3WoWDX9sal0AYC5ERgFAIA9WhVUO/Qor4xuyj588803Wwf+6kBpGj4fPny4iAbQBNoePXr0wTqBJRCc9fDK6J4EzZJmfafNPDZzGSHcNa1tRtnduXNnsu+ca6Bl1fqixzRibkkS2GqDW8lXN02HnHsr5zJTe5+y5KVtPrNuGuu55EljTaO7z9HCU43qrAO9xamOggYA5k1gFAAA9mjViIo5jPJKA2ZeCQymQX/Vvq5qaE3AMJ/rWm9v7tLInuDm3bt332twT6A3wY6M5loVIJtr4GxMq4Ll+x5N2RUMKaP1To31RecleUQbGE2esikwmvec6jW8KR9dF/ycS540VN3xJud+Xx0aphzVWQd659LpCwCgizVGAQBgj7pGBaVBeE6N4gmOJujy5s2b8xEgCXRuu38JDNy/f//smGTEZ9ZQzb+loToBppyrvHL8pxD8HEK6HI71Red3L7SB6TIadJ10JtnnNKpLdyx5Ur0G7c2bN4++Q0U6R3UFsk99imgAYJ4ERgEAYI+6RlTMteEwDcwJkqYBNwHCt2/fnv+bEVDrGlKPZWrZjDi6cuXKe4HcHHOCwWk8nlOweq7Bhn1PZ9k1qmoJU2r2ZX3ReeoKcNYBsFZZt9h0o9338bog51zypKEyM0Oxz1kWpupQkennu/KjYwlUAwCnRWAUAAD2ZNWIigQSj0WChbdv3z4PHCZQmiBiVwAxAYJt1yo9hDL1b72PCbol8CtIsf30lOvWAJxCVyP7vvdhrh0srC96eMk72mu0DoB1BU33OY3qnHXdx+vSZS550hD1NZHzv8/g4VTri3Zd519++eXO2wUAmILAKAAA7EnXiIo0pB+qUTyjOrsaSfvI/ieYmGBpa9PaemO7cOHCViNVEwy9du3ae0HqNEznOAQo5j06KyN8D70Pc2B90fnqmgFgVXA0AW7T6K6+j9etFzqXPGnXssA+z/9U64vmmdrVEWqus2EAAAiMAgDAnnQF7e7cuXN2KBmpevfu3VG2lSBoGwid63S6GcXSNp5n5Ksp/9brChrve1Tw1atXD74Pc9DVocH6osc1nW6CVMmH9jmN6lyt6qCzKWA3hzxpiDpQvs/gYVeHijGmjO+6vk2jCwDMmcAoAADsQYKEbTAuDYeHXsdy1QiSITJqtJ2Gdsztj9Ug3TbCZ5+NttusK42ePXu2133omnbyGAIhY7K+6Lx1TY1bgqBtMMm03b/2/PnzQdfzHPKkXYKi+w4edj2PDzWNbu6HdM46hhG+AMDyCIwCAMAedK0j2jXKYt/SKLnrdLq1dtTo3IJWXSNkdx2126dh9/79++dT/h6jrobuQwS+uxryx7yG564rza0vOv9Ro/UI+uQZCSaZRvfXMo35kBHQc8mT+qif+/teg3OKkebZZtdzftNI6DyL8zyc+/kCAJZJYBQAACaWxu+uqVvnEsgYs2Eyx1QHrl6+fHk2F2m8bRuGE1DaddTu69evz07BXAKSN2/e3GrE2VTXzKFZX3T+ukaC1gGxrC2avMd5+/v0aG0zmnYuedK2Ug6on7f7nEZ31XN+12uwq4PXNueujDJ1DwAAhyAwCgAAE0ojbbvWZhoN5zSFYlegZReHmB54m1GbXQ3DYzRMn9JUgF2jgKYY8ZORVJ9++mnn33LvtJ0K0tFgqk4NX3311dmcdAWBP/vss4PsC91yfbb5YB1kTzDJ2qKrpxlOsGzbjkNzyJOGBID3PY3uVOuLdgW1N42Ezr2QV9fU6AAA+yAwCgAAE0lj77Vr1977XRoBHz58eDYnYzciX7ly5d3PH3/88dafu3Tp0uCAY5nKr91GrWv0ar2vQ001WvGUp4TOaKKrV69uvR+5hseetrmM7prTiKZVU1/PaR9ZHRzKvVICpF0jn4/B2CPku/KPdkr2Y8iTtlF34Nj3NMpTrC/aFdTeZiR0GS1qKmkA4FAERgEAYAJpLMzokrrRMA2GWUttjiMk2lGtu6gDkH1GpLQjhPo0wJeg2LpRRl2Bs13PRbbZNgwveWrdpG872jmN3GOOmi3X4rpG84wSa89dn2BKn/Vo59R4v2p90UOM0l6yMa7nrtHoGV2XoF3XiNJjMeZUtck/S5CsSFCt73NjDnlS32l09z1rxBTri3aNQt1mFoaSt+5zKmEAgJrAKAAAjCyNvb/7u7/7XiAujbcJis5lXdEpR9jUDbB9RqR0TT25rRKMXNeg3pX2uzaeJ93mGOieUkY8t8fcNWprqAQ4cx43BUe+//77D4IXYwVDsp379+93Ttt7SF2BiF1HsfH3yvUzRueG3CNt8KtcV3MKtveVfHmsWQZWjao91jxp2yln9x0UnWp90a5n9KZgawlad3VuAQDYF4FRAAAW6xBrPyY4k+lZ6++eMig61jEmmNmO3Nl1atm+ja5tg2qfkUkJGG1K365pc589e3Y2VAlytOtbrjsnr169OvrG4Ox/e8y57scIliQ909i+zejPBCna92UdwDGUoMrYo1B31ZXGu4764sO8a6xRkasCoMe+vugYgd1cy+31nHxlyHNyLnnSOnXAd9/TKE+1vmjXs27Tc3+ueSsAcFoERgEAWKxVo36mmOo0DekJULQNxhkZMuX0ue2x7BIo/eqrr3ben3oKw74Nn2lQbdNp22Bt3repsb5r2r5dplxMA2/2Oa+2MX/VaNdcJ9uM8Gv3aYwAeNc2hm43x3z79u33fpf032U/k2ZJ0wSNtg2qZx/q9yYQkkDGLhJQyatMeToXSduu68r6ouOpRxnueh2tytO6fjdU17Ns6qm8E1DLdbhLJ4Suz+de3mUk5VzypG3WBp7DiNEx8o2u4Oq6azv5atI05+nYOwgBAMdNYBQAgMVaNSVfnylat2lwTEA064nWjY9p9MsojYximbIBsG3wLCOe+koAKI23u4w+y+dLcDUNyUNGpLTB1G2mVSwBjE2jsHIe2obzGNLAXwfPuhq6V41Uyu83fV/SsT2PuWZ3vW679qlrJFGfc1WnZ/avXVe375q8uWb6TqWZY6jTP4GMoWvmlgB7rqW5jepbdW8f61qVc5P7sg5e7XIdreuQMdY0urnfuka2jjktepd07Mg9l3tlSPC4PGfqfCL5yBgjCOeSJ7Xq62jfQdHouk4+++yznbfbzsKwrqyTc5FrP2UNo0UBgIN7CwAAR+7NmzdvX758ef568eLF26dPn769ffv22xR3u14fffTR2wcPHrz7zLavbPvJkydv79279/bzzz8/307X9vPdU2j3I/vQ9f35ff6e9+X9SZ8u9f6Xbebn69evD9q3y5cvv/v+XXzyySfvHU/2a9339k3zrnTLOd1W3pu0y3VWJI3r7SUtWtnHfG7dec112R5/vc38vZzXvDbdE+V+KPvctd2c7/p6WbfdVenR7me2ta28N/uWz626Vrdx69at9/Yj/99HyTP6fm5fuvK0Xe+1Y5Trpb52h8h1VvK8nO9V90ZeuR9zjec+6nNdd+3v0CaY9jmUfGDdPrfPgCH3ddHmR+X+KPd9n/ulfk6UV45lbHPJk7rSsH5u7EO+r+saGeO4or0OV5338r6h12Gx7hkLALAtgVEAAI7eqgDhPl9ppEtj7FiNjasCgENeq4InpaGybtguwdEcz7YNuHUj9BhB4aRh23jeFRwtjexpdB4ryLSu0TaN5SUg3tXIngb+rkBm0jEBnK7jWNVove1rVVChfN/QV19Jj/ac5bpal575W9nPoQGuVtKz3o+cq01B75yT8pkpgjRT5nNz3t85B0bbIHqf15DAVrm+huxvyZPHeI0ZGI2kRe6xvGdduiRPb4OV+cyQQPOx5Un1s7urY8zU2udSeTaNpb0+22dc/r+UNcY431McAwBwen5+6BGrAABwbDJdXKaDy5SCmWqva43JKb87Ll26tPG926w1l+3V09plmr+XL1+eT3mX6Q7z90wFmSnzyjFmu3lPpmYtU/QlDbKdMab1zHdmXdZMy1vWGM00l/n+bD//5nvz/fneTFfcV/b15s2bZ3fv3n33HdlejjNpkGNPGrfHmulVV02PnL/lM2Wq3DJ1YDmmfG7VNIpDzus200NOtd1WzkvSKVNGJm1z7GW64fwt90r2payTWV7527p06SvXQ/YjU3xm+suyRmBeXftRphfO5zI96JzWFG2111z+f27T/R6bbe+PXe6NyD2Ra3CXKUTr87/N/dw+A8ZYp7iV++bHH388z6uTZ+b+yb2cfDT7mHvs2bNn760Vnfvwzp07k08pO5c8qT72rnWup9aVp405lW3SKXltedbl+VfWL83030nfpOnDhw9N+w0AzMaFREcPvRMAAMD+pSE7jZmrGoDToJlG5ASM6jUu05icRu80cmYbUwaG851pdE1QsuxDvj+N2uv2vY8cZwJk9XEmoFAadHNsWY8tQaht1ost6ZZG+Ujw/NQCWDlfjx49eu+8RdKyBLjLenP73o/SsSHXcK7fbc/roWXfyzqYuedyX8w5kDuVHH/uqcj9P6RjBNtLWtdrVOZ+6Vpzs+t5UZ4VuU5zr+V8HeqaPVSelCBx+a6kTQka7lOOK+cmx5YA/RTPoxxjAq55ltb5bFmzeSwXLlw4/zfbLs9YAIC+BEYBAACAoyAwOs/AKB9KgDCB0Uig8M2bN4fepaMnMAoAjOFno2wFAAAAADhXB5APMY0uAADdBEYBAAAAYET1+qJlDU4AAA5PYBQAAAAARlLWMi3T6GYNUwAA5kFgFAAAAABG8ujRo/fWZQUAYD4ERgEAAABgJN9+++27n2/evHnQfQEA4H0CowAAAAAw0jS6P/300/nPly9fNo0uAMDMCIwCAAAAwAgePHjw7ufr168fdF8AAPiQwCgAAAAAjODx48fvfv76668Pui8AAHxIYBQAAAAAdvTdd9+9N41uXgAAzIvAKAAAAAAf+NWvfvXe/79+/fpg+3IMnjx58u5no0UBAOZJYBQAAACAD4KiZfRj8cMPPxxsf45tGl3riwIAzNPPD70DAAAAAMxjdGiCoc+fPz+7d+9e53u++OKL89GQmSb2o48+Ov+9KWPfn0b3k08+kSYAADMlMAoAAABwwr799tutp35NADCv2osXL86DgafswYMH736+efPmQfcFAIDVBEYBAAAAeDcC9NKlSxvfW9YbbafbPVW//OUv3/1869atg+4LAACrCYwCAAAAnLAE8gTzxgmKZuRsCTADADA/Pzv0DgAAAADAsXr06NG7n7edkhgAgMMQGAUAAACOcpTehQsXVr7u379/6F3kBEeM3rhx46D7csyuXLmy9p4GABiDwCgAAAAADFCvsXr9+nXT6AIAzJw1RgEAAICjsW3gSYCKfch19uDBg7MXL16c3bt379C7c/Rpuc19694GAHZx4e3bt2932gIAAAAAAADAzJlKFwAAAAAAAFg8gVEAAAAAAABg8QRGAQAAAAAAgMUTGAUAAAAAAAAWT2AUAAAAAAAAWDyBUQAAAAAAAGDxBEYBAAAAAACAxRMYBQAAAAAAABZPYBQAAAAAAABYPIFRAAAAAAAAYPEERgEAAAAAAIDFExgFAAAAAAAAFk9gFAAAAAAAAFg8gVEAAAAAAABg8QRGAQAAAAAAgMUTGAUAAAAAAAAWT2AUAAAAAAAAWDyBUQAAAAAAAGDxBEYBAAAAAACAxRMYBQAAAAAAABZPYBQAAAAAAABYPIFRAAAAAAAAYPEERgEAAAAAAIDFExgFAAAAAAAAFk9gFAAAAAAAAFg8gVEAAAAAAABg8QRGAQAAAAAAgMUTGAUAAAAAAAAWT2AUAFicX/3qV2effvrp2f379w+9K8CIfvjhh7MrV66cfffdd4feFQAAAOAICYwCAIsLnCQo+tNPP53dunXr0LsDjOiTTz45u3z58tkXX3xx9u233x56dwAAAIAjc+Ht27dvD70TAABjBkU/+uijsx9//PH8X2B5cp/nfr93797Z7du3D707AAAAwJEwYhQAWFRQNL7//ntBUViw3OMZOfrNN98YOQoAAABszYhRAGAxa4pm+tynT5+eff7554feJeD/yXqguUdzf7569erdz69fvz7/N///8uXL80BnH+57gP1JXpv8/NGjR+f5b8nL0xHt0qVL53lwpjnPv+s6p+U9eRntDwDAoQiMAouQSnoq2NvKuoMPHjwY5TtLxT8NAquk8bf25s2bnb4beN+VK1fOG+i2vbfr0aVTSL6QIE/yhdJImLURh0rD48WLF7d+f77rxYsXZ/v2y1/+8uzLL7/ca17MvG177Q4JjNbXXO65XPNDtgHA+ny8a3R+CYim/NVK0PPOnTsfBEhLnn1sz/+UG0swOB18SueeuqNPpna3tj1z4HoFgM1+vsV7ABYnFfsEK65fv77ztlK5qP/dxPSey5CGnTQSpYKZoFcadzTIH8bXX399fh6S/n0a2XIvbnvfdn22VW8rP6dRonSiKJ9JI2EaIYbkA332N9+da3SMPK6P3BN9yA+Xn1/lHOc6LA1x5b4YS7adV2lsP0SHAIClajs8Jb9NuasdoV9G/6fMc/fu3bP79++f17cePnz4XlmkbzlhLr766qvRn18wFdcrAGxmjVFgEVI5zwD4+pXRJ0+ePFlbYRgaFGm/Mw2xq6aDKsGa7E/ea7TochqJSg/5NAJNOfqQ1ZL2ZQRDn6BoRlTmXqzzjNzHq6bizPvLPVzu4/ZV/y3bSv5Tb6+MuMjouTQY9g0utfub/SmNjV0Bxn2PxCi907vSMPuX9GiPIb3VWX5+lXOfqW5zX+S8jz3lbRrec43lGjzWRneAuUlZpQRFy6j8tmxT5O8pK6U+lGd9qYPl8yVfTnmta3TpMcgxp8yVYxyzU1ee0Zn15MKFC+eddo81fTiN6xUAlsRUusDipaK5aqRVKg1prB1Lvd5ZpEKyLjjLcco57uqFm0DUMUxJVNaI2vdowimn0B3rXls17eeu5zajK9op6NJYkX3edeRe9jfbyCsNbGNMTzr0GMu04e1+JABqLbHDmGN+1TWV9a7Xau6vXIORxvtdpq4GOHV1npq8Oflq3wBLymcl2JcyQLZZ6kjHNpVuK8HetpNb3+dq1/IDpSMczO16BYClMWIUOAk3btzobJRPcKhtwN9FGg7qEVAZxcLyrBppvMsI5H16/PjxeyPIjlUq+OUYxhp5uKrRb90awttI40PbCaMEh3Y9D2XfMk1v1/ceohG1JUh1OHPMr6YI1tdTVGdGCACGSfmkfp6n/DJk1Fny+tLpJWW2Yyknb2OMcmemHG4ljdqOdH1lG2PWbzl+ZmgBgA8JjAInVSHoaozddUrdriBsmLpmuVZNAzn29JBTSSPVsUswsUzNltGiYwZaprpvc320o1qT99SjzHfZ3+Q5bTrs2ri2rXxP9uNY7oFTMsf8aqp7rDT8lTV2Aeiv7lySjqW7lrHGnJ1nTnZNl6k6Li2lAyTj2tcMMgBwLARGgZPSNdVmKp9jji4pDb4qH8uVxvd2BFwajo5lVNwSeuzX6wgeUy/oBHHbgFTORzuV2lDtiM0ybfLUTMc1X8eeX/Vh1CjAblJmqKdf75qNoq/UiY552typOvlM1XFpCR0gGZ8O2wDwPoFR4KSkIbhrSt2MLDG6hD4Vy6y1lB7waehJA8QxBeeOvQd5PUVYGo+OrRNCHdQde1rvruDk1I2RuZ7aafeYj2PPr4beA2NMRwhwauoyQ8pYYwVTkjcfW3ntWDsuLaEDJADA1ARGgZOzryl1Wb40GB1jQ8/z58/Pjlm9JtMxBuNWjQToWmuqr67pbBNwnTJvSyPqMQaoT82x5ld91XnCkgPAAFOoO2mNPbNAV8ewUzZVx6Vj7wAJALAPAqPASdrHlLowR2ksOfYOAPUosExNe4y6Ghsz6nKMxqyuYPGUI+ey7WMMULNMCfyW+yv30z6mkgZYgnoK3fj4449H3f6NGzdG3d5SjN1x6dg7QAIA7IPAKHCSTKnLqTr26ztBuBLYPeY1LVc1frWNkkMkWNxOfTfVdLrlejrWADXLZNQoQH+vX79+7/9fvXo16va7ZrVgXEvoAAkAsA8Co8DJMqUup2iM6VoPqQ7wffHFF2fH6tKlS5NOf9YGjcs6oFOcDyNAmJu64T0jRj3TATZryyBTTMl6zGW3Y3DsHSABAPZFYBQ4aabU5ZTUoy2PUfa9Du4tcdTBWKMzuqa2HXvUaM5Hgk6m0WVu0ump7vj0+PHjg+4PwDF22ppiKvIllt3m5Ng7QAIA7IvAKHDSTKnLqUiv/2MPYNXBjdy77XSxxzxdXXHlypXR11mcap3RbC/f0bVeKhxa3fje1QkKgPe15ap0gLp///6o36HMMJ1j7wAJALBPAqPAyTOlLkuX63gJU5c9ffp0MSMOVuUtV69eHe07ugLhY3b4yAjUYw+2jymjmdOAnDT58ssvR29Mpp86z3v+/PlB9wXgGHSVQb755pvR60PH3LFtrpbQARIAYJ9+vtdvA5ipjCb59NNPO6fUNdKkW6bXStqkwTmV8aRXGjoSZL558+b5GoerGj7SozmV95cvX3YGpcv2s81sO9OL5ueMsivflZ/v3LnTOeK3DVbkM+u2k31NgHydskZj3p/97tpOttGu7biNbCMBqwT+8nO2VRqhysi/pFcdDEzgJTZdn9nuUoL8dVDvs88+OztmXYGarlGeu8i12DaSZYq169ev77zt3J+5Vpe2vmju8UePHr07vjpfy/2X9GzzrLw3Dcf5bH0O87ts68WLFx9cx+UeT15Sfi75SRqm604Akd8nfyn7lX3K+/K7rmtmyvxqVbolUJ7ruuTbZR9L/rUqr59KnS5ln/a9DwDHJPl28s52TfJr16598Czbxffffy8/HtFSOkACAOyTwCjA/2tATQNxO9VkmVJ3jEDCOgnKphGiBBLbNX7a6TdTAU6j9rqgYBrQU0let83SIP/27dut9zVp1PYeT/qUBo4cR/6eAMzDhw87026btQ7TkJ6G7F0lKNg28AyR9B57KtKSVjlXOU8JMuW483POVwmSJviZc5nrND/nM7kuVwXRSpC1BFFW2Wba1lxjm4LG+9Cew2Oeiq0Ep1pT9PRv87XSUWDXBsncw7m3lzLqo74XI+mTtPv444/PA4v5fUaA5pUAaY4/78k5S/omLZLfleuynMtst36GJO1Lp4ZtlY4k+b5sJ/dtvj/7lGdHfm4DnFPkV9s8D3L8ZR+jTrukW/KvfV0zSa98V9m37MdYgWCApcrzpi2P5FmW500CmmPk4duU4epOROnYWHfsKZ1d3rx588H+5HPplFQ6B+W9Zd3plKXrOsshjN1xaUkdIKfsKLpJuW5KZ9q6Y1w6eeV7x6p7pDxS19PKd6Xul2Mr1+kSOksn7XKO5j7TT51vlM59pV6+7rzn2HO/lo6B5TpN5+1jrqsCnAqBUYD/pzQ0t4GkVDZTmN9HY26p/I1ZuR1rm6kopGJTp8+q4Gy+K43leX8qdnVltTQIbJI0LxXiUtkYIttJRbNudBgiDUI5lny+BE92rYCVynxXYCNKhSp/KwGVbYKZCUqX81Su21XHvem6TmBoDto0P+aRBl2B5hzPptHPQ5TAXS3X2y7B7lxLpeFqCUrgsUh+1dUgVd6XazH3YRlVk3RoG3zq67XOM0ujV92wu04CislL67w2v6vz0OxTGm/qe3ns/GrT8yDHtGr0amQfsp+/+7u/e56++2ogS4NcOf6cJ4FRhvjzP//zs6X5rd/6rbPf+I3f6PWZ//N//s/ZX/3VX619zy9+8Yve+/KXf/mXZ3/zN39zdmyGHOsxKLOotM+n5PsXL148/3ueS1OWw4Z2IioddcosD6VzTOoReRaUGR7qDk77NkbHpaV1gJyqo+gmpb5an4/SWbp0jMt35+95bSrrbHOcpcNuPRNJOcYE5sp35djHnNljH53jUu4sx/Ps2bPz46yPZ1WH6UOqy7PlfGRfM0K+7HvbllHk2FMmz99zrnLcuS8fP378rlOkmccA5k1gFKCSSnI7FdE+ptStp6eqp2XsqrxuOyVhCvfpSV0qLbVS2Wob07cJ4pXPp9f4qoph/l7SMp8rDfvbjhbtel9XgGcbbWW/VGL6SsW0rpwO3U45xyU9c+63qWDnnOe9SdNNgY6u6c5S4WsbSNZNZTw32dfimHvglgaW1lRBxqRVznHdcJbv36URLBX+0qCztKBoV5CzKPd/PRo0+VTX+/Oeku/WjUDJG+tznedLgphdDZvlWdAGaruulby3fs+Y+dWm58E2japJo9zDyb/y2ldQvc7fxpg5gNP0J3/yJ2dLk/zi93//93t9JvfwpnWq//iP/7j3vvzpn/7p2Z/92Z+dHZshx3rM9aGiBAtSviij28YuD/TpRJS/Z6rf5PElQNFVtq2DUqWD0yGCgmN0XFpSB8gpO4r2DeolcLcqvUqZrJy/vu0C9ewfq8qauR5LHTH7lffne/Y528Y2yjko5aqutCtl0jrwWEaOzqVjZbn2cn111YlzrnMOyvvqc57/z+/bMnrJg9IRMH+v20AAmB+B0QX6u7/7u/PpZmBTJehnP/vZoXdjdlJYXzWlbioq+wgE5DsSdEyBuq7klmBmH/lMKlkp7JdjSuG/z1RYbeCg9KLcJqCWykEqufl8aTgZ2kt6rKkhs50xAgRlf4aMQC0NALnW+gb5UgFrr41TUK/JeSzB3G3XgNr2fhqqDtKV/dglPyv39LFLY019HLkfN6VJ3pPjL41BSdeuDibJd7eZrq/uRNLKvuX7xuhdv0t+te55sGlK91Yaw0pwdB/qhtMxpmYHOAV5FiZvX1deznMwr/KeMQOlXZ2ISvCzVoItCaCu69hU9i/lrRLQiOx7trHPUV1jdFxaSgfIqTuKrtKm+aqAbC3XVhlFWOq12wb4ymdKGXLT9/z444/v6no5xvyc380hOJp7MPdiKU9uKgeW+650AixL/Rw6OFquvXVB7rrMXy+vlPOZn7uu2bbzYK4zgVGA+RIYXaAERZc6tQ/jTgv2O7/zO4fejaOaUjeF3H1VSvIdKYzXlbZdGrSz72Uamz5B0TZwEKk89Klk5zjymWwnFYOhx5F9rteL20WZAnNXSYe+20mFqRzDkOBA17VxCur7cc6NPKvUPcC3HXk9ljLtXW3VSMdNylTY2e9jl5EjtTaNtll/bd2MAttep13vS36dht6uBrQynW99HW0TPB2SX617HpSG87722bmjTdsx1tcFOAVlOt1No4TXBUpv3rx5XgbZte5UOoe25eYyEq1PADDPoARpyvMwx3fIQM1YHZeO0SE6irYzEG0TFF01e0i2s+mzuT7LuqjbzppU6ge5TuvZRerZcw4hx1L2KVL23KYcWDo6lMB9GX17qIBhjqN04NjUKaIu82ekdlnnNsfdXrM5T11TgJc1VwGYH8PFADp0VVxKA/i+3Llz54PfDR0xWYJKqYBsWzAvvbNrqQANCaYkPbMPu6ZfptY6dnXDy9AG+iWM1usj12Ld8LHr9Fn7VBrc8qqPIQ0pmep6H9MC555v79s6QN9H8pB9rbk8pTTK1EHCHM+292NXWu4yGrHN1xIQTTp3PQNKPlzWy0zDTDrsTK3rebBtA19ryOwHYwZGAdhOggZD1zgs60ZmXdKUW3cN/HU9o5On53nYtzzddhJNmeCQHQ5PscPOWB1F+35nXZcuM0X1DQyWetg2ZZnynr6dcvP+utNbvvvQnWLb85Tpc/tc4/Xx5FgOtcRBgpe5frYZKd4uyVA+23Xus9TIqo7dAMyTwChAh1UVpTKl7j50BTOGNkSn0aBvBbJed2VIBahW1iM8xd7Q66aEHdpIn/Q8pUpWm06HCJCX6WM3vVJhTqNJgrcXLlw4//86z8g9mB7fQ+/lobpGQw7paJFK/xIC821jSJ9Gya73bjuiZtvrPa91+XUZedCns8su2ufBNtMEr3P16tWzfRAYBdhNnjVDgo9teSMB0l2elV1lv22mwO+S52bb+SjPOWtRL7ejaJl2uda3LF6PNC7b3FSuKMGyBALz+a4RhdseX0YsHkr2pT7WIeXP9p47xPEkL8o5XLee7Dr57KryeVceZRpdgHkTGAVYIZWlrgJznwrN2MGMMk1VH2nMTkPEqtFHqz7TBk3SEL5LA/w+0+1Y7BIcO6Xe5RlBd+hjT3Az98SmV+613KPZ5+xnenxnVF8agN6+fXt+zg+x/12jPPtef6VBc4w1L+fUQSH6npN2pO+zZ8/OxpL8d06dH7qeB7sGx/d1bO33HHoaOoBjlDJE8s+UZXYpA5SlPcayS90iZbP2GbHtlPocX0fR9tzmmu5T9ss+dnXwXbfv7Yw3fWcZaYP+Zc3Rfcv+tvftkJHkKTvX52vo7DW7SKCyHY27Ttf+rSoDZ5slXXJt9Z2mGYD9s8boAn388cfn60fCpuuE7UYVtdPGpICcAvE+RnyVYEZdKM/39vnuUpHpUzDv6sG5a0P4vkYIzV29zl8qt0OvpWznVEbgzuE4U5Eesp7inLRr05b1QredzndJFfyxRw6Ovb0hI2Cm0vU8mNP+HVteAnCskveX/D/lh5RjHz161KvTZsq9GVk1RierXWcQactFZZr9fSxzwPvly6HXwzbBza61cvsGwVdda0M6O/ZZ7zzvq8uYh5j5oh31uEvnvRs3brwXZM2I2n3VLUpQepspdFd1fMyxrzt3fdtpADgsgdEF+tnPfnb2O7/zO4feDVjUlLptL8n8f3op76NxOCM968pbvrtPgbtUNvtUYLqmutr1WE9phOM6CbTX6ZvzmUpa6cG6rT6VuqWZy0i6Y5PGyHZ9om0r8KWXusr+fsxpHd32eXDMDcbt6HMAhsmzoMyKUQcVM6p006i2r776ahbrld+8efODclE6A51yGXuJHUW7pjPt22E312qu9fp6SRvBuvptWb++DWb2+e7284eY+aJrFqmhMp1w7cWLF2f7Uq6vPvvfdvo41o6BAHQTGAXYohCd3oxtpSuB0Tdv3kz+/al0tb1aU0HZpndlKpqpTPWpaHatlzJGQ/ihGz/mopzP+nrKeUpFMemcRppUuo45+DA2wYxxlKl960r+th0t0lCYzy6lg0MapcacjmzsdJlLOnc9D+ayb9tqZ12Avv7oj/7obGl+67d+a1CHjSnS4g//8A/P/uAP/mD07XKY0aR1oDQBqa5nbfLkBEcPHYAsU3vWz4gx1wxnHh1Fyzqfu454zL6lnpZpgLONbYJk6SiQNoOUvcv0qrvUifddnum6f3fpvNeWIfc5NXDOW9/Rqe3SG+1MYgAcN4FRgJlPqZvKUypedcVh2yktS+WrT+/GrgqKaXDH9fDhw851kdo1ZNMwkLTPtTeHnvWH0jYC7Dp12ilLntVOi71NR4u8p6vH/bFqG2b6rt3cBgs/++yzszHNJfjY9TwY+1j3SYCUIX7xi18cehdm4Td+4zfOX2P77d/+7dG3yXwCpQl+dZV5y7SWh37edXWUMp3ucjqKdq0Nuss2y0jpbeX63mVU5KHrfl2B513u2faz++z8+uOPP/ZKz+QD7bVjxCjAsvzs0DsAcAxSCO6adiXBgn30dGxHjLYBtC4pyKfRIVPx7tpwPKdpHZcg19I2Qaac4zJt88WLF88DpH0DOFDrCoBu6tyRPC75wlLWF402ONx3zaY2nxxjrbQ5NYQtKZCoIwXA4eT5uGr6zzl0uOoKcu1zFNupdxTtkrpO6r4Jkl64cOH835TbUq/tWy7pOpeHDsbvEtTdt3bE5K7p15bJ9nl8fcvW7bVTRpgDsBwCowA9Km9dheGuXtBj6xotuCmYUdYD6RvM6Gq8UAkYX6YaSy/cPmlbelK3QZ1TY2rd3bR5Qhqg1gUGtx2hfky6pgXetiG0fV8afcduZJtLMG8Jz4M6vzi2fQdYgjwju0aezSEA+fHHH3/wu1evXh1kX07NPjqKdpVjus75odTHlo7IOb4Eg/PK/x/6HlnVYbrsY99Xju9YPHv27L3/N1oUYHlMpQuwpTSoHnJK3Yz8rEeOblobMH9LhbNvQ7Cg0/7k/OR1//798/O17ai1nPv04N1laqZjIpgxruRXpeNEkeuvq3GqjDxf4rWW/DwdDeo02KbRo02nOYx4mUrX82AuQdshjnnfAfYhgZgpAgAp77ZLg5R1rA85gq+rjNl3Fgl26yia8581Z7cdPVg6iqbT3qb6d9c2D12vyP6nDNqWxXN/pIxeOu+lzJKA6SGDo133QtZNHcucR++26W59UYDlERgFGDClbgIFtdLTc8qehGUtlvZ7u0ZypSCfisyQYK2G48M0CuSVc5ZzlyBUOYfrehjvIyA/B4ecdmmJSoNLfX2tWkP08ePH5+9d4lpbOabcd+mYEMnXN60rlvfUDSVpHJpzo86uup4Hx9Z5ps4vDt0YCjBnKQukbPnmzZtJ8svUY9pgw6EDo13POeXM5XQUnVOZJdd+7q/6+EowdNWSDHMst5zCyMmuaYxP4bgBTo2pdAFGmlJ36ulN851tpWnVSKVUKtPIMKQA33VsGgj2I+es9H7O1E9v3749D7wkeNN1Xva1xi3L0+ZXZWRoK3nMkqdubnt/X7t2beU9VTrAFLk3l95IMscGOQCmNVUwKc/MNgh66NGZXcfq2XcYqe+k/pNXWcZhU9C8dBSdc4fflLFT3syrXO/phJeAbsqSY69TP6ZTbRfoWl8UgOURGAUYUEFIcLSVis7UAYR2+/nOdo2VEuAYui9ZN2Sb9VkYpkwb1qcRKcGp9N7vCoRPPY1npqraxzq667SNInPq/X2sukaat6OPy9qjS1tftJZ8MseXhqk0epTGq1z3GdmSYGj+Tb5Y8tTck8kTlx4UXfU8OKYGsXZf57SuGMBcTRmsbAMMh36mdH3/kmeCOLWOoocO7OVeSpmy3r8EQhMUPYZgW9e9cAr1sHa64FMo8wOcIoFRgB2m/Nn3CL6untZtMKOsVzI0mNFV8M80RYwjQcZ2SuRtpUEga9LUTmHE6NxGFyxB1wj0XEt1Y9HQdYqPRZmuOvdj8r00UuWVvDPpkCndynqsSYPcf6V3/6k0ml69evWoO8q0jXenct4AdtF2uhxTmw8fOl9+9erVB787pU40h+oAua+Ooofs8JuyZNK3Ps6UMdu63Jx13Z+H7sywD9YXBTgNAqMARzalbrv9NNqPGcxIBaj97JQNJIdw6ArdLsHMnNsEaJZ8flrt9XhMgZk568qrSseK8vOSp9EtnUrqRp/03q9HKOSVRrgERNPodgy9+8eU423vv2PqKNM2uh66AR7gGDx79myybbeBqkN3vuoqQxsdtpyOol3ncl8dLHOM7TrnbYfmuesKCC69g+oY64vu2taQ6znXT/LLCxcunF28ePHdbDYAjEdgFGCCKXWn1DUS9PHjx++NgNo1mHHjxo0Pfrdr8G2MYORYjSeHrtAlLXbZh7ZX9JTHc+ggcldAYy77dOxSyW/vqdJgk+m487clNw4mTzt0g+wxaJ8Hx9QRo80rTi2wDTBE15rjU+XLXTMT7FMbUEu5wLNiOR1Fuzr87qODV46tPb6udoNNtqnzlNlPpqgfddUDpuw4MQfteevbqS7tMNeuXdt5Pdqsj5sOAOmg+eOPP57X/3OuEyQ9prI4wJwJjAJMMKXuvqfALIGyBDVSeN81mNHVG/HRo0dHHYws5lKR2LXRqT7H2wR3UrkaOhXl0M+Oqa6UzuVaWoK2o0VZt/ju3buLXlu0XNtpgBBo7/88mENHmW3UeYXRogDbq2eQGFMdVOkKWu1T17Osq3Pokh2yDLSvjqLtOd31e+vtrKrPdY0MHdJmsM16nrmOs/zDFGt/5h5ty09jLeOSczBVPnPI9UXTYX1Ih48y9XLSN/uQa6jM3FI6qyZQmvrZ0MArAO8TGAVOwhQVhU1T6k6pHRGaikUqZnmNMfVlKkBt5W3XisuugdVoA3Rd6wLtYz/GsOt+1NfcNoHLrmt0m8aQvKdrfZ59q3vvH9NUnnNv2OrKL7766qvzRpYlT6Nb3zdlxD3dujrb7Jp/TflMXtcAD8B2Vq3ZuKs6qLLvzqXbBK+OdarKY+0AuY+Ool3ndIxR0elEuOp62XXUYTGHznttXjBWJ+Ok3RzrGu25S7ByW7mucs6GrNub+lfadJLe64KxGU2a7xgrQA1wygRGgUUrlYkpKxWrptSdUgrLbQWrFMDHGuXVVoKShumNOkQ+O0aP0PaYh5zXufRMTaVyl4pl3dN52ym/+k4lVdJ3DgGFeo0bo/w+vBaGBpq6gl65LnNNzeG8T6kc31TTjy1J23icZ8EuabavNbbqPNbUiAD9yhZDy/2rpCG/fnbcuXNnp+3tOuqvrROkDnWsZZ9j7QC5j46iXR1+xyiH5PpZFcBq037odTWHWXKSdu3+71qfLqNt99U5Ivtb1utcF4xt86joM/ozwfKUN/uOMk15tQTr2ymia9n3UieeyyxYAMdMYBRYtHrtzSkbvg8xpW5XoT77MNbo1VSA2kpjCvtD0jFB2zHSvw6ORd9gUCpF2Y+2sjLWtdF3O+kZOlSpDPW57trjfvHixdr3l56ocwgotPs+5ajRrvM4ZHTyPuQ6KIHioRXkrrxkl8bKYwkyluu6TF1Venmfij7Huup5METylSnXr1vVoNg+PwBYLx2HxhyVVHe6TBBy1zrLLkG1dqRf9mWqUbL7cowdIPfVUbRr2t1dyiKlzDjlCOOu/VtX951y5G9bBtz1uEsZctfOEdtIB4/Udcq1kvaAVflapqptbZtP5XzlWh6Sj5S8bNO9WAek51A/Bzh2AqPAYrWVlV2CUHOcUrdrZOjY09HkO+rvGTI1TCojqXyM0djQBgH7VmhzPWQ/2vM0tDdu+7m+wbNUnob0uK2Pu0+63rx5873/39TYVdY2mUvv+boCOFUv2VXBojn02O5S52tD87iu4PouHT260mqOvZrrxpjsc/K2ixcvnvcmX/XK39PjPIHUvL/kb7voSq8pAv+75lft8yDH3ve8Zh8SoOxqzBn7Gmm3t+va2wCnKHn2GJ1Z6mDEWEHI7NeQ8lnXaNgERHatxx2qo+Wxd4DcR0fR1GXaoFe+d2ha57NdIynr76sNKSsmeNgeV9f+lmBp3+u3z7Hn2qrv2V1mkir3X45tH9deV0e+rnyjzHDV7tO2I69zTSSdhpQ3y3W8KT8rHUryr3ItwAjeAizMixcv3t6+ffttsrj2dfny5bcPHjx4+/Lly0m++8mTJ+++6/r162+nlu+oj20qbXreunVrq8/du3fv/P35N2neno8h56Fss7yS5tv4/PPP337yyScfpFvf7cSbN2/O06DrGnv69Onaz2Yf+n6mljT76KOPzj+X89JX+/2rvrucrz7pMrX6Opzi/krekeuk67zmlbwj5/7Qcm5yH5TroH7ld+V+66O+nre9v7v2a1Xem/3KtTSH9FuXnwx95fhy7H2PL9dcV56Q/LxPvjBVftWl3laOe9trLd+V9+d4c9xdxzzm9VGf29zXAKyXck5b7tm1bFDy/3q7eQb0lefDqrpd3+3kM/U28rwYoi2HDSmXj7mduh66TdrUdaN9a8s+udZ2Od5tyyJtOXVIfaLUFdaVWbrKl33KXEmPXBfRljdbuTe3uQ/GuM7aOnTfcmS5/7Iv+6gTrMo3ur476Vj2q06rberCuSZ2OaY6T8q2pmqrAuB9AqPAIrQV7j6N2WMrlaV9BEbr4x5aqR/aWLKu0J7fl4pT2a+xAqNRB69yDtdVyvIdqXzXje5dgdHSgJBt5+9tBb1UeHa9vuqGgDQMlX3ZpnKailnZh12CV/Vx5Oe2gaq8Z8pg+xj3+S5yzDnGvue0Pb/7Crisqthv89qmkl4HqrZtsNwl/cpnhzb+jWlVMHfoa13jXrm3huQlJbi8jbHyq20b/NYdc66/ksbludj1PCiv5JF5X167NJrVz4khDa4Ap6YrEFqXG0vnqz55c/u8GNrpp6scVMrFeW5ss095zxgBufq51rVPh+q4dEwdIA/ZUXSX4GgpW2yzr20AftvAWanvlO9o6631OSv3xbo0GOt6Ldprdttt5JyVoOiQzhFDbXOdlTQvx9Knc105P7scU1fbRNIq522sjpIAfEhgFFiEUpgtjcfbvPo2BPftCbmvBv9S6dpXr8u24J7/T+UhFYn8WyqM2a+6gjBmYDTaCl4q2Pn+NHC0+9I2sK8KjNavNvBYKvB9rq+8WmU7dUNMXfmq07McR35Xtpl03bURowSL2/OYNC2V3XzPHHur1mm7SwW0BAL75Bld53hfPe1Lw8eQfdw2byjBqG3V+ejQ9NtlBMqucn3XjTt1x4j2ld+XV9vQ1fVa1VGl5IND02vbBtyx8qs+z4NsJ+lZ8uDkJ+Xvbb61LjA61jNirO0AnGJgtC47dAVWSifCrrJYmdmifl629YIxAqPZXh1sWVc+LrMW1PvTJ+AwtMPRVB0tj70D5KE7itbb2OZ6yHks19m2103X6ORN31Puszb42Z7TUtZKOnZdH2Ndr9t2eMh5WFfWKu/fd1A06rptV52o5A1t2b3uYNeVt9T16V2Dl10zqbSvXTsMAvChC/nPGFPyAnAYWfMua0y066ZMKetoPH78+Pw7sxZGXlnvIuup5JW1Ttt1L/KerM1Xe/ny5c7rV2YtkKdPn56vzZE1Vso6INlu1gjp2pesDZi1Xi5dunS+3/W/2cf8fPXq1UnWPcl3Z9+61lbKeis5lqwvWI6jpGuOIes8jbmeSNIg64iWc5jvLOfv9u3bZ3OUdWLLmjbZxzHWqOL0JN8oazLnPk9e1jcvyj2TfCf3bNdawWPkb8eg63lQ58FZ27hdI6s8D0q+m/fWefHHH398/u+NGzcGrfmWvC35ZWQfNq2zBsDfPxtTtuoqBybvzt+S5/dZn3DV9vrI96XOU0venjy+rO+XNUfzPMkzp9Q58iyu1yLNMyVrjPfdn6wtnmd+n2dS9qs99r7bKencp9murJter7Vd1sMs6yjm55RfDlVOKemQekhZvzzl+5Tzy/5+9tln7/Yvx/Ts2bPz53upryRtN60tuk62k++ry3Cl7JHrJ2uxZx9LvazUt/uWS3Jcpb5VZFu5dvM92XaOLddpfpfjaut72Y9r1659cN+tKsOOdb1uen+57+r9yb6nHJd7L8dc1lfNeU46HELuh+xnWZ8z11baDXIP5Perjrt8LnKtlbJl0jzHNbQO0SXfk+9bJ/v/448/7rweMgC/JjAKcMRK428K9WMGzKYwVWCU01JfR7l2cg3B0OB68s3kn2OoG09CQO5w0rBfGjrTYLVLwynAKdUrkn9uU7ZK0OXRo0fvOiaWDnZ1R8mujjFTBEbr99y9e/d8n9qOm+nwmOf03OtLY5pzB8g5dRSNlN9yPbdpVXe03bXOWt8zXddnjmvd/ZJ9yjkt5dZN7z9UB7nSUbmkX/YzwchDB/PK/VDSP/uT6ygdJdZ1hs7763xlXefrXZWOC+U66TJm3QXg1AmMAhyxVDRSQD+G4JDAKGMpvaC7GsVgnVw3uX4iDSJv3ryZLCAX8rjDuHDhwmTnGID92yYwCrAkZVR1OzON+gXAOH420nYA2LMyNU2ZDhJORXr2FoeakonjlCm/uq6jsbTXYz2ClP2o03yKcwwAAFNLx4/ULdIJpB5xu2o0KQD9CIwCHKnSAF/WZYFTkWmjSuWwa21HWDXapF1vawr16JVjGM2/NJnurPB8BABgblKHzSj4zKi1KdCZuoUyLcD4BEYBjrgwXQeI4JQ8fPjw3c+Co2wjax7VLl26NMn3ZJ2oVd/JtNKwVBqX5rCeFQAA1FJWzaxf6bSZWcDqTn2rfPbZZ+9+PqW1kgGmJDAKMBNffvnl+bpo6TWYKXI3TRWYgrRpAjlV6RRQ1lb55ptvDr07HIE2EJqGiCnU260bMZheyQsSEL13796hdwcAAN7TtvVss15oqV9k9KiOfwDjEBgFmIH79++/Wxcthd4vvvhi7fvTqzA9BespG+HUPHny5PzfdBLIPQTrpBGhzjMfPXo0+nfkWqwbO/To3m/v+5L2GVGu0QgAgDlLXWGbznxlGSUd4wHGIzAKMANPnz794HerRjMlgJoG4GMbDZOAAYypXm9lmymIoM43E0wfe9ToV1999e5nnVf2q6R90n2q9WMBAGAXpX7w8uXLznagVpaNSZ0l5VtlXIDxCIwCzEDbeJ6RLl1TqiS4mMbfFIiPrcG9KwAx1VSWnI70ns29knsja7XAOgma3b59+93/f/rpp6PlQ5nGtYz8zzVZRjQzvTQYlbVFS496AJaja81u63gDx1ofyStLKW1Txk0dN+9XtwAYl8AowAzUU+emQf3777/vfF8Kz1kn79gKxWmw7loHMoX80pgNQ5X7IRXHTevzQkaNlpGjCahnXedcO0OV6c/LdM7ptJLe36Zy3Y+kf+kUUTpKALAsXTPPmI0GOFapK6Rd5+LFi+d1iLpNJGXb1E3SgTNl3HTq3GZkKQD9XHj79u3bnp8BYAIp9KYAnIbdMj1oXfFPUDRBnxcvXsx+tGgK9teuXevVaFGCCDk+Ddv0VXrT5jr68ccfBaXYKp/KCPzSEJF8Jx04bty4sdX1k/w4+XUZJRppuDi2ac6PXRqNcg7z3DRaFGB5EiRIPajtTFlmZ5h7vQhgleRrWRIm+VxeaTtJ3pZX8r1t6yUA9CcwCjAjKfymkT0V/Js3b54XgtM7MA3w6VGYn48haJgCfhqr+xbiUxHIWhvHcIzMT4Ja6XGb+ycBdthG8tcEM+vRxsmDMmVVRpOWfCz506tXr87zt+fPn7/r9JH3JiifwJyGi8N0KMq50pMeYBkSHEg9YkgHy8y6I1AKAMAmAqMAM1NGIaXxPQ0DpdG9XhcPWB8oyTq8xzblNIeXjinPnj17l/9m/bLSKJtG13RQyb9Xr149b7RNQE5HjsNIJ4h0htARAmBZ8vytOyZtK8/rdJLJsxkAANYRGAUAFhkcNa0pLDeAnRkWBEUBAACAvgRGAYDFKaPJutbsBY5/JJFR4QAAAMAQAqMAwGIDKGGqU1iOTJWYNV5NlQgAAAAMITAKAAAAAAAALN7PDr0DAAAAAAAAAFMTGAUAAAAAAAAWT2AUAAAAAAAAWDyBUQAAAAAAAGDxBEYBAAAAAACAxRMYBQAAAAAAABZPYBQAAAAAAABYPIFRAAAAAAAAYPEERgEAAAAAAIDFExgFAAAAAAAAFk9gFAAAAAAAAFg8gVEAAAAAAABg8QRGAQAAAAAAgMUTGAUAAAAAAAAWT2AUAAAAAAAAWDyBUQAAAAAAAGDxBEYBAAAAAACAxRMYBQAAAAAAABZPYBQAAAAAAABYPIFRAAAAAAAAYPEERgEAAAAAAIDFExgFAAAAAAAAFk9gFAAAAAAAAFg8gVEAAAAAAABg8QRGAQAAAAAAgMUTGAUAAAAAAAAWT2AUAAAAAAAAWDyBUQAAAAAAAGDxBEYBAAAAWOmnn346++Uvf3n25Zdfnn366adnFy9ePLtw4cL5v1euXDn7+uuvz/+e963zxRdfnN2/f39v+w0AAK0Lb9++ffvBbwEAAAA4aQl0fvPNN2fffvvte7//6KOPzi5dunT2q1/96oPP3L59++zOnTvn76mVwOqtW7fOHjx4sPI7v/vuu/PvzbZfvXr17ufXr1+f/5x/Hz58eHb9+vURjxQAduP5Bcfj54feAQAAAADmpQQyizTkZmTo559//t77SsNvGoTv3r17PiI0gdS28TcB1m3kO7oCrgAwZ55fcDxMpQsAAADAOwlulqBoRn6+ePHi7MmTJx8ERcvfP/nkk/ORom/evDl/X+TzJRiaQOm2jcX5jgRUs8121CkAzJXnFxwPI0YB4AB++OGH88aheoqVTKuS/y8/37t373yqsVMgPejLNEUAMI0EMUtA8/Lly+dB0T4NvKVRuF5PtJ2Kd512mt3si3VJAZg7zy84HgKjwGKCKp9++ulk209DQBoFso5OKvjpBZbKPgz11VdfnV+3/Jr0oC/TFAHA+FIeyzO2ePr06aBRL6k7vXz58uzKlSs7Nwqnc5yG5cNKp7N0StPhDGB7nl8wX6bSBRZjl2kq8tn21VYE00iQymB6fCUIe/HixfMCTv7GfNZBSuPLhQsXzgPYcw6amGLlfdKDvlwzfy/PpjRil2dT8sD8m/ww0xj2mb4QgNOWzmpFpsZNgHMXCayO4dSf9Yf2+PHj8zKF8gRAP55fME8Co8AipGE869m8ffv23StTPnWtgVPenx7M5b35bPuq/9a1pk4CogmSlgAphw+K1pX1BAqmHEU8Rs/BXFO5tnKNpeHplEkPhkxTdOrXTPK9PIPSESTBz3TgKZ11ytTCeU+CpgmS5n3JGwGgS54R9Qwed+7c2XmbCay2UwsOkZl7OJzUnQHoz/ML5klgFFisBD/TaN4ljcTb9n5O765sKyOT0uM5wdJ2ncMyilQP2u2kwT6N9WO6e/du5/f0Wc/o0IFB/p70WK4p7v9TvGYS5ExnkKRnnkkJENedg9KAmTSpn3Vp8K4/BwC1OoCZDqFjjXLJc2rXkacclnIDALAkAqPAoq2qzO/aYyuNBu20UGWdU8HRw0zFtKqyfkyVeA1G75MeyzTlVGynME1R8rQ8axLkTKN1AqB5JrXrXuf+ySja/L0dTZvAtOcVAK2641L7XNlVOpJyvJQZAIAlERgFFm+qhvI0SLcjUkuD9TEF45YyFdOqaZNX/X6OTiGo04f0WKYpp2I7hWmKrl27dt4RJ6Nv0kFnmw4EGTnaTmOYBk7PKwCKegrd+Pjjj0fd/o0bN0bdHvv1/PnzQ+8CAMBoBEYBdpDpddvAWxqZMxqK1aZoiE/Df9uzPaOkxu7tDuxGIG630TZpuM5zp+96bQmktiNHS2ceAHj9+vV7///q1avRO7wdU4dF3u9MpfwGACyJwCjABNNCZYrDKdbQW4qpptDMGnsZQZWAQVlfD5gXU7ENT7f79++fjxBtp3LfVrvmaL1dAE5b+3ye4nmdda45Puq1AMDSCIwC7GhVz+e7d+/ufV+OxZRTMeV8ZGSU9SlhnkzFNkzp6LHrGm1dn8/zykgQgNPWTkefjp5jM2L0OKnXAgBLIzAKMIKu6Voz3aGRUR8yFROcLvf/cN9+++35v+n4sYuuz+ecPH78eKftArCstd3zbBh7RgFLXBxn+UPZDQBYGoFRgBGsGp2Y4CjvMxUTnC73/zBl1E5G2ozxXOlqmH7y5MnO2wXgeF29erVzloGxg2JtAJZ5d2j7+uuvD70bAACjExgFmGDqqcKI0Q+ZiglOl/t/mLKmaAKkn3766dmFCxfejSAdayrDKaZMBOB4JGDZ1XHm2rVro37P999//256eOYrAXFrwnJI6QyYUesJzn/55Zejj2AH4LQJjAJM6NWrV4fehVkxFROcLvf/cF2dbNJINLTzzZUrV0bYKwCWpmt0YIIT6ZQz1jM8wdepRo1mH1PeSEDv4sWL5x2J8srPCazs0qlo25kx8j1Jr/L9eeZmfzL6dpdZH7Lt7H8dKMp2y3d1BTHLiM/sQ0mHvG/TfuS7fvd3f/eoOvnuM31WSSeznOf6/OffbD/fM8bMKfmOcpz5rmy3HGc5jq7zVt8b5X37uDeSll1pkv/P77v2tXQEzOvBgwdnr1+/Pv992c4Q2WbSqms/8vs5dBCcwzV8iLTax32zSx5eH/uUM8Id+vk1ZXrW1+c26Zhrok6HfD7bMSMfo3sLsHAfffTR22R39evJkyejfsf169c/+I68Hjx4MOr3HLOXL19+kD75HX/vk08+cf1UpMdy7Ov+v3z58qR5/aF8/vnnoz5jki5d25MnA9A+S+vXrVu3Dvas2PSMz/+n3pdX9jPPyPzu9u3b7302fx+zTPnmzZvz7yvbz3flO8v337t3773neP7+9OnTnctR7SvfUcv3t/tTl63bNMi+5jjWnf9tX/m+fdpH+qzz4sWLd5/N9urrL+e/3u6u198256e9R7MP5bv3dW8kTdrrPt+XfWmvs7yv7HO5l9K+km0U9T3Wp3yf46nbg7Ld+vjrfcz7DlV3OPQ1fIi02ud90ycPzyvfXV+v9bHn5/raPObn11SSPmW/k15Jx+x3nc65vrrkmNvrL58r1+aqz8EQAqPA4u0jMLqq0bpvgWmpUtjsqsRphH+fQOD7pMf8JE8rFcRUSvLznO7/pQZGV3W+GXp8AqOwvf/xP/7H2tf//t//e9B2/+Iv/mLtdv/6r/960HZfvXq1drv/83/+z0Hbff369drt/tVf/dWg7f70009rt5u/D5H9WbfdHM8QSb98fskStNvUQF8ajfsG+KZ6xuc5uanBuK2vbVOG2aQEJkrD/rr0aBvfsz/53Tbyvrw/6b4qMFYHTUogrD7G8rv6VX9/tl0a5str1flv39e+xkjbPvaRPqvUwal15z9/q9O0z/mvlSBNW09aVZ47xL1R3xfryqvt+8oxdaVjfV632b+kQZ1GSYdV6V0Hcdpr5RSu4UOk1b7vmz7B4HXbz/6UtOoToJvj82sqpZ6ZdOqqW9b3fZuGpc7blWfkvJRzte/ONyzXhfxn/HGoAPOR6RfaqZ+ePHlydv369Um/4/Lly2cvX77sva1MG5H15PJvpkbJdjPdVNYxzbpwmVJi133PlBaZkibbzj6Wn/NvvvPq1avv1rQr8vusB1T2K/uU9+V3XesR1d/11VdfdU6/le9OOg2V/ch0GtnvbKs+hvJz9u/WrVtnY8ixPHr06Hz79bnJMSQtMi3IurTYJFO01NODZOqgMfY95yzX/PPnzzv3O9OSdK05eGjHkh71vZrps/Nv/r/cV/m561rP3x4/fny+L+WaiuxLudfHunZrSdNcx20ek/3L9+Y6bve1THGUz+Zv5TrPPZGfX7x4sff7v0um2amn5OrK6+t0zzVQ9m3qdN9FmU6olv398ccfB01HmKmYuqZLfPPmzWTTG8Kx+vf//t+v/XvymN///d/vvd3/8B/+w9lf//Vfr/z7v/gX/+Lsn/2zf9Z7u//xP/7Hs7/4i79Y+fc/+IM/OPvn//yf997uf/pP/+nsv//3/77y73l+/st/+S97bzd58Z/92Z+t/Pvv/d7vnT+X+/ov/+W/nOfxq/zTf/pPz/7Nv/k3vbf7X//rfz37b//tv5398R//8dmS5ZnfZz2/lAXKM3SqMuWqZ3yZ2jF1l03linYb+czQ/c33lqkNsx/Zn77P9DxzU4bqWx5K2SXl5PpYchylDpntt2Wg/K6dAnNTnTjbb6ffn6L8NrZ9pU8pT6XcmHrKNvuVKYrrsufQslyR/LGdarScozL15D7vjbaMuWk77ftX1ffK1MH18a2SY87ayCWd0x5w+/btXtdMuV6Wfg0fIq3mcN90Pef6tDWUY9j22Of2/JpKuTY3PRPrdp6SFiVN80xs29TKlLw14SzGYI1RgB2VwEKrq9F5nbJ+TwoSefCXoGMKCnfu3Dkv+KWwkAJBArFD1xjI/mYb2b8UBrOdfF8KMdmHrmPJe1IQy3tSaEmhMQW3sv5Huy/ZXlnrIt+1ak2ien2TVa9SAeqS9CnHkkJtOZYcx6rz0le2ke1nX+qKZwrN+f4bN26cB63z3eX8zWXtg+xTWWckP+eclWsq+1/2u6zfsM/1O5aUHrk+yv1UrsNyP61amynvy3fkM9mP/Jv9SEU0+1HuoV3u9Vb2p6xTk+/PtV1fx/n//L6shVX2vaxdlP1MRSWNEdnX7GfZbp1W+7r/hyhrZpV0L+d/ynQfQyq92c9SYc7/f//994MbBFZ12hkzKFrWlCprWdVr5ZQ1ZuaSVwLwvjwf+3TETH6eMkTy/OTxdVljSnlWp7PTtsHFtn42tJxRr/eWBtxtg6JRN6SXAEPf52Ge16sCCiXgMGYn4GOzj/QpazvmfG4T3Cn7lfJbUc7/Lh4+fNj5+9x/qY/s897IdVxvJ+m8KXCT99RBkHxvV76RsnrKrwmGrDuenJd6TeSc502BvnJu6gBX6RS69Gt432k1l/umtB8N7YBdgrplzd9jen5NJee2dI7a9Eysj+Xu3bvvrotcf21QNOe7q4Pc1OULToPAKMAIDQetFGy2KVQWJaiWh3sKmSn0l8JZKaCmwJS/pWBYgnUpePQtEJSRpylwbFMAS4Ex35XjzH7l33xnXYHP3+v9SOEmhbyMmMv+rmtsL39f9fr4449XfjZplvSZqqdczkuCKHVv8IyoyrkovSlznnJeUknLvznm7NeQ0Q1jKZWccl7KfpcAYP4/+5/9LQXxUuBsR6UtwdTpkeuv3FPbyHZzj+TayX7U93q5z8o1Xe71PqM21uUxpRdxjr3cz+U6LvlO5H0JZpWOD0mbfKY+xrpHch0A3tf931fSPaNXc8z7SvcxZT9Lg1DOxy6j07saYMfKR0vQvzSK1yOTo5zb3GdGpwLMVykn7dI5Js+Dtp4wlpQzsu3s57bPkzaQsKpT6Dp5ttUdwuoG+23lmVvqiqXM2Xc/uupxKbMlXboCDm2jetJsycHTqdOntAGkPNYnsJ3319tNGWmX8mYpU9WyzdLpcp/3RsrZQwI3ddrnO9vtFNu0XbR1t1WB41Xbr9Mh5+WQnfimvoYPkVZzuG+Sf9fBzOTHfZ51ddvCqvbAuT6/ppTnWI5lm45C9bWd4yif7UrLtCu0NrUxwLZ+vvU7OUp//ud/fpDv/fnPf/5uJEnfh8Pf/u3fnh3CL37xi96f+cu//Muzv/mbvzk7hKRv0rmP//W//tfZb/7mb062T6cohaKuHmJTTSWSQlumDSlTiaTBOT/3mUqk7eHXNU1L2/uvnYKl6/jKaNLomlZziqmYkmZ1IbbvtF9jT62S85NjL+c0lY19T8HTdzqcMg1quQbK9CeHnDro2NKjvW+7prSq/5Z92tQzNN9XT5eT67FMUzfllFblGi/vz77m+LreX0bJRp0/7Ov+7yP7uu90n7N2mq3YtVNE8ssExesAaEYi55rPDAgqrwDHJ2WAMjvLqlkwtimH5DX2UiZDntFdZYBMubztNkrAt0iZcujzLTMClbpG0jbBoD4jT9v2lrKESLbbJWlfOrpln1e9bymmTp/SWJ9zmFef6ZRzP9V1hZSf+nSq3qQsdbPPe6PMlrMuYLtK+x1Jm9wTfesJbT6VdOh7f+a8t+emz315LNfwodLq0PdNmT2ttu3I1aIeZVu22fd6PcTza0p5xuf+7xPoreWzq85lV2xhSDAaugiMLtyf/MmfHOR7f+d3fufs3/27f9f7c//5P//ntWviTGnIOjF/+qd/unZNnCn90R/9Ue9g7rNnzwatKUS3FIa6GpL7rBOzy1QiZfqQEtgcsp5p2V6+u+tYjm0qphSQUijbtedcvWbQ0KlV6u3sa73C0nux6DsdTglclYD4sRc4D5Ue6W3bFRgto+e27chQBx4jP69ay3PsKa1yzZfGjXxvAlztPictk6ZzX2eqTFO0z3Sfs1XTPQ1tkEt+m84HdWNYtnXs+QcAv5ZyQ+oZKcOkfDB06YU0Ro+1Xnx5/gwJ7qXcUgcE+gR82wb1XYKLKZMkLcpzuSxtMrSRu8zOsC59yywnp2jM9Ml22vpmn2Be+x2lw/NY5ybbGhLM2+XeaL+vT/2g671Jzz5l064O60PymgSrygxdZT/y8xw6+I11DR8qreZw37SjmPPZPtfqquWa+gZGD/H8mlLpjLFtu2GfpciyzfKsLEsQ7at9jeUzlS7AAGWkZl0QSQGwa6HwuU8lsrSpmHYN0sxhapWhljR10DGnhymt5mOJ0xTtqitPGhoULc/Ccm+U56CgKMDylHXDMqV7yev7TuvejvjZ1ZD6R1se2PYZXxrw6/TYNVjSBlp3WTMux2Ga+sOmT58gRVddYUz7vDfKyLVd6ghtXpJO/X20Zc9dznU6hG6ayvOYr+G5pdW+7pu8t33+9M1zV82MOKROvO97dCrl2dgn0Nve30m/dWmYNsmUPdJJS1CUMQmMAvR86CfY0q7tmYdz1qzr2zhQTyXSd13KNjiZqUT2PU1LjjsN6hmJtQRjTa1SB9DK1CpTG2s6nLGuqUObW3qMOaXVtqaY0urYjDlN0RLkemjPY453SCAz22qfhZnNYJe1TwE4DsnrUwdIgLSsfZ1nyTbP23S2GqMxd6znzatXr7Z6X1sOHOP72/TKs7Vruvuh22Oa9FlVps7SAdtqPz909qc53Bsxdj2h7/baEZC7dNquZxyKOc0cM8Y1fKi0OvR901Xf6fPd5RjaDqVpE9u1I8A+7tGplPayPtdR2+Hcs4tDMZUucJLy8N5mDcUECMt0GV2F8xSC0vA+pIfYHKYSWeVUp2Kay9QqfZ3C1EHHnh6nOKXVHCxtmqJddY38HXJdJj0yfW67HUFRgNNU6gWlnJByTxqhu4J8ZSaKXdft2+esFXnutQ25u67NvarMkXQZWsdq13NnuvRJW0I61Oa6yDlM+8IudaYxR37NfUaXsXXlM7uc6zb9dumsMLdr+NBpdcj7ph3NOnSkbJ5tN2/ePO84m20Mya+XdI8mHfq2tbSdjsd6nkJfAqPASepbuC292/JvCj55cE8VFOwTRJuq8f4Up2Ka29Qqh5wOpw4qpgJxbNOVzDU9jnFKq7oRsO+UVnOxlGmKdpXruG3UHRrMbEeKJo3nMp06jO2P/uiP1v79t37rtwZt99/+23979nd/93cr//6P//E/HrTdf/2v//XZ3/7t3678+2/+5m8O2u6/+lf/6uz//t//u/Lv/+gf/aNB2/3DP/zDsz/4gz9Y+fd/+A//4aDt/n//3/939tlnn638+z/4B/9g0Hazzd/7vd8b9NlTDJSmbN01I06fzqBzaFjuqjuuKvf31dbndgnCLKmxfQpjpk+2tctIwinr2Ye4DjLybswAYp9j6OpkMWbeks7yc7HruT10Wh3qvunqwL5Lh858dpfPLymvzuxxfc5L1zI1SxtwwfEQGAVOUgInhx75VIKtbTCz71Qi9efHnILn1AonY06tUq/3OmRqlb5OZeqgY06PU5zSag6WNE3RLlL5bKdfT5435N5I/tZeC0NG5cKx+MUvfjHJdv/JP/knk2x3rGBN6+LFi5Ns97d/+7cn2W4Cy0ODy+sksDw0uHyK8pxJ/aRrRFKeQ32XrKh9/PHHZ/vSNdPQWOX7tkG5LMMxZPtLamyfwlzSZ9UsQ2PZ572xKm3bznibtGXLdR1btlnyYpdz3T5H59RBctdr+JjTapf7pitof8j84BD36FT6Bqvbc1Fm6YJDEBgFOKA5T8FzalMxzWlqlWOaDmdu5poec2mIOTXS/dfa0TpDOwflGdOOpN+1xzQAy38WZ5RS+yw6pjJmV+ewsRpyuzozDA2MalyeT/qkfp/6YOr7+Tkj6eYUYBtbOuDVnVP7dqhs06ZP572udF1qW8au1/Dc02qq+6ZrAMGSgpPHpJ2F6tQGZDAvAqMAB2QKnnmY29QqxzQdztzMNT1ObUqruTjGfR5bApn1dbDLjAl379794HftSFQAjleeF1M0UibIke3Wz6NdRkbu275nzRgaCJhqxPgYcu7HWEfu7du3gz87dfrkGFMXaWevybWf8lLqh7nesx/pKHBMnQM2KcfWTgu9TX7SpkPyiz75Qtf92TXKe6g55VG7XsNzTKt93DddeaqOJIfRnj/ri3JIAqMnvibOVH7+859PsibO3GxaE2duBaI+05Ewf1NPwTOnCsDU5ja1yqlMh3NK6XFqU1rNxan3BE4DQz21967TyLfrMMexrUEMwOpnRhqh37x5M0mDcdtRJ44lMLrv8vCxdUw8dbmuc+/UZecS1Fk18nGJQZkEt+plSDIb1jaB0XZJm64lbvoyCm3+abXP+0aeOt82TPcqhyQwunBTrYkzlTn3cNznmjhTsR7O8TnkFDxLrKwtcWqVuU+Hs2/SYx5TWnF4eWbUoznTOLVLEDPb67qGLly40Ou5kkYzFWCA+Up9Y4p6QPL+dkTZMa5fDnVZuR3BltFtDx8+PMllBnLM6YBXOuWlQ13Kj+vSIu+p0y/tHn07SyS/aust+f9Tas84prQ6xH1zbG3NS9W1vigcksAowMzMZQqeUyo8HvPUKnOcDueQpMc8prTisHLOr1279u7/80zZNbD96NGjzt/3yStzDbmOAOZtylGcKZvU5ZJjmZmkLU+NGUzoGsm0xGdljmlJs0zkesgUkPV1kbJW17IepyRpUs9WkvLoqk5xZZR6XWcb0nku11Y7M85UHTyO3aHT6lD3TdfxHcvzZ0nadhmdZTk0gVGAmTAFz+EsbWoVBcz3nXJ6zGlKK/Yjlfyc81LZH9rItE2ng4y2X2LjLcApS6P5VGWn9plxLM+QrjrXWMGErsb5Y++gmnJIzm0d7Mj/pxy6xLJWJOi7lOPbRdoukhbpwJ3ps5OfJBCWThHJVzKTT8qPGSlaypb5fdJuaH7QFewT9JpfWh3yvumaQapr1jCmZX1R5uZnh94BgFOXgmEKBHXPuVQcXrx4cd6gbfrK6R1z44Pej++THt1TWhVlSqt1xpjSisOoGxxyL+Q5Mlbjdldg1HUBsDzPnj3bW+P0sXTy7HqWjlW+7OqgaXrBeUvQrz7/uY4FRX8d9Eh5MQHR3DMph+aV4FfSKyNJy1IfSbPUUUqbxy5lyq7gimm655dWh7xvuvJw18jxrS+67XM3eUzKGxcvXjy/5rvaP7I/yY/yviwNkzp0O2sfyycwCnBAeRjnAVwHIRIITQVBhXh/jjmY1lWJXNoI2D6kx+YKcKa0WjUFdyoDqbQWY402ZD9ybvNcKUHRMZ8jbZ4oKAqwTOkgNZX2WXL16tWzYw0mPH/+fJRtt43zyl3zljJ0W47O2oh9bVPXLEHGY6mXliBXXUZMWTS/z+i8t2/fnr/evHlzXk7NjDRjlFW77pkpO3gcs0Ol1aHvm1yTbZvPWHk422nPf9+6ZIKY9VIxq6Q9I3lL8p3kMznPaXOtyzZ5T36XayLtHcmT7ty5c37d1NN7s3wCowAHHtlTV4bTm/LU1yVpJY3qQM0Ujnlqla4C5bFUnqcgPVZPaZVCfxofyij13Fsp/KdikH9zH5SKQCrNuQcO3Ti3j/t/KUpv2NwDP/744+iBy7aDgcAowHJNNWqiboDvaqieq67yUBpcpxhBs4Ryz5LL3l0j3IbM8LRNx82U6zLK8lg6eWZ/D3FPd61hv6oT6JB7dEmjyA6VVnO4b27cuPFBPjXGqNFsZ8oORUux6/qijx8/3tiZKuci7RplXeNc6+W8f/XVV+f/5tpI4LR0zsh7cq2UYHqu4SU/w3ifwCjAgZiCZz6OeWoVUwe9T3rMY0or9v88ybnOOcv569solcp8phBad6+0U44fS2M2AP1NtbZ4O0vOMamXJhgrmNBO75dna8pox77cSBqZj3mpkilHPRVLbHjPec9xHeLY2jxr09Ih21riCLJDpNUc7pvsX2uMgObdu3c7t836ayAdoLeV85Rzv6njUNo0EjytR6KXOms+n+sz56tt66iXNYtj6YzC7gRGAQ7g0FOJ8L5jnlrF1EHvkx7zmNKK/UkFL5XFsjb1kIBluUfWNVK0211qgycAv64/pPPUmFL3qesjmbbumLT7mzTaNaDQdoqdW5oMXW4k7+makWcJxlpaYIkdN0vZMCO79i0dLdpzsetIzzIS8Ng6ccwxreZw3+Q72/0bY2BC0u7QsywdSlnLMx1s13UgaJ//fafSTzAzdd1N6fzo0aMP9qP+3uxvRpO21199XeW5p4P46RAYBTiAOUwlciz2FdA91qlVTB30PukxjymtxqJDx3rJ23NNpqL4/fffDz7XZQredVQQAU5LOlaOVYZqRyllVOSxlU+yv+1Iq10a1VPGqdM3z9l2VOoc9O08Wspuyg2rddUN19XVj6UzWjnnh+qU3d6Pu47iSzBmjh0WTjWtxrhv2jw89ftd2mrKSMZTHDFaZp4qbWapk64qM3QtF7ZtGSBpnLrqppksSmeltl21fmblb13B1fLsLXVqTofAKMABzGEqkX2b+1RMxzy1iqmD3ic95jGl1THd/8eorA27y0jRusK4aaTwzZs3Fz/SAYD3ZXq5McrDdYNpV4BxiFevXp3tWxpP60bXHNfQcmZZ72zV+mtz0TYib1pbtZznpc5AMkYHzNQP28b7rrJ6Cfr0LeMd4t6oz3mOJdNklqDRPq/VOm8py4bsMmo+52mJ1/K+02ou9032ow3SJS8eep3ms10jcOd6j46pBMM31Q/Lup3ttbHt7ANJ41yvm0aLlhmUWvUzelXZI7/PLFp5vi3xfmc1gVGAA5jDVCL7NvepmI55ahVTB71PesxjSqtjuv+PTRoTEqQv68buIs+RpPOm51Cbjx3T8weA/ko5OGt67dIxrDyziqEzHLTPnaHPoV23k0b1uuH02rVrvRvVE0SoA85dU/tt0rXfUywF0naM2hTQyHWT9Dn0iNGp0qfrXugT5EmdJPvWBme69i1lvG3ScS73Rj1aMJ9N3nHx4sXzaTZXvfL3lPUTSM37c2/sMlK97bwwZOR77ud0Ckk+NWS5o7FMfY/vM63mdN/kmOvR+SX41leOO5/d5hqZyz06llUdr9tZ2Mp1leujffZvs+9lTdGuEaddweb2OquvMVPk0uktwMJ99NFHb5Pd1a979+4ddJ/a/fn88897b+PJkycfbOf69esr3/fmzZuV28rf2m2te/9Y5+LBgwdr31/2K8ewrU8++aTXd9Revnz5QTr0+e5VaZ/tTr3vT58+fe+zSetd3L59+3w7L168eHsox5wely9fHiXPadMg+9FH8pZy/FPc03O7/+eS7lPKNbgqvx/i1q1bW6dzee+UzwkADiPP5ZK/J7+PlGHL8zv/5rnaJ+/P++vnRspnfWUf2udPXU7fdn/yvlXbybH3faaVMlZeKTds+/kx0iRlgbasklfKQUO2t0n7Xau+o9Sldqk/jWHq9GnLm9uWs0v9pOxDynKr6p2lHLyuDDrHe6O9voe+kqY59qFlzfZ4tr0mk6Y5v/n+Q9aD93mP7yut5nLftPX78upTtyr5/6ZzMcd7dCztfnSlRTl35RzV+cOmNtBynne5D+vvG6vuzLIIjAKL11V4OHQjd1sozKuvFJTbQmFX4aI0cqyzr8Bou7+l0WWswGK0FYi+gZE24LxLQCmf7VMA23Xf24ro0KBQadQ4dOHxmNOjvceH5jm7BujqCl/2qU8F7Bjv/7mk+1TqBurk90NfOb42rbapdLadRw7dyQiAaQKjdVkhP3c1IOf9Xc+OPCvyfKifM/m5T+NmnlNdnVs3BVLa51KeeUO2s+1zv06XfG5dp68cfx1M7ZMm5fk/5Fjy2jVQWZc/ynbbfS/vyXHt277TJ/dEW47aFLAq10obxGnTNddQ3lPugWO8N9r8YtdXn86x6+qCqXusq1eU9x8iKHroe3wfaXXI+2aVfKbe1qb9yfeUYPCq9x3DPTqGEqhNenS1LyR9Vh1X2d+u6zbXXamL79oJoP6uofkIyyYwCixaV8BvDgGfrp6UfR76eaiXAl9bEOoqsGyqoJYRSEP3Z2jQcdN+lQb8PtrC45CC4S69B9tCWJ8g1Bj73gaf+p7HUmGZ4wjDY0qPsfKcNg36bmdVHripQpVjLp0vkl+NkR/s4/6fS7pPoW0EGPs1pOF8DvkEAOMo+fuqTi9l5EvfZ9GQTjSl8bw0+m/z6iorlsbVvtvZ1HmrTZe2vJn/z77k2EtdrH529m2gLR2T+hxHfTxjNAjXjdXtcdYN5H06tI3lUOnTdgDIK+XXpEm2mb+XayNp11WeTj28657K+7vScs73Rjs6Lvua9EgatK+6w15Xp/Ex8pFIObW9P3Ps9f1ZB0/63PtjmsM9vq+0OsR903c0Zrad32Vfsl91kDI/r6v/zPkeHVs5TyUgm/p+zmH5/ar7tr7OSkervMr1NeQ8dqnP6SGeTcyfwCiwWG2v3LlMOTG3qUSWMhXTuulFhhzHPqZWqfd9Vc/aIb0/j33qoGNOjzlOlzOXKa2mvP/nmO5j6uphPear7+iOOo36TAVfGly6OvEAcFh5Jm/7PEi5qDQW16Nj8m/pWHXo6VT3Lc+40rBbyo/lGVuCC4csX495neT81uc9x3jKs0jU90MdFEkapcy06V7ItZP35L3bvH+O6o5zQ4Ma+UxJh67y6i6BjXX3Z37Xd5rwJdtXWs3xvsk2uvK3ErgVXFv9TKjPYf5/0/Muf68/l3/z/2O1QdaDP9Q9WUVgFFiE0mOsq9dYn0b/IWt9DnWoqUSWNBXT0OlFDjm1yq77vm1v0GOaOujY0+MYpsuZy5RWY97/x5DuY2k7wIz9GvLsq6+pTQ1g+Vt5/zb5IwAAx6EuE47ZntI1ehFgG33WM+V0/fwMYCF++umns48++uj8NfTzr1+/PtuX7OfLly/P7t+/f/bgwYOzX/3qV+evL7744uzzzz8/++STT86uXLlyvl/Pnj07++Uvf3n+u6dPn57/vd7O999/f3bt2rXz9+b19ddfn/8t73/x4sVoaTVGGl2+fPl8n7788suzH3744Xybn3766dn169fP/5b///bbb89/zrGuk30px7Lt/ue1rexT0vqbb74536dyfvJ9N27cOD8/r169Oj+O58+fn28778/xbdqnvvved/9v3759duvWrbOvvvrq/NrJ/ueVayL7+PHHH59ffzmm77777vwzeX+uxUM45vQo+9F333PtTJ0GOZ579+6dH2vkvsqr6zvq7ZT8aJXkMXl/0vVQ9/+c031sU39X7oO+cl0lP0z+mHOZ/LB+dkXuqdxP+XvSN9fLnTt3Bj+nAQCYj5Tx0p4RKd9tKr/38eTJk/M6R6nH5LtSP0k9AWCdOi9KnRW6XEh0tPMvAOxVCvqPHj16V+DPK5WLFPyvXr16/jBP8GBdw3kaoEsBYNP75yD7WweFcww53lSA+gZc9iEBtZyjdn/zSjAg+z3Hilr28/Hjx+eVy+x3CQSVfc+1kiDgqQQrTiU90ohQd5LI8fa9PpM+yZOSr5RGiVoCX0Ov+WO7/9n8/Mo5Lecy90+eXTmnCYTXHXoAADh+6eCYcmDpNDdFGf7ChQvvfp7qO4BluXjx4rvOxemYPaQjMMsnMAoAsDAZxVd6bycgNVbv7QS40kGgWDUqHQAAWK4EHRJ8GKPD5LbB10POcAQch3TULTMYhdAXq/xs5V8AADg6U09plQaJ+rvWTbkLAAAsT7vEzqVLlyb5nsxAsuo7AVplaaQwUpR1BEYBABYk66gWWc9xbG0v7XoEKQAAsHxtIHSqzpL1dj/77LNJvgNYjrpjuOVcWEdgFABgQVNalammYqp1huuel5k2CwAAOB2ZmaauE2S9+SnqNvXoL0EOYJM6z/jiiy8Oui/Mm8AoAMBCmNIKAADYh3v37r37OUt5jD1qtJ4JJ0FR02ICmzpT5FXoTME6AqMAAAthSisAAGAfEnS4ffv2u///9NNPR6t/fPPNN++W7Lh8+fLZkydPRtkusFzPnz9/97OOFGwiMAoAsBCmtAIAAPY5arSMHE094cqVK2fffvvt4O0lsJrpLzMCNVK3yZqBqecArJO2iXSk0JmCbVx4+/bt263eCQDA7CVoWa+lkTVAUzEYy5dffvmu93YqHmmoAAAATtcPP/xwPvVt/o3UPzLq88aNG1sFNVOHefDgwbt6RmQ0aj1dLwCMRWAUAGBh0ghRelmnIeLFixejBEfr7WZ72a7e2wAAQAlwJphZzzCTekM6VGY0aak7ZHTpq1evzgOpmf6yrAuY93799ddnt27dUs8AYDICowAAC5QAZgKZRXpgp4Fh6JRWaaAoDRyZ0ipT04w5EhUAAFiOjP589uzZefAz9YnXr1+/C4Am6Hnp0qXzf69evXq+PmmZBhMApiYwCgCwUKa0AgAAAIC/JzAKALBwprQCAAAAAIFRAICTYkorAAAAAE6VwCgAAAAAAACweD879A4AAAAAAAAATE1gFAAAAAAAAFg8gVEAAAAAAABg8QRGAQAAAAAAgMUTGAUAAAAAAAAWT2AUAAAAAAAAWDyBUQAAAAAAAGDxBEYBAAAAAACAxRMYBQAAAAAAABZPYBQAAAAAAABYPIFRAAAAAAAAYPEERgEAAAAAAIDFExgFAAAAAAAAFk9gFAAAAAAAAFg8gVEAAAAAAABg8QRGAQAAAAAAgMUTGAUAAAAAAAAWT2AUAAAAAAAAWDyBUQAAAAAAAGDxBEYBAAAAAACAxRMYBQAAAAAAABZPYBQAAAAAAABYPIFRAAAAAAAAYPEERgEAAAAAAIDFExgFAAAAAAAAFk9gFAAAAAAAAFg8gVEAAAAAAABg8QRGAQAAAAAAgMUTGAUAAAAAAAAWT2AUAAAAAAAAWDyBUQAAAAAAAGDxBEYBAAAAAACAxRMYBQAAAAAAABZPYBQAAAAAAABYPIFRAAAAAAAAYPEERgEAAAAAAIDFExgFAAAAAAAAFk9gFAAAAAAAAFg8gVEAAAAAAABg8QRGAQAAAAAAgMUTGAUAAAAAAAAWT2AUAAAAAAAAWDyBUQAAAAAAAGDxBEYBAAAAAACAxRMYBQAAAAAAABZPYBQAAAAAAABYPIFRAAAAAAAAYPEERgEAAAAAAIDFExgFAAAAAAAAFk9gFAAAAAAAAFg8gVEAAAAAAABg8QRGAQAAAAAAgMUTGAUAAAAAAAAWT2AUAAAAAAAAWDyBUQAAAAAAAGDxBEYBAAAAAACAxRMYBQAAAAAAABZPYBQAAAAAAABYPIFRAAAAAAAA4Gzp/n81kQTM+BGe8gAAAABJRU5ErkJggg==",
|
|
"text/plain": [
|
|
"<Figure size 1920x1440 with 1 Axes>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"plot_force_distance_comparison(rr=[r1, r2], ff=[fmag1, fmag2], ll=[\"PM (smoothed)\", \"P3M\"], L=L, Np=Np, Npm=Npm, a=Newton_prefactor, title=\"Particle's contributions to total force\")#, ss=[\"o\", \".\"])"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "f26ada41",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "p3m",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.13.3"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 5
|
|
}
|