{
"cells": [
{
"cell_type": "markdown",
"id": "340c92c6",
"metadata": {},
"source": [
"Tristan Hoellinger
\n",
"Institut d'Astrophysique de Paris\n",
"tristan.hoellinger@iap.fr"
]
},
{
"cell_type": "markdown",
"id": "94047ef1",
"metadata": {},
"source": [
"# P3M force diagnostic"
]
},
{
"cell_type": "markdown",
"id": "cd240b53",
"metadata": {},
"source": [
"## Set up the environment and parameters"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "1dfed55e",
"metadata": {},
"outputs": [],
"source": [
"# pyright: reportWildcardImportFromLibrary=false\n",
"from wip3m import *"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "aea2278a",
"metadata": {},
"outputs": [],
"source": [
"workdir = ROOT_PATH + \"results/\"\n",
"output_path = OUTPUT_PATH\n",
"\n",
"L = 64 # Box size in Mpc/h\n",
"N = 32 # Density grid size\n",
"Np = 32 # Number of dark matter particles per spatial dimension\n",
"Npm = 64 # PM grid size\n",
"n_Tiles = 8 # Make sure Npm/n_Tiles >= 6\n",
"\n",
"go_beyond_Nyquist_ss = True # for the summary statistics\n",
"\n",
"force = True\n",
"force_hard = True\n",
"run_id = \"notebook1\"\n",
"\n",
"# Good set of parameters for the force diagnostic\n",
"# nPairsForceDiagnostic_spm = nPairsForceDiagnostic_p3m = 3\n",
"# nBinsForceDiagnostic = 30\n",
"# maxTrialsForceDiagnostic = int(1e9)\n",
"\n",
"# Faster force diagnostic\n",
"nPairsForceDiagnostic_spm = nPairsForceDiagnostic_p3m = 3\n",
"nBinsForceDiagnostic = 20\n",
"maxTrialsForceDiagnostic = int(1e8)\n",
"\n",
"# Simulation parameters\n",
"# nsteps_spm = 200\n",
"# nsteps_p3m = 200\n",
"nsteps_spm = 20\n",
"nsteps_p3m = 20"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "28a4e070",
"metadata": {},
"outputs": [],
"source": [
"# Automatic reloading of modules\n",
"%load_ext autoreload\n",
"%autoreload 2\n",
"\n",
"from os.path import isfile\n",
"from pathlib import Path\n",
"import numpy as np\n",
"\n",
"from pysbmy import pySbmy\n",
"from pysbmy.power import PowerSpectrum\n",
"from pysbmy.field import read_field\n",
"\n",
"from wip3m.tools import get_k_max, generate_sim_params, generate_white_noise_Field\n",
"from wip3m.params import params_planck_kmax_missing, cosmo_small_to_full_dict, z2a, BASELINE_SEEDPHASE\n",
"from wip3m.plot_utils import * # type: ignore"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "3f0eaa51",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"k_max = 2.721\n"
]
}
],
"source": [
"corner = 0.0\n",
"RedshiftLPT = 19.0\n",
"RedshiftFCs = 0.0\n",
"ai = z2a(RedshiftLPT)\n",
"af = z2a(RedshiftFCs)\n",
"k_max = get_k_max(L, N) # k_max in h/Mpc\n",
"print(f\"k_max = {k_max}\")\n",
"cosmo = params_planck_kmax_missing.copy()\n",
"cosmo[\"k_max\"] = k_max\n",
"\n",
"wd = workdir + run_id + \"/\"\n",
"simdir = output_path + run_id + \"/\"\n",
"logdir = simdir + \"logs/\"\n",
"if force_hard:\n",
" import shutil\n",
" if Path(simdir).exists():\n",
" shutil.rmtree(simdir)\n",
" if Path(wd).exists():\n",
" shutil.rmtree(wd)\n",
"Path(wd).mkdir(parents=True, exist_ok=True)\n",
"Path(logdir).mkdir(parents=True, exist_ok=True)\n",
"\n",
"input_white_noise_file = simdir + \"input_white_noise.h5\"\n",
"input_seed_phase_file = simdir + \"seed\"\n",
"ICs_path = simdir + \"initial_density.h5\"\n",
"simpath = simdir\n",
"\n",
"# Path to the input matter power spectrum (generated later)\n",
"input_power_file = simdir + \"input_power.h5\"\n",
"\n",
"# Paths to the force diagnostic CSVs\n",
"OutputForceDiagnostic_spm = simdir + \"force_diagnostic_spm.txt\"\n",
"OutputForceDiagnostic_p3m = simdir + \"force_diagnostic_p3m.txt\""
]
},
{
"cell_type": "markdown",
"id": "4f013d1f",
"metadata": {},
"source": [
"### Generate the parameter files"
]
},
{
"cell_type": "markdown",
"id": "88742aca",
"metadata": {},
"source": [
"The first preparatory step is to generate all the parameter files required for all the simulations.\n",
"\n",
"To this end we use the `generate_sim_params` function defined in `params.py`."
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "dd3f8a0c",
"metadata": {},
"outputs": [],
"source": [
"common_params = {\n",
" \"Np\": Np,\n",
" \"N\": N,\n",
" \"L\": L,\n",
" \"corner0\": corner,\n",
" \"corner1\": corner,\n",
" \"corner2\": corner,\n",
" \"h\": cosmo[\"h\"],\n",
" \"Omega_m\": cosmo[\"Omega_m\"],\n",
" \"Omega_b\": cosmo[\"Omega_b\"],\n",
" \"n_s\": cosmo[\"n_s\"],\n",
" \"sigma8\": cosmo[\"sigma8\"],\n",
"}\n",
"\n",
"lpt_params = common_params.copy()\n",
"lpt_params[\"method\"] = \"lpt\"\n",
"lpt_params[\"InputPowerSpectrum\"] = input_power_file\n",
"lpt_params[\"ICsMode\"] = 1\n",
"lpt_params[\"InputWhiteNoise\"] = input_white_noise_file\n",
"\n",
"spm_params = common_params.copy()\n",
"spm_params[\"method\"] = \"spm\"\n",
"spm_params[\"EvolutionMode\"] = 5\n",
"spm_params[\"TimeStepDistribution\"] = 0\n",
"spm_params[\"ai\"] = ai\n",
"spm_params[\"af\"] = af\n",
"spm_params[\"RedshiftLPT\"] = RedshiftLPT\n",
"spm_params[\"RedshiftFCs\"] = RedshiftFCs\n",
"spm_params[\"Npm\"] = Npm\n",
"spm_params[\"nsteps\"] = nsteps_spm\n",
"spm_params[\"n_Tiles\"] = n_Tiles\n",
"spm_params[\"RunForceDiagnostic\"] = True\n",
"spm_params[\"nPairsForceDiagnostic\"] = nPairsForceDiagnostic_spm\n",
"spm_params[\"nBinsForceDiagnostic\"] = nBinsForceDiagnostic\n",
"spm_params[\"OutputForceDiagnostic\"] = OutputForceDiagnostic_spm\n",
"spm_params[\"maxTrialsForceDiagnostic\"] = maxTrialsForceDiagnostic\n",
"\n",
"p3m_params = common_params.copy()\n",
"p3m_params[\"method\"] = \"p3m\"\n",
"p3m_params[\"EvolutionMode\"] = 4\n",
"p3m_params[\"TimeStepDistribution\"] = 0\n",
"p3m_params[\"ai\"] = ai\n",
"p3m_params[\"af\"] = af\n",
"p3m_params[\"RedshiftLPT\"] = RedshiftLPT\n",
"p3m_params[\"RedshiftFCs\"] = RedshiftFCs\n",
"p3m_params[\"Npm\"] = Npm\n",
"p3m_params[\"nsteps\"] = nsteps_p3m\n",
"p3m_params[\"n_Tiles\"] = n_Tiles\n",
"p3m_params[\"RunForceDiagnostic\"] = True\n",
"p3m_params[\"nPairsForceDiagnostic\"] = nPairsForceDiagnostic_p3m\n",
"p3m_params[\"nBinsForceDiagnostic\"] = nBinsForceDiagnostic\n",
"p3m_params[\"OutputForceDiagnostic\"] = OutputForceDiagnostic_p3m\n",
"p3m_params[\"maxTrialsForceDiagnostic\"] = maxTrialsForceDiagnostic"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "1d617059",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[09:22:32|\u001b[1;36mINFO \u001b[00m]|\u001b[38;5;147m(wip3m.tools)\u001b[00m Generating parameter file...\n",
"[09:22:32|\u001b[38;5;113mSTATUS \u001b[00m]|Writing parameter file in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/example_lpt.sbmy'...\n",
"[09:22:32|\u001b[38;5;113mSTATUS \u001b[00m]|Writing parameter file in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/example_lpt.sbmy' done.\n",
"[09:22:32|\u001b[1;36mINFO \u001b[00m]|\u001b[38;5;147m(wip3m.tools)\u001b[00m Parameter file written to /Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/example_lpt.sbmy\n",
"SPM nsteps = 20:\n",
"[09:22:32|\u001b[1;36mINFO \u001b[00m]|\u001b[38;5;147m(wip3m.tools)\u001b[00m Time-stepping distribution file: /Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/nsteps20_ts_spm.h5\n",
"[09:22:33|\u001b[38;5;113mSTATUS \u001b[00m]|Write timestepping configuration in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/nsteps20_ts_spm.h5'...\n",
"[09:22:33|\u001b[38;5;113mSTATUS \u001b[00m]|Write timestepping configuration in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/nsteps20_ts_spm.h5' done.\n",
"[09:22:33|\u001b[1;36mINFO \u001b[00m]|\u001b[38;5;147m(wip3m.tools)\u001b[00m TS.ai = 0.050000, TS.af = 1.000000, TS.nsteps = 20\n",
"[09:22:33|\u001b[38;5;113mSTATUS \u001b[00m]|Read timestepping configuration in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/nsteps20_ts_spm.h5'...\n",
"[09:22:33|\u001b[38;5;113mSTATUS \u001b[00m]|Read timestepping configuration in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/nsteps20_ts_spm.h5' done.\n",
"[09:22:34|\u001b[1;36mINFO \u001b[00m]|\u001b[38;5;147m(wip3m.tools)\u001b[00m Generating parameter file...\n",
"[09:22:34|\u001b[38;5;113mSTATUS \u001b[00m]|Writing parameter file in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/nsteps20_example_spm.sbmy'...\n",
"[09:22:34|\u001b[38;5;113mSTATUS \u001b[00m]|Writing parameter file in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/nsteps20_example_spm.sbmy' done.\n",
"[09:22:34|\u001b[1;36mINFO \u001b[00m]|\u001b[38;5;147m(wip3m.tools)\u001b[00m Parameter file written to /Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/nsteps20_example_spm.sbmy\n",
"P3M nsteps = 20:\n",
"[09:22:34|\u001b[1;36mINFO \u001b[00m]|\u001b[38;5;147m(wip3m.tools)\u001b[00m Time-stepping distribution file: /Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/nsteps20_ts_p3m.h5\n",
"[09:22:34|\u001b[38;5;113mSTATUS \u001b[00m]|Write timestepping configuration in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/nsteps20_ts_p3m.h5'...\n",
"[09:22:34|\u001b[38;5;113mSTATUS \u001b[00m]|Write timestepping configuration in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/nsteps20_ts_p3m.h5' done.\n",
"[09:22:34|\u001b[1;36mINFO \u001b[00m]|\u001b[38;5;147m(wip3m.tools)\u001b[00m TS.ai = 0.050000, TS.af = 1.000000, TS.nsteps = 20\n",
"[09:22:34|\u001b[38;5;113mSTATUS \u001b[00m]|Read timestepping configuration in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/nsteps20_ts_p3m.h5'...\n",
"[09:22:34|\u001b[38;5;113mSTATUS \u001b[00m]|Read timestepping configuration in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/nsteps20_ts_p3m.h5' done.\n",
"[09:22:34|\u001b[1;36mINFO \u001b[00m]|\u001b[38;5;147m(wip3m.tools)\u001b[00m Generating parameter file...\n",
"[09:22:34|\u001b[38;5;113mSTATUS \u001b[00m]|Writing parameter file in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/nsteps20_example_p3m.sbmy'...\n",
"[09:22:34|\u001b[38;5;113mSTATUS \u001b[00m]|Writing parameter file in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/nsteps20_example_p3m.sbmy' done.\n",
"[09:22:34|\u001b[1;36mINFO \u001b[00m]|\u001b[38;5;147m(wip3m.tools)\u001b[00m Parameter file written to /Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/nsteps20_example_p3m.sbmy\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAb0AAACMCAYAAADof3f4AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAANTFJREFUeJztnQdcFMcXx390aSJFQEUsIMauiBpr7D3RRI3GHluCGnv9xxIr2MXeeyyxxBrR2LvG3jsxCqLY6Qrc//MGD++ou8cdnNz7fj77udu93XdvZmfnzbx5M2ukUCgUYBiGYRgDwDi7FWAYhmGYrIKNHsMwDGMwsNFjGIZhDAY2egzDMIzBwEaPYRiGMRjY6DEMwzAGAxs9hmEYxmBgo8cwDMMYDKb4jElISEBISAhsbW1hZGSU3eowDMMw2QStsxIeHo78+fPD2Ng4Zxo9MngFCxbMbjUYhmEYPeHx48dwc3PLmUaPenjKRObOnVtjOcW/KI7Qp6Gwz2uPpQeWpnrOo6UmSIg0gbF1PAr1jNf4v7Qhh3XRrRzWRbdyWBfdytEnXaTwaKkpEiKNYZXbDB3HV4OmvHv3TnSClHYhRxo9pUuTDF5mjJ6yK2xsYgxHe8dUz3luEYeED8YwtkiAo73m2aYNOayLbuWwLrqVw7roVo4+6SKFMIt4xH8wgqWFWabqcSUZDXVxIAvDMAxjMLDRYxiGYQwGNnoMwzCMwcBGj2EYhjEYPutAFl3y5+o/sWnxJrwKewWPEh74pmQfuNuWTPP8K2evYNOiTbh77S5ePn+JCUsnoEajGrL+8/d5v+N44HH89+A/WOSyQKmKpdBrZC+4e7hLlrFj7Q7sXLsToU9CxX5hr8Lo3L8zqtSpgsywfv56LJ2yFK26tULf3/pKvm7VzFVYPXu12rGCHgWx5vAaWf8fFhqGJX5LcO7wOcREx6BA4QIYPn04ipcrLllGu2rt8OzJsxTHW3RugQETB0iSER8fj9WzVuPvP//Gq+ev4OTihEZtGqFTv06y54pGRURhxfQVOLHvBF6/eI1ipYuJvP2i3BcalzOaq7Ry5krsWb8HEe8iUNqnNAZOHgjAVZacY3uPYde6XeL3d2/eYenepfAs5SlLn7gPcVg+bTnOHj6Lp/89hbWtNbxreKNO3m7IDWfJulAZOrTrEMJCwmBqZgqvMl7oPqw7jOAlK02qzBw5E7t+34XWtX1Ru3hryTL8B/lj35Z9arIqfVUJP/pMlq3Lo3uPRJmmc+Pj4lGoWCF0qjIGeYxdJcup414n1fS1rNILDWu0kSQjOjIaS/yXiHL47vU75CuYD9/9+B2KoWmqsqXqRnUnpe/8sfOiLJatUhb9xveDW5G0pxNkBdzTS4VDOw9h4YSF6DKgC5bsWSKM3tytIxEe/TrNa2KiYuBR0gP9J/bX+H+pELXs0hLzt8/HtN+nIS4uDsM6DkN0VLRkGXld86LniJ5YvGcxFu1ehArVKmBUj1EIuhOksV63r9zGrvW7ULREUY2uJ8O79fzWpG3u1rmyrg9/E45fvvsFpqam8F/jj1UHV8F3tC9s7GxkyVm0a5GaHtN/ny6O125WW7KMDQs3iIYFPbyrD60WjZKNizZi28ptkMu0YdNw/vh5jJw9Eiv+XgGfmj4Y0n6IMPCalrONCxN1Geg3EAt2LkAuq1yiDH2Iey9LDv1eulJpkb70SE8ONU7uXb8nGgSL/1qM8UvG4/HDx1i0fYwsXdyKuqH/+P5Yvn855mydA9eCriJN4VFvZMlRQg3Lm5duigaLnPQoqVy7slo5Gj13tGw5wf8Go1+rfqIBOGvTLCzbt0zkk5mpmSw5qnrQNmz6MBjBCOWL1pQsY/74+Th35Bx+DfhVlOlW3VshYEwArt4/lWYeZCSXGl+je44WjZ2Jyydiyd4lcCngIsq3nPpMF3BPLxU2L9uMZj80Q5Pvm4j9QX6DcGLXGZy+HYjGedumeg31pDLbm5q6dqra/ogZI/BthW9FS6pclXKSZFRroD7PpcewHqLnRw95keJFZOtErcBJ/SZhiP8QrJ27FppgYmoCB2cHaAoZGud8zhg+Y3jSsXzu+WTLyeOYR21//YL1yF8oP8p9KS1viRvnb6B6w+qoWq+q2KcK+ODOg6JhIIfYmFjRm5q4bGLSve06qCtOHTgl7lf3od1llzOqaLYs34JOv3RCjYaJLe6Rs0biu4rf4cr9k/B2qydJDtGwVUPxGfo40WOQFunJscltg+nrExsWSvpP6A/fr33xKvwZnGzyStKlfsv6avu9R/fGXxv/QnDYQ3g5Osh6BqlBMWfMHPGsjfxxpKz0KDEzN0ulPMfJkkM9YPr9519/TjpG3otbt+KQECFdTnI9Tu4/CS/3cnDKnZ/WrJIk48aFG2jUuhHKVy0v9r/u8LXoBf8begelXdP2VqUn90nQE9y8eFM05pT1DnkcWlVshUM7Don6Nbvgnl4yPrz/IIxMxRoV1ebxfeHujaBnN7NUl8jwSPGZO49mc1fIFUe9Vmpxl/IupZGM2aNm48u6X6JizU/5IZfgoGC09mmN9tXbY2K/iXgWnNLFmB6n/j6F4mWL47effxONgJ5NemL3+t3I7H0mF2WTtk1kuSVL+ZTCxZMXRY+FuH/zPq7/c120/uVA7qyE+ASYW5irHSe39rV/rkETqFVNLiXVskuGp0T5EngYkrVlNy0i30WKnoilhbxeuup9o3tvndsabnk9ZC9b6DfAD21/aqtRA1DJ5TOXRTnsXLszZv1vFt6+fitbjzOHzoge7NCOQ4Us3298hXsxM9C9J7nVSic21qVSqmIp8YxRg4AaTpdOXRJGq0RhzZ95uk+EavmmepQaDJqWb23BPb1kvH31VlRG9k72asdtrewR+iKxossK6MGY99s8MSYj9wF9ePsh+rTsg/ex72FpbSncSuRilAsZTHJPkVtQU0pUKCF6aOTGIb//mtlr0L91f9ECtLKxkiQj5HEIdqzbgTY92qBD3w6iVzV37FwxvtO4TWON9KIKhsYZGreWd3373u0RFR6FLnW6iMUMqKxQr6zBtw1kyaG0U2Wzds5aFPIsJFYDohYwtY6pxa9ppUckL7u0/+5e2q75rOJ9zHss9lsMny/qwNLcOqknIoXTB05jfN/xiI2OhaOzo3BNK47YqfWKMmLDgg0wMTER49KaQo2bmo1rCk9DyKMQLJuyDCM6j0DfurMl9yHevHgjPCikT7eh3fDTyJ+Ee3FMrzHo32YaPO0raKQbjTVaWVuhfLEaQIz06/qN74cZI2bg+8rfC68MGafB/oPhHlxWVv6qQnEI5M6kOIDBfoOFm33Lsi0Iexom6oHshI2enhIwKgBBd4Nkj38RBYsWxLLAZaJSP/bXMTH4PvuP2bIM3/OQ58Lo0tiieS713ogcVN0fNDZasnxJEVByePdhNGsnzcWhSFCInl7P4T3FPgV80BgluWA0NXp/bfoLVWpXgZNrynGd9Diy+wgObD+AUXNHify8f+M+5o+bD0cXR9m6kOtx6tCpaFO5jTCgXqW9ULdFXeFpyGlQUMu43uPE93b1+wGJHQHJlK9WXpRpapTu3rBbyBrYfA6skfoKSsm5c/UOtq7cKsboM7M4fd1v6iZ9L/pFUbF1qNkBd4tdgZejj+QGLVGtYTXRkCMoSIjcjCeu7IZnbc2M3t4/9qL+t/VhZmouozkB/LnqT9y6dAuTlk+Ci5sLrp69ioDRAejZxF5ympJDDdJxi8eJcetvyn4jyjd5IKg+oN5kdsJGLxl2DnbiBlE0nSrhUa+R21LzcSk5UIE7ffA0AjYHIG++xHEPOZALQdlbIGNBPaOtK7aK1ptUqOKlPOjV9FMgA/Vq6IGgyNb99/eLVrNcKPiEordC/g2RfA217CmyTRXaP773ODSBIlsvnriIcUsSK2E5LJq0CD/0/iGp8qNKj9y1ND4o1+jRPaJ7TAP71Hskw0mVuSbjlYRD3sTySfeNZCmhfQdrzYKQtGnwQoNDMXPjTISssUaCTKNnaWUp8ou2kt4l0bFWR5y8FoiGpTpIuv7auWuih9W2alu18rw1eDEOnd+GiT+tgybQmDDVGWFvQuAlzf6K86lHVbiYeiPU3dMd525e1UgPei4fP3iMMfPH4MPf8saWl01dJrxBynFqapyS2/7Amc3waqSZ0VPWPcrGN5UBGlMnNy4dz07Y6KViMCgkmsZtlOG31DK7898l1CrZUqf/TS0gGmQ/EXgCs/6YpXHll5pcpY9dKt7VvYULUpUpg6cItwVV+poYPILcOuQWavBdA1njaPRAq/Lk4RPRKtWEwD8CxQNYtW7iQy4Hcq8lf20J7VNvVFOoQqeNolT/OfaPcHdpApUXMnxUdpXTC2hc+NblW+hUvzmy0+DRGBFFKdrZ2yEkWdCHJlB+x8VLL9MNWjVIMS5NEaDe7vVQpai8MTBVyF1HYf521g6y6hialpKiTAc9gUNuF409F1RveZb0xK2/42Tdn7gPcamW6QSFnP5i2tC4sjJ9d6/eRbch3ZCdsNFLBXI5+A/2F4WIggAoIi72Qwy+LN4o3cqcwpCVPH38VLi+bPPYCt+21KCRgzsOiog+8s3TPDCCBu0pwEEKS/2XonKdynDJ74KoyCgc3H4Ql09fThEZKmXMKflYIvnlc9vnljXGuHDiQlStXxWuBVzx4tkLMeeKetL1WnyKJJRyP/p+2xfr5q1DneZ1RCVOwQyD/AdBLtSACdwcKKLVqLUtF0rLurnr4JzfGUW8iuDejXsi2lcZ6SuHc0fPAYpEdzSVnUWTF4lGRXqyMipnrbu3FuOE1CMiI0jzAJ2cnVDOs7raOE9Gcmhu3vPg5+KeETR3lHgbmRu2cJIkh3roY38eK8aFJ6+cLHpWVKbfRsbBMt4O5jDJUAaVN8rv6g2qi0hFcm9uX7MdYc/C4F2nlqy8IYOriomZCXJbO8AlD72eLCFjXfLkFnNOazWpJRoXwY+CsXjyYpHXJQr7yMpfCqYZ32e8mLtG04poTI8idwe0niErTcqGzdE9R+E7ylejMlPuy3LCg0F1DO3T1Kn9W/fjuxqfIks1kUtDAdS4pGfl4Z2HYrikeqPqqFSrErITNnqpQK4rerioghaT00t6oG+rychtRa25hDTHDAa2pUnAiSwYv0B8UuU6YuYISf9LoerEwO8/ySEoEESq6+z1y9fwG+gnKheaDEzuNzJ4PrU0d1NkBmoJT+w7UVSi5NYpU6mMmIeYfPpAelCreMKSCWJQfE3AGjF5ts/YPrKDR4gLJy4IdyRFbWoCDfqTIaExV3Ib0lwvCvGmBQA0iWSkQAiKmrO1s0WtprVEUAyNh6RFRuWsnW87REdHY8bIGcKtVManDKasnYKIXerjPBnJoWg+6tkrmdB3gvhsWrUTmpbtKklO14FdhRyiZ+Oe6vn49Qx8YVc2QxmDJg8SPaKxW8aKKEkyPLQgwZwtc6A4Ulgt0EIbz2B6Mijk/sGtByJghPKWXMg0t5J6Ls/Wy8tfCoYhebToAwVlUaAXjYE53iotO00UcEbeHBoPlpumETNHYMy8MeLZoqlJ9JySB4Um/5eObA5FYgC5RnIpYGXBhAWJ7nZnRzENhuYiZjdGiuweVcwE9P4kOzs7vH37NlOvpCjgVgAhwSFwdHXElnNbUj3nVgDNnzGGsU0CSvTXvK2gDTmsi27lsC66lcO66FaOPukihdsB8YiPMIKVnRl+nPJpUr2u7AHP02MYhmEMBjZ6DMMwjMEg2+jVrl0bAwakvjhv165d0bKltAjHf//9V8yXuXz5MrKVhHjg47qExvFxifupnGP8McZafKZ2jsT/yrQc1kW3clgX3cphXXQrR590IRLikefpNTg/OCY+U8hR+R/Ev9f8f7KrpxcQEIBVq1bhs+HmTmB2aRhFJa4QYB7zDl/+0RNO/55OOoW+0zGLmHCxT5/Jz5GCNuSwLoaTJn3SJSemSZ90yelpKv/XKJQ8MkN8qspR/k71LiHq4dmlE+vlz8Xo0SBinjzSo/KyFcrYPzoD79QnSVtEvkSpg/7ihtBG3+lYWudIQRtyWBfDSZM+6ZIT06RPuhhqmoqeW5Xq73j3NLFe1qHhy7TR27NnjzB2v//+ewr3Js2Jmjp1Kjw9PWFhYQF3d3dMmjQpzcWRu3Xrhi+++AL//Zc4J0hnUBc6kFbsTwxctTQFrMwSP5ULFHmeWiI2go6ZIhamRjHiM+mc00thHBsJ4w8xaW+xkfA8nUk52pCRE3XJiWnSJ11yYpr0SRcDSZMqyv2C17an+J/E+vjjZILAETpzdcqeskBjeuXLl8fs2bOxfv16/Pzzz+KzefPmwui9efMG27cnJmj48OFYunQpZs2ahRo1auDp06e4ffs2evToIcb0ihQpgkuXLqFEiRL44YcfxLF9+/Yhb97Ul96KjY0Vm2qIasGCBeVPWQg6DqzOnhUqGIZhmJSsez4PHZ1VXlDdZTdQpKb+TFmYP38+evfujV27dgmDl5zw8HAxxkc9vS5dusDDw0MYPjJ4qkRERKBZs2YICwvD4cOH0zR4hJ+fn0iUciODpxER6b/aZnFccwz70BPnE9TfzJweUQoLFI5ZLzb6rgnakKFvclgX3cphXXQrR5900ZacqGzUJU5hDL8P7fDj+6GIVphnqp7WFI1mHG7ZsgXPnz/HyZMnUalS6kvK3Lp1S/TK6tVLf7kp6uG5ubnh0KFDsLS0TPfckSNHYtCgQSl6erKxUV8WrMaKCDyLUMDFxggnutngQLw3/lF8gWrGN+ED9RXvt78Yi5ZOnxYqjmq7BvEFv0TU+3hg6iVxLLz/ZcSbJy6xZPL4DKw2pVytIzU54S6VMi1DW7qkJUefdOH85fw1pPz93NNEmBolYEv8V3gJO9xXFEAZoyBsfTEJ0Ql2MDeOQnr1dLYavQoVKuDixYtYsWIFfHx8Un1VR0YGTEnTpk2xbt06nD59GnXrpr6MjhIaF6Qt0xSqBtCbhWnQFAph6JSQs/eOItGQetnEANGUtk8e4E8330jIsCreHDA2gcn7T4u82to4w8r8Y9bS7yr/la6cOEXmZWhLl7Tk6JMunL+cv4aUv595mpR4GT/B6QQ7Uc+WQRBaOf0KdRL/R9TTOkAj9ya5KskVuWPHDvzyyy+pnlOsWDFh+A4ePJiuLF9fX/j7++Obb77B0aNHkSUYmwCNlesKqhvsZ3DAO1jDxEiBok1Tn4+YdE1j/0RZH3GwNhdb2v+VsRxtyNCpHH3SRQM5+qRLqnL0SRcN5OiTLqnK0SddDDRNxY2eiG93EgqmHeqS7H/0JpDlzp07Yr9t27ZiP3kgy7hx48S4Hv1WvXp1MW5348YNdO/eXS2QRSlv9OjR2Lt3rxj7y5K1NykslqI4VaYtxNq646r3JITYV0SL8gUSz9k7FAgP/XRd7gKJN6XkN/L+K7NyWBfdymFddCuHddGtHH3SJR051yv5I8ShMspEnUO+4+r1r0b/I9ceKGTy1VdfKfr375+0f/PmTYWzs7Ni0KBBii5duihatGiR9Ft8fLxi4sSJikKFCinMzMwU7u7uismTJ4vfgoKCRHzqpUuXks6fMWOGwtbWVnHy5ElJurx9+1bIoE+NiY9TKB4eUyiubk78pP3kRL9VKMbmTtzu7E/9HCloQw7rols5rItu5bAuupWjT7pIkSOl/pWIVHsge0zvyJEjavs03eDZs9SjbOhFhL/++qvYklO4cOEUr42nIBXVQJUsgbrQGYXFqnazC1fTvNutDTmsi27lsC66lcO66FaOPukiRY6U+lfL8Pv0krHs+EPY5jJFw5KusFf6qo1MgGINP31PhZgP8eiy4pz4vrpbZeQyS+W8DORoQ0aWytEnXSTI0SddJMnRJ10kyNEnXSTJ0SddDCxNx++F4crjN2hcOh88nT8FEmYFbPRUSEhQYMb+u4j+EA+fwg6fjJ5ZLqDD5vSvVShwNuhV0vdUyUCONmRkqRx90kWCHH3SRZIcfdJFghx90kWSHH3SRVty9EmXdOQsOx6Eo3fDRB2b1UaPXy2kwpPX0cLgmZsao5CDVXarwzAMkyMp7morPu+GJi5qnZWw0VPhzrPEG+CZ1wamJpw1DMMwusDLxVatzs1KuGZX4e7HG6BshSTxPhKYlC9xo++aog05rItu5bAuupXDuuhWjj7pko6c4kqjFxqeIqBR1/CYngp0A1RbIWp8SLZEjqZoQw7rols5rItu5bAuupWjT7qkIYfG8Wghr9dRH/Ai4j3y2mphpS2JcE8vlZ6el0vWDqwyDMMYEpbmJklxE8p6N6vgnt5HPsQn4EFYRNo9PQlYphaymw0y9E0O66JbOayLbuXoky7akmOpB7pQPfvvyyjcDg1HdU8nZBVs9D5iamyEkyPq4m5oBArkkbZYtipW5qa4NaFxpnTQhgx9k8O66FYO66JbOfqki7bkWOmJLoMbFseQRsVR2NEaWQkbvY/QmyKcbXOJjWEYhtEtKQIGswge02MYhmEMBu7pfWT+4fuIiI1DK2+3lCsEGBkDhWp8+p7Gkjy+6y6I7ws7VkxjSZ705WhDRpbK0SddJMjRJ10kydEnXSTI0SddJMnRJ10MNE0rTwbhRsg7DGlYHK52WeNlY6P3ka0XnuDhi0hU93BKafTMLIEf96R7PS3Dc/hOWNL3VMlAjjZkZKkcfdJFghx90kWSHH3SRYIcfdJFkhx90kVbcvRJFwlyNp57LCaoNyuTL8uMHrs3P7ZY/n2ZOHHSy5WnKzAMw2QFXq5ZvzKLVowevUh2wIC03jIO8cJYChS5fPly0rGTJ0+iTJkyMDMzQ8uWLZFdxCcosO1iMBIUgI2FKRyszDWWo+Tsw1dq+1kpQ9/ksC66lcO66FaOPumiLTnxeqRLsY9etYO3nuH0g5ca66LTN6dn9Db11IiPjxdvTXdycoKpaaJHtUqVKvDy8oKfnx9sbGzEtfTGdVXDqOs3pwdef4pxu27i6duYpGP57HJh7NclxSsvkqDlc2aXSfw+4Bpgbp1CztidN/DsXazGcrQhI8vl6JMunL+cvzk4f3NimgKvP8XIbdfEqizpytCyPdC5e/P9+/cwMTGBq6trksEjHjx4gLp168LNzQ158uRBVkMZ7rvuoprBI0Lfxojj9LsaUS8TtzTkqN58uXK0ISPb5OiTLmnI0SddZMvRJ13SkKNPusiWo0+6GFCaAj/KUDV46crQIrKNXmRkJDp37ix6Z/ny5cOMGTNSvBF9woQJ4hyytr169VJzbyq/v3z5Et26dRPfV61ahXHjxuHKlStiX3lMV1AXmnp4qXVxxfvmAdGKCY/5gKj3cYh6H48ohUXiRt/FsTjxO52XGTnakJF9cvRJF85fzt+cl785MU3hGcggqH7WlatTtnuzd+/e2LNnD1asWAFnZ2f873//w9GjR4UBIxclGb3Xr19jzJgxSWN11NMrUqQILl26JMbxyNVZvHhxjB8/Hm3bthVd0tGjRyMwMBAHDhwQ19AxS0v1lVFiY2PFptqdLViwoGz3JvmOf1h6Rk6yGYZhGB1SK8oUx6zikvY39PwSVT0cte7elDVlISIiAsuXL8e6detQr149cWz16tXCRakKuS0HDx6ctE+9OyVKVyf15khB+k5Qz5Hcn8r91KDxP+oRZpbn4eouTYZhGCZ7KfbBBMcQp/N6WpbRo3E4GqOjIBQlDg4Ootemio+PD3TByJEjMWjQoBQ9PbkkX2oseHFPxEe+gom1Awr8tDTpeN8mgGc+ozTl3H+qwLy9n/a7v7WAjcIIEUYKLLeLlSRHGzL0TQ7rYjhp0iddOE2fR5rupyEjxkjd6airJSF1Mjnd2lo3C4haWFiILbNULuIgooRo0FT4oePeQ/EhVnwqcbAxgndhSxgbp10AvAsrYG8djdeRiTfLDEYwhxHMVM7JSI42ZOibHNbFcNKkT7pwmj6PNHmnIUNpMukqmqhO9XS2B7J4eHiIeXVnz55NOkbjd3fv3s20Iubm5mJqQ1ZgYmwkwmKJtG5v+xrm6d58gn7vUDP9eX0ZydGGDH2Tw7roVg7rols5+qSLtuR8LroYffyk+pnq6Ww3ejTu1r17dwwdOhSHDh3C9evX0bVrVxgbZ37mAwXABAUFiQjPFy9eqAWs6AKaB7Kwo3eKpW+oldK3sQV8PKR1guk8Ot/e2khjOdqQoW9yWBfDSZM+6cJp+rx1cbXLJeplTebp6Sx6k4JZfH19sW3bNtja2oqAFYrmVE5OJ+NFq7OortBCgSzK6E06j6C5eXQ+GU2CjFyHDh1w8OBBvHnzBitXrkz6TVeT0wkKi3XNnx8vnoXCLq8jtv2zOcPWTmokJChwY3Y8jKONkWCZgFIDTGTL0YYMfZPDuuhWDuuiWzn6pIu25CTomS43AxJgFGUEUxtT9JhaU+Menk6iN5W9vbVr14pNCfX8UovUVEKGMLltJcOmCo3VbdmyBVkNZbC5aWJP1dQkseutCXQdXZ+QCTnakKFvclgX3cphXXQrR5900ZYcY33TxRiggS1zEyOduTRV4bcsSOTP1X9i0+JNeBX2Ch4lPNBvfD+UKF9C8vVXzl7BpkWbcPfaXbx8/hITlk5AjUYfX7khkd/n/Y7jgcfx34P/YJHLAqUqlkKvkb3g7uEuS86OtTuwc+1OhD4JFfuFvQqjc//OqFLnU1SuXNbPX4+lU5aiVbdW6PtbX8nXrZq5Cqtnr1Y7VtCjINYcXiNbh7DQMCzxW4Jzh88hJjoGBQoXwPDpw1G8nHp0cXq0q9YOz548S3G8RecWGDAx7fVlVaGx6dWzVuPvP//Gq+ev4OTihEZtGqFTv05iqo4coiKisGL6CpzYdwKvX7xGsdLFRP5+Ue4LjcsaNUBXzlyJPev3IOJdBEr7lMbAyQPJuSRLzrG9x7Br3S7x+7s377B0L0U+F5YsI+5DHJZPW46zh8/i6X9PYW1rDe8a3ug1ohf5gmTpQuXo0K5DCAsJg6mZKbzKeKH7sO4wgpcsOarMHDkTu37fhda1fVG7eGvJMvwH+WPfln1qsip9VQk/+kyWrcuje49EmaZz4+PiUahYIXSqMgZ5jF0lyajjXifVtH1bqyfqlWgnWZfoyGgs8V8iyuG71++Qr2A+fPfjdyiGprLSRPUnpef8sfOi7JWtUhbNPfrA0Ux+FL6m8FsWJHBo5yEsnLAQXQZ0wZI9S4TRG9ZxmKiEpBITFQOPkh7oP7G/xnpQgWrZpSXmb5+Pab9PQ1xcnNAjOipalpy8rnnRc0RPLN6zGIt2L0KFahUwqscoBN0J0kiv21duY9f6XShaoqhG15PR3Xp+a9I2d+tc2TLC34Tjl+9+EXM9/df4Y9XBVfAd7QsbO3lvzVi0a5GaLtN/ny6O125WW7KMDQs3iIYFNYxWH1otGiYbF23EtpXbZKdr2rBpOH/8PEbOHokVf6+AT00fDGk/RBh4TcvaxoWJugz0G4gFOxcgl1UuUY4+qEQvS5FDv5euVFqkTxNdqGFy7/o90RhY/NdijF8yHo8fPsav3X+VnSa3om7oP74/lu9fjjlb58C1oKtIU3jUG42eQ2pc3rx0UzRY5OpCVK5dWa0cjZ47Wrac4H+D0a9VP9EInLVpFpbtWybyyszUTLIMVR1oGzZ9mGh4VShWU5Yu88fPx7kj5/BrwK+iTLfq3goBYwJw9f4pyXKosTW652jRwJm4fCKW7F0ClwIuCNg8DLEf5NVhmYF7ehLYvGwzmv3QDE2+byL2B/kNwtlDZ7F3016079NekgzqRWWmJ0VMXTtVbX/EjBH4tsK3olVVrko5yXKqNaimtt9jWA/R86OHvEjxIrJ0ohbgpH6TMMR/CNbO/eTyloOJqQkcnDMXnkyGxjmfM4bPGJ50LJ+7/MHwPI7qPYz1C9Yjf6H8KPel9Py9cf4Gqjesjqr1qop9qoAP7jwoGgdyiI2JFb2picsmJt3froO64tSBU+J+dR/aXXZZo4pny/It6PRLJ9RomNgCHzlrJL6r+B2u3D8Jb7d6kuQQDVs1FJ+hjxM9BnJ1scltg+nrExsVSvpP6A/fr33x6svnSb0ZKbrUb1lfbb/36N74a+NfCA57CC9HB1nPITUo5oyZI563kT+OlJUmJWbmZqmU6ThZcqgXTL///OvPScfIe3HrVhwSIqTJSK7Dyf0nUb5qeTjlyZckQ4qcGxduoFHrRuJa4usOX4te8L+hd1DatYYkOU+CnuDmxZui8aasZ8jDcOTPVrhw/xDqO2XN23a4p5cBH95/EEalYo2KSccoWpXcMDcu3shW3SLDE98BmDuPZkE8Slcc9WSp1V3Ku5Ts62ePmo0v636JijU/5Y9cgoOC0dqnNdpXb4+J/SbiWXBK92JGnPr7FIqXLY7ffv5NNAR6NumJ3et3I7P3nlyUTdo2keWWLOVTChdPXhS9FuL+zfu4/s910fqXA7mzEuITYG6hHt5Nru1r/1yDJlArm1xMquWZjA+56h+G3ER2E/kuUuS1pYV1pu4b3Xvr3NZwy+sh69qEhAT4DfBD25/aym4AqnL5zGVRDjvX7oxZ/5uFt6/fytbjzKEzogc7tONQIcv3G1/hXtQUuu9nDp1B03bqLkkp0FAKPWPUIKCG06VTl4QRK1G4oqz7QqiWZ6pLzUzM8CD0OrIK7ullwNtXb0XFY+9kr3ac9mlsLbugh2Leb/PEeIwmD+fD2w/Rp2UfvI99D0trS+FaIjejHMhYknuKXIKaUqJCCdE7IxcOjQGsmb0G/Vv3F61BKxsryXJCHodgx7odaNOjDTr07SB6VXPHzhXjO43bNNZIN6pgaNyhcWt517fv3R5R4VHoUqcLjE2MRfmhXlmDbxvIkkPpp8pm7Zy1KORZCPZ57XFoxyHRWqYWv6YVH5FaeX53T7q7Xhe8j3mPxX6LUbdFXWH0EtQX4M+Q0wdOY3zf8YiNjoWjs6NwTSuO2Kn1aDJiw4INYqlEGpvWFGrc1GxcU3gaQh6FYNmUZRjReQT61p0tuZ/x5sUb4UUhfboN7YafRv4k3Itjeo1B/zbT4GlfQbZeNM5oZW2FWo1r4cFiedeSq37GiBn4vvL3wjNDxmqw/2C4B5eVnL8Ue0DuTBr7H+w3WLjVtyzbgtcRYXgblVguswI2ep8pAaMCEHQ3SKPxL6Jg0YJYFrhMVOrH/jomBt9n/zFbsuF7HvJcGF0aWzTPpdmLdwlVVwiNlZYsX1IEkxzefRjN2jWTLEeRoBA9vZ7De4p9CvigMUpywWhq9P7a9Beq1K4CJ9eU4zrpcWT3ERzYfgCj5o4S+Xn/xn3MHzcfji6OsnUh1+PUoVPRpnIbYUC9SnsJo0Deh5wEBbWM6524ru7ASQPx3wr5MspXKy/KNDVUd2/YLeQNbD4H1pC2aPGdq3ewdeVWMW4vN+BIlbrf1E36XvSLomLrULMD7ha7Ai9HH8mNWqJaw2qiIUd4lvIUbsYTV3bDs7Z8o7f3j72o/239j8+ruqs1I/5c9SduXbqFScsnwcXNBVfPXkXA6AD0bGIvOU3UAB23eJwYp/6m7DeiPJPHoVSRylDE6f7lsUl6ZNk/fabYOdiJm5M8aIX2HfLqZpmcjKDCdvrgaQRsDkDefHk1kkFjDsreAhkL6hltXbFVtN6kQJUu5UGvpp+CGKhHQw8DRbruv79ftJjlQoEnbkXcEPJviKzrqGVPkW2q0P7xvcehCRTZevHERYxbIn+B80WTFuGH3j8kVX5U6ZHLlsYH5Ro9ukd0nylYiXqPZDipMtdkvJJQllm6dyRLrTxbaxaIpC2DFxocipkbZ4ooTrmVMmFpZSnyi7aS3iXRsVZHnLwWiIalOki6/tq5a6KH1bZqW7UyvTV4MQ6d34aJP62DJtCYMNUjYW9C4CXxpQF0PvWoChdTb4S6e7rj3M2rsnWg5/Lxg8cYM3+M7GtpbHnZ1GXCG6Qcp6YGKrntD5zZDK9G0tdaprpG2dim+05j6D9W9kVBB/UoW13CRk+CcaDwZxqjUYbeUiuM9r/t8m2W6kK+dBpgPxF4ArP+mKVxxZeWbKXPXQre1b2FC1KVKYOnCBcGVfiaGDyCXDrkEmrwnTxXII2j0UOtypOHT0SrVBMC/wgUD2TVuokPuRzIvZZ8lSLap96oplCFThtFqf5z7B/h7tIEKjNk+Kj8Us9BOTZ86/ItdKrfHNll8Gh8iCIU7ezttCab8jsuXnqZbtCqQYqxaYoA9XavhypFE4PYNCHsaZgI87ezdpBV79C0lBRlOugJHHK7aOS1oHrMs2TiPZd7j2hLrUwnKBJ7pHKhcWRleh49u4tm3j8iq2CjJwFyL/gP9heFhgb8KfqNQnMbf99YVmVOIchKnj5+KtxetnlshZ9batDIwR0HRTQf+eZpDhhBA/YU3CCVpf5LUblOZbjkd0FUZBQObj+Iy6cvp4gOzWi8KflYIvnoc9vnljXGuHDiQlStXxWuBVzx4tkLMd+Ketb1WnyKIpR6j/p+2xfr5q1DneZ1RCVOwQyD/D+9lUMq1KgJ3BwootWotS0XSs+6uevgnN8ZRbyK4N6NeyICWBn9K4dzR8+JN2uSO5rKz6LJi0TDIj1ZGZW11t1bi3FC6hGREaR5gE7OTijnWR2IkS6H5uY9D34u7htBY9xxz+NgCyfkscmToQzqnY/9eawYF568crLoVSnLdFy8JYzxqUynJ4fKHOV39QbVRbQiuTe3r9mOsGdh8K5TS1beJDe6JmYmyG3tAJc8NI8sIWNd8uQW805rNaklGhfBj4KxePJikdclCvvIyl8KphnfZ7yYy0bTimhMjyJ3B7SeIateoUbN0T1H4TvKV+MyQ9HL5MGgeob2afrU/q378V2Nn2XJIdc/NSbp2Xh456EYIinnWQ0lCurmzTypwUZPAuSmogeJKmQxOb2kB6asnSLLvUnjBQPb0gTgRBaMXyA+qWIdMXOEJBkUpk4M/P6THIICQeS4zV6/fA2/gX6igiFXErnfyOD51Mq6gqfaCp7Yd6KoQMmlU6ZSGTEPMfnUgYygVvGEJRPEIPmagDVi8myfsX1kB48QF05cEO5IitrUBBr0J0NC467kNqS5XhTiTQsAaBLNSIEQFDVna2eLWk1riaAYGh/RtKy1822H6OhozBg5Q7iZyviUEeU5Ypf5x2pdmhyK5qPevZIJfSeIzyYVO+Nr504Zyug6sKuQQfRsnDgWq2TA99PVgjXSkzNo8iDRIxq7ZayIkiTDQwsSzNkyB4ojhdUCLbTxHKYng0LwH9x6IIJGKG/JhUxzK7sN6YZn6+XlLwXDkDxa+IGCsijYi8bEHG+VTkqTlPRQwBl5cmgsOC0ykjNm3hjxbNH0JHpWyYNCk/9LRzaHIlK6HApWWzBhQaJ73dlRTHupbNweyLppevLX3tQntLH2JlHArQBCgkPg6OqILec0XwrtVgDNnzGGsU0CSvQ3zTYZ+iaHddGtHNZFt3L0SRdtybmlR7rcDohHfIQRrOzM8OMU9UnzurAHPE+PYRiGMRjY6DEMwzAGAxs9hmEYxmBgo8cwDMMYDGz0GIZhGIOBjR7DMAxjMLDRYxiGYQyGz3pyunKKIc3PyAzKxV1pRYiXr19qLCc61gQJ701gHBuPl6/js02GvslhXXQrh3XRrRx90kVbcqL1SJeoWFMkvDeGUaxZpupy5bUZTT3/rCenP3nyBAULZt1r5hmGYRj95vHjx3Bzc8uZRo96aCEhIbC1tc3Uq0AY6S0pamRQocrMCjiMdDjPsx7O888zv8mUhYeHI3/+/CkWx84x7k1KWHoWndENVDC5MshaOM+zHs7zzy+/aRmyjOBAFoZhGMZgYKPHMAzDGAxs9BjJWFhYYOzYseKTyRo4z7MezvOcnd+fdSALwzAMw8iBe3oMwzCMwcBGj2EYhjEY2OgxDMMwBgMbPYZhGMZgYKNn4MyfPx+FCxdGrly5UKVKFZw7dy7Nc5cuXYqaNWvC3t5ebPXr109xfteuXcXqOKpb48aNsyAlOTPPV61alSI/6TpVKBZtzJgxyJcvHywtLcV9uXfvXhakJOfld+3atVPkN23NmjVLOofLePocO3YMX3/9tVgZhfJm+/btGVwBHDlyBN7e3iKC09PTU5T7zNzH9GCjZ8Bs2rQJgwYNEuHCFy9eRLly5dCoUSM8f/48zYL5ww8/4PDhwzh9+rRYOqhhw4YIDg5WO48qgKdPnyZtGzZsyKIU5bw8J2iVCtX8fPTokdrvU6dOxZw5c7Bo0SKcPXsW1tbWQmZMTAwMHbn5vW3bNrW8vn79OkxMTNCmTRu187iMp01kZKTIZzJSUggKChKNijp16uDy5csYMGAAevTogX379mXquUkTmrLAGCaVK1dW9OnTJ2k/Pj5ekT9/foWfn5+k6+Pi4hS2traK1atXJx3r0qWLokWLFjrR1xDzfOXKlQo7O7s05SUkJChcXV0V06ZNSzr25s0bhYWFhWLDhg0KQyezZXzWrFmijEdERCQd4zIuHTIxf/75Z7rnDBs2TFGqVCm1Y23btlU0atRIa/dRFe7pGSjv37/HhQsXhCtMdS1T2qdenBSioqLw4cMHODg4pOgROjs7o3jx4vD19cXLl5q/riknoWmeR0REoFChQqJn3aJFC9y4cUOtlRwaGqomk9YfJPeP1PuYU9FGGV++fDnatWsnes+qcBnXHnQvVO8RQb045T3Sxn1UhY2egfLixQvEx8fDxcVF7TjtUyUqheHDhwu/vWphJLfPmjVrcPDgQUyZMgVHjx5FkyZNxH8ZOprkOVWqK1aswI4dO7Bu3TrxZpFq1aqJ12oRyusycx9zKpkt4zRmRO5NcrWpwmVcu9C9SO0e0dsXoqOjtVJX5Zi3LDDZh7+/PzZu3ChavKqBFdQqVlKmTBmULVsWHh4e4rx69eplk7afL1WrVhWbEjJ4JUqUwOLFizFhwoRs1S2nQ708KsOVK1dWO85l/POGe3oGipOTkxigf/bsmdpx2nd1dU332unTpwujt3//fvHAp0fRokXFf92/fx+GTmbyXImZmRkqVKiQlJ/K6zIjM6eSmfymYAxq1HXv3j3D/+EynjnoXqR2jyiAi6KRtfHcqMJGz0AxNzdHxYoVhYtGCbnOaF+1Z5EcihSkHkZgYCB8fHwy/B9yw9F4B4XTGzqa5rkq5Oa5du1aUn4WKVJEPPiqMsktRFGcUmXmVDKT35s3b0ZsbCw6duyY4f9wGc8cdC9U7xHx999/J90jbTw3asgOfWFyDBs3bhRRfqtWrVLcvHlT0atXL0WePHkUoaGh4vdOnTopRowYkXS+v7+/wtzcXLFlyxbF06dPk7bw8HDxO30OGTJEcfr0aUVQUJDiwIEDCm9vb0WxYsUUMTEx2ZbOzznPx40bp9i3b5/iwYMHigsXLijatWunyJUrl+LGjRtq94Vk7NixQ3H16lURWVikSBFFdHS0wtCRm99KatSoISIIk8NlPGMojy5duiQ2MjEzZ84U3x89eiR+p/ymfFfy8OFDhZWVlWLo0KGKW7duKebPn68wMTFRBAYGSr6PcmCjZ+DMnTtX4e7uLowZhQWfOXMm6bevvvpKhGcrKVSokCjEybexY8eK36OiohQNGzZU5M2bV2FmZibO79mzp0YFMycjJ88HDBiQdK6Li4uiadOmiosXL6aYtjB69GjxO1UM9erVU9y5cydL05RT8pu4ffu2KNf79+9PIYvLeMYcPnw41XpCmc/0Sfme/Jry5cuLe1S0aFExVUfOfZQDv1qIYRiGMRh4TI9hGIYxGNjoMQzDMAYDGz2GYRjGYGCjxzAMwxgMbPQYhmEYg4GNHsMwDGMwsNFjGIZhDAY2egzDMIzBwEaPYRiGMRjY6DEMwzAGAxs9hvmMGTt2rHinG73Zm16qSW/xprfZMwyTOvwSWYb5TPm4YLx4oWyBAgVw8+ZNdOnSRbzjkIwfwzAp4QWnGSYH0b59ezg7O2P27NnZrQrD6CXs3mSYz5RHjx6hT58+KF26NOzt7WFjY4M//vgDbm5u2a0aw+gtbPQY5jMkLCwMlSpVEm/snjlzJk6cOIFTp07B2NgY5cqVy271GEZv4TE9hvkM2bVrF+Lj47FhwwYYGRmJY/PmzRNBLOXLl89u9RhGb2GjxzCfIY6Ojnj37h127tyJkiVLCiPo5+cnAlry5s2b3eoxjN7CgSwM8xmSkJCA3r17Y/369bC0tETHjh0RExMjxvl2796d3eoxjN7CRo9hGIYxGDiQhWEYhjEY2OgxDMMwBgMbPYZhGMZgYKPHMAzDGAxs9BiGYRiDgY0ewzAMYzCw0WMYhmEMBjZ6DMMwjMHARo9hGIYxGNjoMQzDMAYDGz2GYRjGYGCjxzAMw8BQ+D/maY4QR2ov7QAAAABJRU5ErkJggg==",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAb0AAACMCAYAAADof3f4AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAANTFJREFUeJztnQdcFMcXx390aSJFQEUsIMauiBpr7D3RRI3GHluCGnv9xxIr2MXeeyyxxBrR2LvG3jsxCqLY6Qrc//MGD++ou8cdnNz7fj77udu93XdvZmfnzbx5M2ukUCgUYBiGYRgDwDi7FWAYhmGYrIKNHsMwDGMwsNFjGIZhDAY2egzDMIzBwEaPYRiGMRjY6DEMwzAGAxs9hmEYxmBgo8cwDMMYDKb4jElISEBISAhsbW1hZGSU3eowDMMw2QStsxIeHo78+fPD2Ng4Zxo9MngFCxbMbjUYhmEYPeHx48dwc3PLmUaPenjKRObOnVtjOcW/KI7Qp6Gwz2uPpQeWpnrOo6UmSIg0gbF1PAr1jNf4v7Qhh3XRrRzWRbdyWBfdytEnXaTwaKkpEiKNYZXbDB3HV4OmvHv3TnSClHYhRxo9pUuTDF5mjJ6yK2xsYgxHe8dUz3luEYeED8YwtkiAo73m2aYNOayLbuWwLrqVw7roVo4+6SKFMIt4xH8wgqWFWabqcSUZDXVxIAvDMAxjMLDRYxiGYQwGNnoMwzCMwcBGj2EYhjEYPutAFl3y5+o/sWnxJrwKewWPEh74pmQfuNuWTPP8K2evYNOiTbh77S5ePn+JCUsnoEajGrL+8/d5v+N44HH89+A/WOSyQKmKpdBrZC+4e7hLlrFj7Q7sXLsToU9CxX5hr8Lo3L8zqtSpgsywfv56LJ2yFK26tULf3/pKvm7VzFVYPXu12rGCHgWx5vAaWf8fFhqGJX5LcO7wOcREx6BA4QIYPn04ipcrLllGu2rt8OzJsxTHW3RugQETB0iSER8fj9WzVuPvP//Gq+ev4OTihEZtGqFTv06y54pGRURhxfQVOLHvBF6/eI1ipYuJvP2i3BcalzOaq7Ry5krsWb8HEe8iUNqnNAZOHgjAVZacY3uPYde6XeL3d2/eYenepfAs5SlLn7gPcVg+bTnOHj6Lp/89hbWtNbxreKNO3m7IDWfJulAZOrTrEMJCwmBqZgqvMl7oPqw7jOAlK02qzBw5E7t+34XWtX1Ru3hryTL8B/lj35Z9arIqfVUJP/pMlq3Lo3uPRJmmc+Pj4lGoWCF0qjIGeYxdJcup414n1fS1rNILDWu0kSQjOjIaS/yXiHL47vU75CuYD9/9+B2KoWmqsqXqRnUnpe/8sfOiLJatUhb9xveDW5G0pxNkBdzTS4VDOw9h4YSF6DKgC5bsWSKM3tytIxEe/TrNa2KiYuBR0gP9J/bX+H+pELXs0hLzt8/HtN+nIS4uDsM6DkN0VLRkGXld86LniJ5YvGcxFu1ehArVKmBUj1EIuhOksV63r9zGrvW7ULREUY2uJ8O79fzWpG3u1rmyrg9/E45fvvsFpqam8F/jj1UHV8F3tC9s7GxkyVm0a5GaHtN/ny6O125WW7KMDQs3iIYFPbyrD60WjZKNizZi28ptkMu0YdNw/vh5jJw9Eiv+XgGfmj4Y0n6IMPCalrONCxN1Geg3EAt2LkAuq1yiDH2Iey9LDv1eulJpkb70SE8ONU7uXb8nGgSL/1qM8UvG4/HDx1i0fYwsXdyKuqH/+P5Yvn855mydA9eCriJN4VFvZMlRQg3Lm5duigaLnPQoqVy7slo5Gj13tGw5wf8Go1+rfqIBOGvTLCzbt0zkk5mpmSw5qnrQNmz6MBjBCOWL1pQsY/74+Th35Bx+DfhVlOlW3VshYEwArt4/lWYeZCSXGl+je44WjZ2Jyydiyd4lcCngIsq3nPpMF3BPLxU2L9uMZj80Q5Pvm4j9QX6DcGLXGZy+HYjGedumeg31pDLbm5q6dqra/ogZI/BthW9FS6pclXKSZFRroD7PpcewHqLnRw95keJFZOtErcBJ/SZhiP8QrJ27FppgYmoCB2cHaAoZGud8zhg+Y3jSsXzu+WTLyeOYR21//YL1yF8oP8p9KS1viRvnb6B6w+qoWq+q2KcK+ODOg6JhIIfYmFjRm5q4bGLSve06qCtOHTgl7lf3od1llzOqaLYs34JOv3RCjYaJLe6Rs0biu4rf4cr9k/B2qydJDtGwVUPxGfo40WOQFunJscltg+nrExsWSvpP6A/fr33xKvwZnGzyStKlfsv6avu9R/fGXxv/QnDYQ3g5Osh6BqlBMWfMHPGsjfxxpKz0KDEzN0ulPMfJkkM9YPr9519/TjpG3otbt+KQECFdTnI9Tu4/CS/3cnDKnZ/WrJIk48aFG2jUuhHKVy0v9r/u8LXoBf8begelXdP2VqUn90nQE9y8eFM05pT1DnkcWlVshUM7Don6Nbvgnl4yPrz/IIxMxRoV1ebxfeHujaBnN7NUl8jwSPGZO49mc1fIFUe9Vmpxl/IupZGM2aNm48u6X6JizU/5IZfgoGC09mmN9tXbY2K/iXgWnNLFmB6n/j6F4mWL47effxONgJ5NemL3+t3I7H0mF2WTtk1kuSVL+ZTCxZMXRY+FuH/zPq7/c120/uVA7qyE+ASYW5irHSe39rV/rkETqFVNLiXVskuGp0T5EngYkrVlNy0i30WKnoilhbxeuup9o3tvndsabnk9ZC9b6DfAD21/aqtRA1DJ5TOXRTnsXLszZv1vFt6+fitbjzOHzoge7NCOQ4Us3298hXsxM9C9J7nVSic21qVSqmIp8YxRg4AaTpdOXRJGq0RhzZ95uk+EavmmepQaDJqWb23BPb1kvH31VlRG9k72asdtrewR+iKxossK6MGY99s8MSYj9wF9ePsh+rTsg/ex72FpbSncSuRilAsZTHJPkVtQU0pUKCF6aOTGIb//mtlr0L91f9ECtLKxkiQj5HEIdqzbgTY92qBD3w6iVzV37FwxvtO4TWON9KIKhsYZGreWd3373u0RFR6FLnW6iMUMqKxQr6zBtw1kyaG0U2Wzds5aFPIsJFYDohYwtY6pxa9ppUckL7u0/+5e2q75rOJ9zHss9lsMny/qwNLcOqknIoXTB05jfN/xiI2OhaOzo3BNK47YqfWKMmLDgg0wMTER49KaQo2bmo1rCk9DyKMQLJuyDCM6j0DfurMl9yHevHgjPCikT7eh3fDTyJ+Ee3FMrzHo32YaPO0raKQbjTVaWVuhfLEaQIz06/qN74cZI2bg+8rfC68MGafB/oPhHlxWVv6qQnEI5M6kOIDBfoOFm33Lsi0Iexom6oHshI2enhIwKgBBd4Nkj38RBYsWxLLAZaJSP/bXMTH4PvuP2bIM3/OQ58Lo0tiieS713ogcVN0fNDZasnxJEVByePdhNGsnzcWhSFCInl7P4T3FPgV80BgluWA0NXp/bfoLVWpXgZNrynGd9Diy+wgObD+AUXNHify8f+M+5o+bD0cXR9m6kOtx6tCpaFO5jTCgXqW9ULdFXeFpyGlQUMu43uPE93b1+wGJHQHJlK9WXpRpapTu3rBbyBrYfA6skfoKSsm5c/UOtq7cKsboM7M4fd1v6iZ9L/pFUbF1qNkBd4tdgZejj+QGLVGtYTXRkCMoSIjcjCeu7IZnbc2M3t4/9qL+t/VhZmouozkB/LnqT9y6dAuTlk+Ci5sLrp69ioDRAejZxF5ympJDDdJxi8eJcetvyn4jyjd5IKg+oN5kdsJGLxl2DnbiBlE0nSrhUa+R21LzcSk5UIE7ffA0AjYHIG++xHEPOZALQdlbIGNBPaOtK7aK1ptUqOKlPOjV9FMgA/Vq6IGgyNb99/eLVrNcKPiEordC/g2RfA217CmyTRXaP773ODSBIlsvnriIcUsSK2E5LJq0CD/0/iGp8qNKj9y1ND4o1+jRPaJ7TAP71Hskw0mVuSbjlYRD3sTySfeNZCmhfQdrzYKQtGnwQoNDMXPjTISssUaCTKNnaWUp8ou2kt4l0bFWR5y8FoiGpTpIuv7auWuih9W2alu18rw1eDEOnd+GiT+tgybQmDDVGWFvQuAlzf6K86lHVbiYeiPU3dMd525e1UgPei4fP3iMMfPH4MPf8saWl01dJrxBynFqapyS2/7Amc3waqSZ0VPWPcrGN5UBGlMnNy4dz07Y6KViMCgkmsZtlOG31DK7898l1CrZUqf/TS0gGmQ/EXgCs/6YpXHll5pcpY9dKt7VvYULUpUpg6cItwVV+poYPILcOuQWavBdA1njaPRAq/Lk4RPRKtWEwD8CxQNYtW7iQy4Hcq8lf20J7VNvVFOoQqeNolT/OfaPcHdpApUXMnxUdpXTC2hc+NblW+hUvzmy0+DRGBFFKdrZ2yEkWdCHJlB+x8VLL9MNWjVIMS5NEaDe7vVQpai8MTBVyF1HYf521g6y6hialpKiTAc9gUNuF409F1RveZb0xK2/42Tdn7gPcamW6QSFnP5i2tC4sjJ9d6/eRbch3ZCdsNFLBXI5+A/2F4WIggAoIi72Qwy+LN4o3cqcwpCVPH38VLi+bPPYCt+21KCRgzsOiog+8s3TPDCCBu0pwEEKS/2XonKdynDJ74KoyCgc3H4Ql09fThEZKmXMKflYIvnlc9vnljXGuHDiQlStXxWuBVzx4tkLMeeKetL1WnyKJJRyP/p+2xfr5q1DneZ1RCVOwQyD/AdBLtSACdwcKKLVqLUtF0rLurnr4JzfGUW8iuDejXsi2lcZ6SuHc0fPAYpEdzSVnUWTF4lGRXqyMipnrbu3FuOE1CMiI0jzAJ2cnVDOs7raOE9Gcmhu3vPg5+KeETR3lHgbmRu2cJIkh3roY38eK8aFJ6+cLHpWVKbfRsbBMt4O5jDJUAaVN8rv6g2qi0hFcm9uX7MdYc/C4F2nlqy8IYOriomZCXJbO8AlD72eLCFjXfLkFnNOazWpJRoXwY+CsXjyYpHXJQr7yMpfCqYZ32e8mLtG04poTI8idwe0niErTcqGzdE9R+E7ylejMlPuy3LCg0F1DO3T1Kn9W/fjuxqfIks1kUtDAdS4pGfl4Z2HYrikeqPqqFSrErITNnqpQK4rerioghaT00t6oG+rychtRa25hDTHDAa2pUnAiSwYv0B8UuU6YuYISf9LoerEwO8/ySEoEESq6+z1y9fwG+gnKheaDEzuNzJ4PrU0d1NkBmoJT+w7UVSi5NYpU6mMmIeYfPpAelCreMKSCWJQfE3AGjF5ts/YPrKDR4gLJy4IdyRFbWoCDfqTIaExV3Ib0lwvCvGmBQA0iWSkQAiKmrO1s0WtprVEUAyNh6RFRuWsnW87REdHY8bIGcKtVManDKasnYKIXerjPBnJoWg+6tkrmdB3gvhsWrUTmpbtKklO14FdhRyiZ+Oe6vn49Qx8YVc2QxmDJg8SPaKxW8aKKEkyPLQgwZwtc6A4Ulgt0EIbz2B6Mijk/sGtByJghPKWXMg0t5J6Ls/Wy8tfCoYhebToAwVlUaAXjYE53iotO00UcEbeHBoPlpumETNHYMy8MeLZoqlJ9JySB4Um/5eObA5FYgC5RnIpYGXBhAWJ7nZnRzENhuYiZjdGiuweVcwE9P4kOzs7vH37NlOvpCjgVgAhwSFwdHXElnNbUj3nVgDNnzGGsU0CSvTXvK2gDTmsi27lsC66lcO66FaOPukihdsB8YiPMIKVnRl+nPJpUr2u7AHP02MYhmEMBjZ6DMMwjMEg2+jVrl0bAwakvjhv165d0bKltAjHf//9V8yXuXz5MrKVhHjg47qExvFxifupnGP8McZafKZ2jsT/yrQc1kW3clgX3cphXXQrR590IRLikefpNTg/OCY+U8hR+R/Ev9f8f7KrpxcQEIBVq1bhs+HmTmB2aRhFJa4QYB7zDl/+0RNO/55OOoW+0zGLmHCxT5/Jz5GCNuSwLoaTJn3SJSemSZ90yelpKv/XKJQ8MkN8qspR/k71LiHq4dmlE+vlz8Xo0SBinjzSo/KyFcrYPzoD79QnSVtEvkSpg/7ihtBG3+lYWudIQRtyWBfDSZM+6ZIT06RPuhhqmoqeW5Xq73j3NLFe1qHhy7TR27NnjzB2v//+ewr3Js2Jmjp1Kjw9PWFhYQF3d3dMmjQpzcWRu3Xrhi+++AL//Zc4J0hnUBc6kFbsTwxctTQFrMwSP5ULFHmeWiI2go6ZIhamRjHiM+mc00thHBsJ4w8xaW+xkfA8nUk52pCRE3XJiWnSJ11yYpr0SRcDSZMqyv2C17an+J/E+vjjZILAETpzdcqeskBjeuXLl8fs2bOxfv16/Pzzz+KzefPmwui9efMG27cnJmj48OFYunQpZs2ahRo1auDp06e4ffs2evToIcb0ihQpgkuXLqFEiRL44YcfxLF9+/Yhb97Ul96KjY0Vm2qIasGCBeVPWQg6DqzOnhUqGIZhmJSsez4PHZ1VXlDdZTdQpKb+TFmYP38+evfujV27dgmDl5zw8HAxxkc9vS5dusDDw0MYPjJ4qkRERKBZs2YICwvD4cOH0zR4hJ+fn0iUciODpxER6b/aZnFccwz70BPnE9TfzJweUQoLFI5ZLzb6rgnakKFvclgX3cphXXQrR5900ZacqGzUJU5hDL8P7fDj+6GIVphnqp7WFI1mHG7ZsgXPnz/HyZMnUalS6kvK3Lp1S/TK6tVLf7kp6uG5ubnh0KFDsLS0TPfckSNHYtCgQSl6erKxUV8WrMaKCDyLUMDFxggnutngQLw3/lF8gWrGN+ED9RXvt78Yi5ZOnxYqjmq7BvEFv0TU+3hg6iVxLLz/ZcSbJy6xZPL4DKw2pVytIzU54S6VMi1DW7qkJUefdOH85fw1pPz93NNEmBolYEv8V3gJO9xXFEAZoyBsfTEJ0Ql2MDeOQnr1dLYavQoVKuDixYtYsWIFfHx8Un1VR0YGTEnTpk2xbt06nD59GnXrpr6MjhIaF6Qt0xSqBtCbhWnQFAph6JSQs/eOItGQetnEANGUtk8e4E8330jIsCreHDA2gcn7T4u82to4w8r8Y9bS7yr/la6cOEXmZWhLl7Tk6JMunL+cv4aUv595mpR4GT/B6QQ7Uc+WQRBaOf0KdRL/R9TTOkAj9ya5KskVuWPHDvzyyy+pnlOsWDFh+A4ePJiuLF9fX/j7++Obb77B0aNHkSUYmwCNlesKqhvsZ3DAO1jDxEiBok1Tn4+YdE1j/0RZH3GwNhdb2v+VsRxtyNCpHH3SRQM5+qRLqnL0SRcN5OiTLqnK0SddDDRNxY2eiG93EgqmHeqS7H/0JpDlzp07Yr9t27ZiP3kgy7hx48S4Hv1WvXp1MW5348YNdO/eXS2QRSlv9OjR2Lt3rxj7y5K1NykslqI4VaYtxNq646r3JITYV0SL8gUSz9k7FAgP/XRd7gKJN6XkN/L+K7NyWBfdymFddCuHddGtHH3SJR051yv5I8ShMspEnUO+4+r1r0b/I9ceKGTy1VdfKfr375+0f/PmTYWzs7Ni0KBBii5duihatGiR9Ft8fLxi4sSJikKFCinMzMwU7u7uismTJ4vfgoKCRHzqpUuXks6fMWOGwtbWVnHy5ElJurx9+1bIoE+NiY9TKB4eUyiubk78pP3kRL9VKMbmTtzu7E/9HCloQw7rols5rItu5bAuupWjT7pIkSOl/pWIVHsge0zvyJEjavs03eDZs9SjbOhFhL/++qvYklO4cOEUr42nIBXVQJUsgbrQGYXFqnazC1fTvNutDTmsi27lsC66lcO66FaOPukiRY6U+lfL8Pv0krHs+EPY5jJFw5KusFf6qo1MgGINP31PhZgP8eiy4pz4vrpbZeQyS+W8DORoQ0aWytEnXSTI0SddJMnRJ10kyNEnXSTJ0SddDCxNx++F4crjN2hcOh88nT8FEmYFbPRUSEhQYMb+u4j+EA+fwg6fjJ5ZLqDD5vSvVShwNuhV0vdUyUCONmRkqRx90kWCHH3SRZIcfdJFghx90kWSHH3SRVty9EmXdOQsOx6Eo3fDRB2b1UaPXy2kwpPX0cLgmZsao5CDVXarwzAMkyMp7morPu+GJi5qnZWw0VPhzrPEG+CZ1wamJpw1DMMwusDLxVatzs1KuGZX4e7HG6BshSTxPhKYlC9xo++aog05rItu5bAuupXDuuhWjj7pko6c4kqjFxqeIqBR1/CYngp0A1RbIWp8SLZEjqZoQw7rols5rItu5bAuupWjT7qkIYfG8Wghr9dRH/Ai4j3y2mphpS2JcE8vlZ6el0vWDqwyDMMYEpbmJklxE8p6N6vgnt5HPsQn4EFYRNo9PQlYphaymw0y9E0O66JbOayLbuXoky7akmOpB7pQPfvvyyjcDg1HdU8nZBVs9D5iamyEkyPq4m5oBArkkbZYtipW5qa4NaFxpnTQhgx9k8O66FYO66JbOfqki7bkWOmJLoMbFseQRsVR2NEaWQkbvY/QmyKcbXOJjWEYhtEtKQIGswge02MYhmEMBu7pfWT+4fuIiI1DK2+3lCsEGBkDhWp8+p7Gkjy+6y6I7ws7VkxjSZ705WhDRpbK0SddJMjRJ10kydEnXSTI0SddJMnRJ10MNE0rTwbhRsg7DGlYHK52WeNlY6P3ka0XnuDhi0hU93BKafTMLIEf96R7PS3Dc/hOWNL3VMlAjjZkZKkcfdJFghx90kWSHH3SRYIcfdJFkhx90kVbcvRJFwlyNp57LCaoNyuTL8uMHrs3P7ZY/n2ZOHHSy5WnKzAMw2QFXq5ZvzKLVowevUh2wIC03jIO8cJYChS5fPly0rGTJ0+iTJkyMDMzQ8uWLZFdxCcosO1iMBIUgI2FKRyszDWWo+Tsw1dq+1kpQ9/ksC66lcO66FaOPumiLTnxeqRLsY9etYO3nuH0g5ca66LTN6dn9Db11IiPjxdvTXdycoKpaaJHtUqVKvDy8oKfnx9sbGzEtfTGdVXDqOs3pwdef4pxu27i6duYpGP57HJh7NclxSsvkqDlc2aXSfw+4Bpgbp1CztidN/DsXazGcrQhI8vl6JMunL+cvzk4f3NimgKvP8XIbdfEqizpytCyPdC5e/P9+/cwMTGBq6trksEjHjx4gLp168LNzQ158uRBVkMZ7rvuoprBI0Lfxojj9LsaUS8TtzTkqN58uXK0ISPb5OiTLmnI0SddZMvRJ13SkKNPusiWo0+6GFCaAj/KUDV46crQIrKNXmRkJDp37ix6Z/ny5cOMGTNSvBF9woQJ4hyytr169VJzbyq/v3z5Et26dRPfV61ahXHjxuHKlStiX3lMV1AXmnp4qXVxxfvmAdGKCY/5gKj3cYh6H48ohUXiRt/FsTjxO52XGTnakJF9cvRJF85fzt+cl785MU3hGcggqH7WlatTtnuzd+/e2LNnD1asWAFnZ2f873//w9GjR4UBIxclGb3Xr19jzJgxSWN11NMrUqQILl26JMbxyNVZvHhxjB8/Hm3bthVd0tGjRyMwMBAHDhwQ19AxS0v1lVFiY2PFptqdLViwoGz3JvmOf1h6Rk6yGYZhGB1SK8oUx6zikvY39PwSVT0cte7elDVlISIiAsuXL8e6detQr149cWz16tXCRakKuS0HDx6ctE+9OyVKVyf15khB+k5Qz5Hcn8r91KDxP+oRZpbn4eouTYZhGCZ7KfbBBMcQp/N6WpbRo3E4GqOjIBQlDg4Ootemio+PD3TByJEjMWjQoBQ9PbkkX2oseHFPxEe+gom1Awr8tDTpeN8mgGc+ozTl3H+qwLy9n/a7v7WAjcIIEUYKLLeLlSRHGzL0TQ7rYjhp0iddOE2fR5rupyEjxkjd6airJSF1Mjnd2lo3C4haWFiILbNULuIgooRo0FT4oePeQ/EhVnwqcbAxgndhSxgbp10AvAsrYG8djdeRiTfLDEYwhxHMVM7JSI42ZOibHNbFcNKkT7pwmj6PNHmnIUNpMukqmqhO9XS2B7J4eHiIeXVnz55NOkbjd3fv3s20Iubm5mJqQ1ZgYmwkwmKJtG5v+xrm6d58gn7vUDP9eX0ZydGGDH2Tw7roVg7rols5+qSLtuR8LroYffyk+pnq6Ww3ejTu1r17dwwdOhSHDh3C9evX0bVrVxgbZ37mAwXABAUFiQjPFy9eqAWs6AKaB7Kwo3eKpW+oldK3sQV8PKR1guk8Ot/e2khjOdqQoW9yWBfDSZM+6cJp+rx1cbXLJeplTebp6Sx6k4JZfH19sW3bNtja2oqAFYrmVE5OJ+NFq7OortBCgSzK6E06j6C5eXQ+GU2CjFyHDh1w8OBBvHnzBitXrkz6TVeT0wkKi3XNnx8vnoXCLq8jtv2zOcPWTmokJChwY3Y8jKONkWCZgFIDTGTL0YYMfZPDuuhWDuuiWzn6pIu25CTomS43AxJgFGUEUxtT9JhaU+Menk6iN5W9vbVr14pNCfX8UovUVEKGMLltJcOmCo3VbdmyBVkNZbC5aWJP1dQkseutCXQdXZ+QCTnakKFvclgX3cphXXQrR5900ZYcY33TxRiggS1zEyOduTRV4bcsSOTP1X9i0+JNeBX2Ch4lPNBvfD+UKF9C8vVXzl7BpkWbcPfaXbx8/hITlk5AjUYfX7khkd/n/Y7jgcfx34P/YJHLAqUqlkKvkb3g7uEuS86OtTuwc+1OhD4JFfuFvQqjc//OqFLnU1SuXNbPX4+lU5aiVbdW6PtbX8nXrZq5Cqtnr1Y7VtCjINYcXiNbh7DQMCzxW4Jzh88hJjoGBQoXwPDpw1G8nHp0cXq0q9YOz548S3G8RecWGDAx7fVlVaGx6dWzVuPvP//Gq+ev4OTihEZtGqFTv05iqo4coiKisGL6CpzYdwKvX7xGsdLFRP5+Ue4LjcsaNUBXzlyJPev3IOJdBEr7lMbAyQPJuSRLzrG9x7Br3S7x+7s377B0L0U+F5YsI+5DHJZPW46zh8/i6X9PYW1rDe8a3ug1ohf5gmTpQuXo0K5DCAsJg6mZKbzKeKH7sO4wgpcsOarMHDkTu37fhda1fVG7eGvJMvwH+WPfln1qsip9VQk/+kyWrcuje49EmaZz4+PiUahYIXSqMgZ5jF0lyajjXifVtH1bqyfqlWgnWZfoyGgs8V8iyuG71++Qr2A+fPfjdyiGprLSRPUnpef8sfOi7JWtUhbNPfrA0Ux+FL6m8FsWJHBo5yEsnLAQXQZ0wZI9S4TRG9ZxmKiEpBITFQOPkh7oP7G/xnpQgWrZpSXmb5+Pab9PQ1xcnNAjOipalpy8rnnRc0RPLN6zGIt2L0KFahUwqscoBN0J0kiv21duY9f6XShaoqhG15PR3Xp+a9I2d+tc2TLC34Tjl+9+EXM9/df4Y9XBVfAd7QsbO3lvzVi0a5GaLtN/ny6O125WW7KMDQs3iIYFNYxWH1otGiYbF23EtpXbZKdr2rBpOH/8PEbOHokVf6+AT00fDGk/RBh4TcvaxoWJugz0G4gFOxcgl1UuUY4+qEQvS5FDv5euVFqkTxNdqGFy7/o90RhY/NdijF8yHo8fPsav3X+VnSa3om7oP74/lu9fjjlb58C1oKtIU3jUG42eQ2pc3rx0UzRY5OpCVK5dWa0cjZ47Wrac4H+D0a9VP9EInLVpFpbtWybyyszUTLIMVR1oGzZ9mGh4VShWU5Yu88fPx7kj5/BrwK+iTLfq3goBYwJw9f4pyXKosTW652jRwJm4fCKW7F0ClwIuCNg8DLEf5NVhmYF7ehLYvGwzmv3QDE2+byL2B/kNwtlDZ7F3016079NekgzqRWWmJ0VMXTtVbX/EjBH4tsK3olVVrko5yXKqNaimtt9jWA/R86OHvEjxIrJ0ohbgpH6TMMR/CNbO/eTyloOJqQkcnDMXnkyGxjmfM4bPGJ50LJ+7/MHwPI7qPYz1C9Yjf6H8KPel9Py9cf4Gqjesjqr1qop9qoAP7jwoGgdyiI2JFb2picsmJt3froO64tSBU+J+dR/aXXZZo4pny/It6PRLJ9RomNgCHzlrJL6r+B2u3D8Jb7d6kuQQDVs1FJ+hjxM9BnJ1scltg+nrExsVSvpP6A/fr33x6svnSb0ZKbrUb1lfbb/36N74a+NfCA57CC9HB1nPITUo5oyZI563kT+OlJUmJWbmZqmU6ThZcqgXTL///OvPScfIe3HrVhwSIqTJSK7Dyf0nUb5qeTjlyZckQ4qcGxduoFHrRuJa4usOX4te8L+hd1DatYYkOU+CnuDmxZui8aasZ8jDcOTPVrhw/xDqO2XN23a4p5cBH95/EEalYo2KSccoWpXcMDcu3shW3SLDE98BmDuPZkE8Slcc9WSp1V3Ku5Ts62ePmo0v636JijU/5Y9cgoOC0dqnNdpXb4+J/SbiWXBK92JGnPr7FIqXLY7ffv5NNAR6NumJ3et3I7P3nlyUTdo2keWWLOVTChdPXhS9FuL+zfu4/s910fqXA7mzEuITYG6hHt5Nru1r/1yDJlArm1xMquWZjA+56h+G3ER2E/kuUuS1pYV1pu4b3Xvr3NZwy+sh69qEhAT4DfBD25/aym4AqnL5zGVRDjvX7oxZ/5uFt6/fytbjzKEzogc7tONQIcv3G1/hXtQUuu9nDp1B03bqLkkp0FAKPWPUIKCG06VTl4QRK1G4oqz7QqiWZ6pLzUzM8CD0OrIK7ullwNtXb0XFY+9kr3ac9mlsLbugh2Leb/PEeIwmD+fD2w/Rp2UfvI99D0trS+FaIjejHMhYknuKXIKaUqJCCdE7IxcOjQGsmb0G/Vv3F61BKxsryXJCHodgx7odaNOjDTr07SB6VXPHzhXjO43bNNZIN6pgaNyhcWt517fv3R5R4VHoUqcLjE2MRfmhXlmDbxvIkkPpp8pm7Zy1KORZCPZ57XFoxyHRWqYWv6YVH5FaeX53T7q7Xhe8j3mPxX6LUbdFXWH0EtQX4M+Q0wdOY3zf8YiNjoWjs6NwTSuO2Kn1aDJiw4INYqlEGpvWFGrc1GxcU3gaQh6FYNmUZRjReQT61p0tuZ/x5sUb4UUhfboN7YafRv4k3Itjeo1B/zbT4GlfQbZeNM5oZW2FWo1r4cFiedeSq37GiBn4vvL3wjNDxmqw/2C4B5eVnL8Ue0DuTBr7H+w3WLjVtyzbgtcRYXgblVguswI2ep8pAaMCEHQ3SKPxL6Jg0YJYFrhMVOrH/jomBt9n/zFbsuF7HvJcGF0aWzTPpdmLdwlVVwiNlZYsX1IEkxzefRjN2jWTLEeRoBA9vZ7De4p9CvigMUpywWhq9P7a9Beq1K4CJ9eU4zrpcWT3ERzYfgCj5o4S+Xn/xn3MHzcfji6OsnUh1+PUoVPRpnIbYUC9SnsJo0Deh5wEBbWM6524ru7ASQPx3wr5MspXKy/KNDVUd2/YLeQNbD4H1pC2aPGdq3ewdeVWMW4vN+BIlbrf1E36XvSLomLrULMD7ha7Ai9HH8mNWqJaw2qiIUd4lvIUbsYTV3bDs7Z8o7f3j72o/239j8+ruqs1I/5c9SduXbqFScsnwcXNBVfPXkXA6AD0bGIvOU3UAB23eJwYp/6m7DeiPJPHoVSRylDE6f7lsUl6ZNk/fabYOdiJm5M8aIX2HfLqZpmcjKDCdvrgaQRsDkDefHk1kkFjDsreAhkL6hltXbFVtN6kQJUu5UGvpp+CGKhHQw8DRbruv79ftJjlQoEnbkXcEPJviKzrqGVPkW2q0P7xvcehCRTZevHERYxbIn+B80WTFuGH3j8kVX5U6ZHLlsYH5Ro9ukd0nylYiXqPZDipMtdkvJJQllm6dyRLrTxbaxaIpC2DFxocipkbZ4ooTrmVMmFpZSnyi7aS3iXRsVZHnLwWiIalOki6/tq5a6KH1bZqW7UyvTV4MQ6d34aJP62DJtCYMNUjYW9C4CXxpQF0PvWoChdTb4S6e7rj3M2rsnWg5/Lxg8cYM3+M7GtpbHnZ1GXCG6Qcp6YGKrntD5zZDK9G0tdaprpG2dim+05j6D9W9kVBB/UoW13CRk+CcaDwZxqjUYbeUiuM9r/t8m2W6kK+dBpgPxF4ArP+mKVxxZeWbKXPXQre1b2FC1KVKYOnCBcGVfiaGDyCXDrkEmrwnTxXII2j0UOtypOHT0SrVBMC/wgUD2TVuokPuRzIvZZ8lSLap96oplCFThtFqf5z7B/h7tIEKjNk+Kj8Us9BOTZ86/ItdKrfHNll8Gh8iCIU7ezttCab8jsuXnqZbtCqQYqxaYoA9XavhypFE4PYNCHsaZgI87ezdpBV79C0lBRlOugJHHK7aOS1oHrMs2TiPZd7j2hLrUwnKBJ7pHKhcWRleh49u4tm3j8iq2CjJwFyL/gP9heFhgb8KfqNQnMbf99YVmVOIchKnj5+KtxetnlshZ9batDIwR0HRTQf+eZpDhhBA/YU3CCVpf5LUblOZbjkd0FUZBQObj+Iy6cvp4gOzWi8KflYIvnoc9vnljXGuHDiQlStXxWuBVzx4tkLMd+Ketb1WnyKIpR6j/p+2xfr5q1DneZ1RCVOwQyD/D+9lUMq1KgJ3BwootWotS0XSs+6uevgnN8ZRbyK4N6NeyICWBn9K4dzR8+JN2uSO5rKz6LJi0TDIj1ZGZW11t1bi3FC6hGREaR5gE7OTijnWR2IkS6H5uY9D34u7htBY9xxz+NgCyfkscmToQzqnY/9eawYF568crLoVSnLdFy8JYzxqUynJ4fKHOV39QbVRbQiuTe3r9mOsGdh8K5TS1beJDe6JmYmyG3tAJc8NI8sIWNd8uQW805rNaklGhfBj4KxePJikdclCvvIyl8KphnfZ7yYy0bTimhMjyJ3B7SeIateoUbN0T1H4TvKV+MyQ9HL5MGgeob2afrU/q378V2Nn2XJIdc/NSbp2Xh456EYIinnWQ0lCurmzTypwUZPAuSmogeJKmQxOb2kB6asnSLLvUnjBQPb0gTgRBaMXyA+qWIdMXOEJBkUpk4M/P6THIICQeS4zV6/fA2/gX6igiFXErnfyOD51Mq6gqfaCp7Yd6KoQMmlU6ZSGTEPMfnUgYygVvGEJRPEIPmagDVi8myfsX1kB48QF05cEO5IitrUBBr0J0NC467kNqS5XhTiTQsAaBLNSIEQFDVna2eLWk1riaAYGh/RtKy1822H6OhozBg5Q7iZyviUEeU5Ypf5x2pdmhyK5qPevZIJfSeIzyYVO+Nr504Zyug6sKuQQfRsnDgWq2TA99PVgjXSkzNo8iDRIxq7ZayIkiTDQwsSzNkyB4ojhdUCLbTxHKYng0LwH9x6IIJGKG/JhUxzK7sN6YZn6+XlLwXDkDxa+IGCsijYi8bEHG+VTkqTlPRQwBl5cmgsOC0ykjNm3hjxbNH0JHpWyYNCk/9LRzaHIlK6HApWWzBhQaJ73dlRTHupbNweyLppevLX3tQntLH2JlHArQBCgkPg6OqILec0XwrtVgDNnzGGsU0CSvQ3zTYZ+iaHddGtHNZFt3L0SRdtybmlR7rcDohHfIQRrOzM8OMU9UnzurAHPE+PYRiGMRjY6DEMwzAGAxs9hmEYxmBgo8cwDMMYDGz0GIZhGIOBjR7DMAxjMLDRYxiGYQyGz3pyunKKIc3PyAzKxV1pRYiXr19qLCc61gQJ701gHBuPl6/js02GvslhXXQrh3XRrRx90kVbcqL1SJeoWFMkvDeGUaxZpupy5bUZTT3/rCenP3nyBAULZt1r5hmGYRj95vHjx3Bzc8uZRo96aCEhIbC1tc3Uq0AY6S0pamRQocrMCjiMdDjPsx7O888zv8mUhYeHI3/+/CkWx84x7k1KWHoWndENVDC5MshaOM+zHs7zzy+/aRmyjOBAFoZhGMZgYKPHMAzDGAxs9BjJWFhYYOzYseKTyRo4z7MezvOcnd+fdSALwzAMw8iBe3oMwzCMwcBGj2EYhjEY2OgxDMMwBgMbPYZhGMZgYKNn4MyfPx+FCxdGrly5UKVKFZw7dy7Nc5cuXYqaNWvC3t5ebPXr109xfteuXcXqOKpb48aNsyAlOTPPV61alSI/6TpVKBZtzJgxyJcvHywtLcV9uXfvXhakJOfld+3atVPkN23NmjVLOofLePocO3YMX3/9tVgZhfJm+/btGVwBHDlyBN7e3iKC09PTU5T7zNzH9GCjZ8Bs2rQJgwYNEuHCFy9eRLly5dCoUSM8f/48zYL5ww8/4PDhwzh9+rRYOqhhw4YIDg5WO48qgKdPnyZtGzZsyKIU5bw8J2iVCtX8fPTokdrvU6dOxZw5c7Bo0SKcPXsW1tbWQmZMTAwMHbn5vW3bNrW8vn79OkxMTNCmTRu187iMp01kZKTIZzJSUggKChKNijp16uDy5csYMGAAevTogX379mXquUkTmrLAGCaVK1dW9OnTJ2k/Pj5ekT9/foWfn5+k6+Pi4hS2traK1atXJx3r0qWLokWLFjrR1xDzfOXKlQo7O7s05SUkJChcXV0V06ZNSzr25s0bhYWFhWLDhg0KQyezZXzWrFmijEdERCQd4zIuHTIxf/75Z7rnDBs2TFGqVCm1Y23btlU0atRIa/dRFe7pGSjv37/HhQsXhCtMdS1T2qdenBSioqLw4cMHODg4pOgROjs7o3jx4vD19cXLl5q/riknoWmeR0REoFChQqJn3aJFC9y4cUOtlRwaGqomk9YfJPeP1PuYU9FGGV++fDnatWsnes+qcBnXHnQvVO8RQb045T3Sxn1UhY2egfLixQvEx8fDxcVF7TjtUyUqheHDhwu/vWphJLfPmjVrcPDgQUyZMgVHjx5FkyZNxH8ZOprkOVWqK1aswI4dO7Bu3TrxZpFq1aqJ12oRyusycx9zKpkt4zRmRO5NcrWpwmVcu9C9SO0e0dsXoqOjtVJX5Zi3LDDZh7+/PzZu3ChavKqBFdQqVlKmTBmULVsWHh4e4rx69eplk7afL1WrVhWbEjJ4JUqUwOLFizFhwoRs1S2nQ708KsOVK1dWO85l/POGe3oGipOTkxigf/bsmdpx2nd1dU332unTpwujt3//fvHAp0fRokXFf92/fx+GTmbyXImZmRkqVKiQlJ/K6zIjM6eSmfymYAxq1HXv3j3D/+EynjnoXqR2jyiAi6KRtfHcqMJGz0AxNzdHxYoVhYtGCbnOaF+1Z5EcihSkHkZgYCB8fHwy/B9yw9F4B4XTGzqa5rkq5Oa5du1aUn4WKVJEPPiqMsktRFGcUmXmVDKT35s3b0ZsbCw6duyY4f9wGc8cdC9U7xHx999/J90jbTw3asgOfWFyDBs3bhRRfqtWrVLcvHlT0atXL0WePHkUoaGh4vdOnTopRowYkXS+v7+/wtzcXLFlyxbF06dPk7bw8HDxO30OGTJEcfr0aUVQUJDiwIEDCm9vb0WxYsUUMTEx2ZbOzznPx40bp9i3b5/iwYMHigsXLijatWunyJUrl+LGjRtq94Vk7NixQ3H16lURWVikSBFFdHS0wtCRm99KatSoISIIk8NlPGMojy5duiQ2MjEzZ84U3x89eiR+p/ymfFfy8OFDhZWVlWLo0KGKW7duKebPn68wMTFRBAYGSr6PcmCjZ+DMnTtX4e7uLowZhQWfOXMm6bevvvpKhGcrKVSokCjEybexY8eK36OiohQNGzZU5M2bV2FmZibO79mzp0YFMycjJ88HDBiQdK6Li4uiadOmiosXL6aYtjB69GjxO1UM9erVU9y5cydL05RT8pu4ffu2KNf79+9PIYvLeMYcPnw41XpCmc/0Sfme/Jry5cuLe1S0aFExVUfOfZQDv1qIYRiGMRh4TI9hGIYxGNjoMQzDMAYDGz2GYRjGYGCjxzAMwxgMbPQYhmEYg4GNHsMwDGMwsNFjGIZhDAY2egzDMIzBwEaPYRiGMRjY6DEMwzAGAxs9hvmMGTt2rHinG73Zm16qSW/xprfZMwyTOvwSWYb5TPm4YLx4oWyBAgVw8+ZNdOnSRbzjkIwfwzAp4QWnGSYH0b59ezg7O2P27NnZrQrD6CXs3mSYz5RHjx6hT58+KF26NOzt7WFjY4M//vgDbm5u2a0aw+gtbPQY5jMkLCwMlSpVEm/snjlzJk6cOIFTp07B2NgY5cqVy271GEZv4TE9hvkM2bVrF+Lj47FhwwYYGRmJY/PmzRNBLOXLl89u9RhGb2GjxzCfIY6Ojnj37h127tyJkiVLCiPo5+cnAlry5s2b3eoxjN7CgSwM8xmSkJCA3r17Y/369bC0tETHjh0RExMjxvl2796d3eoxjN7CRo9hGIYxGDiQhWEYhjEY2OgxDMMwBgMbPYZhGMZgYKPHMAzDGAxs9BiGYRiDgY0ewzAMYzCw0WMYhmEMBjZ6DMMwjMHARo9hGIYxGNjoMQzDMAYDGz2GYRjGYGCjxzAMw8BQ+D/maY4QR2ov7QAAAABJRU5ErkJggg==",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"reset_plotting() # Default style for Simbelmynë\n",
"\n",
"generate_sim_params(lpt_params, ICs_path, wd, simdir, None, force)\n",
"\n",
"print(f\"SPM nsteps = {nsteps_spm}:\")\n",
"file_ext = f\"nsteps{nsteps_spm}\" # \"spm\" is already in the filename\n",
"generate_sim_params(spm_params, ICs_path, wd, simdir, file_ext, force)\n",
"\n",
"print(f\"P3M nsteps = {nsteps_p3m}:\")\n",
"file_ext = f\"nsteps{nsteps_p3m}\" # \"p3m\" is already in the filename\n",
"generate_sim_params(p3m_params, ICs_path, wd, simdir, file_ext, force)\n",
"\n",
"setup_plotting() # Reset plotting style for this project"
]
},
{
"cell_type": "markdown",
"id": "4cbfc7f9",
"metadata": {},
"source": [
"### Generate the initial phase"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "ac1596ef",
"metadata": {},
"outputs": [],
"source": [
"generate_white_noise_Field(\n",
" L=L,\n",
" size=N,\n",
" corner=corner,\n",
" seedphase=BASELINE_SEEDPHASE,\n",
" fname_whitenoise=input_white_noise_file,\n",
" seedname_whitenoise=input_seed_phase_file,\n",
" force_phase=force,\n",
")"
]
},
{
"cell_type": "markdown",
"id": "b1dfa6e3",
"metadata": {},
"source": [
"### Generating the input power spectrum\n",
"\n",
"The second preparatory step is to compute the initial power spectrum to be used in the simulations, given the cosmological parameters and prescription specified in ``params.py``. The power spectrum is saved in `input_power_file`."
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "3c2cf19b",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[09:22:34|\u001b[38;5;113mSTATUS \u001b[00m]|Setting up Fourier grid...\n",
"[09:22:34|\u001b[38;5;113mSTATUS \u001b[00m]|Setting up Fourier grid done.\n",
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m[09:22:34|\u001b[38;5;113mSTATUS \u001b[00m]|Write power spectrum in data file '/Users/hoellinger/WIP3M/notebook1/input_power.h5'...\n",
"]|Computing normalization of the power spectrum...\n",
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]|Computing normalization of the power spectrum done.\n",
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]|Computing power spectrum...\n",
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]|Computing power spectrum done.\n",
"[09:22:34|\u001b[38;5;246mDIAGNOSTIC\u001b[00m]==|\u001b[38;5;246mL0=64, L1=64, L2=64\u001b[00m\n",
"[09:22:34|\u001b[38;5;246mDIAGNOSTIC\u001b[00m]==|\u001b[38;5;246mN0=32, N1=32, N2=32, N2_HC=17, N_HC=17408, NUM_MODES=464\u001b[00m\n",
"[09:22:34|\u001b[38;5;113mSTATUS \u001b[00m]|Write power spectrum in data file '/Users/hoellinger/WIP3M/notebook1/input_power.h5' done.\n"
]
}
],
"source": [
"# If cosmo[\"WhichSpectrum\"] == \"class\", then classy is required.\n",
"if not isfile(input_power_file) or force:\n",
" Pk = PowerSpectrum(L, L, L, N, N, N, cosmo_small_to_full_dict(cosmo))\n",
" Pk.write(input_power_file)"
]
},
{
"cell_type": "markdown",
"id": "5f00a570",
"metadata": {},
"source": [
"## Running the simulations\n",
"\n",
"We are now ready to run the actual simulations using the Simbelmynë executable. Warning: the following may take some time, even in relatively low dimension, and should not be run on a login node."
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "9a1ac822",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[09:22:34\u001b[00m|\u001b[38;5;227mCOMMAND \u001b[00m]|\u001b[38;5;227msimbelmyne /Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/example_lpt.sbmy /Users/hoellinger/WIP3M/notebook1/logs/lpt.txt\u001b[00m\n",
"[09:22:34\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]|\n",
"[09:22:34\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| .-~~-.--.\n",
"[09:22:34\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| : )\n",
"[09:22:34\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| .~ ~ -.\\ /.- ~~ .\n",
"[09:22:34\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| > `. .' <\n",
"[09:22:34\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| ( .- -. )\n",
"[09:22:34\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| `- -.-~ `- -' ~-.- -'\n",
"[09:22:34\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| ( : ) _ _ .-: ___________________________________\n",
"[09:22:34\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| ~--. : .--~ .-~ .-~ } \u001b[1;38;5;157mSIMBELMYNË\u001b[00m\n",
"[09:22:34\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| ~-.-^-.-~ \\_ .~ .-~ .~ (c) Florent Leclercq 2012 - SBMY_YEAR \n",
"[09:22:34\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| \\ ' \\ '_ _ -~ ___________________________________\n",
"[09:22:34\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| `.`. //\n",
"[09:22:34\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| . - ~ ~-.__`.`-.//\n",
"[09:22:34\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| .-~ . - ~ }~ ~ ~-.~-.\n",
"[09:22:34\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| .' .-~ .-~ :/~-.~-./:\n",
"[09:22:34\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| /_~_ _ . - ~ ~-.~-._\n",
"[09:22:34\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| ~-.<\n",
"[09:22:34\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]|\n",
"[09:22:34\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]|2025-06-24 09:22:34: Starting SIMBELMYNË, commit hash bab918a5347585bc2fb9554e442fd77ad3ae69cc\n",
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]|Reading parameter file in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/example_lpt.sbmy'...\n",
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]|Reading parameter file in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/example_lpt.sbmy' done.\n",
"[09:22:34\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleLPT: Initializing snapshot...\u001b[00m\n",
"[09:22:34\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleLPT: Initializing snapshot done.\u001b[00m\n",
"[09:22:34\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]|LPT snapshot initialization: 0.001 CPU - 0.000 wallclock seconds used.\n",
"[09:22:34\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleLPT: Returning initial conditions...\u001b[00m\n",
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Reading field in '/Users/hoellinger/WIP3M/notebook1/input_white_noise.h5'...\n",
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Reading field in '/Users/hoellinger/WIP3M/notebook1/input_white_noise.h5' done.\n",
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Reading power spectrum...\n",
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Reading power spectrum in '/Users/hoellinger/WIP3M/notebook1/input_power.h5'...\n",
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Reading power spectrum in '/Users/hoellinger/WIP3M/notebook1/input_power.h5' done.\n",
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Reading power spectrum done.\n",
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Generating Gaussian random field (using 8 cores)...\n",
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Generating Gaussian random field (using 8 cores) done.\n",
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Writing field to '/Users/hoellinger/WIP3M/notebook1/initial_density.h5'...\n",
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Writing field to '/Users/hoellinger/WIP3M/notebook1/initial_density.h5' done.\n",
"[09:22:34\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleLPT: Returning initial conditions done.\u001b[00m\n",
"[09:22:34\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]|LPT initial conditions: 0.004 CPU - 0.003 wallclock seconds used.\n",
"[09:22:34\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleLPT: Evolving with Lagrangian perturbation theory (using 8 cores)...\u001b[00m\n",
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Computing Lagrangian potentials, periodic boundary conditions (using 8 cores)...\n",
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Computing Lagrangian potentials, periodic boundary conditions (using 8 cores) done.\n",
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Computing Lagrangian displacement field (using 8 cores)...\n",
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Computing Lagrangian displacement field (using 8 cores) done.\n",
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Changing velocities of particles...\n",
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Changing velocities of particles done.\n",
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Displacing particles...\n",
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Displacing particles done.\n",
"[09:22:34\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleLPT: Evolving with Lagrangian perturbation theory (using 8 cores) done.\u001b[00m\n",
"[09:22:34\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]|LPT evolution: 0.051 CPU - 0.024 wallclock seconds used.\n",
"[09:22:34\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleLPT: Computing outputs...\u001b[00m\n",
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Writing field to '/Users/hoellinger/WIP3M/notebook1/lpt_density.h5'...\n",
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Writing field to '/Users/hoellinger/WIP3M/notebook1/lpt_density.h5' done.\n",
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Writing header in '/Users/hoellinger/WIP3M/notebook1/lpt_particles.gadget3'...\n",
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Writing header in '/Users/hoellinger/WIP3M/notebook1/lpt_particles.gadget3' done.\n",
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Writing snapshot in '/Users/hoellinger/WIP3M/notebook1/lpt_particles.gadget3' (32768 particles)...\n",
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing block: 'POS '...\n",
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing block: 'POS ' done.\n",
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing block: 'VEL '...\n",
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing block: 'VEL ' done.\n",
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing block: 'ID '...\n",
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing block: 'ID ' done.\n",
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Writing snapshot in '/Users/hoellinger/WIP3M/notebook1/lpt_particles.gadget3' done.\n",
"[09:22:34\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleLPT: Computing outputs done.\u001b[00m\n",
"[09:22:34\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]|LPT output: 0.005 CPU - 0.005 wallclock seconds used.\n",
"[09:22:34\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]|ModuleLPT: 0.060 CPU - 0.033 wallclock seconds used.\n",
"[09:22:34\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]|Simbelmynë: 0.062 CPU - 0.033 wallclock seconds used.\n",
"[09:22:34\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]|Everything done successfully, exiting.\n",
"[09:22:34\u001b[00m|\u001b[38;5;227mCOMMAND \u001b[00m]|\u001b[38;5;227msimbelmyne /Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/nsteps20_example_spm.sbmy /Users/hoellinger/WIP3M/notebook1/logs/nsteps20_spm.txt\u001b[00m\n",
"[09:22:34\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]|\n",
"[09:22:34\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| .-~~-.--.\n",
"[09:22:34\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| : )\n",
"[09:22:34\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| .~ ~ -.\\ /.- ~~ .\n",
"[09:22:34\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| > `. .' <\n",
"[09:22:34\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| ( .- -. )\n",
"[09:22:34\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| `- -.-~ `- -' ~-.- -'\n",
"[09:22:34\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| ( : ) _ _ .-: ___________________________________\n",
"[09:22:34\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| ~--. : .--~ .-~ .-~ } \u001b[1;38;5;157mSIMBELMYNË\u001b[00m\n",
"[09:22:34\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| ~-.-^-.-~ \\_ .~ .-~ .~ (c) Florent Leclercq 2012 - SBMY_YEAR \n",
"[09:22:34\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| \\ ' \\ '_ _ -~ ___________________________________\n",
"[09:22:34\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| `.`. //\n",
"[09:22:34\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| . - ~ ~-.__`.`-.//\n",
"[09:22:34\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| .-~ . - ~ }~ ~ ~-.~-.\n",
"[09:22:34\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| .' .-~ .-~ :/~-.~-./:\n",
"[09:22:34\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| /_~_ _ . - ~ ~-.~-._\n",
"[09:22:34\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| ~-.<\n",
"[09:22:34\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]|\n",
"[09:22:34\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]|2025-06-24 09:22:34: Starting SIMBELMYNË, commit hash bab918a5347585bc2fb9554e442fd77ad3ae69cc\n",
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]|Reading parameter file in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/nsteps20_example_spm.sbmy'...\n",
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]|Reading parameter file in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/nsteps20_example_spm.sbmy' done.\n",
"[09:22:34\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleLPT: Initializing snapshot...\u001b[00m\n",
"[09:22:34\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleLPT: Initializing snapshot done.\u001b[00m\n",
"[09:22:34\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]|LPT snapshot initialization: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:34\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleLPT: Returning initial conditions...\u001b[00m\n",
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Reading field in '/Users/hoellinger/WIP3M/notebook1/initial_density.h5'...\n",
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Reading field in '/Users/hoellinger/WIP3M/notebook1/initial_density.h5' done.\n",
"[09:22:34\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleLPT: Returning initial conditions done.\u001b[00m\n",
"[09:22:34\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]|LPT initial conditions: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:34\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleLPT: Evolving with Lagrangian perturbation theory (using 8 cores)...\u001b[00m\n",
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Computing Lagrangian potentials, periodic boundary conditions (using 8 cores)...\n",
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Computing Lagrangian potentials, periodic boundary conditions (using 8 cores) done.\n",
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Computing Lagrangian displacement field (using 8 cores)...\n",
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Computing Lagrangian displacement field (using 8 cores) done.\n",
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Changing velocities of particles...\n",
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Changing velocities of particles done.\n",
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Displacing particles...\n",
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Displacing particles done.\n",
"[09:22:34\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleLPT: Evolving with Lagrangian perturbation theory (using 8 cores) done.\u001b[00m\n",
"[09:22:34\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]|LPT evolution: 0.051 CPU - 0.028 wallclock seconds used.\n",
"[09:22:34\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]|ModuleLPT: 0.052 CPU - 0.028 wallclock seconds used.\n",
"[09:22:34\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleP3M: Evolving with P3M...\u001b[00m\n",
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Read timestepping configuration in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/nsteps20_ts_spm.h5'...\n",
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Read timestepping configuration in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/nsteps20_ts_spm.h5' done.\n",
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|OutputForceDiagnostic: /Users/hoellinger/WIP3M/notebook1/force_diagnostic_spm.txt\n",
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|OutputSnapshotsBase: particles_\n",
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin sPM step 1/20, time_kick:0.050000, time_drift=0.050000.\n",
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 1/20 done.\n",
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End sPM step 1/20, time_kick:0.073750, time_drift=0.097500.\n",
"[09:22:34\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 1/20: Density: 0.006 CPU - 0.059 wallclock seconds used.\n",
"[09:22:34\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 1/20: Potential: 0.011 CPU - 0.006 wallclock seconds used.\n",
"[09:22:34\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 1/20: Accelerations (long-range): 0.066 CPU - 0.018 wallclock seconds used.\n",
"[09:22:34\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 1/20: Accelerations (short-range): 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:34\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 1/20: Kick: 0.006 CPU - 0.002 wallclock seconds used.\n",
"[09:22:34\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 1/20: Drift: 0.001 CPU - 0.001 wallclock seconds used.\n",
"[09:22:34\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 1/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:34\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 1/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:34\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 1/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:34\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 1/20: Total Evolution: 0.090 CPU - 0.085 wallclock seconds used.\n",
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin sPM step 2/20, time_kick:0.073750, time_drift=0.097500.\n",
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 2/20 done.\n",
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End sPM step 2/20, time_kick:0.121250, time_drift=0.145000.\n",
"[09:22:34\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 2/20: Density: 0.007 CPU - 0.003 wallclock seconds used.\n",
"[09:22:34\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 2/20: Potential: 0.009 CPU - 0.003 wallclock seconds used.\n",
"[09:22:34\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 2/20: Accelerations (long-range): 0.067 CPU - 0.021 wallclock seconds used.\n",
"[09:22:34\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 2/20: Accelerations (short-range): 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:34\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 2/20: Kick: 0.008 CPU - 0.006 wallclock seconds used.\n",
"[09:22:34\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 2/20: Drift: 0.002 CPU - 0.004 wallclock seconds used.\n",
"[09:22:34\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 2/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:34\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 2/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:34\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 2/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:34\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 2/20: Total Evolution: 0.094 CPU - 0.037 wallclock seconds used.\n",
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin sPM step 3/20, time_kick:0.121250, time_drift=0.145000.\n",
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 3/20 done.\n",
"[09:22:34\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"HDF5-DIAG: Error detected in HDF5 (1.14.6):\n",
" #000: /tmp/hdf5-20250207-38588-gjrv3m/hdf5-1.14.6/src/H5Adeprec.c line 202 in H5Aopen_name(): unable to open attribute\n",
" major: Attribute\n",
" minor: Can't open object\n",
" #001: /tmp/hdf5-20250207-38588-gjrv3m/hdf5-1.14.6/src/H5VLcallback.c line 1125 in H5VL_attr_open(): attribute open failed\n",
" major: Virtual Object Layer\n",
" minor: Can't open object\n",
" #002: /tmp/hdf5-20250207-38588-gjrv3m/hdf5-1.14.6/src/H5VLcallback.c line 1092 in H5VL__attr_open(): attribute open failed\n",
" major: Virtual Object Layer\n",
" minor: Can't open object\n",
" #003: /tmp/hdf5-20250207-38588-gjrv3m/hdf5-1.14.6/src/H5VLnative_attr.c line 164 in H5VL__native_attr_open(): unable to open attribute: '/info/scalars/time'\n",
" major: Attribute\n",
" minor: Can't open object\n",
" #004: /tmp/hdf5-20250207-38588-gjrv3m/hdf5-1.14.6/src/H5Aint.c line 514 in H5A__open(): unable to load attribute info from object header for attribute: '/info/scalars/time'\n",
" major: Attribute\n",
" minor: Can't open object\n",
" #005: /tmp/hdf5-20250207-38588-gjrv3m/hdf5-1.14.6/src/H5Oattribute.c line 498 in H5O__attr_open_by_name(): can't locate attribute: '/info/scalars/time'\n",
" major: Attribute\n",
" minor: Object not found\n",
"HDF5-DIAG: Error detected in HDF5 (1.14.6):\n",
" #000: /tmp/hdf5-20250207-38588-gjrv3m/hdf5-1.14.6/src/H5A.c line 1022 in H5Aread(): can't synchronously read data\n",
" major: Attribute\n",
" minor: Read failed\n",
" #001: /tmp/hdf5-20250207-38588-gjrv3m/hdf5-1.14.6/src/H5A.c line 987 in H5A__read_api_common(): not an attribute\n",
" major: Invalid arguments to routine\n",
" minor: Inappropriate type\n",
" #002: /tmp/hdf5-20250207-38588-gjrv3m/hdf5-1.14.6/src/H5VLint.c line 1786 in H5VL_vol_object_verify(): identifier is not of specified type\n",
" major: Invalid arguments to routine\n",
" minor: Inappropriate type\n",
"HDF5-DIAG: Error detected in HDF5 (1.14.6):\n",
" #000: /tmp/hdf5-20250207-38588-gjrv3m/hdf5-1.14.6/src/H5A.c line 2193 in H5Aclose(): not an attribute ID\n",
" major: Invalid arguments to routine\n",
" minor: Inappropriate type\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End sPM step 3/20, time_kick:0.168750, time_drift=0.192500.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 3/20: Density: 0.012 CPU - 0.010 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 3/20: Potential: 0.010 CPU - 0.018 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 3/20: Accelerations (long-range): 0.062 CPU - 0.018 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 3/20: Accelerations (short-range): 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 3/20: Kick: 0.006 CPU - 0.002 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 3/20: Drift: 0.001 CPU - 0.001 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 3/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 3/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 3/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 3/20: Total Evolution: 0.092 CPU - 0.049 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin sPM step 4/20, time_kick:0.168750, time_drift=0.192500.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 4/20 done.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End sPM step 4/20, time_kick:0.216250, time_drift=0.240000.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 4/20: Density: 0.011 CPU - 0.004 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 4/20: Potential: 0.009 CPU - 0.004 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 4/20: Accelerations (long-range): 0.066 CPU - 0.019 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 4/20: Accelerations (short-range): 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 4/20: Kick: 0.006 CPU - 0.003 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 4/20: Drift: 0.001 CPU - 0.001 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 4/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 4/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 4/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 4/20: Total Evolution: 0.093 CPU - 0.031 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin sPM step 5/20, time_kick:0.216250, time_drift=0.240000.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 5/20 done.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End sPM step 5/20, time_kick:0.263750, time_drift=0.287500.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 5/20: Density: 0.008 CPU - 0.004 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 5/20: Potential: 0.008 CPU - 0.005 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 5/20: Accelerations (long-range): 0.064 CPU - 0.018 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 5/20: Accelerations (short-range): 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 5/20: Kick: 0.005 CPU - 0.002 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 5/20: Drift: 0.001 CPU - 0.001 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 5/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 5/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 5/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 5/20: Total Evolution: 0.087 CPU - 0.030 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin sPM step 6/20, time_kick:0.263750, time_drift=0.287500.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 6/20 done.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End sPM step 6/20, time_kick:0.311250, time_drift=0.335000.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 6/20: Density: 0.008 CPU - 0.003 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 6/20: Potential: 0.010 CPU - 0.005 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 6/20: Accelerations (long-range): 0.062 CPU - 0.032 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 6/20: Accelerations (short-range): 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 6/20: Kick: 0.006 CPU - 0.003 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 6/20: Drift: 0.001 CPU - 0.001 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 6/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 6/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 6/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 6/20: Total Evolution: 0.086 CPU - 0.044 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin sPM step 7/20, time_kick:0.311250, time_drift=0.335000.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 7/20 done.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End sPM step 7/20, time_kick:0.358750, time_drift=0.382500.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 7/20: Density: 0.010 CPU - 0.003 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 7/20: Potential: 0.009 CPU - 0.004 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 7/20: Accelerations (long-range): 0.062 CPU - 0.018 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 7/20: Accelerations (short-range): 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 7/20: Kick: 0.006 CPU - 0.003 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 7/20: Drift: 0.001 CPU - 0.001 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 7/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 7/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 7/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 7/20: Total Evolution: 0.089 CPU - 0.029 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin sPM step 8/20, time_kick:0.358750, time_drift=0.382500.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 8/20 done.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End sPM step 8/20, time_kick:0.406250, time_drift=0.430000.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 8/20: Density: 0.007 CPU - 0.003 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 8/20: Potential: 0.009 CPU - 0.004 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 8/20: Accelerations (long-range): 0.066 CPU - 0.030 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 8/20: Accelerations (short-range): 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 8/20: Kick: 0.007 CPU - 0.003 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 8/20: Drift: 0.002 CPU - 0.001 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 8/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 8/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 8/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 8/20: Total Evolution: 0.092 CPU - 0.041 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin sPM step 9/20, time_kick:0.406250, time_drift=0.430000.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 9/20 done.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End sPM step 9/20, time_kick:0.453750, time_drift=0.477500.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 9/20: Density: 0.014 CPU - 0.007 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 9/20: Potential: 0.008 CPU - 0.005 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 9/20: Accelerations (long-range): 0.065 CPU - 0.031 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 9/20: Accelerations (short-range): 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 9/20: Kick: 0.006 CPU - 0.009 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 9/20: Drift: 0.001 CPU - 0.002 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 9/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 9/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 9/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 9/20: Total Evolution: 0.094 CPU - 0.053 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin sPM step 10/20, time_kick:0.453750, time_drift=0.477500.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 10/20 done.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End sPM step 10/20, time_kick:0.501250, time_drift=0.525000.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 10/20: Density: 0.009 CPU - 0.004 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 10/20: Potential: 0.008 CPU - 0.004 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 10/20: Accelerations (long-range): 0.061 CPU - 0.019 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 10/20: Accelerations (short-range): 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 10/20: Kick: 0.006 CPU - 0.002 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 10/20: Drift: 0.001 CPU - 0.001 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 10/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 10/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 10/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 10/20: Total Evolution: 0.085 CPU - 0.031 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin sPM step 11/20, time_kick:0.501250, time_drift=0.525000.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 11/20 done.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End sPM step 11/20, time_kick:0.548750, time_drift=0.572500.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 11/20: Density: 0.005 CPU - 0.008 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 11/20: Potential: 0.008 CPU - 0.007 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 11/20: Accelerations (long-range): 0.061 CPU - 0.021 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 11/20: Accelerations (short-range): 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 11/20: Kick: 0.006 CPU - 0.004 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 11/20: Drift: 0.002 CPU - 0.001 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 11/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 11/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 11/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 11/20: Total Evolution: 0.082 CPU - 0.041 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin sPM step 12/20, time_kick:0.548750, time_drift=0.572500.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 12/20 done.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End sPM step 12/20, time_kick:0.596250, time_drift=0.620000.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 12/20: Density: 0.007 CPU - 0.005 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 12/20: Potential: 0.009 CPU - 0.004 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 12/20: Accelerations (long-range): 0.061 CPU - 0.025 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 12/20: Accelerations (short-range): 0.000 CPU - 0.001 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 12/20: Kick: 0.006 CPU - 0.007 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 12/20: Drift: 0.001 CPU - 0.001 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 12/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 12/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 12/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 12/20: Total Evolution: 0.084 CPU - 0.041 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin sPM step 13/20, time_kick:0.596250, time_drift=0.620000.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 13/20 done.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End sPM step 13/20, time_kick:0.643750, time_drift=0.667500.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 13/20: Density: 0.006 CPU - 0.002 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 13/20: Potential: 0.009 CPU - 0.003 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 13/20: Accelerations (long-range): 0.061 CPU - 0.015 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 13/20: Accelerations (short-range): 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 13/20: Kick: 0.006 CPU - 0.002 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 13/20: Drift: 0.002 CPU - 0.001 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 13/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 13/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 13/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 13/20: Total Evolution: 0.084 CPU - 0.024 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin sPM step 14/20, time_kick:0.643750, time_drift=0.667500.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 14/20 done.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End sPM step 14/20, time_kick:0.691250, time_drift=0.715000.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 14/20: Density: 0.011 CPU - 0.003 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 14/20: Potential: 0.009 CPU - 0.004 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 14/20: Accelerations (long-range): 0.059 CPU - 0.017 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 14/20: Accelerations (short-range): 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 14/20: Kick: 0.005 CPU - 0.001 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 14/20: Drift: 0.001 CPU - 0.012 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 14/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 14/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 14/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 14/20: Total Evolution: 0.085 CPU - 0.038 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin sPM step 15/20, time_kick:0.691250, time_drift=0.715000.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 15/20 done.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End sPM step 15/20, time_kick:0.738750, time_drift=0.762500.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 15/20: Density: 0.013 CPU - 0.009 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 15/20: Potential: 0.012 CPU - 0.008 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 15/20: Accelerations (long-range): 0.066 CPU - 0.032 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 15/20: Accelerations (short-range): 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 15/20: Kick: 0.007 CPU - 0.009 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 15/20: Drift: 0.002 CPU - 0.003 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 15/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 15/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 15/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 15/20: Total Evolution: 0.101 CPU - 0.061 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin sPM step 16/20, time_kick:0.738750, time_drift=0.762500.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 16/20 done.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End sPM step 16/20, time_kick:0.786250, time_drift=0.810000.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 16/20: Density: 0.010 CPU - 0.004 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 16/20: Potential: 0.009 CPU - 0.003 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 16/20: Accelerations (long-range): 0.064 CPU - 0.018 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 16/20: Accelerations (short-range): 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 16/20: Kick: 0.006 CPU - 0.003 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 16/20: Drift: 0.001 CPU - 0.001 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 16/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 16/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 16/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 16/20: Total Evolution: 0.089 CPU - 0.028 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin sPM step 17/20, time_kick:0.786250, time_drift=0.810000.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 17/20 done.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End sPM step 17/20, time_kick:0.833750, time_drift=0.857500.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 17/20: Density: 0.014 CPU - 0.003 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 17/20: Potential: 0.010 CPU - 0.005 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 17/20: Accelerations (long-range): 0.063 CPU - 0.023 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 17/20: Accelerations (short-range): 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 17/20: Kick: 0.007 CPU - 0.003 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 17/20: Drift: 0.001 CPU - 0.005 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 17/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 17/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 17/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 17/20: Total Evolution: 0.095 CPU - 0.040 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin sPM step 18/20, time_kick:0.833750, time_drift=0.857500.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 18/20 done.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End sPM step 18/20, time_kick:0.881250, time_drift=0.905000.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 18/20: Density: 0.008 CPU - 0.003 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 18/20: Potential: 0.010 CPU - 0.015 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 18/20: Accelerations (long-range): 0.061 CPU - 0.034 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 18/20: Accelerations (short-range): 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 18/20: Kick: 0.006 CPU - 0.005 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 18/20: Drift: 0.002 CPU - 0.004 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 18/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 18/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 18/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 18/20: Total Evolution: 0.086 CPU - 0.061 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin sPM step 19/20, time_kick:0.881250, time_drift=0.905000.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 19/20 done.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End sPM step 19/20, time_kick:0.928750, time_drift=0.952500.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 19/20: Density: 0.012 CPU - 0.006 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 19/20: Potential: 0.011 CPU - 0.022 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 19/20: Accelerations (long-range): 0.065 CPU - 0.019 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 19/20: Accelerations (short-range): 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 19/20: Kick: 0.007 CPU - 0.002 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 19/20: Drift: 0.001 CPU - 0.001 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 19/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 19/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 19/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 19/20: Total Evolution: 0.096 CPU - 0.050 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin sPM step 20/20, time_kick:0.928750, time_drift=0.952500.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 20/20 done.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End sPM step 20/20, time_kick:1.000000, time_drift=1.000000.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 20/20: Density: 0.016 CPU - 0.011 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 20/20: Potential: 0.017 CPU - 0.007 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 20/20: Accelerations (long-range): 0.119 CPU - 0.048 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 20/20: Accelerations (short-range): 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 20/20: Kick: 0.013 CPU - 0.017 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 20/20: Drift: 0.003 CPU - 0.012 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 20/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 20/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 20/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 20/20: Total Evolution: 0.168 CPU - 0.096 wallclock seconds used.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Running force diagnostic for 3 random particle pairs per distance bin...\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing total force on each particle (before removing any)...\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing total force on each particle (before removing any) done.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 18: [11.341, 19.050]. Total: 1 / max 60 pairs...\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 18: [11.341, 19.050] done. Total: 1 / max 60 pairs. Trials 0 / max 100000000.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 19: [19.050, 32.000]. Total: 2 / max 60 pairs...\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 19: [19.050, 32.000] done. Total: 2 / max 60 pairs. Trials 2 / max 100000000.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 18: [11.341, 19.050]. Total: 3 / max 60 pairs...\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 18: [11.341, 19.050] done. Total: 3 / max 60 pairs. Trials 3 / max 100000000.\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 19: [19.050, 32.000]. Total: 4 / max 60 pairs...\n",
"[09:22:35\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 19: [19.050, 32.000] done. Total: 4 / max 60 pairs. Trials 4 / max 100000000.\n",
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 18: [11.341, 19.050]. Total: 5 / max 60 pairs...\n",
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 18: [11.341, 19.050] done. Total: 5 / max 60 pairs. Trials 5 / max 100000000.\n",
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 19: [19.050, 32.000]. Total: 6 / max 60 pairs...\n",
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 19: [19.050, 32.000] done. Total: 6 / max 60 pairs. Trials 6 / max 100000000.\n",
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 15: [2.393, 4.019]. Total: 7 / max 60 pairs...\n",
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 15: [2.393, 4.019] done. Total: 7 / max 60 pairs. Trials 25 / max 100000000.\n",
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 17: [6.751, 11.341]. Total: 8 / max 60 pairs...\n",
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 17: [6.751, 11.341] done. Total: 8 / max 60 pairs. Trials 39 / max 100000000.\n",
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 17: [6.751, 11.341]. Total: 9 / max 60 pairs...\n",
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 17: [6.751, 11.341] done. Total: 9 / max 60 pairs. Trials 100 / max 100000000.\n",
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 17: [6.751, 11.341]. Total: 10 / max 60 pairs...\n",
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 17: [6.751, 11.341] done. Total: 10 / max 60 pairs. Trials 138 / max 100000000.\n",
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 16: [4.019, 6.751]. Total: 11 / max 60 pairs...\n",
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 16: [4.019, 6.751] done. Total: 11 / max 60 pairs. Trials 149 / max 100000000.\n",
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 16: [4.019, 6.751]. Total: 12 / max 60 pairs...\n",
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 16: [4.019, 6.751] done. Total: 12 / max 60 pairs. Trials 189 / max 100000000.\n",
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 16: [4.019, 6.751]. Total: 13 / max 60 pairs...\n",
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 16: [4.019, 6.751] done. Total: 13 / max 60 pairs. Trials 237 / max 100000000.\n",
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 14: [1.424, 2.393]. Total: 14 / max 60 pairs...\n",
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 14: [1.424, 2.393] done. Total: 14 / max 60 pairs. Trials 258 / max 100000000.\n",
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 15: [2.393, 4.019]. Total: 15 / max 60 pairs...\n",
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 15: [2.393, 4.019] done. Total: 15 / max 60 pairs. Trials 755 / max 100000000.\n",
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 13: [0.848, 1.424]. Total: 16 / max 60 pairs...\n",
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 13: [0.848, 1.424] done. Total: 16 / max 60 pairs. Trials 997 / max 100000000.\n",
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 14: [1.424, 2.393]. Total: 17 / max 60 pairs...\n",
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 14: [1.424, 2.393] done. Total: 17 / max 60 pairs. Trials 1323 / max 100000000.\n",
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 15: [2.393, 4.019]. Total: 18 / max 60 pairs...\n",
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 15: [2.393, 4.019] done. Total: 18 / max 60 pairs. Trials 1403 / max 100000000.\n",
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 14: [1.424, 2.393]. Total: 19 / max 60 pairs...\n",
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 14: [1.424, 2.393] done. Total: 19 / max 60 pairs. Trials 2719 / max 100000000.\n",
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 12: [0.505, 0.848]. Total: 20 / max 60 pairs...\n",
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 12: [0.505, 0.848] done. Total: 20 / max 60 pairs. Trials 3386 / max 100000000.\n",
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 13: [0.848, 1.424]. Total: 21 / max 60 pairs...\n",
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 13: [0.848, 1.424] done. Total: 21 / max 60 pairs. Trials 7223 / max 100000000.\n",
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 13: [0.848, 1.424]. Total: 22 / max 60 pairs...\n",
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 13: [0.848, 1.424] done. Total: 22 / max 60 pairs. Trials 11516 / max 100000000.\n",
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 12: [0.505, 0.848]. Total: 23 / max 60 pairs...\n",
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 12: [0.505, 0.848] done. Total: 23 / max 60 pairs. Trials 11684 / max 100000000.\n",
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 12: [0.505, 0.848]. Total: 24 / max 60 pairs...\n",
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 12: [0.505, 0.848] done. Total: 24 / max 60 pairs. Trials 14546 / max 100000000.\n",
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 9: [0.106, 0.179]. Total: 25 / max 60 pairs...\n",
"[09:22:36\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:22:37\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:22:37\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:22:37\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:22:37\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 9: [0.106, 0.179] done. Total: 25 / max 60 pairs. Trials 75794 / max 100000000.\n",
"[09:22:37\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 10: [0.179, 0.300]. Total: 26 / max 60 pairs...\n",
"[09:22:37\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:22:37\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:22:37\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:22:37\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:22:37\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 10: [0.179, 0.300] done. Total: 26 / max 60 pairs. Trials 96044 / max 100000000.\n",
"[09:22:37\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 11: [0.300, 0.505]. Total: 27 / max 60 pairs...\n",
"[09:22:37\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:22:37\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:22:37\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:22:37\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:22:37\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 11: [0.300, 0.505] done. Total: 27 / max 60 pairs. Trials 147659 / max 100000000.\n",
"[09:22:37\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 11: [0.300, 0.505]. Total: 28 / max 60 pairs...\n",
"[09:22:37\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:22:37\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:22:37\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:22:37\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:22:37\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 11: [0.300, 0.505] done. Total: 28 / max 60 pairs. Trials 260936 / max 100000000.\n",
"[09:22:37\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 11: [0.300, 0.505]. Total: 29 / max 60 pairs...\n",
"[09:22:37\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:22:37\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:22:37\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:22:37\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:22:37\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 11: [0.300, 0.505] done. Total: 29 / max 60 pairs. Trials 268425 / max 100000000.\n",
"[09:22:37\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 10: [0.179, 0.300]. Total: 30 / max 60 pairs...\n",
"[09:22:37\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:22:37\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:22:37\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:22:37\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:22:37\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 10: [0.179, 0.300] done. Total: 30 / max 60 pairs. Trials 376024 / max 100000000.\n",
"[09:22:37\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 9: [0.106, 0.179]. Total: 31 / max 60 pairs...\n",
"[09:22:37\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:22:37\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:22:37\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:22:37\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:22:37\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 9: [0.106, 0.179] done. Total: 31 / max 60 pairs. Trials 445798 / max 100000000.\n",
"[09:22:37\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 9: [0.106, 0.179]. Total: 32 / max 60 pairs...\n",
"[09:22:37\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:22:37\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:22:37\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:22:37\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:22:37\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 9: [0.106, 0.179] done. Total: 32 / max 60 pairs. Trials 446516 / max 100000000.\n",
"[09:22:37\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 10: [0.179, 0.300]. Total: 33 / max 60 pairs...\n",
"[09:22:37\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:22:37\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:22:37\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:22:37\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:22:37\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 10: [0.179, 0.300] done. Total: 33 / max 60 pairs. Trials 496837 / max 100000000.\n",
"[09:22:37\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 8: [0.063, 0.106]. Total: 34 / max 60 pairs...\n",
"[09:22:37\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:22:37\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:22:37\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:22:37\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:22:37\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 8: [0.063, 0.106] done. Total: 34 / max 60 pairs. Trials 3841544 / max 100000000.\n",
"[09:22:37\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 8: [0.063, 0.106]. Total: 35 / max 60 pairs...\n",
"[09:22:37\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:22:37\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:22:37\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:22:37\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:22:37\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 8: [0.063, 0.106] done. Total: 35 / max 60 pairs. Trials 4274706 / max 100000000.\n",
"[09:22:38\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 8: [0.063, 0.106]. Total: 36 / max 60 pairs...\n",
"[09:22:38\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:22:38\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:22:38\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:22:38\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:22:38\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 8: [0.063, 0.106] done. Total: 36 / max 60 pairs. Trials 6977458 / max 100000000.\n",
"[09:22:41\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 7: [0.038, 0.063]. Total: 37 / max 60 pairs...\n",
"[09:22:41\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:22:41\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:22:41\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:22:41\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:22:41\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 7: [0.038, 0.063] done. Total: 37 / max 60 pairs. Trials 46420423 / max 100000000.\n",
"[09:22:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 7: [0.038, 0.063]. Total: 38 / max 60 pairs...\n",
"[09:22:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:22:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:22:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:22:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:22:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 7: [0.038, 0.063] done. Total: 38 / max 60 pairs. Trials 76404409 / max 100000000.\n",
"[09:22:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 7: [0.038, 0.063]. Total: 39 / max 60 pairs...\n",
"[09:22:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:22:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:22:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:22:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:22:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 7: [0.038, 0.063] done. Total: 39 / max 60 pairs. Trials 81147169 / max 100000000.\n",
"[09:22:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 6: [0.022, 0.038]. Total: 40 / max 60 pairs...\n",
"[09:22:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:22:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:22:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:22:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:22:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 6: [0.022, 0.038] done. Total: 40 / max 60 pairs. Trials 84122810 / max 100000000.\n",
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Running force diagnostic done.\n",
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Box: Density: 0.193 CPU - 0.153 wallclock seconds used.\n",
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Box: Potential: 0.196 CPU - 0.137 wallclock seconds used.\n",
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Box: Accelerations (long-range): 1.320 CPU - 0.478 wallclock seconds used.\n",
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Box: Accelerations (short-range): 0.003 CPU - 0.003 wallclock seconds used.\n",
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Box: Kick: 0.129 CPU - 0.087 wallclock seconds used.\n",
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Box: Drift: 0.031 CPU - 0.053 wallclock seconds used.\n",
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Box: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Box: Diagnostic: 7.915 CPU - 9.469 wallclock seconds used.\n",
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Box: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Box: Total Evolution: 9.786 CPU - 10.380 wallclock seconds used.\n",
"[09:22:45\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleP3M: Evolving with P3M done.\u001b[00m\n",
"[09:22:45\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModulePMCOLA: Computing outputs...\u001b[00m\n",
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Writing field to '/Users/hoellinger/WIP3M/notebook1/nsteps20_final_density_spm.h5'...\n",
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Writing field to '/Users/hoellinger/WIP3M/notebook1/nsteps20_final_density_spm.h5' done.\n",
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Writing header in '/Users/hoellinger/WIP3M/notebook1/nsteps20_spm_snapshot.gadget3'...\n",
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Writing header in '/Users/hoellinger/WIP3M/notebook1/nsteps20_spm_snapshot.gadget3' done.\n",
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Writing snapshot in '/Users/hoellinger/WIP3M/notebook1/nsteps20_spm_snapshot.gadget3' (32768 particles)...\n",
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing block: 'POS '...\n",
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing block: 'POS ' done.\n",
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing block: 'VEL '...\n",
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing block: 'VEL ' done.\n",
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing block: 'ID '...\n",
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing block: 'ID ' done.\n",
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Writing snapshot in '/Users/hoellinger/WIP3M/notebook1/nsteps20_spm_snapshot.gadget3' done.\n",
"[09:22:45\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModulePMCOLA: Computing outputs done.\u001b[00m\n",
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]|PMCOLA output: 0.015 CPU - 0.005 wallclock seconds used.\n",
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]|ModulePMCOLA: 9.815 CPU - 10.418 wallclock seconds used.\n",
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]|Simbelmynë: 9.869 CPU - 10.448 wallclock seconds used.\n",
"[09:22:45\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]|Everything done successfully, exiting.\n",
"[09:22:45\u001b[00m|\u001b[38;5;227mCOMMAND \u001b[00m]|\u001b[38;5;227msimbelmyne /Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/nsteps20_example_p3m.sbmy /Users/hoellinger/WIP3M/notebook1/logs/nsteps20_p3m.txt\u001b[00m\n",
"[09:22:45\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]|\n",
"[09:22:45\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| .-~~-.--.\n",
"[09:22:45\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| : )\n",
"[09:22:45\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| .~ ~ -.\\ /.- ~~ .\n",
"[09:22:45\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| > `. .' <\n",
"[09:22:45\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| ( .- -. )\n",
"[09:22:45\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| `- -.-~ `- -' ~-.- -'\n",
"[09:22:45\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| ( : ) _ _ .-: ___________________________________\n",
"[09:22:45\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| ~--. : .--~ .-~ .-~ } \u001b[1;38;5;157mSIMBELMYNË\u001b[00m\n",
"[09:22:45\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| ~-.-^-.-~ \\_ .~ .-~ .~ (c) Florent Leclercq 2012 - SBMY_YEAR \n",
"[09:22:45\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| \\ ' \\ '_ _ -~ ___________________________________\n",
"[09:22:45\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| `.`. //\n",
"[09:22:45\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| . - ~ ~-.__`.`-.//\n",
"[09:22:45\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| .-~ . - ~ }~ ~ ~-.~-.\n",
"[09:22:45\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| .' .-~ .-~ :/~-.~-./:\n",
"[09:22:45\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| /_~_ _ . - ~ ~-.~-._\n",
"[09:22:45\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| ~-.<\n",
"[09:22:45\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]|\n",
"[09:22:45\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]|2025-06-24 09:22:45: Starting SIMBELMYNË, commit hash bab918a5347585bc2fb9554e442fd77ad3ae69cc\n",
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]|Reading parameter file in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/nsteps20_example_p3m.sbmy'...\n",
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]|Reading parameter file in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/nsteps20_example_p3m.sbmy' done.\n",
"[09:22:45\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleLPT: Initializing snapshot...\u001b[00m\n",
"[09:22:45\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleLPT: Initializing snapshot done.\u001b[00m\n",
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]|LPT snapshot initialization: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:45\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleLPT: Returning initial conditions...\u001b[00m\n",
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Reading field in '/Users/hoellinger/WIP3M/notebook1/initial_density.h5'...\n",
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Reading field in '/Users/hoellinger/WIP3M/notebook1/initial_density.h5' done.\n",
"[09:22:45\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleLPT: Returning initial conditions done.\u001b[00m\n",
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]|LPT initial conditions: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:45\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleLPT: Evolving with Lagrangian perturbation theory (using 8 cores)...\u001b[00m\n",
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Computing Lagrangian potentials, periodic boundary conditions (using 8 cores)...\n",
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Computing Lagrangian potentials, periodic boundary conditions (using 8 cores) done.\n",
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Computing Lagrangian displacement field (using 8 cores)...\n",
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Computing Lagrangian displacement field (using 8 cores) done.\n",
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Changing velocities of particles...\n",
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Changing velocities of particles done.\n",
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Displacing particles...\n",
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Displacing particles done.\n",
"[09:22:45\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleLPT: Evolving with Lagrangian perturbation theory (using 8 cores) done.\u001b[00m\n",
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]|LPT evolution: 0.051 CPU - 0.021 wallclock seconds used.\n",
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]|ModuleLPT: 0.051 CPU - 0.022 wallclock seconds used.\n",
"[09:22:45\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleP3M: Evolving with P3M...\u001b[00m\n",
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Read timestepping configuration in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/nsteps20_ts_p3m.h5'...\n",
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Read timestepping configuration in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/nsteps20_ts_p3m.h5' done.\n",
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|OutputForceDiagnostic: /Users/hoellinger/WIP3M/notebook1/force_diagnostic_p3m.txt\n",
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|OutputSnapshotsBase: particles_\n",
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin P3M step 1/20, time_kick:0.050000, time_drift=0.050000.\n",
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 1/20 done.\n",
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End P3M step 1/20, time_kick:0.073750, time_drift=0.097500.\n",
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 1/20: Density: 0.008 CPU - 0.003 wallclock seconds used.\n",
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 1/20: Potential: 0.008 CPU - 0.004 wallclock seconds used.\n",
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 1/20: Accelerations (long-range): 0.062 CPU - 0.015 wallclock seconds used.\n",
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 1/20: Accelerations (short-range): 0.249 CPU - 0.038 wallclock seconds used.\n",
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 1/20: Kick: 0.006 CPU - 0.002 wallclock seconds used.\n",
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 1/20: Drift: 0.001 CPU - 0.002 wallclock seconds used.\n",
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 1/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 1/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 1/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 1/20: Total Evolution: 0.334 CPU - 0.063 wallclock seconds used.\n",
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin P3M step 2/20, time_kick:0.073750, time_drift=0.097500.\n",
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 2/20 done.\n",
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End P3M step 2/20, time_kick:0.121250, time_drift=0.145000.\n",
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 2/20: Density: 0.009 CPU - 0.004 wallclock seconds used.\n",
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 2/20: Potential: 0.010 CPU - 0.006 wallclock seconds used.\n",
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 2/20: Accelerations (long-range): 0.071 CPU - 0.046 wallclock seconds used.\n",
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 2/20: Accelerations (short-range): 0.261 CPU - 0.042 wallclock seconds used.\n",
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 2/20: Kick: 0.008 CPU - 0.010 wallclock seconds used.\n",
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 2/20: Drift: 0.002 CPU - 0.003 wallclock seconds used.\n",
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 2/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 2/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 2/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 2/20: Total Evolution: 0.361 CPU - 0.112 wallclock seconds used.\n",
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin P3M step 3/20, time_kick:0.121250, time_drift=0.145000.\n",
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 3/20 done.\n",
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End P3M step 3/20, time_kick:0.168750, time_drift=0.192500.\n",
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 3/20: Density: 0.005 CPU - 0.003 wallclock seconds used.\n",
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 3/20: Potential: 0.012 CPU - 0.006 wallclock seconds used.\n",
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 3/20: Accelerations (long-range): 0.065 CPU - 0.042 wallclock seconds used.\n",
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 3/20: Accelerations (short-range): 0.264 CPU - 0.047 wallclock seconds used.\n",
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 3/20: Kick: 0.011 CPU - 0.010 wallclock seconds used.\n",
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 3/20: Drift: 0.001 CPU - 0.001 wallclock seconds used.\n",
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 3/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 3/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 3/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 3/20: Total Evolution: 0.359 CPU - 0.110 wallclock seconds used.\n",
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin P3M step 4/20, time_kick:0.168750, time_drift=0.192500.\n",
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 4/20 done.\n",
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End P3M step 4/20, time_kick:0.216250, time_drift=0.240000.\n",
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 4/20: Density: 0.010 CPU - 0.007 wallclock seconds used.\n",
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 4/20: Potential: 0.011 CPU - 0.005 wallclock seconds used.\n",
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 4/20: Accelerations (long-range): 0.072 CPU - 0.037 wallclock seconds used.\n",
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 4/20: Accelerations (short-range): 0.268 CPU - 0.045 wallclock seconds used.\n",
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 4/20: Kick: 0.010 CPU - 0.011 wallclock seconds used.\n",
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 4/20: Drift: 0.002 CPU - 0.002 wallclock seconds used.\n",
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 4/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 4/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 4/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 4/20: Total Evolution: 0.373 CPU - 0.107 wallclock seconds used.\n",
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin P3M step 5/20, time_kick:0.216250, time_drift=0.240000.\n",
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 5/20 done.\n",
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End P3M step 5/20, time_kick:0.263750, time_drift=0.287500.\n",
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 5/20: Density: 0.009 CPU - 0.007 wallclock seconds used.\n",
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 5/20: Potential: 0.013 CPU - 0.008 wallclock seconds used.\n",
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 5/20: Accelerations (long-range): 0.066 CPU - 0.079 wallclock seconds used.\n",
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 5/20: Accelerations (short-range): 0.256 CPU - 0.083 wallclock seconds used.\n",
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 5/20: Kick: 0.008 CPU - 0.054 wallclock seconds used.\n",
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 5/20: Drift: 0.001 CPU - 0.001 wallclock seconds used.\n",
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 5/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 5/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 5/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 5/20: Total Evolution: 0.354 CPU - 0.231 wallclock seconds used.\n",
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin P3M step 6/20, time_kick:0.263750, time_drift=0.287500.\n",
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 6/20 done.\n",
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:22:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End P3M step 6/20, time_kick:0.311250, time_drift=0.335000.\n",
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 6/20: Density: 0.009 CPU - 0.007 wallclock seconds used.\n",
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 6/20: Potential: 0.012 CPU - 0.007 wallclock seconds used.\n",
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 6/20: Accelerations (long-range): 0.073 CPU - 0.038 wallclock seconds used.\n",
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 6/20: Accelerations (short-range): 0.283 CPU - 0.091 wallclock seconds used.\n",
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 6/20: Kick: 0.007 CPU - 0.004 wallclock seconds used.\n",
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 6/20: Drift: 0.001 CPU - 0.001 wallclock seconds used.\n",
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 6/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 6/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 6/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 6/20: Total Evolution: 0.385 CPU - 0.147 wallclock seconds used.\n",
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin P3M step 7/20, time_kick:0.311250, time_drift=0.335000.\n",
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 7/20 done.\n",
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End P3M step 7/20, time_kick:0.358750, time_drift=0.382500.\n",
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 7/20: Density: 0.007 CPU - 0.011 wallclock seconds used.\n",
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 7/20: Potential: 0.009 CPU - 0.007 wallclock seconds used.\n",
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 7/20: Accelerations (long-range): 0.072 CPU - 0.033 wallclock seconds used.\n",
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 7/20: Accelerations (short-range): 0.273 CPU - 0.051 wallclock seconds used.\n",
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 7/20: Kick: 0.009 CPU - 0.011 wallclock seconds used.\n",
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 7/20: Drift: 0.002 CPU - 0.001 wallclock seconds used.\n",
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 7/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 7/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 7/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 7/20: Total Evolution: 0.371 CPU - 0.114 wallclock seconds used.\n",
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin P3M step 8/20, time_kick:0.358750, time_drift=0.382500.\n",
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 8/20 done.\n",
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End P3M step 8/20, time_kick:0.406250, time_drift=0.430000.\n",
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 8/20: Density: 0.013 CPU - 0.003 wallclock seconds used.\n",
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 8/20: Potential: 0.010 CPU - 0.005 wallclock seconds used.\n",
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 8/20: Accelerations (long-range): 0.070 CPU - 0.033 wallclock seconds used.\n",
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 8/20: Accelerations (short-range): 0.264 CPU - 0.049 wallclock seconds used.\n",
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 8/20: Kick: 0.009 CPU - 0.017 wallclock seconds used.\n",
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 8/20: Drift: 0.002 CPU - 0.001 wallclock seconds used.\n",
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 8/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 8/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 8/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 8/20: Total Evolution: 0.367 CPU - 0.107 wallclock seconds used.\n",
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin P3M step 9/20, time_kick:0.406250, time_drift=0.430000.\n",
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 9/20 done.\n",
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End P3M step 9/20, time_kick:0.453750, time_drift=0.477500.\n",
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 9/20: Density: 0.011 CPU - 0.005 wallclock seconds used.\n",
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 9/20: Potential: 0.011 CPU - 0.004 wallclock seconds used.\n",
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 9/20: Accelerations (long-range): 0.074 CPU - 0.027 wallclock seconds used.\n",
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 9/20: Accelerations (short-range): 0.275 CPU - 0.062 wallclock seconds used.\n",
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 9/20: Kick: 0.010 CPU - 0.008 wallclock seconds used.\n",
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 9/20: Drift: 0.002 CPU - 0.001 wallclock seconds used.\n",
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 9/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 9/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 9/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 9/20: Total Evolution: 0.383 CPU - 0.107 wallclock seconds used.\n",
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin P3M step 10/20, time_kick:0.453750, time_drift=0.477500.\n",
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 10/20 done.\n",
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End P3M step 10/20, time_kick:0.501250, time_drift=0.525000.\n",
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 10/20: Density: 0.014 CPU - 0.006 wallclock seconds used.\n",
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 10/20: Potential: 0.010 CPU - 0.005 wallclock seconds used.\n",
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 10/20: Accelerations (long-range): 0.082 CPU - 0.033 wallclock seconds used.\n",
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 10/20: Accelerations (short-range): 0.285 CPU - 0.062 wallclock seconds used.\n",
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 10/20: Kick: 0.007 CPU - 0.006 wallclock seconds used.\n",
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 10/20: Drift: 0.001 CPU - 0.003 wallclock seconds used.\n",
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 10/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 10/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 10/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 10/20: Total Evolution: 0.400 CPU - 0.114 wallclock seconds used.\n",
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin P3M step 11/20, time_kick:0.501250, time_drift=0.525000.\n",
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 11/20 done.\n",
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End P3M step 11/20, time_kick:0.548750, time_drift=0.572500.\n",
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 11/20: Density: 0.013 CPU - 0.004 wallclock seconds used.\n",
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 11/20: Potential: 0.009 CPU - 0.003 wallclock seconds used.\n",
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 11/20: Accelerations (long-range): 0.069 CPU - 0.022 wallclock seconds used.\n",
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 11/20: Accelerations (short-range): 0.295 CPU - 0.083 wallclock seconds used.\n",
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 11/20: Kick: 0.006 CPU - 0.004 wallclock seconds used.\n",
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 11/20: Drift: 0.002 CPU - 0.001 wallclock seconds used.\n",
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 11/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 11/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 11/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 11/20: Total Evolution: 0.394 CPU - 0.116 wallclock seconds used.\n",
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin P3M step 12/20, time_kick:0.548750, time_drift=0.572500.\n",
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 12/20 done.\n",
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End P3M step 12/20, time_kick:0.596250, time_drift=0.620000.\n",
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 12/20: Density: 0.018 CPU - 0.004 wallclock seconds used.\n",
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 12/20: Potential: 0.009 CPU - 0.044 wallclock seconds used.\n",
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 12/20: Accelerations (long-range): 0.066 CPU - 0.016 wallclock seconds used.\n",
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 12/20: Accelerations (short-range): 0.320 CPU - 0.053 wallclock seconds used.\n",
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 12/20: Kick: 0.008 CPU - 0.003 wallclock seconds used.\n",
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 12/20: Drift: 0.002 CPU - 0.005 wallclock seconds used.\n",
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 12/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 12/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 12/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 12/20: Total Evolution: 0.422 CPU - 0.125 wallclock seconds used.\n",
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin P3M step 13/20, time_kick:0.596250, time_drift=0.620000.\n",
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 13/20 done.\n",
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End P3M step 13/20, time_kick:0.643750, time_drift=0.667500.\n",
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 13/20: Density: 0.014 CPU - 0.004 wallclock seconds used.\n",
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 13/20: Potential: 0.009 CPU - 0.008 wallclock seconds used.\n",
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 13/20: Accelerations (long-range): 0.069 CPU - 0.019 wallclock seconds used.\n",
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 13/20: Accelerations (short-range): 0.293 CPU - 0.079 wallclock seconds used.\n",
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 13/20: Kick: 0.007 CPU - 0.005 wallclock seconds used.\n",
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 13/20: Drift: 0.002 CPU - 0.001 wallclock seconds used.\n",
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 13/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 13/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 13/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 13/20: Total Evolution: 0.394 CPU - 0.115 wallclock seconds used.\n",
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin P3M step 14/20, time_kick:0.643750, time_drift=0.667500.\n",
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 14/20 done.\n",
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End P3M step 14/20, time_kick:0.691250, time_drift=0.715000.\n",
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 14/20: Density: 0.011 CPU - 0.004 wallclock seconds used.\n",
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 14/20: Potential: 0.015 CPU - 0.021 wallclock seconds used.\n",
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 14/20: Accelerations (long-range): 0.065 CPU - 0.018 wallclock seconds used.\n",
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 14/20: Accelerations (short-range): 0.319 CPU - 0.072 wallclock seconds used.\n",
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 14/20: Kick: 0.006 CPU - 0.002 wallclock seconds used.\n",
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 14/20: Drift: 0.001 CPU - 0.001 wallclock seconds used.\n",
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 14/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 14/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 14/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 14/20: Total Evolution: 0.418 CPU - 0.116 wallclock seconds used.\n",
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin P3M step 15/20, time_kick:0.691250, time_drift=0.715000.\n",
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 15/20 done.\n",
"[09:22:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End P3M step 15/20, time_kick:0.738750, time_drift=0.762500.\n",
"[09:22:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 15/20: Density: 0.017 CPU - 0.028 wallclock seconds used.\n",
"[09:22:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 15/20: Potential: 0.022 CPU - 0.014 wallclock seconds used.\n",
"[09:22:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 15/20: Accelerations (long-range): 0.068 CPU - 0.042 wallclock seconds used.\n",
"[09:22:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 15/20: Accelerations (short-range): 0.298 CPU - 0.059 wallclock seconds used.\n",
"[09:22:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 15/20: Kick: 0.007 CPU - 0.011 wallclock seconds used.\n",
"[09:22:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 15/20: Drift: 0.001 CPU - 0.001 wallclock seconds used.\n",
"[09:22:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 15/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 15/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 15/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 15/20: Total Evolution: 0.413 CPU - 0.154 wallclock seconds used.\n",
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin P3M step 16/20, time_kick:0.738750, time_drift=0.762500.\n",
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 16/20 done.\n",
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End P3M step 16/20, time_kick:0.786250, time_drift=0.810000.\n",
"[09:22:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 16/20: Density: 0.015 CPU - 0.006 wallclock seconds used.\n",
"[09:22:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 16/20: Potential: 0.009 CPU - 0.005 wallclock seconds used.\n",
"[09:22:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 16/20: Accelerations (long-range): 0.065 CPU - 0.021 wallclock seconds used.\n",
"[09:22:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 16/20: Accelerations (short-range): 0.321 CPU - 0.094 wallclock seconds used.\n",
"[09:22:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 16/20: Kick: 0.008 CPU - 0.003 wallclock seconds used.\n",
"[09:22:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 16/20: Drift: 0.001 CPU - 0.000 wallclock seconds used.\n",
"[09:22:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 16/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 16/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 16/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 16/20: Total Evolution: 0.420 CPU - 0.129 wallclock seconds used.\n",
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin P3M step 17/20, time_kick:0.786250, time_drift=0.810000.\n",
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 17/20 done.\n",
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End P3M step 17/20, time_kick:0.833750, time_drift=0.857500.\n",
"[09:22:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 17/20: Density: 0.017 CPU - 0.005 wallclock seconds used.\n",
"[09:22:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 17/20: Potential: 0.013 CPU - 0.046 wallclock seconds used.\n",
"[09:22:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 17/20: Accelerations (long-range): 0.086 CPU - 0.036 wallclock seconds used.\n",
"[09:22:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 17/20: Accelerations (short-range): 0.319 CPU - 0.072 wallclock seconds used.\n",
"[09:22:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 17/20: Kick: 0.008 CPU - 0.011 wallclock seconds used.\n",
"[09:22:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 17/20: Drift: 0.002 CPU - 0.002 wallclock seconds used.\n",
"[09:22:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 17/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 17/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 17/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 17/20: Total Evolution: 0.445 CPU - 0.171 wallclock seconds used.\n",
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin P3M step 18/20, time_kick:0.833750, time_drift=0.857500.\n",
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 18/20 done.\n",
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End P3M step 18/20, time_kick:0.881250, time_drift=0.905000.\n",
"[09:22:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 18/20: Density: 0.014 CPU - 0.005 wallclock seconds used.\n",
"[09:22:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 18/20: Potential: 0.011 CPU - 0.005 wallclock seconds used.\n",
"[09:22:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 18/20: Accelerations (long-range): 0.078 CPU - 0.024 wallclock seconds used.\n",
"[09:22:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 18/20: Accelerations (short-range): 0.330 CPU - 0.075 wallclock seconds used.\n",
"[09:22:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 18/20: Kick: 0.012 CPU - 0.006 wallclock seconds used.\n",
"[09:22:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 18/20: Drift: 0.002 CPU - 0.001 wallclock seconds used.\n",
"[09:22:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 18/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 18/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 18/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 18/20: Total Evolution: 0.445 CPU - 0.115 wallclock seconds used.\n",
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin P3M step 19/20, time_kick:0.881250, time_drift=0.905000.\n",
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 19/20 done.\n",
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End P3M step 19/20, time_kick:0.928750, time_drift=0.952500.\n",
"[09:22:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 19/20: Density: 0.016 CPU - 0.004 wallclock seconds used.\n",
"[09:22:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 19/20: Potential: 0.010 CPU - 0.005 wallclock seconds used.\n",
"[09:22:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 19/20: Accelerations (long-range): 0.071 CPU - 0.026 wallclock seconds used.\n",
"[09:22:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 19/20: Accelerations (short-range): 0.342 CPU - 0.081 wallclock seconds used.\n",
"[09:22:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 19/20: Kick: 0.006 CPU - 0.003 wallclock seconds used.\n",
"[09:22:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 19/20: Drift: 0.002 CPU - 0.003 wallclock seconds used.\n",
"[09:22:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 19/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 19/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 19/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 19/20: Total Evolution: 0.446 CPU - 0.122 wallclock seconds used.\n",
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin P3M step 20/20, time_kick:0.928750, time_drift=0.952500.\n",
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 20/20 done.\n",
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End P3M step 20/20, time_kick:1.000000, time_drift=1.000000.\n",
"[09:22:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 20/20: Density: 0.034 CPU - 0.010 wallclock seconds used.\n",
"[09:22:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 20/20: Potential: 0.020 CPU - 0.007 wallclock seconds used.\n",
"[09:22:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 20/20: Accelerations (long-range): 0.132 CPU - 0.034 wallclock seconds used.\n",
"[09:22:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 20/20: Accelerations (short-range): 0.727 CPU - 0.247 wallclock seconds used.\n",
"[09:22:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 20/20: Kick: 0.013 CPU - 0.007 wallclock seconds used.\n",
"[09:22:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 20/20: Drift: 0.001 CPU - 0.001 wallclock seconds used.\n",
"[09:22:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 20/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 20/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 20/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:22:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 20/20: Total Evolution: 0.927 CPU - 0.305 wallclock seconds used.\n",
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Running force diagnostic for 3 random particle pairs per distance bin...\n",
"[09:22:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing total force on each particle (before removing any)...\n",
"[09:22:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:22:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:22:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:22:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:22:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing total force on each particle (before removing any) done.\n",
"[09:22:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 19: [19.050, 32.000]. Total: 1 / max 60 pairs...\n",
"[09:22:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:22:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:22:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:22:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:22:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 19: [19.050, 32.000] done. Total: 1 / max 60 pairs. Trials 2 / max 100000000.\n",
"[09:22:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 19: [19.050, 32.000]. Total: 2 / max 60 pairs...\n",
"[09:22:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:22:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:22:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:22:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:22:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 19: [19.050, 32.000] done. Total: 2 / max 60 pairs. Trials 3 / max 100000000.\n",
"[09:22:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 19: [19.050, 32.000]. Total: 3 / max 60 pairs...\n",
"[09:22:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:22:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:22:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:22:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:22:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 19: [19.050, 32.000] done. Total: 3 / max 60 pairs. Trials 5 / max 100000000.\n",
"[09:22:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 18: [11.341, 19.050]. Total: 4 / max 60 pairs...\n",
"[09:22:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:22:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:22:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:22:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:22:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 18: [11.341, 19.050] done. Total: 4 / max 60 pairs. Trials 13 / max 100000000.\n",
"[09:22:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 17: [6.751, 11.341]. Total: 5 / max 60 pairs...\n",
"[09:22:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:22:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:22:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:22:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:22:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 17: [6.751, 11.341] done. Total: 5 / max 60 pairs. Trials 19 / max 100000000.\n",
"[09:22:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 18: [11.341, 19.050]. Total: 6 / max 60 pairs...\n",
"[09:22:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:22:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:22:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:22:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:22:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 18: [11.341, 19.050] done. Total: 6 / max 60 pairs. Trials 22 / max 100000000.\n",
"[09:22:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 18: [11.341, 19.050]. Total: 7 / max 60 pairs...\n",
"[09:22:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:22:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:22:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:22:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:22:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 18: [11.341, 19.050] done. Total: 7 / max 60 pairs. Trials 31 / max 100000000.\n",
"[09:22:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 17: [6.751, 11.341]. Total: 8 / max 60 pairs...\n",
"[09:22:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:22:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:22:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:22:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:22:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 17: [6.751, 11.341] done. Total: 8 / max 60 pairs. Trials 39 / max 100000000.\n",
"[09:22:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 17: [6.751, 11.341]. Total: 9 / max 60 pairs...\n",
"[09:22:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:22:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:22:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:22:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:22:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 17: [6.751, 11.341] done. Total: 9 / max 60 pairs. Trials 47 / max 100000000.\n",
"[09:22:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 16: [4.019, 6.751]. Total: 10 / max 60 pairs...\n",
"[09:22:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:22:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:22:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:22:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:22:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 16: [4.019, 6.751] done. Total: 10 / max 60 pairs. Trials 266 / max 100000000.\n",
"[09:22:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 14: [1.424, 2.393]. Total: 11 / max 60 pairs...\n",
"[09:22:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:22:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:22:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:22:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:22:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 14: [1.424, 2.393] done. Total: 11 / max 60 pairs. Trials 337 / max 100000000.\n",
"[09:22:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 16: [4.019, 6.751]. Total: 12 / max 60 pairs...\n",
"[09:22:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:22:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:22:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:22:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:22:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 16: [4.019, 6.751] done. Total: 12 / max 60 pairs. Trials 374 / max 100000000.\n",
"[09:22:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 16: [4.019, 6.751]. Total: 13 / max 60 pairs...\n",
"[09:22:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:22:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:22:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:22:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:22:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 16: [4.019, 6.751] done. Total: 13 / max 60 pairs. Trials 429 / max 100000000.\n",
"[09:22:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 15: [2.393, 4.019]. Total: 14 / max 60 pairs...\n",
"[09:22:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:22:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:22:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:22:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:22:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 15: [2.393, 4.019] done. Total: 14 / max 60 pairs. Trials 578 / max 100000000.\n",
"[09:22:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 15: [2.393, 4.019]. Total: 15 / max 60 pairs...\n",
"[09:22:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:22:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:22:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:22:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:22:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 15: [2.393, 4.019] done. Total: 15 / max 60 pairs. Trials 590 / max 100000000.\n",
"[09:22:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 13: [0.848, 1.424]. Total: 16 / max 60 pairs...\n",
"[09:22:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:22:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:22:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:22:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:22:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 13: [0.848, 1.424] done. Total: 16 / max 60 pairs. Trials 883 / max 100000000.\n",
"[09:22:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 15: [2.393, 4.019]. Total: 17 / max 60 pairs...\n",
"[09:22:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:22:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:22:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:22:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:22:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 15: [2.393, 4.019] done. Total: 17 / max 60 pairs. Trials 1015 / max 100000000.\n",
"[09:22:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 13: [0.848, 1.424]. Total: 18 / max 60 pairs...\n",
"[09:22:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:22:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:22:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:22:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:22:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 13: [0.848, 1.424] done. Total: 18 / max 60 pairs. Trials 2224 / max 100000000.\n",
"[09:22:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 13: [0.848, 1.424]. Total: 19 / max 60 pairs...\n",
"[09:22:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:22:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:22:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:22:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:22:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 13: [0.848, 1.424] done. Total: 19 / max 60 pairs. Trials 2297 / max 100000000.\n",
"[09:22:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 14: [1.424, 2.393]. Total: 20 / max 60 pairs...\n",
"[09:22:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:22:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:22:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:22:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:22:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 14: [1.424, 2.393] done. Total: 20 / max 60 pairs. Trials 2696 / max 100000000.\n",
"[09:22:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 14: [1.424, 2.393]. Total: 21 / max 60 pairs...\n",
"[09:22:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:22:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:22:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:22:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:22:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 14: [1.424, 2.393] done. Total: 21 / max 60 pairs. Trials 2989 / max 100000000.\n",
"[09:22:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 12: [0.505, 0.848]. Total: 22 / max 60 pairs...\n",
"[09:22:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:22:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:22:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:22:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:22:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 12: [0.505, 0.848] done. Total: 22 / max 60 pairs. Trials 4095 / max 100000000.\n",
"[09:22:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 12: [0.505, 0.848]. Total: 23 / max 60 pairs...\n",
"[09:22:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:22:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:22:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:22:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:22:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 12: [0.505, 0.848] done. Total: 23 / max 60 pairs. Trials 9232 / max 100000000.\n",
"[09:22:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 11: [0.300, 0.505]. Total: 24 / max 60 pairs...\n",
"[09:22:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:22:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:22:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:22:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:22:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 11: [0.300, 0.505] done. Total: 24 / max 60 pairs. Trials 10727 / max 100000000.\n",
"[09:22:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 12: [0.505, 0.848]. Total: 25 / max 60 pairs...\n",
"[09:22:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:22:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:22:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:22:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:22:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 12: [0.505, 0.848] done. Total: 25 / max 60 pairs. Trials 12649 / max 100000000.\n",
"[09:22:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 11: [0.300, 0.505]. Total: 26 / max 60 pairs...\n",
"[09:22:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:22:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:22:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:22:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:22:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 11: [0.300, 0.505] done. Total: 26 / max 60 pairs. Trials 46788 / max 100000000.\n",
"[09:22:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 11: [0.300, 0.505]. Total: 27 / max 60 pairs...\n",
"[09:22:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:22:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:22:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:22:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:22:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 11: [0.300, 0.505] done. Total: 27 / max 60 pairs. Trials 49060 / max 100000000.\n",
"[09:22:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 10: [0.179, 0.300]. Total: 28 / max 60 pairs...\n",
"[09:22:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:22:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:22:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:22:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:22:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 10: [0.179, 0.300] done. Total: 28 / max 60 pairs. Trials 273797 / max 100000000.\n",
"[09:22:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 10: [0.179, 0.300]. Total: 29 / max 60 pairs...\n",
"[09:22:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:22:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:22:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:22:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:22:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 10: [0.179, 0.300] done. Total: 29 / max 60 pairs. Trials 357678 / max 100000000.\n",
"[09:22:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 10: [0.179, 0.300]. Total: 30 / max 60 pairs...\n",
"[09:22:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:22:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:22:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:22:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:22:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 10: [0.179, 0.300] done. Total: 30 / max 60 pairs. Trials 394189 / max 100000000.\n",
"[09:22:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 9: [0.106, 0.179]. Total: 31 / max 60 pairs...\n",
"[09:22:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:22:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:22:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:22:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:22:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 9: [0.106, 0.179] done. Total: 31 / max 60 pairs. Trials 1152112 / max 100000000.\n",
"[09:22:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 8: [0.063, 0.106]. Total: 32 / max 60 pairs...\n",
"[09:22:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:22:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:22:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:22:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:22:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 8: [0.063, 0.106] done. Total: 32 / max 60 pairs. Trials 1269857 / max 100000000.\n",
"[09:22:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 9: [0.106, 0.179]. Total: 33 / max 60 pairs...\n",
"[09:22:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:22:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:22:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:22:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:22:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 9: [0.106, 0.179] done. Total: 33 / max 60 pairs. Trials 1368444 / max 100000000.\n",
"[09:22:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 9: [0.106, 0.179]. Total: 34 / max 60 pairs...\n",
"[09:22:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:22:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:22:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:22:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:22:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 9: [0.106, 0.179] done. Total: 34 / max 60 pairs. Trials 1602007 / max 100000000.\n",
"[09:22:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 8: [0.063, 0.106]. Total: 35 / max 60 pairs...\n",
"[09:22:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:22:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:22:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:22:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:22:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 8: [0.063, 0.106] done. Total: 35 / max 60 pairs. Trials 2651678 / max 100000000.\n",
"[09:22:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 8: [0.063, 0.106]. Total: 36 / max 60 pairs...\n",
"[09:22:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:22:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:22:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:22:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:22:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 8: [0.063, 0.106] done. Total: 36 / max 60 pairs. Trials 4072639 / max 100000000.\n",
"[09:22:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 7: [0.038, 0.063]. Total: 37 / max 60 pairs...\n",
"[09:22:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:22:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:22:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:22:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:22:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 7: [0.038, 0.063] done. Total: 37 / max 60 pairs. Trials 6067914 / max 100000000.\n",
"[09:22:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 7: [0.038, 0.063]. Total: 38 / max 60 pairs...\n",
"[09:22:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:22:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:22:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:22:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:22:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 7: [0.038, 0.063] done. Total: 38 / max 60 pairs. Trials 8527588 / max 100000000.\n",
"[09:22:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 7: [0.038, 0.063]. Total: 39 / max 60 pairs...\n",
"[09:22:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:22:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:22:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:22:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:22:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 7: [0.038, 0.063] done. Total: 39 / max 60 pairs. Trials 9677024 / max 100000000.\n",
"[09:22:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 6: [0.022, 0.038]. Total: 40 / max 60 pairs...\n",
"[09:22:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:22:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:22:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:22:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:22:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 6: [0.022, 0.038] done. Total: 40 / max 60 pairs. Trials 30096576 / max 100000000.\n",
"[09:22:57\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 2: [0.003, 0.005]. Total: 41 / max 60 pairs...\n",
"[09:22:57\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:22:57\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:22:57\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:22:57\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:22:57\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 2: [0.003, 0.005] done. Total: 41 / max 60 pairs. Trials 58644581 / max 100000000.\n",
"[09:22:59\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 6: [0.022, 0.038]. Total: 42 / max 60 pairs...\n",
"[09:22:59\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:22:59\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:22:59\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:22:59\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:22:59\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 6: [0.022, 0.038] done. Total: 42 / max 60 pairs. Trials 83237642 / max 100000000.\n",
"[09:23:00\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 6: [0.022, 0.038]. Total: 43 / max 60 pairs...\n",
"[09:23:00\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:23:00\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:23:00\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:23:00\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:23:00\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 6: [0.022, 0.038] done. Total: 43 / max 60 pairs. Trials 98905108 / max 100000000.\n",
"[09:23:00\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Running force diagnostic done.\n",
"[09:23:00\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Box: Density: 0.264 CPU - 0.127 wallclock seconds used.\n",
"[09:23:00\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Box: Potential: 0.234 CPU - 0.217 wallclock seconds used.\n",
"[09:23:00\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Box: Accelerations (long-range): 1.476 CPU - 0.639 wallclock seconds used.\n",
"[09:23:00\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Box: Accelerations (short-range): 6.243 CPU - 1.480 wallclock seconds used.\n",
"[09:23:00\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Box: Kick: 0.165 CPU - 0.185 wallclock seconds used.\n",
"[09:23:00\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Box: Drift: 0.032 CPU - 0.030 wallclock seconds used.\n",
"[09:23:00\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Box: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:23:00\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Box: Diagnostic: 24.168 CPU - 12.683 wallclock seconds used.\n",
"[09:23:00\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Box: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:23:00\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Box: Total Evolution: 32.582 CPU - 15.362 wallclock seconds used.\n",
"[09:23:00\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleP3M: Evolving with P3M done.\u001b[00m\n",
"[09:23:00\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModulePMCOLA: Computing outputs...\u001b[00m\n",
"[09:23:00\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:23:00\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:23:00\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Writing field to '/Users/hoellinger/WIP3M/notebook1/nsteps20_final_density_p3m.h5'...\n",
"[09:23:00\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Writing field to '/Users/hoellinger/WIP3M/notebook1/nsteps20_final_density_p3m.h5' done.\n",
"[09:23:00\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Writing header in '/Users/hoellinger/WIP3M/notebook1/nsteps20_p3m_snapshot.gadget3'...\n",
"[09:23:00\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Writing header in '/Users/hoellinger/WIP3M/notebook1/nsteps20_p3m_snapshot.gadget3' done.\n",
"[09:23:00\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Writing snapshot in '/Users/hoellinger/WIP3M/notebook1/nsteps20_p3m_snapshot.gadget3' (32768 particles)...\n",
"[09:23:00\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing block: 'POS '...\n",
"[09:23:00\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing block: 'POS ' done.\n",
"[09:23:00\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing block: 'VEL '...\n",
"[09:23:00\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing block: 'VEL ' done.\n",
"[09:23:00\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing block: 'ID '...\n",
"[09:23:00\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing block: 'ID ' done.\n",
"[09:23:00\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Writing snapshot in '/Users/hoellinger/WIP3M/notebook1/nsteps20_p3m_snapshot.gadget3' done.\n",
"[09:23:00\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModulePMCOLA: Computing outputs done.\u001b[00m\n",
"[09:23:00\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]|PMCOLA output: 0.014 CPU - 0.010 wallclock seconds used.\n",
"[09:23:00\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]|ModulePMCOLA: 32.608 CPU - 15.385 wallclock seconds used.\n",
"[09:23:00\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]|Simbelmynë: 32.661 CPU - 15.407 wallclock seconds used.\n",
"[09:23:00\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]|Everything done successfully, exiting.\n"
]
},
{
"data": {
"text/plain": [
"0"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"pySbmy(f\"{wd}example_lpt.sbmy\", f\"{logdir}lpt.txt\")\n",
"pySbmy(f\"{wd}{file_ext}_example_spm.sbmy\", f\"{logdir}{file_ext}_spm.txt\")\n",
"pySbmy(f\"{wd}{file_ext}_example_p3m.sbmy\", f\"{logdir}{file_ext}_p3m.txt\")"
]
},
{
"cell_type": "markdown",
"id": "acd604ca",
"metadata": {},
"source": [
"The logs can be monitored in the corresponding files in the `logdir` directory."
]
},
{
"cell_type": "markdown",
"id": "3060305c",
"metadata": {},
"source": [
"## Plot results"
]
},
{
"cell_type": "markdown",
"id": "fafb43e2",
"metadata": {},
"source": [
"### Plot the evolved dark matter density fields"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "73d9e5cd",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"thickness = 1\n",
"[09:23:00|\u001b[38;5;113mSTATUS \u001b[00m]|Read field in data file '/Users/hoellinger/WIP3M/notebook1/nsteps20_final_density_spm.h5'...\n",
"[09:23:00|\u001b[38;5;246mDIAGNOSTIC\u001b[00m]==|\u001b[38;5;246mranges=[np.float64(0.0), np.float64(64.0), np.float64(0.0), np.float64(64.0), np.float64(0.0), np.float64(64.0), np.int32(32), np.int32(32), np.int32(32)]\u001b[00m\n",
"[09:23:00|\u001b[38;5;113mSTATUS \u001b[00m]|Read field in data file '/Users/hoellinger/WIP3M/notebook1/nsteps20_final_density_spm.h5' done.\n",
"[09:23:00|\u001b[38;5;113mSTATUS \u001b[00m]|Read field in data file '/Users/hoellinger/WIP3M/notebook1/nsteps20_final_density_p3m.h5'...\n",
"[09:23:00|\u001b[38;5;246mDIAGNOSTIC\u001b[00m]==|\u001b[38;5;246mranges=[np.float64(0.0), np.float64(64.0), np.float64(0.0), np.float64(64.0), np.float64(0.0), np.float64(64.0), np.int32(32), np.int32(32), np.int32(32)]\u001b[00m\n",
"[09:23:00|\u001b[38;5;113mSTATUS \u001b[00m]|Read field in data file '/Users/hoellinger/WIP3M/notebook1/nsteps20_final_density_p3m.h5' done.\n"
]
}
],
"source": [
"# thickness = N // Np # \"1 particle per voxel on average\"\n",
"thickness = 1\n",
"print(f\"thickness = {thickness}\")\n",
"DELTA_SPM = np.zeros((N, N), dtype=np.float32)\n",
"DELTA_P3M = np.zeros((N, N), dtype=np.float32)\n",
"for i in range(thickness):\n",
" slice_ijk = (N // 2 + i, slice(None), slice(None))\n",
" DELTA_SPM += read_field(simdir + f\"nsteps{nsteps_spm}_final_density_spm.h5\").data[slice_ijk]\n",
" DELTA_P3M += read_field(simdir + f\"nsteps{nsteps_p3m}_final_density_p3m.h5\").data[slice_ijk]\n",
"DELTA_SPM /= thickness\n",
"DELTA_P3M /= thickness\n",
"diff_p3m_spm = DELTA_P3M - DELTA_SPM"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "cd6e5652",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"max(DELTA_P3M) = 15.284065246582031, min(DELTA_P3M) = -1.0\n",
"max(diff) = 11.20693588256836, min(diff) = -7.942346572875977\n"
]
}
],
"source": [
"print(f\"max(DELTA_P3M) = {np.max(DELTA_P3M)}, min(DELTA_P3M) = {np.min(DELTA_P3M)}\")\n",
"print(f\"max(diff) = {np.max(diff_p3m_spm)}, min(diff) = {np.min(diff_p3m_spm)}\")"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "c9da7aa9",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAACUcAAARrCAYAAACq3IXEAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAuIwAALiMBeKU/dgABAABJREFUeJzs/Qm4HOd5IObWWbDvABeJlEgCIC1Llm0Ri7xM5FgEYGksjW1JAKnMllkM0OYkN7nOEDD0xDczubkmQVmZZDJ5RiCtmWRyM9cEIHMyqy0AlD2exbYAkLItyZIIgKQokhKJcwAQ+9nu87VTUKPRZ//6dJ867/s8zYNz2P11dXXVX19Vff//d42MjIwUAAAAAAAAAAAAFdPd7gUAAAAAAAAAAABoBcVRAAAAAAAAAABAJSmOAgAAAAAAAAAAKklxFAAAAAAAAAAAUEmKowAAAAAAAAAAgEpSHAUAAAAAAAAAAFSS4igAAAAAAAAAAKCSFEcBAAAAAAAAAACVpDgKAAAAAAAAAACoJMVRAAAAAAAAAABAJSmOAgAAAAAAAAAAKklxFAAAAAAAAAAAUEmKowAAAAAAAAAAgEpSHAUAAAAAAAAAAFSS4igAAAAAAAAAAKCSFEcBAAAAAAAAAACVpDgKAAAAAAAAAACoJMVRAAAAAAAAAABAJSmOAgAAAAAAAAAAKklxFAAAAAAAAAAAUEmKowAAAAAAAAAAgEpSHAUAAAAAAAAAAFSS4igAAAAAAAAAAKCSFEcBAAAAAAAAAACVpDgKAAAAAAAAAACoJMVRAAAAAAAAAABAJfW2ewEAAAAAAACA2enUqVPF/v37ixMnThTHjh0rzp49e/3/rVy5sti0aVOxbt26YuPGjbV/b9iwoa3LC7SGtgDoZF0jIyMj7V4IAAAAAAAAYPaIwoedO3cWhw4dmvRrt27dWuzYsaPYtWtXS5YNmDnaAmA2UBwFAAAAAAAATGqEmBj9JYoiYiSYGAEmfsbv8f+OHDkyoThREBEjzQCzk7YAmC26270AAPW2bdtWdHV1tfyxatWqYv369bWELSrSn3zyyVqSlu3hhx+e1HLF8nSaWDeTXb8AAMy93LdTyckBAKA15zNR/BDFDCdPniwOHjxY7Nu3r/b74cOHixibIX6PqbTGElNvAbOXtgCYLRRHAXNSWbEe8x7HMJ9xwyRuGMWNo/h3/TzIM6lcnk6yZ8+edi8CAAAVzH07lZwcAADGVna4iOKHsabC2r17d9Hf31/7OdaUWsDspC0AZhPT6gEdJW7M9PX13fDvqDKPBKuZqDSPivNNmzaNW3VeH7P8GVXrMaRnsxtC27dvr8WO4T8zP0+85xNPPHF9+RvfOxLAeE4niHUTVf8xDGrcJGoUyxo31GId1a//6awzgKooLwxE+xn/Lo8/0V5GOxmPaGOjLZ3pdjOW6emnn76+bPGoX67NmzfXjoPac2itquW+ExHvHcsQyxK9QqP9KZenbIfi88XoTQ8++OCEPudE3lNODjB3ycsB8kVni2hPo9hhoqLtjaL/+vOdyHGPHz/eoqUEWk1bAMwmiqOAWSESpfLmRb3xqtEnKi4+xc2gZjeist6jXnyW+Exxgau8AFYvEsmMG0HTFdOu1N/EqidZBWguRhuJNn4yU1bFzY54TfbxplG05fE+5c31aMvLIoQQ7XoUK9T//zg+6rkFM6tquW/Z/sR7NuaU44n2J9ZHK9ohOTlAtcnLAVoj8tIYhXaquWiZ10aurV2D2UtbAMw2iqOAWSEuZEUFeqPozZ2ZNMX7xM2Hxh7Z2T3Hy6Sx7P3XePMrLniNNbzoTCiXMT53sxtZrbpxBjBbNR5D4thRjvSxevXq68+JRzl6S6O4GLB3796WHANi2cppomLZoh0frQd6LGOMQlIuY7T38XxgZlQp921sT6LdKdvH+FlffFS2kdHeNE5rN167NRVycoBqkpcDtFa0r1HMGW3lZEaLAapFWwDMOlEcBdDp+vv7o5Dzpsfx48db8n7bt2+/6b02bNiQ+h4RM97n5MmTN73XunXrRtpt//79IytXrqz9e+vWrTct48GDB9u9iAAd4/Dhw9fbx7Jtn8ixbffu3U2Pb9Huxv/PEHHiuFLGjvZ9ovbt23fDcTBrmYC5kftGvljfNk5m+eO59W1X+Yj2NpOcHKBa5OUAM9vWTqSdBapJWwDMNt3tLs4CmIiZns7i4MGDN/XKjyr46GmYLXoHRu/Fxp6BjT34Z1r0RHzwwQfbugwAs0H04o7jQxyroud5HEMmMrJJPD9GATl58uRNz4+Ya9eundQUIKONOBI9uMo4kx1hJHrKxzLW9wYDWq8KuW9M2RcjY9S3jY0571jKYfkb28dYpsZRpTLIyQFmP3k5wMwoR+ELrcjNgdlBWwDMNoqjAEYRF9Eab0zFRbE9e/akv1cMkd6oncOklzeCmi0XADe2l+UNmKNHj05puqu4ARMFAI035eMGSsSOn1MVhQnlDZiYNmoqUy/FjZjyc5WfF6iezNy3zCOjfTt9+vSUpwIsb26P1bZlkpMDzF7ycoCZU19I+thjj7V1WYD20RYAs43iKIBRxAW1vXv33vT3J554Ir0HebPe4AcOHCjaJar8m/WeB+DmmxxhsiOiNCpv4jQWJsRNjy1btkx51JYobCg99dRTU16++uKAiBmxgWrJzH3LtjFuME93FKzISZvdQG7FDWE5OcDsJS8HmDn1bWQUjmqLYG7SFgCzjeIogDGM1pNv586d6Ulk9BysF8lk/cWzmRQX2/RQBxhbWTBQ34N7useCuJnTKN5jshcX4hhSP9pLLON0ChTi5nz9cSpiT6fnPFDd3DcKeuIGcuSTWdMDlje868V7ZOfKcnKA2UleLi8HZl59e6stgrlLWwDMJoqjAMYQF6yaXViLC2LZU3l0yjQe5WebyhDvAHNJDBcdx4l9+/alxYxjTrPjzmQvLsSy1T8/4+Z6/YgyEdtw2VA9Gblvmb9Gu7Vq1aqUKfBGu9HdilxZTg4w+8jL5eXAzKvvwNBYCArMHdoCYDZRHAUwjtGGY8++SRIX3Rp7D0bP+5mutI/P1WxZAPie6DEe7XOzKaimq9lFhHivyUztFL3n63uXxyPjeFh/bDBUNlTTdHPfY8eOXW+34hH5bMYUeM1y0+yproOcHGB2kZfLy4H2aJySunEKUWBu0BYAs4niKIBxbN68uenf4yZJqxPJMJmLbhni/ZpNXQLAzUUCrRjRY7Sb4RMtTGi8OdI4RdR0l63+xpAbMVA90819mxURxQhI0y1kanYzOXsk15KcHGD2kJfLy4H2iPaxsWOF/BXmHm0BMJsojgIYx2i9+lpxM6bd03iUveJN3wEwumgn4yZ/Y4/tTKNNazWRkUsajxujFTpMRWOsgwcPpsUGqp379vX1FbOFnBxgdpCXf4+8HGiHxlH7om1UFAFzj7YAmC0URwGMY6wLbNnTa8QFvcYbUnHRrVW94ptduMvsyQhQRfVDQ8eJftxEz57aabQpqMrpqsa7QVQvY+qOUmNPsFgXMz3VFNDZue9obc6mTZuKbK26ES4nB5gd5OXfIy8H2iFy1mZTUrdixgWgc2kLgNlCcRTALOipPhNJZFxEi4tpzd4fgO8pb47HzY5on2MKi40bN6a21VMduaX+BtFoN06mo1lxQ7P3BOauZiNX7Nu3b9qFTM3av8ybzI3k5ACdT14+/nsCtFqz0U6jYHWmOhYAnUFbAMwGiqMAxjFWz7tW9FZvlkTOxDQeBw4cqH2eZkPGA/A9Z86cafr3PXv2pL3H6tWrm/59vN7ghw8fbulxqlm8L33pS6nvAczu3Ddu/Pb399fy13icPHmy2L17d0uWqxWjUZXk5ACdT15+I3k50AnTaY038h5QTdoCYDZQHAUwjr6+vqZ/b1VP9WY3Q6K6Pnto+GY3e5rdBAJgYjJ7Qo1282S0G0CjTe/RimNV47K1+vgEzL7cN9qJyCvjkdEOjdbORC/UVpGTA8xe8nKAmRNtUbPOENEWtzJfBzqLtgCYDRRHAYxjtItLmcOhN2qWLLayp3p5o8f0HQDjW79+fdO/Z/YGH60n+po1ayZ1zBqtp/t0NN7YabzxA8xu7ch9x/P000/f9LeZGF1JTg7Q2eTl8nKgs0eMKac8BeYGbQHQ6RRHAYxjtGHJW3nTollv8Zhio1XiJk9cVGvVaFgAVfLggw82veGSOdLHaL3dx2qnmxU0tGL618YbO3HDaLxpRYDZox2573iaXUTdt29fy99XTg7Q2eTl8nKgM0Qbt3379lHPIzJH9AM6l7YA6HSKo4AJiYsrUd0dCczGjRtrvfNWrVpVdHV11R7xe/SsHq36O173xBNPFLPRkSNHml4Ea3VP9cYksvwOWiG+t7nQQz22wdh+J7LNjrdN7Nmz5/q+UL8fxBza8T4uSEK1T/SPHj16/TgQv8dN+swb9VO5CdPsNa3ood7sxo5e6lAd7cp9x1qexrwqlmempp6Tk+eTkwNZ5OXycqC9or2LnCvyr7FyZFNqQbVpC4DZQnEUMG5SExfooxAqEpf4/aGHHqpdaDp48GBx/Pjx4vDhw7WL0nGhJ37GBen6Qqj4d1zsPnnyZDHbRCLX7IL6TPRUb3ZjpBXTeJQ3nGbqBlM7xOeLxDy2z9iG48JpX1/f9YK/+H+jTSFTL7bl2BfKmy0Rq5zSJS6Mxu/lTZp4XvwEqimml4rj38jISNHf31/s3r17RkZuGWtaq2jXZqKHejN6fkE1tDP3HU2zfCrOQ2aKnDyPnBxoBXn5jeTlwEy1NZGLNeZ2o40YEzleqzoYAO2jLQBmG8VRwKiioCmSmpg6Im6IxIWmuOAUF5oiuYkkJy4Gxc+4iB83CeJCVPyMRCiSokh0ZvPF6Mcee+ymv8VnHy25yxTrtfHiWbOe89MVN5eavVeVRG/ySMxjO45tNLbj+Fl+j/H/yueMlrSXCX6IOFHsFzHKAsHy9/oLpHGzJvYDgIyRW8YbtWWmipCb9Xo3MgdUQztz39HORxqLZeJcY6wb0tnk5Hnk5MBsJC8HuLGNKYvay/Yx7guUuV3ktKPls7P5HgFwI20BMFspjgJGTVAiuYmet3GheTI97yIJitfEUN6zeZjMuIjeeDMm1sdTTz01Y8vQrOd4FKtlqvr0HWWPhbh50rgdN46C0OymSayfxhs5EafZEPqR8Me2X///4uSgyusXyBfHnmY3NcZrS5q9Zs2aNcVMOHPmzIy8D1Dt3Lde5F6NF02jMKodIyvJyadPTg7MRvJygOKGfGrt2rXXp0OOnCuKQSNHry+C2Lt3b9PXRx43lamUgc6iLQBmM8VRwE1itKdyWryo8m52wXk80VP36NGjxWxVTsNQrywUm8ne3K2exqMcwrRdowHM1FzX8d01K/Br3LbL5zcWCZY3WCZaJNi47USyb2h7YKKatfPRDo3XVs9UO9PsOKiNg9mtU3LfxqH5628uR8/Tdk05JyefHjk5MFvJywG+l0fV5+dx7f/06dNN7xuMlbO3YnpqYOZoC4DZTnEUcJOdO3deT16mUhhVisRoMiNOdVqC1/hZ2nFzKNZ/43cQPRezLna1q/f9TCmT7LGGam38Tp9++unr20F5EycS/MlM3/Lggw/e9LfGHvEAo2k2Gslova3q9fX1Fe1i+g6YvTop9y2Xp35qtZi6qH7qtXaQk0+PnByYreTlAH/WUaC+s0Dk5WOdK8TfR7snkJlDAzNLWwBUgeIo4KZey+WFlIwp8SZy0ahTREIWN4Yae4ZHAteum0Ot7Kke33OMEjCbpz4cTzk861g3mxovHMZ2EI+yd3qMnjbZ777Z88u5twHGa7ca26XRRtroJO28AQTM7tw3LoiWI1etX7++tjzRDkYRTORhU8nFWkFOPnVycmA2kpcD/Flxe/30V5Gjx4iu4xlr+tFy1FRg9tAWAFXR2+4FADpL2UM3bNq0adrx4oJ09Pbu1IvQccE9li0utjcuYyx39CyeTO/kVoibCM2mhJhur+eIUX4/VS70m8xNmNKWLVtqP+PG4FRHT4t1Wx9fTwg6QbQl0dbFtjlbL5qvXr26tl/GZ6li+9VsVA1DTQNVyX3LIqjIi0bLw8rcdzoj2LaCnHxq5OTQnLy888nLgbmuHMGzPq86evTohF4bx4fR7gnE/YdOLzQFvkdbAFSJ4ijgphsm2aIXdKuKo2IKwLggN1Fx0bG8+NjsInwkdjH9QifdkGlWYFb2MJ/OBciqT99RFvqN1Qv/2LFjTf8e6zfWz3S2gWbbV/ytE0Y+YG6K7a/+RHY2f476qZaqJI49jW1HXCSY6Oc0hQZU32zPfcsLo82WJdr2eMSF13hEkVb0Mo3l64T8SU4+NXJyuJm8vPPJy4G5LnLcxhFfYpSYyeRQ8fpm9wRacf8BaA1tAVA1iqOAG9T3WIyL1BkXuDJGoBrNVBOoSN7iInv5c/PmzbXP2u5RoiaTQEYSOtXvp7z5NNawprNdub7GWkejbT/xmlbcpHIThk64qRtt+2y/WB+fpWrtV7TJjTfJylFcAKqS+8Z7j9euxTEqiqMee+yxWlsfj+3btxdPPfVU23MpOfnkycnhZvLyziYvB+a6ODY1FrZHPj7ZnDdeM1Zb26wAPopTswuIy/OguEcR04rH55gN+WCsh2ajGDaKz3L69OkZ+UwxDfpERmKNY6YRgWa/drYFrdLJbYx9HmaG4ijgBtETvbw4F710M4qjWnnTpeo9rcdKIOOm0VSHdI/XxffSKaNjZYsbLLEdj7f9fulLX2r69+kOla/XA50qplGiMzVebIj22fcFzMXcNy7wxUW1+JzlCLQxNVs82n3BTU4+OXJyGJ08r3PJy4G5LkarbSzenWqBaOS6zXKy0Qoi4kZ8mTtGJ+6xpuMuixHKf9erHz23vLEfyxG5eyum8o73iNw13qO++LnsnBKf6aGHHprUfZJ47kTWRfwtOpa0uog31t1oRRLl5yxHOa7q+c1c0862oFU6uY2xz8MMGQGos3Xr1pFoGsrHwYMHU+JGrF27dk07RuNj//79I7NVLP/27dsn/PxYf42ff6rfz8qVKye17hq3i8xtoxX27ds3oe0j1kPj59q9e/e03z/etzHuunXrph0XqKbGNiPappMnT046TrQzjW1PtIfZop1sfJ8NGzakvw/MdVXLfaeqMQ+N3zPJyVtHTg7MNvJyYK47fPjwTe3KdK7pN2unJpvDZrR1x48fr8VpzDunm3PGMSLOJcpjRuTrETOOJ9Hul/+v/lwmlmW6+XV8/sbjVavFsa3x87Tq+Eb7dWJb0Cqd3MbY5yFf90wVYQGzQwz72Nhjrqx2nm4v68bYTK/34lR7U0fv+6guf/DBB4uqKnt1jtVLPdZBs8r7vXv3Tvv9jx8/ftPfOnXKRqC9mk2nFFM06XED8L28rr5NjFw2enu2ayoqOfnEycmB2UReDvBn00g3ms7oJDGd93Q1ywvL0VwmKnLA+BwxFVV9bhrTWG3cuHFK5xbx2nLKqThe9Pf31/LfeJ8YNSZGvC3/Xo7+G+cA8X7NzikmohxFN0ahqh/JJpa/cfrvTDEiToxkE+872jJRLZ3YFrRKp7YxwT4P+UyrB9ygHO6xMRGKC/6RJIw1P/BY4kSA6SnnKq5PpMqbKpOZX7icLnE2zK0+VbENjzdFSbPksZwferqaxVYcCDTT2DbEhbSMKW1nWjmMMkArxLlEXFAsxQ2ILVu2NC1+aTU5+cTJyYHZRF4OzHUxjXXjFErTzVdHe+1kYjZ77lSXKV4X7Xu0+WWuGEUAca4R5xYTjRt5bhQ9TGTa84hZdqYoO6HHui7fc6rifWMZGs8vWmG2Te8e2/Fo04HNhuN41vlQ1dqCVunENqYZ+zzkUBwF3CAOzlH5W3+QLQ/gZY+GOCjGwb3qF/M7UWMCVJ5UTaZaO5LbqherxbY5XmJY9mRvfN101c8znR27laIIMpa72XoBWiOOpfXtxXRvwDgmA1UVBTbRPtYXu8T5SdmJY6bJySdGTj55cnJoD3k5QFE89thjExo9JqNgs92FnJGHr1q16vrvcQzYuXPnhPLzOA+Jc4F47mQ6kseoMvUzdEScKLKa7Gg85TEmvpv6c5I4v2iVAwcO1Ao7Ypk7XTma12zXziLtudQWdGIb08g+D7lMqwfcJBLysRL7SOKjUCoO7pFsxkE5DsTtmtpiLmmWhE7mhlB8d5FMTXUEsCppVU/yZnFjnXf6UPxVOGmE2SROZuvbi4yLHs0uKJw5c6bI1ux47wYQ0GqNo9uWuW07LtbJyfPIyW8kJ4eZJy8H+LNCnca8OiNf7dTRYuL9G0dFifsbEyk2KAtH4v5IjAYz0fOReM/G40tjh4vJiLy2ccro+uKrLLFO4r06PY+uWj7drqKUudYWdGIbMxr7PORQHAU0FRXMExk2MZLNZsVSrZzvdi5rlgBNZpjY+F4ffPDBYq5rZU/yp59+uiVxWy3mkAZmRpxk1t/kz+oN1s4LClXt6QV0jtFGrY3elzNNTp5DTn4zOTnMLHk5QHtyp05oq8pZMsYbMadR42i2Md33RDWeQzTGm26njVaMqhsxpztq0EyK0Xxnc1FH5BCxnbSrI81cbAs6rY0Zi30epk9xFDDmQTAu3E8mmSyLpaK372R6TtD6nupx8yFOtiQ2zU86s+bybhb7oYceKjpdVXrVQKern6Y2xBDFWRcZml1QmKlRHaM4GqDVmrWXzXq2zgQ5+fTJyW8mJ4eZIy8HaH3uNNoId50wWsxo5xbj5WONn2m0gv9m1qxZk5r/NXZun8jyT0Z57jKbOnbErCgnT54sRkZGZuWjv7+/lpO0q8BrLrYFndbGjMU+D9OnOAoYU1SoRzIZRVKTvUgUB+YokGrF0I5zWbPEZCLrOJ7TrJf7XBS9QRtlXASNbb5Zot/pvdRjmU2LCa0XJ6v1PQrjYkdmm9zsgkIrRqBoFrPKFzOAzrF58+YJ925tNTn59MnJbyQnh5kjLwf4nsg/mnU2yMidmrVTmzZtKjrZeB0vmhWttHP0m8YRhjJHkolzl4jv2DI3aAtmxnQ7d9nnYXoURwETEgfEuHgdlevllHsTvXAUvaKnM382489PXlZ0j8VwmN9z4MCBm/4Wo51NV7Mbc7GfdHoyqYARWi/a6Whnypue2TdgRisaaMVN1mYxqzwMNtA5Rms3Y1qkmSYnnz45+Y3k5DAz5OUAMzeaZ7MRTTLyvSzNPuN4o7A0FiLESEUTXVfRCb3RdEcIajy3yMwpnbvMLXO5LeikNmY89nmYHsVRwKQP5lEoFQfJuIAUQ33GzzgJGKuCfM+ePS72tnEaj3J4zXbNVd1JYj20qid5sxtzsyGZbMXc1MCNomd6efLbihswYaaG3G7W28sIKMBMGO2Gb7umIpOTT52c/GZycpgZ8nKA8XPprLYk2tlWxW6V8QpBIl+NDuRlR/Ldu3dPa11PN/+N19cfdybSYWMi4twljjOdPvoqebQFM2O6xWb2eZgexVHAtEUSEycBcUIQxVIxslSzxCYuSLfrxkXVNBvacqwe83GhPb6Tds1VPRd6QIw2v3Onz88cy2y/hNbasWPH9SGTW3UDJjSL24rpO5rdzHZ8AcoOEatWrSq6urpq02tPd7j4RmPla+2YjkxOPnVy8hvJyWFmyMsBbnbmzJmWtSXHjh276W+ddON9qu1oOYrsZHPXxhw4q9NEY0eAjKL7iBGzhzB3zOW2oFValavZ52HqeqfxWqCCYnSnmOt3OheIIqmPR9wcaZxOL0aY0iM2R1zgbxyNK27GNDupiikrYt1T1Ir4GmVcEJ2t03fExWHmjjhxipPR2XzzLUYNif1qvBELO2mdlzfKW3kDpv4Eu/77bcV33Rhzrvb0Am5u7+pz07j5HAVSMXVE1gXVsaYKirapHe2RnHxq5OQ3kpPPPfLymScvB2iuWfvUbHrQqWjsLNFJI6iO1rmiVce0Zh1H9u7dmxI7ChriXkwpjnfx+aaTA8c5TrNpAKmuudoWzMY2xj4PU6c4CrhBHFDj4ByjP01XXCBbs2bNDQfpOMAqjmrNDagQ67YxsYweKZEYqfoe/UQ0Y37rZqMEPPTQQ0Uni30ze0QHOle0A1WY3rQ8sZwNN2GiQLhc5zNxA6bZTZjskVSaxYuiaoDRjjGZnSPGGnWjXcUvcvKpkZN/j5x87pGXzzx5OcDkZHRuaDZSaCdNddxs+VqZq9ffIynfK+t4VI5kVf+ZomPGVD9P5NRGvKWT2oKIER1s4mc5RXts97F88YhzvvIcPLbf2N/aXejTyjbGPg9TZ1o94CYZ89OWYrq9ZjcGmL5myUp502W8mzNzVaybVsztPtr0HeMlo/G6xtHVRhPfbST1MQJDOV1N/Izfo6d5/Y2g+Pf69evHXA/xmom+93TFuhlt2Sd6MyhixMXseH6cPMXyxw20+JwRq1lv+/h88ZzG94zXZ9yAyvxOZkKcNDWb/mc2iravky6oNVOeiGfegInta7z9ttm+kNlLvdkw2Bk3s4HZbazjamYbNNaN5XZdxJOTT56c/M/IyedmTh7k5TNLXg4w+dFZM45RjSOFljfzO0WzDhyNBUxZIuepvycS6yG7A3nj8Xg6I9Y+9thjaaNaMXt0YltQjkgdOU7kUbFdRj7X399fnD59unjqqadqo1uV5wNxrhI5WCeMztrqNsY+D1M0AlBn5cqVI9E0HD9+PC3myZMnazHLx/79+6cUpz7GdGN1glj+7du3TyvGvn37blon8bdSf39/7W+HDx+e1vts3br1pvc5ePDgyGwTy9z4OWKbn65du3bdFDfW2XjWrVtXe+5YYl/csGHD9e0lPkPsU/HdxiP+f3znESueF/tEuQyNdu/e3fS7nMxjMmL5YpnL18Z6im0xljk+R/16i+WK50/muxttfcc6iO81HvGZ4/d4fbmeytfE+ppKW5f5nVBNsQ2U33nW8bQ8lo7X9pbtfqva6/rt2XYNrTWbct/GfL/+Ecf7LJFHNHuP6eRzcvKZJyeXk8vJmSnycoCp5bLR1k1X/fE+HpEPTFXj8k0nVuPxodV5dRwP6tfFdM89IreqP9eo1/iZpnLsK49zE80FqY5OawvK8/94/USWo/F8sCptjH0ectmKgabFUaMdbKeq/uLvVBOL2XSDaCIyToaa3YiKZLHxgvR0VeVGTLMbJtP9Dur3m8lsm+V3N9YNm+wTgPis9Y/G7zU+R+NzGh9TuXkZNyNGW/5I2Mv1Fz9He178PdZptE31N3cab+TEe0WcsbbPxovIk2nvZvKkjNkptotWFBqXJ6MT2e7KG4VZJ/RjbdMZbShQjdy32fJmXUwd62LtdNsiOfnMk5PLyYOcnFaTlwNMTLOb39NtN5sVBoxVgD2exljTaU/rjw+tPs+K9VBfGJLRcWSsQonGY8NU3i/W7WivUyhRbZ3UFtQXmU9mGerPUarSxtjnIZetGLhBedCeSA/byR5gp5tYzLYbROPJunjVeLGtPmGM/5dx8a0qN2IaeylkbEOjjWAw0Zt7o73/TJ0ANN7MyFCfNNffGJzISdJYN2PGWu+xrZe9widygtX4+omcOMz0SRmzT31vwOmODjJamzGZ505mP5xqOzobjwUwW8y23Le+sCIekVdk3owOzYoxptsWyclnnpz8ZnJyOTm55OUAE9dspLvptp2NN+ynmws3Lt9U40VbWV+0MF4x92RE7hTrrSwkr8/dIw/JOjcaq1CisRBlKh004jWjLatCiWrrpLagvJ842XOj+o5LVWlj7POQq3uq0/EB1VY/B3aG9evXX//3mjVrUmPPdY1zC5fzGce8yjEn80MPPdSW5eo0Z8+ebTrX9HTnum82d/T27dvHfd3TTz9d+/nggw+OOs9zuXwbNmyY8PJMZ27pDLHNxbzeo80p3kx8vt27d1//nppt0+N9b/G+fX19xdGjRyc0F3q8vn5dxXzkTzzxxJivma3fCTNny5YttXYmtvvpti2NIuZEtu2wa9euG36PZYp9qxXt6ETaO2BuKNueOO719/fX2q3JHC+nc47SCW2RnHxi5OQzQ07eed8JM0teDjBx0aY1HlOb5WuTaaPimF5v7969U443neWIzxHnEHv27ClWrVpVy4/KdjjazdOnT6e0n/F54/7Htm3bajlUvF957hLrdvPmzRM+dkxHvNe6deuu/x6f9dChQxN+fSzz6tWr08/jmB06qS0o95/67Xki4vkztf3OZBszGvs8TJ7iKGBUjYnLdJw8efL6vx1ovyfjolizC/kHDhyo3SCYyWSw0zW7mRYJ/2QT7EZxA6DReDcS4jXxiIu0o50Yz4YTgGbqb8JE4j/R5a8/MYrPPpUCzYMHD07qQkPc/KlfvjiJafZ91i/XbPxOmBlxASy2n9gOs2/AhGPHjhWbNm2a0HNjP2i8ERPHhelqjFHeQAWoz39aVYAQx+FmuXPG+8nJZ46cfGbIyTvvO2HmyMsBJq8xb4o2dKriWF4v8uHswqAopu7q6hrzEYUKZcFSPD9y/sgHos2MzhyTzVnGEm39/z1Tz/VH2WEk3jPWSbksY+U5rfgum3UiGE08dyIF8lRXp7QF5X4SHS8mK6NjUqe1MWOxz8MkJY9EBcxy9UM+xlD4WeqHkZ0rU4tMZIjSrHU82hQjow23ORen8GgcwjVryoqpTN9Rfl9jDadcP+xyK4f5z1wfjVMGTHa46PrpaCbyuTOmJ2gcGnasfXKmvhNmn7J9aVW7WE45M5l54xuHws443tRP3TGVYZqB6ue+ZXuYMYXcRPLR6U5PJCefeXLysd9HTi4nZ3rk5QA59wXiMZEpcsea0mqqx+tmGvO8aEvj3GgijzgmRD40lc+TpXEq4emcH4w1xdZoU6NN5LOXrxvruabYmhva3RY0bsOTff9yO61KG2Ofh1y2YmDMxCfrglIZd6oXepsd4GfDDaKJnBBlx5tu4lrVGzH1Fw8zb1Q1S5wncmIw1vNm8gQg80ZM43za071ZNp6sC8yN7V6zG0jtOCljdihvsrXqeBRtRnmTcrLvEcUJ07k5OtZxZrYef2G2mM25b3lczVzW0XLd6bRrjXFbuZxy8u+Rk4+//HJyOTlTIy8HmJ7Gm+BT6fBQX2Q93Y4MY+V6WUVXM6mx/Y6cbyrnCeMVSjQ7b5hIvh3Hk/HyUIUSc0MntAX15wbx+sjDJpuzVaWNsc9DLtPqAWPauXPntGPEHLflVBVTnfZitOEzM6bAaIf6IUVjyM3pajYVxFjTQ2Ss/6kMadou5fzPjTKG2G9cx+NN71AOU/rUU0+NGbM+7saNGyc1v3dMFzHTU0bU7+dTXbcxBG29qUzjkTENzmOPPVaJ74SZ2e7L9jyGIY7tYrqPGI45HuUQzfHvcijpyU4fE8fc+u1uOsf0xul5GqcHAXLN5tz36NGjtWNm5DwZeW585vo2qBRD1E/32Conn1ly8taTk49NTl5d8nKA6WtsUyI/nswUcJFflc+P43VMKUdxQ15WfyyIHKvZeU67ptkyvRad1BbUnxtEvh95WOR6E8n9I087fvx4MZfY52ESkoutgFmusSJ7uj1Xo/dDGXMyw46P18uuFT1QZkqz6TYyevo19vDN6kXeOARqRq/gmdasF3/W0PONVflj9aQoe7JOpLdFsylH4nWT6SUxk73UG7frqYwA0LitjRcja3ts7AEx2rYxU98Js0P09m7WNrbyMZUehfXH4an29qrf9uO4286h6GGumO25b7SR9SPHTvVYGe1Nq0YakpPPPDn56OTkcnKmTl4OkKs+r4p2ayKj3TW2T63MlTptVJfJaDYKy2SPBxMZRaZ8Xv37jPU9xvc1kbzcKDJzSzvbgtHOf8u40QbEfjDd0aRnQxtjn4dctmJg1ANoHDzLg99UkoE4wE62wCou7MTr4hHvHxfQR7s5VH/xuJzXt3xtp1wYjc9TrsdIDBsTlMYLyZHkxGeeSlLXeEFwKurXX8SLG0RjLXMnr/t6zbah6U5XMdpNntH2lXJfmugNg5k6AchaJ1lTck7m4kDj/jNVzdZ1s/U60ydldK7yBLJVN1tGe0xVY3HBZG6UugEDrVW13He06YfiEe3JZI6RsS4a29r4Pf4+WXLyziAnH52cXE7O1MjLAWYmb4vfm7U7cbytb9ciF2hF+9TJhQuT1ey4NZl1NtFCicbvcKyO6/HciXRsVygx97SzLRht2vqxzomr2MbY5yGXrRi4QbNRnsoDYCQ3E70ZUfbGncjF1LF6/LbjYlWmZr1aJ/qYyo2fMgGdSvLWLNGZzet+vO0qY2SAZj20Yx+qT/zj3+V2MNmbBTNxAtAYYyriMzYuTyxL/H2yj4km8I3LPt1RE5otf7tPyuhc02nbp/qY7jYe+1d9WxXb51gXKRqLGjrpogBUSdVy3/HOC+IR+Wq0o/XFPKX4d+Ro9e1PfTs01YIfOXlnkJOPrjHGVMjJ5eRzkbwcoHUiV2/M3yLPjb/Fo74QInKvzLyuUbNzg9mqWU48mWLZiRZKNCsoHyvmRArLFUrMTe1sC5p1mhovT5vKdYNObmPs85CrdzJT8AFzQ8wDvG/fvhvmGD558mRt/tlt27bV/n/M+Rvz/Mb8vaGvr6/2nJgru5xPOObRjjj1c2lPZhnC6tWrJ/yaWIbS2bNni04y0c9TfoapLn+s75h7uf77m+qyTmb9d/K6b/xM5e/181ZP18GDB2v7x5NPPln7/GvXrq1t/zEHdrk/xDzdk/1eIkbMyR3zz4+3XmPfi0fsb7E85b45E+q//1Isc/b3NpOafabZ9J1QPdPdfmJ/iu3w0KFDxWOPPVbbNletWlXbpuPYHvGbHctj+422K54HtE7Vct96u3fvrj2eeOKJYv/+/bX8KHKmeEzEdM4pGsnJ20tO3lpy8ubk5GSTlwNzRbQ7cbyNXCrarKeffrp23I22KUR7FfcNHnroodpPpn4ciXUb50zZ7xPfYXkcCfE9Nn5X8X2Wz4VOawsi7+nv76+d48X1hPrtuZn4/3Hf8vjx43Num7bPwwQlF1sBs9x4vSqjN1tUKTerCC+HsI/K8E6cxoG5q+xpGdtpbLut2j6jJ0PEL3szxM/YJzKmdBhtFIXRHhN9z4xe6o3Tx8RjJtqAzN67jT1QJtIbo1XfCcyE2B5jZMeybWzs+RX/zzYLtEI5OlTkSM3aoPhbObIU1SInH52c/M/IyZmL5OUAs2dUl8itol0u74FkjKxb5qvZo8iEWMbx8szJfBajyNAJ4nyvzJ1Gy/kbRxKeLW1MM/Z5yNUV/5loIRUA0H5R3R+9Nep7kTbrjXr69Olxe3p3dXXd1AN7smIZNm7ceMPfopdrq3tl1y979HSIHiEZsUL0RImRBdrxnQAA0Pnk5H9GTg4AtFpjjhAjocQofDOpHJm0ftTKyFMiX5mMGAEnRjttNNFbtTHa4N69eyc00lQsazx/tPyw/P8xMs9EcqMYhaZxZFK3mGm3yP1jP4zts95k9s9OaGNGY5+HXN3J8QCAFiunl4kbD5GMxg2AxuFRI9GN6VwyRcxmNxma3XCJYXZns8lMa9TO7wQAgPaQk7eenBwA6BTl1M2Nf5usZlMCt6poO+I25kL1xSKx/PH/FY3TaSYyfXb9OUAUMsU5QP223GyfrTr7PIxPcRQAdKBOPAGIXhhbtmy56e/NkunZdOLR7KZRszm3O/E7AQCgdTox/5OTd953AgBUX4y+kuHMmTPTLgifjMZRquoLuqJootkoVtBOkafHiEVx3jMZce7QONrTbO8sMhX2eRib4igA6DCz8QQgbjzU6+vrK2aLxvUcN04ae97Pxu8EAICpm435n5y8OTk5ADBd69evn1Ah93ia5SCNOVymiF1fJB75VDkFceSKrXxvmI6pTDUe23P9tNzHjh0r5hr7PIxNcRQAdKjZdALQOPf0VJa9XRqX9cEHH5zwcyfCSRkAwOw1m/I/Ofno5OQAwHQ0FkJFbnH06NFJx2k2PfJkRnKZyuiX9TlQOXpMPBr/Dp1ksh0iRjsnmu3s85BLcRQAdKiZPgEYr2f5WP8/bl7U90iY6rLXf4Y9e/ZM+PnTmRYjep/XG+t9nZQBAMwtcnI5OQBAORpLjGw5MjJSK9ZuNq3xeLlS48hRUXQ1lRGoJqOx+CryrgMHDphei44W+0qzYsLx1E9T2TgS7Vxhn4fRKY4CgDl8AjCZk/iTJ0+OGi/i7N2796bhWqeinC6j2XDVo5nqlCH1c26H7du3j7nOnJQBAMwtcnI5OQBAiDwr8pCpFhg89thjN/3tqaeemnQh+pe+9KVJvW/kPY0FWPE3+RCdrtk+M576AsRNmzYVs5l9HvIpjgKAOXwCUJ8Qj3eDIZLxsRLo3bt33/D/J9PLvPEzx42dyQzzGss2lRsk9csY7zmRCxJz/aQMAGCukZNPjJwcAMjWbGTK6YxWOR2RZ0XBQRR2NxZ3TyQPeeKJJ2742759+yY1alSZ/0QB+2TXQWNB11QKvKZaCA9TFdv6ZM8vyim4y9HeZlMb08g+D/kURwHAHD4BeOihh274vXFo53ox9Oq2bdsm9N4hlnuyFwriNXGhIC4OtHqajDghqD+pOHjw4IROmGbipAwAgM4hJ584OTkAkKlZQXSMjDlWvtRKR48erRU0RQ4Tec9EChbiOY05UhSgR7HVRMTro5i8vrhq48aNkxohtLHgfTIF8KX9+/ff9LfGgi/INtH9LES7UJ77NNteZ0MbE+zz0DpdIzE5LgDQMSL5XbVq1fXfo+f38ePHJ3QBP5L2cuqLsabcGO29IklulvRG4h03YSaSNsRz609a4iZE3ICYyLJHkh/PjZsi4+nq6rr+7/JzxsWJibw2TpLqe0vEa2L6jk74TgAAaD85uZwcAJhZkRtEzlLmL8eOHRuzKKKcJqrMBWL0yZkogI5l2rlzZ61YuxxpM3KaZvlFFHNHTlZfaBF53niFCpHLRaF6vG68Io3IvWL64PoC+WZiGWMdR741Xq4Wz41RY+Kzxs+xitJjHcSonOW6j8L/sXI6GEt9zl9u27EPxPY93tTbca4UP0c7r+jkNsY+DzMkiqMAgM7R398fdztqjw0bNoxs3bp1ZN26dSMnT54c83Xx/+N58bqDBw9O+P327dt3/f3icfz48ZuWJ+Lu3r17wjHrlyUe4722XIbt27dP+D3qlznWU7znypUra+trrHW1a9eu66+L5zd+3k74TgAAaC85+cTIyQGALJGrlLnBZB5lfjBeTpAt8orIScr3j3wj8pPIcyKfqs/DyhxrostY5mWT+fzjiXwrnj+RZSiXfSrfRSw7TFWZ88f2FP+uP3eIfSi2r8OHD9e249im9+/fX/t7uQ+OdV7RyW2MfR5mhpGjAKBDe0dE5f3p06drP+ur/Ddv3lzrHRC9FuK50cMheglEb6X4W/QCmMx89eVwqDFUaymGdY73iV4K0Ztpor2/x4obn+PBBx+s9eCIf0fs6Okdnyt+j54Rkxnetb6XeixfxCqHqY6eFhEr/h3rJN4rejvEMLllb5D4jBOdKqQd3wkAAO0jJ58YOTkAMNdFfvP0009fn4qrzHPKUWci74pcxciVMDGR85dTWJZi34rzhvop7+J8IEZQilFv45xjIiPlAnOb4ihSxMEoLjg1Jn9xYIqEL4bXKxPAVi5DXOiKi1/lMpQHxjiAxvvHgVECCswG7TgBKG+61Lfl0WbGDYe4aTEdcUMiLhLExYJyeNbyAkHEn8rxodmNmFK8T3yW+mNC+X6xnuKG0GSHwHVSBgAwt8jJxycnBwAAAGYDxVFMS/Q+rO/xV17kikc5J2n93Kjl/Mt79+5Nm5c1Lu7F/M5jzQtbLy6IRY9JF8YAZrexbsQAAACtJycHAAAAZoPudi8As1MUPK1fv75WZBSFUNETsL+/vzh58mRtBKn4PUZxit/j7+WQ7FHAFAVVa9eurRU1TVeMBhU9ACNuvEdchIt6v/IR7x+9B+tHi4qehPWvAwAAAAAAAACgmowcxaTFaFBbtmyp/fupp56a8LDrURQVxVT1onBpKsPCR1FTLEMsS4wAFcVY402XF+8dy1AvXhPFXKbaA5h99FIHAID2kpMDAAAAs4HiKCZdlBSjPq1evXpKRUUxYlOM3FQvRpiaaIFVaePGjbXCqBgtKgqjJurJJ58sHn744Rv+FtP7nT59Om2aPwBmhhsxAADQXnJyAAAAYDYwrR6TsnPnzlqBVBQ0TWW0pRgparSYExUjQNWPGDUZUUzVOFJVvHcUWwEAAAAAAAAAUC2Ko5iwKCI6dOhQ7d9RTLR+/fqbRoEaT/QibByhKeLGiE4TcerUqdrUeOV0eFMRBVqNhV1lXABmp8kU2QIAAPnk5AAAAECnUhzFhDUWQkVBUUyTFz8no9mIUxMtdCpHnorRo6aj2esfe+wxF/IAZqm+vr52LwIAAMxpcnIAAACgUymOYsJGK4IqR5OaTnHUsWPHJvTacoSpmB5vOpq9PgqjDhw4MK24AMyMxmNPtOEx5SoAADAz5OQAAADAbKE4imkVNbVj5KqtW7emXGyLKf4aHTx4cNpxAWjNMWDHjh21EQtjWtf4d6OY8jUe8Zz4/5Md2RAAABidnBwAAACYrXrbvQDMHlGU1Mz27dsnFafZ1HWrV68e93Xl1HtxMS4utIX9+/dPeRSpZkVWjVMHAtAZ4tgRPdNXrlxZ+7382ShuvsQjnr93794ZXkoAAKguOTkAAAAwWymOYsLiotfx48eLnTt31oqKYuSlffv2TXpEqWa9BpuN4jSR1z388MO1IqepjGoVvRwBmB2iEHdkZKTdiwEAAHOWnBwAAACYrRRHMSlRxBQFUtPRrMjpoYcemtKIU+VoT1MZPWq00api+Vo5heCH3/+/pcX6w6Hn0mL97LL3pMVaPG8oLdb8nuG0WAsSYy3uzfuM567lNMU/vPpCkeWexW+lxXrHkjfTYn338qq0WF97Ky/W739nRVqs587OS4v13a430mKdH3k9LdaFi8+nxVqy5IfSYl24MP0pW0u9C+5IizV49dWOXK7/6T2bU+LctfhSkeXlS4vTYn21Py/WS+fzYr0+kBaq6C260mLdMi/vRumRK/82LdaF5/LyLma//2TTP06L9dzgF9Ni/Y3bfiQtVk933r740Tu/kxbrn7zwzrRYm24/nxbrn5++JSXOR+7Jy3c/eOu302Ktf/sLabHOns1ZV+GZb/1AWqzff635yEVTcfRy3vRvAyMX02LN61qSFqvv/O+kxVq1/ANpsc5e+P20WPMWviMt1sCVV9Ji3br0J9Ni/aOkU6D+gQU5gYqi+LFbTqbF+tt/+ONpsf7gat557A/23JkW62LeJaVifnderN+78q/SYl3+o4NpsaiGV/vzrlvO78k7l11+rT8t1sDiNWmx/oeVefnSh772h2mx/pMFedca/9W5nDxuXk9eQ/jAOxamxXrrqb+TFmt4KO++xtc+9itpsd6xbH5arJ7uvP168by8bWJFb966H+zKuyXfO3wtLVbRXf1SgXmv/UlarIv/9l+mxDm6+ZEiy2//4I+lxfobL+XdI5nXnbcvvndeX1qsa8venhbr7NWhjmy7Vi3Nux9RNYmnTzC+ZtPWxYhUE5mab7Th2icyJR8AAAAAAAAAAHOP4ihm1MGDN/ca2rt374ReG1PoNSuYimn1pqKvr3mVqWIrAAAAAAAAAIBqUBzFjIlp8Z588smbpunbvXv3hF4fRVBRXFVOeRe/Hz16dNQRpcZz8mTzIb+nGg8AAAAAAAAAgM5S/YlE6Rh79uy5qQip2UhSY4np9yYyBd9EnDhx87ypUx2FCgAAAAAAAACAzmPkKGbEoUOHbhg1Kgqjjh8/fn0UqHY4cuTITX/btm1bW5YFAAAAAAAAAIB8iqOYkcKoHTt23DCV3unTp9taGNU4vV9polP8AQAAAAAAAADQ+UyrR0ucPXu2NjLT/v37r4/QFKNFPfXUU2nT4k3Hvn372lYY9cK3/1lx8tX/a0qvXX/Hzxb33vlz6csEAABV9/Kr/6z41mv/fEqvfefbf6a46w55OAAATMVnHv/V4n984rEpvfaXdu8t/ptf/lT6MgEAMLcojiJFTEd36tSpoq+vr1YYVa+TiqLCiRMnastaL0axalYwBQAAAAAAAADA7KU4ihQxVV7jNHlRgFQ+Ylq9eM7DDz9c7Nq1q2innTt33vS3gwcPtmVZAAAAAAAAAABoHcVRpBhr1KUYqWnPnj216fWiOCoe8fyZmsau3pNPPllbnsbCqCjcAgAAAAAAAACgWrrbvQBUXxQeHT58+IYCqiiWWr9+/U3T27VSTPcXhVn1Ypk6Zbo/AAAAAAAAAAByGTmKGRMjRZ05c6Z44oknar9HYVQUSEXh1NatW1v+/jG1X712jV51750/V3sAAAAz5647fq72AAAAZtZ/88ufqj0AAKBdjBzFjIqCpJUrV97wt23btrV8BKlyWr92F0YBAAAAAAAAADBzFEcx4/bu3XvT36JAqlWefPLJ66NVBYVRAAAAAAAAAABzg+IoZtyuXbtu+luMHFVfwJTlxIkTxcMPP3z99/379yuMAgAAAAAAAACYIxRHVUBMF9fV1TXtx0yJafUap9YLjz32WOr7RMHVli1brv9+8ODBpoVZAAAAAAAAAABUk+Io2mLdunU3/e3s2bO1Qq8MEWvjxo21n+Hw4cPF9u3bU2IDAAAAAAAAADA7KI6iY4qjyiKmzMKoGKHq+PHjxdatW6cdFwAAAAAAAACA2aW33QtATqFRq6eLi0KjPXv2FAcOHKj9/uCDDxb79u1rOj3edIqjYiq86Yqp9CJOWRg12nu1y7zukbRYw4MDabEGh/NqJb9+dkFarI23nU+LtXT+UFqsSwN562th73BKnFcv5633N6/OT4v17StL02IdP7MsLdbQcN50oq9cWJQW62TxR2mx3rr45bRYRZGzndZ0521fl66eTotVjCS2z8OX02IVw3lt148t+EharCW9r6XE+b9evr3IsmTeYFqs1y/m7dfXEo+xAyN5x/67F+Ut17ev5MW6peddabGg3l2L8trTY2cvpMX61lt57c2r1/KO1+euvCMt1pZ39KXFOjeQdxnjXSsvpcT5wJrXiyz/5vV3psW66/ytabF+6+W8WHcsy8uTLg70pMU6f+2babEGL38rLVYxkrdfd/XmtTcXBl5OizUykpfDFUXeNjEymLet/nDP2rRYi3u+nhLnP55ZVWT5o/4fSov17at55+r3996RFutiXhpRPHBnf1qsVy8uzIs1/MG0WNDolqE/m+EhQ393Xvv1ateKtFjzr+Y1FB974VharPce/9/TYg2tyssJ77r3oylxDqzbUGS55+Xn0mJ1/Wd/Ny3WW9fycqUNa/LywUyXBvJy3oU9ebnE1ZG83DJxsYquwWtpsUbm551jd1/Ky3GGlqxJizVwR16uOnDxUEqcj5z9vSLLtotfS4v1rfN5157vWj4vLdbI5byc9+yn/6u0WCu/P+88r/dDP58WqygWJ8aqFsVRFRDFP/v372/pe+zYseOGKe+efPLJWgHSVEd6WrOm+UGtnAZvqrZt21acOHGitk6iMGqqxVsAAAAAAAAAAMx+ptVjXFGwVF8YVYq/TXWkpzNnzjT9+3SKmcoCrqkWRh06dKjo6upKGb0KAAAAAAAAAID2UxzFuMYqFprqSE+jvW6qU+A9/PDDteKmDRs2THnEqC996UvTWgYAAAAAAAAAADqL4ijGNVahURQjZRZcxbR4k/XEE0/UpvmLZTl69OiUR58qp+MDAAAAAAAAAKAaFEcxrtEKhvbv3z/lmMeOHbvpb1HUtHXr1knFiaKoPXv2TGvEqPplmmqxFwAAAAAAAAAAnUdxFBOyffv22s8oXtq3b19x8uTJYteuXVMeNarZtHqTjXfkyJHadHqxTFEYNR3lMhk5CgAAAAAAAACgOhRHMSF79+6t/ezr6yt27949rSKiZiNOxYhPUXQ1mSnwYgq+KNo6fPhwMV3le2/evHnasQAAAAAAAAAA6Ay97V4AZoeYbi5Gdopp7GK0pqlOqRejMz3xxBM3/f2pp56a1ChPW7ZsuR4viqSmIgq94vURr2TkKAAAAAAAAACA6lAcxYRFQdSxY8dqBVJRWBQFTTHi02Ts2LGj6ahN5bR944lipo0bN16fli+m1ssuAgMAAAAAAAAAoBpMq8ekHD9+vFZAdOjQoWLt2rW1QqnJFEY1FjNFYVRM0zeVwqhsRo0CAAAAAAAAAKgWxVFMqUAqCpqiSCmm2Fu1alXt52ijOEUh1fr162s/SzHi1OHDhydcGBV27tx5wxR42RRHAQAAAAAAAABUi+IopiRGfDp58mSxa9euWpFUjCC1bdu2oqurq1YsFcVQ8YjfY8SosqgpiqLitf39/cXWrVsn9Z6tGjGqZEo9AAAAAAAAAIBq6W33AjB7xUhL+/fvrxU7xahRMRLUsWPHaoVQZTFUPCcKoqIQKoqnJlsQVS/iAwAAAAAAAADARCmOYtqi+Gn79u21BwAAAAAAAAAAdArT6gEAAAAAAAAAAJWkOAoAAAAAAAAAAKgkxVEAAAAAAAAAAEAlKY4CAAAAAAAAAAAqqbfdCwBzzdBIV1qs93W/Py3WcDGQFuuupVfTYl0c6EmLdeby/LRYvd0jabFev7ggJc614bx617uWXU6LdWkob7lOnV2SFutq4nK9OnQtLdb8rrzPuGTxe9JiXbz01bRYixauT4s1OPxWWqyBobztfvmCd6fFum9hXqyPr30jLdbvvrYqJc7XzuW0geFt84fTYl0eyjv+fHXotbRYV7supcW6Y3BdWqyXi1fTYi0ulqXFgnoLe4fSYn185U+nxfrDy/1psf78moVpsS4O5F0u+J1v5xwzOnWb+H8//wNFlnODeeeLP7v2zbRYVxJz5//tO6+nxRoYOZkWa9n8vOPiha68/Wfwat4xds3Sn0iLdWEob7kGu/Parh+Z90BarO+758fSYr3/tu+kxfrHL9yTEuf4W3nXNd4qzqfFurd7RVqsL1z6V2mx3jPvp9JivZF4fepPzubtP/MSrw1Co543TqXFuqU773z9P8x7V1qs96/Oa1cvL8rbt996YFdarKuDeZ/xvS/+bkqc7z/3lSLLsdcupsXa/Pa8a7yDI/PSYn2zL+/ezfIFefviLYvyYl0bzttOF/fmnQfNSzz3H16Uly+NdOV9xpGv/l5arIGTefcj5n3yU2mxBv7y30mJ05936l+8cuZKWqy7V+Tlqa9fHEyLdfeVvP1n9ab702LN/4EfTYs1sGBpWixGZ+QoAAAAAAAAAACgkhRHAQAAAAAAAAAAlaQ4CgAAAAAAAAAAqCTFUQAAAAAAAAAAQCUpjgIAAAAAAAAAACpJcRQAAAAAAAAAAFBJiqMAAAAAAAAAAIBKUhwFAAAAAAAAAABUkuIoAAAAAAAAAACgkhRHAQAAAAAAAAAAlaQ4CgAAAAAAAAAAqCTFUQAAAAAAAAAAQCUpjgIAAAAAAAAAACpJcRQAAAAAAAAAAFBJiqMAAAAAAAAAAIBKUhwFAAAAAAAAAABUkuIoAAAAAAAAAACgkhRHAQAAAAAAAAAAldTb7gWAuea5oZNpsT6y/M60WN+5tCAt1roVF9NiXRzozGbqu4nr6z8MfD0lzi3FO4ss9/WkhSouDeTV4b5ydTgt1otdOes99BTz02KtKm5Pi/XCpf+QFmv+wrzta0H3irRYl6+eTovV3bssLdZ/uuD702L9wrvzPuMzL789LdbvnbuWEmfJSF6D09WV194cG/pGWqwrw31psZZ257URZwZH0mL1D51Ki3Vr94+mxYJ6p97Ky99+8s6zabHOvr4mLda6FW+mxfrOpbz85spQXvv8p31L02L97tV/kxJn7bwPFFl+6b68c6lNq15Pi/XM6VvSYp27+tW0WHcs+PG0WN8dyluuwauvpsXq6s3Lna+M5LVd1wbeSIs1MpyTV4Z3LM6L9TPv/E5arOP9ed/jb/T9TkqcpfPuKrL8xVvyzheffO2302IViecHt/fOS4v1b/uG0mKtKLrSYr0y8s20WNBoZHAgLdbAy19Ji/XuD7wvLdbVzz+eFuueH/9wWqyhNXenxXqzZ2VarO+u+09T4izLu1xcrPqV/zwt1n/9T/O207936WtpsdYsyrvfcvv8vP36W5fyrlG9bWneMfvyYN4Gdm1B3v6zaCQvl7g4mBaqWPZDW9NinbhzW1qsH/uDz6fFOv+en0mJM687L4f7wZcOp8V68wd+Oi3WigV5ufjQHx9Pi3XhA381LdbS3/snabFeX3pvWqy1i9JCVY6RowAAAAAAAAAAgEpSHAUAAAAAAAAAAFSS4igAAAAAAAAAAKCSFEcBAAAAAAAAAACVpDgKAAAAAAAAAACoJMVRAAAAAAAAAABAJSmOAgAAAAAAAAAAKklxFAAAAAAAAAAAUEmKowAAAAAAAAAAgEpSHAUAAAAAAAAAAFSS4igAAAAAAAAAAKCSFEcBAAAAAAAAAACVpDgKAAAAAAAAAACoJMVRAAAAAAAAAABAJSmOAgAAAAAAAAAAKklxFAAAAAAAAAAAUEmKowAAAAAAAAAAgEpSHAUAAAAAAAAAAFRSb7sXAOaaayMX02KduzovLdbV4a60WMMjebGGEpfr2nBePeiVobxYy4vbUuIsHVlYZOm/MpwWa2HvlbxYXXmHrWvDb6XFWtC9Mi3WLcXStFgvLXhbWqwlPXekxRpIbAe7uhakxfqh+R9Ni/U33vWttFiXh/La+q/0L06L9Z2R4ylxuou8z/fK1bx2cEGxJC3Wou5labHuKG5Pi5XX0hfFSDGUFutq10BaLKjXm5dWFs99Z0VarG8PXenIHPWOJdfSYv2HV/NypXetupAW66tnfiglTndiv7OLgz1psb721q1psZbmLVYxdPW7abFe734uLdb75m1Li/X8gqtpsVbN+76OzG8ud+Xluz3z16TF2rH29bRY87vz8pv/+NqqtFiLet/ecefE//TNvO1hXk/eMfbW7vvSYl3K2xyKM0VeO/j1q8+nxVq+IG99QaOhN76dFqv/x/9KWqxrA3lnxm+78+60WF/57/4/abFu338wLdbKI/8wLdbVDz2SEufaUN53OHQtr7Hf+dF702J1X7uUFmu4mJ8W683BvGt6qxflnVMlnvoXS+blLVfv+dfSYg0uz8kHw7f6885disTrvO++JS/WyNs/lhbrrq6cbeLq0EiR5cr9fyEtVpHYDmbuP4M/uiMt1sXLg2mxen7iP0+L1ZuYkzA6I0cBAAAAAAAAAACVpDgKAAAAAAAAAACoJMVRAAAAAAAAAABAJSmOAgAAAAAAAAAAKklxFAAAAAAAAAAAUEmKowAAAAAAAAAAgEpSHAUAAAAAAAAAAFSS4igAAAAAAAAAAKCSFEcBAAAAAAAAAACVpDgKAAAAAAAAAACoJMVRAAAAAAAAAABAJSmOAgAAAAAAAAAAKklxFAAAAAAAAAAAUEmKowAAAAAAAAAAgEpSHAUAAAAAAAAAAFSS4igAAAAAAAAAAKCSFEcBAAAAAAAAAACVpDgKAAAAAAAAAACopN52LwAwdV++ej4t1pJiSVqsW6/MT4vVf3VeWqwrw2mhitdHLqTFGi6GUuK83vWdIsvAxVvTYi3ozdse1i29lhbr+XMDabHOXvmjtFi3LL83LdbtxQ+nxeot8vbFbw+9khbrloX3p8X6ydsup8V66VJem/rlM0vTYr1cfDct1sXLf5oSZ97824ost/fmbfPXiisd186Hb458LS1Wb9fCtFhdRU9arDPFa2mxoN6rifnb/fMXpMV6bfB0WqxT59amxfrjc3k53IXENvXYlatpsYaKnNzyW8N5ueCnT9+RFusTa1anxfrw3W+mxTp8tist1sDll9JiXZ43mBZr6by70mKdG8r7jAMDfWmxentXpsW6szcvp784lJfTL+rJO2c8PvSNtFj3db03Jc4fDR4usizpzruGcPbq82mxBhfd3ZHnUpn79YYFH02L9bWR59JiQaOe+zamxVpx5H9Ni/XGA4+kxera/BfSYq3c+Mm0WFcHR9Jizf9Q3voaSVqsa0N5n++WJw+lxVozP2+5vv43H0qLtfJ/PZAWa1Fv3vgb37mYl4vfsjjvGtWFa3k3lVYsfltarMtX8q41Hnv1XFqsv/aOvPP1/3LlT6XF+h/OfSUt1vzP/2pKnJ6HPlVkGRjOa28uDeRt86sW5u2L8y73p8Va2LMiLdaSL+UdN4rN2/NiMSojRwEAAAAAAAAAAJWkOAoAAAAAAAAAAKgkxVEAAAAAAAAAAEAlKY4CAAAAAAAAAAAqSXEUAAAAAAAAAABQSYqjAAAAAAAAAACASlIcBQAAAAAAAAAAVJLiKAAAAAAAAAAAoJIURwEAAAAAAAAAAJWkOAoAAAAAAAAAAKgkxVEAAAAAAAAAAEAlKY4CAAAAAAAAAAAqSXEUAAAAAAAAAABQSYqjAAAAAAAAAACASlIcBQAAAAAAAAAAVJLiKAAAAAAAAAAAoJIURwEAAAAAAAAAAJWkOAoAAAAAAAAAAKik3nYvAMw13UVPWqxvDz6XFuve3h9Pi/W7l76bFmtdcVdarL7iUlqs7sTa0qxtYqB4q8jSPdKVF6sYSYu1dP5AWqxbeu5Li3WmK2+/7unKW18PLF+eFuvyYN5nvO3SB9Ni/citF9Ji3bnkalqsE28uS4v1+sUFabFuK/JiXVv8gZQ4F0feKLLcVtySFmtgZCgt1htdecfFS0OvpsXq7c7bTru75qXFujJyNi0W1LtW5LXzv3n2d9NivWfeT6XFevVC3r74jZG8c423deXlXb1F3mdcVqxJiXN2+HSRZWH3krRY37fyclqsuxblxepd+I60WCPDefv1xeJiWqxfuOPtabF+//V3p8X6nSv/R1qsne/Ia7tuW5R3nvcvXro1Ldbdy/OuISwrBtNivVK8khJn8FpejvrGwJtpsebNvy0t1ptDX0+Lde3Kt9Jidffm5eFvW5QWqjh/La+9gUbDi1akxRr88/9lWqxbu/OugRbHnk0LdeH7fjot1p1L8/LnTL09Oev+St4htujpytseTv8XfzEt1hf/9QtpsT46nHfteSAx1qWBvOtwy/7w82mx+n7wE2mxvvJGXm65btXCtFib7shrn1+Zn3cP4e9++mfTYl0dyttWFz70qZQ4fZfztvlX37qWFmvpgrzvsO9K3mecPy9vO028BVe89cdfTou16u53pcUqlv1IXqyKMXIUAAAAAAAAAABQSYqjAAAAAAAAAACASlIcBQAAAAAAAAAAVJLiKAAAAAAAAAAAoJIURwEAAAAAAAAAAJWkOAoAAAAAAAAAAKgkxVEAAAAAAAAAAEAlKY4CAAAAAAAAAAAqSXEUAAAAAAAAAABQSYqjAAAAAAAAAACASlIcBQAAAAAAAAAAVJLiKAAAAAAAAAAAoJIURwEAAAAAAAAAAJWkOAoAAAAAAAAAAKgkxVEAAAAAAAAAAEAlKY4CAAAAAAAAAAAqSXEUAAAAAAAAAABQSYqjAAAAAAAAAACASupt9wLAXLOq6460WBeGX0yL9crIN9JiXRs+lxbr9Z5labGuFJfSYg0V19JiLSqWp8RZUCwusizrmpcW643LPWmx1izKW+/v7rktLdbVrrxYFwfTQhUbbs/bF9+z/EJarNsXXEyLdXkob1s99FJe+3zm8vy0WAt7hvNiDebtj2eu/XFKnMGrrxZZ/nTJUFqspd1vS4u1vFidFuuu3q1psb5bnC060bnijXYvAhU1mJi/DQ30pcV6cd7X0mKdHLiSFuu93ZvTYr2auF+fHfl2WqyeIud4PTIyUGR5d2/eMePot0bSYt22+GparLXzPpAWa+nIwrRYRd7qKn545etpsf72ht9JizVvcd5lwOHBf50W62994efSYn3zYldarLtzTtVr7ulakxbr9y4dTYkzPJB3vnj7yo+kxVpWrOnIvPJdS34yLdYrxZm0WL9z9ctpsQaH866bQaOLC/NynJHEY3beVZKiGNn40bRY913Ia78Ge96eFuviQN41qsuDOV/k1aG8DeKO3stpsRb8L7+RFuuv/i9poYo3LuVdfB4azlv3axLz1O8c/d20WH9v298tqu7R7+Zc4w0DidvEgpVL02ItWdDTcdv9yoV5y/S2Iu9a0EhP3v2WMyOL0mIt6u3uyLbr/F/JayNGevPOZW9Ni1Q9Ro4CAAAAAAAAAAAqSXEUAAAAAAAAAABQSYqjAAAAAAAAAACASlIcBQAAAAAAAAAAVJLiKAAAAAAAAAAAoJIURwEAAAAAAAAAAJWkOAoAAAAAAAAAAKgkxVEAAAAAAAAAAEAlKY4CAAAAAAAAAAAqSXEUAAAAAAAAAABQSYqjAAAAAAAAAACASlIcBQAAAAAAAAAAVJLiKAAAAAAAAAAAoJIURwEAAAAAAAAAAJWkOAoAAAAAAAAAAKgkxVEAAAAAAAAAAEAlKY4CAAAAAAAAAAAqqbfdCwBzzf0Ll6fFOv3Wq2mxfnjBR9Ji/furv5kW61rPlbRYZ4deTIs1r3tZWqxlXWtS4ryrJydO6O0aSYt1ZSivDvf81Xlpse5deSEt1qlzS9JiDQx3pcUaTIy1ovdqWqxbFp5Li/Uf3rw7LdZrFxemxTo/kLfd37ZwMC3WK8WZtFib5+ccN+YvKNJcGhlOi9Wb2IfgWpG3XNdGhtJiLSuWpsVa0NWTFutKcSktFtT7iSV5udJvXMzbr396ybvTYj39xj9Ni/X1xXn5zfkrX0mL1dWdd7ye17sqJc4v3fWjRZbT5/KO+9+8mJcL/sm1vPOyD67I+w4vDOSdt3z50kBarK+ez9t/PrL8YlqsoSt551O/+833p8V69sIbabGGu/JypTOXb02L9crI+bRYdy/alhLnjkU5bWD2ecbqxBz1UvFWWqznhn8/LdaC7hVpsX5i/g+nxXpzIO+4AY0W9uRtX13DeflS7+ljabEu3v0jabGuLbo9LdbQ1bxzl+GRvNzr6lBOrK4n/laRZu+n00Kdu5qYk1zK2+ZXL8q7LXzLwJtpsb7dnXe+Pm/3P0iLVTz+3rRQf23LPWmxNj/1mbRYz1/J276Wzs+7Prj4Z3amxco704t9O6dNXTo/79rzG915950X9eQt1+C1vOPPt87nfYuL5uXlJO+49HJarK7BvOsuxfKNebEqxshRAAAAAAAAAABAJSmOAgAAAAAAAAAAKklxFAAAAAAAAAAAUEmKowAAAAAAAAAAgEpSHAUAAAAAAAAAAFSS4igAAAAAAAAAAKCSFEcBAAAAAAAAAACVpDgKAAAAAAAAAACoJMVRAAAAAAAAAABAJSmOAgAAAAAAAAAAKklxFAAAAAAAAAAAUEmKowAAAAAAAAAAgEpSHAUAAAAAAAAAAFSS4igAAAAAAAAAAKCSFEcBAAAAAAAAAACVpDgKAAAAAAAAAACoJMVRAAAAAAAAAABAJSmOAgAAAAAAAAAAKqm33QsAc83pyyNpsbp7V6TFennkTFqskZGrRSea170sLdatXfekxXrP/KUpcd657EKR5eJA3uHhjUsL0mKtX5n3GX9w1cWOXF8Le4fSYi2flxfr9atL0mK9fDlnmw9vXJ2fFuvsQHdHVp//m0tfTov1470b02INJB3OXhj+bt53OPLttFjv7bo/LdY7F+Qd+y8N5rU3/UPDabHOF1fSYp0dejEtFtQ7cyXvmNHduyot1pcuXU6LlXkEWtK1Oi3Whd68PPzOee9Pi3VHsSYlzpJ5fUWW2xbnnUs9e+k7abH+2/XL02J98NavpsX6f514X1qsH1qU10bctjDvvOWLf/Ln0mLdufBsWqyBkbz2ZiAxj1hV3J4W6x+98v9Ni/XJ2/9aWqzfuviNlDgvX/vdIsvI8LW0WG8tytuv//Ktb0+L9Y3+H0mL9fJgXlv/3YG0UMVz1/51XrDiryfGogrmnck7zxta8ba0WFfX/mharJ60SEWxqLsrLdaFa3nn/kvm5R3/rw7lXLd8+0f/fEqc0DWQd252JvGa5btP/JO0WH/wd/5pWqxrv3U4LdbAQN52uiYxr/+fzx5Pi/X72z6aFuv1f7I/Ldbih38tLdb8nry269tJ5+vhHf0vpcU615WTX15LvC67oDevbX7z8mBarLueP5AW69qf+0tpsa4mrvuh5Xk5yVtdC9Ni3ZIWqXqMHAUAAAAAAAAAAFSS4igAAAAAAAAAAKCSFEcBAAAAAAAAAACVpDgKAAAAAAAAAACoJMVRAAAAAAAAAABAJSmOAgAAAAAAAAAAKklxFAAAAAAAAAAAUEmKowAAAAAAAAAAgEpSHAUAAAAAAAAAAFSS4igAAAAAAAAAAKCSFEcBAAAAAAAAAACVpDgKAAAAAAAAAACoJMVRAAAAAAAAAABAJSmOAgAAAAAAAAAAKklxFAAAAAAAAAAAUEmKowAAAAAAAAAAgEpSHAUAAAAAAAAAAFSS4igAAAAAAAAAAKCSetu9ADDXvNnVlxarq3t+WqzB4lparO7uRWmxzo28mhZrVdc702K9rVieFuvWRZdT4gyPdBVZertH0mLdsTTn84X3rb6QFuvuRefSYvW+YzgtVk9X3rr/6vmlabFefCNvm1/Qk7e+rgzl1Xkv781brpcGBtNivavr/rRYK+bnLdfG23P2oXe/tbjI8k/fzDsunixOp8VaPXx3WqzbFl1NizVyeUFarFeH8trUweG8th7q/f7gH6XF6uqelxarr/h2WqyiO+8Uv2/oVFqsBT1r0mLdUqxKi7Xhls5rb64l5jYPLL4rLdZf++Fn0mLNv/ViWqydl1YXnej33shbrtNvLUyL9Y4lS9JiXR3O21YHR15Pi3Wu6420WEuXbkiL1ZN4jv1Xb8vZt89cvq/I8v9785+nxZpX5G3zPXmXSYqP3JO3bf2L07elxXpp6FJarOGhvPYZGr25NC8vWdmVd23j0mDetaAFPZ05FsHQSN4x6Fre6iruWJD0PQ4O5MQpiuLi4rz2eelI3nb6Sz/394pO9D8tzzsvvjCQt3F9+628beKdy/OuW77/V/5SWqyRxO3+W1fyttWly/OuzV5K3Caursq7Nvutl8+nxLlnZV7OOz+vmS/uXJq3Xw+89q20WF/56IfTYr3nX/ybtFjFUF6o7q7EkxdG1ZnZGgAAAAAAAAAAwDQpjgIAAAAAAAAAACpJcRQAAAAAAAAAAFBJiqMAAAAAAAAAAIBKUhwFAAAAAAAAAABUkuIoAAAAAAAAAACgkhRHAQAAAAAAAAAAlaQ4CgAAAAAAAAAAqCTFUQAAAAAAAAAAQCUpjgIAAAAAAAAAACpJcRQAAAAAAAAAAFBJiqMAAAAAAAAAAIBKUhwFAAAAAAAAAABUkuIoAAAAAAAAAACgkhRHAQAAAAAAAAAAlaQ4CgAAAAAAAAAAqCTFUQAAAAAAAAAAQCUpjgIAAAAAAAAAACqpt90LAHPNwmJxWqxF89+ZFuuO4va0WJcXvCct1vDIQEeu++G0SEWxcmHOZ7xwLa9JvzLYkxZrXk/e2jr87TVpsV6/eEdarFUL8rbTdyy7nBbr4kDe9/jlM0vTYi1MLM1evWAwLdalobwFu6Nnflqs7q6RtFjfv/qtotPctyJvm//w5e9Li3UxsR28NJi3bV0bzot1aSgtVHFxpC8vGLRIb9fCtFjL5t2TFuuekfvSYn130cq0WJeLtzoyp79cXEuLtXReTkP4e99eXXSire88kxbrV//jh9Ji/e+vnUuL9Z7uu9Jibb49b7lePJd37pnp331nWVqsdyzMSyTWFivSYp0vLqXFemfX3Wmxvm9V3vb1vpU5sS4P5V1DuDz4sbRYX7lyNS3WH343b19cOi/v3PONwbxYLw8/lxZreLDzzhepjuGRvGsbmXq6utJizR/Jy1NHEq8rDSeu+oGhvGBX5i1IifMnaz9SZFl9Ia99XvIP/uu0WP/g+SfTYn311h9Ji3XqXN42v2ZRXl4ykLjRLzz9+2mx3vzAX0+L1Zt4ff2uxP36wkDevaAFvXnt8+XBvOW693/+Wylx7n7o54os/e/Ly8VPJ+7Xt39sd1qs+85eSIt1LbGNGOpelBbrWuK+yOiMHAUAAAAAAAAAAFSS4igAAAAAAAAAAKCSFEcBAAAAAAAAAACVpDgKAAAAAAAAAACoJMVRTfz6r/968cUvfrHdiwEAAAAAAAAAAEyD4qgmHn/88WLLli1FT09P8clPfrL48pe/3O5FAgAAAAAAAAAAJklxVBMvvPBCcezYseLnf/7niy984QvFhg0bive///2KpAAAAAAAAAAAYBZRHDWKKIjav39/0dfXV/z2b/92MTQ0VPvbI4880u5FAwAAAAAAAAAAJkBx1ARs3bq1OH78ePH0008Xv/Ebv1EbRQoAAAAAAAAAAOhsvUUFPfvss8WJEyeKkydPFqdOnSpWrlxZbN68uTby06ZNm4rly5dPKe727dtrhVIbN24sPvzhDxe/9Vu/lb7sAAAAAAAAAABAjkoVRz3//PPFzp07a4VRjQ4dOnT931EkFUVO27ZtKx544IFJvUcUWh0+fLi49957i2eeeab42Mc+lrLsAAAAAAAAAABArspMq/fcc8/VRnSKwqiRkZGb/n/8rXzEFHlPPPFErTiqp6eneOihh4rf/M3fnPB7rVu3rlaE9dnPfjb5UwAAAAAAAAAAAFkqUxy1Y8eO68VPjcVQ5d+6urquP+r/X4wqFa+fTKHUT/3UTxXHjh1r+ecCAAAAAAAAAADm8LR6n/70p4tTp07V/h3T5UWh0+rVq2tT4J09e7b2/770pS8VR44cqf1eiiKpUllAFYVS5RR8Dz/8cLF9+/amU++V7wcAAAAAAAAAAHSmShRHPf3007VCp8OHDzctZKp3+vTpWpFUPLe+WKpZodT+/ftrj7Bhw4badHrxiMKoKKCKQiwAAAAAAAAAAKAzVaI4KoqVRhvhqdHatWuLnTt31h7hueeeqxVXRbFTORpUWShVFkmF48ePFydOnLghVowsBQAAAAAAAAAAdKbuogJi9Kdt27ZN6bX3339/8fjjjxcvvPBCrQDq0UcfLVasWHG9MCoKpcpHiL/HY9euXcXHP/7x1M8BAAAAAAAAAADkqURx1MqVK1PiRKHUvn37ir6+vlqhVIwuVRZKlY+YVu/gwYPFP/yH/zDlPQEAAAAAAAAAgNaoxLR6UbB08uTJ1JhRKLV///7a49y5c7WCqZiSD6Zr6cjCtFjv6ro/LdbgyHBarBVdt6bFen34q2mxzvTMS4v1/qX3pMVaNn8oJc7FgZ6UONmxvnUh71BztRhMi/XKSN62NTRwLS3WHRfflRZraZHX3uRFKoq+obzvsfta3va1vDdnXwxvXsvbh+5aMpAW6/8eCDPFC2cXpcR549KCIss7ll9Oi/X27u9Nr9xJbeqL5xenxco78hfF/K685Vow791psaDe24q70mJ9YHXeMePVC3l9ll69lnfMOHvlj9JidfcsSYtVzFufFupn73wlJc5bicf9F84uTYv1D17M207nF3nnUueHvpUW64XELPUbr+Wtr/f0rEiL9fLQpbRY54vvpsW6u/u2tFjzu/Jy+leGTqTFuqP3J9NivWPxlbRYf3RueUqcY6/nbafvvfWttFi3Xc5rb755Ni1U8e9eW5UWa6Ar7xrC23rekxZrcNl9abGg0cLevJz3rad+JS3W6p/5ZFqs/lvfmxZraCjzjD3Pyf6849m/eNf7U+L8ct+fFFkuD+at9+Ff+vtpsc7Py9t/3pEWqSiWXXo9LVZfcXtarHf3nEmL9drbN6fFKobzrjWuufRqWqyXet+WFuutq3nnVAsSjxtr/uWvpcW68yfelxLn0qa82aluOfPNtFgXFuXVQvzpm3nX6r//r//3abEyD7HLu/I+4+IFedfXqfjIUZs2bSqOHDnSsvgxepTCKAAAAAAAAAAAmF0qURy1a9eu4sSJE8VLL73U7kUBAAAAAAAAAAA6REcUR33oQx8qHnrooeLXfu3XihdffHHSr9+wYUNxzz33FDt27GjJ8gEAAAAAAAAAALNPRxRHHT58uDh06FCxZ8+eYv369cWaNWtqxVK//uu/PuFiqf379xfHjh0rnnnmmZYvLwAAAAAAAAAA0Pk6ojhq3bp1xcjIyPVHf39/rVjq4YcfvqFY6jd/8zeL8+fPN42xdevW4tFHHy22b99efPGLX5zxzwAAAAAAAAAAAHSWjiiOWrlyZe1nV1fX9UdoLJaKafNWrVpV3HfffcUv/uIv3lQstW/fvuKBBx6oFUopkAIAAAAAAAAAgLmtY0aOKtWPIDVasdTJkyeLJ5988oZiqb1799YKoj7/+c8XO3furBVIfeYzn2njpwIAAAAAAAAAAIq5Xhy1evXq6//ev39/7bFr165i7dq1oxZL1f89iqWeeOKJWkFUFEsdP3689vfdu3cX73//+4svf/nLbf18AAAAAAAAAADAzOstOmhavRhBKkZ9CuXPc+fOFUeOHCkOHz5c+3nq1KnrrytHlApRDFU6ceLE9QKqY8eOFRs2bKiNMvXggw/WCqiWL18+g58OAAAAAAAAAACYs8VR69evv2l6vdKKFSuKT3ziE7XHZIqlyt/L0aUOHjxYe4Qolooiqc2bNyuWAgAAAAAAAACAiurtpGn1yhGkxjLZYqlmo0vFtHsxulQpirKiSGrbtm21wql77rkn9fMBAAAAAAAAAABztDgqCpNGGzlqPFMdWap+Gr6TJ0/Wnvfkk09eL9Iqi6Xip2IpAAAAAAAAAACYfTqiOCoKnIaHh9NiTbdYqr+/vzh06FDtURZLbdq06Xqx1Pve976UZQUAAAAAAAAAACpeHNVKUy2Wqi+YimKpeG48Sjt27Ch+4zd+Y8Y+BwAAAAAAAAAAMDmVL46aTLHUsWPHihMnTtzw/NFGlzp48GBx9uzZ4rd+67dmcOkBAAAAAAAAAICJmnPFURMplooiqXJkqdGKpaJQKp4DAAAAAAAAAAB0pjlfHNWsWGrLli21x3jFUuVzAAAAAAAAAACAzqM4apLFUuHo0aO1n4qjAAAAAAAAAACgcymOmgJFUUzH/K6etFjXRobSYp3vupQWa7AYSIt1S899abFWjaxKizWvJ2/dXxnsTomzsHe4yPLG1bztdPGfzUaa4s2Rt9JiXRx8JS1WV1fOdxjO9q5Ji7WyeGdarEsjg2mxlnbnpR/zu/O2++Eib2N95+K8dnDZ/Lx1f+rs4rRYhy98JyXOD/XcVWQ5d2VeWqx3r7mYFmvTLefTYr381qK0WKvnjaTF+uZA3r64qrg1LRbUu29+XhvxwtmFabFeGc7Lwy+OvJEWq6trflqsRb1vS4v1iTsvp8Xq7crJ6VctzDtWD+Q1zcW93belxfrS0PG0WJcv/WlarFd6X06L1dO7Mi3W24rb02JdK66mxXpP951psS4P5h371y3Jy53fPviBtFjvWXM2LdaX+5amxfo/3sg5l12deFn4losL0mLdszyvnb9zad7+809ezjsuru9dkhbr9GDeur9/4fK0WNBoed8302IN/6X/Ki3WlaWJx+yredeLLySeY+ddtSyKjX/8f6bF+j+Tcomll79bZFmQuD0kpvVF/5W8bWt+T971z3OL8tbX5cRt/q3Feeef84fzvsnl8/P2xkvz35EW650DefdcFs3Ly3Fuf/VLabG6fuJn0mKdv/XdKXHeuJR3HWHRrfemxeq9nLcvfvWNC2mxblmcl4vfujjv/mfXlbz9Z+QPnkmLVfzUz+fFqpjMvAgAAAAAAAAAAKBjKI4CAAAAAAAAAAAqSXEUAAAAAAAAAABQSYqjAAAAAAAAAACASlIcBQAAAAAAAAAAVJLiKAAAAAAAAAAAoJLaUhz1a7/2a8XmzZuLT33qU8WLL77YjkUAAAAAAAAAAAAqri3FUZ/97GeL48ePF/v27SvWr19fK5T6zGc+U5w/f74diwMAAAAAAAAAAFRQW4qjDhw4UGzZsqUYGRmpPaJQavfu3cWqVauKD3/4w8UzzzzTjsUCAAAAAAAAAAAqpC3FURs2bCgOHz5c9Pf310aRit/LQqn4+/bt24uenp7ik5/8ZPHss8+2YxEBAAAAAAAAAIBZri3FUaUVK1YUu3btKo4dO1acPHmyePTRR4u1a9deL5Q6ePBgsW3btmLNmjXFI488Ujz//PPtXFwAAAAAAAAAAGAWaWtxVL0oitq3b1/xwgsv1KbZ27lzZ614KoqkYoSp/fv3Fxs3bizuu+++4lOf+lTx4osvtnuRAQAAAAAAAACADtYxxVH17r///loxVF9fX22avU984hPXR5OKEaaiiGr9+vXF5s2bi8997nPF+fPn273IAAAAAAAAAABAh+nI4qh6W7ZsqU2vNzw8XBw4cKDYunXr9UKpGGEqpuVbtWpV8eEPf7h45pln2r24AAAAAAAAAABAh+j44qh627dvL77whS/Uptl7/PHHiw0bNlwvlIoRpuL/9/T0FJ/85CeLZ599tt2LCwAAAAAAAAAAtNGsKo4qrVixoti9e3dx7Nix2jR7jz76aLF27drrhVIx0tS2bduKNWvWFI888kjx/PPPt3uRAQAAAAAAAACAGTYri6PqRVHUvn37ihdeeKE2zd7OnTtrxVNRJBUjTO3fv7/YuHFjcd999xWf+tSnihdffLHdiwwAAAAAAAAAAMyAWV8cVe/++++vFUP19fXVptn7xCc+cX00qRhhKoqo1q9fX2zevLn43Oc+V5w/f77diwwAAAAAAAAAALRIb1FRW7ZsqT3Ck08+WRw6dKg4cuRI7fcYYWrXrl21R0y/9/DDDxcf+9jH2rzEzBXzu7rSYp0trqXFuq1Ynhbr1WIgLda93WvSYi3oHkmLNTg0nBbr3NWcpvjiQF6T3l9cSYv18vBX0mJ1Jdb0jhR532FXMS8t1lDi/vON4k/TYv1Q97vTYt2xOK/tWjJvMC1Wd17zXNyyKO8z/vvXVqbFOjOSt1xvXP79lDinFuV9vsXXlqTFeu/yvCL6e5d9Jy3WG3fPT4v16qW8WK+/tjYt1vBIXvsM9V6/lpdHfHno99Ji3d2zsehEH132kbRYr1zLO8h2d59Li/X8udtS4rx5OS8XPDV8Ji3Wa4NfTos1NJR3XOyetyItVm9vXqzhkby88mvDf5gWa9vCzWmxFvTmnWssTczDF/YOpcUaurwgLdavv9qfFqtvIO/cbODiyZQ4by3Oy9++feGn02I9+gPPp8W6867TabFWzt+aFuvi4NW0WPNeXZUW6ytX8q4FQaP+VfemxTp3Je+4sfhqXqy8K89FcU/vpbRY3x7Ou1Zy7Y3vpsXa9bPflxJnZMGyIsulwbzrET2J94F6Eq9ZLkwM1pN4MfXyYN4eNDySF2vVtbzzs/4i715X4kcsinl5+9BzL+edN65fk3etZChxhb1teKTjvsOzeZf8i3O/sCMtVteRvNm8lp86lhZr1Rt/khar6Mq71njhx/5iWqyFaZGqp1IjR40miqC+8IUv1KbZe/zxx4sNGzZcH1EqRpjavn170dPTU3zyk58snn322XYvLgAAAAAAAAAAkGBOFEeVVqxYUezevbs4duxYbZq9Rx99tPa3slDq4MGDtZGk1qxZUzzyyCPF88/n9VQCAAAAAAAAAABm1pwqjqq3du3aYt++fUVfX19tmr2dO3deL5SKEab2799fbNy4sbjvvvuKz3zmM8WLL+YN/QYAAAAAAAAAALTenC2Oqnf//ffXiqGiUCpGj4pp9srRpGKEqRhtav369cXmzZuLz33uc8X583lzpgIAAAAAAAAAAK2hOKrBJz7xieLAgQO10aM++9nPFhs2bLheKHXixIli165dxapVq4oPf/jDxTPPPNPuxQUAAAAAAAAAAEahOGoUMcVeFEIdO3asVij1+OOP16biKwulDh8+XBthqqenp/jkJz9ZPPvss+1eZAAAAAAAAAAAoI7iqAkWSsXUei+88EJtmr1HH3209reyUCqm4tu2bVuxZs2a4pFHHimef/75di8yAAAAAAAAAADMeYqjJilGj9q3b1/R19dXGz1q586d14ukYoSp/fv3Fxs3bizuu+++4jOf+Uzx4osvtnuRAQAAAAAAAABgTlIcNQ1btmypFUMNDw8XBw4cKLZu3Xq9UCpGmIrRptavX19s3ry5+NznPlecP3++3YsMAAAAAAAAAABzhuKoJNu3by++8IUv1EaP+uxnP1ts2LDheqHUiRMnil27dhWrVq0qPvzhDxfPPPNMuxcXAAAAAAAAAAAqT3FUshUrVtQKoY4dO1YbPerxxx+vTcVXFkrFVHxRSHXLLbcYSQoAAAAAAAAAAFpIcVQLRVFUTK33wgsvFMePHy8effTRWvFUFEn19fXVCqgAAAAAAAAAAIDW6G1RXBrcf//9tce+ffuKo0eP1v72wAMPtHuxAAAAAAAAAACgshRHtcGWLVvavQgAAAAAAAAAAFB5ptUDAAAAAAAAAAAqSXEUAAAAAAAAAABQSYqjAAAAAAAAAACASlIcBQAAAAAAAAAAVFJvUWEvvvhicerUqWLdunXFPffcM6nXfv7zny9++Zd/udi2bVuxZ8+e4u67727ZcjK3rF9+JS/Y+cVpoe5cNJAW65VLQ2mxvjN8LS3WexZ2pcW6OtSTFmtNb85nvDY0XGRZVCxIizWvK287vTb8Vlqs4aGLabFGuq525JF5XrEwLVbe1lUUy+YPpsW6O7FNvTCQVzPeldfcFC+MvJYWa7DIa+tHhi+nxOkvXi+yDBf3psVaPT/n84ULA3nt4Lcu5LXP567mNTg/uCLveN3TNZIWC+r98Kq8/fqt/s1psd4s8tr5u7p+IC3WpcR899bevP16WW/eucYffHdFSpzB4bwDf28xLy3Wgp5VabEuj+TluyODeceM4ZG8vHLZvMldNxpLV5G3/wwXedvXD9+adz61sCfvDOFLr+fsi+GWRXnbat/Zr6bFGho6X3SazHPigcR28M67T6XFev7rG9Ji/UHidnrnsrzz2LcvyYv17jV554vQaEFP3jWXBYm55VfeuJQW6yduy2sLuy+cSYvVtXhJWqxv/ubvp8Va/o+fSYnTP5KXdxWJlyPmJ17jnd+TeL7RnRerJ/HezYoF84uONJKX8y79rb+fFmvoo/91Wqx/9628PPXtyxZ05HY/lLhv9yTtQ7mfL+8D/sNDf5oW66NfyTtmfOtcXnvztrRIRXH5be9Ni7XiWyfSYhXv+nN5sSqmkiNH/fqv/3px3333FevXr68VN8XPRx55ZFIxtm7dWnz84x8vfuM3fqNWXPXJT36yeOutvItIAAAAAAAAAABAa1WuOOpDH/pQsWvXruLkyZPFyMjI9cf+/fuLZ599dsJxVqxYUezbt6/o6+srnn766eILX/hCsXLlyuKLX/xiS5cfAAAAAAAAAADIUaniqAcffLA4cuRIrRAqdHV11R6lmGJvKrZv314rknrggQdqI0opkAIAAAAAAAAAgM5XmeKo5557rjh06FCtMGrnzp3F/ffff9NzNm3aNK33OHz4cK1AKoqlTLEHAAAAAAAAAACdrTLFUXv27Ck2btxY/PzP/3zt94MHDxbLly+vTakXdu/eXbzvfe+b9vtEgdSqVauKHTt2TDsWAAAAAAAAAADQOr1FRUaNOnr0aK1wqbRu3bqiv7+/OH36dLF69epixYoVae8XhVa/+Iu/WLz44ovFPffckxYXAAAAAAAAAADIU4mRo2IqvRBT3jVau3ZtamFU2LVrVy3mk08+mRqXqTly5EhtJK8YOSxG9erq6irWr19fbNu2rXjiiSeKs2fPtnsRAQAAAAAAAABog0oURx07dqzYunXrjL7npk2biuPHj8/oe3KjKHwqi6CiQCpGC9u7d2+tWG779u1FX19fbbrFKJiK55w6dardiwwAAAAAAAAAwAyqxLR6UfSyefPmGX3PDRs2FJ///Odn9D353vddX+wU0xxGUdTKlStvem4UTT388MO1n1FItW/fvtrzAQAAAAAAAACovkqMHBXTpkXhy0xas2aNkYja4MSJE7Xp88p1f/DgwVrBU7PCqBAjip08efL6yGIxklQUSwEAAAAAAAAAUH2VKI6KwpgzZ87M6HtGwc1oBTm0rghuy5YttZ+hnD5vIg4fPlybdi88+eSTtSn5AAAAAAAAAACotkoUR0XRS0ybNpMOHDhwvdiGmbFjx47rhVExreGuXbsm9foopirFCFJG/gIAAAAAAAAAqLZKFEetXbu2Nt3aW2+9NSPvd/To0VqRjuKomRPFb/UFcHv37p10jJhaL4qq6outAAAAAAAAAACorkoURz300EPFyMhIsXPnzhl5v4cffrjo6uqqvS8zI0Z6KsV0hhOdTq9R/XcWBXXxAAAAAAAAAACgmipRHFUWyhw8eLD43Oc+19L3iuKacjq2j3/84y19L5oXMcUIUFPVWFRVP9UeAAAAAAAAAADVUoniqBCjRsXoUbt27WpJgdT58+drhVFRgBWjRsX7MDMaC5g2b9485ViNUyE++eSTU44FAAAAAAAAAEBnq0xx1BNPPFGbbi1E4dKHP/zh4qWXXkqJ/Zu/+ZvF2rVri0OHDtV+j/fZt29fSmzGd+DAgRt+37Bhw7TiNRZIld8rAAAAAAAAAADVUpniqBUrVhSPP/54bfSocPjw4VoRTBRJPfvss7WRnybjxRdfLH7t136tuO+++4odO3YU/f39tdgxatRTTz1VLF++vEWfhHoxheHZs2fHLG6arMbiqthWAAAAAAAAAACont6iQmLEqJMnTxaf/vSna0VMUcwUhS9l8UsU1URhTPxcs2bN9ZGmQhTgxGujGOfYsWPXC3LKYqsy3u7du4uPf/zjbfqEc8+RI0du+tt0i6NWr1497nu00v+9SXVcdeO14bxobwx9PS3Wqu4fTYt14Vpek9fVlfdFvnZhYUqcy4M9RZaFiVvXLcU702INdg+kxXpzwby0WFeH+tNiDY5cSYvV1ZX3PT4//FxarFf716fF2nh1WVqse1deTIs1vzuvjXhbcXtarKvFYFqsN3tXpcTZsmh6x/V6P/K2vrRYCxLbm6++dUtarDcvz0+Lde5qXjt4bSivvVm98FpaLKj3zXOL02J98JYLabG+2rc2LdYXz+ZNG/7Ksrw8/D+Z94NpsZ57o/M6Kn3jQt55xrVich27xtJT5B0zeruXpsUa6s07ZoyM5OU2QyN5x/6rw99Ji/Wv3/pqWqzfvrQkLdaPzduWFmtJT17uvPlt59JiLXzzbWmxbp//gbRYL1z9Jylx1i/66SLLT9yZd0780un70mI9+9287/DNK4l5+LW8PHxR71BarLOJ5wfQ6GT/1bRYd/+Lx9Jirdv+36bF+s5QV1qsgYV3pcVaNT/vmvGd//iptFjXluW0Oa9dyMvheroTv8PhvFiDw3m5UuLtqWJ+d95xI29txX2S4bRYF+blXdO78MG/lRZrJHG7P3Mp7zrc1lvyluv0UN65/5pFee3g1cGcveiNS3nral533jn2p978k7RYz57Ou1Z/z6pFabH6lrw3LdaKy3nnQa/f9sNpse5Mi1Q9lSqOCjHdXRQ2xehOUdBUX+BUFj+Np3x+qI+xZ8+e4rHH8hJvxteKUZ3qi+LCRLYJAAAAAAAAAABmn8pMq1dv//79xYEDB2oFTeVUeOWj/NtYj2bPP3jwoMKoNmgsXGosbJqKGDWs0YkTJ6YdFwAAAAAAAACAzlLJ4qiwffv24oUXXig+8YlPXC9wCvWFT6M9QvmaiBMjTkUc2l8c1Tgl3lQ0K7AyehQAAAAAAAAAQPVUtjgqrFu3rjbiUxQ37dy5s1ixYsWERo6K5+3atav2uhiBau3ate3+KHNWTJE4ExRHAQAAAAAAAABUT28xB0RxU0y1F4/Tp08XR44cqRU+ReFNX19fbTSiGE1o/fr1xdatWxVDdXBhVMa0es1Gnzpz5sy04wIAAAAAAAAA0FnmRHFUvSh8ilGk6HxRuDZTjBwFAAAAAAAAAFA9c644itljpqbUm2knTv/L4rkX/9WUXnv/PR8pNqz9aPoyAQBA1Z389j8rTr36f03ptevu+Nli/Z0/l75MAAAwF3z2f3y8ePLv7ZvSa3f9P/cUv/BLv5y+TAAAzC3d7V4A6ISRo6paiAUAAAAAAAAAMJcpjmLOWblyZbsXAQAAAAAAAACAGaA4CgAAAAAAAAAAqCTFUcw5ptADAAAAAAAAAJgbeos55vnnny+OHDlSnDlzpjh16lStUCamWVu3bl2xZs2aYuvWrcX73ve+di8mRVGsXr26qKINaz9aewAAADNn/Z0/V3sAAAAz6xd+6ZdrDwAAaJfeuVIQ9dhjjxWHDh2a0POjWOqhhx4qdu/eXdxzzz0tXz4AAAAAAAAAACBfd9WLoj70oQ8VGzdurBVGjYyMTOjR399f7N+/v1i/fn3xyCOPFOfPn2/3R6HFU+JFQRwAAAAAAAAAANVS2eKoT3/607WiqJhCryx66urqmvCjfE0UScWUe1/84hfb/ZHmnFYVLPX19d30t/iOAQAAAAAAAAColkoWR8VoUb/8y798U1FUmMjIUaG+SCqKabZu3Vp85jOfafMnm1tmsmBpzZo1M/ZeAAAAAAAAAADMjN6iYh566KHi8OHDtX/XF0SVIxFt2rSp2LBhQ60YJn5fvXp1rfgppms7c+ZMceLEidpoU6X6GLt376695m/+zb/Zls82F8X6rp9Kr9moTxlT85lWDwAAAAAAAACgeipVHLV3797i4MGDNxQ0RdHLrl27akVT999//4RjPffcc8VnP/vZ4qmnnqr9Xo4iFbFiRKMPfvCDLfscfE8Ur9UXMzUrbJqsKIJrFEVzAAAAAAAAAABUS2WKo06fPl3s27fvehFTFEVFsdSjjz46pXhRSLV///7aY8+ePcWnP/3p67Effvjh4hvf+Eb6Z+BmMcrXqVOnUmM2K7CaySn8/sX5l9NibVmUt9yL5w2mxbr7ysa0WLd2z0uLNa97KC3WmkXX0mJtuPWtlDjnB3qKLK9eXJAW62t9S9NiPTec1/b2FPPTYg0OTr9ws3S5K2/G2+Hhq2mxhgbPpcU6NfwnabH6ix9Ji/XGle9Li3X7woG0WHcv/LMRMDNcGsxrU1cUP5MS575VefvPplU3F0BP1dBI3r74h28sT4v12sWFabEW9eQdF78zmLedDl7OOwZBvd+9eCAt1i0LPp4Wa+2yy2mxLgz/fFqs71+Wdyzru5LXRszrGU6L9d9v+PcpcY6+9p4iy7E3l6XFOvjm4rRYF4bzzmOHh/K2+WIk7zz24kjetYfhoYtpsUaGLqXFGhx6JS3W7y/Lyyt/tPjJtFj//PQtabGWdOWt+ytF3jaxaNkPp8R5ZF3evvjXfuh302ItfMf5tFjf+UZe+zww/GedcTO8PJh3rt5/Le8caLjIOz+ARisX5l23LP7yf5cWanXerl0sHsxr63teeS4t1tm1fy4v1qLb02L9ypJ3p8T5+//+14osfe/582mx3rycl6euStx/Lg/knZstWpR37ezaUN5y9STu1/Pn5X3Ghb2dub4++n1r0mK9cCHvOkL/5YGOXF+Dwzmx7n/jPxZZ/stNf6voRH/37Fc6cr9+/WJe+3x5ft51/3OX83LxO1elhaqcvJa4zaJgKUTxUhTURLHUVAujGkXR1QsvvFDcc889td9PnjxZfOYzn0mJzdg2b95809+mO3pU49R8URhlWj0AAAAAAAAAgOqpRHFUFEIdOXKkNrLTjh07imPHjhUrVqxIfY8ooDl+/HhtRKkowPrVX/3V1Pg0t3Xr1pv+Nt2RpBpfP5OjRgEAAAAAAAAAMHMqURx16NCh2s8YMerpp59u2fvE6EJHjx6tFV7F6EXPPvtsy96L4vp32iiK3zKLo6KgDgAAAAAAAACA6qlEcdThw4dro0Y99dRTLX+vKJA6ePBgbfSo+Enrbd++/YbfY1rDqYqitsZp+R588MEpxwMAAAAAAAAAoHNVojgqRgKKEYbe9773zdhUbzEV23RHMGJi9u7de8PvMYXiVDW+NgqvouANAAAAAAAAAIDqqUxx1KZNm2b0PT/xiU/cND0brRGFb/XT6504cWJao4zVe/jhh6e1bAAAAAAAAAAAdK5KFEfFyD8zPfrPvffee9P0bMzc6FFPPvnklOLUvy4KrmIUMAAAAAAAAAAAqqkSxVGrV69uS6FSTK3HzIjp7+pHj9q3b9+kYzzxxBM3/H7w4MGUZQMAAAAAAAAAoDNVojgqimaOHDkyo+958uRJxVEzLIqZyhHCYkrDxmKnsUTx3J49e24orvL9AQAAAAAAAABUWyWKox588MFascxLL700Y+956NChG0YyGs/zzz9fPPvssy1dpqqLYqajR49e/z2KneJ7mEhh1JYtW24ojNq9e3fLlhMAAAAAAAAAgM7QXZUp11asWHHDyECt9PnPf744ffp0sXfv3gm/5oEHHih+6qd+qqXLNRdEQdrx48evj/q0Y8eOMUeQOnHiRLFx48baz6AwCgAAAAAAAABg7qhEcVR4/PHHa9OuffGLX2zp+5w7d67YuXNnrSBr+fLlk3ptFHCRUyAV0xpGkVNMsxdFcatWrSoefvjh4sknn6w94m9RFBWPGFUsvq/yNQAAAAAAAAAAzA2VKY7atWtX8b73va9WBNPK6fVierbVq1cXTz311KReF1O7kStGgerv768VxW3durU4duxYrSiqLJIKUQwVI03Fc8rRpgAAAAAAAAAAmBt6iwo5evRobaSgKII5cuRI8cEPfjAt9osvvlhs27at6OvrqxXbTGbUqOeeey5tObhZFMTFAwAAAAAAAAAAKlccdf78+drP7u7u4tChQ8WOHTtqIwnFCEJRNBMjPU1VTMn29NNP1+KGGIEoRoF6/vnnx31tFFLFc2M0IwAAAAAAAAAAYGZVojhq5cqVRVdX1w1/GxkZKfbv3197ZIh48R5ReDWV1wIAAAAAAAAAADOru6iAmEYvCpDqH1HI1Pi36TzK4qvpvBYAAAAAAAAAAJg5lR05KrSiKEmhEwAAAAAAAAAAzA6VKI5avXr1DaNFQSfre+t382J1f19arFULr6XF+unbhtJi3broTFqsBT157cPdiy+lxVq3JOczfuOtW4ss37/sYl6slXnr6tZX16bF+u1LL6TFWr7gXWmxLg29mharqytvgMiu7oVpsYavvpkWq//y8bRY/673dFqs+4b/07RYH1id1z5nlnifvTI/Jc6ZK/OKLF97a2VarIHhvP3nj/uWpsVa3jucFuub1wbSYr0w+B/SYt1evDctFtQbuvrdtFjHLr+VFmvHyrz25u/dm3cse/1qXtvVdy3nmBHetyLve+z61Zw29b3/Vd4yfew9v5cW61cu5n2H/+0f/GRarH/0+m+lxeruXZYWa3go7xyoqysvvykS8/CRoatpsa5e/EZarN8t8mLdufwvpMX6vq670mK9O/G8+OtnP5AS55WL54ssX3zh/Wmxek7m5btf789rB3sST6a+OZB3bXDwWt4xaOlieTits2ZR3q2o717MO5e958pLabH+i7vzjkG//OhPpMV6+69sTot16Z8+UXSab3/+n6XF2vfn/nbRif7+m3nXXF4vlqfFOn817z7Qwt688+LuDh3kYkFiMpH5Ea8O5t03W70wr63/9vm8c5d7Vi5Ii3X+ak6uOnLP/UWWf/BHn0uLdenY76TF6pmXt19fGMg7R+hO3H/mJ+7Xaxb1pMViDowcVdqwYUOxb9++2lR7UTTVTn19fUV/f3+xa9eu4sSJE21dFgAAAAAAAAAAmGsqURwVhVClZ599tli+PK/yeTpWrFhRrF27tjhw4EBx7733tntxAAAAAAAAAABgTskbz6yN1qxZc71IqlMKo0Yr3gIAAAAAAAAAAGZGd5Wm1aufXq/TdPKyAQAAAAAAAABAFVViWr3Vq1ff8LMTjYyMFOfOnWv3YgAAAAAAAAAAwJxRieKoT3ziE8XJkyc7ujjqxIkT7V4EAAAAAAAAAACYUypRHBXWrl1bdLJOXz4AAAAAAAAAAKia7nYvAAAAAAAAAAAAQCsojgIAAAAAAAAAACpJcRQAAAAAAAAAAFBJHVMc9Yu/+IvFpz71qWI22Lt3b/HII4+0ezEAAAAAAAAAAIDZUBy1f//+Yt++fcVsEMsaDwAAAAAAAAAAoHN1THHUbLNy5cp2LwIAAAAAAAAAADAGxVFTcPbs2XYvAgAAAAAAAAAAMNuKo86fP190snPnzrV7EQAAAAAAAAAAgNlYHHX06NF2L8KYjhw50u5FAAAAAAAAAAAAJqC36DA///M/X5w6daq4//77i05z4sSJ4rHHHmv3YgAAAAAAAAAAALOxOKq/v7/YvXt30alGRkbavQgAAAAAAAAAAMBsLI7q6urq6AKkTl8+5paXhy+kxeo+vzQt1nvWvJUWa3HvcFqslfMG0mKNjHSlxfpXr92dEufrfUuKLCsX5q2rty+5lhbrI3e/kRZr4atr02L9y3PfTou1tDdnewjXRvL2xQsX/qDoRMsW/kDRifqLM2mxrgyuSYt1z4rLabEuD/akxLl4LS8d/ZP+vHbwQuJyZc5j/UcDb6bFenPom2mxrl0+nRbrzJLFabGgVc4Wr6fF+pev5eUkG1cvS4s1lJjvDibGujw0Py3W7/yNnDzib/7xV1LihJ9e8om0WH/p3lfTYv3dTb+XFuudX/9gWqy/+82jabHeuTBvuc6N5LURZ8/nrfuurrz8ZtmyzWmx5nXl5XBnhl5Ii7X97XnXST5510tpsXYff29KnK+cyTtmPP/G8rRYy+YNpcVa2psX6+jV59NiDQ1dTIs1PHAuLdala99KiwWttGhe3ln2S133pMX62L2r02Ld+Z/9Z2mx/vDNvOvrP/qTH02L9dhnc+L86/f/rZxARVH8lf9iUVqsu/7xnrRY/49bfjwt1hP/6K+kxTrzF/IGurhl5HxarOGFeTlO0ZV5VS/PvO68c+xFC/JivXE5L/f64ILX0mL97Vt+Li3WXzx9PCXOySLvXOOVBT+YFuvuj+Sd591zKe8eyVDPyrRYty7OOy9e0JPXRlwdyjteM4uKo8oCJAAAAAAAAAAAgEoVR3XyqEyKtgAAAAAAAAAAYPbouOKobdu2FStWrCg6zdmzZ4tTp07VHgAAAAAAAAAAQOfrmOKoAwcOFHv27CkOHz5c7Nixo3j44YeLBx54oOg0sYyf/vSn270YAAAAAAAAAADAOLqLDrF9+/bi5MmTxfHjx4tVq1YVW7duLdasWVN86lOfKl566aWiU/zCL/xCuxcBAAAAAAAAAACYTcVRpfvvv7/47Gc/WwwPDxePPfZY8YUvfKFYt25d8aEPfah45pln2r14xdq1a9u9CAAAAPz/2fv3ILmy8zDwvFlVeKMbBaC7SZES2Q2QlEi9yAKgWNuyRiMULFmrmdmxCmj5j51VhBZASPPY2XAYMOSJFRWSjQVsTczObKwEtLTjCe+MtwEEtZ7xQ2KhRVnjkSw1CiT1IEWRhW6JFB/dRAH9QuNVlRsnG1nIx61CPr583fz9Igqounnzuycz7z35nczvngsAAAAAAKNYHFXr2LFj2ZUrV7IvfvGL2Uc/+tHsp37qpyqzSf30T/909tnPfnbQzQMAAAAAAAAAAIbYUBdHVaWZo86cOZMtLS1l586dq1x+L80wdeDAgezXfu3Xstdff72v7Zmens5u3rzZ120CAAAAAAAAAAAFLI6qNTc3V7nU3o0bN7LDhw9XLr23c+fO7Nlnn80+9alP9aUN5XK5UiAFAAAAAAAAAAAMr5ErjqrasWNHduLEiexLX/pS9pu/+ZuVgqWDBw9mH/zgB7Nf+qVf6ulsUqkw6/r16z2LDwAAAAAAAAAAjHFxVK3Z2dnswoULlaKlv/t3/272z/7ZP6vMJvXDP/zD2a//+q8PunkAAAAAAAAAAMAAFKI4qnY2qWPHjmVXrlzJvvjFL2ZPP/109lM/9VPZ7t27s5/92Z/N/vzP/3zQTQQAAAAAAAAAAPqkUMVRtfbs2ZOdO3cuW1paqvyfCqaeeeaZ7MCBA9mv/dqvDbp5AAAAAAAAAABAjxW2OKrW3Nxc9slPfrJSKPVDP/RDlUvvTU5OZj/90z+dffaznx108wAAAAAAAAAAgB4Yi+Koqunp6ezMmTOVIqnf/M3fzK5fv5597GMfyz74wQ9mv/RLv5S9/vrrg24iAAAAAAAAAAAQZKyKo2rNzs5mFy5cyG7cuFGZSeqXf/mXs507d2bPPvts9qlPfWrQzQMAAAAAAAAAALo0tsVRVTt27MiOHTuWfelLX8pefPHFSoHUwYMHs927d2c/+7M/m7388suDbiIAAAAAAAAAANCBsS+OqjUzM5P9yq/8SrayspKdO3cu++QnP5nt3bs3+77v+77s13/91wfdPAAAAAAAAAAAoA2lcrlcbucO4+TTn/50dvTo0ezq1atZqVSqLDt+/HhlpqmPfvSjg24eI2rTd/2HYbG2b/pAWKy92UfCYt0q3Q2L9aGNm8NibZlaDou1YSKu67y38k7/0q2FW29nUb6yfDUs1o7J94fF+ttPPREW6zun3wqL9W++uiss1qXXfjcsVrl8LyzWnTe/kA2j0sTGuFgbHouLVdoUFus7Nv9oWKwfeuJ+WKybtzeExHntbkyc6L5524a45+rectz5CH98K+4xXs9eDYv1tTd+IyzW49sPhMW6vvBfh8Vi9G38yKGwWFs27w2L9fRE3NhySxb3vvjF8h9nw2iqFDc++N6JD4XE+Te3PpHFWQmL9B2bfyws1t/59hthsT60/WZYrP/q6ofDYv2b158LizW58cmwWPff/kpWdJOb3x0Wa+Ve3L76Pdt/MizW4fe/ERbr1v2Y3PLz1x8byjx895Y7YbGmAtv1T16NGxNPZHFjoNde+52wWNse3x8W67WrvxIWi2J47c1bQ5gtZdnySlw/sX0i7nOEF1+J+0zvjbtxn4mvBD5fH3pia0ic+4FtenLrVFis6be/ERbrc//Zz4TFmtw4GRYr+8f/U1ionZvj2rV9Q9zncBsnY767ibYc+M3+VGCv+mZcN5htmYp7HTdc/V/CYi2/dj0kzr0fjBtrRJZ6bLn7elisyVcXw2K9tPO7w2JNB/Y3Gyfj9tPlwNdx5/aY99giMnNUg9dffz37x//4H2cf/OAHs/3791cKpKodS/pJM0rt27cv+4mf+IlBNxUAAAAAAAAAAFhHXBn0iPvEJz5RKXy6fPlyU5Vlddao2uUm3AIAAAAAAAAAgOE21sVRL7/8cqUg6vz589nNmzfrip7yCqKSdEm9dGm9j33sYwNoMQAAAAAAAAAA0KqxLI761V/91UpR1NWrV1uaJWp2drZSEPXjP/7jA2gtAAAAAAAAAADQibEpjvrMZz6zOktUKwVR09PTq7NEPfPMMwNoMQAAAAAAAAAA0I1CF0e9/vrrlWKoVBR17dq1loqi5ubmKgVRBw8eHECLAQAAAAAAAACAKIUsjvqt3/qtSkHUpUuXWiqI2rNnT6UgKs0UtWPHjgG0GAAAAAAAAAAAiFaY4qiXX3559bJ5N2/erCt+yiuISqqXzfvYxz42gBYDAAAAAAAAAAC9NPLFUZ/4xCey06dPZ1evXm1plqiZmZlKQdTRo0cH0FoAAAAAAAAAAKBfRrI46jOf+czqLFGtFERNT0+vzhL1zDPPDKDFAAAAAAAAAABAv41McdTrr79eKYZKRVHXrl1rqShqdnY2O3nyZHbw4MEBtBgAAAAAAAAAABikoS+O+q3f+q1KQdSlS5daKojas2dPZYaoNFPUjh07elaolTz++OM9iQ8AAAAAAAAAABS0OOrll19evWzezZs364qf8gqikupl8z72sY/1vH3pMn0TExPZ/fv3e74tAAAAAAAAAACgAMVRn/jEJypFUZcvX25plqiZmZlKQdTRo0f73tZezUoFAAAAAAAAAAAUrDjqwIED2dWrVx85S1Satak6S9QzzzzT93a+9NJLfd8mAAAAAAAAAAAwwsVRCwsLlWKoVASVVxQ1OztbKYj68R//8QG2MssuXbo00O0DAAAAAAAAAAAjVhxVVS2QSvbs2VMpiEozRQ3LZexOnz496CYAAAAAAAAAAACjWByVHD58ODt16lT20Y9+NBsWn/nMZ7KjR49mN2/eHHRTAAAAAAAAAACAUSyOmp6ezq5du1YpRBoGqRhqaWlptSiqdmYr6MSmDe/KhtGfl66FxdqUbQuL9cd3t4bF+tZ7O8NivblyPyzWvdJKSJw3sutZlHv3lsJibZj89rBYv/HKZFisHRs3hcWaKMW9L5TLMftDsnMq7rn/evaFsFgTGx4Li7V96/eExXrrzkthscrLb4XF+sKdT4bFuv7NuMLzx7NdIXFuZF/Jorw/eyYs1kc2hIXKlssPLxndrZdWPh0Wa6IU9yAnN+4Oi7Vcvh0WC2pNbXgiLNbGUtx72csrnwmLVS4vh8V6YvKDYbEmsrgcblc5blbpv1h5PShSXP4W6avlxbBY/+Wf3g2L9fG93xYW66vlN8NiTWyIey/btnFPWKzX3/5qNozeO/0fh8V65d4fhsUq338jLNYfvvHfh8X6oz+N+5xky+a9IXHevvX5LMpT2w+Gxfo/Tcf180tvx+W7t+99PSxWqRT3kfzExrjPuuTh9FJktrR5Mm6M/eZK3Gd6S/fict7veSqu/1q6HTdG2L0lrv+6uxyzV7x2J27v2jo1ERbr5pa474F2/MrFsFjvvf2XYbF++407YbHes317WKx7gcf1psD+5s5yXLu23HolLFZ5Y1yeunlj3Ov45r24Y/vmB38kLNbURMw+sfzWvSzK5sm4vmvL538nLNbKM3Hf3ezYHPceG1nlEVkzEvcqMlLP840bN7LFxcXK/2mHGvRPupxf7d8AAAAAAAAAAMBomBrGS+o9//zz2bC5evVqZTarT3867mx9AAAAAAAAAABgjGaOOnPmTDaMZmZmsoWFhcpl/wAAAAAAAAAAgOE3dMVRTz/9dDbM/t7f+3uDbgIAAAAAAAAAADCKxVHDLl32DwAAAAAAAAAAGH6Ko9r0zDPPDLoJAAAAAAAAAADAqBVHTU9PZ6Pi5s2bg24CAAAAAAAAAACwjqlsSNy4cSMbFaPUVgAAAAAAAAAAGFdDUxy1Y8eObFSMUlsBAAAAAAAAAGBcDdVl9QAAAAAAAAAAAKIojgIAAAAAAAAAAApJcRQAAAAAAAAAAFBIiqMAAAAAAAAAAIBCUhwFAAAAAAAAAAAUkuIoAAAAAAAAAACgkBRHAQAAAAAAAAAAhaQ4CgAAAAAAAAAAKCTFUQAAAAAAAAAAQCFNDboBMG7eN/mxsFhfXvnDsFgT2WRYrI2lzWGx7ma342KVy2Gxtk/EdZ+vrdwLifNE6VuyKG9u/EZYrO3ZjrBY17OvhcX6w1efDot1dzmu1vjJqQ+HxfrGvc+ExSpNbhrK2uy3bn8xLNaGjU+FxbpfiusjJie3hMV6u3wzLNZ7sveExLldeiyL8mbge8Yfv74xLNbGUtx7bCkw1v2VW2GxJie3hcW6u3wjLBbUenrDXwuL9eXlT4fFetfkR8JivZ69EhbrrSzuPWNv9oGwWHey5bBY28ox77H/3ta5LMq/vfObYbF2lmLeq5NXy9fCYv2rl58Ii/UdG1fCYn29/ExYrDdv/2lYrKwUlzuXNsaNzV69//mwWBsnd4bFWp58LSxWaSruuS+v3MmK7Mb9L4TF+mdf+96wWN8a+HnExETc+CBUYB8BvRS5p96Le/vPdtx+NSzWjU1PhsW6txL3Ofb05rjPEd68G5eLb98Y06733f1yFuWNze8Li1UKi5Rljwc9V8nXsm8Ni/VXdkbuW3EH9qapuGd/Oe5QzDZNlIfy/b88FZfjLAf2XRsmSkO5T9y5Xx66fr5cjjt+Xv3OHw2L9Vhg31VaXhnKfSvyddyuaqcvjJ4AAAAAAAAAAIBCUhwFAAAAAAAAAAAUkuIoAAAAAAAAAACgkBRHAQAAAAAAAAAAhaQ4CgAAAAAAAAAAKCTFUQAAAAAAAAAAQCEpjgIAAAAAAAAAAApJcRQAAAAAAAAAAFBIiqMAAAAAAAAAAIBCUhwFAAAAAAAAAAAUkuIoAAAAAAAAAACgkBRHAQAAAAAAAAAAhaQ4CgAAAAAAAAAAKCTFUQAAAAAAAAAAQCEpjgIAAAAAAAAAAApJcRQAAAAAAAAAAFBIiqMAAAAAAAAAAIBCUhwFAAAAAAAAAAAU0tSgGwDj5ou3/1VYrMc3fTgs1ht3F8NiPbnp/WGx3s5eD4v11ezVsFhvl98Ii7VcuhsSp1xeyaK8a+Lbw2LtyraGxcqybwmLVC6Hhco2TsY99xvvbw6LtWXq3WGx3pz4ZlisrBRXm11euRMW686tL4bFKi/Htet+WKQsu1uK6+s/PfFiTKDyckycLMs2b4t7X/zQxP8uLNZ7N8f1EW/c/s6wWNcnXwmLtZzdC4u1JXssLBbU+uLr/1NYrG95/H8fFuvry38UFuuvbvjBsFibJuKSpXsrpbBYL6+8GRbrjex6SJwvr9zOouzY8IGwWD80HZdX/uWbM2GxvvuJ18JivXZnQ1is5dtx+dvUhifCYt29dzMsVimbDIt1/35cu+7e/tOwWOUsLu8aVncmvz50Y5aJUlx/87W7QeOMLMs+uv1vhsXaWn7PUH4G974tfyMs1mPycHpoOfBzuG3Lt8JilTduC4u1+7VrYbHuf+73wmJNvXdvWKxt3xL3mfFKaWdInLs7476LuHcvLo/Y/hv/bViszd/z18JilX7nX4fF2vKDPxYWa+mJ7w2LNRU4LchyKW4sOzkxMZR91/2JjWGxNsY9XaE2TcaVQ2x48xshce7teFc2jBZvxnxfmUxNxO0Qb99fGcrvBt8zGZeTlO4HNmxrXB9RNGaOAgAAAAAAAAAACklxFAAAAAAAAAAAUEiKowAAAAAAAAAAgEJSHAUAAAAAAAAAABSS4igAAAAAAAAAAKCQFEcBAAAAAAAAAACFpDgKAAAAAAAAAAAoJMVRAAAAAAAAAABAISmOAgAAAAAAAAAACklxFAAAAAAAAAAAUEiKowAAAAAAAAAAgEJSHAUAAAAAAAAAABSS4igAAAAAAAAAAKCQFEcBAAAAAAAAAACFpDgKAAAAAAAAAAAoJMVRAAAAAAAAAABAISmOAgAAAAAAAAAACqlULpfLg24EjJMNH/qrYbGeefxwWKyX3vhEWKzHtx8Ii7WS3QuLtbxyOyzWlsknw2Jty6ZD4jyWPZ5FeS27ERbrrfJSWKyJ0oawWN+efSgs1vu3xu2n37gd9xj/aGUxLNaNO380lLXZExObwmJt3/C+sFhv3f9aWKzl5TfDYm3Z+N6wWP/exo+FxHkl7vDJ/jz787BY37y9EBbrvZt/ICzW3SzuvezJ7N1hsd4ObNeN7Othsb5x5R+GxWL0TX1gf1is7Y9/X1isW7f+JCxWaWpHWKxy+U5crDtxueXUtmfCYm2dinlf/PbSd2VRbma3wmK9fO9/C4u1cXJnWKyPTsQdPz/wnpthsS5/NW48tXD7/xcWq7z8RliszZs/EBZrcmJzWKzdpafDYn19OW7ccv/+62GxNkzFHUM/tOn7Q+K8dr+URflc9vmwWDffuhIWa3LjE2GxpjfEfYbwnaW9YbFeLcfl4V8tx32G8OrCPwqLRTG8eevtsFhLby+HxXpq62RYrFcD2zUR10Vn91bivgLcENiwyVJMrJ2luH4wm4j7zPLmysawWJOB+8PGybjHOPkv/puwWK/9jf88LNad5bh9fsemuD5i+52470mG1fK23WGxAruu7H5gsJWgOJsDD+zbgft85Kw63wx8X3xiS9yxuOXWK2Gxlh97V1isu5F91/atYbGKxsxRAAAAAAAAAABAISmOAgAAAAAAAAAACklxFAAAAAAAAAAAUEiKowAAAAAAAAAAgEJSHAUAAAAAAAAAABSS4igAAAAAAAAAAKCQFEcBAAAAAAAAAACFpDgKAAAAAAAAAAAoJMVRAAAAAAAAAABAISmOAgAAAAAAAAAACklxFAAAAAAAAAAAUEiKowAAAAAAAAAAgEJSHAUAAAAAAAAAABSS4igAAAAAAAAAAKCQFEcBAAAAAAAAAACFpDgKAAAAAAAAAAAoJMVRAAAAAAAAAABAISmOAgAAAAAAAAAACmlq0A2AcVNeuRsW69rN/zEsVmlyS1isN259NizW5s17wmLdvn0tLNadib8Mi3WzFNMVb9zwZBZly+QTYbE2lR4Li7Ux2xwW612blsNibd4QF+vx+3F1y7vvfktYrLc3XI+LdfcrYbHu3X41LNaN23HtylbuhYUql++Hxbq1cjss1u+WtobEee32n2Rx4o6fvZt/JCzW+ya2h8WaLIWFyl5bLofF+tN7L4TFKq/cCYsFvfLm638QFqs0uSkuVuB7xu4t3xcW65v3fzss1sr9N8Ji3Sp/OSTOFzZkYTaWtoXFemrD94TFmsgmw2J99Ik3w2JNbwzMwyfi8ojtmz4QFuv11/5tWKxb9z6dDaM3st8Li1UKGl9XlFfCQi1ncWONTy6/HhJncjKuv7nzxufCYu2c/vfDYu3Jvj0u1pa4/eGNe3F5+Bfe+mRYrOXbXw2LBb0cyz65NS4vCRwWZ08G5iUTb78WFuvutieH8nUsrcSMXUp34j6DW964IyzW42GRsuxe3FtQtvmz/zIs1tc+84WwWBOHwkJlk6W4HfXG7bjj+t7GnWGxtkwN59wngUPj0P7m7ZW4zv5O0BvHtreXsij3N+0Oi3U38I1x81Tci7j1ra+HxSpPTA1lHnE3cD9lbcPZewIAAAAAAAAAAHRJcRQAAAAAAAAAAFBIiqMAAAAAAAAAAIBCUhwFAAAAAAAAAAAUkuIoAAAAAAAAAACgkBRHAQAAAAAAAAAAhaQ4CgAAAAAAAAAAKCTFUQAAAAAAAAAAQCEpjgIAAAAAAAAAAApJcRQAAAAAAAAAAFBIiqMAAAAAAAAAAIBCUhwFAAAAAAAAAAAUkuIoAAAAAAAAAACgkBRHAQAAAAAAAAAAhaQ4CgAAAAAAAAAAKCTFUQAAAAAAAAAAQCEpjgIAAAAAAAAAAApJcRQAAAAAAAAAAFBIU4NuAIybyc3vDou1bdPesFhv3vrjsFilyS1hse7evx4WK8tWwiKVJjaHxdq68dti4pR2h8SpxMoeC4s1XY6LtbkU97Z1byVuf3jjTly77pdLYbEmA2ugPzrxfWGxNm+Ni/V64Ot4vxwX66ulr4bFemMlLlYpcJ84tPUDIXE2PbYni/K7b9wJi7UhME1+99a7YbFefXtjWKypLK6/2T71vrBYt1eWwmJBrYkNO8JiTW/bHxbrxhu/O5Q56o07fxIWKysvh4WamIrLLVfuvxES585kXL+1YzJuvPiBiafCYm2fisuTXrt9LyzWwq1NYbG+sRL3fn3r3pfDYj2246+ExZouvTcs1t3sdlis6eyJsFhfXvnDsFh37r0SFmtl5a2wWP+Xb/vrIXFu3N6QRfn/BI6lbr51JSzW4e+M6wc/v7QtLNa/vvXZsFhPb/rBsFjX7v/zsFjQ6F5cN5FtLMUFK0fOH1CKi7W8/cmwWIEfnWVTcR8jZK/eiQk2UdqeRdm+XA6LteXOzbBYG95+LSxW+f3fFRZr+u//aFisr755PyxWOYt7HVfiQmX3A4Pdmow7sLdvjOu7bsUN9bLJwO75buCxvet3/2lInNs/+JNZlNfeinvi37gbuG+dPhYWq/QzPx0W6wu7ZsJiffuNPw+L9frWbw2LxdrMHAUAAAAAAAAAABSS4igAAAAAAAAAAKCQFEcBAAAAAAAAAACFpDgKAAAAAAAAAAAoJMVRAAAAAAAAAABAISmOAgAAAAAAAAAACklxFAAAAAAAAAAAUEiKowAAAAAAAAAAgEJSHAUAAAAAAAAAABSS4igAAAAAAAAAAKCQFEcBAAAAAAAAAACFpDgKAAAAAAAAAAAoJMVRAAAAAAAAAABAISmOAgAAAAAAAAAACklxFAAAAAAAAAAAUEiKowAAAAAAAAAAgEJSHAUAAAAAAAAAABSS4igAAAAAAAAAAKCQSuVyuTzoRsA4mfrA/rBYpcD6xk2PfSQs1p23/iws1nsf/w/CYn31rcthsd697YfCYk0EvY43V76cRVku3wmL9d7J7w2L9R0btofFmt50PyzW5qnlsFgbJlbCYk1OxL3FR2YL79p6LyzWRCnwMYZFyrLPX4/bVycDH+Pvvxn33O/ftjEkzvc++UYW5StvbgqLtRK4Q1x7bVtYrC/ej3u+vr7yp2Gx3nrjalisbGJDWKh7X/hfw2Ix+kLz8Mm4/mZy47vCYi3f+XpYrI88/p+ExfqTm78aFusD03Htup29FRLn+vKXsih3770aFuvgtr8VFuvAu24OZW6zkpXCYr1/2+2wWOf+7KmwWN+9425YrO9/d9zr+Ma9ybBYX7i5NSzWpqm48dRXXt8SFuuTb/9RWKwfn/5wSJz9T76eRfnvvhQ3/vnhJ+PG17/3amAeXv58WKzXbl0Ji7VyL258EOn+l+IeI8Xw9ttvh8UqLce9N76dxY0/N0/G5SUTt+P66LemHguLtXUiro++X5oKibMc+AHOvcBYO1/947BYX/nVXw6Ltfs7nwmLteF9HwqL9Sf/9X8fFuvaL/yTsFgfe3fc8fOef/c/hMWa+IG/HRbrha/FfU/yN5Y/Fxbrq+8+EBZrJfCT/3dvjolTuhc3/rz0Utz3eT/6wV1hsd64E/ldV1iobDmuWdmuLZND+X3E49vixrJFY+YoAAAAAAAAAACgkBRHAQAAAAAAAAAAhaQ4CgAAAAAAAAAAKCTFUQAAAAAAAAAAQCEpjgIAAAAAAAAAAApJcRQAAAAAAAAAAFBIiqMAAAAAAAAAAIBCUhwFAAAAAAAAAAAUkuIoAAAAAAAAAACgkBRHAQAAAAAAAAAAhaQ4CgAAAAAAAAAAKCTFUQAAAAAAAAAAQCEpjgIAAAAAAAAAAApJcRQAAAAAAAAAAFBIiqMAAAAAAAAAAIBCUhwFAAAAAAAAAAAUkuIoAAAAAAAAAACgkBRHAQAAAAAAAAAAhTQ16AbAuNn82Hdlw2jr5LvCYt3J/iws1iv3/jAsVnn57bBYb5ZfCYt1Z/lGSJxNkzuzKBtK28JiPZU9Hhbr8Y13w2Lt3BwX69a9ybBYWzcsh8WamiiHxXrl1qawWH/w9a1hsV65FxYqeyuL2yfeyG6GxfrQxFNhsV4tfyksVpZ9MCTKf/HT/3MWpfz5uGPxP//1w2GxVsqlsFgf2bg9LNamu98TFuul7XEHY6kU9zpCrYmNcbnS5NR0WKzHN8b0p8nS7a+GxfrCnd/IhtGN7Othsf79zXtC4vzB7bh+65UsLhd8IjDf3Ty1EhbrPVvi2vUvXn4yLNbd5bj367/xntfDYv3F63G5889/Ie4cyZvlr4TFmiptDov13mxvWKxtWdyxvVKOy5WmSjHH4098+++FxHknVlio7Bde/KGwWDsn4/b5H9n0obBYny49ExZr8e6nwmKtrNwJiwWNXrsTl0tsmdoQFmvjRNz7/0rcx3DZ3Q2PDeVjLC3fD4v1zV/4T0PivPfvfDyLcnNL3Hcky6/Gjc2mNm8Mi7X4z+Pe/zf+d//XsFhP/9P/KCzW+8pxB+Od5bhYX9z3fwyLtel23HH9XU/Gfe6/ksUlhRsn4x7jpqm4nHDiTsxY76mf+OUsykd/JC5/PvKeuPF6tu3dYaG2luPy1NuluH3+bmAfcS8wkYj7VrZ4zBwFAAAAAAAAAAAUkuIoAAAAAAAAAACgkBRHAQAAAAAAAAAAhaQ4CgAAAAAAAAAAKCTFUQAAAAAAAAAAQCEpjgIAAAAAAAAAAApJcRQAAAAAAAAAAFBIiqMAAAAAAAAAAIBCUhwFAAAAAAAAAAAUkuIoAAAAAAAAAACgkBRHAQAAAAAAAAAAhaQ4CgAAAAAAAAAAKCTFUQAAAAAAAAAAQCEpjgIAAAAAAAAAAApJcRQAAAAAAAAAAFBIiqMAAAAAAAAAAIBCUhwFAAAAAAAAAAAUkuIoAAAAAAAAAACgkKYG3QAYNx+c/KthsV7Nvh4W6+ns28Ji/X7p34bFenrDXwuL9cW3FsNifaj0vWGxViZXQuJsLE1mUbZOlMJivf+x22GxPrLrzbBYn1vaHhZreSXu+Xr11qawWN8IjPXGcliobOH+fDaMSqUNYbE2TDwWFutTt34nLFa5fC8s1l+UvjMkzvUf+NYsyvZ/dzMs1r2VuHMIdm2Ke963bbwfFmvjRNw+v3flr4TFuhfYp0KtD2/98bBYO7PNYbFeyeLymxtTW8Jiff/m/0NYrN9++/8ZFmtH9mRYrL+4HdPXf+P+H2fD6PrtjWGx3rPlblisC196d1is5XJYqOzl17aFxXrrXtzY7Iv33wqL9Rc3L2TDaGpLXD745sRfhMW6d/srYbEmpuLGB0u394XE2Xj4VhZl6vfjxv3z/zIuR53I4vqu9wXm4TOluI/k72d/PSzWShY48IcGm6bixnnb//LTYbG+8VTcZ7y7NsQdQ5tuxL0H3dm9JyzW9ftxffSTHz8XEufzN+P6+ltLd8JibX3fD4XF+shPBr6GG54Oi3V/JS4Zf/NuzHckya4tcbn4neW443rn5rh2Rdq2Ie4z0NfLO8JibQr8jmrzZFysiTdfDYlz69UvZ1EuH4rLU3/n9bhxy9a348YIH9q9eSj3rS+/FvceNFmKa9e74g7FwjFzFAAAAAAAAAAAUEiKowAAAAAAAAAAgEJSHAUAAAAAAAAAABSS4igAAAAAAAAAAKCQFEcBAAAAAAAAAACFpDgKAAAAAAAAAAAoJMVRAAAAAAAAAABAISmOAgAAAAAAAAAACklxFAAAAAAAAAAAUEiKowAAAAAAAAAAgEJSHAUAAAAAAAAAABSS4igAAAAAAAAAAKCQFEcBAAAAAAAAAACFpDgKAAAAAAAAAAAoJMVRAAAAAAAAAABAISmOAgAAAAAAAAAACklxFAAAAAAAAAAAUEiKowAAAAAAAAAAgEKaGnQDYNx897a4WFumngyL9erb5bBYm7d+R1isp7LtYbG+GBYpy97O7obF+lrppZA437/x27Mo79l+KyzW+x67ExZrx4blsFjv2XY7LNY3bm0Ki3X7/mRYrKlS3HH9RnYvLNa9218Ji/We7T8SFusvX/vnYbGWt74/LNbKnW+GxcomNoSF2jEVs389Mf/lLMqXvxnXD/6tp78eFuvaW3Fv/m/djzu34TM34/qu73o87n3x2hubw2JBre/bERfrfY/dCIu1eDOuj/hm9n1hsV4tx+VKpcDzslaylbBYf7z8eyFxDk9/fxblqa1xufPUxGthsbZMxuXh2wNz+i1TcbHe93jcGOhdW+Jy59/4k/81LNbEhriO8Fu3/XBYrL+4eSEs1ubHvissVnn57bBYy4Gxtm24HxJn6ncD+/ltcX3zb//N+bBY5/7kr4XF2jgRN77+f7+8JSzWB6ceC4t19f7LYbGg0ebJUlisO5/7g7BYT+x8b1isbDnu67ZXtsd9rrQz7qnPNgS+jrfux7x3fMeGuJy3vDWuf/70zbBQ2e2nPhQW688W48ay+98T9x705O/+k7BYv/Uz58Nifdvvx+XiH9oRNy5eLg3n1/uTK3HjoOWJjWGx7sWlqtnGlZhc/EMH/+Msyn/2PT+VDaOf+cvPhsWamoh7/3kzcIcIbFZoLNZm5igAAAAAAAAAAKCQFEcBAAAAAAAAAACFpDgKAAAAAAAAAAAoJMVRAAAAAAAAAABAISmOAgAAAAAAAAAACklxFAAAAAAAAAAAUEiKowAAAAAAAAAAgEJSHAUAAAAAAAAAABSS4igAAAAAAAAAAKCQFEcBAAAAAAAAAACFpDgKAAAAAAAAAAAoJMVRAAAAAAAAAABAISmOAgAAAAAAAAAACklxFAAAAAAAAAAAUEiKowAAAAAAAAAAgEJSHAUAAAAAAAAAABSS4igAAAAAAAAAAKCQFEcBAAAAAAAAAACFNDXoBgCd+8JrW8JivXfrvbBYczu+LyzWa3dXwmK9a/rHwmJ9x+YNYbF23P5wSJwD717KouybvhkW68M7vxwWa+vmt8Ji/daXvycs1nK5FBbr06/sCIv16v37YbG+tPL72TB69f7n44KV4mrGS4H15+Vy3OtYyibDYn33k6+HxLn3uc1ZlJu3HwuLtXki7nm/eSfuef/Mq3F9xB8v/05YrG+9/dfDYv27u78ZFivLfjIwFqPu1Vsbw2J96rW4nORv7orLw//27m8Li/XqrbiPC/709rvDYn1rtjss1t3Jp0PivGvb7SzKT+75s7BYH/ixPwyLtbIzbvwz8z9+MCzWp155JizWC1+O27c+txI3PsgCc8FIX7/36WwYTZbicsuJDXF518q918Ji7dx8NyTO+RfiPiN5du+VsFg7vu0bYbHu/VHcsfjvvjYdFuvP3vqnYbEmtz0bFuubb78YFgsaff2twM82fuD/HBbrW9+8FharvGlbWKxdW+P6r798M+65L5fLYbEmJ2Ie40tvb8+ifPhf/T/CYv2Tn/wfsmH0H74/Lr954hf/VlisyR89HhbrRz4Z97n/N7cFfo0eOUTIhrJZWel+TJ6abFiO+9xlefPOsFhf2rI3JM4rX/pUFuXv/Ezcd7K/9P/6g7BYT22NO37ur8Tt9YFvZaGeDHy+WJuZowAAAAAAAAAAgEJSHAUAAAAAAAAAABSS4igAAAAAAAAAAKCQFEcBAAAAAAAAAACFpDgKAAAAAAAAAAAoJMVRAAAAAAAAAABAIU0NugGMtsuXL2fz8/OV/69du5bdvHmzsnx6ejrbs2dPtn///uzQoUPZ3NxcT9tw8eLF7MqVK6ttSNvftWtXNjMzU9n+7OxspT0AAAAAAAAAAIwPxVF05OzZs9np06dXi6GqhVDp/6Wlpezq1aurP+fPn68UKx07diw7depU5fcIly5dyo4ePbrahlppWfpJxVJpvSQVSJ08ebLyPwAAAAAAAAAAxeeyerQlFRvt3bu3UmSUCqHOnTuX3bhxI1tcXKzMIJX+TrM4pb/T8lQQlaRCpVRQ9cwzz6wWK3UjzQZ1+PDhSty0jYWFhaxcLq/+pO2fOXOmbraoNMNU7f0AAAAAAAAAACg2xVG0LM0CtW/fvsrMUKkAKhUkpcKktWaCSstTsVQqUqpKRUmpOCkVSnUi3T+1IRU6pRmgUhFU2ka6fF6tVBR14sSJyu3p/1qpOCvFSIVeAAAAAAAAAAAUl+IoWi5KOnjwYLZr165KUdTc3FzL903FSY2XskszT3Uyg1RqQyrSSkVZaaaq2pmh1pKKs1IBVa1UGJUKpMwgBQAAAAAAAABQXIqjaMnRo0crhURpxqhWCpIa1c4e1RizVamgKhVGpUKrxmKnR0nFVI0zSFVnoQIAAAAAAAAAoJimBt0Ahl8qIqrO8pSKiVJxVCpOapwNaj3psnfpMnu1xVDp9/PnzzcVLeVJMz2lS/GlbacZozqRCrTS46i9nF41bitt6IfPvvy/NC373qf/g4G0BaBVd752tWnZpm+pv9wpwLD5+Mc/3tIyxseffvmfNy37jm/7jwbSFoBW3X/li03Lpp764EDaAtAquTi1/puz/7Bp2X954mcH0haAVv2j0/+gadnfPfX3B9IWgFZ9fMzzcMVRPNLly5fr/k4FRYcOHcoWFxfbmkUqrZtmfqqVCp1aKUyqzjyVZo/qRrr/8ePH65adPn26MrNUKt4atD/8i3/RtExxFDDs7n3jM03LFEcBw+7nf/7nx3ogSLMv/OX/3LRMcRQw7Fa++aXmhYqjgCEnF6fWf/uP/u9NyxRHAcPul86cblqmOAoYdj8/5nm4y+rxSLUzLdWqzibVqrxCqitXrrR03zTDVJKKmLqRd/80g9WFCxe6igsAAAAAAAAAwPBRHMUjtTM7VC9nrkqX8WuceaoT6RJ/jS5evNh1XAAAAAAAAAAAhoviKB4pFSXlmZubaytOmqGp0a5dux55v3TpvWqR1L59+7JSqbQ6k1TU42m8dCAAAAAAAAAAAKNPcRSPND09nS0sLKzOuJT+TwVL7c4olXd5vrxZnFq53/Hjx9e83N+j7N27t6P7AQAAAAAAAAAwWkrlcrk86EYwHtKMT3mXs3vUDFSHDh3Kndnp3Llz2bFjx9pux6VLl7LDhw83LV9cXBz4JQTzniOHKDDs9F3AKNJ30cg+AYwifRcwivRd1LI/AKNI3wWMotKY911mjqIv8oqb0oxUrVyaL62Xp5VL8gEAAAAAAAAAML4UR9EXaYaoRqdOnWrpvukSenkFU7Ozsx21ZWlpKXe5YisAAAAAAAAAgGJRHEXP3bx5Mzt//nzdspmZmezEiRMt3T8VQaXiquol79LfL7zwwpozSj1Kunxenk7jAQAAAAAAAAAwnKYG3QCK7+TJk01FSHkzSa0nXX6vlUvwteLq1atNyzqdhQoAAAAAAAAAgOFl5ih66tKlS3WzRqXCqIWFhdVZoAbh8uXLTcsOHTo0kLYAAAAAAAAAANA7iqPoaWHU4cOH6y6l99JLLw20MKrx8n5VrV7iDwAAAAAAAACA0aE4ilA3b96sFEWlmZiqhVHVy+ilGaPS74N05syZgRdGffzjH89KpVLuT57a29N9AQCA2Dz8Ubm4PBwAADrnM3EAAAZtatANYLSlIqhr165lS0tLlcKoWqkQ6rnnnsvm5uayYXD16tVKW2ulWazyCqYAAAAAAAAAABh9iqPoSrpUXuNl8lIBUvUnzR6V1jl+/Hh27NixbJCOHj3atCzNaAVAd37u535u0E0AaJu+C4Ai8H4GjCJ9FwCjznsZMIp+bsz7LsVRdGW9WZfSTE0nT57MLl++XCmOSj9p/X5fxi45f/58pT2NhVGpcAuA7pjeHBhF+i4AisD7GTCK9F0AjDrvZcAo+viY910Tg24AxZUKj+bn5+sKqFKx1N69e5sub9dL6XJ/qTCrVmrTsFzuDwAAAAAAAACA3iiVy+Vyj2JDXVHU2bNn65alwqnZ2dmeb/vQoUOV2auqBjV7FQAAAAAAAAAA/aU4ir7ZuXNnZRanWouLi9mePXv6VpSlMAoAAAAAAAAAYHy4rB59c+rUqdxZnXrl/PnzCqMAAAAAAAAAAMaYmaPomzRrVJo9qlEvipauXr2a7du3b/Xvc+fOZceOHQvdBgAAAAAAAAAAw01xFAO/tN709HR248aNsG1cu3atUhhV3c7Fixezubm5sPgAAAAAAAAAAIwGl9Wjr/bs2dO0LBUxXb58OSR+ilVbGDU/P68wCgAAAAAAAABgTCmOYuDFUdUipsjCqDQb1cLCQjY7O9t1XAAAAAAAAAAARpPiKNaVCo2OHz9euRxe+km/N14WL6I4Kl0Kr1sHDx6sxKkWRs3MzHQdEwAAAAAAAACA0TU16AYw3A4fPlx3ybvz589XCpA6nelp9+7ducu7KbhKDh06lF29erVSfJUKo1KBFAAAAAAAAAAA483MUawpFSzVFkZVpWWdzvR0/fr13OXdFDNVC7g6LYy6dOlSViqVQmavAgAAAAAAAABgeCiOYk3rFQt1OtPTWvdb63J7j5Iu85eKm9Il9DqdMerFF1/sqg0AAAAAAAAAAAwnxVGsab1Co1SMFFlwlS6L166zZ89WLvOX2vLCCy90PPtU9XJ8AAAAAAAAAAAUi+Io1rRWwdC5c+c6jnnlypWmZamoaXZ2tq04qSjq5MmTXc0YVdumTou9AAAAAAAAAAAYXoqjWNfc3Fzl/1S8dObMmWxxcTE7duxYx7NG5V1Wr914ly9frlxOL7UpFUZ1o9omM0cBAAAAAAAAABSP4ijWderUqcr/S0tL2YkTJ7oqIsqbcSrN+JSKrtq5BF66BF8q2pqfn8+6Vd32gQMHuo4FAAAAAAAAAMBwKZXL5fKgG8FwS7M0pcvYpRmeOr2kXpqdaefOnU3LL168uDo7VSuzPO3bt68Sq93L8NVKhV4pRopXlWagcmk9AAAAAAAAAIBiURxFS1JRUpq1KRUyPffcc5UZn9qRZntKl8NrnLUpzUbVilTM9Mwzz+Reli+CwwAAAAAAAAAAoHhcVo+WVGdWunTpUqVIKc0k1arDhw93XRhVnTGqF7q5VCAAAAAAAAAAAMNLcRRtFUilgqZUpJQutZcuk5f+byx8qkqFVHv37q38X5VmnJqfn2+5MCo5evRo3SXwoimOAgAAAAAAAAAoJsVRtCXN+LS4uJgdO3asUiSVZpBKl8wrlUqVYqlUDJV+0t9pxqhqUVMqikr3vXHjRjY7O9vWNns1Y1RVmhELAAAAAAAAAIDiKZXL5fKgG8FoSkVLadaoNBPUlStXKoVQ1UKmNBtTKohKhVCpeKrdgqiiqj5f6f/a5ys9V+k5279/f+X5mpub62kbLl68WPeape3v2rWrUihWfb3MqAWs14+cO3eu0odU+5HUZ6Sf1IekAtrUrwBEkUPRLfsQUATycKDf5FBEsB8BRSAXB/pNDhVPcRT0wdmzZ7PTp0/XFY9Vf5aWlrKrV6/WXTowdSopkTp16lRYMpUub5guUdjqTFypIzt58qTCNqCuL6sOAKsFsAcOHKj8nmYVTElS6s+SdFtad1QSImA4yaHoln0IKAJ5ONBvcigi2I+AIpCLA/0mh+qhVBwF9Mbi4mJ5z549qQCxPDMzUz537lz5xo0bueum5ceOHausW/2Znp4uX7x4set2zM7OrsZM21hYWGhq55kzZ1bbWvszNze3ZpuB8evL0s+JEyfW7Bfm5+fr1k19C0C75FB0yz4EFIE8HOg3ORQR7EdAEcjFgX6TQ/We4ijokdRRpE6o3Y4odSaNHUmniVTqfFLnmWKkjix1Vo+SErzG7afOrZX7AsXty6r9Qav9WWPyBNAqORTdsg8BRSAPB/pNDkUE+xFQBHJxoN/kUP2hOAp6IHUeqfPq9OCvTaDaTb5qVTuwdpOwVInauP30eIa50hPoXV9W7QdS39AOZ8sA7ZJD0S37EFAE8nCg3+RQRLAfAUUgFwf6TQ7VP4qjoAfSlHHpwG+cZq5V6X7ddiLVSs3UIXZirUpPYHzUJlQpKWpXmk64tg8Z1kpxYHjIoeiWfQgoAnk40G9yKCLYj4AikIsD/SaH6h/FURAsdTSNB35KhtpVW5nebpV5SrYiOp28a4WqdIfx0DiI6/Q6xdVK804Hk8D4kEPRLfsQUATycKDf5FBEsB8BRSAXB/pNDtVfExkQ6vLly3V/X7t2LTt06FDl/3bs2bOnadn8/HxL9z1z5kzl/5MnT2bdyLv/6dOns5s3b3YVFxh+tcf/9PR0Njc311GcZ599dvX3q1evVn4A8sih6JZ9CCgCeTjQb3IoItiPgCKQiwP9JofqL8VREGytzurSpUtdd2JXrlxp6b7nz5+v/H/s2LGsG3n3Tx3YhQsXuooLDLfGAdvs7GzHsRoHkOfOneuqbUBxyaHoln0IGHXycGAQ5FBEsB8Bo04uDgyCHKq/FEdBsLzOZxAVpilxi6hGn5mZaVp28eLFruMCw6txsHbgwIGwPrGaZAE0kkPRLfsQMOrk4cAgyKGIYD8CRp1cHBgEOVR/KY6CYGtVk7c7/WbeFHO7du165P2qU+Slzmzfvn1ZqVTqKvHKezyNU/wBxdJYxZ2XzHST3LVb8Q6MBzkU3bIPAaNOHg4MghyKCPYjYNTJxYFBkEP1l+IoCJauQ7ywsLCaOKX/U8fSbuVn3jR6rSRjefc7fvx429cmrdq7d29H9wNGU+orGpOobivXG/uuVq9zDIwXORTdsg8Bo0weDgyKHIoI9iNglMnFgUGRQ/WX4ijogdTZpI6sXC5X/u/k2sR5nc6zzz7bUWVoN1WZa1WVdtopAsMtr6/odiDY2I8MU5U4MFzkUHTLPgSMKnk4MEhyKCLYj4BRJRcHBkkO1T+Ko2AI5XU4qXK0lSn00np5Wpk6D6AXZ7A09kvDkgQBxSOHolv2IWBQ5OHAKJNDEcF+BAyKXBwYZXKo1imOgiF08eLFpmWnTp1q6b5pqru8jq2TKtNkaWlprDpFGHeNg7S1EqN27N69u2nZ1atXu44L0EgORbfsQ8CgyMOBUSaHIoL9CBgUuTgwyuRQrVMcBUMmTV93/vz5pun0Tpw40dL9U2eVOsHqlJ/p7xdeeKHjZG5xcTF3eURyCAz/QDAiYcnrL5wpA0STQ9Et+xAwSPJwYFTJoYhgPwIGSS4OjCo5VHum2lwf6LGTJ082dRZ5FZ/rSdPktTJVXivyKtk7rRYFht9a1xeOZiAIRJND0S37EDBI8nBgVMmhiGA/AgZJLg6MKjlUe8wcBUPk0qVLddWdqQNbWFhYrdYcluuUHjp0aCBtAfo/CIyo5s470+b69etdxwWokkPRLfsQMEjycGBUyaGIYD8CBkkuDowqOVT7FEfBEHVghw8frpvy7qWXXhpoB9Y4DV9Vq1PxAaNlrWsB94KzZIAocii6ZR8CBk0eDowiORQR7EfAoMnFgVEkh+qM4igYcEV66rxSxWS1A6tOd5cqOwd9/c0zZ84MdQcGjOb0wQDdkkPRLfsQMEzk4cCokEMRwX4EDBO5ODAq5FDdmwqIAbQodVapMjxVojcmXKnDeu6558Ku6RlxTdDGKvZUbZrXsQHF0M+zZAw6gXbIoeiWfQgYZvJwYFjJoYhgPwKGmVwcGFZyqHiKo6CP0pR2jdPZpY6i+pOqPNM6x48fz44dO5YN0tGjR5uWpcpTgHYNulodGH1yKLplHwLGkTwc6JYcigj2I2AcycWBbsmheqAMDIWFhYXy7OxsOR2W1Z8zZ84MpC3nzp2ra0f6uXjx4kDaAvTP/Px807E/MzPTk7ipvwOIIIeiW/YhYNDk4cAokkMRwX4EDJpcHBhFcqjOTPSi4ApoX6rsnJ+fr5te7uTJk9nevXubpqHrpTQtX6owrZXaNCzT8gGjx3TBQC/JoeiWfQgoKnk40EtyKCLYj4CikosDvSSH6oziKBgyJ06cqPxUpQ4sdWSXL1/uy/bTFHyNHVhte4Di2rVr16CbANAxORTdsg8BgyIPB0aZHIoI9iNgUOTiwCiTQ7VHcRQModRxNF6P+NChQz2v9EwVpbWd5bB3YAAAteRQdMs+BADQPjkUEexHAADtk0O1TnEUDKlTp041LUsdWa+cP38+O3v27Eh1YMDoTv/bmKgBRJFD0S37EDAM5OHAqJFDEcF+BAwDuTgwauRQrVEcBUPq2LFjTctShWdtRxPl6tWrddcDPXfu3Eh0YMBoDM6Wlpaalu3Zs6cn2wKQQ9Et+xDQb/JwoAjkUESwHwH9JhcHikAO1RrFUYyNNK1bqVTq+qefCVleUnb69OnQ7aSO8eDBg6t/X7x4MbcDBYqvn4Oz3bt3921bwHiRQw0feXg++xBQJQ8HikAONZzk4vnsR0CVXBwoAjlUaxRHwYglZWk6z9rrd3Yjxdq3b9/qFKHz8/PZ3NxcSGxgNDUmT3lnuERMQ2wKYaCX5FB0yz4E9Js8HCgCORQR7EdAv8nFgSKQQz2a4igYwYr11NlEdmApIVtYWMhmZ2e7jguMtl27doVfX/369etNy/bv3991XIC1yKHoln0I6Dd5OFAEcigi2I+AfpOLA0Ugh3q0qRbWgcJ0CL2e1i11CCdPnswuXLhQ+fvIkSPZmTNnOq4GX6sTS1PWdStNeZfiVDsw1zoGkpmZmZA+5lGDSX0OUEsOVWzy8Hr2ISCPPBwYBDlU8cnF69mPgDxycWAQ5FD9pziKsZEO0nPnzvV0G4cPH66bmu78+fOVjqLTisy1rj/cbdX6oUOHsqtXr1aek9SBmcoTqDpw4EB26dKlumXVSvBONU5DnPoe/Q5QSw5VbPLwh+xDwFrk4cAgyKGKTy7+kP0IWItcHBgEOVT/uaweBFnrmp1pWacVmXnTbibddDrVjrbTDiwliKVSKbyKHhgOedNgdnu8N95/VCvKgd6QQ9Et+xBQBPJwoN/kUESwHwFFIBcH+k0ONRiKoyDIegd1pxWZa92v0yTq+PHjlU4oTRHaaWXniy++2FUbgOGW+odGV65cCe0fUzIFUCWHolv2IaAI5OFAv8mhiGA/AopALg70mxxqMBRHQZD1OoS8xKqbjjFNX9eus2fPVqbjS2154YUXOq4SrU6bBxTX3Nxc3d+Li4sdx0rJWGNClq6bDFAlh6Jb9iGgKOThQD/JoYhgPwKKQi4O9JMcajAUR0GQtQ7sbq7pnleZnjqfvCk+15M6r5MnT3ZV2Vnbpk47ZWA0nDp1qu7vvKk9W9V43zTIHOXrEQPx5FB0yz4EFIU8HOgnORQR7EdAUcjFgX6SQw2G4ijoQWV56mTOnDlTqSw/duxYx9WdedPftRsvJWFp2rvUptSBdaPapmGq8ATipUSlNllJld2dmp+fr/s79UcAjeRQdMs+BBSBPBzoNzkUEexHQBHIxYF+k0MNQBkIs7CwUE6H1czMTNexTpw4UYlV+zM9Pd1Re+bm5soRjh07Vol38eLFkHjA8ErHeW3/c+7cuY7i1MaI6BuBYpJD0S37EFAU8nCgn+RQRLAfAUUhFwf6SQ7Vf6X0zyCKsqCoUjVlmm4uVWJ2OvVdqqLcuXNn0/KLFy82Xfd4vWrMffv2VWK1O11eraWlpUqM2uuUpkrRYZoCD+iN1IdUz5BJld3tXmc9XZM4Tb1Zle4/VBXiwFCRQ9Et+xBQFPJwoJ/kUESwHwFFIRcH+kkO1WcDKMiCwksVntXKyhs3brR9/9nZ2abqzjNnzrR8/7TNVA3aGCPqBxgPi4uLdX1Ju/1Qp30YML7kUHTLPgQUgTwc6Dc5FBHsR0ARyMWBfpND9c9wtQYK2JGlzqSdqTdTx9dtB7Znz56edWApNjA+qtNoVn9amf4y9UPVPtAgEGiXHIpu2YeAIpCHA/0mhyKC/QgoArk40G9yqP5QHAU9VHt9z9SZpWtrzs/P566bkqvGzifdZ6312+kEI39S9SkwfoPB2v5pvcSqnXUB1iKHolv2IaAI5OFAv8mhiGA/AopALg70mxyq90rpn35fyg/GSbqm5pkzZyrXC601PT2d7dq1a3WdxttOnTqVnThxou3tHTp0KLt8+XLWK6lN6fEA4yddKz31Zel6wamfOnLkSOUaxNVrp6e+p3o99nQd49RXuJ460Ck5FN2yDwFFIQ8H+kkORQT7EVAUcnGgn+RQvaU4CvokJU6pc5mfn8+uXLlS6bjSsiQlSqnjmp2drXRC6X+AYXXp0qXs+eefr/Rj1b4s9WGpL0v917PPPpvNzMwMuplAQcih6JZ9CCgKeTjQT3IoItiPgKKQiwP9JIfqDcVRAAAAAAAAAABAIU0MugEAAAAAAAAAAAC9oDgKAAAAAAAAAAAoJMVRAAAAAAAAAABAISmOAgAAAAAAAAAACklxFAAAAAAAAAAAUEiKowAAAAAAAAAAgEJSHAUAAAAAAAAAABSS4igAAAAAAAAAAKCQFEcBAAAAAAAAAACFpDgKAAAAAAAAAAAoJMVRAAAAAAAAAABAISmOAgAAAAAAAAAACklxFAAAAAAAAAAAUEiKowAAAAAAAAAAgEJSHAUAAAAAAAAAABSS4igAAAAAAAAAAKCQFEcBAAAAAAAAAACFpDgKAAAAAAAAAAAoJMVRAAAAAAAAAABAISmOAgAAAAAAAAAACklxFAAAAAAAAAAAUEiKowAAAAAAAAAAgEJSHAUAAAAAAAAAABSS4igAAAAAAAAAAKCQFEcBAAAAAAAAAACFpDgKAAAAAAAAAAAoJMVRAAAAAAAAAABAISmOAgAAAAAAAAAACklxFABAlmVXr17N9u7dm509e3bQTQEAgLEiFwcAgP6ThwPjpFQul8uDbgQAwKAdOnQou3z5cjYzM5MtLCwMujkAADA25OIAANB/8nBgnJg5CgAYezdv3qwMApPZ2dlBNwcAAMaGXBwAAPpPHg6MG8VRAMDYu3Dhwurvx48fH2hbAABgnMjFAQCg/+ThwLiZGnQDAAAG7dy5c5X/0/TBe/bs6epMm6WlpWxxcbHyd/r92rVrld/T/+kMnPn5+eDWAwDA6JKLAwBA/8nDgXGjOAqAkZIS6p07d7a8/qCulX3p0qXs8OHDLa9/7Nix1cEI/ZUGaFevXq38/uyzz3Ycp5X9cnp6uuP4AACDJhcnmlwcAODR5OFEk4cD48hl9QAYOe0k0ynBT4Oyfjt58mRb6xsgDE7tADwNyDt14sSJbG5urnImzFpn2hw4cKDj+AAAw0AuTiS5OABAa+ThRJKHA+OoVC6Xy4NuBAB0e5ZDGnilAV8aUKUzaWr1e9rWNPjct29fZbtpStlaqX3PPfdc5TaDv+Gwd+/enkzve/78+aZrtaephTudohgAYBjJxemGXBwAoDPycLohDwfGkZmjABh5KbG+ePFiZWCVfk9nKtRKg7GU6PfzrIvUhryB3qlTp9a8jf5Lg/bqvtE4aItW3T8BAIpELk6n5OIAAJ2Th9MpeTgwrhRHAVAYu3btWh1sNerntcvzzo6ovd47w6N2v2j8AKFbCwsLdX+ns3AAAIpKLk675OIAAN2Th9MueTgwrhRHAVAY1TNP0mCr8WyENDjrh7Sd1A5J/2i4cOFCTwaBSeP00YcOHQrfBgDAsJCL0y65OABA9+ThtEseDowrxVEAFFLjWSrpmuuNiXmvzro4duxYz7dD99L+kPaLXkwfnOI2TlvtwwEAYFzIxXkUuTgAQDx5OI8iDwfGmeIoAAopbzDW62mEU+Kfrtfd6+t0E6O6P/TirKbGDx1cWx0AGCdycR5FLg4AEE8ezqPIw4FxpjgKgELKS+4vXbq0elZErwYWaZsS/tGQ9ofkyJEj4bHn5+fr/naGDAAwTuTiPIpcHAAgnjycR5GHA+NMcRQAhZV3tkovr7OeYjtDZrQGgUkvXrPGs2SeffbZ8G0AAAwzuThrkYsDAPSOPJy1yMOBcac4CoDCmpubq5wt049phKsDi7RNhl91P0hnNM3MzITGdm11AAC5OGuTiwMA9I48nLXIw4FxpzgKgLG6znr1Gui9GFj0Yipa4qWBWvUsll4M3BvPkEmDzcYPJAAAxoFcnEZycQCA3pOH00geDqA4CoCCy5seNvpMmerAwvTBo6F2GulevGaurQ4A8A65OI3k4gAAvScPp5E8HEBxFAAFlzdFbPQ11lO8tI3oqWjpjeeff77yf3q90v7R67NkDh06FL4NAIBRIBenkVwcAKD35OE0kocDKI4CYAzknQlRvR56hHTWjTNkRkPtFNK9eM1cWx0AoJ5cnCq5OABA/8jDqZKHA7xj6sH/AFDoa6w3Jv2nT58OubZ2OiMiJf69urZ6GrAuLS1VBhjXr1+vbCv9Xl2W/r5x40bT9bvT/dLZIGnQU103nRGSftJZG+mx9+IMkbz2p3akdlbbntqatr1///7K69LPs4tqp4/uxWvWyrXV02uS2nHlypWm5+TZZ5/NTpw4Ed4uAIBBkYvLxavk4gAA/SMPl4dXycMB3qE4CoCxGQzWTh2ckvGUhHc7GEoJfRpUNSb7EVL7Dh8+3NZ90mM8efLk6sAvnaGR2pb+TgOPNFBJP2mddFtqf/SAMG0rxa99vtNgL70Gu3fvzhYXFyuPLd2eflI7zpw505cBYfXsqOrz0utrq9d+2JCe9zTwTY89PdbUhr17967eL7WtOki8ePGiKakBgMKQi8vFE7k4AEB/ycPl4Yk8HOCBMgAUxMzMTOUnz8LCQjm97dX+nDhxoqvt3bhxoxJnfn4+9/a5ubmmba617lrxZ2dnK49pz549TbGqP2m99JPWS3+n7S4uLq75PFTXi3oeap07d648PT29Gju1JbVtLen5qG13L9XuAxcvXuzJNhpfp+rrnZ7j9Hd6rGu9Nmnd2vum9gIAjAq5uFx8PXJxAIDekIfLw9cjDwd4SHEUAGMxEMxL0tOApdtBT4q5lm4Hgo1qB3uNA4bUjvR4Wo3f2LaIQVh1sFP9Sc9Pq9K66T5p4Nsrx44dW21bL1Q/GGgcpKfH1Orgs7puddAIADAq5OJy8fXIxQEAekMeLg9fjzwc4KGJ6gxSAFB0jddYT1PdNl4Pux1pqtfGmL2UprxNU+02StMMp2lpFxYWKtPStqJxito0fW267nqn0vNw9uzZuucmTRncqrRuuk96PWqnHo504cKFpml9IzXuS+n5TVMpp+VpiuBWtls7ZXSaTrib/RMAYJjIxR+Si8eTiwMA5JOHPyQPjycPB0aJ4igAxkbewCQNPjqRBl4pUW9nsBMh71roqS1poNHuddJfeOGFumuMp0FH7WCuVWkQWTt4S4PRdp6X1P59+/atDqrzBrvdSo8tDfyTXg3eG6+tnvaP9Lyk5a0O0Hft2tUUAwCgCOTi9eTiseTiAAD55OH15OGx5OHAKFEcBcDYSIOexoQ8DWKqA4R2pMFKilU7kOqHxoFCkgZdrQ40aqW2nzp1qm5ZOqujncFHGsTVntnRyeA6DQJrt5lipp9I1Tbl7QNR8s5oqe4nrWrcnxYXF0PaBgAwaHLxenLxWHJxAIB88vB68vBY8nBglCiOAmCspIFOo06mrE3T0fZz+uD1NA7E2nHixImmwUfec7SWxnXToKeds3XSgC9vIB49EEwD/uTIkSNZL6TH0NjmNIVwen7bjdPL5wEAYJDk4vXk4jHk4gAA65OH15OHx5CHA6NGcRQAYyXvzJZ2z+qoDip6dZ3uiDNn2tE43W8626OVM2XSIKX6XHQyiFyv7e1Oh7ye2oF+rwbveWfIPPfcc23HaRz49fssLACAXpKLN5OLd08uDgCwPnl4M3l49+ThwKhRHAXA2Gkc+FSvld6qNHDs93XVe+nZZ59tWnb69OlH3i/vOuj79+9va9tpoNN4Jkl6biMHghcvXqz8n2KmM1f6cW319CFBJ9t68cUX6/4+cOBA120DABgmcvF6cvHuycUBAB5NHl5PHt49eTgwahRHATB28s6UaPVMmTTFazojYlimD46QBiyNZ2M0nv2y1jTKtdJAq5OzOtKAcmFhofIapAFVu2cttfJ69fqspsazZPIG153E6dXAFQBgUOTi9eTi3ZOLAwA8mjy8njy8e/JwYNQojgJg7OSdLdHqNdbT2SPpvpFncQyDvLNb1jtzKO+66N0MWtJ909kxaYrnSP2YPjjv2uqdPI6857Tds44AAIadXLyZXLxzcnEAgNbIw5vJwzsnDwdGkeIoAMZS3qCglcFgWqdIZ8isN4jLu2b4ercN4+D4+eefr/zfy8F73pktnZwtFBUHAGDYycXrycU7JxcHAGidPLyePLxz8nBgFCmOAmAs5V0f/VFT16ZEPZ3FUKRrq1ft3r27adn169fXXH9xcbGlGIOUzjqpnunTy8F747XVOz3TJyoOAMCwk4vXk4t3Ti4OANA6eXg9eXjn5OHAKFIcBcDYahzQpUFD41SwjQPFIg4Ck7yzMdZ7Lhqnul0rxiDVDuyPHDnSs+00nt1y4MCBkDiHDh3qql0AAMNMLv6QXLxzcnEAgPbIwx+Sh3dOHg6MIsVRAIytvDMn1jpTJg18Ll26VMjpg5Ndu3a1NNirWlpayoZddUrodLZJrwapUddWTx9CND7fzpIBAIpMLv6QXLwzcnEAgPbJwx+Sh3dGHg6MKsVRAIytvGtur3WN9QsXLlTWzbsOeRHkDezWGzzlDRyHSe3AqpeD98YzW9I+0smgs3od+Kq5ubmu2wYAMMzk4g/JxTsjFwcAaJ88/CF5eGfk4cCoUhwFwFhrHCRUz4ZpdObMmcKeIbPWGTGNg+RaeYOd9c6q6bfas516OaiKuiZ64z737LPPdtUuAIBRIBd/h1y8M3JxAIDOyMPfIQ/vjDwcGFWKowAYa3nXS2+cRrh63fWiXls9uX79etOy3bt3r7n+3r17m5YtLi5mwyKd1dSPs02uXLnS9TXRq/tXLWfJAADjQC7+Drl4Z+TiAACdkYe/Qx7eGXk4MKoURwEw1tLZHo1Jd5oWtvaMjzQwTOv06hrdwyANRhqtd8ZH3m2Ng5lBSWec9GP64LSNxuetkymmTR8MAIwrufg75OLtk4sDAHROHv4OeXj75OHAKFMcBcDYyxss1F5nPf1e5OmD864Tnga96w1q8q4j3njGyKBUB1apfZ1O6duKxsebtrfetMtrqd3XHjV9cDo7qXF9AIBRJheXi3dCLg4A0B15uDy8E/JwYJQpjgJg7KXBQuOgpjqNcDrjotcDimE8Q+bIkSOPvF/jOumskYgzZda6xn27923lMQz62urpuW+8Lv1aZ8lUpxruZLAJADCs5OJy8U7IxQEAuiMPl4d3Qh4OjDLFUQCQc531lHCnxPv06dOFvq563vXkk5MnTz7yfnnrdDqAq5We81a2v9511ZNen9nUeGZRJ9dWb3zu19vXqusW+UMJAGA8ycXrycUfTS4OANA9eXg9efijycOBUaY4CoBCaTzjoFV5g4ajR49WBoPDPn1wt2emNE5JmwYjrZyJkdZpPKMjb1DZSXs6HexUt5/a1sm1zru5tnonba4duCaHDx9ed13XXgcAhplcvH1y8fbJxQEA6snD2ycPb588HBh1iqMAKIw0IFpaWurovmng0JjIp0Q/DSaGfcrW6vXEO9F4NkqaLvnMmTMt379x3fQadHOmTLpvGmR1cpZM7eCs14P3iGurp/Y2fnCx1mAynZGT1j116lQHrQUA6D25ePvk4p2RiwMAPCQPb588vDPycGDUKY4CoBCq16nOO3uhVXmDh24S707P2Olk8NTJmTLpPmfPnq1bdvHixaZrza8nDX7SfRrPLur0saf7pjNBOhl8157t0+uzSRqvrb5///62YzR+aLHeWT1pYJxu7+WZPwAAnZKLy8Xl4gAA/ScPl4fLwwFapzgKgEJIA4i839uRN3joZkCRNzjrdJD6KO1e2zsN1Brvk8546WQa3PQcnThxoi52J69Bak+673PPPZd1M31wP85siri2emMb12pzGuin/abT5wUAoNfk4nJxuTgAQP/Jw+Xh8nCA1imOAmBkVc/y2LlzZ90AK/2elqXb2j17JF1bPO/3dtuVzmrI2/bp06dXp8mNks5SSWdc7Nu3r6W4aZ2DBw/WtS8NomoHc+1Kg8ja+6fHuN61whulgVQaXKWzT9o5S6cqPZbq4+n19MFJxLXVGwd/eQPB6qA67YvOkAEAholc/B1ycbk4AEA/ycPfIQ+XhwO0rQwAI+TGjRvl9PbVyU+676MsLCysrp9+b8X09HTlp5M2Ve974sSJjh9/aufi4mJ5z549lVgXL15c8/7z8/N1bU33ScuipG23E//cuXOr7e6mHen5a+d17kZqZ+Nr0M3zVY0xNzdXd1v1NZ2ZmQloNQBA9+TicvE8cnEAgN6Sh8vD88jDAdoz1X45FQAMXrtnUrR6Vko6E6E6bXA7ZyWk+J2c3VG9b7dnzaQzLBYWFipnVKSzU9Lf6XHs3bu3cvvi4mLdddhTW9O147s5MyZP2mY6YySdJZSud562l86ASds7cuRIpT3Xr1+vnGVy5cqVyuNO66e2d/r81V5bPcXqJk4nuplmOt03nQGT2p9en3RmV3rt0tlCaVl6PI3XcgcAGDS5eD25uFwcAKAf5OH15OHycIB2lFKFVFv3AAAGJg2c0vTItdIgqnbQmtZJUxWnwVZ1at00OEoDjP3791cGip1OeduuNLh5/vnnV9uR2pbakX5Sm9N0v91eCz1NPVy9vnmaTrmbgVm7Ux5HDdTS85SmcU6D4yS9Tum56cdjAQCgNXLxZnJxAAB6TR7eTB4O0D7FUQBQsIHguEkDpupZMtIaAAB6RS7eTC4OAECvycObycMB2jcx6AYAAHSjOgh0RgkAAPSXXBwAAPpPHg7QPsVRAMDISlPv1p4tAwAA9IdcHAAA+k8eDtAZxVEAwMhK1yRP0vXj+3XNeAAAQC4OAACDIA8H6IziKABgZK81f/ny5crvR44cGXRzAABgbMjFAQCg/+ThAJ1THAUAjKQLFy6s/m76YAAA6B+5OAAA9J88HKBziqMAgJGePnjPnj3ZzMzMoJsDAABjQy4OAAD9Jw8H6JziKAAYIUtLSy0tK7pr165lV69erfzuDBkAAPpBLv4OuTgAAP0kD3+HPBygO4qjAGDErineyrKiu3Tp0urvc3NzA20LAADjQS7+Drk4AAD9JA9/hzwcoDuKowBghM4MOXr0aNPykydPrp4xMm7TB6epg9MUwgAA0Ety8Yfk4gAA9Is8/CF5OEB3prq8PwDQw4Hfvn37HnkmTO1609PTlf9feOGFwl5zPA1602NOTB8MAEAvyMXzycUBAOgleXg+eThA9xRHAcAQSwPANLirDvBavU+Rr7n+/PPPr/5+5MiRgbYFAIDikos3k4sDANBr8vBm8nCA7pXK5XI5IA4AQF/s3LmzMtidnZ3N5ufnB90cAAAYG3JxAADoP3k4QPcmAmIAAPTF5cuXV6dTNn0wAAD0j1wcAAD6Tx4OEENxFAAwctKUynNzc4NuBgAAjB25OAAA9J88HKA7LqsHAIzcmTL79+9v65rzAABA9+TiAADQf/JwgO4pjgIAAAAAAAAAAArJZfUAAAAAAAAAAIBCUhwFAAAAAAAAAAAUkuIoAAAAAAAAAACgkBRHAQAAAAAAAAAAhaQ4CgAAAAAAAAAAKCTFUQAAAAAAAAAAQCEpjgIAAAAAAAAAAApJcRQAAAAAAAAAAFBIiqMAAAAAAAAAAIBCUhwFAAAAAAAAAAAUkuIoAAAAAAAAAACgkBRHAQAAAAAAAAAAhTQ16AbAOFhZWcmuX78+6GYAALCG3bt3ZxMTzh0pGnk4AMDwk4sXk1wcAGC47R6zPFxxFPRBGgQ+9dRTg24GAABreOWVV7Inn3xy0M0gmDwcAGD4ycWLSS4OADDcXhmzPHx8ysAAAAAAAAAAAICxojgKAAAAAAAAAAAoJMVRAAAAAAAAAABAIU0NugEwribf911ZNjnVUKP4zu+lUs2yUqnutqzutgfr18ao3v7gfrm3ZZM14evjlrLq9tIfk00xquuXamKkv2rj1q/fvGxi9XHm3ZYTo2H96jp1sXJiPLytef3JcqlpWeP/9ctq13/n94fPZqnp5ap/VR+sn3Nbdf1SVn64fsN6pdLat9Vtc7UZzevXxV8nbnW91d2uZr2aRdlEddk67a+L37jNmmB57Xm41+e0p2E7deFWn4vmWLUxGuPWx1p7m/nPxTrPwTqPrS5GwzZzn+tHbLPxtch7THnPWW6snHY3vk71+2B12drtyd0H656z+vUe/ZpU18uJ38Ky+tekeVnzPtLa+tXjr1RaWbc9q/tS7nOX08bVY+dh3NX75q2frTTtN6u3T+TFX1lnmw3/V94ymh9T9faHb1vrxKqJsXq/upL9vPXrt1Mfv3mbTQdbTay8t9Sajqf+77WWtbB+zVvNw/XyTk3I7dwfxFj/wF1Vzn0DKrV+W078utsm1m7P6rKa9Vcfe+36DevVxcrZZmOM2vUfPqaaZavPe17762MsffNO9tc/+i9rnhDGyeS3fSTLpjaueXA+zI9zDuKG3Lnya26e3pCL13U4D/Ld3Ly+epzU5Os5Y4SH+W19Hl6/fvOyiXVvy4mRs35jrr1WjMZcvHb9ai6en3fn5eSlnJy8+sgfPNc5+WXd+k059sP18/KPptwn97aaZQ25eG4u9nBRU9zcvC4vP258v10rf2rI2WpjrebMOe1pPUdtXtaYi9fnIfUx65atm9uu3cZW8928x9Y43sjbZt6YYr0cNX88sPYYITdWzuPNHb/lLlu7Pbn7YEM+Xb8sJ0aplRw+L9baeXRefpy/j7S2fmMu/qgcvjFG3m31x059zlwXf7WNNfl6w215+XHtuKFpm3XbrubMzY+pLmduyItLj4jRnIuvd1vNtlbj19y2mt/Xrt94v5qbWsm78/L1Ftd/mEvmrL/6d17nXhNj/QP3wXby3oDWzqfr8tfmjqf5ttrHlDcOaMyx8zrr+jeI+vvlbDMvRnX9/By7pj2NuXhdvv7O79ev381+4Hv/Rc1GGCcbPvzjWTa1OStN1OSeD36vWzb5ICesyUOzhvVKNftXbozqZ88PYuVtc6JuWTV3z4m1Gr8mB55saE9tjv1gvYm6Nlbz1gf/196Ws2yiYVndbavLHj491bHEwyFL87arMfPi1t1WyonfsH51nbr21HQRk9W4Ne2oLmv8v/J7KWfZ6nrNz+eDl3X1frW/V9erjTWVs2x1vXW2nbvNhvvlxaosq8atdok5r2/t8766Xs5tD7vt5vY0bqf29al7vI3PU137c+I3rFez+z/cP+ve6h4sy9b8KKhujPZw/NC0qOl+te2v2/dK641xSmvHXy9WtvbjLJVrcqXyyprLVnOq1b/TeitNy1Z/r8ZYedT69XHrPptdJ/5qrJW8WOUW27j84M+aba4s1/9fWe3B7znbLK+uv86ymm2vxqqJX/19tR21t622sab91d+r96vGrGtjTfsfrL8aY7m2PQ9uq2tjue62lZr41fXKeTEetL/utuq211lW+/yv5K2/3PwcrN5ntY058VeaH9NK7jbrH8c7cavrNz+mlQf7VzVmXdzq+rW7W942V9erv1/ebfXLqu3Lua02xoPjaPlBW2tuWm1/7bLG9arr1C7LW3/1ZcjWX391ver9srVjrdXupm0++PvtbCX7/2ZfzcaZ4igYlMmprDS5oeFTprziqIkOi6MmOiyOmuigOGrtYqd1C6DWLY7K+WJl3eKotb+wyVt/stzaFzGT6xZHPRhgrPOlS936uQl6dVm7xVGtfanQUqFSzn3rP+uKL47KH9TkffnQvH7jbbXL8gtZspxt1sd9VCFOU/vrnot1noOcx5b7ZVpAcdREx8VRzV80tPIFTO6Xe3n7ZW4hUV77yy20v9yT4qiJFpY9sjiqKX67xVHrfClSt6zN4qi8Yqc2i6PWK2zK/bJlnS9/Wi6Oyl2/w+Koxvs9sjiquu2a29b74mad2/K/DMnbZt4bxIMY631CNBFcHNXClzn17Vnvi5WGtuZ9cZNXHDXRTXFU/XrrFUcx5qp5eF6unZMfd1YcNdFhcVT9FzKPLo6qz5Pr11+7AOrRxVENJxs8sjhq7Tw9b/1qLr5ecVQ1D8/Lv/Ny8YkuiqMm2i6OysuZs7VzmfXyp5y8br2cNqI4Ku9tobUTInJuq4sRXxw1EVgc9ahxWKfFUa3k5vXL8uKvl2PX/732soYxTm4hUas5dtZRjt1ucVR+G3OWrVcclRu/3eKoFnLhnJz5kcVRLeTH6xVHPaqwKTfHXifnb6k4Knf9LoqjmnL4mlC5eXRDjNzcOS9+8235OXDj+nkdf4vFUevm/I/OtXPb2HJxVE6OvbrNbP0ceL0cvoUYj8qxm9Zb7zbGUyqM2rClheKo9QqUcgqV8mJUl60Ta2Ld+O21MT/+w/29sago97ZuiqMa4rZdHJVbrPUw/kQrxVHrFELlLXtU8VJjcdR6sSq/lzqN/+jbWl6/xeKovAKlxvXWK5yq3WZecdTqsrp9ap1tt1AcVV3nkcVRpdaKo/I/m18vfvV+zY8pf/xQWif+OrHaLo5ap9ip5eKolc6Ko9aL1XJxVIttXMkrPFqnOKqhKOnRxVE5t61bHNUcv5U21hVHrdPG3EKl1cKdnGV5xVEtxKgrVGqIlRejrvCo1eKopjY+oiBrveKonAKoh+s337ayWgS2TnFU7W0TOdt8MEZYfRw1Y5aVUk5xVHVZNX7NGK1aCFWuGVs+LICq/r96U0vLqn/XL2tx/dX/115WVxxVLeRqc9lq/HLNSmOq9n0CAAAAAAAAAACgMBRHAQAAAAAAAAAAhaQ4CgAAAAAAAAAAKCTFUQAAAAAAAAAAQCEpjgIAAAAAAAAAAApJcRQAAAAAAAAAAFBIiqMAAAAAAAAAAIBCUhwFAAAAAAAAAAAUkuIoAAAAAAAAAACgkBRHAQAAAAAAAAAAhaQ4CgAAAAAAAAAAKCTFUQAAAAAAAAAAQCFNDboBADBIn/rT38hKdUvK2cEP/8jA2gM89Av/6qWHfzw4UP9vP/b0wNoDFMPyja9nU0++f9DNAIJ88nO/Wcnhk2pe/yPf+cMDbRMQ4+cv/nnTsp/7Ce/hQLO3F3+78n+p9HA+gK0fmh1gi4Ai+cVf/MXK/6XyO+OO5L/6+z87wBYB0AnFUQCMtd/+QvoypZ7iKBgOv/ivX25apjgK6Nprr2SZ4igojPnPf7JpmeIoKIZfuPTlpmWKo4A8d679TtMyxVFAlH/4D/5B0zLFUQCjx2X1AAAAAAAAAACAQlIcBQAAAAAAAAAAFJLiKAAAAAAAAAAAoJAURwEAAAAAAAAAAIWkOAoAAAAAAAAAACgkxVEAAAAAAAAAAEAhKY4CAAAAAAAAAAAKSXEUAAAAAAAAAABQSIqjAAAAAAAAAACAQlIcBQAAAAAAAAAAFNLUoBsAY2v5flZuqlF88HupZlmptM5t1d9zljXer279yZz1q7dV75d+nWwtxoP7lB8sK9WsXyo1L6vGy7+teVm5Yf3qdupuq1u/ut47y1Zq1p94sKxcLjUta/z/nftWl9Wu/87v1bVWam6rPu31j/bB+jm3VdcvPdgb8tYrlda+rW6bq81oXr8u/jpxq+ut7j4169Usyiaqy9Zpf138xm3WBMtrz8O9N6c9DdupC7f6XDTHqo2RF7fWW3fezN1m/nNRXSfv+Vz7sdXFaGhP7nP9iG02vhb1z0/esnVi5bS78XWq3wery9ZuT+4+WPeclR/Z/vrXpLpeTvwWltW/Js3LGl+TiRbXrx5/pdLKuu1Z3Zdyn7ucNq4eOw/jrt43b/1spWm/Wb19Ii/+yjrbbPi/8lbQ/Jiqtz98+1knVk2M1fvVlezXxG3w6ht3c+I3b7PpYKvZdt5bak3HU//3WstaWL/mrebhenmnJuR27g9irH/grirnvgGVWr8tJ37dbRNrt2d1Wc36q4+9dv2G9epi5WyzMUbt+g8fU82y1ec9r/31MZa+eafmyWAclZfvPfitlXy65vam3Dnntrr75q0/uU5eXz1OanPtdWI05OHvLKnPnWuXZeve1rysMQ+v3Vb1tvr1m/P0ai5em2NXc/HaZY25eDUPf2dZKScnr8/Fc7qs+vWbcuyH6+flH025T+5tNcsacvHcXOzhoqa4uXldXn7c+H67Vv7UkLPVxlrNmXPa03qO2rysMRevz0PqY9YtWze3XbuNtY+30Zspn1/nsTWON/K2mTemWC9HzR8PrD1GyI2V83hzx2+5y9ZuT+4+2JBP1y/LiVFqJYfPi7V2Hp2XH+fvI62t35iLPyqHb4yRd1v9sVOfM9fFX21jTb7ecFteflw7bmjaZt22qzlz82Oqy7Eb8uLSI2I05+Lr3VazrdX4Nbet5ve16zfer+amVvPuBq++dm/t9WviP8wlc+Kv/p3XudfEWP/AfbCdvDegtfPpuvy1ueNpvq32MeWNAxpz7LzOuv4Nov5+OdvMi1FdPz/HrmlPYy5el68/yMWvPxjTMZ7u336np5moyXerv9cuW3mQX9bmoQ9uL63+v05nkULceeud9SYf5LQ18Vd/r1tWzbvrt1O/zZoceLKhPbU59oP1asex1faWHhwfK7W3PVhW+5gmGpbV3ba67OHjLVXz4tXhQ/O2qzHz4tbdVsqJ37B+dZ269tS8JJPVuDXtqC5r/D+5X2pe9nC9B2OFutse/F+z0erv1fVqY03lLFtdb51t526z4X55sSrLqnGrXWLO61v7vK+ul3Pbw267uT2N26l9feoeb+PzVNf+nPgN69Xs/g/3z7q3ugfLsjU/Cqoboz0cPzQtarpfbfvr9r3VXKN+ndr1cuOvF6uu/Wv3M6+++uo7Mco1+VO5mtuVG/5O6600LVv9vRpj5VHr18et+2x2nfirsVbyYpVbbOPygz9rtrmyXP9/ZbUHv+dss7y6/jrLara9GqsmfvX31XbU3rbaxpr2V3+v3q8as66NNe1/sP5qjOXa9jy4ra6N5brbVmriV9cr58V40P6626rbXmdZ7fO/krf+cvNzsHqf1TbmxF9pfkwrudusfxzvxK2u3/yYVh7sX9WYdXGr69fubnnbXF2v/n55t9Uvq7Yv57baGA+Oo+UHba25abX9tcsa16uuU7ssb/3VlyFbf/3V9ar3y9aOtVa7m7b54O+366KNp1K5XNtrA72QkqSnnnpq0M0AAGANr7zySvbkk08OuhkEk4cDAAw/uXgxycUBAIbbK2OWh7usHgAAAAAAAAAAUEiKowAAAAAAAAAAgEJSHAUAAAAAAAAAABRSqVwulwfdCCi6lZWV7Pr164NuBgAAa9i9e3c2MeHckaKRhwMADD+5eDHJxQEAhtvuMcvDFUcBAAAAAAAAAACFND5lYAAAAAAAAAAAwFhRHAUAAAAAAAAAABSS4igAAAAAAAAAAKCQFEcBAAAAAAAAAACFpDgKAAAAAAAAAAAoJMVRAAAAAAAAAABAISmOAgAAAAAAAAAACklxFAAAAAAAAAAAUEiKowAAAAAAAAAAgEJSHAUAAAAAAAAAABSS4igAAAAAAAAAAKCQFEcBAAAAAAAAAACFpDgKAAAAAAAAAAAoJMVRAAAAAAAAAABAISmOAgAAAAAAAAAACklxFAAAAAAAAAAAUEiKowAAAAAAAAAAgEJSHAUAAAAAAAAAABSS4igAAAAAAAAAAKCQFEcBMDQuX76cHT58ONu3b1+2c+fOrFQqZXv37s0OHTqUnT17Nrt582Y2bK5du1Zp68mTJyu/dyI9rvT40uM+fvx4eBshSjoW0/4+akaxb4GiKtLxWKTHAuN6TMjloT3GAwDAOJA7ABRTqVwulwfdCADGWxpQnDt3rvKFxPT0dDY7O5sdOHCg8vvi4mJlMHL16tXKuum2tO6ePXuyYZDalgZFValdqY1p4LR///7K3+lx1EqPMz2eF198se6xJQsLC9nMzExfHwM8StpHjx49urqv3rhxo2m/Hkaj3LdA0RTpeCzSY4FxPybk8tAa4wFgXKR+4eLFi9mVK1cqfUcqgEh9xq5duyrv8SlvSP2FvgKKSe4AUHCpOAoABmFxcbG8Z8+eVKRb+Tlx4kT5xo0buevOz8/XrXvmzJnyMEjtqrap25+LFy8O+uFA0zE6NzfXtK+udZwOiyL0LVAURToei/RYIEIRjgm5PKzPeAAYF+l9fHp6uuX3/dnZ2Ur/ARSD3AFgPJg5CoCBSGdYHDx4cHUK2nRW1tzc3CPvl87QSmdoJMeOHaucnTFMZ5t3Ip15kh5/OtsEBmm9mRBqDfOZ4kXpW6AIinQ8FumxQISiHBNyeahnPDA8/RPQP43Hf7pMbu1MkKlvvHTp0upsMrVS//Lcc88NbZ8IPJrcAWB8KI4CoO/SQOOZZ55ZHXCkgUMaQLQqXd+7+mHEmTNnshMnTmSj+oWKD1EYtJ07d64ei42qHwSkDwFH4cuQIvUtMOqKdDwW6bFAhCIdE3J5MB4Y1v4J6L3UV6SCiFQY0erlsU6ePFm57FatdJ/5+XmX1oIRJHcAGC+KowDou9qzKtKZWAsLC119iZGu9z2oDyA6/UIlfeiSBky1Z6LBIJRKpcr/6cuNdBzt37+/sk+nfTQtSx/6pQ//RuHLkCL1LTDqinQ8FumxQIQiHRNyeTAeGNb+Cei9ffv2VQqj2p3x5fz585XZpWqlPvGll14ayr4RWJvcAWC8TA26AQCMlzRgqA44klOnTrUdI31ImwYr1Sn+Dx8+3PbAJVo6KyQNhNKZYqldV65cWT3jJH0wsmvXrkqb0zpHjhzxYQlDoyh18kXtW2AUFel4LNJjgQhFPSbk8owz44Hh7p+A3khFn7UzRrUjFVOlAojaGaRS3pCKrdJyYDTIHQDGz8SgGwDAeKk94zR9qdDK9bvzPPvss6u/p8FHdQAyKLt37149gzx9qZLOpE0fMqef9Hv6cCRdrzx9gOLLFIhX1L4FRlGRjsciPRaIUNRjQi4Po6+o/RMQL10CKxU2VS+H14mUMzTODlONC4wGuQPA+FEcBUDfNA4O0hcQnWocrLR7lhdQHPoWGB5FOh6L9FgggmMCGFb6J6Ddwqak8ZKh7cq7/+nTp1dnnwSGl9wBYDwpjgKgbxoHBgcOHOg4VuPZWefPn+84FjDa9C0wPIp0PBbpsUAExwQwrPRPQDuqx3WaEbIbefdPhVEXLlzoKi7Qe3IHgPGkOAqAvmn8cCBdj7sbjQOPS5cudRUPGE36FhgeRToei/RYIIJjAhhW+iegVZcvX16dJSbi0ld5/U26FC8w3OQOAONJcRQAfXHt2rWmaaUbBw3tahy0zM/PdxUPGD36FhgeRToei/RYIIJjAhhW+iegHdXjORVJ7du3LyuVSl3N8pJ3Ka5qARYwnOQOAONLcRQAfZH3wUC3g45du3Y9chtAselbYHgU6Xgs0mOBCI4JYFjpn4B2iyIaHT9+PHd5K/bu3RvQKqCf5A4A40txFAB90YuzJaanp+v+7vSDDGB06VtgeBTpeCzSY4EIjglgWOmfgHY0zhbTbSFDY0FElX4DhpfcAWB8KY4CoC8aBwSNA4ZO7N69u2nZ1atXu44LjA59CwyPIh2PRXosEMExAQwr/RPQjrX6iLWKnIDikTsAjC/FUQAMZNAR8aFD3sDFWRkwXvQtMDyKdDwW6bFABMcEMKz0T0A70iX08o752dnZjuItLS3lLldsBcNL7gAwvhRHATDQaaujDcugIz3es2fPZocOHcr27t2blUqlbOfOndm+ffuyw4cPu+44BBm3vgWGWZGOxyI9FogwbseEXB5Gx7j1T0B3UhHUxYsXsz179qz+/cILL3Q8c8zi4mLu8oiZaIDekDsAjC/FUQAMZMAR8SFB3lkd169fzwYpDXrSFybpy5OTJ09WHmc6Ky198HLmzJls//792aVLlypftKR1zp8/P9D2wigbp74Fhl2RjsciPRaIME7HhFweRss49U9AnLm5uUpRU7lczubn57OZmZmOY+VdNqvTWaiA3pM7AIy3qUE3AIDiW2uK6aKdkZG+KElfpqQBVfoCJX3Ykid90ZLWSx+gVL9sST/OKoP2jEvfAqOgSMdjkR4LRBiXY0IuD6NnXPonYHjlzSaZiqiB4SR3ABhvZo4CoDBT1Q7SuXPnKl+SHDt2LLtx48aaX6YkaeruhYWF1TPT0gcpBw8eHIvnCSI5ZmB4FOl4LNJjgQjjcEzI5WE0Oe6AQVprBskTJ070vS1Aa+QOAONNcRQAhTojY1ADnHQmSPoyJX2x0qp0hnlVOvM8fakCtG4c+hYYFUU6Hov0WCDCOBwTcnkYTePQPwHDK11yt5HCKBhucgeA8aY4CoCRNUyXrpidnW3ry5TqWee1H6SkL1XSZTqAwRqmvgXGXZGOxyI9FijaMSGXB4a1fwKGU3rfb7xkVmNuAIwPuQPAaFAcBQABX6TMz893dP90hnqts2fPuh45AAD0gVweAOjE0aNH151VEgCA4aM4CoCRNSxT0zZ+KdLuWSUzMzN1y5xxDoM1LH0LUKzjsUiPBYp0TMjlgWHtn4DhdP78+crMUY2FUY05ATA+5A4Ao0FxFAA9t2vXrkE3Yajt37+/7u9Lly4ZUEEL9C0wPIp0PBbpsUAEx8T65PIwOPonoN/Se/zx48frlqVL6c3NzQ2sTUDr5A4A401xFAAM2L59+5qWXbhwYSBtAQAAWieXB4Dxcfjw4abCqBMnTgysPQAAtE5xFAAD0auzqdOlLYpwxsr8/PxA2gKjTt8Cw6NIx2ORHgtEcEw8JJeH4aJ/AnolXTr38uXLq38rjIJikDsAjA/FUQD0XK8GAktLS03L9uzZkxXh+an9sAXIp2+B4VGk47FIjwUiOCbWJ5eHwdE/Qf9cvXo127t3b1YqlYbuZ+fOnU2Xuot2/vz57OzZs6t/K4yC0SR3ABhviqMA6Ll+DgR2796dFeFs816dsQJFom+B4VGk47FIjwUiOCbWJ5eHwdE/Qf9cuXIlu3btWjaM0vtuKl7qZWFYbfHVuXPnFEbBiJI7AIy3qUE3AIDxOSuj9kuCvLMp2pX3pUORpqtNHzo5wwTWp2+B4VGk47FIjwUiOCbaJ5eH/tA/QX8cOXIkW1xcrBwfEcdZdKHyoUOHevZ+fvDgwdW/L168mM3NzfVkW0B/yB0AxpfiKAD69kFF7SAh4mzq69evNy3bv39/1g9pKu3Tp09XHkf6UOS5557reMCz1v2ccQ7j17fAKCvS8VikxwIRinZMyOWhOIrWP8GwSu936VJy4yT1J/v27VvtV+bn57PZ2dlBNwvoktwBYHy5rB4AfTEzMxMeM2/g0o+zsy9dupSdPHlydfvp78OHD3ccb60BmDPNYbz6Fhh1RToei/RYIEKRjgm5PBRLkfonYDgLo1Jh2MLCgsIoKAi5A8D4UhwFQF8cOHCgaVm3Z2U0TnmbBhz9mK72+eefb1p2+fLl8O2YehfGq2+BUVek47FIjwUiFOmYkMtDsRSpfwKGR7qUXrqkXrUwqhfFFMBgyB0AxpfiKAD6Iu/sqvQhQzca79+vszGiL5GR9zwYPMH49S0w6op0PBbpsUCEIh0TcnkoliL1T8BwOHToUHb16tXKsf/SSy/pA6Bg5A4A40txFAB9kXeG1ZUrV0IHHd1cDqMdeYObY8eOhZ1Zkhw5cqTjeDBOitS3wKgr0vFYpMcCEYp0TMjloViK1D8Bg5eO9zSjZMoX0oxR7RY8p8v1lkqlrgstgN6ROwCML8VRAPTN3Nxc3d+Li4tdnfHdeNZ3v76E2Lt37+pAKv2cOHEiO3fuXMfx0octeWepAePVt0ARFOl4LNJjgQhFOSbk8lA8RemfgME6fvx4pbgp5QedFEYlL774YuV/s8bAcJM7AIwnxVEA9M2pU6fq/k5nYnWq8b5pQNOvy1dUp95NH5qkD0vOnDnTVbzGx5IeR+MADSh+3wJFUKTjsUiPBSIU5ZiQy0PxFKV/Agbn7Nmz2fnz5yuFUS+88ELHx331cnzAcJM7AIwnxVEA9E317OzaDww6NT8/X/d3+nKjXemMjnRGWPppPLtjPekxpA86ujnDvHbK3cZpd7v9ggZGUafH4zD2LTDOhu141LdAnGE7JuTyUCzes4FBSUVRJ0+e7GrGqNpLc+VdsgsYLnIHgPGkOAqAgZ6VkT6A6ETt/dJApnoGeKvSgOeZZ56pXP87/aTf2xkEpS890vrpg9tupA9faqUvao4dO9ZVTOi1paWl0HjdHo/D1LcAw3M86lsg3rAcE3J5GCzjAaAo0owvqZAhHet5l8ptRyqYTsWdZo6C0SB3ABg/iqMA6Ks0rWztWRmdnFmdprqudfHixbZjHDx4sO5s1PR7Wtbu40gf3HZ6ZkneFzKNZ5rAoF2/fr3n2+j2eBymvgUYnuNR3wLxhuWYkMtD/xgPAEWV3ssPHTpU6T8i3sOr/c6BAwcCWgf0mtwBYPwojgKg79IgoTpFdTqrqnEQsZ70IWntGdpp0NLuGVnVM7nyYjdeFmM91cHOvn372v5SJe/D3hTP2WUMm7x9u5uppnt1PA5D3wIMz+AxvuYAACmESURBVPGob4HeGfQxIZeH/jIeAIoo9RHV9/J0/KciqU5+Uh6xd+/erFQqrc4eo++A0SF3ABgzZQAYgIWFhXJ6G6r+XLx48ZH3uXHjRnlmZmb1PmfOnOlo2ylO7bZrf9Jt7Zifn2+7PemxT09P1203xYFhkvbTY8eO5R4naf89d+5ceXFxsevtRB6Pg+5bgGK+1w/6scAwKsrxLZeHtRkPAEWVjvnG9/LIH2C0yB0AxodMDYCBDjz27NnT0iCinXVbMTc31/ThRVrWidovSNL/qW15H+Km9Rq3mx5TxAfK0KkTJ05U9tvqT6cf/tXGSPv6oI7HQfctQDHf69ttn76FcVCU41suz7gzHvCeDeMkvcfXHvPRPyk2MHrkDgDjoZT+GfTsVQCMtzT9bJp6Ok1Fm6axPXLkSGVa6mRxcTG7fPny6rT96VrgUVPUHj9+PLtw4ULl92PHjnV0XfHGx1E79W56LLt27ar83ng5gHRb2l7aLgxSdb+tTiHdjerlMBYWFrKZmZmBHo+D7FuA4r7XJ/oWKObxLZdnXBkPeM+GcXL48OHs0qVLPYs/Ozubzc/P9yw+0FtyB4BiUxwFwNBIH048//zzlS8f0k91EJIGGOnDhWeffbbtD1j7LbU5faCbrleeHsPS0lJlWXoM6bGMyuOAIilC3wJFUaTjsUiPBSIU4ZiQy0MxFaF/AmIcOnSoUtzQKydOnAgp7gQGS+4AUEyKowAAAAAAAAAAgEKaGHQDAAAAAAAAAAAAekFxFAAAAAAAAAAAUEiKowAAAAAAAAAAgEJSHAUAAAAAAAAAABSS4igAAAAAAAAAAKCQFEcBAAAAAAAAAACFpDgKAAAAAAAAAAAoJMVRAAAAAAAAAABAISmOAgAAAAAAAAAACklxFAAAAAAAAAAAUEiKowAAAAAAAAAAgEJSHAUAAAAAAAAAABSS4igAAAAAAAAAAKCQFEcBAAAAAAAAAACFpDgKAAAAAAAAAAAoJMVRAAAAAAAAAABAISmOAgAAAAAAAAAACklxFAAAAAAAAAAAUEiKowAAAAAAAAAAgEJSHAUAAAAAAAAAABSS4igAAAAAAAAAAKCQFEcBAAAAAAAAAACFpDgKAAAAAAAAAAAoJMVRAAAAAAAAAABAISmOAgAAAAAAAAAACklxFAAAAAAAAAAAUEiKowAAAAAAAAAAgEJSHAUAAAAAAAAAABSS4igAGHPXrl3L9u3bl509e3bQTaGgrl69mu3duze7fPnyoJsCADA05OH0mjwcAPnGYHgPpuj0LePr8OHD2c6dOyv9HMV4fa6O0XuW4igAGGMp6UmDmJs3b2bHjh0bdHMoqJmZmWzPnj3ZoUOHsvPnzw+6OQAAAycPpx/k4QDjTb4xON6DKTJ9y3i7dOlS5bUfh0KacXl9ZsboPUtxFACM+SAmWVhYyKanpwfdJApsfn6+kmQfP37cGUUAwFiTh9NP8nCA8TQs+UaaXWZcZxfxHkwRDUvfwmCkopuq69evZ8NgnN9nIl+f+TF5z1IcBQBjPoh54YUXDGJYM5lOZwqkMwbSVKylUqnyk35P+0+aojUlyq0OPtK+ls5AOHnyZOHPQAAAyCMPpxXycACKkG+kWSvSZXpSW0bl/cd7MAx/3wJV3mdivTAG71mlcrlcHnQjAGhNejNMVdDpJ1X9pjfRpaWlyt/V38+cOWMqU1q6HnjaZ1I1+Ozs7KCbxJBOv3r06NG6sw0eZW5uLnvuuefWHRjb/wAYRfJwIsiDaIU8HIBuDFN/n9pR/XI3vUfduHEjG2ZFfg82nqFbw7AfM3jp9U9FPMmJEycq/cYgeZ+Jf32uFfxYN3MUwAhJb5qpajhV7abK4VS5m95Mq4Obdt5QGV+pIr16PfCiJTbEnXGR+pq0f6TpkVMtfRpYpN9TUr2W1B9duHBh3djpzIOUzCdpG6nvAoBhJw8ngjycR5GHA1CUfCO9p9XOelGdKWNYFf092HiGovQtUOV9pjf2DMF7Vi8pjgIYIelNM1UJp+u+mrKUTqTrBadkJiU4586dC03sUuxUUV6dCjT9n6Y0TQlUSkqLlkQVWXrN0kD34sWLlf4mSX1O+j2dbZCS9rUS9rRvPUrqx9JPGrCkbQHAsJOH0y15OP//9u7GyGlz3wPwcuYUwEcH0EEIFQQ6AE4FkA7IUAEDHeyhArLpYJMKYNPB3lQApAPu/Hzn5WoVe1eS9a3nmfHAwtqWLVnv72+9HycNyOEAzDFvdJFOOE3+bS7W3garZ1jSuaUsNwbX0c4M5+ma68YsqwfAMr169SpLo165nZ6eTr1ZzNT5+fn34yR/78PZ2dm327dv/+M4PHR7/Phxb8/NMLJPs6++fv164+/md16+fPn9GMg5qanct8v9AGAO5HDakMNpQg4HYG55o49tWUJm3mIbrJ5hjueWi4uLbz/88MP352vymWRc2Sdl/0x5HtPODL9/vs6ozeqTmaMAFmzq9XxZ3giPSI/vPqa+zQiO9Bov0+mWqUDL7fLycneMVnu1Z2R79X7MT5lZoMkosvxORgtlVEP2eZtzUu5bfj/TeVenwAWAuZPDaUMOpwk5HIA55Y1jXDdzxxxn9dhiG6yeYU7nlnwGU6dkNlzZlCa0M8O7PaM2q086RwEs3NjTKbJMCS8lgB0bpnIxJYVKLrCkIMrFl4S1MhVo9djMNKD5//p0oFknOY9hiY/5yf6KMcJuLuaVguDFixeDPx8A9EkOpwk5nKbkcADmkDeOlZyStiwdKdLe7MszWfZ3TrbaBqtnmOrcksdMXZJOLKlNsiR4foYmtDPjeTmjNqsvOkcBLJw1wmlSbJTe8gmMxxa+P/300y7EJRidn583erwUT/X1yLNdKX6MXJ+nDx8+jPI8pbDOMaUIBmBJ5HBuIofThRwOwJR541hlW16/fn1w9o6pO3AdsrU2WD3DmOeWO3funNy6dWt3S2eozBRVZqPJ4+cGTWhnxvV2Jm1WX3SOAoCVqwbEY0NhHishKCPV6xdZbpKLOPWR62X0+9Jku5fWy7+pFKeR4nSMC2ZrHH0AABByeP/k8P7I4QDr0Gfe6HM2j8xsmc4U+zo8pNPFnGb10AbD8OeW8tnKsZ/zQz4HZ2dnu6XD8uejR49OtmDN9cwYtDPje7myNkvnKABYsQSt0ps7F1KOGeGRQJnwlsfISPUuUkjVt6E87pJk1H5Z0mRtqsuyvHnzZpTnLNPfznHKWwCALuTwYcjh/ZLDAZatz7zR92weN3WqmLojV5U2GIY/t3z79m13S2eoi4uL3YCPdGrZ2gxma65nxqCdmcbLFbVZOkcBwIpVg9bPP/981GOVMHloqtKm9t0/27mkHvNlrfU1jvJIwbtvXfkhVY/NORUtAABdyeHDkMP7JYcDLFufeaOv2TzSnlUvAl83q8dclufRBsN8zy1rs+Z6Zmjamen8vKI2S+coAFixai/uY9ftLo9Veol3te/+uSDz66+/nizFki4gHRvWxyiAU8CUgiaFgZEzAMDSyeHDkMP7JYcDLFufeeNYpRP2voumhy6kHtvxu0/aYJjnuWVt1l7PDEk7M537K2qzdI4CgBUXMSVsH3shpYSdBLg+RjVUe/YXWVuceaiG8+z7MaZKXdPoAwBg2+RwupLDAZgibww1m8eSZvXQBsP8zi1QaGem9/NK2iydowBgpbJud/HkyZOjHuv8/Px7aMua2Ldu3ToqvFV7yRdL7m2+NvX13hN8h57qtXpM5FgwigYAWCo5nK7kcACmyBtDzuaxlFk9tMEwv3MLFNqZ6T1eSZulcxQArFCCSXVk+b6LIG3sC2nHhLcHDx4ctT0Mrz4yaOhiOKM7ciuWtLwLAEAhh3MsORyAsfPGMbId183msaRZPbTBbN2czi1QaGfm4f5K2iydowBgharBJIGx2iO9i0O9wLuOMr979+7ef19ST/m1e/369T/2zdBrYVcLbsu7AABLJIdzLDkcgLHzxtCzeSxlVg9tMFs3p3MLFNqZ+Xi8gjZL5ygAVie9yN+9e7cLFc+ePdv9fWvK8ht9jfA4VAgdurjC8mWf10cyZAmXIdfCro6U+PTp02DPAwAMQw6XwzmeHA7QzJZzR99545h9kA7bN83msZRZPbTBbPm8MqdzCxTamXl5soI2S+coAA5KWEgR8PDhw5M7d+6c3Lp1a7cMQxrA9LSuTrHatzx2nqP63PkzP+ff941sTkjK/+eWtbG/fPmy+/fyOFtSDXqPHj06+vH29V5PkOtaJJV9U+ciz7zsG2kx5FrY1QInsySYwQCArZLDl0sOpw9yODCFfPbTESB5I7mj5ICSQ5JN6jMX5t9ym3PuyO/nomNeW34n59O8xvxuXleec9/z5HyY+5X3o7wX2b685ikvZPadN7oqM3G0mZFj7rN6aIP7oZ5ZprmcW6DQzszLDytos3SOAuCKNGhpiFM0pIApa/mmwc40ieXL+XyhUL5E6Lqkwz55vvIFRZ4j25Oe1Hn+58+f737Ov5diqjS+5YuN9Ay/uLg4uby83G1v+ZI/jzuHnuFjqBeXTXrU3yTHQN7PsqZwfv7jjz86T62b/bOPqXrnI5+tN2/e7P2/Y774vE6Or+ox0Oe5BQDmTg5fPjmcPsjhwNhKBkgbn/NPzgklf6Rtz5+5oJgsULJCzlU5J6WN73JhbMzckfvklteQx0ynppzn8ruHtj2/l84UuU+eK3/meV69erV7rjxHHjO/M3YnqSHyRtftyPuY52/TaXvOs3pog4+jnlm2uZxboNDOzM/9NbRZ3wBYtB9++OFbTufldnp62vmxct/yOPfv3/92fn5+8He/fv367eXLl99///Hjx7t/O0b1+XM7Oztr9HvlPdi3vXkd5ffevn37bQvyOqvvzxzleKluYzmGlmLNx1Q+R9Xzyr59dey55jrV53v69OkgzwEAfZDD5fA6OXx4az6m5HBgCmnz25xfLi8v/5GB8vOcc0dyU85x9e2u3vK6ipwDb9++fe37UT9Hj9kuzSVvlPfgutx6yMXFxd79kP04ha22weoZ9cyczi3158/t2ONijpZ+TGWflNfw6tWrQZ9LOzPP/fN44XXjPL+pAWD0IqZakLRp0NKol/vli4Pqlwlt1AuTmwJP/fcPve5qqO66bUtT3Zdtv6Aay77gt6SCYInbfJN8PqrBNsdR+cwkSNf3Vz7vQx+/UxUrANCEHC6H18nhw1viNt9EDgemUs0SuYjYRvW81abNm0PuSN6qn1vLffJ/OQc2yS7VjhNdL94uNW+Ui87HPP+hC8OHOrUMYettsHpGPTOnc4vOUcswVuco7cx898/LhdeNOkcBLFwfRUz1S4EuYaNeyLT9QqXeizuNa9vXnuc9FJa3ULwcel/m2HO7XoCW25IsvYi5bqTovs9wNVQPfSFt6lFKANCUHC6H18nhw5PD5XCgPznvtGn/6+encv+mGWYuuWPfuTX3zXnwuse/6bw5VmeCOeSNY2bzmMusHtpg9Yx6Zl7nFp2jlmGszlHamfnun7cLrxv/NfWyfgBMK+tsV9fZ/eOPP1o/Rtb7ffXq1e7vWbs7a+Pmz6ZevHhx5edffvml0f3KOuXleeuPU10Hd0vKeulzfe1Z572uHD+ML5+3sp511u/+66+//rGmfNaRfvny5T/u++HDh963p37MVo9nAFgTOXx95HDakMOBKSWDlMzw5MmT1vc/dH5aQu7Itu8752V7zs7Odv/fxNOnT6/8/Oeff7bKYUvNG3mdv//++67NShbt6tD98/qqGXkI2uB+qGfWZepzCxTamf7bmT7dX2ibVegcBbDxkFEtGFKINP0CoO7169dXGsNDBUVdQk6247ovKA6pB5sEmqU1xH1LMVctIB88eHAyJ9nX9X2U/b3vQg3Dy+c/X2SU/XBxcXHwHLDvy4V9+3Pr4RoAmpDD10cOpw05HJja+fn50RfBq50Llp470h62vQi7b/s/ffp0sva8UdqlPjLEocd48+bNyVC0wf1Qz6zLHM4tUGhn+m9ntt5mVekcBbBhpefyvkKkrXov5xQUKVBukhFZVW2+kNn3u0P3+J67ehC5e/fuyZzsK27rxwDj+O9///s9pNe/GD30eauPbogmn/MthWsAaEIOXx85nKbkcGAOqp14un7ec95o2hli7rkj59QueWzsc+fUeaOv2TyKQ49Tnqdv2uD+qGfWZepzCxTamf8zxLZtuc2q0jkKYKPqoyESELqO7jhUFDWZxrY+oqrtaLV6cPj48ePJln358uXKz3OaAjfBsDqapxSx+8Ifw0q4ro7wPD09bXSs7Pui4/Lystdtq5+H+n58AJiaHL5OcjhNyOHAHOVc1FXT9m4JuaO+TF6Xc+fQy+pNnTf6nM2jOPRYTZdHa0ob3B/1zPpMfW6BQjsz/3bg9sLarDqdowA2qj5tZB9fjNd7YDfpfd13r+Kl9VLu29BfwhyzXfXp1hNKu3zxxPGqXzgkoO9b23qfQ2t0b/GYBoCu5PB1mmtmkcPnRQ4H5qJ6sa5+Ma/t4zSZYWTuuaOvDsOfP38+Weu5ueTL7PM+ZvMYe1YPbXB/1DPrM/djjm3QzizzfPT3ws4fOkcBbFAa1vrI4SdPnvTy2PWe0JZqmNaxo3b6Uh/9kwsyWYue8eULz2pgbTMKI8fT2NOm1kcuAcCSyeHbIYdTJ4cDc1LPH5llMP9Wzyk3Sd64acmYJVjqLClj5o0hZvMYa1YPbXB/1DPbMJdahm3Rziyzc9SXGbdZ++gcBbBB+3pD97WOdL0Rv6nn9Y8//tjL8x56/q2ZYxBJwKweBy7ITCehOl94Vj8vbWcNqI8GG2JkgAIcgLWSw9dLDuc6cjgwN5nNoP6ZT5vx8OHD3e3du3etO0otOXcsJcdMlTeqs3kMMfvkkLN6aIP7pZ5ZpznWMmyLdmb4dmaLbdY+OkcBbNC+EV19hf96o5hgcF0v5/rztv3ipf7Yjx49OtmyemjqqzjtKqEwX6hNeUEmx8iDBw9Obt261dutesGpr8e8c+dO52nsm6qPWOjyfPVjauggPPdCAADakMPXSw7/Jzn8/8nhwBy9f/9+778nE+Q8m05SOU/mz5y3fvvtt87nhrnnjnv37p0swVR5oyyjNsRsHkPP6qEN7pd6Zp3mVsvMhXpmPNqZcduZrbRZ++gcBbBB+4qKvhrbfcH5uiKmHhTaThdZb3iH6FVONylIq/v39PR0kpHq2Y4lTEOaY7nPNa73PX51BEM0Xff6unPFEMWyAhyAtZLDGYMc3o4cPuxjAvOVtrvJRcicz3Mey1KtuQDbZfk9uWO5sq/SMW6o2TyGnNVDG9w/9Qxbop4Zh3ZmnHamT3dnvn3X+ffUGwDA+MYOdNf1HE4gSeipblOCyL6QUlcPLAlOW57+9tCUuFP0Ms/+/Omnn66sET9VgZnnzfP3edyX0QQ5TvOlYB+yn5oc9139+uuvV37Oc/VxbAxxfFWncl7SKAkAuIkcvh1yuBxeyOHAnKXzbNrwFy9eNB75X5bfy8W/dMBtQu5Ybt4obe+Qs3kUeY4cW/u24eLiovXjaYP7p57ZhqlqmblRz4xDO/NPc//8fVlIm7WPzlEAGzT2NIc3rVmdgFkNJPlipUmYq4elIcJTgm9CatPRdDdJD/i8vjItcIJD1kfP6Lvnz58fHSTmEERyfGV/luMs0y1PHc77viBUAnuOjSlG4fcx7XXX4qt+/hh6yuklj0IAgDo5vDk5vD05fJ7kcGDucq7OLcuxlrayicyU8OnTp8YXE+ecO5Zi7Lwx1mwe1c4uudVnJiuzerTNNdrg/qln1lnPzKGWmSv1zLC0M9O0M1tps/axrB4Ak0sYqQbBhKGbpufO71RHeCSE9D26I1/yZE3pm9Y3byLbmqnHU6zk9WZ7v379uvsCKT9nGuD8f30KzmODyNgFa/WCTIqqvL6pL8iwf0RU1/1S/1Iix2/fqset4hwAhiOHy+EMTw4HliKZ4PLycnfLBfjMDHVTG19fynWJuWNJxs4bY87mURx6rrItbWiD12+u55Wl1TNT1zJsl3ZmvHamT38vuM3SOQpgg/aF/b4C777RHE2Ki3qP6iwFcWid3wT9FANFXyOiSy/1FBS3bt1q/OXOTbK95fXlC6aEr7wnCQ35Mz+noMnf85x9Pe8Ust/KyJVSoDG9fL7rn/Gu+6b+BUNGKAEAzcjh+8nhx5PD50kOB5Yo7WJZMi/t57dv33Ztfjog7LsAlvb2UHaYY+5gnrN5FNnH+9rKMqtHU9rgYahn9lPPQHvamavPXbXldmZoOkcBbNC+LzJumqK2qX3FUJNpFRPc88VLCpIEiDxOgn9GP6fHdgqB/JkRFyXkJ8SkKDi2gMljpmjJnymOsk5wvvDpY8RIwlTZ3kzze+gxs0/KFJx5rV1HetQfv6/92kT2V0JctuGvv/7a9Ei+uamPUDpm31QfqxTjfaqfQ+7du9fr4wPAlOTwq+Twfsjh8yWHA3PVdjaTtPnlIvy+GReazvgwZe5YgzHzRplBo8tMGnOY1UMbPAz1zDrrmSlrGbZLOzNeO7PVNmsfnaMANmhf6B9yhMdNvaUT9NP4J3hk2zLSObcUNdmud+/e7QqBBPuEghQY+f++przN82Y0XJmStnzR00cAKSNR8h7cVGyVkXmR19tln9Tfj2On7W3zOrMf8/zZN23fu4wQSCE51vZuTV/TstZHMAwxGqm+rS7uAbAmcvhVcvjx5PB5k8OBuUr70fViZPJALtRXNZlpYercsQZj5Y3qbB4lI42pj1k9tMHDUM+ss56ZqpZhu7QzV5+zau4zwH1ZUJu1z7+n3gAAxpeREykMqj59+tTL0gv14Nxk9EUKiHojmm0p/z60ocJX3uNSiDQNNKVYqxZXbdQLr4yAGVq2OUE2++yPP/7oVPx9/PhxkUFqqZqMutqnXhgMMd1tnyMuAGBu5PCr5PDjyOHLI4cDc9Jm6Zi6nIfSyaCaa3Jx77pMM3XuWIOx8saUs3kU6WBSXy6t/HuX2X60wf1Qz6yznpmilmHbtDPjtjNbbbP2MXMUwAbta9gzYqKPRrE+KqG6hvch+fJkztNEdlUtQJqGqWoh2ceSHn2N3LmuUMt2HnNBJsoyIAyjHsy77qcPHz58/3v2+RD7rK91ugFgjuTwccjhzcnhw5LDgTnL5/6Y2UHqS9Lc9FhrzR1jGzpvlNk8sq+mmM3jplk9chG5PsvGPtrgYahn1lvPjFnLsG3amfHbma22WfvoHAWwURnd1ddosaIeGJqGm0zDmAZ1TaE770V9neCmqr+bkNhW9f5DToFb1mtP+OmyhMcQI4zYr49AnWOp+hk/tC53H89TzL0QAIAu5PBhyeHtyOHDksOBuevS3lVVL9rf1B6tMXdMYei8UWbxGKq9aePQNjSZaUQbPBz1zDrrmbFqGdDOjN/ObLnNqtM5CmCjXr9+fW0j3EV9qtb6c9zUw/rXX389WYtqUdj2YkU1UGS98raqFzdysWOo15epesta7n2MDFpikFqKHIPHFrjVz3eTte67Kku7hGMCgDWSw4clhzcnhw9PDgfmrjpbQRfVtvam5WTWmDumMGTemMtsHn3M6qENHo56Zp31zBi1DGhnpmlnttxm1ekcBbBRabjrvZCPWYs7X6pXg3saxfookkNKA5re2GsZ5VENCG3XGq4WPV1G3lTXSR5i5ExCYZ4jax93uWhUV47DR48e9bB1HFJdq7rLFxbV6Zjfv39/MpTqtpnFAIA1ksOHJYc3J4ePQw4H5iyf/WM6NVQvBN507lhj7pjCkHmjZIM5zVxxzKwe2uBhqGfWWc8MXct0kZnBWBftzDTtzJbbrLp//+NfAFi0NqE1RUbCdpliNQ1xRiF3adBevHhx5ec2X9bn+RLWs+0PHz7chZH0kF7yeuHVgNC293S16OnS27zeuzwjPfrqcZ7t+emnn3Z/z/6qFk1tlCmPlz4F55JkxNW7d++uzBLQ9DNW/YIh540hQ2/1mOh6fAHAFOTweZDDryeHj08OB+YuWaLrbISl3a1eHFxi7vj8+fPJUgyVN9IOlIu0OR6STeeszOpxXduoDW5HPbPtembIWmZt52G60c5M186ssc3q7BsAi3b79u1vOZ2X26tXr1o/xg8//PD9/nm8r1+/trr/27dvr2zD2dlZq/vn+ar3b3LLdt6/f3+37U+fPt1tw/n5+bc+Vd+XPEcb1W19/Phxq/tmH1bv33Z/1Lc9700fsh31463P25L0/d6OpXpsvXz5stF9Li4uvt8nx9WQqs+1tGMCgO2Rw+XwfeTwYcnhw5DDYXuq7VVup6enrR8juaPc//LyclG5o/48bfNGUW+fuz7OHPJG2qehssZQtyZZTxt8mHpGPXPddo+dt/Na6/uq7fGwBEutZ/Z95tqeM7Qzw7czx+yfrdSNy9xqAHaNXD3sHhMaq+EzjXHT4FwvYLoWEvXH6XpLcZP3pcuFjKGKmLb3re/XJl8wXfcYfXwxk/czReNQITOPvSRLLmKqx/VNn9fqhbjsoz4+V03PA22LfwAYixwuhzd9DDm8f3L4MORw2J5656i2WSJtZDlPtbn4NnXuyHYfujibHNf08fJ7hx4nHc2GPm/3nTfyvgyVNYa+5ULtTbTBV6ln1DNN7j9WZ898hg+dT7NPck7tUpfN1ZLrmWM632hnxmlnhu4c9XYFdaPOUQALksam7YjhEiDbht+b7pdAUC180og3CQlNn7+PW5dRb3MsYrq8rwlg1cc4Vl7DkAFzaUFqyUVMAnL12D70pUeOu3Ihrs0XG8eonlOO/fwCQJ/kcDm8KTl8WHL4MORw2J7q+SjnndLeNLmQlvNXyUVNZ0iYMnfktXbJcfW2pmseHOLiZN95Y4mzebTJMtpg9Uzf55W11jN9n1vq25Zjo9y67pvqYxx73ExhyfXMMZ1vtDPjtDNDd456vIK68d/dF+QDYGxfvnxptWZt5PebrheeNbmzzm/Wus164fl7bk+fPt2tb33v3r2Ty8vL3Vq7ZV3ZbEvu9/Lly86vK4+VxyjrDee5ctv3OquvJfe7bu3sbHt+P+v1znV99qb7va2ytnrZlpvWRh77NdUtZT3lNchxkTW98znPetjPnj3bvf85Zh48eLDb1+fn57vPeeTzk8/nGMpzxphr2gPATeRwObwpOZxD5HBgjk5PT3fnorOzs925qZyjkkEePXq0ywWRdv/jx4+780XOV/n39+/f735v7rmjZLK2Oe7z58+j5sEp80a1HViaT58+3fg72mD1THk91fupZ4Y/t9RVj8E2x+K+x2FZtDPTtTN9+n0NdePUvbMAmKf0ME7P3/QETk/m6jSP6dGcXsd99MzPc5SexnncLlOk5j7piX2o93nXaVe7jvCoTxF67AiPrmtrVx9niF7iW7b0ER7Vz3leQ3X0WD7j+Tn/PsYIuX0jk/pcZxsAlkYOl8M5TA7vnxwO25Q28lAbVT8/lZk6Sg7psvTVnHPHUskb3WiDh6eeWXY949wyrKXXM0PPTLQGU7YzQ+6f85W0WTpHATCZatDuczmH+tITXRvqrkVMirupi5h6MZXwRX+WXsTMUfVLiK7HPADQjBy+nxw+f3J4/+RwYOu5Y6nkjeXTBq/3vLLkesa5ZVhLr2d0jtru/nm5kjbrX1PPXAXANmVK1kwvWaaczJSSfclU4NXpePNc102T27djpoTt8/EyhXCZ9javP+8DzFWZ/jrHe5tp+QGAduTw4R9PDmdJ5HBgSGvOHVOTN5ZPG9zNms8rc6hnnFuANbdZOkcBMIkXL158//vr1697f/zT09MrP2et86W6e/du5/tW39v6e0J3fayNzv7P5xDnAwDg/8nhzcnh8yOH90sOB4YmdwxL3lgubXB3zivD1zPOLcNRz7BEv62ozdI5CoDR/f3331dGHAzVy7iMcIjLy8uTqYqOvN5jHBOU896W+5ee3Rzv+fPnu/f18ePHU2/KKrx58+b736ujswCAfsnh7cjh8yOH90sOB4a09twxB/LGcmmDu1n7eWUu9Yxzy3DUMyzRmxW1WTpHATC6L1++9DYi+zo//vjjwecc0rG9/utFz7Hvz/v377//XTHTj4yY+fr1626aYY6TLzTKlxoJ1kbNAMBw5PDryeHzJ4f3Rw4Hhrb23DEX8sbyaIO7W/t5ZU71jHPLMNQzLM2fK2uzdI4CYHT1UD7Uut3Vx3306NHJmKoBoW0BVf/9Y8NGRnqUsP3LL78c9VjQt3JM5jh/+/bt1JsDAKsmh19PDmdL5HBgaFvIHXMgbyyPNri7LZxX5lLPOLcAa2yzdI4CYHRpRKtT03748KH358goid9///37z2NPU1odXdJ2+ttq8dXXCIKzs7Pv2/Lu3bteHhOOlREH5XOa0UhLH3UAAHMnh19PDmcr5HBgDFvIHXMhbyyHNvg4WzivzKmecW6BbftzhW2WzlEATKLawzjBuu9RHi9evLhSwFSLpjE8efKk8wiPatHT13bnccpawNX1gWFK5XOaz2hGIwEAw5PDD5PD2Qo5HBjL2nPHXMgby6ENPt7azytzqmecW2DbXqywzdI5CoBJpDF99erV958fPnzYWyGTaR5/++237yMkygiHMVVHlBwzwqNaDPWxnnXej2zPzz//3NvjQhdZq76sVZ1jEwAYhxx+mBzOFsjhwJjWnjvmRN6YP21wP9Z+XplbPePcAtv035W2WTpHATDpKI8y0iPh+sGDB7sGt6uE/4T+MsVrRjacn59PMtVjnrs6dW0JETepFzzPnz/vdbtKQZf3uTo9MIwpn9VSTJcCGwAYjxz+T3I4WyCHA1NYc+6YG3ljvrTB/VrzeWWO9YxzC2zL/6y4zdI5CoBJZZTHxcXF92le0+CWYqbpyIgE8mfPnu3uV8J5edwpG+3qSIqmRUP19zJNZd8FWN7n0ss771nb0SfQhxx7kWmZy9TMAMC45PCr5HC2QA4HprLm3DEn8sZ8aYP7t+bzytzqGecW2JZnK26zbn379u3b1BsBACXAZ8RHNcinCMlUsilQSqBP+P78+fNu1MSnT5++h/H8bgqHNNZ9hP88Z5mKNgVFl2l079y5s9u+bNvl5WWj0FGm7s3vD1WEZYrgjIRJYZNiD8aSz2i+pMjnOiOwAIDpyeFyOOsnhwNzMbfcsUbyxrxog7d3XllrPePcQo7JHJulI2GZwY317J+fV95m6RwFwCwlyH/8+HFXqKSQ+PLly/diJQXK3bt3d3/++OOPu3XF01D3GfirISKaFiF12f5sX2R0xXW9rFO8lbXAE1qqa6cPoYScrgUatJXiOUW0AhoA5ksOl8NZHzkcmKupc8eayRvzoA3e3nll7fWMc8u26Ry17v3zbgNtls5RAGxeiocUSqVISrFS/q0qgSDF0r1793Y/lyKqTN17U6CI6lS/VXmuFDvZhhQ6ZZraoZViRpBljC8mMoJpzcEaAGhHDpfDGZ4cDrBd8sa0tMHrt9V6xrll227dujXawCLG2z+/baTN0jkKgM0rYb7tlLkpOJoGjLJ+eSlS8pwJGSleEjpKkXPTKJAhlCJriudmG3KcZzppI4oAgCo5XA5nWHI4APLGNLTB27Dlesa5ZbvKko85t+Ucx/L3z/9sqM3SOQoARpRiKeGirGmewilT6/7nP//pbU3zLspoFlOTM4Qc6znmM0IKAGAKcjhbJIcDEPLG+LTBbKGecW7Zpuz3LPuoY9R69s/fG2qzdI4CAAAAAAAAAABW6V9TbwAAAAAAAAAAAMAQdI4CAAAAAAAAAABWSecoAAAAAAAAAABglXSOAgAAAAAAAAAAVknnKAAAAAAAAAAAYJV0jgIAAAAAAAAAAFZJ5ygAAAAAAAAAAGCVdI4CAAAAAAAAAABWSecoAAAAAAAAAABglXSOAgAAAAAAAAAAVknnKAAAAAAAAAAAYJV0jgIAAAAAAAAAAFZJ5ygAAAAAAAAAAGCVdI4CAAAAAAAAAABWSecoAAAAAAAAAABglXSOAgAAAAAAAAAAVknnKAAAAAAAAAAAYJV0jgIAAAAAAAAAAFZJ5ygAAAAAAAAAAGCVdI4CAAAAAAAAAABWSecoAAAAAAAAAABglXSOAgAAAAAAAAAAVknnKAAAAAAAAAAAYJV0jgIAAAAAAAAAAFZJ5ygAAAAAAAAAAGCVdI4CAAAAAAAAAABWSecoAAAAAAAAAABglXSOAgAAAAAAAAAATtbofwGbWDCldZMHIwAAAABJRU5ErkJggg==",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"from matplotlib.colors import TwoSlopeNorm\n",
"\n",
"fields = [\"spm\", \"p3m\", \"diff_p3m_spm\"] # fields to plot\n",
"\n",
"slices_dict = {\n",
" \"spm\": DELTA_SPM,\n",
" \"p3m\": DELTA_P3M,\n",
" \"diff_p3m_spm\": diff_p3m_spm,\n",
"}\n",
"titles_dict = {\n",
" \"spm\": f\"sPM $n_\\\\mathrm{{steps}}={nsteps_spm}$\",\n",
" \"p3m\": f\"P3M $n_\\\\mathrm{{steps}}={nsteps_p3m}$\",\n",
" \"diff_p3m_spm\": r\"$\\delta_{\\rm P3M}-\\delta_{\\rm sPM}$\",\n",
"}\n",
"\n",
"npanels = len(fields)\n",
"fig, axs = plt.subplots(1, npanels, figsize=(3 * npanels, 4), sharey=True)\n",
"\n",
"ims = []\n",
"for i, key in enumerate(fields):\n",
" ax = axs[i]\n",
" data = slices_dict[key]\n",
" title = titles_dict[key]\n",
"\n",
" if key.startswith(\"diff\"):\n",
" vmin = -np.log(1 + np.abs(np.min(data)))\n",
" vmax = np.log10(1 + np.abs(np.max(data)))\n",
" if vmin < 0 < vmax:\n",
" norm = TwoSlopeNorm(vmin=vmin, vcenter=0, vmax=vmax)\n",
" else:\n",
" norm = plt.Normalize(vmin=vmin, vmax=vmax)\n",
" im = ax.imshow(\n",
" np.sign(data) * np.log(1 + np.abs(data)), cmap=\"RdBu_r\", norm=norm\n",
" )\n",
" else:\n",
" im = ax.imshow(np.log10(2 + data), cmap=cmap)\n",
"\n",
" ims.append((im, key))\n",
" ax.set_title(title, fontsize=fs_titles)\n",
" for spine in ax.spines.values():\n",
" spine.set_visible(False)\n",
"\n",
"axs[0].set_yticks([0, N // 2, N])\n",
"axs[0].set_yticklabels([f\"{-L/2:.0f}\", \"0\", f\"{L/2:.0f}\"], fontsize=fs)\n",
"axs[0].set_ylabel(r\"Mpc/$h$\", size=GLOBAL_FS_SMALL)\n",
"\n",
"for i, ax in enumerate(axs):\n",
" ax.set_xticks([0, N // 2, N])\n",
" ax.set_xticklabels([f\"{-L/2:.0f}\", \"0\", f\"{L/2:.0f}\"], fontsize=fs)\n",
" ax.set_xlabel(r\"Mpc/$h$\", size=GLOBAL_FS_SMALL)\n",
"\n",
"for ax, (im, key) in zip(axs, ims):\n",
" divider = make_axes_locatable(ax)\n",
" cax = divider.append_axes(\"bottom\", size=\"5%\", pad=0.6)\n",
" cb = fig.colorbar(im, cax=cax, orientation=\"horizontal\")\n",
" if key.startswith(\"diff\"):\n",
" cb.set_label(r\"$\\textrm{sgn}\\left(\\Delta\\delta\\right)\\log_{10}(1 + |\\Delta\\delta|)$\", fontsize=fs)\n",
" else:\n",
" cb.set_label(r\"$\\log_{10}(2 + \\delta)$\", fontsize=fs)\n",
" cb.ax.tick_params(labelsize=fs)\n",
" cax.xaxis.set_ticks_position(\"bottom\")\n",
" cax.xaxis.set_label_position(\"bottom\")\n",
"figname = f\"fields\"\n",
"fig.savefig(\n",
" simdir + f\"{figname}.png\",\n",
" bbox_inches=\"tight\",\n",
" dpi=300,\n",
" transparent=True,\n",
")\n",
"fig.savefig(\n",
" simdir + f\"{figname}.pdf\",\n",
" bbox_inches=\"tight\",\n",
" dpi=300,\n",
")\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "228340be",
"metadata": {},
"outputs": [],
"source": [
"# full_field_p3m = np.log10(2+read_field(simdir + f\"nsteps{nsteps_p3m}_final_density_p3m.h5\").data)\n",
"\n",
"# if N <= 128:\n",
"# fig = plotly_3d(full_field_p3m, size=N, L=L, colormap=thermal_plotly, limits=\"default\")\n",
"# else:\n",
"# # Downsample the grid for visualisation\n",
"# downsample_factor = N // 128\n",
"# downsampled_field = full_field_p3m[\n",
"# ::downsample_factor, ::downsample_factor, ::downsample_factor\n",
"# ]\n",
"# fig = plotly_3d(downsampled_field, size=N, L=L, colormap=thermal_plotly, limits=\"default\")\n",
"\n",
"# fig.show()\n",
"# # clear_large_plot(fig) # Uncomment to clear the Plotly figure to avoid memory issues"
]
},
{
"cell_type": "markdown",
"id": "7d0df151",
"metadata": {},
"source": [
"### Force exerted by particles on other particles"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "684477ec",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Newton prefactor = 6.37e-01\n"
]
}
],
"source": [
"r1, fmag1, _ = load_force_diagnostic(OutputForceDiagnostic_spm)\n",
"r2, fmag2, _ = load_force_diagnostic(OutputForceDiagnostic_p3m)\n",
"Newton_prefactor = (L / Np)**3 / (4*np.pi)\n",
"print(f\"Newton prefactor = {Newton_prefactor:.2e}\")"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "6a6b4e9c",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Nyquist: 2.00 Mpc/h\n",
"Particle length: 0.12 Mpc/h\n",
"Split scale: 1.25 Mpc/h\n",
"Short-range reach: 5.62 Mpc/h\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAB0YAAAVmCAYAAAANgd2WAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAuIwAALiMBeKU/dgABAABJREFUeJzsnQe4FEXW9+vCJYkEQUBdA0kUwyrJvOu7EtTVXRPBnEmGdV2UYFwj2fAZSGYxEMy7awDcNa5KUF8DSjQHkGjgEu/3/At73r59e2Z6uqu7q7r+v+cZZu7Qc+pUV/Xp6jp1TpVVVlZWCkIIIYQQQgghhBBCCCGEEEIIyTA10laAEEIIIYQQQgghhBBCCCGEEELiho5RQgghhBBCCCGEEEIIIYQQQkjmoWOUEEIIIYQQQgghhBBCCCGEEJJ56BglhBBCCCGEEEIIIYQQQgghhGQeOkYJIYQQQgghhBBCCCGEEEIIIZmHjlFCCCGEEEIIIYQQQgghhBBCSOahY5QQQgghhBBCCCGEEEIIIYQQknnoGCWEEEIIIYQQQgghhBBCCCGEZB46RgkhhBBCCCGEEEIIIYQQQgghmYeOUUIIIYQQQgghhBBCCCGEEEJI5qFjlBBCCCGEEEIIIYQQQgghhBCSeegYJYQQQgghhBBCCCGEEEIIIYRkHjpGCSGEEEIIIYQQQgghhBBCCCGZh45RQgghhBBCCCGEEEIIIYQQQkjmoWOUEEIIIYQQQgghhBBCCCGEEJJ56BglhBBCCCGEEEIIIYQQQgghhGQeOkYJIYQQQgghhBBCCCGEEEIIIZmHjlFCCCGEEEIIIYQQQgghhBBCSOahY5QQQgghhBBCCCGEEEIIIYQQknnoGCWEEEIIIYQQQgghhBBCCCGEZB46RgkhhBBCCCGEEEIIIYQQQgghmYeOUUIIIYQQQgghhBBCCCGEEEJI5qFjlBBCCCGEEEIIIYQQQgghhBCSeegYJYQQQgghhBBCCCGEEEIIIYRkHjpGCSGEEEIIIYQQQgghhBBCCCGZh45RQgghhBBCCCGEEEIIIYQQQkjmoWOUEEIIIYQQQgghhBBCCCGEEJJ56BglhBBCCCGEEEIIIYQQQjLA6tWrxcSJE0X37t3FdtttJ8rKykSbNm3k3/ieEEJsp6yysrIybSUIIYQQQlQ9AC5ZskSsXLlSvuPvxYsXV/kbn1etWiWyyqhRo8SECRNkfTt27CiGDRsmevbsmbZahBBLcGytY4thg722uVu3bmLatGlpq0oIIYSQjGLrcyHqNWTIkJzzs3HjxnLc1bp1a1nvmTNnymPwPcZi+D9CCLEROkYJISRGMOjEirwkwQC3SZMm8h2D3y5dusjBLhwkhGQZrITFQ14Qsjr86d+/v+8K4JEjR4rBgwenohMhxA4w2YZIhCBgsQYdo4QQQgiJA1ufCzH/1KtXr1zd8fyH50AvcJxiMS2YO3cu54oIIVZCxyghhGTMMVoIOEjhOGH0GMkitj4AO6DuOAf5wAppLJYghJA4oGOUEEIIITpg43MhFsdirscBGYT69etX7Tg4ROEYdcCC+qxFzRJCSBDoGCWEkBjBYHzq1KlV/l6xYoWYPn26nEDMBwanGMQ6E4yIAC0EUsA48p30MPPmzctbBpwjGAz7DZRJtsEDE1aNOmlW8Tkr6XNwXaHvO9cBFibkuwayOPwpthAD1zsekAkhJI57g3vMg8+zZ8/OpWvzQsdo9snyeIMQQoje2PZciPoiUtQhX6RovudFjMm4eJ4QYht0jBJCiGYpL1WmM8GDAAa/U6ZMkYNlPwcpBsFMnWIH7pQ5bmbMmJHZycp8dc7i8AeLITp16pT3/3Gdw7YQQkiS9wYs8vJORtIxmm1sHG8QQgjRm6w+F3ozdmCOB87gUs5BPkcqIYRkGTpGCSFEw5RzcZhmOE0wEIaj1Av3H8w+hdKsFnp4ygJlZWXVvsvq8MfPAWFDvQkh+t4b/KIT6BjNLjaPNwghhOhNFp8LMcZyz/EUiv7M5xjNl3aXEEKyTI20FSCEEFvJt9cf0ujGAaLFsFLfbyUgBsg67YVK1DNnzpy8/wdHWtA9WEzEpohoPAh7bYgTGe4skCCEkCTvDZ07d44sg5iDzeMNQgghepO150I4RN1OUTwHFkqJ26dPH9/vmc2BEGIjdIwSQohmFNtPNCqIDPWL0sCA2r0vBUkGOKSRVjntfhWXQ96Ga0q3h/1Vq1bJaxwrf7EYAtE5ziSAsx8xIUQP25w2Sdwbsnx/MQmONwgJji33ANNguwSD58me50I877np3bt3wePxTIjnRGeRvrN4Pt+ifUIIyTJ0jBJCiIVgFaFf6lzsQ8qHqGSBQ7pQdIUq8NCT74Gn0KpSYiZoU6RD8q7+ZaQOIXrZ5rThvcEeON4gJDi23ANMg+0SDJ4ne8D8jZsgC91xL8bCWaQQnjt3LqNFCSHWQscoIYRYClLq+k1cTZw40XcfUmI+fqtB8SA0adKk1HQiyeA4RBmpQwjxwnsDUQ37FCGEEBIvfnM23L6AEEKCU17CsYQQQjLoHPVbVYjvkI6TxEvS0XuYpMTqUDxEYZ8v/M0VonbgpNBlmiRCimNbZDXvDdmH4w1CgmPbPcAU2C7B4Hmyh3nz5lX5GwtguQiWEEKCQ8coIYRYDNKoYPDsfYDC30OGDJGOUxIfmCxMA05O2tvXsravDiFZss1pw3tDduF4g5Dg2HoP0B22SzB4nuxhxYoVVf7mcx4hhJQGU+kSQojl9O7d2/d7pNQl8cK9X0hSIHIHcBUxIcWhbSZZg32akODwetETtksweJ7sdYLzOY8QQkqDjlFCCLGcTp06+X6PqFHuNZqMs4qQuMG13LFjx7TVIMQIaJtJ1mCfJiQ4vF70hO0SDJ4ne2DaZEIIiQYdo4QQYjmF0pxNmzYtUV1sg45nktRDM/agYUpDQoJB20yyBvs0IcHh9aInbJdg8DwRQgghwaBjlBBCLKd169Z5/4+peOJ3VhGS1ARJ9+7d01aFEO2hbSZZg32akODwetETtksweJ4IIYSQ4NAxSgghJC9MzxIfXM1LkmLKlClyzxlGjBJSHNpmkjXYpwkJDq8XPWG7BIPniRBCCAkOHaOEEELysmTJkrRVyCwTJkxIWwViyTU8ffp00a9fv7RVIcQIaJtJ1mCfJiQ4vF70hO0SDJ4nQgghJDh0jBJCCMkLosxIPM4qruglSTBkyBD5PmzYsLRVIUR7aJtJ1mCfJiQ4vF70hO0SDJ4nQgghpDToGCWEEBJq/1ES3VlFSJxgjyFEiw4ePJiLHAgJAG0zyRrs04QEh9eLnrBdgsHzRAghhJQGHaOEEGI5hfYRpWNUPVjJC2cVIXHTt29f6RBltCghxaFtJlmDfZqQ4PB60RO2SzB4ngghhJDSKQ/xG0IIIRlizpw5ef+vT58+iepigxO6V69eaatBLKB///4yYnTatGmMFiWkCLTNJGuwTxMSHF4vesJ2CQbPEyGEEBIORowSQojlzJgxI+//9ezZM1Fdsr7vS6dOnQpG6BKigokTJ8oXrl9ew4QUhraZZA32aUKCw+tFT9guweB5IoQQQsLDiFFCCLEcpN7xo1+/fsrkI2oNkal4eMODGyLYmjRpIlP1du/eXXTr1k107NhRxIFTJt5XrlwpFi9enPvb+W7kyJF564tjJkyYIOvhyILe0BcpSoPoDScV9n1J46EVZaKO7vOAc+D+Dp9XrVoVuy5OX3DOPV4A5zOJvpAkfnV193u8sLob9VUJokQRLYpziPLjqhsWVKAs5xpy+jbqiLp17tw5b/3wG/zfrFmzjI9m1bFPI5Ua2idf34MuyAagWie3nXVsC2yN+zv0i0KLcfCbqVOn5s6p07egt9O3cE579+6tpO+kaZvTvjfpdG/wA/ZlypQp8h3jB6eNnGsLL8fWJdGPveeqsrJSebu7bSm+DwPHG1uhHVRHlu/5aV4vpvTpNGC7ZOc8pT0PQLLZ/9MeQ5v+vJjWPAUhWlJJCCEkNWCGva/WrVsnVv7cuXN9dcBr1apVkWSPHDmysnHjxlIW3rt161bZr18/+T3eO3bsWK3eEyZMUFa3xYsX562b9+VXLurfs2fP3DGO/oMHD5afne9xjF/Z06ZNq3IOVL+gRzFwTFB5cYHziPPmPQ9ob5xHvPA5zr7gbq8464u64py764q6OP0G79DF/f/4jO+jXm8O6HcoQzXo09DTWy/0cbQVynX6vPv6Rv3wnQPq6bQ3ZJqIDn3az5a77RVeaAOn7zl2y60X9Mf3KvpeUDsDnQqdUz9761w3Xln4rtQ+pINtTvPelOa9wSs3n35oH/f4AHWCvmgzbx3T6sdhzksp7V7KOFCHPq3LeIN2UB1Zvefrcr2Y0qeTgu2SvfOU9jyADs+FqoijnfFCXzLNLukwhjb1eVGHeQpCdETvOwAhhGSctB2j3kFtoYFkKQNWZ5CHwVWhQbd3EsipPwbcUYkycMZvnUGh3yDe+0CFOiTxAGPaRCUefv0G+/kG12h3d3/AQ5aKibQkHoBRL7d8XFuFdMd14X3wCPuAGjfufoT2Cdom7gdntCXa3T0RosMkqal9Op8NDTLx4J3wxss9kR2GKA6BGTNmSL3xKnQu8b33/Jd6v9LBNqd5b9LZMYq6OfYB/4d+UQicG++kW1QbWko76+IY1aFPpz3eoB2MNm636Z6vy/ViSp9OCrZLds6TLvMAhaBjdOur1DFT2v3fkZf2GNrE58Usz1MQEpUy/JN21CohhNhKWVlZte+QuiJsCrVSU2ggbYcXpMwolOIriEyk4kB6jqDpN/z2Rxk8eLBMgRIWJxWZ83n27NlSP790Q0il4qRacXQBc+fOle3hBimLRo0aVU0G2sw5Fmll8oHULkj/5wa/K7WuTrqXQrhTEK5YsULq5aRu8aJyOIAy0A/cZZXanu7zjL4UZa9M6OJNGa2qvji3SDXjyC+l73t/C9AP0R91wTl3qJff9RA01Ze3z3uvGd3RrU8DXM99+/bN2bRS+w5+17VrV2knANoCtj9sGzsy0a6wvX62FjYL/cjbN3AuJk2aFCjNot+9K+j51ME2p3lvSvPe4B3voL2cdN9OX0YKL3xXSioxb72jjGHc/bhQu4Q5L6W0eynjQB36dJrjDdrB/0PFfSXr93xdrhdT+nRSsF2C66DzedJpHiCt58I4KNTuGAN577VBt1JBOwftfzr0f13G0CY9L2Z9noIQJUR2rRJCCAlNWhGjWK3ml4InSgpOJy0v9A+TbsNPJxVpTLx4U/d4VxRCf+iRrw5+vy911WXQtGpx4BdpoHI44F6NGXZFqrtPObKKRQ+lsTLYnSLOWU0ZZnWnyhWqKnEiPwpdD0FB+3nbQIfoEVP7tHflb5RoIW+kl6qV+n4ZCdy2DufQWbUdVWdV/SlN25z2vSnue4NXrnN/d/pylPu917440WpRgQy/+4fK8+LXbirHgVkeb9AOqrWDvOene72Y0qfTgO2i/3kyZR7AxIhR3bIi6dj/0x5D6/i8mPV5CkJUYe4dgBBCMkAajlF3ihv3K+q+hM7gLcrEh9+epyr3hMk3WeMMnJ3BeqFBer5J0lIG9mk/4Mc1UekexEd9IPB7yAjbt+J4aPQ+bER5uPOTpbrfl4ozWauiDR28qZRMmCTVsU97nQ0q2sfbNlGctu5+nc/WOamwojxce2WreFBP0zbreG9SOcHmlYsJT8fOqJj89Etbpso5Gud58Wv3rDhG/cpXde5oB9XaQd7z079eTOnTacB20f88mTIPAOgYzV7/T3sMrdvzYtbnKQhRibl3AEIIyQBJO0a9+wWoGtw4g2YVexz5rYBXuZrWb5LK2fMhyLlwTx6FbbO0Jyr9VkVGxW+lr6pBs/OwE9Z5H8dDo/ccRt3Hya9fpTmJ6DwAoU1Vokv9TO3T3lXbKh9MvdeJCrvrPX+OrcN71HudXyRWVNK0zTrcm+K4Nzj46aZ6zOPtE6raz28xWZztniXHaBx9inZQvR3kPT/d68W0Pp00bBe9z5NJ8wCAjtHs9f80x9A6Pi9mfZ6CEJWYewcghJAM4B1gqJ4Qcw9m8qVrU/UgpmoyxW9gqzqVjt/A2Vm9GCTCBOfTSclSbPN6HScqk3AUqu7HzuRfmP6qur7eh3ZVfd97DpPuF34rtqNGkhdaJaz7A5Vufdq7kl61Pl7bqyLizutQwjl1HvKj3nu8EzYqVp2nbZvTvjfFOcHmN95RbQfimpyK02EM4hwHpt2nVfcp2kH1dpD3/HSvFxP7dNKwXfS296bNA9Axakf/T2oMrdvzYtbnKQhRTQ01O5USQgjRAWySjs3esUk6Nm3H5u9lZWVy43Rns3uATeSxcTo2lO/YsWOkMp0N2Tt37iw3i58+fXokedgU3rshPGSibnEB2RMnThSDBw+W5RejZ8+e8tytWrVKbmCP82kz6Gvu/gXQv1SA/oy2adKkiVK5YUE9UV83I0eOVCJ72LBh1cpyrq8kcZepum/3799fmICOfRp2PI5+5wDb169fvyp69u3bN7JML7hPwMZHvffgnuNlxowZIktk/d6EPqxSR5wjrx31u5aJudAOqreDvOeni4l92gbYLvbMA5Bs9v8kxtC6PS/aME9BiHKUu1oJIYREjqCI4+WsflO9v4x3nwgVK+X8VsCrSM9TaEVtkqvZsxTB4eyRFcfKRFV9S2V9vasl40w7F8cq6VLPexzl6x49omOfjmv1b5C6R9kjxy/SLs69+6L217Rtc9r3pqQjRuOIWiq0p2NYGDGqR5+iHYzHDtp+z0/zejG1TycN20Vfe2/iPAAjRu3p/3Hee3R8XrRhnoIQ1TBilBBCNASr2sK+sLoNK9Cx2hIr8ZzIUGf1m3cVporVbH7fYdWoyhXwqENcYMUbzpvu0TU64rcK0buiMAxYgYhVkkH6W1JAJ++qUNXXkw6rpN3nOI5Iq6gRMrb1abS/d/Wve5W1SmADvX1w+PDhSsvwiwYIK8dL1iIKsnxvcsYsccj19i+uajcf2sH8cqLaQdvv+WmRtT6dFdgu9s0DkGz2/7jH0Lo9L9oyT0GIaugYJYQQDYETM+wLDw5z586VqbTgFMVgNs5J1ZUrV/p+H2VyxU/fuB1iSJ9CwqWo8aLiAapQe6c1APd7AOrTp4/SMpD+2kvSE/ru6w/tEDUtVpAJD13QsU/7TRKo7neF+qBqp5Lqh/Qg9yOTyeq9yUkNlkQKuDjSwJFkoR2Mzw7afM9Pk6z16azAdrFzHoBks//HNYbW8XnRlnkKQlRDxyghhJBI5HO6RnHG+q2Aj/uByG+gR0p/eEK7q4gCKtR/4ogyKoazd2/ck5t+kRWzZ88WSdKmTZsqf2PPF5XXXxrtZ3Kf9q7cjjsCx69PR1n5n6StzeKqZd6b1PRh2G9OrJoL7WB8dtDme36aZK1PZwW2i53zACSb/T+ue61uz4s2zVMQoho6RgkhhESif//+JX2vK1lMVRg3flEFqh6eMJD3a5O40vmEqauqB6BikRVJr8T0PkRhkrVTp07K9MBDKvpJnBFjWenTceqTDz/5WMGtyulIW1saPF+lk882c1W7mdAOxovN9/y0yGKfzgJsF3vnAUg2+39c91oTnhezOk9BiGroGCWEEBJ58Ia9S50BHAaFSOOreiAd9wOiTpNUJoD28Fu9q3JlJvqRkwIHA/vBgwfL9NBpAF28xLU/XtqrpHHteq9ftDfaFikqoz4AwWYg3bduUSQ69mm/fpdEWkI/e6jqwZe2tjR4vsLhd51grELMg3YwXmy956dJFvt0FmC72DsPQLLZ/+O415ryvJjVeQpCVEPHKCGEkMhg4Ia9TSsrK+XkR5x7J8WBThNUppDvgUXlAxTaBQ/b6FfYPzfNPeL86htXv/E+dKQxGZDvXGNFKh78tttuO5nqKMoeQrqhY5/20ymJyWW/vj1lyhQlshk1FBzem+ycaCZVoR2MHxvv+WmSxT6dBdguds4DkGz2/7jG0KY8L2Z5noIQldAxSgghxHq4ir10/FYmZnUiP99EYFx11WHCFJMahR7C8BCEfWiQbq+srExOnGLS1GTHg259Gitw/VbheveDi4M405DS3gaH5yo8hfZhIuZAO5gMNt7z0yKrfdp02C7EZrLY/+O6z+r2vGjjPAUhKikXKbH77runVXSmwOrNd955J201CCGkZDD4xkAO71hlunLlSjnx4rwnCQd4pZNvclm3yT4VoE/mOwd+e3rEUR6uiaTPLdL2AEx+FgMPsHhh4hQghRYmWjF5asrKcd36dD59krBXfmVwRXDy8N4UnnyTebiusriAJ6vQDiaHbff8tGCf1hO2i73zACSb/T8u3XV7XrR1noIQ4x2juPlhtSFCw/FOSgPnzXGMEkKICWACBSvs8O63sg0TlZhYcTaKdyZbiJ7kG4RnkXwPQHjYiOOBw4+0HjYwUYpJTuwzVkqkFa5xvHAdQ/dhw4blJl11Rbc+nebEUL7+xgdfYjqccDUL2sFksemenxbs03rCdokXzgPoDfu/uc+LNs9TEJKZVLpw8vFV2ovOZEKICeDhB6vHnbRbeMjBwxAGT/369ZN7J2DfBNg1LJjB39hYPum9JDmYUzMIz+p5zPewiAf8pO77aYKJClyfuDbDRFrh/CECBYu5dN6fTLc+ne/BO02dmIY0WbJqU5MgX6QA+7BZ0A4mjy33/LRgn9YTtou98wAkm/0/Lt11e160fZ6CEOMdoxgwb9myha8SX3SOEkJ0Bg8+SGOHhyD3HhE9e/YUc+fOlQ9BePDB35z4NRO/QXhW0z6uWLHC93vbIo8wiYGJC1zDiAQpdcIU5wv7k02cOFHoiG59GudaN3RbJU2IKntO9IR2MD2yfs9PC/ZpPWG7qIPzAObB/m/u8yLnKQgxNJUuIYSQ7IGHn/79+1dbSYfJFawe575e2QEPst4Bt64PMFFp2rRp2ipoF02CF1Z0ow/MmTNHrgDHylR8LvYgBhvh2AWd0K1P5+t3fNAlRP3eo0RPaAfTJ6v3/LRgn9YTtkt0OA9gLuz/2XteJIQYEjFKCCEkG+CBBytD3Q9DGDhi4iRsOi6iL34rI7P68MS+mx9c49iPDNEkuNaxCtxJwYeV4PnAxIl7FbkO6NandUzLxGuBmEK+SaqsZjbIKrSDepGle35asE/rCdslGpwHMBv2f3OfF3U9T4SYAh2jhBBCItOrVy+ZNsc7SFu6dKmcQCHqwYNnmns32ZT6KF9dsxohGxVc++69g/LtFQS7oRO69el8D7pJ9Ds6lcy1zcTMiTadSbNP0w7qj6n3/LSuF/bpdGC7xGfvOQ9gPuz/5j4vcp6CkGjQMUoIISQSWAU+ffr0agM07CGi28AxS2BlLvZu0u0BKotRo/nqquN+LCrAfmCqJjBhAxBZgnPltQfoKzrtPaZbn843IZBEv8tXZ9p0/W0zKbznEvuwWX2adjB+bL3np3W9sE+nA9slHnvPeYBswP5v7vOibfMUhKiGjlFCCCGhwYOQ3yTHrFmztB3MEjV06dLF93vvvjJZQLcHoLhB1AeubZX1wzn0myRBei1d0K1PY0+3tPqdX53z6UOIjvj1YdgfRoyaBe1g/Nh6z08L9mk9YbuUDucBsgP7v7nPi7bNUxCiGjpGCSGEhKZv377VvsMeQzoPZoka8qVGmjNnjsgifntnZbWuDqr3A8ODGyZg3eiUclTHPu2nUxIP3n5l9OnTJ/ZyCVGFn23RMaUfJ66KQzuYDLbd89OEfVpP2C6lwXmAbMH+b+7zoo3zFIQY7xht1apV7kVKh+ePEJI2WCHqN6E3bNiwVPTp3r27aNOmTSpl2wgeev1WA8+YMUNkEfQvL1mf4JsyZUosD5PeB0pdoox17NN+6Q3jftDN1x46OpUIMX2ijXtAFYd2MBlsu+enCfu0nrBdgsN5gOzB/m/u86KN8xSEGO8YRb7rRYsWcRVDSHj+CCFp45cOC6vDVawSDRNBwcnF5PF7aMnqILx3796+32e1vnFEj7j3L9J1klS3Pu2nD+xjnOfMr90xAcAIAGIK+a5ZHSfadLJ/ukI7mAw23vPTgn1aT9guweE8QPZg/zf3edHGeQpCVMFUuoQQQkLhN9DyS+MRBj7cmJF+r3///tW+w8NTnA9Qo0aNEtttt51IGjyk+fXvuCYS3ROKadQ3zofhzp07VytHF3Tr05hkSvrhG/vC6RIBYCI69Wdb8Yt8g/0Ou+dZkyZNRFyYMGmVdp+mHUwGG+/5cRCkfuzTycN2CUbQ65PzANmD/d/c50Ub5ykIUQUdo4QQQkom36Av32b0quRnlbArY8NO8qoCD09+KzpHjhwZW5nDhw+PdZK6EH718lsxrTpVVVr1BdOnT1cu09tv8SCuCzr26aT73dSpU6u11+DBg4WNmGqbTSDOiU8/uxXlGvZrT1XOnaRTr5nap2kHk8G2e36a1wv7dHjYLumeJ84DZJcs9f844fOiHvMUhKiAjtEIvPzyy+Kee+6RK1rwGjNmjPyOEEKyTr4HFlUTZ9OmTRNZxnuewkwQow10GIj6DcIxSI4DrHrEQ76qFcmlgsk8b9lohzgmEgHkor5+q1JN3nPMS9oT7rr3aTx4e1dwO7+Lq8+ZtnJbFVmyzbqDfhZHH8a14R2j9OvXL5IzJq72RP3jXs2flT5NO5gMNt7z07pe2KeDw3bR6zxxHiC7mNz/bX9etHGeghAV0DFaIp999pkYOHCgqFmzptzgGEYAIe14IYwc3+H/jjrqKPH++++nrS4hhBiJ30RhltLqqEgrht/osP8GHp780u7E8WDgPICk+dA0adKkag/+WMEZB45cTOqnBdInqU6h5O7veIjTLXpExz7tt+I3jn7nlYm2MWHltiqyZJtNII4+7J2ogr2OuoK/TZs2sYxJnEiJOB1FWerTtIPxY+M9P83rhX06GGwXu+x91ucBdMfU/p80Oj4v2jZPQYgKMu0YRQQnnJhBX08++WRRI4MHYxi6yspK+QLOZ/cLaZEwoLjgggsSqi0hJEvovv9OvkkNFalvsPoMcrwr3oqdE/x/2MnFpM+33wNnKRNRzrGqUhapWNnrPfdYOKQyFRIekvHC4DvNaAOU7V3JjPZQvRoTYw3IxYNQ2tEVqh+o3BMefg+UOqBbn4bN9fY79BGVtstvQjzpNJ9po5tt1n0sEBUsLI3jmip2LZeKn51SoTfsO8Y6cTqKdOvTUaAdTAYb7/lpXS/s08Fgu+h1nrI2D0Cy0f/TGEPr9rxo4zwFIZGpzDD9+/evLCsrq6xRo4bvC//nfvXu3TuvrFGjRlX5jftz9+7dK4cMGVI5ceJE+Y6/t9tuu9xxRx55ZKL1JoSYA8yw32vVqlWVutO4ceNqenfr1i2y3NatW1cOHjy4ctq0adXkL168OO/v8P89e/YMVEYcepcC6uHVYeTIkYF/j2OLnY9CoL7e8qMyd+7cWM8r+gX6XJhrI476oo+W0j9LAXJQ144dO1amgd/5mjFjRizyVZ2zONCxT/fr16+KPqr6CHTw2vQJEyYoqaPqa8+NVzbqYLJtTvveFIetdPDKda4vVXVEH/b2t1LarhhR+kWxvoLrWGU/1qlPx9GnaAfV2kHe89O/Xkzr00nDdtHvPJk8DxDnWCdp4qyLaf0/rTG0js+LWZ6nIEQ15t4BSri5u52jbmcmHJnz5s0rKgPHuR2ijpxevXpVLlmyJO/vcDOHwcDxw4YNU1wzQojp+D28uCcMdQcDWD/dowy6MAB3JnT8zk++iRrn2CCDagwqvXIx4Ewa70RoKTrg2Cg6xzVJ59cn0KaqHvrCTtT51VfF4gM8gHvbMKpc9+R+WhOIfg/ZKurmfXhU0TfiRsc+7W0fPPyqtkeqHEp+E2eq+rWfLVdhy9KyzTrcm+J04PhdQ87EZxx9OOgEadgJwiiTXs6Yxam3V3dV96gsjzdoB9XZQd7z9bheTOrTacB20es8mToPEOdzYRr41UXl86Mp/T/tMbSOz4tZnacgRDWZd4yC6dOn5xybiOhcvXp14N/Ccep1iOIdEaSlGA785r333otQC0JI1vBOssU5oRcXfpN5YVePOatU3QM/72A833lxVsUFGezlO++YoE0Sv9WFQXRwBt5h9cX59au/qodyvxW+UR4MnEF92JWk+eqr4sHOb0Um7vlhFzbgAcN52EhzcYTfQ3CUa9tvhbBJq0x169N+dizsPQNt4m1vVdEk+SbNVN3f8tnyqLYsLduc9r0p7nuDW6bbvjn1jtLvvH04jsl/vwiHMHbakeO2gX5jKVX3qCyPN2gH1dhB3vP1uF5M6dNpwXbR7zyZOA8Q93NhkuSri+pFKCb0/7TH0Lo+L2ZxnoIQ1ZThH5FxevToIebMmSNmzZolOnToUPIG5sidXVZWJvcOxTs2hC5l7w3kF2/btq3U44UXXghRA0KIqWBvA2dvnZUrV8r3xYsXy++K7fmB/R2wvwb2NgZNmjTJ7R8S535UpdavU6dO1fZRwB5Cpezrhb0YsFcB9pZw7z8EuU79HbzH4Fx2795d2mZnY3oH7KdQynmHXJxf7znH93Hsn+DU2wFlzJ07t+DeLdANOuK4Yjj7SeAcoK1mz55dcI8J1BPnEnqg7mH7Gs5x165dq+ztAVnoE0Hloa69evXK7V+B9o2jvt729u5pEwS0IdrSzYQJE+ReIKXKwLnHeMVvn6CkQB9w7BbqgLo4+pXajn59Ar9F/zVpT5K0+nSx/RmHDBkSWh+0MfRx6uTsSxNmDzivrUUdvXs9uoGuKMd97RWys1FsuWPHS7m2k7DNad6b0rg34BkK+J0j9GP0Z7/7eCFwztCH3WMQ9OEwdjwIOEcozwHnY+nSpYHbwNEXuG0gxlF+7Y969OnTR55r59yHtZtZHW/QDka3g7znJ3+9mNKndYPtotd5MmEeII3nwjgotS7OPFLTpk1z91nn+zDPmDr1/7TH0KY9L2ZtnoIQ5VRmHER2Isrz3XffLfm3M2fOrLafaOfOnUOvgIKcpUuXhvo9IcRM8q3ki/JKOrIxzhXrWAGH1eR45Vt55qwg9a5UxPfOSjq/1amFUhXrdM695w7nwq88Jz17KXtM+KVvK+UVdfWs3/4WqG+hVYa4Zpx2LXVVY9T6RkkLgzbxpqyBPuin+doL3+MacFZfYhWtDqmcnNW83n3KnD7o9I0g5wrt5z4vpqTS06VPFwNt4F19jb8LlYF29P4GdYjS91TY2Xw6q7LlpdYvLtusw70pjXuD89t8K9+dlfa4RnBMoXOJvuIXwZCE/cT17D5/+FxsNT/a3LEdfnbeL+pGVT+2YbxBOxjNDvKen/z1Ykqf1hG2i37nScd5gLSfC1Wjoi5RbbIO/V+HMbSJz4tZmqcgRDWZjxitUaOGXN1w/vnnl/zbAQMGyN+6o0Wx0uPEE08MrcukSZPEeeedF+r3hBDzcFYxulejOavUguKsiANYfRZnNEQUsLoNq9rcK1QB6o4VeVglh1WLWNmHY3Fu8H/Dhg2TK9YKrdhzzqMfzup2P32wMtCRG/a8J3HOcc5w7vxW3AJkPYAeWJ2HVXpBVzdut912uc+l1N9ZjVpq9I4fqBNWmHpXtaIO6BN4oSwc59Qf/4d2LbXsKPUF0AP9M0pENvoq+mMp9UW74jrQ5bp2oke8q7IBdEd7Ote5s/LYub5XrFiRq587UgZ1Qx2zsMI0yT4dFJxryPZGJzn6OHq7bQx06t27t6xL1CwEGCOHsbXuaw9RCn79I4otd8tftWpVySvD47DNOtyb0rg3OBGjhR49veMIZ+yA8wXbgv/HCnp3e6RhW7x20MHRF23rjHfQR6AzvkPd/Fbo54sY9SNMP7ZlvEE7WFy+X//hPT/568WUPq0rbBf9zpNu8wC6PBeqImxdvPUpdL5M6P86jKFNf140fZ6CENVk2jEKJ+TQoUPlgD0MSH+L9EjAcYxu3rw5tD5IywsjPmXKlNAyCCHEBJwJFmdQhZeTUsSZVMEDTikpPPD7qVOn5lL8YCIRA2yTUnMVA4NU73lD/XD/QPoS0wek6Bd4CPHWDw81zmAcqWOykO7LaU/c890PGO4HD7zQrjo8cLvBQxx0Lvbg7KS9cl/j7nSP6Le4zuNKRa0DOvbpfP0uq9dZEmTdNid1rTgpU4uBvuvYF2fiFrhtJ2xL2ufd2S7B0dM91nHbevSRQtebk4rQsZ3ed3cqPFV1znqfph0MDu/5Zlwv7NPVYbvoeZ44D2APJvR/HTDpeVH3eQpCVJNpxyhulHiQHDduXMm/XbNmjVyV444WhZF68cUXQ+sDJ+0TTzwhFi5cGFoGIYQQQgghhBBCCCGEEEIIIaR0aogMg5REWEkUBm9aAJAvfUNQEC3qTolJCCGEEEIIIYQQQgghhBBCCEmGTDtGEQoeNuwbqR+8RA1rR5i8k0KCEEIIIYQQQgghhBBCCCGEEJIcmXaMhtmM2R0xivS5bvbff39FWhFCCCGEEEIIIYQQQgghhBBCkiTTjlFsHBwmdS32F0W0KXC2YMUG4WlGsBJCCCGEEEIIIYQQQgghhBBCwpNpx2jY1LXe/UUROdq5c+fI+ixevJiOUUIIIYQQQgghhBBCCCGEEEJSIPMRo07kZ9T9Rbt37x5Zn6lTpyqRQwghhBBCCCGEEEIIIYQQQggpjbJKJ1dsBhkwYIBYunSpePHFF0v6XY0aNXL7i+L04POqVatEw4YNQ+sya9Ys0aNHj8hyCCGEEEIIIYQQQgghhBBCCCGlk+mI0W7dulVLi1uMJ554IvfZcYpCTlRnZv/+/ZXIIYQQQgghhBBCCCGEEEIIIYSUTqYdo0hbC+fm2LFjA/9m+PDhvk7NKPTu3VtGrk6YMCGSHEIIIYQQQgghhBBCCCGEEEJIODLtGG3UqJHo27evuPnmm8Xnn39e9PhJkyaJefPm5dLogtatW4sTTzwxtA5In4so1GnTpomWLVuGlkMIIYQQQgghhBBCCCGEEEIICU+mHaNg6NChcl9PRI8Wco7CeYnIUO/eoiNHjgxV7pNPPimaNm0q9xadOnVqJOcqIYQQQgghhBBCCCGEEEIIISQamXeMtmrVSowfP14sWrRIRn9ecMEF4uWXXxZr166VL3zu06ePTHfrBk7Rfv36lezQvOeee0SXLl1Er169pEMWZbZt21ZxrQghhBBCCCGEEEIIIYQQQgghpVBWidBICxgyZIgYPXp0lTS5bpwIUeczHJtTpkwpKve9994TM2fOFDNmzJDvzu+BuyxEo44YMUI0bNhQUY0IIYQQQgghhBBCCCGEEEIIIUGxxjEKpk+fLvccXbNmTVEn6vDhw/P+/7vvviudnHCErl69Ove9n0PU+R7fbbfddnIf0xNOOCFyXQghhBBCCCGEEEIIIYQQQgghwbHKMereTxTRoPPmzRMrV64UTZo0kSlvsQ8p0uc2atSo4O/h3ITzNAxIs/viiy+G1JwQQgghhBBCCCGEEEIIIYQQEgYrHaOEEEIIIYQQQgghhBBCCCGEELuokbYChBBCCCGEEEIIIYQQQgghhBASN3SMEkIIIYQQQgghhBBCCCGEEEIyDx2jhBBCCCGEEEIIIYQQQgghhJDMQ8coIYQQQgghhBBCCCGEEEIIISTzlKetgIncc889vt83adJEtG7dWuy///6J60QIIYQQQgghhBBCCCGEEEIIyU9ZZWVlpcgwa9eule8NGzZUJrNGjfyBtmVlZfIdDtIBAwaIvn37Ki2bEJ3YtGmTWLhwYbUFAoWuEUIIIYQQQgghhBBCCCEk62zZskWsXLmyyne77767KC9nzGKaZN4xCgcNXosWLRItW7aMrZw1a9aIJUuWyBc6+ksvvSSeeOIJ6SgdMmSIuPnmm2Mrm5C0mD9/vthrr73SVoMQQgghhBBCCCGEEEII0Z6PP/5YtG/fPm01rMYKt3QSvt9GjRqJDh06yBdApCgYNWqUGDp0qJg5c6Z8MXqUEEIIIYQQQgghhBBCCCGEkORhvsuYGTx4sIxWRRRp796901aHEEIIIYQQQgghhBBCCCGEECuhYzQBsN8oUuvi9dRTT6WtDiGEEEIIIYQQQgghhBBCCCHWYcUeo9jnc/HixbHuMRqEHj16SF1efPHFVPUgRBXff/+92GGHHarlSN9+++1T04kQQgghhBBCSLZZvny5eOCBBwoec/bZZ4tmzZoJW/nhhx/EXnvtVeU7Pq8TQggh6d+Pv/vuO9GiRYvUdCKW7DGqCx07dhSTJk1KWw1ClC488IKHLJsfPgkhhBBCCCGExAvW+NevX7/gMXw2rQ7PCSGEEKLnnDpJFjpGE2TJkiVi9erVaatBiLFs2bJFfPvtt/LzjjvuqPVNRAddk9YhzvJUy1YlL6ocHfoJyY+N7WNSnXXQlXY2fnm0s9nGxvYxqc466Eo7G7882lmSNUzqkzroSjsbvzza2WxjY/uYVGcddIUORD/07bUZZN68eXK/UUJIODZt2iTuuece+cJnndFB16R1iLM81bJVyYsqR4d+QvJjY/uYVGcddKWdjV8e7Wy2sbF9TKqzDrrSzsYvj3aWZA2T+qQOutLOxi+Pdjbb2Ng+JtVZB111P0e2wojRhHjiiSdkxGj37t3TVoUQY8EevY0aNcp91hkddE1ahzjLUy1blbyocnToJyQ/NraPSXXWQVfa2fjl0c5mGxvbx6Q666Ar7Wz88mhnSdYwqU/qoCvtbPzyaGezjY3tY1KdddBV93NkK2WV2JghwyA8Gp1v8eLFomXLlqno8OSTT4qePXtKPQYPHiyGDx+eih6EqGb58uWiefPmVb5btmwZ9ywhhBBCCCGEEBIbeO4cN25cwWMGDhxY7XnVJvi8TgghhKQP78d6wlS6MTtEjzzySNGrV6/cd/37909VJ0IIIYQQQgghhBBCCCGEEEJspNwE5+Ls2bMjyxk5cqRo3LixiJPVq1eLlStXypS52E/UAUG5iBZF1GhaUauEEEIIIYQQtWDs//jjjxc85uSTTxZNmjRJTCdCCCGEkCRYt26d+OCDDwoes++++4p69eolphMhhBCSCccoJhqmT58eKTczHJMTJ05UrFnh8rx6tm7dWkyaNCkxHQjJItis2rEHWGhQXq6vCdNB16R1iLM81bJVyYsqR4d+QvJjY/uYVGcddKWdjV+e7nYW8pEaqdgxRN/rOGlMqrMOutLOxi9PdztLSKmY1Cd10DWKDj/++KN4/vnnCx6DABG3Y5R2lnY2a9jYPibVWQdd+TyoJ/r22l+ZOnWqfF+zZo1ckY1ITERkIop05syZMkrT7YDMt2Vqklupup22KLdjx45i1qxZomHDhonpQEgW2bJli/j0009zn3VGB12T1iHO8lTLViUvqhwd+gnJj43tY1KdddCVdjZ+ebSz2cbG9jGpzjroSjsbvzzaWZI1TOqTOuhKOxu/PNrZbGNj+5hUZx101f0c2Yr2jlGHRo0ayVerVq2qfL906VIxbdo0MWLECOkk9UaSOg7RUiJMo4DynDKRuhcpfPv27ZtI2YRknZo1a4pjjz0291lndNA1aR3iLE+1bFXyosrRoZ+Q/NjYPibVWQddaWfjl0c7m21sbB+T6qyDrrSz8cujnSVZw6Q+qYOutLPxy6OdzTY2to9JddZBV93Pka2UVSYZShkzCIvu169fFQeps78nnKpxg72DkDIXEaLdu3cXXbt2jb1MQtIEqeOaN29e5btly5aJZs2apaYTIYQQQkhSYNwzbty4gscMHDiw2niJEEJINGh/i8PndRI3vA4JIaQ4vB/riTERo0FAnmi8+vfvL/fzdEeJIgUv8toTQgghhBBCCCGEEEIIIYQQQuwjU45RhwkTJsg0tqNHj05bFUKIQhABjlU2AKtqkkqRbaquSesQZ3mqZauSF1WODv2E5MfG9jGpzjroSjsbvzza2WxjY/uYVGcddKWdjV8e7SzJGib1SR10pZ2NXx7tbLaxsX1MqrMOumYoYWumqCEyCvb2POmkk9JWgxCikI0bN8o0LXjhs87ooGvSOsRZnmrZquRFlaNDPyH5sbF9TKqzDrrSzsYvj3Y229jYPibVWQddaWfjl0c7S7KGSX1SB11pZ+OXRzubbWxsH5PqrIOuup8jW8lkxKjDqFGjxBNPPJG2GoQQhWyzzTbCFHTQNWkd4ixPtWxV8qLK0aGfkPzY2D4m1VkHXWln45dHO5ttbGwfk+qsg660s/HLo50lWcOkPqmDrmF1qFGjRtHf4hhV5QWBdpakgY3tY1KdTdKVJEdZZcZjeXv16iWefPJJsXjxYu4xSohiuHk0IYQQQmwG4x6sPi7EwIEDq42XCCGERIP2tzh8XieEEELSh/djPclsKl2HHj16pK0CIYQQQgghhBBCCCGEEEIIISRlMu8Y7dy5Mze4JYQQQgghhBBCCCGEEEIIIcRyMr3HKOjQoYNYtWqVaNSoUdqqEEIismnTJvHss8/Kz3/+859Febm+JkwHXZPWIc7yVMtWJS+qHB36CcmPje1jUp110JV2Nn55tLPZxsb2ManOOuhKOxu/PNpZkjVM6pM66Eo7G7882tlsY2P7mFRnHXSFDkQ/Mh8xCugUJSQbbNmyRXzwwQfyhc86o4OuSesQZ3mqZauSF1WODv2E5MfG9jGpzjroSjsbvzza2WxjY/uYVGcddKWdjV8e7SzJGib1SR10pZ2NXx7tbLaxsX1MqrMOuup+jmxFX3c+IYR4qFmzpjjyyCNzn3VGB12T1iHO8lTLViUvqhwd+gnJj43tY1KdddCVdjZ+ebSz2cbG9jGpzjroSjsbvzzaWZI1TOqTOuhKOxu/PNrZbGNj+5hUZx101f0c2UpZJTfgJISEZPny5aJ58+ZVvlu2bJlo1qxZajoRQgghhCQFxj3jxo0reMzAgQOrjZcIIYREg/a3OHxeJ4QQQtKH92M9sSKVbtqsWbNGrkw46qij0laFEEIIIYQQQgghhBBCCCGEECthKt0EWLlypZgxY4bYbrvt0laFEKNBgDsWGjh7B5eVlQld0UHXpHWIszzVslXJiypHh35C8mNj+5hUZx10pZ2NXx7tbLaxsX1MqrMOutLOFpa3atUquW9V/fr1I9nZH3/8UX5u0KBBKDsb5fdh2bRpk6hXr17RYyoqKoStoP477rijdeckrT5pqq5J6xBneaplq5Jnqp0lwbCxfXStc40aNUR5ebl81208S/SDjtEEWL16ddoqEJIJNm7cKG6//Xb5ediwYaJ27dpCV3TQNWkd4ixPtWxV8qLK0aGfkPzY2D4m1VkHXWln45dHO5ttbGwfk+qsg660s1VZt26d+OGHH+Rk5IYNG8T69evl97Vq1Yo0YQ/dwsqJ+vuwoNzDDz+84DHfffed+P7774Wt4BxNnTq1ynfffvutPC9ZJq0+aaquSesQZ3mqZauSZ6qdJcGwsX10rzP0gYN0m222Edtuu20u9X6a41miH3SMJsCSJUvke5MmTdJWhRDjwQ3XFHTQNWkd4ixPtWxV8qLK0aGfkPzY2D4m1VkHXWln45dHO5ttbGwfk+qsg660s0JGhn799ddVJtYYfUAIIYQQkt9xi0hRBKxhi0Nk9MR3Oi9KJMlSVsnRdOz06NFDzJw5U7Rp00YsXLgwbXUIUQY3jyaEEEKIzWDc46xAzsfAgQOrjZcIISQISJOLhdZOujonCgIp4pw0cbpFaRBCCCGEpIXj6sI7xlF4OWDMtMMOO8hXknD+XE+0jRh97733xPDhw+VDQJcuXcSIESNEw4YNS5LRp08fkSZYkTBnzhym0iWEEEIIIYQQQkhJuJ2icITWrFmTjlBCCCGEkDw44yRnIRmAcxR7bMNZipTy+HunnXZKWVOSNlo6Rt99913RuXPn3N/z5s2T+yLgoaAU5+iMGTNym+umBQNyCSGEEEIIIYQQUgrffPNNzimKfbKcyT28169fX+6ZVbduXeksdf7PJjDXsnnz5oLH2O5IxjmqqKio8h36jM3nhKjvY8XmPdHf2OcIIUkAhyfGBnCC/vzzz/KF/dgxTkIKXXyPY7D/OL5LOnKU6IWWjtG+ffvmbqy4eeIz9tQYOnSouPvuuwPLad26tXSqeknyhuyURQcpIdHBDexf//qX/PzHP/5RThDoBOwNbrT77LOPFromrUOc5amWrUpeVDk69BOSHxvbx6Q666Ar7Wz88mhns42N7WNSnXXQ1VY7iwXemLQDbsfn9ttvL1/4zu0YjOIAjCpHlR6l4k6Nlw+3Q9lGcI7QJradk7T6pKm6RtHBicIqhLfPxVln1bJtt7MkGDa2jwl1doLrsEAIUaK//PKLtEeOc/S7774TTZo0SWTP0WJ2kqSDlqMhOBfcK4qc99mzZ5ckB53b+b1bnrOiKYkXIUQduHEhohyvIA/CSQJ9+vXrJ/bbbz9x7rnnis8//zx1XZM+X3GWp1q2KnlR5ejcp4md7WNSnXXQlXY2fnm0s9nGxvYxqc466GqrncW+UwBzGI5jC1ENLVq0qOLo8u6dFUW3qLZa9/5M7MKkPqmDrknrEGd5qmXTzpIg2Ng+ptS5Tp06Mm1u48aN5d/OwjT4bb744otEdDDhPNmIlstTO3ToIPcYdUBHxQOBO71u0IhRtwzQrVs3+b1zMcQF9hVduXKlmDlzJvcYJUQRmAT4wx/+kPusE9OmTRNz586Vn++//37x2GOPiRNOOEGcdtppqema9PmKszzVslXJiypH5z5N7Gwfk+qsg660s/HLo53NNja2j0l11kFXG+0sJs8Q1eA+rlGjRqJp06a+MlXplubvCVGNSX1SB12T1iHO8uKw3TrI0aGfkPzY2D4m1RnOUCwu27BhQ5XI0Z9++kmOu+LOpGDSubKJskoNwxrhTOzRo0eVCE98Xrx4sWjZsmVgOaNHjxZDhgyRv4Uz9KWXXhKtWrUSSdO9e3cxa9Ys0aZNG7Fw4cLEyyckLpYvXy6aN29ebXVzs2bNhE3gxtq+fXu5D7KX7bbbTlxxxRXioosukvu5EEIIISQ7YNwzbty4gscMHDiw2niJEEIKpdF1niuc9G6Yz6hXr17KmulFmBSeNp6jdevWVfkO/cjmc0LUwuuQEGISSKsL/5Izlwt22223XNbRuOD8uZ5oeWdCVCecmPvvv79cGYm/58yZU5JTFLijQkeOHJmKUxQMGDAglXIJIckwceJEX6cowP7Il19+udhjjz3EQw89lMvBTwghhBBCCCFekHkKOI6EWrVqyTRwhBBCCCEkPAhYcRadOeMsLEgjdqJlKl0AZ6iTljIs7lS6HTt2VKBVND2cBxxCSDgQPe6kldpmm2202Nx77dq14vrrry96HPLWn3XWWWLMmDFyocZRRx0Vu/5Jn684y1MtW5W8qHJ07NPE7vYxqc466Eo7G7882tlsY2P7mFRnHXS10c4irZt7wm7bbbf1jbbyJv+KYmejyFGlByGqMKlP6qBr0jrEWZ5q2bSzJAg2to9JdfbqinEVfDQYWyHq/eeff05cB6IHWkaMqsIdBh13SHQh4t7PlBBb2Lhxo3Qs4oXPOgBdkBIhKB988IH44x//KLp27Spmz56dqfMVZ3mqZauSF1WOjn2a2N0+JtVZB11pZ+OXRzubbWxsH5PqrIOuNtpZJ8OMM8mICbxCMlXZ7Ki2Wvf+TOzCpD6pg65J6xBneapl086SINjYPibV2a1r/fr1q4yziqUDV1U+0Y9MO0YRqYn0uWml0PWyevXqtFUghCgEq7lvv/32UL/997//LQ444ADRp08fsWjRIuW6EUIIIYQQQswCkQveqAKk0iWEEEIIIdHBvsduMO7C+IvYR1klY3kTYenSpfJdFyctISrg5tFCfPTRR2LYsGHiueeei3RT7t+/v7jmmmuqnU9CCCGEEEKIHWzYsEE+XwBnD6y2bdtyj1ESCkz0rlu3rsp39erV803NTAghhNjA+vXrcwEqGHeBvffeOzfuigPOn+sJR0MJoVPkKiFEHbh5Pvvss+KVV14RBx10UCgZSNtw1113iTZt2sj9Sp19hQghhBBCCCH24BexQCcWIYQQQoga/MZVjBi1E46wCSFEAb///e/Fm2++KZ544gnRrl27UDLgEL322mvlqvBx48YxBz0hhBBCCCGEEEIIIYQQohA6RgkhxoDIyhdeeEG+ktgcu1SwcfeJJ54oPvzwQxkBut1224WS8/3334sLLrhARqNOnz692j5Dup6vOMtTLVuVvKhydO/TtmNj+5hUZx10pZ2NXx7tbLaxsX1MqrMOutLO5gfPCJCDV5QdkqLKUaUHIaowqU/qoGvSOsRZnmrZtLMkCDa2j0l11kFX3cf8tkLHKCHEGJDa4O2335YvndMc1KpVS5x//vli4MCB4g9/+IPYdtttQ8lZuHCh6NWrlzj44IPFq6++qv35irM81bJVyYsqx5Q+bSs2to9JddZBV9rZ+OXRzmYbG9vHpDrroCvtbHGZqmx2VFute38mdmFSn9RB16R1iLM81bJpZ0kQbGwfk+qctq6mnCfbKE9bARtYunSp3DsQOay5QoCQ8NSsWVMcdthhuc86A/2OOOII+dprr73E8OHDxfjx40Olx8XkyeGHHy6OOeYYMWLECLHPPvtoeb7iLE+1bFXyosoxqU/biI3tY1KdddCVdjZ+ebSz2cbG9jGpzjroSjtbXKYOcnTvy8Q+TOqTOuiatA5xlheH7dZBjg79hOTHxvYxqc5p65p2+cSfskrd450z5BhFWs0VK1akrQ4hyli+fLlo3rx5le+WLVsmmjVrlppOOrN48WJx1VVXiccffzxSut6zzjpLXH/99WKXXXZRqh8hhBBCCCEkPSoqKsT8+fPl59q1a8v3du3ayYw0hISJUFm3bl2V7+rVqycX7RNCCCE2goCVBQsWyM8bNmyQ7+3btxd169aNrUzOn+sJR0MJsHr16rRVIIRoABZIPPbYY2L27NkykjQMWMvywAMPyAmSIUOGiFWrVinXkxBCCCGEEEIIIYQQQgjJInSMJsCSJUvke5MmTdJWhRCjgVMQq3nw0j3YvZCunTt3FjNnzhQvvPCC2G+//UKvJh81apR0to4ZM0b+XYoOcRBneaplq5IXVY5JfdpGbGwfk+qsg660s/HLo53NNja2j0l11kFX2tnC8tyvtOSo0oMQVZjUJ3XQNWkd4ixPtWzaWRIEG9vHpDrroKvu58hW6BhNgClTpqStAiGZSXeAvTrxCrNXp066IiXukUceKebNmycefvhhsdtuu4UqBxGjl19+uYwgffDBB8XmzZsD66CaOMtTLVuVvKhyTOrTNmJj+5hUZx10pZ2NXx7tbLaxsX1MqrMOutLOFpepymZHtdW692diFyb1SR10TVqHOMtTLZt2lgTBxvYxqc5p62rKebKNcmExn332mUxzi4jOlStXKpcP2TNmzJCRYYQQ4gf2dzn99NNFz549xd133y1uuummUPboyy+/FGeffbYYO3asGDFihDj66KNj0ZcQQgghhBBCCCGEEEIIMZWySstieZFyEhGciNJKCucUI+XlwoULEyuXkLhJevNoXEvOKptatWrJqEtdCasrFlSMHDlS3Hbbbb7pcYPyP//zP1LO/vvvX7IOOraPatmq5EWVY1KfthEb28ekOuuga9I60M7SzmYNG9vHpDrroKttdhbj//nz58vPtWvXlu/IDIPj/eS5iWJno8hRpQdRz5YtW8S6deuqfFevXj25ODfLmNQnddA1aR3iLE+1bNpZEgQb28ekOnt13bRpk1iwYIH8jO0NQPv27UXdunVj0wFz5S1atEhs/pwEI9ujIRcvv/yyaNq0qRgyZIiYO3dutfzScb50Ng6EmASuJUwQ4KX7dRVW18aNG8v0WlhEcd5554V+aP3Pf/4jDjzwQBmN+sUXXyRyvuJsH9WyVcmLKsekPm0jNraPSXXWQdekdaCdpZ3NGja2j0l11kFX2tnC8tyvtOSo0oMQVZjUJ3XQNWkdUMaKFStiKU91XWhnSRBsbB+/Ov/www9CR3RoH1v6hWlYkUp30qRJYsCAAbkVAuyMhBDd2XnnncU999wjLr30UjFs2DDx3HPPhZIzbdo08dRTT4n+/fuLq6++utoKJUIIIYSEZ82aNeKll14qeEyPHj1Eo0aNEtOJEEJsAPM7mzdvLnhMzZo1Of9DSIw4ASGF8DojsO3P2rVrxRtvvJGAhoSQpDjjjDPktf3MM8+I7bffPm11CClK5h2j7777rnQIAOdGnHT2YA7ECVEDHnwRCemkisWDbtZ13XvvvcWzzz4rXnvtNTF48GDx1ltvlSwDaSLuuusu8eCDD4rLLrtMDBo0SGy77bbCpPZRLVuVvKhyTOrTNmJj+5hUZx10TVoH2ln97Oz69evFxx9/XPCYww8/XGmZWUKH6zhpTKqzDrrSzuYH8xpIlQqQZSZKiscoclTpUSrucvORpD5EH9Lqk6bqGkUH/BbzDYUoLy+XMhFN1qFDB/ndnDlzpE1UXWfV59N2O0uCYWP7+NX54Ycfltc4XvDH6OIc9eqaBsUWcpF0yLxjtFevXvIdFyguhNatW4uePXuK7t27y89NmjSJbQU3VpDPmDFD9OvXT+4bSAiJfiN5/fXX5eff/e532k8kqdQVMt58800Z/YkIUicffin89NNP4u9//7u4++67xbXXXiv69u3ru1+Rju2jWrYqeVHlmNSnbcTG9jGpzjromrQOtLO0s1nDxvYxqc466Eo7W1ymiom+qHJU6UGIKkzqkzroGrcOjlMU86Rvv/222G677XKOUd3rQjtrPmPHjpXz8osXLxarVq2SUY34+8svv5T/j7+jYnL7IHr7hRdekCmucV5wjrAlF84LrtlLLrlE3HDDDUXrDEcoHKLwt+C1ZMkSbZyjabcPHaN6kmnHKC5GXIRwirZq1UqmlHRWJyUBHK5wwkKHoUOHJlYuIVkFNzDsm+l8tk1X2LITTzxR/PnPfxb33nuvdHJ+9913JcvBBt8XXnihuO2228TNN98sTjrpJCUr2uJsH9WyVcmLKsekPm0jNraPSXXWQdekdaCdpZ3NGja2j0l11kFX2tniMnWQo3tfJvpywQUXiHHjxinflqZhw4Ziv/32k+nsjz322FCT89iK5sYbbyx6XIMGDSI5AEq5fnbZZRfx1VdfFT3uqquu8nVkqNAhDMieAb2xOGTPPfeM1UkQh+3WQQ7tbDjmz58vM6cVun5VYHL7IMPcY489pqTOsIPPP/+8OOyww7SKHE27fdIun/hTVpl0XtkEgTNy1KhRolOnTmL27Nmp6TFr1iwZoYoVUVh9QUhWWL58uWjevHk1p1uzZs1S08kmfv75Z3HrrbdKO/fjjz+GlnPAAQdIGUz1RwghhJQGxj3FJnQHDhxYbbxECCF+VFRUyElcULt2bfnerl07pVlesgLS4gVJ4WnzZCTO0bp166p8V69ePa3OCSK5nnzySfnZieDK92wLB8a+++4rP8Px6caJAMO7n+PwlFNOkY7O9u3bB9YN++ThOTmIbrjXIzNT3Ocqn4MH5wZO08aNG8u/kR3q7LPPFjpch9ADTpdSnbWEqOKBBx6Q8/GIGJ08eXKV6xjXjoqIUZNBxOjChQvlOYI9RrY6N2GuXcdeHXLIIdrtJ7xx48ZcFr4NGzbId9wb6tatG1uZnD/Xk0w7RrEyDE5JGL6WLVumpgdWR8A5S8coyRo07Pq0A1ayYmIWN/iwHHPMMWL48OG5h01CCCGEFIaOUUKISugYDQ4do9lwjAaNIt1rr73ERx99FFgGJuIfeeSRak6QqA5MJ4oU+rj3GE/CuQLH5z777CNTXrpJ0+FY7Dq8/fbbxeDBg0tuP0LiAvdY9EcHOkaL2+CwNubQQw+VTlbdFkXQMUoc9B4NRQSpLLp165aqUxQ4K7a4zyghJA5wI8UDBwZ4WAkbln/+858y3dA555yT22uBEEIIIYQQQghJiuuvv77ad3hOLXVCHg5QzAsiYskBk/1777233PMyDM7kPra4cafghPMVEaZxAUcv9vrr06dPXp1049NPP5VOUTB9+vS01SEk5wBDum2Sn9NOO02JHMcmYjGJblGjhGTeMbpy5UqZwjZtmjRpIvfww4sQEh6s5Lnuuuvky1nVoytp6NqmTRvx6KOPijlz5oiuXbuGkoEkAkgzsvvuu8uHGGy6rkOdVctWJS+qHJP6tI3Y2D4m1VkHXZPWgXaWdjZr2Ng+JtVZB11pZwuP2yEHryiJwKLKUaUHIQ5++9E5AQel9smmTZvKCXm3cxSRntj7Lqxz1OH000+v8vf48eNju36wB6C3PFXEdQ33799fvg8YMKBKCuM4bYZq2bSzenDqqafKxQ6q8KbijkrW2gd+DBV1hi1HtCg4+eSTRVro0D66j/ltJdOOUURotm7dOm01RKNGjcS0adPE1KlT01aFEGIBSN09Y8YM8dxzz4kWLVqEkrF+/XoxevRoaUPxjrRehBBCCCGEEKIDZWVlMiVsoReOIQR4ozmxD+kZZ5wRSpYTKXrxxRdX+d6b4lYl//jHP6qVpzNIYfzf//43bwQwIaXw+eefK5VXykILEg1EtMNmwuYiFTkhOpHpPUbbtm0rhg4dKs4///y0VSEkNpCSpG/fvmLp0qWJ39yTzpEOc/XLL7/Iz9tss43WD7o66AodfvrpJ7koA4ORKINJ7GcCGVilWrNmzcTrrFq2KnlR5ejQT0h+bGwfk+qsg65J60A7q5+d5R6j5l/HSWNSnXXQ1TY7W8oeo96pnCh2NoocVXoQ9Zi6x6hfPyplb9B8fRJRZ4899liV/7v//vvF2WefXXK02SWXXCKfj5GW173X6JgxY8SgQYOUXj/I6ITFytijE5+x9U0hGaUS5RrOVzYCRJBeGNGiaDe3zDhthmrZtLN6gOsM852q0rE6e1+q2mM0a+3j3YfVb4/QUurs7M3szCP7ZQWIE6+u2Bc56T1G8czoDVzhHqPpo/9oKAKIdFq8eHHaahASa1R0r1695Dv2zsg6uNHWr19fvnQfaOigK8rFIO+8886T+3vccsstgVJi+IE9R/HAiJRD//rXv3wfgOKss2rZquRFlaNDPyH5sbF9TKqzDromrQPtLO1s1rCxfUyqsw660s4Wlud+pSVHlR6EqCJfn/TbnxMOxyice+65Vf6+7777lF8/kyZNqlaOSqJcw97f4oV5BzhFAZwpXplx2gzVsmln9QDzUTpjY/uUUmcsJHG45pprhI3tY0u/MI1MO0a7devGDb5JpoFTlJAg1KlTR1x66aVysQgi6cOuhPrggw/EMcccI4444gjxzjvvKNeTEEIIIYQQQghRzXHHHVftO0R7OlHaYfBGh0aV5wX7oCKy7ayzzhKmcNttt8l37OuadGQYyR64BhxHOzET2IGjjjoql2abEF3ItGO0Z8+e0gnw/vvvp60KIcqB03/mzJnCJjZv3ixeffVV+cJnndFBVz8dkH5k+PDhYtGiRTKSNGwapf/85z/iwAMPFL179xYLFy7MW16cddFBXlQ5OvQTkh8b28ekOuuga9I60M7SzmYNG9vHpDrroCvtbH6QwQVy8IqSSjOqHFV6EKKKUvvk22+/Hak8Z8Lf4Y477lCm6+233y7lx+lgVHkNYy9X7CUIBg8eHHt5ccumnU0fXAO6Y2P7lFpnpOMFcHIjJbht7aP7mN9WMp9K96STTpL7L6bNPffcI1+EqACpc3Xo12ncSP7973/Ll+43FR10LaTDb37zG2mTEAH65z//OXQZ06ZNk3sPXHjhheKbb76Jrc6qz6cqeVHl6NBPSH5sbB+T6qyDrknrEGd5tLMkDWxsH5PqrIOutLPFZaqy2VFtte79mdhFvj6JrWa8RN2CC/touik1IqrQ9QMHgld+HKi6hkeNGlUwQld1eUnIpp1Nl6SdaGGxsX1KqTP2dXXsL9KD29Y+tvUNUygXGQcXGxykV1xxhbj55ptT0WHp0qWiX79+MjLr/PPPT0UHki3gFO3cubN1EaO4hrDHpfNZZ3TQNYgOcGpiVedrr70mhgwZIv773/+WXA42Lr/77rvFQw89JP70pz9JR6vqOqs+n6rkRZWjQz8h+bGxfUyqsw66Jq1DnOXRzpI0sLF9TKqzDrrSzhaXqYMc3fsysY9S+iSyKkUBDsCdd945FymJiCg8YxdyDAbR9Y033hBr1qwJLCfta9hJ++sXRRtHeUnJpp1ND6Sldq4r3bGxfUqtM5yjL7zwgrQTaNv27dsLW9on7fKJpY5RDHCmTp0qevToIZo2bVot/3+SNGrUKLWySXaAMxSvuXPnijZt2gibKC8vjxTdaJuupejwu9/9Tj54Pf3002LYsGHi008/Lbm8n376STz22GNi1qxZYuXKldKBX6tWLaHj+VQlL6ocHfoJyY+N7WNSnXXQNWkd4iyPdpakgY3tY1KdddCVdjY/ZWVlUmbaclTpQYgqCvVJv70K27ZtG7nMs88+W9x44425v8ePHx/IoVlI17vuukucfvrpkXWLokMp/OMf/8h97tatW+zlJSGbdjb9LfJMwMb2CVPnPn36SMeok3IcARa2tE/a5RN/rHBX44Y8Z84ccdNNN4mTTz458U2bkfaUEFX06tVLRkI3adIkbVVIxsBg4YQTThAffvihmDBhgthhhx1CyVm2bJlMrYtoVKTatWWPBUIIIYQQQggheoKIRj9URGRecsklVf7G5H++8oKCRccXX3yxMIUpU6bkPp911lmp6kLM54ILLhAff/xx2moQhRx77LG5z6+88kqquhBijWMUdOzYUSxZskQsXLhQtGzZUtx7772JlQ2nLKAji0Slf//+MoWuKaumiJlgJRPSfy9atEjccMMNvvuwBAG/7927tzjooIPEf/7zH+V6EkIIIYQQQojDDz9WiAfe/Exc/Ng8cdZ9b4s+E/4r3/E3vl/x0/q0VSQp4o5odDjllFOUyN5+++3FIYccUuW7Bx98MNK+ilhonGSqyag4kWCYP8D5UAFSEsNBtvfee4uGDRvKxdx4x99HH310lf0n8XmXXXbxlTN27Fhx9dVXi1NPPVX+Dik9cSxk4bMXpPlEuc4xKBefcSxkBdEb5eA3+K2jd9Dfl4JTlvscObqizlEd9EmXjd9A5rhx40RaoP3RV9zt77Sf6nPq9DW/Po7vkdlNBZDjLcfdVkkAu+DML9LpTXTAGseok1YX6UeHDx8uLr/8clGzZk1pFJ588kmxdu3aWMr87LPPxMiRI2ORTexi3rx5Mi00IvBsZcOGDXKvYLzwWWd00DWqDvXr1xdXXXWVWLx4sfjLX/4SOi3uO++8I/7whz+IY445RnzwwQdanE9V8qLK0aGfkPzY2D4m1VkHXZPWIc7yaGdJGtjYPibVWQddaWfzg6wskINXlAwtUeWo0iMKH369Rlz37EfijPveEY+89bn45NsfxTerK8TKnzfId/yN70+/9215HI4n2SVfn0TmLS8qHQLYSsbNbbfdFlrX0aNHy3nLJFBxDbudN/vuu2/k8iAPDpzjjz9eLF26VJ6Lt99+WyxfvlwGvUycOFEGDaD9cBycjeecc47cj9IrG46nyy67TKY6RhSus8chjvXLKAiHGJzSyP6HheLPPfeceOKJJ+T2Q/gdZMGpBKdgPqfeGWecIVq1aiXuvPNO8frrr8sti+CAcn4Px1QpDi+/c4Y6Qw7O0RdffCHOPfdc8fDDD8vyoPduu+0mbr/9dtGsWTOpk0pnXhxlY34e5wi/cZzsbnDuHCdzvpcKoMeBBx4oP6Muzz//vGw/RDtCB/Qj6Oh2yoe5hpy+gr4GJ/B+++2XO4f/7//9P/k3vj/ssMPkeQnbfs61BDlOOddee60sB/3ziCOOkH4RnL9SnPZh7YbbPqhy+powTtF9zG8rmU5wjH3y8oFoKNxIkS4SL4fWrVtH3njdATdR3LAJUZVCF052Vf3TVDZu3ChMQQddVeiAQR8GtUgPBEcpHibC8K9//UsOKs8880xx/fXXi1133TXV86lKXlQ5OvQTkh8b28ekOuuga9I6xFke7SxJAxvbx6Q666Ar7SzJx5YtW8S9ry8VU+d8lftu/aYt4qf1m8SmzVvElkohapQJUV6zhti2Dqa/aojXF/0gX7077yzOO6yVqFHDqngBa8EEPJwabu6//36lEZnYZxTOOQc43lCuX0RiIeDIQzQV5JnCW2+9lfsMx0sU4HCEw23nnXeW58GvjRB5hvMKxxUcmXA25gO/R1uvWLFCBssgcjjfFmtwIGHODQ5YlAEnimO3se1Qp06dcmVBRzjMnFTMcFxhThn7wmLeww3kwAmGFMOPP/64LB+OKjinSu0fqMfhhx8uzw2i79w6OECm039wfjCHg3kdnIco/Qp1jKtsOMDhbD3qqKPk3whgcl+zKK/Uc1UqTvtjLt8b9Yx6utvfudbDnE+njwM4RqdPn16lnzvnEFtUod/gPKBvYXFAKTbLOf8AEe0o169euI7g6EVAxMyZM8Utt9wi4gKOWKdd4QCPu00JKURZZYY3f0Pq2jVrCq8ETLL6bdq0kal8CSmVIUOGyJsTBnFux/t2222X+xv/h5TRSYLBYvPmzavtL4lBTxzgenWu6UaNGilbEZZVXePSAX0NfXLWrFmhZdSpU0cOurCAxd2Pk6qLKnlR5ejQT0h+bGwfk+qsg65J6xBnebSz4cC4p1iqr4EDB1YbLxF9ruOkManOOuhqm52tqKiQThFQu3Zt+d6uXTvfzC3euYwodjaKHFV6hHGKjn5xgZg5/3v598/rN4m1FZvExs1b8v6mVs0aomHdclFfOkmF6Na+hbj8yHaZdY7iHK1bt67Kd/Xq1TOivt5+hHvp3XffHapPfvLJJzICzO0MGzNmjBg0aFAo3eC8waJhOBMKOSKcVL2PPvpoYF1Rb0SsYb7H73dwXridr34ySkXFNeyudzEHWKHy4Hhz5pNKcRrCeeREGaLf+8l2gI2FM8oBDiM4sCEDcxPu8+6nq7ssOOucDIRIS4p6+/ULtxwsEIfTHECPjz76qGj9nN+jL/fo0UP+Ho7jd999N1DaYkTWItIxSt/HeUu6bHf7Oe2kAid6192Gfu3vh1/7l3INua9hnMcvv/yyYHmoM5zoTnlBnaPuOhazQ+42hq1EVKfbKY0ACW+/Dms33PWHE9y7iCAOvLpu2rRJLFiwoEokJ85p3bp1Y9MBz4wtWrRIbP6cBEP/0VAEsJoCnT/fCxQLw1f1IvHRvXv3QI4VVcBBiehNrBRCuWhfOL2hx6hRo+QAVnUKXci1OYWuA841Vm/hpft1pYOucemAvj9jxgzx4osviv333z+UjPXr18v0QLDTePc+sMddF1XyosrRoZ+Q/NjYPibVWQddk9YhzvJoZ0ka2Ng+JtVZB11pZwvLUzHnEFVOWnMfiBR1nKJImbvi5w3SKQoN6teuKZrWry2aNagj3/E3vsf/4zgcD/B7yCHZwt0fsc+n2ykKxwIcd2GdosVAhFexfU2LXT+TJ0+uJidOVFzDn3/+ee5zsfm5QuVdc801OSdYKZFk7gi3YnWBAwQOKa+zBilhvc4jP1379OmT+3/0K/wWjuF99tnH1ynqlfOnP/0p9z0iL53FMIXA7xApir7sOFVfeumlwHu5Qi8nEhMRj+40sEGAwzqtspMAKWT92t8Pv/YPeg3Byele2IDzWAxcB1gY4pR3/vnnB/qN49jEtRSkXs61AUelN7pepd3Yfffdc58//PBDkQQ6+Gh0H/PbSqYdo4gYLXQBFHKaqnqR+IDDEA4aOCrhjFTtkPQC56TjAEWZcOgg2g2pmHv27ClWrlwpo+gwCMQxqtIoOyl0UR4hugBbitWCiB7Fg1vLli1DycF1O3jwYLHHHnvIAeXmzZuV60oIIYQQQgjJDtgj1EmfC0cnUueChnVriZ0a1xNNt60jo0Lr1aop3/E3vsf/AxzvOEchh3uOZgM4b+BkQrpIRF0ishNOCMcpCucM5mniTFELh4Tb6eY4ToIC3RFRbkp6Scx7IkLzgw8+yH2HKHd857xKmRt95ZVX5Dv2qCwFOHTcUaDFQN9wz0kgmxW2WwsC9pp0g4XecIBjf8ggHHnkkdW2HAoCUp46fRmOslLTQLv1w3URxCGrQ9lxg3pdd911ods/iHPT4eSTT859hj0Keh6xFZUDnJZ++9u6I3Tdjs1Cx/oB24MI07jA3J+D42gnJC0yvceo15GEmzG+SyrdKG6uc+bMid1hZxsYyMIBiRzsSZXndnTCiQOHqN9en3CY9u/fX77DiQqHJo6P4oxFOVFkZAk4zWbPni0/d+nSRdSsWVPoig66JqED0jCddtppcnEANm7HgM1JJVMKSB+CATJWeo4YMUKmJ3EvZFFdF1XyosrRoZ+Q/NjYPibVWQddk9YhzvJoZ0ka2Ng+JtVZB11pZ4s7JJwxedhohKhyVOlRCk/M/SqXPhcvsP22tcU2tfNPcdWsUSYab1NL1C4vEz/8tNWZWqe8hnScPjnvK7HPbxrFrjcJD9LWF0td7weclIjQw3Nq0Ai3qMDx6qQOBZMmTcrrjPVeP+PHj098b9Eo1zB+i7SU7jTFmAvDdw7l5eXVglTylYcISrBq1aqS63HiiSfK3zuLrQvVxT2fh9/AqernjPbT1duP8Hs4kgr1L7cc73GLFy8uWjc4193OLrejLCgoF844Jw0sIg+DpKZNs+ykQBrkoIsRvO2HaOkg1xAclm5HINLTBgVloo861wfshHdvV2dxiNv2FOuX+UAQhDsluEq74dUHOsdtm726pgGDQPQk045R50aHCwBRfFOnThVdu3ZNVAc4Rbt16yajG0k44JDE+cNDJByOSZ5LlIU+4zi3kc4WDqB8oK0xqHGiSuHAxd+IKg3rAA4ySLIF3EiQvhVggYPuE0lp65qkDtgz9OKLL5aDGuwFgkjSYulx/cBK02OOOUYcfvjhcmHAAQccEEtdVMmLKkeHfkLyY2P7mFRnHXRNWoc4y6OdJWlgY/uYVGcddKWdLS5TxURfVDmq9AjCDz9WiLeWrpCfsacoQCRoIaeoGxzXsG6lWFuxUf4ejtH/LlkhVvy0XkaWEj2BU+Dcc88NdGzTpk1Fq1atZOTiDjvskHgKQ+w/6nZOwKlUaPLfuX7gDITjKGjkoUqiXMNI8aqiPJwjB5yHUh0mcMjmkx3EqVqKroXSqxaT42Q3dAgSTAOnmgNSo4Z1JEFPxzmJfgnnZDGHYJplJ0Wh9i+G037F+sntt9+e+4yU3qXWfb/99ss5Rp3z6AWRz27CpuQOul1dWLuB+juLKZYvX57IopUkxymFyid6kWnHqHNTxCAIEX5JO0Ud5ywiCPEipRnhfIMDxzEZd8Qoync7RZ2UuUHA/ovof3BuIh0DPpca9YkUuvgNU+j+H7iBYRNw57PO6KBr0jqgDKx+xwtprvEweN999+VWZpUCUuhgDwtcczfffLN8sFVZF1XnJqocHfoJyY+N7WNSnW21s3GVp1o27SwJgo3tY1KdddCVdra4TB3kJNk//vHBd2LT5kqxftOW3J6iDeqWNrWF43+s2Ch/DznYZeof//utOOuQcNuDkPjZddddA+8LiuCINCehMckPB5I7yg5OkXz7TzrXD/ZDjeJ4Susadjs04fAIWx7q7XaYdOjQQaYpDZpuFPMHcKCHqYuzB2ZQXd16Ar/ovXxymjVrVuX7YtGxSIXqjjSEgyws3jSwmLPBnpI6lp0khdrfD3f7OxnTCvU7RN26+0sYh7A3ihNt4+53uA7d/x/G+ZqU3UC6cOd8LFiwoOTUzGFIe8yddvnEQseoexUOIvnSonPnzvIde1CSYDjOSDiW4RjEOUQUJtoR3yGSLG7HKByTjh5Y0duvX7+Sfg9HKnQGiPyEgyeokxPOVJSNVLxEVEnBEmUll226Jq2DtzykDLr00kvlwpRnn302lExc508//bTo27evuPbaa0WLFi1i0TUtOTr0E5IfG9vHpDrroGvadlZn2bSzJAg2to9JddZBV9rZ/GABOGSmLUeVHkGZ+/nWeRVnX9F6tWvKNLmlgOO3qV1T/Lxhs0zFW6e8tpjz+Uo6RjNC0n3SDzy/uh2jcIz4OUbdumJR8eWXX56onl4dwlDqXGeh8uA8c5w7cMjB0Yk9LZGdqpjzBP//0UcfiTB4oziD6FqKMzjKOZ4yZUqVv52sWmHwOt3zRR7qUHaS5Gv/oBRrX+95dPwEpQDHvxts3ed2jGKfW2964KzbWZN0Tbt84k+m3dVuJ5TffpBJkWbZpoIVfnhh5RRScjrRmkmdS6TBxcsBjp1SgRPXvZ8tHK1BgEMUEcZI20uI6eBBBivZXnvtNXHwwQeHkoH9SbCfDCKv//73v1dZaUcIIYQQQgixh7XrNsr3TZu3ZqWpVytcSuK6v/4OUaNb5f7fnoiERAX7hLodZnDyFdpTcf78+eLLL79MfH9RFbhT6SISLArutK0OmAvAvAIcPUcffbQ8RvX+lN4ozlKIWudiYC4lTJrTQvvuusF8jY5lJ0mU9g+Ct786GS5LwbswwJvC2ut8jRLdGzcNGzbMfQ6znzAhqsi0Y1Q3h2SQvPFEDxDh6e5HQVPoFtpnAPuVBtkfFQ5URKe6naqEmM5hhx0mB4NPPfWU2GOPPULJ+Pnnn8V1110n2rZtK+666y6xcePWSRFCCCGEEEKIHVRs3OrI3FK59e8aJUaLOtT4dd/Jyl/lVGzk/l9ELaeffnqVv/EMm4877rijWqpRG4HzBxmj/IBzGVGGSMGK+QVEgSFVKKJxo5JG+uKguFPZAuydq8op5UQe6lh2ksTZ/khx67e4H9+X+irkY/jiiy+09okQoiOZdoxiTzrs9Yic9C1bttRCD6I/XgdmlDTMXocqIl+LpQ3FwKDYcbayYcMGMXr0aPnCZ53RQdekdShWHh5cjj/+ePHhhx/KPr7DDjuEKmfZsmXioosukqtGp06dKqPLVeualBwd+gnJj43tY1KdddBVNzurk2zaWRIEG9vHpDrroCvtbH4wBsZCQbzCjIdVyVGlR1Dq1to6jeX4Q7c4HtIS2fKrrr/6R3MRpMR8ku6T+UD6Vzfu/f+8uk6ePFlceOGFCWqX3vkqVh7Sg8I5GiRFLdIVn3POOWLvvfeWUbeq6xKHnS0F1CluvJGHOpRtGoX6yfLly6sdjz6LKNVSX4Ucn85epw5NmzYVNthZU3TVfcxvK5l2jIKuXbvKV9roogcpjtcp2aVLl9CyvHuKYu/QfGC1D/ahYArdwvzyyy/yZQI66Jq0DkHKQ259REUvWrRIrvYM8sDjB36PqGzstfCf//wnFl2TkKNDPyH5sbF9TKqzDrrqaGd1kU07S4JgY/uYVGcddKWdLb4FTdpyVOkRhIb1asn38ppbp7PWhYz0dCJEa/0qp2E97v+VJZLsk4WiH7GY141fdONzzz0n08QecsghwsTz5XbArFmzRkl5cI7C0TNmzJhq59CPjz/+WB4HR6nqtk/Tzpa6f2sYli5dql3ZJpKvff3OI/qrc3zY1913310wujcJwl4bbidu1PTMJt0TiH5w5EeIB0SguYma0hbO0SVLllSJCvVLzYv0vdjwG8cWcqDmS5uAfPLeNBRwPmWJWrVqiYEDB+Y+64wOuiatQ6nl1a9fX1x55ZWyn950001yYBcmPe7s2bPFH/7wB7nfyIgRI8Rvf/tb5brGJUeHfkLyY2P7mFRnHXTV3c6mKdsWO4uxmyO/0DFE3+s4aUyqsw660s6KogsOdZCjSo8gdNqtifjk2x/FtnXKxc/rN4l1GzaLzVsqRc0SUuri+F82bHWM1q+zVffOu9FWZ4kk+2Qhzj33XHHZZZfl/p40aVK1fUTxHSLITDxfyArl/a33bxwTtrxBgwbJl7Mf5YsvviheeeUV6VjyA3MCixcvVhotp4udjYukHFO6la2atNsXAQd+KXt1r3NSaazTbh/dx/y2oqdVJiQl4JT0Ohy9UZ+lAseq2zGKtMp+jlEcg1f//v1DlTNq1KhqemfNMYoBdfPmzYUJ6KBr0jqELQ8pQW677Tbxl7/8RVx11VW+KYaC8Pzzz8s9R84880xx/fXXi1133VW5rqrl6NBPSH5sbB+T6qyDrqbY2TRk22Jn8ZCddj80GR2u46Qxqc466Eo7W1ien8MhaTmq9AjKsfvuIKbMxl5qNWS058bNW8SPFZtE422CTzrieMSN1K5ZQ9QpryHKa5aJY3+7Y6x6k+RIuk8W4qyzzqriGEVEI1KUIprUSSWKZ9iHH344NZ2jnC/8zr0ADI6ZGjVqxFIeokjxcoCjdPz48fL8ucu/5JJLxKOPPlqyfJW6qpKzxx57KI/k9KZcbdOmjXZlhwF7cH766ady39mkKdS+fudxwYIFORugCkSduxcMYIFAnES5NtyR5UksINXhnpB2+cTSVLqElMLMmTOrfRfVMeo18n5lOA7TUtImeFPuzp07t8r/x30TJEQ1uNbwAIO+HHZvX/T9Bx98ULRr105cfvnliaR/IYQQQgghhCTD9g3qioNabY0Ga1h361r/tRUbxS8bNgX6PY7D8aDBr78/uHVT0XTbOrHpTOwF0VBHHXVUle/uuOOO3Ofbb79d/n9SUVNxoNLBg4hPOLiCACcpFke//vrrVbbnwULroDJ0x69fRK2bN91xPudkmmWH4R//+IfsP7rhdx5XrVqlvBxvYEAcZajCHdnq3TuVkCShYzQh2rZtK2rWrCnuueeetFUhBYBzUjXeDbHd0aOkNDZv3iydZnjhs87ooGvSOqgqD1HWuBaRJmf//fcPJWP9+vVyPxIMtBFNvW7dulh0jSpHh35C8mNj+5hUZx10NdXOJiGbdpYEwcb2ManOOuhKO1t4QSDk4BV1f9AoclTpUQonddo5lwYXKXXBDz9tEKt/2SjT5PqB7/H/OA7gd04a3RM7bpVHskEafbIQAwYMqPL35MmTq+w5iqxhaeqq4ny5HZOIiA1THpxuiP6Eg6sUECGIiFs3n3zyibJ9QVXb2VLx7j27aNEiEQVvutVjjz1Wy7JNolg/8Z5HRIqrxhtc4I3OVU3Ya8PrXE9iUYgO9wTdx/y2QsdoQjhRS940rUQvvE5Lr1MzDH57G8ybNy+yXBvBjQSDZLx0v6nooGvSOqgur0ePHnLiCA+Ou+22WygZsLnYvxcRpHjodPRSpWtUOTr0E5IfG9vHpDrroKvpdjZO2bSzJAg2to9JddZBV9rZ4jJV2eyotjrJPrLPbxqJ3p23OjOb1K+dc44iEvSb1evEDz+tz+0/ivcVP62X3zuRojgevwOQA3kkWyTdJ4tFNrodh3AOIQ3sG2+8ISPo/vjHP6aua9TzhTSe7jShUcp76aWXQp3jU045Jff3f//7X6GKtO3siSeeWOVvzJGEBX3OzV577VXQMZVm2aZRqH295zFfJsGoabvdIG133ITp00h37O4DttwT0rbxxB86RhPCcYjGsSqExOcYVZHr3M+5yqjRcGCvCuTnx6vYvhVpo4OuSesQR3mQc9ppp4mPPvpInHHGGWLbbbcNJeerr74S55xzjoxA/ec//ynz+6vQNWqddegnJD82to9JddZB1yzY2bhkq5JHO5ttbGwfk+qsg660s8VlqrLZUW110n3k3ENbiiP23JqCD07OpvVryz1HEQvyy4bNYsXPG8Tyn9bL9583bJbf4/9xnOMU7da+hTjvsFaJ6k2SIc4+6Y16C8Lpp59e5W/sjXnXXXfJ79O4frxE1cGdxjNIVGGh8l577bVQOvTp0yeW/fzStrNeh1fY8wPeeuutKn+fe+652pbtpVigUdrz7YXaF+fRvTjC6yQuFaQMvuCCC6p8ByezNzI1ajlx9Gl3xKg3/W+cpG1n07bxxJ+ty+pIrCxdujT3mRGjepNU+6hwjNq4d2J5ebk4+eSThQnooGvSOsRZXv369cVDDz0kV9QiNe6tt95aLT1uED788EOZruXwww8XI0eOFAceeGCqddahn5D82Ng+JtVZB12zZGdVy1Ylj3Y229jYPibVWQddaWfzg4l/yExbjio9wpT7t65tRJNtaovp876WaXHxWr9pi/hp/SaxafMWgYx58I/AIYr/q1P+fxOTiBSFU5STldkjrT5ZiIsvvliMGzcu9zdSxsJR8vbbb6euq4rz1blzZ1knsHjx4kjlYVEzHDpIkVsK7ujD3XffXYlzVAc7i3pdddVV4sYbb8ydH6QrDrO363333Zf7vPPOO4tBgwZpWzbANRJ0IQL6nTtyOUmKtS/O4yWXXJI7j07UOCKdS8VJOY2to7xgruywww7L/Y3jSr2Ogi5uCNun58yZU8Vu2HJPSLt84g9HgAmAyXebnVkmO0VVpNL1izpVsZLJO9h031wIySqNGjUSN910k1i4cKE4//zzQ09kvPLKK+Kggw4SvXr1krIIIYQQQgghZoHJznMO2VWMOWlvcVjbpqK8Zpl0fiIqtEXDumKHRnXlOyJE8T3+/3e7by9u7bO/6Pv7NnSKkpJxop1KnX+BI8mbNhJOnDAOJh056qijcp/ff//9yPIcB1IpuJ/rwziDkmL58uUl/+aGG26QzkT336UCh+bHH3+c+/vOO+/Uvmy3o9P9+3xzuklGIJaK9zxeccUVoeRcc8010mHs51hGv3enlL799ttDleF2YquOxk3DMUpIPjLtrr7nnntSLR+Oq+nTp1eJDmTEqL4k6bQOEzE6ceLEXP+ZPXu27Ftu+vfvL2bMmCG6dOki/27durXo2bOnIo0J0Yvf/OY3YtKkSeJvf/ubGDZsmFxtFwZcR08//bTo27evuPbaa0WLFi2U60oIIYQQQgiJj/Y7NpSvlb9sEM9/+L2Y98UauZ9oxcYtom6tmqJhvXLRebcm4tjf7iiablsnbXVJCakWHdauXSt0AE4JJxILepayRyJSh1522WVV/i6VtNOF5sPtiPzggw8iy8P5LTVq1NmbFOlEi7XLF198UeXvUqMg3VGMyGqVxNwj6uc41x977DGZOriUiEP3/ODAgQNL+m1aZWNvTrdDtFA7Yf9uzOkEQWX7l4L7PKJeY8eODRQ564BrApHnftGiDo8++qhMeYzoXuh59dVXl+TMRoperxNapS8DWdwcwkTMEqKUygyz3XbbVdaoUSPVV1lZWZVX586d0z4tmWDkyJHYIqTKa9WqVZFkzp07t5rMjh07RtZ12rRp1eT27NmzZDmtW7eWv23cuHHRF47r1q1bZdwsW7asWt3wXVxs2LCh8tZbb5UvfNYZHXRNWoc4yysm+7XXXqs85JBDqvXHUl7169evvOaaayrXrl2bWJ116CckPza2j0l11kFXm+xsWvJoZ7ONje1jUp110NU2O7tu3brKefPmydeHH34oX/mO3bJli/w/vPA5LFHlqNKjVDZv3ly5fv36gi8cYzOo/08//VTlZcI5GThwoO/z2scff5xan1y+fHk1vXbeeefKp59+uiQ57t+H0XWvvfaqdl6uuuqq0PUKo0M+3M/jhdoqX3k4x97zi++CgPKc333wwQcF6+I+ttg59NP1/vvvr/b7Yv3ALcfbjxo0aFC0ns7vn3jiiSq/C3pNHHXUUbnfnXLKKZVhQB2TLtvbJ/L93tEtCKW0vx9+7f/6668HvoagK85f0L7j1hu/w/kMciyun1LLGDNmjDzez9apshuOTNiLpPDqindnjOWMuTD+ipOvv/460flzEoxM5w1BClNcc2m+kNrFeQFGjOpLkhGjYfoBIpDRp1atWlX0heMQPZoGzZs3r9Lvg7z+/ve/i82bN4sNGzaITZs2VZGH7/ByrimsxsNr/fr11Y7duHGjPHbLli257/AZ3+H/kjwW9XF0dermPRb6O8cWk+t3LM6Hc378jsW7o4MjN9+x+eRuHbdsxalHvmNRhlOeWwc3heRGaXvsFfryyy+LJ554Quy5554iDD///LO4/vrrRdu2bcVdd92Va4dCbe/Wy30e/I5V2U+KtX3Sx5banmkdW+q1jL7mtA/kJ21P4rYRfsd666zSRqhuT6+uhY71O+8q+gm+8+oQZz/xq3NabV9MrvueEOS852t7vzon2U/SGkfoaiNUjyNU9ZM47g9x9RP3vd+tW5L9JGh7esdfquR6jy3URl4d4h5HuMtTfS2X0vbu/3fjnmtw/+33G++x+b7zygl6rJ/cYvp6vyumW6FjgxKmHlk5Nuz5SVJfREwdffTRMjIQr4YNG1bZi9MNIq2QWhPH4Td4OdGlcVwbyEqEslBms2bNqumFiKzjjz9ezmnsvffe8thicp00l0g9m09X5/Opp56aOzeQj3L80oki7SzOm/u8PPDAA4HbqNDnUs7ZEUcckfu/f/7znwWPLVYe2hppUTt06CCj+QrpgP/v0aOH/Pv+++8X7dq1qyIbfcQ5LziP3pTGzjl09y20vSPjzTffFH/+85/l3o045pxzzqn2e/QD9++hk6Mr2uKPf/yjOPzww2VmN28/QlQf+pfTh/D7fG107LHHyj6AlKz4HeritLXf+YEekOvs/4r9QhFRGOZaxjnIV7afDG/ZV155pSy7UHne75w9Th0QrYqoSfexaN+LLrpIRqL6yYjS/nihPOc6zNf+6BtoW7Qx2trd/t7zg/OIvYWdtLroO4jSLHTNIeoTekOHf/3rX0WvT0S/vvvuu7m6ogzY2kLnHfYGEe3IqHbkkUdWs3U4d9ADbe5kbPO7jgu1p7u//OEPf1ByLykmo5Cdcf9/EvNWRD8ynUoXRgkpS1VsuF0KzgXhVy73GLUPFfuU2gDSA7/44oti3333leky3Dnxf/nlFznIwaAI+0p+8skn8qa+xx57iJNPPjl3LJxZmGjAMUi16qRpeOqpp6Q9OOOMM3LHIg0r9nY466yzRMuWLeV3CxYsEFOmTJGDHXdaG9y8v/nmG/kQg0E2WLp0qZg8ebJMvTpgwIDcsY888oj4/PPPxUknnST1AN9//72UgcUaF198ce7YqVOnyn0wkD5i//33l98tW7ZMTJgwQe4ZgDSxDqgDBqEYkB1wwAE5e4K9GerUqSOGDh1aJYUI9vXo2rVrTod169bJc4l9dDCYccA5R45/DOD+53/+R36HSSdnb2QMQmvWrCk/z5o1S/z3v/8VBx98cO7BAxM4w4cPl58vv/zyXHlvvfWWePXVV+WeAcccc0yuPMjFby699FL58OYcO3PmTLHffvvJAZvDLbfcInXBIHe77baTsp10IxjgYX9QhzvuuEMOzpFSGql78ECEPRv80jAVA22AMm+99VY5WENfQt9p06ZNbiN6DMh32mkncd555+Xq/Pjjj8sBI9LKOM5ZpGh58MEH5YMOBrsOOBb3J9TX+T10vffee+U+qn/961+rpPv99NNP5UNQp06d5Hfou3ig2mabbeR5d3j22Wdl/TGQxR6qANcE2r5WrVpV9rHAgBqDZdTx97//vfwO15qTlsWdhgbtg8E7BvzoV84kntP2SGdcu3Zt+fk///mPeP3116Wz2r3XjHMsBtv169eXn/GQ8e9//1s+8OIBwQE6QP4ll1ySs6FBbAQWZoD33ntPXgcqbAQebNDW5eXlSm0E0gnh4QKg36DPJm0junXrlktPhesHfR42wumTqPPzzz+vzEYMGTJE1K1bV35Geh/s9RvFRjh708AWQFcwd+5cqXMhG7HDDjvI73Ct4KFu9913lw+CDuPHj5fnDg+9zj41eLjFtbjbbruJs88+O3fsww8/LN/R1x0d3DYCabrdx3755Zcl2YgTTjhB/Pa3v5Xfffvtt3KbiG233Vb2a6c8lTbC3fboJ1FshN8DaVgbgWv5d7/7Xa7OpdgIZ/IJ92Xn9yptRFzjCJ1thMpxhHt/P7fTTIWNcI8jmjZtmoqNwH0d48DTTz89N45A+wKMa50+qdJGqBxHQD/og379//7f/0tlHAEdcE2ibhgDxj2OQHnQEzqg/d17dUW1Ec52Kk45fjbC6VN+k3cAE234P/we8w14x9+oL/6GLXdfU7hecA061yGOhQzvsfgb/+cc7+A4fJ32yScXekAuji92rFuun76wC+7z43csjnPbjEI4x5Yi13us97yXemy+8x7Xse7z7gXHF2ujIHLD9BO/Y7EAHI4T3Lcc3J+94BqEnXJSWeI6gz31tifOE8rH92HbHvc3OMWgTyGdgOOwhOxC/eTCCy+U99nRo0fnjnXK8553Jx2mU3YxHZwUtjg3jr33k+vXRvl0KKU9ca909gbFPR/36nzXvVOeX19FPXHfwL0b91Tcs3E/QJ06duwox28INnDu/+g/cDLBbiONrmPLnLZHH3H3sXzn0d23MP5wHJSw3aX+HmM7jPlQP9z/gvweYwC83Gla3de9c85Qf1w31113nbj55pvleARjM9znsbUWxov4/yeffFL2X4CxF8YkTrrYsNc9fg8dMb676aabcmX/6U9/kuNLjEHwLATnmlM22gRjJ+jtJqiNQBpY6IbyAO7RuGejPIyDH3roIbHPPvuIu+++2/eaC9P+6Gdof5wHlBH093g540mM+/LdH3AucB5x7nDNYEyG5wK0IcbImP/Cc8W8efPkmA9lYmyDa8rvfu93f0A/wDjN6ScYP2HvUFxTOHc452ird955R5aPPoL641z6bVUFG+fYOeiDtN7uugVpTyfdNcD4MuyYI+w4wv2d+zfu7+N61kA/JfpRbpNDKt/DhUpggGD88pVFJxkh4cHNDZMQ3333ndAd2AJnwsS7f0EaOiSxJ4vTPgCDxzhkf/3110WPxaAGzggM6DBgx4C8oqKi5DLxMIEXnBuIInUmNP30AmEW4bjbKEjdSPJgMtppI1swrb5wLLmdK2mACbmkdMADYVxtpFKu+3xEPTdw3kTVDY6ItPsJibefmIIzXsCkj+51hn6OozhNHZK8L6E855ld9QJrp72xGEFF2zvZd9yRplHkhJ0vSXohOskWcGZg4YWfk8Y98e30M0xi+zmkVfZpBzhksKeo43Bwrtt8OjgZhQqBBUd4Nncf68j1XstwnLjlunXAsX5OLPexpZBPh1KA0wxOMDx/O1GCfriz6rnLw3gaDhc4FRwnAxaMOXskYqGQ4xzDcXDCYeEcskbBoeT0E2/bQy/nbydqK0ifco6FI8mJEizW9t5+4iy+ckeJltKehdoImddwPrC4BguY4HDH+YJjDo5iLLRBlKaz4Cqf3DAg0xauDTjzpk2bJp577jn52V025mLgLEfZ3qwKpYK6oh6wF1iAj7JwTlHWmWeemXPI++G0f5i2d9ofr1LbPsjiHfRr1A19G+cRiyHQjs55xGJLODOd/hfm+nT3Eyzagr11FlxAPpx9KBfOUu/9HDrAOYhxEd7hsMV1h8VgoNSxDMoBcBp6HeVJ4LY9hIAy5NPN6qnAyudRo0blbor9+vWT0QqtWrVSIh8rQbBaGKuHkLYUKzmwggCGAqte3ZuqE7WgXdGWbpBCNorjGW3XvXv3Kt9hlRBWe0QBq7Tdq0QAVuCnlepWJVh55URoRQEryjHYLTQgCTJ4CfvAkNax+M77AFjKse6HRfeKKpXH+p33KA+sYQajYdveORZ2esSIEXIQHWVAjhWDkAOHa9r9JIm2j9pPkmp72gj92t40G5HFfkIbkZyNwCphZ6zoRCgA94pmRHPCuUsbQRuRxrG0EWaNI6CPk4IPDlSAqCPnePf0jTtq0PudKccWk1HoWCe6qRDu6Bld6pzksXhH5iA39erVqzKZrZO++Y7VWTceWxU4eBwnDqIG3dH8SduIuOvMY/U5VmfdeOxWsGAC0b4AmXCQUUOF3GIy/I7FuAsRuQDPcvgODnRkt4prDInMIN6Ffsj0g4X4JD0yHTHqrDACCGPPt09BWLBKAi84Wp2UQHCWIn0VwtQnTpwoPyO9ENEfpBkg6eFNi+DgnlTBZALSVQE4p7yrk/xWwOEYt4ykjoWu//u//5vT1e9Yv1Wc+eT6HYsbb6Fjw+qQT65fG7mPRXlO+p585QWVq6LtHbmIdLjtttvEX/7yF+mAd+9rUQpYuYqVr0iThpV9WAVZTK+4+kmxtk/z2CDtmdaxpV7Lfu2bpD2J20b4HevtkyptRLFjQSnHQjdv+5TS9ir6CX7v1SHOfuJXZx3a3u9YPIQi9b0jz3lYLLXt8bsg12Fc/aRYGyGVG1K+FgKror2L90y1EVGO9TvvqvpJHPcHlf3Ei7vOztghyXtJ0Pb03gdVyS10rPe8e3VwT5bF0U9Q3kcffZQrL622d9cz3/fuxRiQ5f2Nnwy/77xyStGh0O9L0SHMsX5OmaBy49ZNl2ODnCOd9A17bFzXRhLHQlcnssxPV911cBZ8OCBCEM/diHhD+lQsLnYvEAnbPkHrprrti8kLKjdqnXXoJyYfG3d5qvqJSceW2iexHQFApKp724kk9C1lnBLXs4bfdyR9Mu0YdUK7gTdiLy7gKB08eLB8IaIRkYFwkGIfOkJsIM4VLxhwYw8fgHQcfjchXdBB16R1iLM8FbJxT0BqmUGDBsn9tF5++eWSZWBAhb0BkKoG+7xBVhS9dOgnJD82to9JddZBV9rZ+OVFlaNDPyH5sbF9TKqzDrrSzhbGPSmZphxVehCiCpP6pA66qtQBzlEEiWBRMfYhxLYXcZYXt2zaWRIEG9unlDo/9thj8h37v9vYPsUyXJB0yLRj1L0y2+0kTQps2IuNr3v37i3/pnPUPBAFEAfcazYcWMnjXMv5Vgjpgg66Jq1DnOWplI0U2XhIw54XcHB+/vnnJctAuo0xY8aIe+65Rxx55JEyDXcYvXToJyQ/NraPSXXWQVfa2fjlRZWjQz8h+bGxfUyqsw660s4WRtUEX1Q5Nk0EEzMwqU/qoKtKHbBVErI0IWr0zjvvlNmW4iwvbtm0syQINrZP0DqPHTs29zktx2ja7aP7mN9WMr3H6NKlS0WbNm1k58P+k9goOA2wxyQ2icYepNjUmOi5xyj2ikV/cYMH18WLF4soIGIYqZzdIKIYjvMs7jHKHOnEJJBOAyvX4CT97LPPQsvBpvTXX3+9OPPMM5kigxBCLALjnmLbdQwcOFDJnuyEkOxTUVEh9xgFTkSpe49R8n94U3j64U3haeM5KrbHKCFxXIfXXXed3GIMaTMRcMA+R4i9wB+DhRKYd/NbKJE07j1GnX1CnT1G44Lz53pSI+t7Rp500knylZZTFPTs2VOcf/758kX0JcmoYvf+t4SQ9MAD2mmnnSb3e7r11ltDX5tfffWVOPfcc8X+++8v/vnPfwbe84gQQgghhBBCCMkSiBrF4mE4Qy688MK01SGEpMTVV18t7cBee+2lhVOUEGsco9jvc9q0aWLq1KlpqyKjA+fOnSvef//9tFUhBfBGnK5cuTKWdLxMpUuIXtSpU0f89a9/lRHiV1xxhVxJHYYPP/xQHHvsseJ//ud/xNtvv61cT0IIIYQQQgghRHcmT54s38ePHy9++OGHtNUhhCQMrvvbb789l02REN3ItGNUJ+AIQ+QoBgRE7yhj1XuMYrN5L507d44s10aQ7uDuu++WL3zWGR10TVqHOMtTLTufPCyouemmm8SiRYtE3759Q6f8efXVV8VBBx0k7b6ToqMUPYge2Ng+JtVZB11pZ+OXF1WODv2E5MfG9jGpzjroSjubH2QogRy8omQriSpHlR6EqMKkPqmDrnHpcPDBB8tFx+C4446Lvbw4ZNPOkiDY2D5B6nzGGWfIaFFsK3LooYcKm9tH9zG/rdAxmiBdunQRc+bMSVsNUoCOHTsql+nnXE0ybW+WwA0Mednx0n2woYOuSesQZ3mqZReTt9NOO8kVbYgAdT/ElcoTTzwhU4ZccMEF4rvvvitZD5IuNraPSXXWQVfa2fjlRZWjQz8h+bGxfUyqsw660s4Wl6nKZke11br3Z2IXJvVJHXSNSwek1D3kkEPEm2++KcaOHRt7eXHIpp0lQbCxfQrV+YEHHhAvvPCCvP6xIMz29rGtb5hCWSVbJjEwQd6vXz/fCEJSGqNGjRJDhgyp8t2qVasip6iNQ26vXr3E9OnTqzhFka4zCyS9efSWLVvEF198IT/vuuuuoaP5kkAHXZPWIc7yVMsuVd4bb7whBg8eLB/owlK/fn0xaNAgcdlll4kGDRqE0oMki43tY1KdddCVdjZ+eVHlxN1GGPeMGzeu4DFYJe0dLxF9ruOkManOOuhqm52tqKgQ8+fPl59r164t39u1aydq1apVcJKvrKxMvsIQVY4qPcKcz02bNhU8pry8XOtrLIlztG7duirfYcuQrJ+TtPqkqbpG0SGIswFbVHXo0EF89dVX4vXXX5eOkrjqrPp82m5nSTBsbJ9CdcY45sADD5QZ2b788kuhm64YOziZ3TZs2CDf27dvL+rWrRubDt9//73YYYcdEps/J8EoD3gcUYSK1KwkPrp161btuyVLlkSKJMXv3TBaNDx4gGvZsqUwAR10TVqHOMtTLbtUeUj7gYe4Z599VgwdOlR88sknJZf5888/i+uvv15OoF9zzTVyoQwmvNLuJ0Tv6zhpTKqzDrrSzsYvL6ocHfoJyY+N7WNSnXXQlXY2P6omX6PKsWUSmJiDSX1SB12j6BDkt9tvv71499135VzY0UcfLefI8J0J55N2lgTBxvbJV2fsK9qjRw/5+aWXXhI6oEP7ZH1BkqmwVRLE6yAj+uHnAI2a/tjb7oggJYSYBwZSSKv7wQcfyDS7O+64Y+hI64svvlim2J0yZQpTahBCCCGEEEIIySxwhL799tsyggzRo3CeEEKyx+GHHy7WrFkjr3dEYRKiM3SMJgjSp0ZN9Urip2fPnlX+jpL2FhHC3ijh3r17h5ZnO0gFhEg9vPBZZ3TQNWkd4ixPtewo8pCSq2/fvmLhwoXixhtvFNtuu20oHWBbTj75ZPHb3/5WPPjgg9r3aRvR4TpOGpPqrIOutLPxy4sqR4d+QvJjY/uYVGcddKWdzQ8W10EOXlH3rYsiR5UehKjCpD6pg65J6QAnCSJHkUocC47jKE91XWhnSRBsbB+/OiMi3AkQ0skpqkP76D7mtxU6RhNk6tSponPnzmmrQYowbNiwKn/PnDkztCzvb+F0pXM8PMgDjwg7vIrtJ5M2OuiatA5xlqdatgp52DP08ssvl3vHHXTQQb57PwXhww8/FGeffbYcRP7v//5vKBkku9dx0phUZx10pZ2NX15UOTr0E5IfG9vHpDrroCvtbHGZqmx2VFute38mdmFSn9RB16R0QOQotqiZPn16bOWprgvtLAmCje3jrfPDDz8sPvroo9hSZZvcPrb1DVPgHqMJMWnSJBk5GGWvSpIMaCO85s2bJ/923sMwY8aMKn/3798/sn62pzLdZZddcp91Rgddk9YhzvJUy1YlD7/dc8895QtRn9ddd5149NFHQ8nC/guwGWeccYbci3S33XYLrRfJznWcNCbVWQddaWfjlxdVjg79hOTHxvYxqc466Eo7W1ymDnJ078vEPkzqkzromrQOcTpO4rDdOsjRoZ+Q/NjYPt466+gQ1aV90i6f+FNWaUuMd4q8/PLLolu3bvIiwKT3EUcckbZKxjNq1CgxZMiQamkpsZm7CrB6zb0X6IQJE0S/fv0iGT44W+fOnSuyBPZKbN68eZXvli1bJpo1a5aaToSkDdIDwT55F0aUQp06dcRFF10krrjiCtGkSROl+hFCCFEHxj3jxo0reAwyC3jHS4QQ4kdFRYWYP3++/Fy7dm353q5du9CZSbIM0tIVi8DAFhg1atSw+hytW7euynf16tWz+pwQQgixm40bN4oFCxbIzxs2bJDvSP1bt27d2Mrk/LmecDQUs0O0T58+onv37vJvOO3oFFXDihUrYpWPlLfu6N6RI0eGct66mTZtmhLdCCF606FDBxn9iRc+h2H9+vVi7Nix8r4B++Od0CCEEEIIIYQQQgghhBBSOplOpXvkkUeKlStXJlom0uWiTLw7ICgXkYOIOiRq8Etvi+9URYw6jsxOnTrJtsTG0XB0Dh48ONBv8Rt3RCscGyp1I4ToDxbFdO3aVTz++OPiyiuvFJ999lnJMtasWSOGDh0q7rzzTple98wzzxQ1a9aMRV9CCCGEEEIIIYQQQgjJOpl2jM6ePVtOKqeZLRgOUbyQhpXRotGB8xMO5pkzZ1b7v759+0qnNNIWq3BCQsasWbOkcxTA0YnvEE1aCDhF4QxxO0WDOlRJ8XQHDzzwgPx89tlna51SSgddk9YhzvJUy1Ylr5gcpKk69dRTxUknnSTGjx8vbrjhhlAR71999ZU499xzZRTpiBEjxDHHHMM9Ciy5jpPGpDrroCvtbPzyosrRoZ+Q/NjYPibVWQddaWfzg3kOJ5UsUsaGHRtGlaNKD0JUYVKf1EHXpHWIszzVsmlnSRBsbB+T6uzVNQ0wBiT6kWnHKJxYcKTh4nSco0leqCgTr/79+xfde4hUBU7IiRMn5v52R+DmA8fgXLtp3Lhx7jOcnO70uEFw9gXFfqOIGsV7IUcn+ptzLKBTVC24nr755pvcZ53RQdekdYizPNWyVckLKgd7hl5yySVyEmz06NHilltuCZUe96OPPhJ/+tOfxO9//3tpXw466KDQuhMzruOkManOOuhKOxu/vKhydOgnJD82to9JddZBV9rZ4jJ1kKN7Xyb2YVKf1EHXpHWIs7w4bLcOcnToJyQ/NraPSXVOW9e0yyf+lFVmuGV69OghIwvdztAkqwun2qRJk0LvMWe7YxSpa92OzbA4TlU4OEt1jPo5ayEPevXu3TsXTbp48WLZ15wUv4gqtSF9btKbR2/ZskUsWrRIfm7btq2MxtMVHXRNWoc4y1MtW5W8sHIwKfb3v/9d3HvvvVJGWBCJevPNN4t27dqFlkH0vo6TxqQ666Ar7Wz88qLKibuNMO4ptgBy4MCB1cZLRJ/rOGlMqrMOutpmZysqKsT8+fPl59q1a8t3jPP8okudhdjuTFVhiCpHlR5hzqcTAZIPRIbofI0lcY68izHr1auX+XOSVp80VdekdYizPNWybbezJBg2to9JdfbqirHDggUL5N8bNmyQ7+3btxd169aNTYfvv/9e7LDDDonNn5NgZNoxOmDAAOnIci5OVBWOMZXOqiZNmuQ+t2nTRjrMIN+dSpVki+nTp4spU6bIqFC8HEcp2h1pfPv06RPJAWsSSTtGCckamPi64oorxNNPPx1aBvYcRSrxa6+9ttpAixBCSLzQMUoIUUkpjlHboWO0OLY6RgkhhJBCaW2Tdoxy/lxPMp1K14k2hEMUzlFEDDJ6k0QF0aDF9hklhJAgYPD11FNPiTfeeEOm3X7zzTdLlrF582a5f+lDDz0kBg0aJC6//HLRoEGDWPQlhBBCCCGEEEIIIYQQk8n0MjFEcAI4RZHWlE5RQsxf8Yq0xXhFST9qi65J6xBneaplq5IXVY7ze0R6vvrqqzJydM899wylyy+//CJuuOEGee+78847cyvfiNnXcdKYVGcddKWdNcfOmtCnbcTG9jGpzjroSjubHywAhxy8ou7lHEWOKj0IUYVJfVIHXaPogN/gubPQy2vv4qyzatm0syQINraPSXXWQVfdx/y2kmnHqDvNLVKcEkLMBqmSJk+eLF/F0ialjQ66Jq1DnOWplq1KXlQ57t8j8vO4444TH3zwgdyfeqeddgqdouPiiy8We+21l0z7zQGY2ddx0phUZx10pZ01y87q3qdtxMb2ManOOuhKO1tcpiqbHdVW696fiV2Y1Cd10DVpHeIsT7Vs2lkSBBvbx6Q6p62rKefJNjKdSte9l6jKfUUJIemA6O8WLVrkPuuMDromrUOc5amWrUpeVDl+v8deSOeff7449dRTxW233SYzHqxdu7Zk2YhGOPnkk8WYMWOkjCOOOKJkGbajw3WcNCbVWQddaWfNtLNEH2xsH5PqrIOutLPFZeogR/e+TOzDpD6pg65J6xBneXHYbh3k6NBPSH5sbB+T6py2rmmXT/wpq9Q93jkCS5culSkF0flWrVolGjZsmLZKhGQKbh5NSPz88MMP4qabbhJ33XWX3CQ+LEcddZQYMWKE2G+//ZTqRwghNoNxz7hx4woeM3DgwGrjJUII8aOiokLMnz9ffq5du7Z8b9eunahVq1bKmukHsqIUi8DAgsMaNTKdKK3oOVq3bl2V7+rVq2f1OSFq4XVICDENzKstWLBAfna2oGrfvr2oW7dubGVy/lxPMn1natWqlZgxY4Z46aWX6BQlhBBiJNtvv7249dZbxaeffipOO+200HJeeOEFudf2mWeeKT7//HOlOhJCCCGEEEIIIYQQQogJZNoxCrp27SpfhBBCiOmLfbAn1bx580SPHj1CyUCSiIcfflhGHlx22WVixYoVyvUkhBBCCCGEEEIIIYQQXcm8Y5QQkq10Bw888IB8RUkpaouuSesQZ3mqZauSF1VOmN8j6vPFF1+UGRHwOQxIFzJ27FiZbh77j3pTbBF9ruOkManOOuhKO5tNO0uSw8b2ManOOuhKO1t4wRvk4BVlh6SoclTpQYgqTOqTOuiatA5xlqdaNu0sCYKN7WNSnXXQVfcxv62Up60AIYQEBTcwJwWoCTfetHVNWoc4y1MtW5W8qHKi/L5bt25izpw5YsqUKeLKK6+U+2qXypo1a8TQoUPFHXfcIa6//npx1llniZo1a5YsJ6vocB0njUl11kFX2tls21kSPza2j0l11kFX2tniMnWQo3tfJvZhUp/UQdekdYizvDhstw5ydOgnJD82to9JdU5b17TLJ/6UVbJlCCGGbB69ZcsWMX/+/NzG2DVq6Bv0roOuSesQZ3mqZauSF1WOKj3Wr18vxo8fL2644YZI6XH33ntvMXz4cHHssceKsrIyYTs6XMdJY1KdddCVdtYeO5uPiooKsXjx4oLHIDq/bt26SsvNCjpcx0ljUp110NU2Owub4hxTu3Zt+Y4tEGrVqlXtWEzlONM5GLeFHbtFlaNKj1Jxl5uPJPXREfQ5b2aYevXqaW13VJBWnzRV1yg6hLkO46yzatm221kSDBvbx6Q6e3XdtGmTWLBgQS6bmjMui/N57fvvvxc77LBDYvPnJBh0jBJCjHGMEkKKR4COHj1a3HLLLZHS4/7ud78To0aNEgcddJBS/QghhBBCSH5KcYwSUgxbHaOEEEJIobS2STtGOX+uJxwNEUIIIRmhUaNG4sYbbxSLFi0S/fr1C50W97XXXhMHH3ywOOmkk8Snn36qXE9CCCGEEEIIIYQQQghJAzpGCSFGrXj94osv5AufdUYHXZPWIc7yVMtWJS+qnLjO2U477SQmTJggPvzwQ3H88ceHlvPkk0/K9LoDBw4U3377rbANHa7jpDGpzjroSjtrr50larCxfUyqsw660s7mB8m/IAevqHs5R5GjSg9CVGFSn9RB16R1iLM81bJpZ0kQbGwfk+qsg666j/lthY5RQogxIA/8/fffL1/4rDM66Jq0DnGWp1q2KnlR5cTdRnvuuad46qmnxBtvvCEOPfTQUDI2b94s9y9t27atuOaaa8TatWuFLehwHSeNSXXWQVfa2fjl6W5nSTRsbB+T6qyDrrSzxWWqstlRbbXu/ZnYhUl9Ugddk9YhzvJUy6adJUGwsX1MqnPauppynmyjPG0FCCEkKNgku0mTJrnPOqODrknrEGd5qmWrkhdVTlJtdMghh8j0uM8++6wYOnSo+OSTT0qW8csvv4gbbrhBOkmvvvpq0b9//9zeV1lFh+s4aUyqsw660s7GL88UO0vCYWP7mFRnHXSlnS0uUwc5uvdlYh8m9UkddE1ahzjLi8N26yBHh35C8mNj+5hU57R1Tbt84k9Zpe7xzoQQbeHm0YSYB1aqPfDAA+Laa68V33zzTWg5bdq0ETfddJPo1auXqFGDCSgIIYQQQqJSUVEh5s+fLz87C9DatWsnatWqlbJmxESQum/dunVVvqtXrx7H7oQQQqxl48aNYsGCBfLzhg0b5Hv79u1F3bp1YyuT8+d6wtEQIYQQYhHl5eXi/PPPFwsXLhQ333yzaNiwYSg5ixcvFieffLI44IADxMsvv6xcT0IIIYQQQgghhBBCCFENHaOEEEKIhWyzzTZi2LBh0sF56aWXhk6LO3fuXNG1a1dx1FFHiffff1+5noQQQgghhBBCCCGEEKIKOkYJIUalAH300UflS/eNq3XQNWkd4ixPtWxV8qLK0aGfbL/99uKWW24Rn376qTjttNNCy3nxxRdFhw4dxJlnnik+//xzkQV0aJ+kManOOuhKOxu/vCzYWZIfG9vHpDrroCvtbH6wKxLk4BVlh6SoclTpQYgqTOqTOuiatA5xlqdaNu0sCYKN7WNSnXXQVfcxv62Up60AIYSUskcK0n86n3VGB12T1iHO8lTLViUvqhwd+olDy5YtxeTJk8WgQYPE0KFDxUsvvVSyDAwyH374YTFlyhRx0UUXiSuuuEI0bdpUmIpO7ZMUJtVZB11pZ+OXlyU7S6pjY/uYVGcddKWdLS4T1KxZM1U5qvQgRBUm9UkddE1ahzjLUy2bdpYEwcb2ManOaeuq+5jfVugYJYQYA25gxx13XO6zzuiga9I6xFmeatmq5EWVo0M/8YKoT0R/zpw5UwwZMkTMmzevZBnYwB5RqPfee690sl5yySWiXr16wjR0bJ+4ManOOuhKOxu/vCzaWWJ3+5hUZx10pZ0tLlMHObr3ZWIfJvVJHXRNWoc4y4vDdusgR4d+QvJjY/uYVOe0dU27fOJPWaXu8c6EEG1Zvny5aN68eZXvli1bJpo1a5aaToQQtavaEP155ZVXiqVLl4aW85vf/EZcd9114uyzz+aAkBBCCCEkDxUVFWL+/Pnys7P/e7t27UStWrVS1oyYOpZft25dle+wWLFGDX121brgggvEuHHjlMrceeedRcOGDcV+++0nevToIY499li5fYjuXH311eLGG28selyDBg3EkiVLEqnTLrvsIr766quix1111VXihhtuiF0fQgiJysaNG8WCBQtyi/pB+/btRd26dWMrk/PnesKIUUIIIYT4gkmTU045RZx44oliwoQJ8mH3hx9+KFnO119/Lc4//3wZRTpixAg5OVFWVhaLzoQQkrQTY/HixQWPadOmTawP2oQQYiNY419snT/Gmxxz6g3ukYcccoj8vHr1avHll1+KH3/8Ma9DcN9995Wf4fh0s3btWvl7vDuOvI8//lg89thj8jOeaeB4xOS3CrCA4Y477hDvv/+++OCDD3I6Q0c4Ew8//HBx2mmniUMPPTSwzM6dOwc6F/jummuuEXfffbeIk7Fjx+Z1ijr1bNy4ca4dCSGEEJNgxCghxJgVL1jxCvkA5eq00lVHXZPWIc7yVMtWJS+qHB36SSlgomH06NHSwfnLL7+ElvO73/1OjBw5Uhx88MFCZ0xrH9vqrIOutLPxy9PdzkJ2sUiXgQMHVhsvEX2u46Qxqc466GqbnS0lYtTtGIziAIwqR5UeYc7npk2bCh5TXl6u9TUWNyZEjAaNIt1rr73ERx99FOj36I9vvvmmmDx5snjkkUeqOBdxT47iUMT1+be//U288MILOUctIlPhGIQzc86cOfL/HODoHDVqVF4HabHrx4kiRf3h6HVA2Xg2U0E+HeD43GeffarUxxsdij62efPmgvKRMcjd5+K0Gapl225nSTBsbB+T6uzVFWOHpCNGv//+e7HDDjtU+Y4Ro+mj92iIEEJc4OaFqDW8ij0Ep40OuiatQ5zlqZatSl5UOTr0k1LAymw8BC9atEj069cvdFrc1157TU4SnHTSSeLTTz8VumJa+9hWZx10pZ2NX55tdtY2bGwfk+qsg660s8VlqrLZUW217v2ZmMP1119f7Ts4H0uhS5cu4vbbb5cpZ50oTACH69577x0qCw6clHBQfvHFF+L++++Xjsk33nhDOloHDRokn5Oef/55uYAcEaoADtrDDjtMHH300aGuH8cBiQw+cIY6wNn7zDPPlFyHoDqgXmvWrBF9+vTJq5PX6ZDvFaQ8laiWTTtLgmBj+5hU57R1NeU82QYdo4QQY8DKHjwM4KXzaiRddE1ahzjLUy1blbyocnToJ2HYcccd5aTehx9+KE444YTQcp588kk5MTFgwADx7bffCt0wtX1sqbMOutLOxi/PVjtrCza2j0l11kFX2tniMlXZ7Ki2Wvf+TMzBb+9MJ2VrqX2yadOm0snndo4i8rJDhw4lOUcRxYrIzTFjxsjI1bPPPrug/o8++mjOOQoQdYnnnkK6FuP000+v8vf48eOFKrw63HXXXdXKU0mcNkO1bNpZEgQb28ekOqetqynnyTaYSpcQEhpuHk0IcVZCDx48WE46hGWbbbaRaakuv/zyansGEUKIrjCVLiFEJaWk0rUdptLNbipdv0nkqClw4QT1zlMcddRRMsKzGHjGQdQnokQLOUSDlBmmHng2uuSSS8Spp54qI1bdxDWlizLffvtt+TrnnHPylsnrkBBiGhs3bkw8lS7nz/WEdyZCCCGERAIrsJEeF+mcMKAMA/YsxSps7M9zxx135AaohBBCCCGEEBIFRHG6IzidKM4HHnig6G/xjALgIETUZ9DFoCjTHakKii2mKgSes7yO0bFjxwrV4Jxgf9Gwz3WEEEKICdAxSgghhBAlq7r//Oc/i//93/8V99xzj9hpp51CycHK6r/85S/yQfzxxx+Xq5AJIYQQQgghJAp++2WOHj266O/cjlCk4S20X2iQvVGj7A167rnnVvn7vvvuE6qZNGlStXIIIYSQrEHHKCHEGJCiZdq0afKl+8bVOuiatA5xlqdatip5UeXo0E9Ug1RJ5513nli4cKEYPnx46LS4S5Yskau6DzjgADFr1iyRBllsnyzVWQddaWfjl0c7m21sbB+T6qyDrrSz+UE6S8jBK0o6zahyVOlBiCry9cnjjjuu2rFwdDrpq/Px448/Vvu72G8csMepl0WLFhXVNR+DBg0qWf9iuHXAIlVsk3LWWWdFkpmWzVAtm3aWBMHG9jGpzjroqvuY31boGCWEGAMixzDwx0v3KDIddE1ahzjLUy1blbyocnToJ3GBPUOHDh0qHZyXXnppbp+sUpk7d67o1q2b3APo/fffF0mS5fbJQp110JV2Nn55tLPZxsb2ManOOuhKO1tcpiqbHdVW696fiV2U0iexj2Yhdt5552rfqdwXrtTrB89FbrANiSodbrvtNikfaYDjJE6boVo27SwJgo3tY1Kd09bVlPNkG+VpK0AIIUGpWbNmLm0NPuuMDromrUOc5amWrUpeVDk69JO4wSrpW265RabHvfrqq8UjjzwSapXeiy++KF566SVx2mmniRtuuEG0bNkyFn1tax+T66yDrrSz8cujnc02NraPSXXWQVfa2eIydZCTRv+oUaNG6IV3JPvk65MNGjSoFgG6ePHigrLuvPNOcfzxx+f+vuqqqwI7Dv1kt23bNpCu+RgwYIDcH9Vh8uTJ4u677xZRcHR48MEHZX1L2U6lmP44Jl95cRCH7dZBju5jBtuxsX1MqnPauqZdPvGnrFL3eGdCiLYsX75cNG/evMp3y5YtU7p6khCSLd577z0ZSQpHZ1gwCXbRRReJK664wjc9FSGEJAXGPePGjSt4zMCBA6uNlwghxI+KiopcWkzH6deuXTtRq1atlDUjJoIIlXXr1lX5rl69etKprDteZxrupVGdfwDbfHgdo2PGjKmWotYLUsxir9FDDz20pGhKHI/UtG5KnYaFzpdccolcHOqwyy67iK+++ir399NPP+2bKrgUUD8s3li7dm3uuwceeECcc845kfQnhBCd2Lhxo1iwYIH8vGHDBvnevn17Ubdu3djK5Py5nug/GiKEEEJIZth///3lCueZM2eKjh07hpKBwSuiUNu0aSNGjBhRbcKHEEIIIYQQQrx4naJ+EZx+wBkKx2OpKWa9TlFvGtywnH322VX+Hj9+fGSZd911lzj99NMjyyGEEEJMgI5RQogxYGXiihUr5Ev3VYo66Jq0DnGWp1q2KnlR5ejQT9Kia9euYvbs2eKxxx4TrVq1CiVjzZo1YtiwYWL33XcX9957r/IN7W1sH5PqrIOutLPxy6OdzTY2to9JddZBV9rZwvLcr7TkqNKDEFXk65OI+vQjaqRloQhML0jDq+L6QQSpGyw8zVe/Yjhl47ns4osvDiVDF5uhWjbtLAmCje1jUp110FX3c2QrdIz+mtbvnnvukak5jjzySNGlSxeZmg8paz777LOiv3/33Xflb5DSL8jxhJDw6Q6w3wVe+KwzOuiatA5xlqdatip5UeXo0E/SBGm8Tj75ZPHJJ5+I22+/veQV2A5ff/21OP/888V+++0nnn32WWWDThvbx6Q666Ar7Wz88mhns42N7WNSnXXQlXa2uExVNjuqrdaiP/+0XIi3Jwgx/VwhHj5RiPv/uPUdf+P7n8M5joh5+PXJf/zjH9WOO+WUU2LTYfDgwdXKQmpdFdcPnpsOOeSQKt9hf9Cw3H///WKvvfYSe+65p0iCOG2Gatm0syQINraPSXVOW1dTzpNtlAtLgQNzwoQJYuLEiWL16tXV/h+Tqvje7/+8NG7cWL6Qzm/kyJGiV69e8n233XaLSXtC7KVOnTrCFHTQNWkd4ixPtWxV8qLK0aGfpA320PrLX/4iU0KNHj1apsn95ZdfSpbz8ccfyxXfhx12mBg1apQ4+OCDI+tmY/uYVGcddKWdjV8e7Wy2sbF9TKqzDrrSzpKifPOeEO8/JsRnrwuxxSeDyNqvhfj+IyHmPSREy8OE2O8UIXbaPw1NSYpMmjSp2ndXX311bNGi7jS6cGI++uijSsvo27dvlTJuu+22onul5mPs2LGhf0sIIYSYSFmlhbG8iAyFQxR4q+9s8I7v8Xnu3LlyP7SgKf1uvvlmOamL36KM8847L4YaEKIH3DyaEBIH3377rbjuuutkNofNmzeHlnPCCSeI4cOHiz322EOpfoQQ4h73jBs3ruizh3e8RAghflRUVIj58+fnFo4BZLKqVatWypppypYtQrx1lxDvTv6/7zatF2L9j0Js2ShE5RYhymoIUaOWEHUaCFHuckx3OF2Igy5EChORVbZs2SLWrVtX5bt69erJrC2648zNue+ld999dyRHJRZPeqMkvXt1qgApbTt06CC++uqr3L6izz//fGh5DRs2lKlzb7jhhqLn6fXXX/eNSi0EbA6iRf2mhx944AFxzjnnVPnOwmlkQkiGQPTmggUL5OcNGzbI9/bt24u6devGVibnz/VE/9GQ4pS5SJELh6WTVxqDCOcFouSbbtSokYwUXbVqlUzph9VbF1xwgeJaEEIIIdlmxx13FOPHjxcffvihdG6G5amnnhJ77723GDBggHS2EkIIIYSQDDlFX77+/5yi63/aGhn64zdCbPhRiE0VQmzesPUdf+N7/D+OA/gdfg85JNPA8Xf00UdX+W7MmDGxOEXhgHU7RZE+N4pTtBjeVMB33XVXyTLuuOOOWFMKE0IIITpijWN01qxZolOnTtJpCbyOULw6duwounXrJnr27Cn69esXuiw4SJGmF5O6eNE5SgghhJQO9rh58sknZYoo7wrvoCDiFPfktm3bylRZa9euVa4nIYQQQghJGESKfvqrwwl7h/6yfKsjVJQJUXtbIbZpJsS2Lba+4298j//Hcc5eo/g95JDMgojHAw88UPz444/y7wYNGshIURVpY+FwfeaZZ2QaWjxnIFITzyxwiiJKFNGbqtPnernwwguL7qNajMmTJ1eTQwghhGQdK/YYfffdd0X37t1zDlEnIhROUOwHivdWrVpV+52TbjcscK42adJE9O7dWzplmVaXkGhs2rQpN9A/9thjRXm5viZMB12T1iHO8lTLViUvqhwd+okJYK/QV199VZ6roUOHyr1ESwV7lt54441ywRImLhBF6qSoy4eN7WNSnXXQlXY2fnm0s9nGxvYxqc466Eo7mx/MazhbDtSsWbNaSs2k5KjSo+Q9RZ1IUTg5EREKx2fdhkLUaSREjZpVj6+zrRD1mgixfo0QFWt/PV4IUX/7rXJa/o57jmYApLBFukKkSHzhhRfEI488knOIAjgrH374YbH99ttHLgvO0Msuu8z3/5CWtnPnznI+MO7rB87YnXfeORehivrCGRw0GhaOXQR3wHkMG5XENRynzVAt22o7SwJjY/uYVGevrmkA+0r0w4qIUTg/3RfD4MGDZeToSy+9JNPd+jlFVYHo08svv1w6ST///PPYyiHEBrBHyvvvvy9f+KwzOuiatA5xlqdatip5UeXo0E9MAQPtP/3pT/JcYe/RnXbaKfSECfbowR4Sjz/+eMHzbmP7mFRnHXSlnY1fHu1strGxfUyqsw660s4Wl6nKZke11Yn2kfcf2/qOtLiOU7R+s63OT69T1AHf4/9xHI7H75y0uu9PSU53Egrs5+3eCsvvhb3a4JQ8/vjj5WJIOAnhNMT+pHCYIqWtCqcoQMSpOwMdXijj6aefFrvuuqtckAld4LhEet04rx+vE3TSpEmBf4vzdNZZZyV+DcdZnmrZ1tpZUhI2to9JdU5bV1POk23ouzxVEaNHjxZLliyRn5EqFyl1sRoqSbDv6PTp00X//v3lqjVCSDiwsgcR3s5nndFB16R1iLM81bJVyYsqR4d+YhqIrkAGBuyD8//+3/8TI0aMEGvWrClZDsYGkIH9hXCf7tq1a7VjbGwfk+qsg660s/HLo53NNja2j0l11kFX2tniMnWQk2j/+Gm5EJ+9vvUzIkABIkVr1w/2exy3eb0QFWu2/h7RpJ+9ujXyFBGkREvgZDz33HMDHdu0aVPRpk0bsccee0hnaVKRTHC6HnfccfKFSEw4aJ0tQa666ipxww03xHL9YNEnHLEOKBOLQYs5gXEM5igRRZu0jY+zvDhstw5ydB8z2I6N7WNSndPWNe3yiT9llU5e2YyC1BWYMEXk5pQppa0CrFGjhpg3b57Yf//oKVXgGO3Tp4+MVG3YsGFkeYToAFZENm/evMp3y5Ytkw8fhBCSBCtWrBA333yzuPPOO8WGDdhXKhw9evSQDlIV93xCiD1g3IMolkIgUsU7XiKEED8qKirkvoXASfnfrl07UatWrZQ104i3Jwgx5z4hNq0X4sdvtkZ/Ntolf6SoH1s2C7HmS+QUE6LBTkKU1xGiy3lCHNBPZAlEqKxbt67Kd/Xq1ZNzXbrjdWYiDS4iPk3CcY46HHLIIfK7UqNWMYcI52c+xypAZCocog6FHLHudMBPPvlkwYhWpOU955xzqnyX8WlkQkjG2bhxo0y5Dpw5JGQUq1u3bmxlcv5cT/QfDUUA0aGrV68WrVu3Ltkpqho4ZjF4KCWlBSGEEEKKrwjHQ/2nn34qTj/99NArwpFeH5klzjjjDPHZZ58p15MQQgghhCjgy7flW+X6H+HWFJW164vKGjW3fvZ5+QInqhNhuv7XPSi/eCsZ/Yk1IHIUka4OcFziuzjANmFeh2Yx7rvvvmq/I4QQQmwh047RadOmyQlSvOsA0uZg4pUQEg4sLli7dq186b5KUQddk9YhzvJUy1YlL6ocHfpJVmjZsqVMA4VMD0ceeWQoGWiDyZMny7Rbf/vb32R6Kdvax6Q+qYOutLPxy6OdzTY2to9JddZBV9rZwvLcr7TkqNIjMOtWb33fsnHre3m9cHKc3zlykFqXZILE+2QBLr/88ip/wzl6wQUXKNcV+4w2aNAg9/dXX31VMBIUkelffvml/F0UHXA8oq8Kvbwy42wf1bKttbOkJGxsH5PqrIOuup8jW8m0YxT7hyH6Q5e0eIhcXblyZdpqEGIsGFTfeuut8oXPOqODrknrEGd5qmWrkhdVjg79JGvgno+9cmbOnCk6deoUSgbSqaBNsDfRiSeeKFPs2tI+JvVJHXSlnY1fHu1strGxfUyqsw660s4Wl6nKZke11Yn1kU0VW98rt2x9D5sW1vmdM1m5sWrKWWI2ifbJEhyWACn4sQBTta7InuPmrrvuynvsHXfcIY499tjIOngdDvleSbaPatlW2llSMja2j0l1TltXU86TbWTeMYooTV1o3Lix1IkQEh7sh2LCnii66Jq0DnGWp1q2KnlR5ejQT7JI165dxTvvvCMee+wxuTApDIjoQFp+7F96//33i02bNgkbMKlP6qAr7Wz88mhns42N7WNSnXXQlXaWVKH81z3Ayn49j1t+dZCWivM7ZxuGWiEjTwkpwr777lvtu9tvv115ORdffHGVv/EclA9kybnwwguV60AIIYSYQlllhmN58cAxceJEcf7554f+PVLyqYo4HTBggNxjdPPmzUrkEZI23DyaEGICiACdMGGCuP7666uszi4V7BE0fPhw8ac//Sn0XqaEkGyBcQ8iPwoxcODAauMlQgjxo6KiQqa4BLVr15bv7dq1E7Vq1UpZM42Yfq4Q338kKn/+QYgNPwpRa1shts3//Jl3xPbzciE2/CRE7QZC1N9eiBZ7C9HzPpEltmzZItatqxoJW69ePSOc896x9lFHHSWef/55YSKnnnpqNSclnis++uijQL9v2LChuOSSS8QNN9xQ9Ni9995bfPzxx7m/sbgTUatunnnmGXHFFVcEKh97lZ5zzjlVvnNPI6OPFVs8Wl5ebkSfI4TYAaI3FyxYkJsrAu3btxd16/668CoGOH+uJ5m/MzVp0kTowpw5c0JHrRBCCCEkHJhYxArqxYsXi6uvvlpss802oeRgkuG4444Tv//97+X+QIQQQgghJGF2OXDre51f05Nu/FmILSUuPsfxG36uKmfXg1RqSTICFipgT9Cjjz5ajB07NpQMbM/hBft7xsG5555b5W8EZ3gZP358teMIIYQQ28i0YxROyNmzZwtdQPQpHaOEEEJIOmC1NaJGFy1aJPr37y9q1qwZSs7rr78uDj30ULn/6CeffKJcT0IIIYQQkoe9TxSiRrkQ5XWEqImo2koh1q8pTYY8vlKImnW2yoE8yCXEBTLNHHjggTIzxAsvvCAuu+wyGf0ZZlstLz/++KOIg7POOqvK31jM6UShO3VCXbzHEUIIIbaRecfozJkzhQ6MHj1avnfs2DFtVQgxFqRo+ec//ylfuu/1p4OuSesQZ3mqZauSF1WODv3ERnbccUe5Uhrpo+DcDMtTTz0l9tlnH+lk/fbbb0UWMKlP6qAr7Wz88mhns42N7WNSnXXQlXY2P0hnCTl4RdkhKaocVXoEBmlzWx629XOdRlvfK9b+XwRoMXAcjpe/b7j1veXvt6bTJZlAVZ/EPqBeB2ahfTvzsXr16mrfNWjQIJbrZ/vtt5dph93ccccdVeqE/8dxaV3DcZanWra1dpaUhI3tY1KdddBV9zG/rWTaMdqhQwcZpfn++++nrYrckwx7JPTp0ydtVQgxFuxfgZTUeOGzzuiga9I6xFmeatmq5EWVo0M/sZk99thDPPHEE3Il9WGH/TrBViLYNxz7mbdt21ZcddVVYu3aXyfaDMWkPqmDrrSz8cujnc02NraPSXXWQVfa2eIyVdnsqLY60T6y3ylb3+tsu3WPUER/Ys/QdSvzp9XF9/h/HIfj8Tv8XsrjPE3WUNEnsQ2HClasWFHtu0aNGsV2/QwYMKDK35MnT66yZ6j3/+PQoRhxlqdatrV2lpSEje1jUp3T1tWU82Qb5SLD4GaPSM0hQ4bIVBFpMXDgQLlCDPsK7L///qnpQYjpIO3l4YcfnvusMzromrQOcZanWrYqeVHl6NBPiBAHH3ywePXVV8U//vEPMXToULmXaKn88ssv4qabbhITJkyQ+5hiDIK9TU3DpD6pg660s/HL093O1q9fPye/0DFE3+s4aUyqsw660s4Wl6mDnMT7x077C7H/6UK8N/n/Ij03/ChExZqt0aC16gtRq54QNWpgNlKITet+jSj9NVIETlHndx1O3yqPZAoVfdJvb9C99tqrZDlLly6t9t3vfve72K6f4447TkakOtGueH/mmWdklOiaNWvk/3sJqwMCQIr9FseoKi8IcdhuHeToPmawHRvbx6Q6p61r2uUTf8oqdY93jkinTp3Ee++9J52jN998c0m/rVGjhow4jeLMvOeee0S/fv3kQGDkyJFyTwJCssLy5ctF8+bNq3y3bNky0axZs9R0IoSQqClOHnroIXHNNdeIr7/+OrScVq1aSUcpMkVgPEEIIYQQUoyKiorcfoDOAqt27dqJWrVqpayZfmzZvFmIWdeJsoUvbv1i/U9b9w7dvKHKcVVcMtiTFOl3nUjRPY4W4ohrtjpQMwgiVNatW1flu3r16hkxNvU605D+9fnnn09UBzgTjz/++NzfhxxySM7BWAq77LKL+Oqrr6p89/rrr4tDDz008LlAZpobbrghcJkXXHCB3BvVff622247ud/p3XffHVgOIkzPOeecKt9lfBqZEJJxNm7cKBYsWCA/b9iwdczQvn17Ubdu3djK5Py5nug/GorIsGHD5E0bTsmxY8cmWvaYMWPkvmMYxGC/UzpFCSGEEL0pLy8X5557rhwojxgxokqaq1JXhp966qmiS5cu2ux3TgghhBCSGcrKxKbDrxRb9jt1699wdjb8jRANdtoaEVpeV4iadba+4298j/93nKKIFM2wU5Soi7zceeed5bziG2+8UbJT9IcffqjmFEXUaVCnaFguvvjiKn8jix6y43i/J4QQQmwl8yPAnj17ipNOOkkOYgYPHixXSXk3T1cN9hc78sgjZZSqs5IKqfUIIdHA9YRV1HjpvkpRB12T1iHO8lTLViUvqhwd+gnxZ5tttpHjho8++kj85S9/CZ0WF5knunfvLscFyGChOyb1SR10pZ2NXx7tbLaxsX1MqrMOutLOFpbnfqUlR5UeoSgrE5sPGCg2/fluUdn6f4SoUS5EeZ2taXIb7ChEw522vuNvfI//b32EECdMEOKQi+kUzSgq++Qll1wiHZtY8BgGZKHxMnHixMC6wrEKsDdxKSD6yZv2F5Gr+D7tazjO8lTLpp0lQbCxfUyqsw666n6ObMWKUSDS2ToRHy+99JJMHXHFFVdIB6ZKPvvsM7mfKNJTIDoEnR7Rokile8QRRygtixBb0x0g+hsvfNYZHXRNWoc4y1MtW5W8qHJ06CckP2gTjCGaNGkiPvjgA3HGGWf47pETBIw/OnToIE4//XQ5XtAVk/qkDrrSzsYvj3Y229jYPibVWQddaWeLy1Rls6Pa6jT7c2WLfcWmrjeIjadMF1s6nSMqm+8tRMOdhdimqRCNdhaixd5CdDlPiDOfEeLo4dxTVHMcZ6CbUufvVPVJpK+Fg/Gxxx4rOQsd0mK709kCpMT1RosW0tVxrCLi0++8FAJZcAr9HUSHFStWiDiI02aolk07S4JgY/uYVOe0dTXlPNmGFY5ROEVnzZqVc1Q6qXXhwESKO6S8DRvFgd9h0hSRINiYHSu/nFUAKAsRq96BECGEEELMomXLlnLv0XfffVdmnwjLI488IvbYYw9x6aWXljy5QQghhBBCCrBNU7G547li03HjxcY+j4nKs/4hxOlPCNHzPiEO6Lc1cpRoj1+U5ZtvvpnbfzdpXnnlFekcxfZYRx99dKAxPI7BfKCbU045JfA+ofi9d59QLLLEHqdBGTRoUMG/g3DfffdV++7qq68uWQ4hhBCiG2WVFsXyIp1d586dc85RB3f0B6JJsR8oXtOmTRO9evWSn8Hq1avFypUr5fuSJUvky43bIYrPSJ334osvJlY/QpIm6c2jcV1t2bJFfq5Ro0boyK0k0EHXpHWIszzVslXJiypHh35CwrXPyy+/LFPtzp07N7T8hg0biqFDh8oUXUjdqwMm9UkddKWdjV8e7Wy2sbF9TKqzDrraZmeRZtdx/jhp/Nu1aydq1arlK89NFDsbRY4qPUoF53LTpk1F947HubYVnKN169ZV+a5evXpanRNEYSLjmhMRiiwthba/wn6fu+66qxxHg4cffrjavp9x9Ek4KpE9BpGb2HcUWWCwX6dfalrsRXryySdX2VsUARl+jkm3rs8++6wYNWqU+OKLL6rtS+oFjlrMX6KsQiAFMKJdsbDz+eef9z3G0eG0004Tq1atkm2Bec+PP/44r1ycg3333TfXDn369BFnn312QV285TmotrMqZdtuZ0kwbGwfk+rs1RVjhwULFsjPGzZskO+w5XXr1o1NB8yVt2jRIrH5cxIMqxyjjnMUzs6lS5fmLlq/U+A4N/Nd2Pl+4/wfIlIvv/xy5foTYrNjlBBCdJtswiIqpOf3LpYqhZ122klcd911cjIBE3iEEEIIsZNSHKO2Q8doNhyjTlQkHG2l4DhP4bzzc07GxQMPPCBGjx6dcxo6jtrddttNOhU//PDDKk5NOCRvueWWQDoiEvPGG28MdC6c+heb0oXjFFGub7/9dlEdsAcpdA/TFkgRHDQalhBC0gRpbZN2jHL+XE+sc4w69O/fX0yaNEl+9jo/g5wSP4cpfocVW0jbixQXhGQdGnZCCNk6mJ4wYYK4/vrrI6XHxWB8+PDh4s9//rPWKy4JIYQQEg90jAaHjtFsOEZNBQ5HbJGBNLtffvllzlHpOEqPOOIIGa2ZpNOWEEJIcegYJcJ2xyjAPmE333yzeOKJJ+TfYSYhndOHdLtDhgwRffv2Va4nIbqStGHfvHmzXHgAunbtKmrWrCl0RQddk9YhzvJUy1YlL6ocHfoJUdc+SDuFNFlICfbLL7+ELvfQQw+VabQOOeQQkTQm9UkddKWdjV8e7Wy2sbF9TKqzDrraZmdLTaULmQCyoqR4jCJHlR6lQsdocWx1jKbVJ03VNWkd4ixPtWzb7SwJho3tY1KdvbqmkUr3u+++EzvuuGOV7+gYTZ9sj4aKgKhOpMBbvHixTHvbqlUrebEEfTVq1Ehupg4ZixYtolOUkJjBjey///2vfDk3NV3RQdekdYizPNWyVcmLKkeHfkLUtQ/22EHUKMYVAwYMCD2ZihXocI6ecMIJ4pNPPhFJYlKf1EFX2tn45dHOZhsb28ekOuugK+1scceXs29pmnJU6UGIKkzqkzromrQOcZanWjbtLAmCje1jUp3T1lX3Mb+tcCMrIaRDFHuC4rVmzRq58fvs2bPlZuMrV66U705UKFLltmnTRnTu3JnpcglJGDgZDj744NxnndFB16R1iLM81bJVyYsqR4d+QtS3zw477CD3SvrrX/8qrrzyylxmilJ5+umnxXPPPSfOO+88ce2118q9SOPGpD6pg660s/HLo53NNja2j0l11kFX2tnCqIr8iyon6xGIxDxM6pM66Jq0DnGWp1o27SwJgo3tY1Kd09ZV9zG/rVidSpcQEg3mSCeEkOK89dZbYvDgweK1114LLQNpz/72t7/JDBfIWEEIIYSQ7ME9RoPDVLrFsTWVLiGEEJIP7jFKHDgaIoQQQgiJkYMOOki88sorMvpz7733DiUDk1o33XSTzFpx++23i/Xr1yvXkxBSOpiUx0NtoVexiXtCCCGEEEIIIYQkB1PpEkKMAQHuTk54rHLVfXPvtHVNWoc4y1MtW5W8qHJ06CckmfbBb4899lhx9NFHiwcffFBcc8014uuvvy5ZzooVK2SKXjhHb7zxRnHyyScrXfVvUp/UQVfa2fjl6W5nse0GUmcXYuDAgdVWCBN9ruOkManOOuhKO1tYnpsodjaKHFV6EKIKk/qkDrpG0QG/DRK57ZYZZ51Vy6adJUGwsX1MqrMOyVJ10IFUhxGjhBCj0h3AEYAXPuuMDromrUOc5amWrUpeVDk69BOSbPtgb4lzzz1XLFy4UIwYMSJ0WtylS5eK0047TXTp0kXuja4Kk/qkDrrSzsYvj3Y229jYPibVWQddaWeLy1Rls6Paat37M7ELk/qkDrqG1QGT/UFeqsoLgmrZtLMkCDa2j0l1TltXU86TbdAxmhBYKX7kkUeKl19+OW1VCCGEEJIy2N9pyJAhYvHixWLQoEG5fcRKZd68eaJ79+6iR48e4t1331WuJyGEEEIIIYQQQgghWaKskrG8idCkSROxZs0aMWHCBHH++eenrQ4hRm4eDXPl7KtXp04d7VM1pK1r0jrEWZ5q2arkRZWjQz8herTP559/Lq6++moxefLkSGlWEEV6ww03iFatWoX6vUl9UgddaWfjl6e7ncW4h6l0zb6Ok8akOuugq212tqKiQsyfP19+dhZNtWvXTtSqVctXns0pHpGWOEgKT5VbDpgGzhH2qfcuzsv6OTE5xaNpqXTDXIdMpWuOnSXBsLF9TKqzV1fYrAULFsjPGzZskO/t27cXdevWjU0HPDO2aNEisflzEoxsj4Y0ZPXq1WmrQIix4EaLGxVeOt90ddE1aR3iLE+1bFXyosrRoZ8QPdpnt912Ew899JCM+jzqqKNCy3nkkUfEnnvuKS699FLxww8/ZLpP6qAr7Wz88mhns42N7WNSnXXQlXa2sDz3Ky05qvQgRBUm9UkddE1ahzjLUy2bdpYEwcb2ManOOuiq+zmyFTpGEwCRoo5DdMWKFWmrQwghhBBN2W+//cTzzz8vZs2aJTp16hRKBlY93nbbbaJNmzbi5ptvFr/88otyPQkhhBBCCCGEEEIIMRE6RhNg6tSpuc+MGCUkPJs3bxb/+c9/5AufdUYHXZPWIc7yVMtWJS+qHB36CdGzfY444gjxzjvviMcff1y0bt06lIy1a9eKK6+8Uuy+++7innvuKZrmyrQ+qYOutLPxy6OdzTY2to9JddZBV9rZwqnhIAevKGn4o8pRpQchqjCpT+qga9I6xFmeatm0syQINraPSXXWQVfdx/y2QsdoDGAiEq/PPvtMDBs2TAwYMCAXMr1y5cq01SPEWHAjeeWVV+RL95uKDromrUOc5amWrUpeVDk69BOib/tgL54+ffrIvcbuuOOO0PtPfPPNN6Jv377it7/9rXjmmWcKPgykXedS0EFX2tn45dHOZhsb28ekOuugK+1scZmqbHZUW617fyZ2YVKf1EHXpHWIszzVsmlnSRBsbB+T6py2rqacJ9soF5qAyb+s5lt2T0AuWbIkVV0IMRnYic6dO+c+64wOuiatQ5zlqZatSl5UOTr0E6J/+9SuXVtcdNFF4swzzxRjxowRY8eODZUeFw7W448/Xhx66KFi1KhR4pBDDtG2zkHQQVfa2fjl0c5mGxvbx6Q666Ar7WxxmTrI0b0vE/swqU/qoGtYHTCPW+y3fnO9cdY5Dtutgxwd+gnJj43tY1Kd09Y17fKJP2WVmsQ7t23bNrNOQ2cQgFON/b4WLlyYtkqEKGH58uWiefPmVb5btmxZ6KgmQgghxfnuu+/EddddJyZNmhRp5SGcpMOHDxd77rmnUv0IsQmMe8aNG1fwmIEDB1YbLxFCiB8VFRVyIZOzMAq0a9dO1KpVK2XN9GPLli1FtwkoLy+3ejIS52jdunVVvqtXr57V54QQQojdbNy4USxYsEB+3rBhg3xv3769qFu3bmxlcv5cT7QZDTVu3Fg6ELP4csNUuoQQQgiJwg477CAdMR9//LE46aSTQst5+umnxd577y369esn0+0SQgghhBBCCCGEEJJ1tHGMtm7dukrKWXyO6xV3Gfnkg9WrVyd8ZgkhhBCSRRBBMn36dPHf//5X/P73vw8dSYDIU2TuuPLKK8WaNWuU60kIIYQQQgghhBBCiC5os8dokyZNcp/hROzWrZsYMmSI/B7RpKro37+/mDlzppSJCIkuXbookYtI0MWLF0vZ8+bNk5Gi0N/ZQ4QQEh2kOBg5cqT8jOvLSS+lIzromrQOcZanWrYqeVHl6NBPiPntc9BBB4n//Oc/4p///KcYOnSo+Oijj0qWgTRrN998s5gwYYI44IAD5PgIjlJd66xL+9DOxi+Pdjbb2Ng+JtVZB11pZ/ODeROkgwNIteu3j18SclTpQYgqTOqTOuiatA5xlqdaNu0sCYKN7WNSnb26poGTspfohTaOUey96dCrVy8xZcoU5WUceeSR0nGJhxDsqRUXcIyiDqNGjZKRHCeccEJsZRFiG4huMgUddE1ahzjLUy1blbyocnToJ8T89sGDyLHHHiuOPvpo8dBDD4lrrrlGfPXVVyXLWbFihXj++edlFCrGZqeffrrW+1Dp0D60s/HLo53NNja2j0l11kFX2llCCCGEEEKISsoq3blfUwRp3BDNiYm9GTNmiCOOOEK5U3T27Nli2rRpomvXriIJUJ977rmHzlGSWZLePBrm6scff5SfGzRooP2KpLR1TVqHOMtTLVuVvKhydOgnJJvtgwjQO+64Q0aBRkmP26FDBxnd0r17d6EbOrQP7Wz88nS3sxj3YM/fQgwcOLDaeInocx0njUl11kFX2+xsRUWFmD9/vvzsRJQidb5fhIN3KieKnY0iR5UeYZzMmzZtKnhMeXm51gu8kjhHGBO6qVevXubPSVp90lRdk9YhzvJUy7bdzpJg2Ng+JtXZqyvGDgsWLKgSydm+fXtRt27d2HTAM2OLFi0Smz8nhkWMYo9Rv88qGDBggIwURarbli1biqRAOjrQs2dPGUW63377JVY2IVkEN9qGDRsKE9BB16R1iLM81bJVyYsqR4d+QrLZPpj0Gjx4sDj//POlcxRO0jDpW959913Ro0cP6RiFgxSOUl3QoX1oZ+OXRzubbWxsH5PqrIOutLOF5ekgR+fJUGInJvVJHXRNWoc4y1Mtm3aWBMHG9jGpzjroqoMOpDo1dNxj1P05KrNmzRITJ06UkaJJOkXdzlFEvyK1LiGEEEJIkmBMNWbMGLki8swzzww9IEc2j44dO4rTTjtNLF26VLmehBBCCCGEEEIIIYRY5RhFlCiiEFRHImA/UTglTzzxRJEWcMr+8MMPYuzYsanpQEgW2Lx5s3jjjTfkC591Rgddk9YhzvJUy1YlL6ocHfoJsaN9dtttN/Hggw/KCFDsQxqWRx99VOyxxx7ir3/9qxzb2N4+tLPxy6OdzTY2to9JddZBV9rZwqnhIAevKDskRZWjSg9CVGFSn9RB16R1iLM81bJpZ0kQbGwfk+qsg666j/ltRZtUuo0aNRJz585VKhOTf3hhj880ady4sRg6dKhMZTdo0KBUdSHEZHAjQVps0KVLF1GzZk2hKzromrQOcZanWrYqeVHl6NBPiF3tg7T+//rXv8S///1vmWp3zpw5JcvYuHGjuP3228X9998vF6DBSbrNNtsIG9uHdjZ+ebSz2cbG9jGpzjroSjtbXCaIumdkVDmq9CBEFSb1SR10TVqHOMtTLZt2lgTBxvYxqc5p60rHqJ5o4xiNgylTpsi0b2mk0PWCyUc4R5966ilxwgknpK0OIUaCG5izV6/uN14ddE1ahzjLUy1blbyocnToJ8TO9vnDH/4g3n77bbl47IorrpD7sJfK2rVrxZVXXinuvPNOcd1114lzzjlHlJeXW9U+tLPxy6OdzTY2to9JddZBV9rZ4jJ1kKN7Xyb2YVKf1EHXpHWIs7w4bLcOcnToJyQ/NraPSXVOW9e0yyf+lFXqHu8cgc6dO8uVmOPGjRM60Lt3b7m3Fxy2hGSB5cuXi+bNm1f5btmyZaJZs2ap6UQIIaQ0NmzYICZNmiSdm7DrYdlzzz3F8OHDxXHHHRd6L1NCTAPjnmLPGgMHDqw2XiKEED8qKirE/Pnz5efatWvL93bt2olatWqlrJl+bNmyRWzatKngMViwZfNkJM7RunXrqnxXr149q88JIYQQu0EGrAULFuTmQkD79u1F3bp1YyuT8+d6kunR0JIlS0SnTp2ELsBJO2/evLTVIIQQQgjJgYnXCy+8UEaNXnPNNaJ+/fqh5HzyyScyK8Zhhx0m908jhBBCCCGEEEIIIUQ3Mu0YXb16tWjSpInQhdatW4uVK1emrQYhhBBCSDUaNGggo0YXLVokI9zC7n325ptvSufo8ccfn4t6IYQQQgghhGQLJCFE5HahV4YTFRJCCDGYTO8x2rhxYxk1qpuzlhASDqQ4uOWWW+Tnv/3tb7n0Ujqig65J6xBneaplq5IXVY4O/YTkx8b2QZ0feOABseuuu4r33ntPOkqxD2kYnnnmGfHcc8+J8847T/z9738XO+20U+bah3Y2fnm0s9nGxvYxqc466Eo7mx84G5AODiDVbtg09lHlqNKDEFWY1Cd10DWKDvgtUjYXAqmb3TLjrLNq2bSzJAg2to9JdfbqmgZOyl6iF5mOGEWE5uzZs4UuwEkLZy0hJDzr16+XLxPQQdekdYizPNWyVcmLKkeHfkLyY2P7OHXGnmbTpk0Tb731lvj9738fShYmSrB/adu2bcWVV14p1qxZE4uuaUI7G7882tlsY2P7mFRnHXSlnSWEEEIIIYSopKwywzkNevfuLZ544gmxefNmoQM9evQQq1at0spZS4hJm0fDXDnpqJEmW/cVSWnrmrQOcZanWrYqeVHl6NBPSH5sbJ98dcb3//rXv8SQIUPERx99FFp+06ZNxVVXXSVT9dapUycWXZOEdjZ+ebrbWYx7xo0bV/AY9HfveInocx0njUl11kFX2+xsRUVFLg29E1GKhUp+EQ7eqZwodjaKHFV6hFl8hTSdhSgvL5fRaraCc7Ru3boq39WrVy/z5yStPmmqrlF0CHMdxlln1bJtt7MkGDa2j0l19uoKm7VgwYIqkZzt27cXdevWjU0HPDO2aNEisflzEoxMj4a6desmO/+9996btipi6dKlYubMmaJz585pq0KIseBGi0l1vHS+6eqia9I6xFmeatmq5EWVo0M/IfmxsX3y1RmfjznmGPH++++L++67T+y8886h5K9YsUJceumlYs899xSPPPJI0dRbYXRNEtrZ+OXRzmYbG9vHpDrroCvtbGF57ldaclTpQYgqTOqTOuiatA5xlqdaNu0sCYKN7WNSnXXQVfdzZCuZdoz26dNHviO6Ye3atanqMnLkSHkR9OrVK1U9CCGEEELCUrNmTXHOOefIFZYY24TdIuCzzz4Tp59+uujUqZN46aWXlOtJCCGEEEIIIYQQQoh1jtFGjRqJrl27yvS1/fr1S02PJ598UkycOFFOHh5xxBGp6UGI6SAt9jvvvCNfuqTI1lnXpHWIszzVslXJiypHh35C8mNj+wStM9KwDR48WCxevFhcdtllodPivvfee+LII48U3bt3F/PmzYtF1zihnY1fHu1strGxfUyqsw660s7mB9mxIAevKDskRZWjSg9CVGFSn9RB16R1iLM81bJpZ0kQbGwfk+qsg666j/ltpVxkHEQzIH3ttGnT5D4ed999d6Llv/vuu6Jnz54yWnTYsGGJlk1I1sCN5Pnnn5ef999/fxm5pCs66Jq0DnGWp1q2KnlR5ejQT0h+bGyfUuuMsdXo0aPFRRddJK655hrx8MMPh3rYwHYDiB499dRTxY033ihatWqlXNc4oJ2NXx7tbLaxsX1MqrMOutLOFpcJou4ZGVWOKj0IUYVJfVIHXZPWIc7yVMumnSVBsLF9TKpz2rrSMaonmXeMduzYUfTt21dMmjRJTJgwQSxZskS88MILiZSNMgcMGCA/t27dWkZUEELCgxvYXnvtlfusMzromrQOcZanWrYqeVHl6NBPSH5sbJ+wdd5tt93Egw8+KAYNGiSGDh2am/gtlUcffVQuZrvgggvElVdeKZo1a6ZcV5XQzsYvT3c7i2hpR36hY4i+13HSmFRnHXSlnS0uUwc5afQPLD4vVi739LIX3e2rbrqG1SHsdRhnneOw3TrI0aGfkPzY2D4m1TltXdMun/hTVql7vLMC1qxZI1q2bJnbZxQpbUeNGiXOO++8WMrDvln9+/eX0Q84vRgEzJgxg2l0SeZYvny5aN68eZXvli1bVnAimxBCSPb597//Lfd4nz17dmgZDRo0kDL++te/ivr16yvVjxBCCNGRiv/P3nmASVEtbfjbvEvOQSVnTEQxXhURlKvXRDD+RpIBAwiimLkSzBERveg1IojpmkiiIooSRFFMgICKIGkJm3fnf+r09jI77OxO6O453f29D/1M79BTp06fMzXdXaeq8vKwZs0atZ+enq5e27dvj7S0tARrRtxISUkJcnNzDyiHwAe0hBBC/EphYSF+/vlntV9QUKBeO3XqhMzMTNva5PNzPfHF1ZDUGl2wYEFZajez5mj9+vXx4IMPKkdmvIjTVWqJSp2sNm3alHOKTpo0iU5RQgghhPiGk08+GUuXLsXMmTPVdVEs7NmzB+PHj0e7du1UFo6ioiLL9SSEEEIIIYQQQggh/sIXEaMm4qzs27evclaa3TZTOkgUaZ8+fdCzZ0+V9tbchFq1aqlXM+J0x44dKiWvbMuXL8eyZcuwYsWKsnZMh6gwZswYTJw40fG+EuIEXPFCCCGkKmQVpjg27777bvW7ESsdO3ZU11RnnXUWU+MRQgjxJIwYJVbCiFFCCCGkPIwYJb50jJrO0UGDBqn0ukJw92N9yFaRDHlP0r/RKUq8jNOGXX68Hn/8cbV/3XXXaf2AQAddndbBzvaslm2VvHjl6DBPSHj8OD529lkiQCVTxwMPPIB9+/bFLOfYY49VJRGOOuqohI8P7az98mhnvY0fx8dNfdZBV7/Z2Wgco/LMwcymkJqaGtfzjHjkWKUHsR6/OkbdNCd10NVpHexsz2rZtLMk0ePz+eef48knn8Rnn32G33//Xb13yCGH4IQTTsDgwYPVouFE4KY5Gaqr7DvtGP3zzz9x8MEHl3uPjtHE4+2roQqQqFCJ9OzSpUtZZKe5yd+xbEKwDEndKzVF6RQlxFrk+yUP1mXTfU2HDro6rYOd7Vkt2yp58crRYZ6Q8PhxfOzss9QMveuuu/Drr79ixIgRSElJiUnOkiVLcPzxx+O8885T13S0s3rKpp0lkeDH8XFTn3XQlXa2aplW2ex4bbXu85n4CzfNSR10dVoHO9uzWjbtLEnU+Nx+++3qvldKAt5www1466231CLj5s2b49VXX8XZZ5+NZs2aKedpInDTnEy0rm45T37DdxGjwUi0gdT/3LVrlyWriASpXTp58mTlHCXE6zgdMSorXkW+IO3qvNJVB12d1sHO9qyWbZW8eOXoME9IePw4Pk72WVZp3nbbbZg9e3bMMkS/888/X13PyU2h09DO2i+Pdtbb+HF83NRnHXT1m52NNmI0dKF2LMQrxyo9iPX4OWLULXNSB12d1sHO9qyWTTtLEjU+xx13HDZu3Ii5c+eqaMaKnKYTJkwo+3vGjBm47LLL4BRumpOhuiYiYnTLli1o0qRJufcYMZp4fO0YrchBalLVFzr0tEkt0XHjxtEhSnwFc6QTQgiJl6VLl6rrqE8//TRmGfKQT1bRShkDXosRQghxK6wxSqzEr45RQghxM+L0fP7557Fy5Uo0aNCg0uOCnaOLFy9WDlVSOawxSkzoGA1CDI7UIJ05cyZWrFhR6bHdunVTaXlPPfVUnHLKKY7pSIhO0LATQgixArkcff/993HLLbdg9erVMcupX78+xo8fr1L1ZmRkWKojIYQQYjd0jBIroWOUEELchVwDdO7cOeII0Fq1aqkU/YJ87vvvv3dAS3dDxygx4dVQEF27dsXNN9+MZcuWqQtI2dauXYvly5erTfbN9+UYiTKlU5QQ5yguLsY333yjNtnXGR10dVoHO9uzWrZV8uKVo8M8IeHx4/gkqs+SqeOf//ynalduAg855JCY5Gzfvh033ngjOnbsiJdffllds9kJ7az98mhnvY0fx8dNfdZBV9rZyhcViRzZ4q1bF48cq/QgxCrcNCd10NVpHexsz2rZtLP+QKIs5X5027ZtMX3eyvF5/PHHUbNmTfTq1Sui4y+++OKy/R9++MGxeqNumpM66Kr7Nb9fSU20ArrTqlWrRKtACAn6IXn77bfLVkKlpKRAV3TQ1Wkd7GzPatlWyYtXjg7zhITHj+OT6D5Le7IydvDgwXjiiSdw3333lSt1ECm//fabukl84IEHVO33vn372qIv7az98mhnvY0fx8dNfdZBV9rZqmUK8UYAxivHKj0IsQo3zUkddHVaBzvbs1o27ay3EUfikiVL4pZj1fh88sknKgJUrhOOPfbYKh2dF110EaZOnVr294cffuhYOl03zclE60rHqJ7QMUoIcQ3yA9auXbuyfZ3RQVendbCzPatlWyUvXjk6zBMSHj+Ojy59ljRvksXjyiuvxMSJE9XK2fz8/KjlSFROv379VPkDcZBKKQQroZ21Xx7trLfx4/i4qc866Eo7W7VMHeToPpeJ/5A5+fDDDyM7Oxvr1q3Dzp07sXv3brXgbtOmTeoY+VsHdPj+OK2Dne3ZYbt1kKPDPPEiTz75pHoVJ2Rl9TydGh/TPgnisBXHaGWOzg4dOpT7WzJcOoWb5mSidU10+6RiWGOUEBIzzJFOCCHECTZu3Ig77rgD//3vf+NKf3PBBRdgwoQJaN26taX6EUIIIVbAGqPESvxcY9Ss0xcOSVWpi2OUEJI4zBqdkdb0tJtDDz1UpcQ1kX2pf1kZkgbYJJIoU7/DGqPExPtXQ4QQQgghxNU0b94czz//vIoA7d+/f8xyXn31VVV/9Prrr1c3J4QQQgghxHvIQ25xdEhZhREjRihHKCEk8Ugdz2bNmuHCCy9MtCoqvb04RQUdnKLCM888g0MOOUTZrPHjx1fpFDUXU5m0aNHCZg0J8Q5MpUsIIYQQQlzBEUccgffeew+LFi3CmDFj8PXXX8e0QvSxxx5TD8vGjh2LG264AdWrV7dFX+J9ZKVvcF2fipAHsqErhAkhhMQfDVlUVFTpMampqb6IjiQVE+zouO666yqNICWxIZlcqqqdJ/WUgyPaiH+RSMbzzz8fv//+OzZs2JBodfD000+r19NOOw26IGlzg9PpVsXSpUvL/d29e3cbtCLEm/AKkRDiGuRhttSZk032dUYHXZ3Wwc72rJZtlbx45egwT0h4/Dg+bunzSSedhMWLF+Pyyy+POf2MrA6WVbhS701W5lb1cLUiaGftl0c76238OD5u6rMOutLOVu6QEDmyxZNmPl45VulBiFVUNCcl6kqisHRDh+9PPDrI8bJIobItVKadfbZaNu2sNUhUo0SIHn/88copqgsffviheh0+fHhcchI5PtOnTy/396WXXupIu26akzroqvs1v19hxGgF/Pbbb1ixYoUq0L59+3b1KgXapR5VnTp10KZNG7Xfu3fvRKtKiK+QH7AdO3aU7euMDro6rYOd7Vkt2yp58crRYZ6Q8PhxfNzWZ0kVJDeyDRo0wL///W8VvRctmzdvxrBhw/DQQw9h4sSJOPvssyNe1U47a7882llv48fxcVOfddCVdrZqmTrI0X0uE3cijhSJKoulXl5Fc1JqCeqIDt8fp3Wwsz07bLcOcnSYJ9E4QqWG47Jly1Q5FJ2coSailyApa88666y45SVifMQ2LlmypOxvWfQr98VO4aY5mWhdE90+qZikAEdGsXDhQsyaNQvz589XjtBI6dOnDwYNGoQrr7zSVv0I0RGni0fLakPzgkpWe+qcFkkHXZ3Wwc72rJZtlbx45egwT0h4/Dg+bupzqK779u3Dgw8+qGpJyX6sHHvssZgyZYpKYxStDrSz/rOzTKXrH5vjxz7roKvf7GxeXl5ZvbD09HT12r59e6SlpR1wrDzKMR/nyIKeWFNVxivHKj2ihal0IztHubm55d7LyspyzTkxr8WidYyGm5Miz3QiiDNk9+7dSDSJ+v5YpUMs30M7+2y1bL/b2WgJ/o4FI6lqW7VqVe6aWe65Yln0YLWuF1xwAV555ZW4ZCVqfILPt9Pn0y1zsiJdxWaJ414oKCgoyyqQmZlpmw5btmxBkyZNHHt+TiLD947ROXPmqOgAiRAVoj0d5hdfIklvvfVWjBo1yhY9CdERpx2jhBBCSFX89ddfuPfee2NOj2vyr3/9S10jsh4VqQw6RgkhVhKNY9Tv0DHqfcfooYceqp61WfWwX0fHqNvh95AEc/vtt6so0bp166psi+IQNRc4vP322yozjw6O0W3btpU9t5TyLJEsiNUNWRA8evRotS/3q99//32iVXINktbWaccon5/rSbKf0+VKTamBAwcqp6i5esBc5RDpZn5u586dGDNmjApZf/PNNxPdPUIIIYQQXyIrMZ988kn88MMP6jovVt555x0cfvjhuOqqq/DHH39YqiMhhBBCCKmcTZs2JVoFQkgUyOLUDz74QEVgyr6uDsdHH320LHuDrjpWhiygolOUkPjxpWNUChPLyhVJmVtR2Lfp7KxsMwl1kkrNkAEDBuDqq69OWP8I8fJqRPnBl032dUYHXZ3Wwc72rJZtlbx45egwT0h4/Dg+bupzVbrKArjXX38dS5cuxYknnhhzG88995ySJZlBsrOzo9LBamhnaWe9hh/Hx0191kFX2tnwyPMHkSNbvLWc45FjlR6EhEZ07dmzJ6bPumlO6qCr0zrY2Z7VsmlnvZs9Urjssssskefk+Iht7NWrV1nUbaKcom6akzroqvs1v1/xnWNUUlkNHz683Bch2OEpOc+7deumnJtDhw49YJP35f/luFBnabCDdNq0aTjqqKMS2ldCvIakaJk9e7ba4kmP6BddndbBzvaslm2VvHjl6DBPSHj8OD5u6nOkusr12Mcff4z33nsPhx12WExtSRo6SavbunVrPPzww8jPz49KB6ugnaWd9Rp+HB839VkHXWlnq5Zplc2O11brPp+JuzAjuvwwJ3XQ1Wkd7GzPatm0s95Coi0ls5Bw4YUXWibXifERp2jXrl3VohGpjZrIGq1um5OJ1tUt58lvpMJnTlGpN2UiDsw+ffrg1FNPVa9iXKJl/fr1mD9/PpYvX66iEnbt2lUWeSrvST71Dz/80NJ+EOJX5LvVokWLsn2d0UFXp3Wwsz2rZVslL145OswTEh4/jo+b+hyNrvL//fv3R79+/fDiiy+q+je///571G1KZpCbbrpJPaybMGGCStVLO2uvPNpZb+PH8XFTn3XQldezVcvUQU4i5oe0KbULqzqGuJPnn38+rs+7aex10DVWHYKz70Uj284+22G7dZCjwzzxAo8//nhZClqpK2kVToyPZEGSe9jx48erVMWJxk1zMtG6Jrp9UjFJAd3jnS1i3LhxmDx5ctnfEvkp78XiDK0MWf05adIkVbfUnPTy0Oy1116ztB1CdIDFowkhhLgRiQB94okncN9996lFbbHSpUsXdX3Zt29fS/Uj7kGue6ZOnVrl4szQ6yVCCKmIvLw8Fc0ipKenq9f27dsjLS0twZoRNyKp++SaJ5isrCwkJ+udPE6+A+K0MFNFWhUVJbUElyxZovZr1qyJ3bt3WyKXEFI1b7/9Ns4+++yyv638bkdDrVq1VMTlAw88gFGjRsEtmPbrrbfewllnnZVodVxNYWEhfv75Z7VfUFCgXsVJnpmZaVubfH6uJ3pfDVnEypUry5yikgJt7dq1KrrTaqeo6XBdtmyZkm+m2J01axbefPNNy9sihBBCCCHRIw8Fb775ZnVNKK8ZGRkxyfnmm29UFKpkH5FMIYQQQgghJP7naoQQYjXiiDVrF1966aVwk1P0u+++w+LFiyt1il599dU4/fTTHdWNEDfjC8eoRGxK9Kaky5WHVlIf1IkLuV9//bWsFumQIUNsb5MQQgghhEROvXr1MGXKFLVi9LLLLos5xY2UVejRo4eqU7Nu3TrL9SSEEEII8QPyYN+s/0cIIVby5JNPqlcpe9egQQO4AXF0ilN06dKlykFaGatWrVL3pISQyPC8Y3T69OnqAZVEis6dOxe1a9d2rG1pUxyx0ubOnTvx4IMPOtY2IV5Nd/D000+rTfZ1RgddndbBzvaslm2VvHjl6DBPSHj8OD5u6rOVujZv3hwzZsxQN5NSizRWXn31VXTs2BHXX3+9SpdjNbSztLNew4/j46Y+66Arr2fDIwuwRY5s8VRIileOVXoQf7Nt2zblAKgqPb2dc1JS+Moit2bNmql0m7JgTl7FGSH16UVHq5C2xAl86KGHlmtL/pb3rUoxKulL5bwGtyP9C+5TpOdLdJbnmqKfnCdTrnm+Qp95Sh/kGPl/s11p006bYbVsO+ysnEcZF6mjK6+RzKtY9BC5MgbSjmyJSFurG3KvJgwePDimz8t5lDlvzmf5LoT7Dsn7Mt/N7575/Zb3IkW+Z6tXr1Z+jUjqoYoD1SnHqJt++3XQVfdrfr9SeaV6DyApdMVgzZs3LyHt16lTR6XSldpTUsfKTfnLCdEN+QHbsmVL2b7O6KCr0zrY2Z7Vsq2SF68cHeYJCY8fx8dNfbZD18MPPxzvvfceFi1ahDFjxuDrr7+O6abnscceU45WkXHjjTeievXqluhHO0s76zX8OD5u6rMOuvJ6tmqZVZGTk1NWtzScjOLiYrWfkpISdfaEeD9P7MHuemlWIY4FWZhm1v4MRd6vak5V9D2I9jsmerz00ks444wzcO+996Jdu3bKsTFz5kzlTBE9JkyYoK7vJMtIrIjMSy65BB9++KH6+4ILLlDt1a9fH+vXr1cBHeIclk1qMIrjLJbINnFS3n333SptqNRrveKKK9C2bVsl65dfflHtPProo6pPEj33n//8R+lQGRKxNnr06IgdSJdffrmSLf3bvn27+qy0t3DhQnz88cdlx5rjK3VfTcygluzs7HJyxaH7wQcfVFqbNliOKStYTrS1Za2y14888oi6R/j9998P+D/RWRZWyhZuvCPVQ8ZexjM08trvdXVlTprnIZbvsDg05Ttz55134uijj1ZzWb6nYjfku9GmTZtyYyDz3fzuyfHCl19+qebBnDlz8P3331fpFP3f//6HF198ET/99JPawtkUCcaS77R836UuuVPofh2rk66Jbp9UTFLAwyMjFxVimMaOHYuJEycmPJ2vGD6JIO3SpUtCdSHErcWjS0pK1PdakDTVycn6Br3roKvTOtjZntWyrZIXrxwd5gkJjx/Hx019tltXuUSePXs2br31VlUeIVaaNGmCu+66C1deeSVSU+Nbk0g7q5+dleueqqJbRowYccD1EnGfzfFjn3XQ1W/Xs3l5eWVOzPT0dPUqDznT0tIq/J0yH+eIYyGc80ieQTC1nv9YtmwZunbtitzc3APqrOtkd0Lr4YnjJthJKk6MqtJHhjrKwn03RI4pO9hJJFFcEtQQzglpOjlMYnWOivyzzz5b7YvDRK4zJdNIqK5mpKU4OURPcbpEEi1mOklOPPFE5RSTz4pTpbKahOJ8MaPoxJlWWWkJsU2iizg5pYyE6dw1eeCBB1QwiOmUlXExx06i5czajsJbb72FM888U7Ul2VpkLDZu3Fih01CQvkiE3rnnnqscreH6LnM+nIxDDjkEhx12WFjHakVEamcrQ86blFuLNEX0+PHjD+hjJHqI42/kyJFl51nmmMwFeS4uTm8Zt0QG6wTPf0Ec/05GsZrff1mM8Morr0T1WdHz+OOPV/M2+PtkjoPMrQ0bNqj9iy++uMyhGXxs6KKIisY5eKFGrNHzTrl5rPhuOEWorkVFRaqUjlBQUODIYiJZGCfPBZx6fk4iJOBhxo4dG0hOTg5kZ2cnWpXA8uXLA0lJSYFx48YlWhVCLGPr1q3yy1Juk/cIIYQQr1BQUBB48sknA40aNTrgNy+arUOHDoE5c+YESkpKEt0lYiFbtmwJ3HXXXZVucgwhhERCbm5uYMWKFWpbvXq12uR3KB6WLVsW1+8XN3duMu7FxcWBvXv3ltvkPd0J7sexxx5rmVyRZcqtWbOmeu+0004LXHDBBVV+Vo4L/Ww0zJgxo+zzhxxySJXHL168uFx7P/zwQ5WfkWNEttnG33//HZFu48ePL2vrgQceCMTSJ/OzooPsh+obOj+lzYp46623Dji2c+fOgWgIPnfmuZD3EoGcBxk/sx/mORJkfKS/wXMruM+Rjp8gc9j8rMiLZL44TejYWvndrgo5l2a7scwFGY+K7IT5fTPlyrwO930VGZH0X+ZIrHY/EttCjPt78xrLvOaS6y874fNzPdFnmZgNrFixAn369FErkxJNt27dymqOEkIIIYQQdyBROrJqV6JGJfIz1rS4kv5IVrnLauXFixdbrichhBBCCIkciWyUKMVIoseCaxJKRJ6ZljPSaDNJK2siKS+rQq4XJeOE2d5VV11V6fESjdarV6+yaElpI9IUvBK1JilvBYmMjbRvFUXN3nTTTSoSLjTCVaIXgzHbC0Ui7Mx+m0jUYzTIuZOoQLPdTZs2VRl1bBdSVk3GT86JpE6ViE3z3Mj4SH8lglUiEYNTAEt0qTxDjiSiUvomUb/yeZEj8iKNMPYLL7zwQsQR6BVF/Mp4XHPNNQf8X3CK5qFDh6r0uhWdf/l+hkYMH3nkkRW2J9HWsSIR0YSQyPG0Y1SKE4tDUhdEF9GJEBJ7+ilJdyCb7OuMDro6rYOd7Vkt2yp58crRYZ6Q8PhxfNzUZ6d1lRtpqSmzdu1a5SiNNS3uF198gRNOOEE9CIk0pZYJ7SztrNfw4/i4qc866Mrr2fBIEJbIkc3DFZIIseW7Ic4qcUA888wzEcmU2qPBROLcNDn//PPLOQSDnSaV6XrPPfeU7UsKUElFGg65rjRTqIpjMRrHmLT73//+t+xvceJWVpc4HBIIImlCpU5mKJ988onqu6RPlVTExxxzTNjxCe638O6770bVF5Fr1iiVdMWJsrNyvyCOakkxLH2qTI6MnzwvDnYgy3hK+lZxjobTw0wPa6Zcrixtsp+RNNFmmttokYUTMi4VOVSD00PLfd3w4cPVHA8ldJGCjFfoPDeRtNJm6tdot2jSRPvpGkQHXXW/5vcrnnaM7tixo1zx40Qjq33oGCUkdiQPvKyEk032dUYHXZ3Wwc72rJZtlbx45egwT0h4/Dg+bupzonRt3LgxnnzySXXze95558Us55133sHhhx+uIgDC1UIKhXaWdtZr+HF83NRnHXTl9WzVMnWfR4Qkgki+G1KzMtLosVDHhllPsCpuv/32ctd5EjkYqa7SZrCj7Omnn66wDYnwDK7LGs7hUhniSAyO4qwqQrUipK6iOIUqilSV98RpI06+Sy+9tNLxkWODnUty/qKpRSlyP/300wOc0E7aWXEsS41IiVw163pWJUf6LVGlUq8yGKk3K/VBQz8vjtdgpyijRCuP+BSuu+66qD8/Z86cCqOWQ+ekjNujjz4aVo7oIIsWZBPfQKQR3TrjpmuQROvqlvPkN2Jb6u4Sdu3alWgVCCEWIkWyDzrooLJ9ndFBV6d1sLM9q2VbJS9eOTrMExIeP46Pm/qcaF3btWunHm5LFOkbb7yhIoBiWTn63HPP4eWXX8YNN9yAsWPHok6dOmGPp52lnfUafhwfN/VZB115PVu1TEJIbN8NKXFg9/PGYEdJuDSelekq6TZNp45EY4ZzvpqEc0xWhegwcODAsjbE4SaOn2jSjkr03JAhQyJurzLGjBmDs88+u+xvM0VpJMg1uZyzSKOB7bCzjz/+uHp97LHHopazcuVKFVhjRiPKq0SCLlq0qOwYiR4Wx6vA1LmVY6bKlkUG0Z4nMwVuRXPpyy+/LPe3RKBXNsbS9lNPPQUv4aZrkETrmuj2ScUkSaFReJS2bduqH/aJEydCByS3/Pr16/HLL78kWhXiIubPn49Zs2apVzPiWC6SZDv11FNVHvvKHqLayd9//41GjRqVe2/r1q1o2LBhQvQhhBBCEoGZukgcm6tXr45ZTr169VQkgawAz8jIsFRHYg9y3WM+mAqHrAwPvV4ihJCKyMvLK0thmZ6erl7bt2+v6l3HiqS37NGjh2U6EnewbNkydO3aFbm5ueXez8rKQnKy3snjgh8gi6MvmmjByjDTjppIzfdoHH+1atUqc1ZJdJjUrqwMieQMri0qEYzRproMlSE1JIPTpYqDLNiBKNccsTpfxAkU/CwnEn1DH/bLMyKrIuGCz3c0si+88EKsWrVKRV8mCtFd0rbGOhYy5yWNbjByjyD1YE35Zu1S8z3dCZ2rVn63q4oMN1Mam9G70X7/KnKdSCRv8GIFD7tXPEdhYWHZouaCgoIyx3VmZqZtbfL5uZ7ofTUUJ+I4WrFiBXRBnFqiEyGRzhdxfMomNzV9+vTB5MmTlSNUEEepPICtW7cuhg0blmh1CSGEEN8iD4X69++Pb775Rt1Ayw14rGUgbrrpJnTo0AEvvfQSa5EQQgghhNiELEizk5kzZ5b7O5YFCr169Sr3tzwbqqyNo446CrES6nQMF6EajYx4CK1VWlma0tCUvldccQUShTj7xGkZS9pWE3HYi5M7GImalYUzsoBS5EsEpFucookcCzOVtaRwjuX7JzVxKyJ4MWxwymtCiHvwdCpdWR0nK0KkcLGspkkkkgrBdHQRUhXi0D/llFOUI11W+Hbr1u2AYySVg+kQlX1xlMqxiYoeJYQQQvxOSkqKuukePHiwSqF13333xVTaQepWXXLJJeo6VhZFSdYRpt8hhBASCxIFEepM8QISnVNcXFzl77Jffz+ZWrNq7I7UCY2Ga9OmTdzjKLUmg/nss8/K/S0L5+NBImGDa6JKlF9whGplSKrgir6TEqEcy/dQHKPiDDSRxYdVOQLlGHEaRhsZaCWSYlXORbzfQYk2/eSTT8pSKQsDBgwo+1vuM0jlPPnkk3GlmJYxrGgcJbo6+HtSUQ1SQoj+eNoxKg+l7r//fkyaNCnhPxgS2ScXAozsI1UhD1CDnaLhkMhRM52uII737t27e9o5KukOXnzxRbUvD4zjSSnlB12d1sHO9qyWbZW8eOXoME9IePw4Pm7qsw66htNB0vDcfPPNuOqqq1RJB6kvlJ+fH7V8SQMmaczkukAcpEcccQTtLO2sp/Dj+LipzzroyuvZyh2DRUVFaj81NTWs46FatWrqPjFeOXZ9PlYkq4LZbjhEH93TxtqJXzNPRDonrYxurMhxEpwGNvj9UIJ1rYrQBXfBzhkz9XY85ys0qEQWVUTqGJWMKRU5RuX8B49BNOMj18Fm5Kr0tSpHrTwDvuCCC5S9tcIexWLf5Jnc4YcfHrccMwgiOKWu6RQVR1+k4+JnJHpYiLT2bbRygyO1Zc45/TuYSBL122+FronAnB9ELzztGJUou1atWqkHSePGjVMrdhIVLSrRfLJyq0uXLgnRgbgHcaILCxYsqPJYSa8rDlKzELg4R+Xz06ZNgxeRHzOzjofu+ft10NVpHexsz2rZVsmLV44O84SEx4/j46Y+66BrVTrItd+UKVNUKq077rgDL7zwQky6yjWBpF8bNGgQmjRpolK/0c46qwexBz+Oj5v6rIOuvJ6tWqYOcnSfy8R/JHpOSj25UIJrhcZK8CJ4sx6xnecrNEK1MmrXrh13e6EMHz68XErfp59+OqxDUM6HOA4l0tLK8Y9W1s6dO9GiRYu45ZgpdcXR++qrr5Z7f8yYMVHL8hviRDcXJ1x22WWWyp47d265v88444yE25xE4KY+J1rXRLdPfOgYFSRC85ZbblEr7b/66ivH21+/fr1qW1ZOmLUhCals9Z84OcWZH2nUpxxrOkYF2RfnqBfr2crKHokEN/d1RgddndbBzvaslm2VvHjl6DBPSHj8OD5u6rMOukaqg6ygl/o0Uj9UFuu99957MbX3+uuvqwgjaVMeujRu3BhWQTtLEoEfx8dNfdZBV17PVi1TBzm6z2XiPxI9J6VufCjitAtNyykPy80H5qGRlbG0YfX5kmeaiRwfcYIGp/cVJ6lE3VYU7StlLKTW4wknnJAQXU2knJsE6cQrx+SVV15REYrBEciVOYjJ/nMkSNSx1QSnsJb5Wb9+fV86vhJtZ92ka6LbJxXj+ZwisopGfpAklYEdxrAyfvvtN1UTSpxd4uSSVGqEVPXAU5C5IilyJQK0KmRuSeRoMLNnz4YXkTRIHTt2VJvuKZF00NVpHexsz2rZVsmLV44O84SEx4/j46Y+66BrtDpIWi15sLFo0SKVcinWNDwvvfQS2rVrp+ou7du3D1ZAO0sSgR/Hx0191kFXXs+GRxwoIifW+n1WybFKD0Kswk1zUgddg3UIJd6apVb0OTTa79FHH63wOLk+vuKKKyw9n7rYWTMNu4k4iKWeKgmPGWksUcdWElpfVBzxOnyPncZNfdZBV92v+f2KL0ZF0orKyo158+apfPsbNmywvc033nhDFVZfu3at+tJNnz7d9jaJ+zFrioozXdIvV1YLJpjQ6FCZ64QQQgjRkxNPPBFffvklZs2apRycsSCrxm+//Xa0bdtWXeuybgkhhBBC/IY4KT7//HPoRocOHQ547+eff7a9jXijSCXaMRh5rplorr/++nJ/V+QQlPfk2njUqFFINFKnNbQWbLxUFCE7cuTICmvWkv1zRErqWR1ZG1pfVAKiCCHuxBeOUYmmu/nmm5Vz9Ndff1VOpKuvvlpFdFrNwoUL0a9fP1UDStoTp+iAAQNw7rnnWt4W8R6hF7FyMRVJ1GjoxaqVKVV0oqSkRH1vZZN9ndFBV6d1sLM9q2VbJS9eOTrMExIeP46Pm/qsg67x6GBeI37//feqFlKsaXH/+usvtRL6sMMOw5w5c2JO40Q7SxKBH8fHTX3WQVdez4ZH7L3IkS3eWs7xyLFKD0JidVKcfvrp2s3JihxZUgYhlHh0raiNWBxlwTpkZ2fb7hiNts/Sz+AMgBKtJ/Ujg7n//vtVLU6rxz4WeZK1cNWqVXHLqaqmqDiCxTlKDsQMTrr44ostlx2uvmiibY7TuKnPOuiq+zW/X/GFY9SswzhkyBC1L18CWVkvP/DixHz22WdjdpLKaip5CCX1omTFv6Q/lUg/0ynarVs3zJw50+LeEK8i8yc0Ta4Xa4XGSlFREV544QW1yb7O6KCr0zrY2Z7Vsq2SF68cHeYJCY8fx8dNfdZBVyt0kJqhI0aMUIv37rrrLlSvXj0mORKFcN555+G4447D4sWLo/487SxJBH4cHzf1WQddeT1btUyrbHa8tlr3+Uz8hQ5z8thjjy339/bt2y3XNbQNuZ6MBVOH4DqWptPHDqLtc2g6VLN+pLBmzRpVv1UyqcQi22pdpVyG6BOvHBNxAi9ZskTt33rrreX+79VXXz3ASex3ZHGAeb4uuugiy+UHO70lItVcoKCDzXEaN/U50bq65Tz5DV9VfhVnqETSSZpbQZyX4sSUzUScUOZmOqZMzFQIEsEncuQ1OD1CcMF0c5XQggULHOod8QJDhw5V6XSfeeYZNQdlzkaCpGwOpl69evAi8t1q2LBh2b7O6KCr0zrY2Z7Vsq2SF68cHeYJCY8fx8dNfdZBVyt1qFGjBu6880714Ofee+9V1wCx3EB98cUXqtbNmWeeiUmTJqFz584RfY52NjZSU1PL5Fd2DNH3e+w0buqzDrryerZqmTrI0X0uE/+hw5yUzHGmg0aQZ48VpXqNR9fQNszyTNEiOsg1ZDByDVlRVGpVcmJ9rzIkHeohhxxSVttR6keKA0z0e/zxx5WunTp1KgtSsZJo5ZnOZEnxLAsWY5Vjcu2115Y5RWUR5aJFi8qN+SWXXHJACmQ/Y9aglfkSfP6tItjpbcX4uhk39TnRuia6fRKGgA+ZPHlyICkpKZCcnKw22Q/ezPcr20I/Eypv0KBBie6mb+jTp0+gTp06jrU3b968wIABAwLdunVT7crXqHXr1koPmVs7d+4MOI20LXqYm+jhBFu3bi3XrmzyHiGEEELi4+eff1bXk6G/s9Fscl16xRVXBDZt2pTo7hBCCImA3NzcwIoVK9S2evVqtRUUFCRaLS0pLi4O5OfnV7rJMX5G+r93795ymxvOSfC1TOfOnSs99oEHHgjUrFkzIrnHHntsOdnRIu2Ynz3kkEOqPP7vv/8u95lI9QzHaaedFhgxYsQBbQT3KRK9KjuXwbLk76oIPl7Or52MHz++XHvytyDnNRJdnUTmbehYxcIFF1xwwLiGzivZZG7ozltvveXIfJFzFTw/7OyDbvOORIZcV5nXWOY1l1x/2Qmfn+uJb1LphuZmX7ZsGVq2bFm2mih4k/eq2oRwn5MV/kyfaz8rVqxA9+7d1ao7idy1urh5KFOmTFHpl810yRLRKSmUZbylRphEEY8dOxZ169ZVx0RSG9QKpN/BUc+C6EMIIYQQ9yIlGuR68quvvsJJJ50Ucy2T//znP0qWXLPYfa1ECCGEEBIvkp4yUiR7VrNmzaAjEs14/fXXl/0taWpjTXsq0ZESJRla81PaGD9+fNnfElEpqWVjQa4ZTSTarqLo1kQSfC7NyMDnn39e7eum6xVXXIGpU6fGVPPVRPomqXKF1157rdyYP/bYY+WOlblhphL2MzL3zaji0PliBR999FG5v/v37295G4QQ5/ClY1SQ2p9yASV56SXlbWUOz3CbEOwsFYerFFM3a5kSexCH48CBA5VTVJyjTrQnF5/i9JR9Gef169dj1qxZal/S30oNW0lZMm/ePOUwFUelfEacqXYjaXdDnaKsS0oIIYR4g549e2LhwoV4//33cfjhh8ckIy8vT6XVlWuThx56CPn5+ZbrSQghhBBiBcGOzopqNQYji76aN28OXZHyCOJkNAmtERkpd9xxh3IYV+QADG1D/o4Ws06nyRNPPAHdEIfgaaedVs7RPHLkSNvqoMaDjJOMl4xbLIgD/fLLL1f7DzzwwAEpYS+77DKMGDGi3HsTJkwocxT7FUmrbNbejTYNdCR88sknZfsyvpK+mRDiXnzrGDURp5YUJ3/99deVQ6l27doRRYyamzhYxSkmDlF54CSfJ9YizsjZs2crx6Q4Q+WhnvztZFSqGf0pzlAZ7+Das8H06dNHOdzlVRCdhw0bZquOwXVIRa/p06fDqxQWFuLFF19Um+zrjA66Oq2Dne1ZLdsqefHK0WGekPD4cXzc1GcddHVKB1mQd/rpp6voUbl2jbWWuGS3kAc1HTp0UDpLRKkJ7SxJBH4cHzf1WQddeT0bHnkeIbWoZTMXeSdCjlV6EBJcNzOYyiIg//e//5U9f6lqTm7cuDFiuRUhjrhYmDt3btm+OB8ffPDBKnUNRmpVSvSh1KKPpA2JMowmMlXaDc46Jg43qekZLZFmJonHZgwfPvyAMQmOlLTaHsUjT6I6ZdxkLKKRI8efffbZZWMh1+4Vff6pp54q5ygWxJl69dVXQ0fkuXkwod9HK3jppZcqtCF21xf14++gm/qsg666X/P7ldREK6ALchFgXgisXLlSpdoVB5f8sJtOMXE6yYMoccxJRN55552XYK29i6SjDXdRZY6T3c5Raf+UU04p08NMmRsJEjkq80TmjkR0yr5El1qNRKQGp+wVx204p60XkB8ws79u+OFNtK5O62Bne1bLtkpevHJ0mCckPH4cHzf1WQddndYhOTkZBx10kHpIUqNGDXUdEPqQIRI2bNiA//u//1MP5mTBV9++fWlnSULw4/i4qc866Mrr2coxF7ikpKQkVI5VehBipsCU6LfgCMhXXnmlQgeSOMYqiqIMnZPBKTZNRGak0ZWhkXgiSxyWoZF8FSFRZW+99RYuueQSpe/o0aPRtm3bMudjZd8f0VsWx4kDrLJ0sWYbpkNN2lq6dGlEEW2SDtR0+FxwwQXK4RYJwQ5eQWREek5itRlyziQ61hzLzp07H9BHq+1RrPIkqlPKYshYyIIYGceq5IhTU5ypglzvB49FRXp88MEH5T4jyL5ENsozU10iGiWlcGiqXxlD+V7JebIC0x7YlVpZ5nYwPXr0gN9/B93U50Trqvs1v19JkkKjiVaCkFDMVMXi5BMntPzgSN1OWQko78mDQInGDEYeDFrpFDRriQoSGSypcqNBPisyTMTRbmWKWzPFb7BT1PtG6tYAAQAASURBVOnaon///TcaNWpU7r2tW7eiYcOGtv2QrV69Wu0fdthh6gGxruigq9M62Nme1bKtkhevHB3mCQmPH8fHTX3WQddE29ns7GyVsURqLMWTHrd3795KTkZGRpls2lniBH4cHzf1WQdd/XY9K6nPzSi29PR09dq+fXukpaUdcKw8yjEf9Iks8x46WuKVY5Ue0SJtSvRHZaSmpmr9HXPiHOXm5pZ7LysryxXnRJwowc7RxYsXl3O4iaOla9euOPPMMw9w5MmclGcVl156aVlkWriUvOJkk1S8tWrVUtGIprNSnCDS/u7du9XnQ52qFX1eyhVU5oiS77YsRjNliePrySefDPv9Mc+BOEXFARYJoW3MmDEjrONJjpVnSOa5ue2225SjONx3WBxPUo4smnMihJ6XeG1G8NwI7Z/V9sgKeTJvlyxZoubX3XffrZ6XBcuRuWzWSw03blXpIWNjOt6DkZSyRx55ZNmzQ7trsZpzRJB5IlQ2V8yUtJI+W57nmnNGSt5F6qA3ufDCC1W0dDTfF6tsUqJ+BxOJm/ocqqtcO/z888/q74KCAvUqNiozM9M2HbZs2YImTZo49vycRAYdo8SV2O0YDXVqxup0DK6DGotzNVLZEs0qqfWcxmnHKCGEEEIOZNOmTSq9mjxQiefS/vzzz1c3/MELrwghhDhHNI5Rv0PHqLcdoxU5IsSReNRRR6lF53LNIwsMwjlA5Hsk0YTidIkEcSiNHz++LIJU5Eta0mg+LxGbkaSgDe6XyJcameLMlMxpUupLnhuJg0f+T67vYnFmBbchjkpxIMu5M9uYM2eOctaZzrNnn322yujCaM+JeV5CndrxIo5EeeYkepjON90Jjuo0HceSnU6u4YOdmeLUk+jSWOpjynmRmqsydyrCifNlzhGzvViQ8yHf3e+//z6qz5mOuUi/h9FiOl4FN809UnFaW6cdo3x+rid0jBJXYrdjNNjpKDJjSVNXkZ5ygSsO0niRuqWSojeRTlGBhp0QQgjRB4lEuuWWW/Dee+/FLEMevsuKdnmgxt9zQghxFjpGI4eOUe87RgX5Pjz++OMqNajpRBLHkkTTRZoGV1fEiSSpVuX6TbKAmH0Tp9mQIUMsSTFaWRuSMUScPbqkW40GiTCsKFpYZ8Rxeccddxwwl82xkBTSsThEK2pHIlAXLlyI7777rszxGouz0S0EO+3tclhKFLksIpWoVnkea6WznzgLHaPEhI5R4krsdIyKQ1QcoyYSKSoRo1akuxUHpjgy40F+gMUxmqj0uYlOpbt582a137RpU61v6HTQ1Wkd7GzPatlWyYtXjg7zhITHj+Pjpj7roKuudlYeuEht86+++irmtuTBws0334ybbroJ1atXt01Xu+XoME9IePw4Pm7qsw666mpn7ZIdbSpd83GORMrEk0o3HjlW6REtdIz6wzEaC4mak27V1Wkd4m1PHFTHH3+8SgEc6tS1ui9+t7NuwUxXLDVyK6pHbDd+HB839TlUV6bSJSbevhpykJ49e6rUCKtWrUq0KiROQh2XMraxElpT1IzyjBUpnm46RefNm5dQp2gikB8vSfEiW1U3wYlGB12d1sHO9qyWbZW8eOXoME9IePw4Pm7qsw666mpnTzzxRHz55ZdqAVW7du1iaktWl8uq9rZt26paQbKy1g5d7Zajwzwh4fHj+Lipzzroqqud1UW2yLHq2jheW637fCb+wk1zUgddndYhnvakLqtEP4aLdLW6L7SzeiMRsmZa6GuuuSZhevhxfNzU50Tr6pbz5Dd86xiVfPr9+vVTD4tSUlLU64MPPhizvJYtW6qHRpImVfL2f/zxx5bqS5zj9ddfL/d3vKlvQ52j4tyMNZJ14MCBKipWamr06dMHfkNW9tSuXVttOq9G0kVXp3Wwsz2rZVslL145OswTEh4/jo+b+qyDrjrbWfl/WUAlKbMkzVjjxo1javOvv/5SNb2kjpdcP0eabIZ2lkSCH8fHTX3WQVed7awOsq2K0ohXju7RIsR/uGlO6qCr0zrE2p44waTOo2Q1sVq23fJoZ+3hhRdeUK+SljiR6W39OD5u6nOidXXLefIbvkulK6szJQWrFLkWgrsvk1RStMZS2Dw4IlBkrF+/XkX2uSnfvZuwK5VuaOpbQZyQoc7NaBBnZrAzNJZ0uqKXpPetV6+eqlNaVT9lfltVb7UymCOdEEIIcQd79+7FQw89hPvvv1/tx8rRRx+trsNOOOEES/UjhBDCGqPRwFS6VePXVLrEu0hAy913321bHUniPg499FCVVnn8+PGurztMnIE1RomJr66GBg8erJxSdevWVVGB4hQ1VwzIJn9L1Gc8iPxff/0VEydOVLIkepQ/2O5h/vz5B7wXj1NUEGdmVW1U5eSMxikqznlxxhJCCCGEmNSoUUOlxpXrVEkzJQ+LY0FS9P7jH//Av/71LxWNSgghhBBCSDxI3dDnn39eRYRWxiOPPIKLL77YMb2I3shCInGKChdeeGGi1SGEuIzYnoi4kL59+2LBggUYM2YMJk2apN4TB1N2drYtYc3SjqQvE4dWjx49ylYiEL2Rup1WE+rIlOjPaIjGKSrIcfE6cwkhhBDiTSSl7hNPPIEbbrgBt9122wElBCLl3XffxXvvvYfLLrtMrdyX9FV+ZMeOHXjttdcqPeb8888/YKEcIYQQQojbkQATiUyuDIlQrux56+23344JEyao/Zo1a6pnZg0aNKjQefr777/jnnvusUBz4gUef/xx9VpZzVlCCPF1xOgtt9yiovSCnaKCRNWZqXTlVTZJf2sV4pySlLqy4kkeiBD9CXVaWpGOtn79+hXWC43UKSo6ROoUFZYtW6Y+50UkVZI8fJRN98LVOujqtA52tme1bKvkxStHh3lCwuPH8XFTn3XQ1c12tm3btpg5cya++uornHzyyTHJkAdh//nPf9CuXTt1vW2WqvCTnRWZkhqpsk3375Lfv8dO46Y+66Crm+2s3bLl+YXIkS2eCknxyrFKD0Kswk1zUgdd49FBji8uLq50C5UZ2p5Eiprs2bOnrGZkRRn6pO59RU5TK/pipzzaWXuQhZrCFVdckVA9/Dg+buqzDrrqfs3vVzwfMbpy5UpVB+nUU09V6W2DkTqPsspbIkllFbc4RUePHm1p++LMEqesRI1KKt9zzjnHUvnEXseoFav7K3JoSjvdunWr9HNmOlyZn5E6ReWBpDhdvRoxKg9gf/rpp7J9ndFBV6d1sLM9q2VbJS9eOTrMExIeP46Pm/qsg65esLM9e/ZU1xryYGHIkCGq1kksNfEmT56M6dOnqyjUq6++WkUH0M6SqvDj+Lipzzro6gU7a6dsU05KSkpC5VilByFW4aY5qYOuTusQ3F6tWrUOWLxXUVTppk2bIooWtbovtLN6YkYQC5deemmi1fHl+Lipz4nWVfdrfr/iecfo2LFjVU3RWbNmVfj/4d63EnGAnXfeebjvvvvoGNWc4EgHO6kqna446WfPnq1WxIU69MPpLE5+s36pOOK9iPyAnXHGGWX7OqODrk7rYGd7Vsu2Sl68cnSYJyQ8fhwfN/VZB129Ymclvdk///lP5Rz94IMPVBToxo0bo5Yj1yKjRo3Co48+qh5cnX766UpP2lkSDj+Oj5v6rIOuXrGzdsnWRY7uc5n4DzfNSR10dVqH4PYk2s8MUpGI0LPOOqvcsQ8++KBKtbt48eJKo0Urkm21romUo8M80Yknn3xSvR577LERzQu78eP4uKnPidY10e2TikkK6B7vHAeSxrZNmzbKOVqVc8kJR5ikGZPXFi1aJFQXLyBRwDKuwezcuTOu1LfiYBQneqhTW9LYxoM4OM3oTxNJ6yyRFZH2LVqc+lpLerhGjRqVe08iTRo2bOhI+4QQQgixHokAlYcN//73v9X1VawcccQR6nqnX79+ldaWcjNy3TN16tRKj5GHfKHXS4QQEs7+rlmzRu2np6er1/bt2yMtLS3BmumHRF9UlZouNTVVZTDw8znKzc0t915WVpavzwnR83t44YUX4n//+x+uv/56nHbaaeq9L7/8EnPmzMF3332HF1988QCHKfE3EmksqZdnzJiByy67LNHqEBdRWFiIn3/+We0XFBSoV6lRm5mZaVubfH6uJ56+GhKHlDyEsbJuaKxIatNWrVrh6aefTrQqpJIoB6cIFzEqczZep2hVKXoJIYQQQipDbgol8nPt2rVqMVdGRkZMcr799lsVNdqnTx9VA50QQgghhJBQXnnlFeX8XLhwIc4//3wcf/zxKoPJkUceid27d9MpSsrx9ttvK6eoQKcoISRWPO0YnTdvnnJItmzZEjogukj9R+LvNLqVMXPmzLhleLW+qBkJKytqZNM92F0HXZ3Wwc72rJZtlbx45egwT0h4/Dg+buqzDrp63c5KJg2J+Pzll19w+eWXxxxhIg+5pJapPOgSZ2u8ejn5eWIvfhwfN/VZB129bmfjlSfRWrLFez0bjxyr9CDEKtw0J3XQ1WkdwrUnzk+pGym1ROX977//Hk899ZQlsq3W1Wk5OswTnTCDji644ALogB/Hx0191kFX3c+RX/G0Y1Si8nSKnhOHVVW1JYk/IkbDOWGl5q0Yy3g2J+rmVoakBpBI7Wi2u+66C8XFxSqFQWgaFnlPNumbpDuQdHWy7du374Bj5f/l2OCi1rIv78n/OXlsfn5+ma6yX9Gxor+8L32vSm5Fx8o5Mc9PRcdKKi5TB/O4cMeGkxv8422OUbhjZTPbk7arGs9QuVaPfTi5cqzIMOXJ37GOfbBeOTk5js2Tqsbe6WOjHc9EHRvtd9mqeRLrsXbbiIqODe2zlTbC6vEM1bWyY6O1EZGOkXzvQ3Wwc55U1Gcnxr5Zs2Zq1f4333yD/v37I54FYB07dsTVV1+NP//8M6Kxr6jPTs6TaMYoHOa59IKNsPo6IvjaIVi2Dr8Pds2T4N/+4OOd/C2JdDxDr7+skht6bGVjFKqD3dcRwe2FpiB1cuzDPUALvu8zz63Zp9DPhB4b7r1QOVUdW9H7FX0+Eh2q0q2yYyMlmn547dhYz49ufYtFhlXfDSfGKFRXN+kQKVWNj5U2wsqxD6drLHIj7XNFcqv6fCx9c/OxEkUsXHPNNVroZuU8ccuxkfTZCX2rklGRrqHynbjXkOcGRD9S4WHECRla2zGRSP1LOkb9Rzx1T/3E119/jY8++giHH344zj333LL3H330UfUDIvW55FxWq1ZN/cA8+OCD6NChg4o+MZF6aNnZ2bjqqqtw8MEHq/dWr16NN998Uy1MuOSSS8qOnT59usrxfumll5ZFlUuOeXloKw+Ar7jiirJjn3/+efUAV1ajSY0fs4bxSy+9hMaNG2P48OFlx7788svYsGEDzj77bKWrIJ+VtDD16tXDddddV3bs66+/rqJwZGVkly5d1HuygnzatGmoWbMmbrrpprJjpQ8//PCDSkl41FFHlTnzn3jiCZXi8JZbbik7VmpzrFq1CieffHKZDnv37lXHSrTP7bffXnasnHNJb3jiiSfipJNOKntoY9bAHT9+fFmR8AULFuCLL77AMcccg759+6r35AGOWcP5xhtvLGtvyZIlWLx4MXr06IF//vOfZe2JXPmMHCs1IczaIfPnz1dpcuS8mTz00ENKl2uvvVadD5EtD45k7Dt37lzOvj/++OMqlYqkTm/SpIl6T2qRSIoVqe8sNUuCVxfKuZPzZvZNajlJKmupAR2ciuW5557Dli1bcPHFF6ua1cKvv/6KV199FQcddJCaP2af5b0//vgDgwcPVg/+hY0bN+KFF15QdQPEEWDy2muvqd+DM888s+zzf/31lzq2du3auOGGG8qOFb1++uknnHHGGejevbt6T+auPFSTz958881lx77zzjuq31LP7+ijj1bvyXdCvkdSm+rWW28tO/b999/HypUr1Tz5xz/+od6T79oDDzyg9u+8886yY2V8li5dqlIanXLKKeo9GQtz7MeNG1dWB2vRokVq7Hv16lVWH0Ywjx09ejSqV6+u9mVF8Mcff4yuXbviX//6V9mxooPIlxozpg2NxEaYNRvEeSPfAytsRPA8sdJGDBgwAIceeqh67/fff1e1UZy2EZLe9LjjjlPvyffn4YcfVjbCnJNW2whJFW/W7fjss8/wySefxGUjpG9CcC0QqQv+wQcfWGIjJEKyefPmldqI//73v+o1ONVssI0YMmRI2fvyOyAr4KOxEeecc46q0yls3rwZzz77rFpQJPXB7LARwWNfkY2Q74nML/muyTkRuxAt8hsuusn3RmyHjHWNGjUqtREyx4LPcTQ2wow0CJ4nVtqIYNsVjrfeeksd6xUbYfV1hIl8zhxnK2xE8HVE/fr1E2IjKrqOMO8HQyOwrbIRVl9HyHdHFrw99thjCbuOED1FtlwDOnEdIbrIQy357gaPfbz3GvL7UNHYB19HmHMq9EFdsA2V/5OafeYiU/lb+iv7wbVI5eGcfF/kO2h+D+VYkRF6rIl5vInpwDXHJ5zc4OMjOdaUW5G+cn6kf5UdK8cFO9orwzw2Grmhx4ae92iPDXfe7To2+LyHIsdXNUaRyI11nsRybCRjFHps8HcjkWPvlnkSzbHBY2Q+/A+uJR9sv4LfDz7v5vt22Airxj54AUu8Yx98jnUb+1i+94m2EfL7v23bNnUtKMfHYiOsOtY871bME51tREVjH/z91uH3oSobEaxv8GeCj7XrXkOu54l+eNoxqkt6VB11IcSNyI+jPLyRHxp5aKcz8sNqPmiSh1qJQC4aTB3MFXVOjI/5UMsO2V999ZW6yLACedBlPnyKVy9BoqnimSfiVCX6IU4TXVLyO0XwQ3I3IA+og2+enMS8uZKbHqd0kBu0YKdHIsZevhNi8+bMmaMcGuKcixaJxLrjjjuUo8HMHFHRA1xBHD+ROCArGyNxYiVqnpDwBI+JX8bHfPgiDljd+yz6ibNYnIeJ1EFs09133+1Ye+K4l3uNWNOHVzX24lS1YuzNB5jyAK+iKIho5EhfI4mAr0yP0KhZQhKFOSfl2iJSB3oiMR/sx/od1EGHUMdLRc4Uk2DnSzy2y6mxD3bkxquXEKut1GGe6IQ4onT63ZHfeKuvG3SnogVWOhPsDHaaRLVLKicpEG4pogdo27atWpkrK0N1QFY8ywrTWB4ekfJMmTJFRZ4Es3PnzriiM2X1x6mnnlruPUnFLE64eJBV2qGRy7ICX2rguh1ZBW2urI4HWVEu0QcVrZIyU3GFrioMt6rLXPlkXpCYDwpCVz7pcGxFNwzRHGuughSCH65YeWxF5z2aY+MZz3jH3svzxImxj3eeODX2tBH6jb2O84Q2wr5j5W+JUJwwYYKKjIsVicq799571TVTVWOkk42QyEHpf2VI5HCDBg1oI2gjfGkjYp0nfr2OEH0kAln+NiOoJdLcPL6iSKxw0VluOLYqGZUda0atRPMQVIc+O3msvIamhJasE8EP73XSN9yxOuvGY+09tioZnCc8VnfdeKy9x1Ylo6Jj5bpLsoEJEvEp73Xq1EllSbHrGlIyg5jZRkwk049khSGJw9MRo5LORpxdOiDpslasWHGA443og6QnI4mjolRMQkWrqcMdW9FqJfkxqkiGDscG/0jGcqz88Dp5bEXnPZpjBbuOrei8e3meOD328c4TQYdjdRhP2ojwxwq0EdEfm+ixF10lfZCkD5V0Qvfff79K3x4tsnBQIrQfeeQRtQDuhBNO0GKeVDVGkawMl3MZKoM2IvpjBdqI6I/VYex5HRH9scEPBat636/Hhj7sDIfu/bDz2EjOkU76xnqszrrxWH2O1Vk3HmvvsTrrxmMTc2y4/3fyGpIkHk/HeEutEbO2S6KRHNXyZZMIREK8jKx4MVfwRrpJCr1IkBXBkrZPNqtTrliNDro6rYOd7Vkt2yp58crRYZ6Q8PhxfNzUZx10pZ3dj9QJldS4a9euVY7SihwhkSA1XKReodRg/v7772lnPY4fx8dNfdZBV9rZ8JgRk8H1zRIhxyo9CLEKN81JHXR1Wgc727NaNu0siQQ/jo+b+qyDrrpf8/sVTztGhw8fria8pFx1or5eOFauXIlnnnlG7Q8ePDhhehB96sLGk/LXz0j6qe+++05tutdV0EFXp3Wwsz2rZVslL145OswTEh4/jo+b+qyDrrSzByIp9h9//HGsWrUKhx56aMxypL6f1BaVGrKLFy+mnfUofhwfN/VZB11pZ6uWadW1cbzXxLrPZ+Iv3DQnddDVaR3sbM9q2bSzJBL8OD5u6nOidXXLefIbnk6l26pVKxU1+s0332Do0KF47bXXHNdBaoqa9SUltW+XLl0c14Ek1lkptadCkblAokfSEfTr169sX2d00NVpHexsz2rZVsmLV44O84SEx4/j46Y+66Ar7Wx4OnTogGeffRY//PADXnzxRSxatCimG8gXXnhBpSmSxYV79uxB/fr1XTdPSHj8OD5u6rMOutLOVi1TBzm6z2XiP9w0J3XQ1Wkd7GzPDtutgxwd5gkJjx/Hx019TrSuiW6fVExSQPd45ziZPXs2Bg0apNLYioPSSeeoOEV79OihUopJ+9OmTVOr3kn8SO0piQQOZufOnXE7N0Nzi4sDU8YvHiRaeNiwYQekVh4zZgzczt9//60iQ4Jh8WhCCCGEBCO3Gx999JG6dvv2229jllO3bl3cdtttuOaaa5CZmQkdkOueqVOnVnrMiBEjDrheIoSQisjLy8OaNWvK1a5q3749a1OFWTxTVWo6SeseSS1oL5+j3Nzccu9lZWX5+pwQQgjxN4WFhfj555/VfkFBgXrt1KmTrfeXfH6uJ56/GhowYABOOeUU9UBm1qxZOO2007Bhwwbb2124cGE5p6g42OgU1Z9Qx2pF0Z5WpONlKl1CCCGE+AW5FpZr8BUrVuC///0vmjdvHpMcWQQ3evRoFY0qcoqLiy3XlRBCCCGEEEIIId7G845RQSI1TebOnauclA8++KAtbUktU1kVfuqpp2LdunVl74tTluhPvXr1LK8xun379gPeE6c5iR5Z4CBjIpvuwe466Oq0Dna2Z7Vsq+TFK0eHeULC48fxcVOfddCVdjY6eZJC6JJLLsFPP/2EBx54QEWAxsLGjRtx6aWXolu3bvjggw8q1VeHeULC48fxcVOfddCVdrZyecFbouRYpQchVuGmOamDrk7rYGd7VsumnSWR4MfxcVOfddBV93PkV3zhGBVHqDhEZRLKinV5lTSm8nDm/PPPVzVIrYgQldpH8oBHUqeaXzZpb9KkSawt6hLkAZvVVORcZY3R2NMdPProo2qTfZ3RQVendbCzPatlWyUvXjk6zBMSHj+Oj5v6rIOutLOxyZM0RaNGjVKZVSS9bqxpiyQtb//+/VV2mGXLlkWtB0k8fhwfN/VZB11pZ6uWaZXNjveaWPf5TPyFm+akDro6rYOd7Vktm3aWRIIfx8dNfU60rm45T37DF45RoU+fPnj99dfLOUfN9Lrdu3dXTtJ+/fph3LhxmDNnjnKW/vbbb2qTKFBBXuVv+T85Ro7t2bOn+qxEiEo902CHqCAO2JtvvjnBvSeRIuMZSrxRo6HpeMUpylS6sSP1ddxSY0cHXZ3Wwc72rJZtlbx45egwT0h4/Dg+buqzDrrSzsYuTxYUygJCqfFyxRVXxFzz7OOPP1bXcLJI8ddff41aD5JY/Dg+buqzDrrSzhJCCCGEEEKsJCngs1hecV4OGjSozHEZ3H3zvWgIPX3BcmUF/MSJE+PWmRzIlClT1PkNrTsVr8NRal+JozyY5cuXxxVJKvJEbrCTft68efACLB5NCCGEWETODuCnD4BNS4HcnUBhLpCWBWTVBZr1Ajr2N/Y9zOrVq9XCw//9738xy0hNTcXw4cNx++23H3CNYgdy3TN16tRKj5EyG07oQghxP3l5eVizZo3aT09PV6/t27enM7UCSkpKUFRUVOVvQqyLbrxyjnJzc8u9l5WV5etzQgghxN9I9KYszBUKCgrUa6dOnWLOYhQJfH6uJ767GhowYIBaSS6pbc3ITnMLzTkdySaEyqhdu7ZyfNEp6j4qcoCGS80WKcG1ZoWBAwfGJY8QQgghHmLrj8DCCcArg4CvngE2rwJ2bQT2/W28yt/y/ssDjePkeI9y2GGH4d1338Unn3yCXr16xSRDHpI/8cQTaNOmDe655x7s3bvXcj0JIcQuKnJYiXOLEEIIIYTET0XXVVww5E98OeqSylSiACV1lzgxK3JwRrMJpqNUHK/r169XtY6IO5ExDEbqX8WKpOENTcUrEcuEEEII8Tly/blsBvDmMOCXeUBxIVCUB+z9C8jeBOzaYLzK3/K+/L8cJ8fL57yW9EUiZle+DLwzEv/YPB1fXHMwZt/4D7Q/KLZsIOIQvfPOO9G2bVsV0cm6LoQQNyARjibmc4ri4uIEakQIIeEROyVOhso2nyUqJIRojpltItg2BV9/Ef/g61GX+p+yPfPMMyo1a3BkXyRpdYO/QEOHDlWpXVu1amWbvsQZJIWbpFw2mT9/fsyyQj8rTlfWF43vx+v9999X+/3799f6h0sHXZ3Wwc72rJZtlbx45egwT0h4/Dg+bupzwnQNSnlbtG8n3t9cD0hOQf+WRUhtEWHKW7mG/OxBYM27xt/5u430ueIADUX8eXnZQGomijLr4/38HsDCL9F/7zaknjhaLlrdbWclAnb1bGDdIsP5W4r06rwOQP9bD8dNCwJ4bd5y7NpbPh1gJGzZsgVXX301JkyYgIcfflhl7oilfAaxBzfZHD/2WQdd/XY9KxELZiaq4PS61apVO+BYOcZ0mqakpMRs2+KVY5UehFiFm+akDrrGo4N8NpKU1sEy7eyz1bJpZ0kk+HF83NTnUF3z8/PL/b/obnfEaFV2kiQGX0aMhiJOTUmvK5GBkydPVjUgq0qhKw5Q+ZykzJUVUE8//TSdoh5KpxucUje4Pmi0hNYSHTZsWFy6+R35rq1cuVJtuqeU0kFXp3Wwsz2rZVslL145OswTEh4/jo+b+uy4rhWkvC3Z9TtW7qmHldm1UbL5u8hT3i5/fr9TdO8WYM/mUqdoEpBRC6jRFKh1iPEqf8v7RXko2bMFK3MPUlvJmvcNOW61sxFGzKbkbkOTI/tgxHU34M7etVAjPbab7j///BODBw/GMcccg08//TTu/hH/2Rw/9lkHXf14PWvWEzWP2bNnT6UyrbLZ8V4T6z6fib9w05zUQVendbCzPatl086SSPDj+Lipz8G6mqVWzL/Nmu52t0/0Q9/lqQlAHJs333yz2kyys7PLIkkl0q9evXoq/S7Rjx07dlgWjSlRo8G1QCWqWBzh0SKfMxFnqzjdSezIyp6TTz65bF9ndNDVaR3sbM9q2VbJi1eODvOEhMeP4+OmPjumqzjwxAEZ7IQUB17eLqQUFePk1OXKcZmy7y8gS5yYMBx9snW/zNiCV9CKw9SUJU7RPEm5nwRk1TMiTZND+pJZC6jeSEWUpuTswsnJS1X0aEpSqV7NjwEadXSXnY00YjYQQErJXpyMz4GMJBx3Yiau7pmGCYv2YurX+SiK4f5y6dKlOPHEE3HGGWdg4sSJqq4pSRxusjl+7LMOuvrxelbuabdu3aoeoslx+/btU5EOFX3GKh3jlaP7XCb+w01zUgddndbBzvbssN06yNFhnpDw+HF83NRnU1e5tpLrKnNfqFWrlmPtE71ICjDZO3EhkrZY0h8HIxG/Uj/WKrp3714WLSpyo601KvqJnnbppwN///03GjVqVO49uYlv2LBhwnQihBBCLCOalLcmqZmGg1NFegLodCZwwqj9zlGJJhWnqciSSFFxitaUyNCaVeuTv6f0M4HSz9QC2vUFet8GVyGRogc4h1EaMVsTSKsOJCUDOduBgj1AoKS0pqpsSerf2h3FuG1hAWauLohZDUmZdOmll+Kee+7BIYccEpMMue6RGqaVMWLEiAOulwghJBwFBQX4/vvvy6JHJcVb48aN0aBBg0SrphXyQDOSFJ52p8fT/Rzl5pZPQ5+VleXrc0Kshd9DQoibkDIr27ZtU9lACwuNMi4dO3ZUv412wufnesJfJuJKKkpvG0/K24qYNWtWWQSqRA2HOmIrY9euXeWcopKi2WtOUUIIIUQ7pP7nypeBd0YCMy8BXhpgvMrf8r44NaMhxpS36jg5XpDPm05A0U9qaQqmLhIpGolTVJDj5Pjgz6/7OPp+JZKwEbP1gXptDIevRMkW5xlbcprhJC0jAASS0KZBJl4bVAtfXd8KJ7fJivlh3owZM9CuTUuMvexM7PxzvTV9JISQOJCUbmZaNzOaQR7kyT0mIYQQQgiJnu3btyunqGDWHJUFaHY7RYm+MJUucRXi/Jw2bRrmz59/wP8NGTJEpdOVdLVWOCFFxoIFC1TkqCCOTnlvwIABlX5OblhPOeWUck7RMWPGxK0PMQpm5+TkqP1q1appX9w70bo6rYOd7Vkt2yp58crRYZ6Q8PhxfNzU53K67t2IpO/fMJyOUqsylF0bVU1QLJ8BtD4JOGxA1elnI0h5K0GMOQGjFly1jFpIKk15i9wd+6MgazTen/L2j+X7a2maDlaRFXGfgZyMhkBODqoV5iLJjFz96QOgy4URy0monV0923iViFnznIZGzBbmGdGiIqe4EDlIV4dVQwGSAsWS88Y4LjkFPQ9JxYLRPfDR6u0YO2ctvt2cH7WueQXFmPLC/zD99fdx66mNce2Z3ZHZqBXQrBfQsX9UY0S8a3P82GcddPXr9ayZTlce3MlxEm31xx9/qMisunXrqpRsocm/4rmejUeOVXoQYhVumpM66Oq0Dna2Z7Vs2lkSCX4cH7f0WRaY5efnK6eolEs03zMXnh188MGO6MGErXqSMMfoAw88UHbBf9VVVyVKDdfi9fMnTsjg+pyRrI6VY4YNG1buveCao+LklDqf0SDHL1++XNUblahRea3M0SmOW/NYgU5Ra5E0B+bclzqwThTIdrOuTutgZ3tWy7ZKXrxydJgnJDx+HB839bmcro0WIT25pFz9T+WAlBSsEm2YkgZk1qm6/mcwETjwCgPJeGDrCUE6AKjeAEjNMKJG5XNpWUY06eo39keRmk5TkRVaU7SyPkt7204y2kuZjvS8bKBGJrDxy7gdo47Y2UgjZvNK/6+kGIVIwgMYvr/PJXlAoEj9nzp3+XuQVKMRTju8AfoeWh8vL9mI8e9uwsbs6AuQ7swtwc3vbMbjn7yPe/s3wUXHr0RKNM504mmb48c+66CrX69nmzZtqmpgySbOUDMVpUSOisO0evXqqFmzpnpfnKRmyt1YH9aZkRMiK5YH9vF8PlaC260MXR/WJuocyXzy+jlJ1Jx0q67x6BDL99DOPlst2yp5brWzJDL8OD669lkcnqKX/Nbt3btXbWbKXEH+z9RbrqNksZkTBOtA9CFhjlFxFsmXxquOPbvxw/kTR6fp2Ax2cMYiJx7EOSr1QU1nrbxOnDgRgwYNKosmlf+XKFYzna9ElTJ9LiGEEGIjoasuK6v/Kfch4kQMrv8pUZwSlRhc/9PEipS3RflA7nbj89KepLytVt/4fzOqVWppxkNxaX3NshqdmiORrVVFzJYUGbVU1X7xgZU/xBmqbmZL644mlY5tVj0kJyfhkuNbYOBhWXjqk98xYdE+7MyNfnWuOFUvffVPPLhoGyad2w6nFc1FUiTOdEIIsQhxgrZt2xa//vprmXNUHjyadfrMh32EEEIIIaRyxBkqzknxpcgmTlE+sydJgQTF8poX9OKZl3BmEh08f4lj9uzZmDlzpooKlc104IpBlTS+gwcPjjoy1a2weDQhhJCEsWxGBaluUVr/s6bhdBQnmjjXCveVOttKL3slelRS3Ari6OpxeXnZUo/0q2cM592uDYZMqX8ZRXSncvDtkAwSAaBOC8MpK05BiV4VmSJb6pOmx+AcLdgL7P7DkCmyqzcELi6NcNUZqfUqKY33/mU4M8VhLFG4wYizOmebEe2rHL9JQEp6eWekigaWlLqpQEoqkFYNqN2s/Lnf9jN27SvApCWFePSLXOQVxa72ye1qYPJ57dCzZU2g05kVO9MJIcSmyAfTOWpiptY1nwnoEqVBCCGEEJJoTFeXvAanzTVp3LgxDjroIEd14vNzPUlojVFewMcHz19ikGjQquqMEkIIIcRGIqj/WY7MWkBV9T+D06RuWhpXyltFcqrxOZWKtzTlrTg0RT9J71sWERkD5s2dKSe9GlyBGX1bWcRsQU75cyN9DL3mlfcCpVGj6tgQr6f8HShBnawkTDolA9f2SMWdi/Lx/DcFKIlhSejHv+zFUZNWYlD3hvj3WbloK5G/oc50QgixMXJ08+bNqjaW1Mky09dFkr6S+JvgurYmutc2JoQQQuy4npLfP3FO1q5dO9HqEE0IyU1FCCGEEEKI5oSr/yn1PcM5MOV9+X8VoZhkfE4+r+S9Eb0DLxLMz5kpb00kalSQSNZYMD8nkZSCWT9VdwpzjVeJBhUqGiupH6peA+Wdv+UofaBrOjlNecHjp5ynxv8dUjsFz51bF99eWx9ndoy9XuDry/9Gp7uW4drR47H1+89jlkMIIdE+zDv44IPRuXNnHHrooeqhntQnpXOLEEIIIeRA5BpJ6rCbGR4PP/xwtGvXjk5Rok/EKCGERIPU1pFaroKkLZYfOV3RQVendbCzPatlWyUvXjk6zBMSHj+OT8R93r4OWPwQsPFLIwpSHH/ipEuvATQ/GvjHaKBuS3uULK3/WRRIwvzd7YCS1uhT/Wekxlv/85ir99e7jMSBJ+dLdNjTVu33qfkrUpNCwhFL0xyWyZHzYzoyJYpU0vtKJGuE0ahGn1sDeQ3QJ/kLpGaW3tjJOXeDnU3LMv6zsojZECdnUSAZ84uPM+RIn5Pk/02nKQ50nopMs0YpAihCCubjRKAY6NNoKd65sBY+XZeLsfPz8OXv0UdbFZUE8OQnf+KFnr1x8y234aabbkKNGqXjSqKGdlbvPuugK69nyyMOUXGSyhYs74QTTlA1SGNBIk8//9xY7HHcccdFLSfezxP72LlzJ7p3717uveXLl6uSTF7GTXNSB12d1sHO9qyWbZU82llv48fx0bXPsphMrq/McgOCXC/NnTs34dezRD/0vQsjhJAQJC/80qVGesPevXtDZ3TQ1Wkd7GzPatlWyYtXjg7zhITHj+NTZZ9/fB9Y8hjw17cHRukV5hhRmBLN+f0coMkRwLEjgY79rVXypw9UJGdJUSGWFh9q6Jr1d3QysuoYKXWlzqdsptwuFxr7kTjw5O1AEpbmGLUte9dYC4Q6RkNT3tZtDuzbZuxLfVBpW5yzEskaAaq93BZGe6mrDBkSfdrh9Cg6n0A7K47nXRsNnQtLI18lzXEwIRGiJUjG0sARhhyIvJKguZe8P22xiTicxXFaGnFagiQsRZfSz3+txvIfLVOx5KraePOnYoybtxc/b4veQbo3twB33nknnnrqKfV61VVXIS2tNBKYRAztrN591kFXXs9GLk+cprFQUFCAL774Qu2fdNJJUcuJ9/PEPuThr6RhDn0vMzMTXsZNc1IHXZ3Wwc72rJZtlTzaWW/jx/FxU591uZ4l+kHHKCHENcgKpOOPP75sX2d00NVpHexsz2rZVsmLV44O84SEx4/jE7bPciH/5jDgx3eD3isureUY5AyUtH7ipBJ/1eZvgDeuADqeCZwzbX/0ZLyU1v9MyduJ45OWA6kZSFGyA/HV/5ToV9MxGokDT3RICuD46r+V7VeZ8laiQxsfBvwyz2hjz2bDQZuaYehTBSkFu3F80grV15SsUn1an7w/0lV3O9usF7B5VeURs0lye1JgzKUAkBIoMsZZ5CinaODASN706gee89K6oylJwPFYplykKWV1SZOQlJKGcw9Nw5kdM/Dc8lzctXAftuyN/oZ1y5YtuPrqq/Hwww/jvvvuw3nnncf0llFAO6t3n3XQldez9svj9SzxGm6akzroSjtrvzzaWW/jx/FxU5910FX3c+RXkgJSjT0BSEiz+dBgwIABiVDB1cyaNUu9SgqU7du3J1od4lP+/vtvVeMmmK1bt6Jhw4YJ04kQQojFiFP0pXOBTV/ur7upIigru4QUB2nK/lqazY4GLp5jjXN05iWG0zJ7kxGlWqNphU7LKsnbDezdDKRVA2o3A+q2AAb91/i/lS8DXz1jRHTu2mD0p16biFPeljnmdqwzzlOdFkZ0Z69hwEHdDCezsHfL/hqpWfWMSNbg6MdgWbm7DCeqyBPHYo3Gxv+J07lRR7gCSYP8yiBjDsl5lfObVb98xGzOdiBnm+H8VLVZkwzHsulsLBZnvDg9k4FUcTgnAfXbAEmlY7NzvZEq2YwETpY5WFJac1ScqsXGsebcLGVvfgkeXpKDKZ/lYG9B7LdHvXr1wpQpU/CPf/wjZhmEEEKIFfB+nRBCCEk8/D3WEy0iRmfPnp1oFVyHOJUT5NMmhBBCiJ8QJ544ReWyozg/JIVuqQNUFXsMBDlMZV8cWCVASobxeZFz3vT49Ymw/meVhNb/LMjZ/3+Smnb5jJhT3irEkSnnQT4fnPJWoju7XwYsf36/c1Oco6rm6Q4jcjStuqGfOKUlAlLVzCy97gt2iooctzhFhWr1gNYnVR4xK3VTxTmqUurKVmLMq5RU43yoqM+gcZfPmU5RczyDUx+LHPmcHB8orDBdr1AjIxm3n1wDw3pWw4RFe/H017kojD7DrkrTdOKJJ+Kf//wnJk2ahMMOOyx6IYQQQgghhBBCCLENi3KaxYY49rjFvhHiN2TeSx572XT/Duigq9M62Nme1bKtkhevHB3mCQmPH8fngD5LTVEzfW6wU1QcSymZQFqpw0+cVvKq/s7c73hSUX/5xr7IEXnxUlr/M4BkFARSUVBcPptvxITW/0yvdqADTzDT1IoDTzko9yPtFpQkq62cDnKciu4M+nxwyltxaHY609gXJ2fNpobzVJyf+aWRrLv/MF7l71IHa6BGUxRUa2q01/EMQ47b7OxhpZliMmoZTl7pmzhIpfaqONPNNMdCcopyBxeUAAVFJQiUiGMzYKTbNR2joWmElfPUSKMrDnulR1IGCpAWNEbhU902qpGMx86ohTXX1cXgQ2OvGfree+/hiCOOwOWXX45NmzbFLMfr0M7q3WcddOX1rP3yeD1LvIab5qQOutLO2i+Pdtbb+HF83NRnHXTV/Rz5lYRFjC5fbtQKIoSQSCksLMTEiRPV/rhx47Qu7q2Drk7rYGd7Vsu2Sl68cnSYJyQ8fhyfA/q85DHjPyT1aVmEZqkjNBzJEkWaYaQ8FUeWco4WGo5Tkdexf3xKltb/LEzJxMS8S4FsYFzGIqQnRVkfMrT+p3LSobwDTyIbxYEnUaoS1SkOPEnTWprytjCQjIlbDQfquEaLkB4oODDlrXxeyTtvv2xJC3vCKKBafSNyVI6RTSJTpfampJCV86Yc0OlGFGVqJgpLgtq7YiTSLaxl6ZidlQjXqiJmZY6VOq4LkYaJSdcacgKPIV26bM6/ag1KHcpB6YaL84Ic3gFjjDAcKAbG4UmkS/3SCOrRtqmbhNcGVsPo4wIYOz8PC9fJ56K/AX7++efx2muvYeTIkbjllltUGQyyH9pZvfusg668nrVfHq9niddw05zUQVfaWfvl0c56Gz+Oj5v6rIOuogPRj4Q5Rrt27ZqopgkhhBBCSFXsWA/89a2xb6YmVY66CC8f5ThJe2qmNhXHqMjb+RtQt2XsejXrBWxeZTgdS32bRnrVKJyE4kQzoz/F6Sg0P7r8MZE48FKDapvu/QsoKE2fG0nKW3Fq9rgcaH4MsPoNYN3Hxvs1Sh19ocj5kyjWreZYWOcUdRw5H5Iud827xjmSKGBJVSyOYRUhK5SUpmNODRpa2Sk2HO3q/GcYtWKD0w2rtLqlKZ7FwaxqiwZ/3kyfXEkKZlWL1HDM9miWgfmXZ2LupiyMfXczVm2O3kGal5en6o5Onz4dt956K6699lpkZoYZZ0IIIYQQQgghhNhKUoCxvIQQlxSPFnNlrrJJS0tTtXZ1RQddndbBzvaslm2VvHjl6DBPSHj8OD7l+vz+TUj6frbh1BQHkyBpciUiNFJKglLpSuSjOKsOHwj86/HYlczZAbwyCIGiQhTu+kM509KyaiOpRhT1PyVtqzg4JdqwTgvD6XjRrAPTsspl8mcPGg48QZx2pgOv9L8LS9cZpqHI8FWKTJFjRopKylyJDq1q/ojcnz4ANn5pOGCl5qmk9xUHqzhtO5yOQGYd79hZOXnidJbNJDhiVs27fASKilAoEciBEqQF8pEkDlNJtytbKHLu5bzv+9twkqryE0Bhak0VSZoWKERSiczHJKP2bbguSrSzSsebDKTKiuIkNU9KdvyGV77NxfiFediwI3oHqUmzZs1w77334uKLL0ZKSow1cj2C7+2s5n3WQVdez9ovj9ez3sXp+3VdcNOc1EFX2ln75dHOehs/jo+b+qyDrvLb27hxY9/9HusOHaOEkJjx640WIYT4gsd7ALt/N1LHqui5JKOGaLQU5pVG8omTKQOodQhw3bL4dFs4wUhzK45KSW8rukmdTrM2ZWVIZKH6TKD0M7WAdn2B3rdVfHxVDrwKUt6Wi4yUTeMbxYSz9cf9EbMSCRp67sWBLdGlMsYyvmnVjPNf2bmX8RVnt6TklUheuduRY5OTgSJxaMrnpC5uBc5VcciqWqalaaPFmS9zRPZLnel51ZvhqU+34N8LtmHHjp0xd/3www/H5MmTcdppp2n9MIEQQog74f06IYQQknj4e6wnCUulSwghhBDieyT6UaIENy01IgallqWkFZWIQ0kZK/U4Q6MYnaJgr/FqrqETB1EsyOdUStRSOQVm/ts4iKD+5wGYNSirqv8ZSkwpb082ZIamzyUHIudInNLHXB0mYraLEdUr7238otR5Wpr+ONy5P6gr8MnkICf2rtII1FJHqjhJJf1ySbLhLBVkfsoxKlJUxj1l/5wXx6tyzho1bjPTknHT8EtxxTPXKMfmb7/9huLi0hTHFfDRRx9h924zRfB+vvvuO/Tv3x8nnXSSSrXbs2fPuE4lIYT4iezsbMydO7fSY/r27YvatcP8ZhBC4qagoAB//vlnpcccdNBBWtcfJIQQ4k/oGCWEuAZ56Lho0SK1Lw8RdU4/p4OuTutgZ3tWy7ZKXrxydJgnJEHjo6LkZgPrFh0YJSfs2mjU0Vw+w6grKY5AB5xs5fpcVBRShTHWiLaQz5mpdeOhUUcUd70Uiz79DEBrnJSxFCn5O8rX/0yrbji9JJ1vcA3KSOp/RujAK87dhUV/1VQOuZMOKUFKSyPlrV3ObE/bWTlnXS40torkpAAnnX89Un6dW2m64bJzv3eLivItrt4Ei/KPkEqfOCmwGCkqxa7MyZLSlL2ljlEjrDTIKZpmOEslClU5RQ90ptepUwc33ngjpk6dWmnXzPNQ2f8fddRRGDhwIO677z60bdsWfsGPv4Nu6rMOuvJ61n55br2ezc/Pxw8//FDpMSeeeKIjuhC90MF2uUnXeHTYtWsXXnjhhUqPGTFiRLlIKdpZ99hZEhl+HB839VkHXStbREsSBx2jhBDXID8kixcvVvsnnHCC9j+8idbVaR3sbM9q2VbJi1eODvOEODw+YdOy7jIcpGWpQdMMJ4wgkZGyOZCWtVyfq2cgpWhvsPIxSg35nNR2tIDiIy/C4g82qf0TGv2GlPSM/fU/JcWubKFUVP9Tzmk0BDnwigsKsHjiREOHoeOQYvNqeNrZE5BSgfO0QmRcc7aj+Pv3sLjwUOPzKSuRUrzH8NUr56g4SYNuUuW7J05R+Y6pdLpJxnySv2NxpkfJrFmz8Oabb2LYsGG4/fbbD6hD40X8+Dvopj7roCuvZ+2Xx+tZ4jXcNCd10JV21n55tLPexo/j46Y+66ArHaN6QscoIcQ1JCcno1evXmX7OqODrk7rYGd7Vsu2Sl68cnSYJ8TB8RGn6GcPAmveNf4Wx53pyAtFfDJSwzLYkSfOVIlcO2GUbc7Rcn3++T0gf7vRlplmVBy20SKfE0yd06tbo2tKiqHrlh+QnBswzpFsDtb/pJ21X17McmRcTxiF5Ix66PXpEuPzNdsAuzcZCxGSxClauinnvekolbTPcnCq4SQ1U1vH40yPgqKiIjz55JMq+mL06NEYNWoUatSoAa/ix99BN/VZB11pZ+2Xx+tZ4jXcNCd10JV21n55tLPexo/j46Y+66Cr7ufIryQFAmbBJ0IIiQ4WjyaEkChYNmN/pKik+RTnjCIpKPWr1OMsrjr1q9S8tJu3rzXS/arajAXGeymZQHIUjkRJY2umzhXnpPTv8IHAvx63VleVmri0/mdFqYlNWP/Tn4TOD1lgkLNt//+bjn/5volDNDUDSKsWkTNdrnuqSqUrjk65ZooFuc668847MWTIEKSlxbAwgRBCPEok9jc0haff4P06sRt+DwkhpGr4e6wndFcTQgghhDjhmDnAKZoEZNUH6rUBajYFMmsZ0ZTyKn/L+/L/cpwcL58TRI7Is5vjbzKiLcWZadYJLSl1kEaKSkcqJBlyRJ5EvFqNWf/zollAr2FA0yOBui2A6g2NV/lb3pf/l+PoFPUXofOjTW+g+TFAjaaG41MWJch3rmFHY6vbyliIIP8nzvR2fYFzphkLEmKIML7jjjvQpEmTmFSXG+ZrrrkGhx56KGbPng2uaSWEEEIIIYQQQuKDqXQJIYQQQuxGIi/N9LmmU1QcMRIpGg5xJFZvYESv7dlsfE7SekpKT4l+E0ePndRvDTQ5Atj8TWkkq6QYlQjQIiAlgkvI4tLjzb4IIq9uS/t0Dqr/SUhE80PSWf/0AbDxS+M7VpADpEu0aB2g+dFAh9ONz8XBoEGDcPnll+Phhx/GlClTsGePRINHxy+//IKBAwfiqKOOUjJOPPHEuHQihBBCCCGEEEL8Ch2jhBDXUFBQgIkTJ6r9cePGIT09Hbqig65O62Bne1bLtkpevHJ0mCfEgfHJ2QGsW7TfCSNk1avcKRqMHFeUD+RuNz4vjlFJCXrM1XE7bKrs87EjgTeuMKLmxMkpm0SBBoqB5DQpllFx+lx1TKlTVNX4LE0BKvLs0pV2VivZrrGzDjnTq1evjvHjx2PYsGGYMGGCSjtXWFhJ2ucwfPXVVzjppJPwz3/+U/Xr8MMPh5vR4XvsNG7qsw660s7aL4/Xs8RruGlO6qAr7az98mhnvY0fx8dNfdZBV9GB6AdT6RJCCCGE2IlEo0ldw6I8Y1MpdKN0aGbVMT5nyhB5ItduOvYHOp5p7KdkGE5OQUWO5gOFpbpIdKi8qr/zQ5yiGaWyzjTkEeJjpI7Mo48+ijVr1uD888+PWc57772HI488UkWibtq0yVIdCSHEDWRkZKBz586VbnIMIYQQQgghoSQFWKiGEOKS4tFirnJyctR+tWrVkBRDnS+n0EFXp3Wwsz2rZVslL145OswT4sD4vDMS2LwK2PsXkJdtRHxKGt1okXS6kopXUnxK/UOpm/mvx2B7nyUC9KVzgU1fGgeJA7SkWI6uRFJpTVEzUrTZ0cDFcyqOMLVSV4ehnbVfnu52Vq57JPqzMkaMGHHA9ZLJsmXLMHbsWCxcuDBmHeTB/8iRI9UK6Lp1rY0itxsdvsdO46Y+66Ar7az98nS3s8Q99+u64KY5qYOu8ehQUlKC3NzcSo/JyspCctA9AO0s7azX8OP4uKnPOugqv72NGzf23e+x7tAxSgiJGb/eaBFCSFTMvATYtRHI3gQU5gA1mgKZtaKXk7cb2LsZSKsG1G4G1G0BDPovHEGco28OA358N+i94tK6o0GXknKTkZy6v6aoGSl6zjRLnaKE6EK8jlFBbsfmzp2rHKSrVq2KWZc6derg1ltvxXXXXYfMzMyY5RBCCPEGvF8nhBBCEg9/j/WET6gIIYQQQuyksHQVtZleNthpGA2mY9GUU2CsenQEafu86cB5/wGadjFS5Eo/UjOAtMz9m/wt78v/y3FyvHyOTlFCwiKrlvv164cVK1bgxRdfRIsWLWKSs2vXLowZMwbt27fHCy+8gOJiiewmhBBCCCGEEEJIMKnl/iKEEI2RB3yff/652j/uuOOQkhKjc8Enujqtg53tWS3bKnnxytFhnhAHxicty3g163OqNLQxRm0Gy0mvBsf7rGqO9gd2/gZ89iCw4QugYJ9RV1RqiaZXB1ocA5wwCqjb0nL9otLVAWhn7ZfnJzsraeYuvvhiDBgwQEWhTpgwATt27IhajtQcveyyy/Dggw9i0qRJOP3007VNb+Wm8fFjn3XQlXbWfnl+srPEH7hpTuqgK+2s/fJoZ72NH8fHTX3WQVcuWNUTOkYJIa5Bfkg+/vhjtX/00Udr/8ObaF2d1sHO9qyWbZW8eOXoME+IA+OTVddIpSv1NgslgnRfbKl05XNCSrrxKrVGE9VncXr+63EkEh2+P7Sz9svzo52VNLg33ngjLr/8ckyePBmPPPII8vLyopbz3Xff4Z///CdOOukkJeeoo46CbrhxfPzUZx10pZ21X54f7SzxNm6akzroSjtrvzzaWW/jx/FxU5910JWOUT2hY5QQ4hokkqJr165l+zqjg65O62Bne1bLtkpevHJ0mCfEgfFp1gvYvMpwZOZlA/l7gOqNokupK7U85XNCZm3jtfnRsBo3zUkddKWdtV+en+2s1AydOHEirr32Wtx5552YMWMGSszI8ShYtGgRevXqhYEDB+K+++5D27ZtDzxo+zpg8UPAxi+Bgr1AcYGxCCO9hmFr/jHalihwN4+PH/qsg660s/bL87OdJd7ETXNSB11pZ+2XRzvrbfw4Pm7qsw666n6O/EpSIBAIJFoJQog7YfFoQgiJgJwdwCuDgOJCYNcGoCgPyKoPVG8QuYx924Dc7UBqJlCnhRF9etEsIxqVEJIw5LpH0t5WxogRIw64XoqFH374AePGjcM777wTs4zU1FQMHToUd9xxBxo3bgz8+D6w5DHgr2/31y+uCEnh3eQI4NiRRjptQggh2sP7dUIIISTx8PdYT+iuJoQQQgixk2r1gNYnGfumIzN3x/4I0KqQ4+T44M+3PplOUUJ8RufOnfH222/j008/xTHHHBOTjKKiIjz11FMqavTuwd2x55XLgM3fGE5RqX9clA8U5u3f5G95X/5fjnvjCuCNIftrHhNCCCGEEEIIIS6DjlFCCCGEELs5bIDxmlGrtDZoANiz2YgElTS5FSHvy//LcXK8fE4+r+Sd55zuhBCtOOGEE/D5559jzpw56NChQ0wy9u7di7teX4G2D23HU1/sQWFerpE+V0WNBvZv8re8L05SiXoXfnwXeOlcOkcJIYQQQgghhLgS1hglhLiGgoICPPDAA2p/9OjRSE9Ph67ooKvTOtjZntWyrZIXrxwd5glxaHwadQS6XwYsfx6o0dh4L2+XkR5XokEzagJp1aX4hOFsKNxXGlFaWvFAnKLm50SOyLMBN81JHXSlnbVfHu1sxSQlJeGcc87BmWeeif/85z+qBulff/0VtZyt+0pwzXs5ePiLZNzXOwMDOqchKUVuEZMM+yPRoqaTVBZriKM0JQPY9CXw5jDgvOlx9cOr4+OVPuugK+2s/fJoZ4nXcNOc1EFX2ln75dHOehs/jo+b+qyDrqID0Q9GjBJCXEVhYaHa3IAOujqtg53tWS3bKnnxytFhnhCHxkccmp3ONPbFyVmzqVEzVBwO+buBvZuB3X8Yr/K3vC//L8eZTlH5vMixETfNSR10pZ21Xx7tbNU1Q3/99Vfce++9qFmzZkxyft1RgkGzc3H0f3KwaEMAEOeo1DJOywRSMo0ao4KKIM3fHzkqNUrjxMvj44U+66Ar7az98mhniddw05zUQVfaWfvl0c56Gz+Oj5v67CZdiXMkBQKB0lAEQgjRu3i0mKvs7Gy1X7t2bRUtoSs66Oq0Dna2Z7Vsq+TFK0eHeUIcHh+57JKoUdlMivKAvOz9aSzFAZGSDmTWLnWcliIOUdlsnCdumpM66Eo7a7883e2sXPdMnTq10mNGjBhxwPWSnddmEyZMUDrFc/Pfv306JvWtgcObpO1/s7gIKCmVmVzqOG3aBbjiQ1d/j53GTX3WQVfaWfvl6W5niXvu13XBTXNSB11pZ+2XRzvrbfw4Pm7qsw66ym9v48aNffd7rDt0jBJCYsavN1qEEBI3W38EVr8BrPt4f92+ihDHQ+uTjZqiNqXPJYR4xzFqsm7dOowfPx6vvvpqzDLkmcH/dcnEPafUQPM6KcabRfmldUiTjGhSWcgxYglQt6V1yhNCCLEE3q8TQgghiYe/x3rCGqOEEEIIIU4jTs7etwHHXA389AGw8Uuj5mhBDpBezagp2vxooMPpQFbdRGtLCHEZrVu3xiuvvIJRo0Zh7NixWLBgQdQyZPnsCyvz8Np3eRh5dDWMO7E66maklabSLa0/Khl2P3sQ+NfjtvSDEELctjCFED9RVFSEHTt2VHpMvXr1VOp/QgghRCf4y0QIcQ3FxcX4+uuv1X7Pnj2RklIavaAhOujqtA52tme1bKvkxStHh3lCEjw+4vTscqGxaYCb5qQOutLO2i+PdjY+unfvjnnz5qlt7BVn45s/cqOWkV8E3L84B9OX5eLWE6vj2u7JyJIMuyVFQHIKsOGLmPXz4/i4qc866Eo7a7882lniNdw0J3XQNR4dxCka7QIF2lnaWa/hx/FxU5910FV0IPpBxyghxDXID8lHH32k9rt166b9D2+idXVaBzvbs1q2VfLilaPDPCHh8eP4uKnPOuhKO2u/PNrZ+JE6On379kWf65vhla/+wvh5e7AhO/pqKrvyAhjz0V48/mUy7jkpHZcckY4UuZss2Bezbn4cHzf1WQddaWftl0c7S7yGm+akDrrSztovj3bW2/hxfNzUZx10pWNUT+gYJYS4huTkZBx++OFl+zqjg65O62Bne1bLtkpevHJ0mCckPH4cHzf1WQddaWftl0c7ax3JgUJc3CULAzsAT32djwmfFWBHbvQO0k3ZJbj87Tw89EUBJvVLxumH5knF0dh08uH4uKnPOuhKO2u/PNpZ4jXcNCd10JV21n55tLPexo/j46Y+66Cr7ufIryQFAlI9hhBCoofFowkhhBDiZ1xV4+7BjkYt48I8VSM0uyAZkz8vwCNf5CC3MHaxJ7bOwpRXF+Goo46yUltCCPGO/U0QvF8ndsPvISGEVA1/j/WE7mpCCCGEEEII8TrpNYzXJCO+s3Z6APf1rYlfbmyAK7tnIjnGsM9P1uWiV69eGDhwIH755RcLFSaEEEIIIYQQQqyHjlFCCCGEEEII8TrNjzZek81qKgGgJICDa6Xg2XNq47vr6uNfHTNiFj979mx07twZ11xzDbZs2WKNzoQQQgghhBBCiMWwxighxDUUFBTg0UcfVfvXX3890tPToSs66Oq0Dna2Z7Vsq+TFK0eHeULC48fxcVOfddCVdtZ+ebSzFnL8TcD3c4ylscVJpY7RAiDZcIZ2bpSKty+ug8W/FWDMR3vxxabo8+sWFRXhqaeewgsvvIDRo0dj1KhRqFmzZtjj/Tg+buqzDrrSztovj3aWeA03zUkddKWdtV8e7ay38eP4uKnPOugqOhD9oGOUEOIqcnJy4BZ00NVpHexsz2rZVsmLV44O84SEx4/j46Y+66Ar7az98mhnLaJ+a6DJEcDmb4DkFKCkCAiUAMVFQMr+28LjW6bj86F18faafNwydy9+2lYcdVP79u3D3XffreqO3XHHHRg6dCjS0tIqPNaP4+OmPuugK+2s/fJoZ4nXcNOc1EFX2ln75dHOehs/jo+b+uwmXYlzJAUCgYCD7RFCPITTxaPFXEmbgrSRVFojS0d00NVpHexsz2rZVsmLV44O84SEx4/j46Y+66Ar7az98nS3sxIhuWPHjkqPqVevHlJTNVmP+uP7wBtXGPtF+YZjVEhKBpLTgOTylVaKigP4z/Ic3LlwH/7aG/ttY9u2bXHfffdhwIAB5cZAh++x07ipzzroSjtrvzzd7Ww45L5TFl9UxogRIw64X/UTTt+v64IOtstNusajQyzXQbSz7rGzJDL8OD5u6rMOuspvb+PGjX33e6w7dIwSQmLGrzdahBBCCCGu5Y0hwI/vqky6KA5yjiqSjGhSmKl2JVo0gH0FATzyZQEmf56PPXFkgurZsyemTJmCk046yYqeEEJ8DB2jVcP7dUIIISTx8PdYT8ovCfYp33zzDZ599ll10dyvXz91w16/fn20b98ev/32W5WfX7lypfrMrbfeGtHxhBBCCCGEEJIQzpkGNDva8H2mZgDJEsVhrpwWZ2gRUFJovCrvKVA9PRm3nVQda0c1xPXHVENaSmwrrb/++mucfPLJ6N+/P7799lsLO0UIIYQQQgghhESGJjmdnEccmNOmTcMzzzyDXbt2HfD/Ekgr71f0f6HUqVNHbZMmTcLkyZMxcOBA9dqiRQubtCfEnxQXF6uFDEKXLl2QkiIRDXqig65O62Bne1bLtkpevHJ0mCckPH4cHzf1WQddaWftl0c7awOSLvfiOcCbw4zI0ZQ0Y5PoUFV3NCihkKSaEsepiiIFGlYHHhl1IUYeORbj77gDr776akwqfPDBB/jwww9xySWXYNCgQWjSpIlvxsdNc1IHXWln7ZdHO0u8hpvmpA660s7aL4921tv4cXzc1GcddBUdiH740jEqkaHiEBVCMwnHkme6VatWmDdvHrKzs1XtnPvvvx+zZs1SbVx55ZWW6U2I35Efkv/9739q//DDD9f+hzfRujqtg53tWS3bKnnxytFhnpDw+HF83NRnHXSlnbVfHu2sjc7R86YbNUeXPAb89a2RS6jUAXoAUoO0yRHAsSOBjv3RGsArr7yC0aNHY+zYsZg/f37UKsh92H//+1+8/PLL6NWrF9544w3lIPU6bpqTOuhKO2u/PNpZ4jXcNCd10JV21n55tLPexo/j46Y+66ArHaN64ivHqKwOOOWUU1QUqOkQDXaEynvxlFytXbu2ihSVlLpjxozBkCFDsHz5cjz11FOW6E+I30lOTkaHDh3K9nVGB12d1sHO9qyWbZW8eOXoME9IePw4Pm7qsw660s7aL4921mY69je2nb8Bnz0IbPgCKNhn1B5NyQDSqwMtjgFOGAXUbXnAx7t166YWiM6dO1c5SM3V2NE+KFiyZAk6deqEcePG4brrrkNWVha8ipvmpA660s7aL492lngNN81JHXSlnbVfHu2st/Hj+Lipzzroqvs58itJgXg8gS5iwYIF6Nu3r3J8ms7Q0K7LjX29evVUWlx5nT59unJsSph1LEjE6PDhw9VG5yjxIiweTQghhBBChJKSEpVad/z48apsSawccsghuPfee1WaXZ1XnxNCEovcd06dOrXKbGGh96t+gvfrhBBCSOLh77Ge+MJdvXLlSpx66qllTlEzMrRPnz6qzujatWvVjfyyZcvUaufXX38dTz/9dFzRo8LQoUPLZD333HOW9YcQQgghhBBCdEJWQl900UX48ccf8fDDD6N+/foxyfn9999x+eWXq8Wp7733Xtz3ZIQQQgghhBBCiO8cowMHDizblxtrSXO7c+dO5QSVdLdSI9QuBgwYgJtvvlk5STds2GBbO4QQQgghhBCSaDIyMnDDDTeoxadSYiTWtLirV6/GGWecgZNPPhlLly61XE9CCCGEEEIIIf7E847R+++/H+vWrStLlSsO0UmTJql6oE4hdUdbtmyJYcOGOdYmIV6ksLAQjzzyiNpkX2d00NVpHexsz2rZVsmLV44O84SEx4/j46Y+66Ar7az98mhn3Yvcb/373//GL7/8gquuuirm2jqffPIJjj76aLXYVWS5HTfNSR10pZ21Xx7tLPEabpqTOuhKO2u/PNpZb+PH8XFTn3XQVfdz5FdS4XEmTpyo0udK5ObMmTMTpoc4RwcPHozdu3ejVq1aCdODEDcjEd/Z2dll+zqjg65O62Bne1bLtkpevHJ0mCckPH4cHzf1WQddaWftl0c7634OPvhgTJ8+HTfeeKOKIH377bdjkjN79my89dZbKuPPnXfeicaNG8ONuGlO6qAr7az98mhniddw05zUQVfaWfvl0c56Gz+Oj5v6rIOuup8jv5IU8PDILFiwQNUWbdOmTUyri2VV84oVK1R9GysQeRLBOmrUKEvkEeK34tFSC3jz5s1qv2nTpjFHHjiBDro6rYOd7Vkt2yp58crRYZ6Q8PhxfNzUZx10pZ21Xx7trPdYvHgxxo4diyVLlsQso3r16uqeavTo0ahZsybchJvmpA660s7aL8+tdlbuO6dOnVrpMSNGjDjgftVPOH2/rgs62C436Uo7a788t9pZEhl+HB839VkHXbds2YImTZr47vdYdzztGB0+fLhanbx8+fKYnJtWO0b79u2rolc/+ugjS+QRkmj8eqNFCCGEEEJiR25BJXJ03Lhx+PHHH2OWI9ehd9xxB4YOHYq0tDRLdSSE6A0do1XD+3VCCCEk8fD3WE88nUpXaotKXVGrHJvx0rp1a+WkJYQQQgghhLifffv24euvv670mJ49e6oIR7IfWSx69tln44wzzsCMGTNUalxzJXc0yAOFa6+9VtUMknqmUodUZBNCCCHEmUis3NzcSo/JysrSOpqMEEKIP/G8Y1RujnWhTp06SidCSOwX3atXr1b7hx12mNYX1zro6rQOdrZntWyr5MUrR4d5QsLjx/FxU5910JV21n55uttZcYx+8sknlR7TuXNnOkbDIOPRq1cvzJkzB/Pnz8eUKVOwZ8+eqOX8+uuvGDx4MB544AFMnjwZJ598MnRFB9vlJl1pZ+2Xp7udJSRa3DQnddA1Hh22bdsWdeQ27SztrNfw4/i4qc866Co6EP3wvGNU6ovqwq5du9RGCImNoqIivPnmm2q/Y8eOSE9Ph67ooKvTOtjZntWyrZIXrxwd5gkJjx/Hx0191kFX2ln75dHOepvg8ZG0ulIKZcKECXjqqadQWFgYtTyJ3u3duzdOP/10TJo0CUcccQR0w01zUgddaWftl0c7S7yGm+akDrrSztovj3bW2/hxfNzUZx10FR2IfnjaMSrUq1cPurBs2TKVTpcQEhuSGs38DumeJk0HXZ3Wwc72rJZtlbx45egwT0h4/Dg+buqzDrrSztovj3bW24SOT4MGDVRa3JEjR+L222/HK6+8EpPcDz74AB9++CH+7//+D/fccw+aN28OXXDTnNRBV9pZ++XRzhKv4aY5qYOutLP2y6Od9TZ+HB839VkHXXU/R34lKRAIBOBR2rZtq1LpTpw4MabPS2j1ihUrLKtRKvJOPfVUfPTRR5bIIyTRsHg0IYQQQvyMXPdEm0KORI7ci40dO1al2Y2VjIwMXHfddSoi9YBFszk7gJ8+ADYtBXJ3AoW5QFoWkFUXaNYL6Njf2CeEaAftb9Xwfp3YDb+HhBBSNfw91hN9E0BbgKwGiOcm2kruv/9+9dqtW7dEq0IIIYQQQggh2iP3TvPmzcPcuXPRtWvXmGTk5+er2qNSYkVqmObm5gJbfwQWTgBeGQR89QyweRWwayOw72/jVf6W918eaBwnxxNCCCGEEEII8QSedozKzbOsMl61alWiVVFRqxI2PXjw4ESrQgghhBBCCCGuQbLuSFmSl156CS1btoxJxq5du1T0afuWB2PGzWeh+Ke5QHEhUJQH7P0LyN4E7NpgvMrf8r78/y/zgDeHActmAN5NtkQIIYQQQgghvsHTNUaHDx+uIjXlBlhqzCQKSRshN+KyStmqtLyE+JHCwkJMnz5d7Q8ZMgRpaWnQFR10dVoHO9uzWrZV8uKVo8M8IeHx4/i4qc866Eo7a7882llvE834SFmSiy66CAMGDFBp+yZMmIDt27dH3ebvW3fiiv/uxEPzNmJSv5ro3ybpwLo/hQDysoHUTCOVbkYtYPnzQM524IRRUigo+s66cE7qoCvtrP3yaGeJ13DTnNRBV9pZ++XRznobP46Pm/qsg66iA9EPTztGW7VqpaJGJf3Srbfeivvuu89xHZ599llMmzZN3WwPGzbM8fYJ8RJSElnyspv7OqODrk7rYGd7Vsu2Sl68cnSYJyQ8fhwfN/VZB11pZ+2XRzvrbWIZH6kZesMNN+Dyyy9XqXEffvhhIz1ulKzenIczns/DP1qmYcqZTdCrTX0gOQUoKQYK9wH5e4yo0T2bjdqjNRoDa94FqtUHelyOWHHTnNRBV9pZ++XRzhKv4aY5qYOutLP2y6Od9TZ+HB839VkHXXU/R34lKeDxkZk9ezYGDRqkHJNy4zxq1KiIPyurkiUVb6xRnlLLRqJVzXqnv/zyS0xyCNEVp4tHl5SUYOPGjWq/efPm6juqKzro6rQOdrZntWyr5MUrR4d5QsLjx/FxU5910JV21n55uttZue6R6MWqsseEXi8R68bnjz/+wF133YX//Oc/Sl6snNe1Ae47uyXaN65WqlwxkLsTyN0hjzOAzDqGc1Q4ZxrQqKNrbZebdKWdtV+e7nY2HLS/+t2v64IOtstNusajQ0FBAf78889KjznooIOQnp5uSXtVQTtLEoEfx8dNfdZB1y1btqBJkya++z3WHc87RoWBAwfijTfeUM5RqU8za9Ys1KxZ0zbH6O7du1Wb8+fPVysCpF2JWu3du3ccvSBEP/x6o0UIIYQQIvDBvD6sWbMG48aNw9tvvx2zjJRkYOjxTXHHP1ugSe3Sh7gSOSpRo+IcrdnUSKvbri/Q+zbrlCeERA3tb9Xwfp0QQghJPPw91hN93fkWp7OtXbu22p87dy7q1KmjUuuKA9NKfvvtN3XhXbdu3XJO0aFDh9IpSgghhBBCCCE20alTJ7z11ltYvHgxjj322JhkFJcAUz/djLZ3fIU73/0Ne/KKgIyaQFY94wCJIBXWfbx/nxBCCCGEEEKIq/B0jVETcYouWLAAPXr0UI5KcVhOnjxZbd26dcPgwYPRp0+fmFLmfvPNN1i2bJmKQhVnqGA6RGUbMGBAlasYCSGRpz/4+eef1X779u21T9WQaF2d1sHO9qyWbZW8eOXoME9IePw4Pm7qsw660s7aL4921tvYMT7HHXecco5K5KhEkP74449Ry9iXX4J73tuonKR39G+Oocc1RLqk1JWao7IJP30AtD/NeN201HCUSi3StCwgqy7QrBfQsb+xb3Of7UIHXWln7ZdHO0u8hpvmpA660s7aL4921tv4cXzc1GcddI2n3AexD31nrcWIA1QcmKbTUl5lW758uaoD2r17d6SkpKB+/fro2bOncpYKEydOVDfUskk0qLzfr18/tGvXTh0vnxs2bFhZhGiwfHG2zpw5M9FdJ8QzFBUVqe+UbLKvMzro6rQOdrZntWyr5MUrR4d5QsLjx/FxU5910JV21n55tLPexq7xkfuxs88+G9999x2eueZkNDXT4kbJ33sKcd3Mteh87zd4/UdjASzysoHCPODLqcArg4CvngE2rwJ2bQT2/W28yt/y/ssDgYUTgK0/unJO6qAr7az98mhniddw05zUQVfaWfvl0c56Gz+Oj5v6rIOuup8jv+KLiNFQ56jU/1y/fr26YRaCy6zu3LlTOUultqgwe/bsCmVVVJo1WJ5Eo95888029YQQfyLfsWbNmpXt64wOujqtg53tWS3bKnnxytFhnpDw+HF83NRnHXSlnbVfHu2st7F7fFJTUzHkhINxYfueePT9HzB50S7szj/wPq4q1v6dh8Ev/YX7D07FlNOKcHKrXUBKOlC3lRFBmrcLKMo3tpJiQLqSlAqkpAI71gGrZgJHDweOvtpVc1IHXWln7ZdHO0u8hpvmpA660s7aL4921tv4cXzc1GcddNX9HPmVpEBFHj4fIFGe06dPr3ByRnJKKprQ8jmpXyppe7t27WqhtoToCYtHE0IIIcTPyHVPVWUzJOtM6PUScZCXBpRGcm7Atuwc/PuLJDz52d8oLI79Nvi0dumY3K8GjjikppE+t6QICEiKrFCZyUByirGJt/Tg7sDp9wONO8XdLUL8Du1v1fB+nRBCCEk8/D3WE9+k0g1l2rRpKjL0vPPOK0uBa2LWB61sMzE/26pVKyVzx44ddIoSQgghhBBCiA5IzU8hKRkNqifj4bMPwk9398CFPWN/EPHhLwXo8sQOXPraX9i4vbTmaHIqkJxmOEDl1lLuLwPFQHEBUFxo/P3HMuCVAcCyGcbfhBBCCCGEEEIcx7eOUUEcmLNmzcLatWtV2ltxbpqOzki22rVrY8CAAUrGr7/+iiFDhiS6S4QQQgghhBBCTLLqGq8p4rQEULgPrRpk4eUrO2HFrd1waqc6MYkVt+Z/v8lH+yd2Y/RHudixtxAoKTT+JzS5kESUSspdSbObsx348mngswfpHCWEEEIIIYSQBOCrGqPhEIeo1ASVLTs7G/Pnz8fXX3+NXbt2qQhQeRVat26tUuW2adMGPXr0YGQoIQ5TWFiI559/Xu1fdtllSEsrfcClITro6rQOdrZntWyr5MUrR4d5QsLjx/FxU5910JV21n55tLPexpHxadYL2LwKyKwD5GUD+XuA6o1UetuuzWtg7vVHYN4POzH2zfVYuWlv1OLzi4AHl+Ti2eW5GHdCJkYenYWs9NLUueIkDU6zW1yIwpJkPL+zF/DZZlyW8R+k9boSuqLD94d21n55tLPEa7hpTuqgK+2s/fJoZ72NH8fHTX3WQVfRgegHHaMhSBSopNeVjRCiFxKp/eeff5bt64wOujqtg53tWS3bKnnxytFhnpDw+HF83NRnHXSlnbVfHu2st3FkfDqcDiyfYeynZhqRm7k7geoNyg45tXNdnNKxDl5b9jdue3s9ftueH3Uz2fnALfPz8MRXBbjnlBr4v66ZSEkurTFaXGQ4SBFAAMX4s6Q+UAIEVrwEtDoOaNQROqLD94d21n55tLPEa7hpTuqgK+2s/fJoZ72NH8fHTX3WQVfdz5FfSQpwZAghLikeXVJSotJWC23btkWyPGzSFB10dVoHO9uzWrZV8uKVo8M8IeHx4/i4qc866Eo7a7883e2sXPdMnTq10mNGjBhxwPUScfg7tHAC8Ms8IH83sGezEc1ZsymQUfOAQ/MLS/D0p5tx7/sbsH2fODNj49BGKZjUtyb+2SHdyKwrtUYDAZQgCb8mtQQyaqFtnSQktz8V6H0bdIR2lnbWST2ihfZXv/t1XdDBdrlJV9pZ++W51c6SyPDj+LipzzroumXLFjRp0sR3v8e6Q8coISRm/HqjRQghhBAi8MG8S9j6I/DmMGN/7xYgT0qlJAFZ9YCsOkDygYmUsvfl4f4P1uGhRduQG7t/FP9omYbJ/Wrg6IOSgEDx/hS7yWlAo85G7dOLZu2vhUoIiQja36rh/TohhBCSePh7rCf6uvMJIYQQQgghhJB4kVS13S8z9ms0NuqNinMydzuwY50RRZq3GyjYa7zu2YzauRsx4aQU/DqyFoZ0z0CyCvuMnk9/K8Qx03ZiwMy9+Hmb6RhNMlLrSlrf4kLgpw8s7S4hhBBCCCGEkPCwxqhDyErFdevWYezYsejdu3ei1SHElUj6g/Xr16v9Vq1aaZ+qIdG6Oq2Dne1ZLdsqefHK0WGekPD4cXzc1GcddKWdtV8e7ay3cXR8xDGasx1Y867hHE3LMmqNinNSUuzKFkpqJg6qBzxzThZuPDoXty7IwVs/xhY++sYPBXhrTQGu6p6By05sg4Y1U9EqdzeSa2YCG78EulwI3dDh+0M7a7882lniNdw0J3XQNR4dYoncpp2lnfUafhwfN/VZB11FB6If+s5ajzFz5kzMnz9fOUcJIbFRVFSEl156SW2yrzM66Oq0Dna2Z7Vsq+TFK0eHeULC48fxcVOfddCVdtZ+ebSz3sbR8UlKAk4YtT9yNKMWUKeFsUkEaVo15QhVr/K3+X8p6erwTgdVx5vn18TiK2vj2GYpMalQHACmLcvHPx77BVcsrIOdOYXGf6jUvvqhw/eHdtZ+ebSzxGu4aU7qoCvtrP3yaGe9jR/Hx0191kFX3c+RX2HEqMPs2qXnTS8hbiApKQmNGzcu29cZHXR1Wgc727NatlXy4pWjwzwh4fHj+LipzzroSjtrvzzaWW/j+PhIGz0uB5ofA6x+A1j3sfF+jcyKj5f6n+IcLS4wnJeFuTiueQoWX1ET7/xUgFvm5+NHlR43OgoLC/Hpp5+i0/Jk3HEGMPS0+jDcr3qhw/eHdtZ+ebSzxGu4aU7qoCvtrP3yaGe9jR/Hx0191kFX3c+RX0kKBAKBRCvhdbKzs1G3bl31JRgzZgwmTpyYaJUIsQQWjyaEEEKIn4klhRzRCEmlK/U9JZWtOD4LcoD00ojR5kcDHU4Hfnwf+OoZI+Xutl+M2qSKAIoCqXh+VQHuXLAPf+6JPUVWm8Y18e9Hp2PgwIFapyIjRCdof6uG9+vEbvg9JISQquHvsZ4wYtQBXn/99bJ9RowS4kFydhgP1TYtNR6wFeYadauy6gLNegEd+xv7hBBCCCFEH+T6TGp7VlbfU5yjy2cY+8kpQImkvzVWfacmB3BVj2q48IgsPLIkB5M/24fd+dGvO167ZQ/OP/98PPDAA5g8eTJ69+4dc5cIIYQQQgghhFQOHaM2sHv3bvW6Y8cOTJs2DVOmTCkLmZb3CCEeYeuPwOrZwLpFQHFpjahgdm0ENq8yHqa1Pgk4bADQqGMiNCWEEEIIIbFQrZ5xHffLPCCzNpCzDVBJl2QrUS/V0pNw60nVMbRnFv79yT48uTQHhdFn2MWyZctwyimn4LTTTlMO0iOOOMKOHhFCCCGEEEKIr9HGMSopg7yabzk4W/G6desSqgshbkbqMb388stq/6KLLkJaWlpiFJHv9PLnjc1E0qtJCjZxkAZKUIg0vFxwKpCciovqf4c0eZgmW/fLjM0Be+f0+bKzPatlWyUvXjnazGlSIX4cHzf1WQddaWftl0c7621cMz6yuE2u42o0AXIlA1CR4RcNlBjXfqmG3g2qJ+Ph/jUx8uhquH3+Hrz8bX5MzX344Yf46KOPcPHFF+Pee+9FixYt4NfxoZ21Xx7tLPEabpqTOuhKO2u/PNpZb+PH8XFTn3XQVXQg+qGNY7R169aedRqaDl9xkDKVLiGxI9+hDRs2lO0nSAngsweBNe8af+fvNtLnimO03GFF2FDS2Agk2LUJqFYTyKhlOFNztgMnjLLdOer0+bKzPatlWyUvXjlazGkSFj+Oj5v6rIOutLP2y6Od9TauGR/J+CEL2+Q6TiJI5VouICGhASBQBBQFjDS7pbSqXYKXzs3CqGPScMv8PMxdWxR1k3I+XnzxRcycORPXXXcdxo0bh/r161vcMf3Hh3bWfnm0s8RruGlO6qAr7az98mhnvY0fx8dNfdZBV93PkV9JCmgyMj169MDKlSvhZeRU161bF9u3b0+0KoS4snh0SUkJ1qxZo/Y7deqkIs0dZ9mM/ZGie7cYUaKKJCCjJpBWXT0YKykuwZq8eqreaKekdUhOCgCZdYAajY3D5eFaj8ttVdXp82Vne1bLtkpevHK0mNMkLH4cHzf1WQddaWftl6e7nc3Ly8PatWsrPaZNmzbIzMy0tF2voMP3OOrFcd/NAnZtAEqKS0spmLfTpQveyq17S1bXhfPXFWHMR3uwcnMM+XVLqV27tnKOjhw5EllZWfDL+NDO2i9PdzsbDtpf/e7XdUEH2+UmXePRIZbvIe2se+wsiQw/jo+b+qyDrlu2bEGTJk1893usO9o4RgcNGoTZs2eXi660C7vbqEy+/F9xcew3xITohO9utKSm6JvDQpyiSUBWPSCrbrlIgTLkoZlElOZKfeEQ5+g501hzlBBCCCHELZjlFMRBKrVGBXGOlgRHhCYBSeIQlYcuSUa63UAJSpCMmd8X4bYFuVi/I/Z0WgcffDDuueceXHrppUhJqeDakxBC/Hq/TgghhGgIf4/1RJtUuvXq1SvbF4dinz59MHbsWPV+nTp1LGtn2LBhmD9/vpI5dOhQ9OzZ0xK5O3bsUKukRPaKFSuUA1T0l0hYQohHWD17f/pc0ylas6kRKRoOcZZWbwCkZgB7NhufS8sy0uqufgPofZtj6hNCCCGEkDiQBbCS8aP50cD7NwN/LAdS0gxHqCyGkxoKihJZnl76mRR1THJaNVxwfF2c+48aePrTzbh37mZsz86JWoU//vgDV155JR566CFMnDgRZ5xxRtnCXEIIIYQQQgghLnKMSmoFk4EDB6paKlbTr18/5bgUh6XcRNqFOEalD1OmTFFRsOecc45tbRHiJyT9we+//672DznkEGfTH+TsANYtMvYlAlSQSNEwTtGSAPB7YW21f0haNpLluKJ8IHe78XlxjK77GDjmaiPa1APny872rJZtlbx45SR0TpMq8eP4uKnPOuhKO2u/PNpZb+Pa8WnUCbj0XeCLp4ClTwMF+4xaoxI5Kg5SiSyVxXGyMC41E8isbbwCSAsA51w1Gqfcfhxefe01PPzww8jNzY1ahe+//x7/+te/cMIJJ6j7zqOPPtqT40M7a7882lniNdw0J3XQlXbWfnm0s97Gj+Pjpj7roKvoQPRDm1kbHBUqUZ12OEW//vprzJs3z1anqNCtWzcVPXrVVVdhwIABePPNN21tjxC/UFRUhBkzZqhN9h3lpw+MVGlFecamUuiGd2gWBZIxY0d3tcm+IkvsXNJ+GSJP5HrkfNnZntWyrZIXr5yEzmlSJX4cHzf1WQddaWftl0c7621cPT4SpXnsNcBFs4CeVwIN2gP12wENOxqOU/m7TgujhII4RSWytF1fFJ35JGZ8sQVvzJmDO++8E7/++qvKZBRrWtzPPvsMxxxzDM477zz89NNPnhsf2ln75dHOEq/hpjmpg660s/bLo531Nn4cHzf1WQdddT9HfkWbiNHWrVtXuG8Fw4cPV5Gi4qxs2bIlnGLatGnqVZyjEkV65JFHOtY2IV5E0oSZabcdTxm2aanxqlLowogUraimaCmiXr0UIz1amarJqcbnVCrebKBGJrDxS6DLhZ44X3a2Z7Vsq+TFKyehc5pUiR/Hx0191kFX2ln75dHOehtPjI/Ui5fSCJIFRBa8ybWdXC8W5ADp1Yz68pJ6t8PpalFdUmFhuT4fdNBB6r7xxhtvxLhx4/DWW2/FpMacOXPw9ttvY8iQIbjjjjvQtGlTT4wP7az98mhniddw05zUQVfaWfvl0c56Gz+Oj5v6rIOuup8jv5IUkIKeGrBy5Up0795dTZSdO3eiVq1alshdsGABTj31VJXS9txzz0UikPY3bNiAn3/+OSHtE2IXvioePfMSYNdGIHsTUJgD1GgKZMZgp/J2A3s3A2nVgNrNgLotgEH/tUNjQgghhBDiMpYsWYIxY8bg888/j1lGtWrVMGrUKIwePTr8fbWUiRBHriz+kzIPhblAWpaREaVZL6Bjf9vKPRBCnMFX9+uEEEKIpvD3WE+0SaUrUaJdu3ZVm5VIPVGp95kop6gwa9YsbNu2DQ8++GDCdCCExIk8LBICpXnhK4kWrRQzl70pR6IJCCGEEEIIAXDssceq9LgSOdqxY8eYZOTk5ODee+9F27Zt8fjjj6OgoGD/f279EVg4AXhlEPDVM8DmVcbiv31/G6/yt7z/8kDjODmeEEIIIYQQQjyENo7R2rVrY/ny5Vi2bJll0aIShSrb5MmTkUikfuott9yC++67L6F6EELiQFbQC0mlZrOkODY5ZsFtU46kWCOEEEIIIaQUyaJ01lln4bvvvsP06dNVut1YV6ePHDkSnTt3xszXXkPJV88Bbw4Dfpln1LqXmvd7/zIyouzaYLzK3/K+/L8cJ8cvmwHokWiKEEIIIYQQQryTStcOxBkpqXS//vpr6EBycjLeeOMNnHPOOYlWhRBXpgKQYtWvv/662h80aBBSUx0sk/zOSGMFvTwskvqgGbWAmuFrNxUFkvH6rsMMXeusRmpSqUN0z2ajxqjUm6rRGGh6JPCvxzxxvuxsz2rZVsmLV05C5zSpEj+Oj5v6rIOutLP2y6Od9TZ+HJ9Y+iwRoI8++igmTZqE3bt3x9x29+Y1MOXcVujdKsVInysO0HCkZqIosz5ezz3W0LVXc6SeNFq8tnAS2ln75dHOehe/pu5z05zUQVfaWfvl0c56Gz+Oj5v6rIOumzdvPmChox9+j3VH31lrAfPnz0fPnj2hCwMGDMBrr71GxyghMVJSUoJffvmlbN9RpNaSOEbFoSmO0fw9QPVGYVPqlgSAX/IblO1DniGVFBmfEzJrG6/Nj/bM+bKzPatlWyUvXjkJndOkSvw4Pm7qsw660s7aL4921tv4cXxi6bPUDB03bhyGDBmCf//733jyySdRWFgYddvLN+7FKY98h37t0jG5bw0c2TQdyKgJpFU3rmklI0rhPuN6tSgPJXu24Jfi0uvZH98HajYAelwOJ6GdtV8e7SzxGm6akzroSjtrvzzaWW/jx/FxU5910FX3c+RXPO0YXbduHYYPHw5dECftM888k2g1CHEtKSkpKq2Yue8oHU4Hls8w9lMzjRX2stK+uvGwKJSUpADOqvVD2b4id5cUFzU+L1tKmiHXI+fLzvaslm2VvHjlJHROkyrx4/i4qc866Eo7a7882llv48fxiafPDRo0wMMPP6zS495+++14+eWXY9Lho18KMPfXHbi4Z0Pce1ZdtKiZuf8/M2sZi/9ydyIlZxfOSl4IpFUzrmeXPw80PwZoFFvt01ignbVfHu0s8RpumpM66Eo7a7882llv48fxcVOfddBV93PkVzydSldS186ePRvnnnsudEDS6A4dOhTbt29PtCqEWILvUvMsnGDUWpJUuJISV8JAJZ2urLSvCll5rz4TKP1MLaBdX6D3bU5oTgghhBBCPMbKlStV+Zi5c+fGLCM9NQnXnnQQbj2tOerXSCv/n7x+JcTV+O5+nRBCCNEQ/h7riacjRuvUqaOiRnVi1y6JGCOEuJLDBhiOUXkoVJgL5O0yHhYV5QNZdYDkCkyqpM+VSNHcHcZDJUnFK59X8s5zvAuEEEIIsY68vDysXbu20mPatGmDzMygiDxCLKJr16746KOPVAmZMWPGKEdptBQUBfDQ/D/w3Od/4ZZ+zXB974ORlV66ql0W/8l1bu52I1OKXMOu+xg45mogq671HSIkCmh/CSGEEEJIrHjaMdq6dWt8/fXX0AVx0oqzlhASe052WVEjyEobiQp3FEkb1v0yI41YjcbGe+IcVQ+LdgTVaEpGSXEJtuanqzpNjbADyUmlTlHzcyLH5jRkTp8vO9uzWrZV8uKVk/A5TSrFj+Pjpj7roCvtrP3ydLezu3fvVhlqKmPEiBF8MK/x99gLfe7Tpw+WLVuGmTNn4rbbbsP69eujlpGdW4xxb/2GJxb9iXvObIlLj2mMpKQkbE1tBgSS0KhwO5KllITw0wdAlwvhBLSz9svT3c6Gg/aXeOG3RQdd49Fh27ZtmDGjtORQGC6//HKVCt6K9qqCdpYkAj+Oj5v6rIOurDGqJ/rOWosco1VdKDvJvHnzlE6EkNgoKirCtGnT1Cb7CUEcmp3ONPbFySlpxaReqESDSordvZuB3X+gaO/fmJbXH9OKB6IotbpxnOkUlc+LHI+dLzvbs1q2VfLilaPFnCZh8eP4uKnPOuhKO2u/PNpZb+PH8bGrz/KQ54ILLsCaNWvw6KOPlnsIHQ1/7CrAlS/+jCPuXY63Vu3A0zuONq5nkQLkZRsHbfwSTkE7a7882lniNdw0J3XQNR4d5GF/Tk5OpVuoQ4B2lnbWa/hxfNzUZx101f0c+RVPR4zKyllxjD733HO48sorE6qLrNqVFEfDhg1LqB6EuBlZtV6zZs2y/QQpAZwwCqhW34gclZRisskKenlYVFwABEqQhDTULMkBkpKRVKcZkFR6MyAOUdkc0N/p82Vne1bLtkpevHK0mNMkLH4cHzf1WQddaWftl0c76238OD529zkjIwMjR47EZZddhvsvOw4PvfcDcgqiX6X+w+YcnPf0arRukY0zTj0RSS1gXOeaGVMcgnbWfnm0s8RruGlO6qAr7az98mhnvY0fx8dNfdZBV93PkV9JCgQCAXiU7Oxs1K1bF/Xq1VNpbGvVKq3rlwCGDx+O6dOnq6jR3r17J0wPQqzE98Wjt/4IrH7DqLVUXBj+uJQ0oPXJRk1Rm9PnEkIIIcQ55Lpn6tSpVaZyDL1eIsQRXhqAzX/+jrve+B7PLduL4jiyeJ3bOQP3nV4fHdq1Bao3BC7WJzMT8Se0v1Xj+/t1Yjv8HhJCSNXw91hPPB0xWrt2bZxyyilYuHAhhg4ditdeey0hesyZMwfPPPOMctLSKUqIhxAnZ+/bgGOuNmotSVoxWUFfkAOkVzNqijY/GuhwOpBVN9HaEkIIIYQQP5GWhaa1MzDtvIa48ZgM3PpxEd78tjQdbpTM+SEfb//4J646LoA7L2qIpuEOzNlhXBdvWgrk7gQKc5Ue6lq4WS+gY39eFxNCCCGEEEISiqcdo8LkyZPRo0cPzJo1S0WOPvXUU462v3LlSgwYMECFTI8bN87RtgkhDiEPd7pcaGyEEEIIIYToco26a6PKXtKxYSrmXFIPS7a2xJg56/H52t1Ri5OI02mfbcaLX72Nm36/HTfffPP+rEwqk8psYN2iijOpiB6bVwHLZwCtTwIOG8BMKoQQQgghhJCE4HnHaLdu3TBkyBCVxlaK7EpK3Q8//NCRtqVNSaErtG7dGqNHj3akXUK8ihSrfvPNN9X+Oeecg9RUfU2YDro6rYOd7Vkt2yp58crRYZ6Q8PhxfNzUZx10pZ21Xx7trLfx4/g42meJ0BRnpGQxycsG8vfg2FaN8NnoI/Hutztwy5vrseavnKjF5uQXYcKECXj66adxx+23Y1jPLKR/+9L+A4ryjCwq4iANlABJyUZpCdFD+GWesXW/zNgqqbtEO2u/PNpZ4jXcNCd10JV21n55tLPexo/j46Y+66Cr6ED0Ixk+YMqUKSqtriA1PuvXr4/nnnvOtvZ+++039OvXTzlFpYSrRIuKU5YQEh8lJSX44Ycf1Cb7OqODrk7rYGd7Vsu2Sl68cnSYJyQ8fhwfN/VZB11pZ+2XRzvrbfw4Po72Wco5iEMyNdPYEFDpbeX+9F9H1se3t3fHs5e0w0G102MSv23bNoy8/np0+tdIvPb1VpTkZgO7NhibOGILcwwnqbzmBf1ffmm06vLngc8eBAKBsG3Qztovj3aWeA03zUkddKWdtV8e7ay38eP4uKnPOuiq+znyK/q68y1EnKILFixQKXXlJnDnzp2q5uiYMWNw66234rzzzkPLli3jamP37t2YP3++coDKq2A6RSdNmsTaooRYQEpKCk4//fSyfZ3RQVendbCzPatlWyUvXjk6zBMSHj+Oj5v6rIOutLP2y6Od9TZ+HB9H+1ytnpG2VqIzJa3uns1A7g4gNQPIqInUlCRceVxTXNCzER5b+AcmfrgJu/OKo25m3bY8XPDcj3jgoFRM7lcDp7TJVPKRVh1ITgFKioHCfSpiVTlKRQ+pPVqjMbDmXaBafaDH5RXKpp21X55b7WyjRo1w5513OtYecQ9u+m3RQdd4dKhZs2bZZys7xqr2qoJ2liQCP46Pm/qsg666nyO/khQQ751PEIdl3759lbPS7LbsC3Xq1EGfPn3Qs2dPlfbW3ASzboo4P4UdO3aolLyyLV++HMuWLcOKFSvK2jEdooI4XydOnOh4Xwlxgr///lvdkAazdetWNGzYMGE6EUIIIYQ4hVz3TJ06tdJjRowYccD1EiGOIbU/3xxm7O/dYqS4RRKQVQ/IqgMk718rvX1vIf79wUY8+cmfKCiK/TFBv851MPnc1jjykBrl/0McpLk7DeesRK9Kal1xjgrnTGPNUUIshvfrhBBCSOLh77Ge+CJi1EQcn3PnzsWgQYOQnZ2t3jMdpBJFOnv2bLVFS7BvWRyipuN17NixdIoSQgghhBBCCEkM4myUOp6SttZ0QopzNHe74aAsi+xMRv3UEjx0WjWM7FIft8/fi5e/zassy21YPvphF+auWYGLjmqEe89siZYNMksL+aQA1RsYEasSNSp6pGUBGbWA1W8AvW+ztu+EEEIIIYQQ4tcao6HOUYn07NKlS1lkZ7AzM5ZNCJYhqXullimdooRYi3y/tm/frjbdg9110NVpHexsz2rZVsmLV44O84SEx4/j46Y+66Ar7az98mhnvY0fxychfRbHaKczjX1xjtZsur/mqNT73LsZ2P2H8Zq/Gy3rpuDFCxpj+aj26N2pfkxNStdeWroVHe76GqNmr1XRqGWIM1YiVgWJIBXWfbx/v5wc2lm75dHOEq/hpjmpg660s/bLo531Nn4cHzf1WQdddT9HfsV3jlEzba6kwJXan+LEDHVuxrKZTlKpXbp+/Xqccsopie4mIZ6jsLAQTzzxhNpkX2d00NVpHexsz2rZVsmLV44O84SEx4/j46Y+66Ar7az98mhnvY0fxychfZYyLyeMMhykgkRo1mlhbJLONq2a4SiVV/m79P8ObX0Q/jH4Ovzf//0funbtGlPTkpL3ofl/oM3tX2HShxuRW1Baw1TS+EpKX6k5KltxIfDTBwd8nnbWfnm0s8RruGlO6qAr7az98mhnvY0fx8dNfdZBV93PkV/xpWPUROp/Sr3QYAdpcBRoZYRGjYosScf79NNPK1mEEHvIyMhQmxvQQVendbCzPatlWyUvXjk6zBMSHj+Oj5v6rIOutLP2y6Od9TZ+HJ+E9Fmcoz0uN2p5tusLpKQZzlCJIK3dzHCGyqv8Le/L/7c9BRnpaejUqROWLFmCV155Ba1atYqp+ezcYox76ze0u+NrPPf5ZhQFUozIUSHPKHODjV8COTuAlS8D74wEZl4CvHYRMpKLkZFSAqyaWWFUqdXQziZOD0Kswk1zUgddeT1rvzzaWW/jx/FxU5/dpCtxjqQAY3nLWLlyJebPn4+ZM2dixYoVlR7brVs3lZb31FNPZXQo8S0sHk0IIYQQPyPXPVOnTq30mBEjRhxwvURIwhEHo0RoijNSan0W5ADppRGjzY8GOpwOZNU94GMFBQV4euhxuPeNVdgWnB43Sjo3rYaJ/2yMM1vsQ1J6daB6QyBQAmTWNqJHwyEO29YnAYcNMOqnEkLCwvt1QgghJPHw91hPUhOtgE5IeiDZbr755rL3JC3url27ylLwxrpClhBCCCGEEEII0QJxena50NiiID09HSP7tMBlXdJx/7vf46HPspETg3/0h805OOvZ9Ti+RRqm9CvCMc1zgORUI52vpNYVZ604SMVZmpRsOETFaSv8Ms/YJDWwbBINSwghhBBCCCERQsdoFdARSgghhBBCCCGElJKWhVpZqbi3Xz1c3TMNd38WwLNfbkdxSfSiFm8oxLHP7MC5nTNw36m10CF5g+EYDaWwNOWupPkVp67USV3+PJCz3aifSucoIYQQQgghJELoGCWEuIaioiL873//U/tnnHEGUlP1NWE66Oq0Dna2Z7Vsq+TFK0eHeULC48fxcVOfddCVdtZ+ebSz3saP4+OmPofVVRyTuzaqKM6mNVPw9Dm1cEPfVrj1rfV485vtMbU154d8vL3mb1zVIwt39q6Bpg3qAGnVUZSUhv/tPRwIFOKMwAKkitN0z2agMNeoh7rmXaBafaN+qp191lA27Swh7p+TOujK61n75dHOehs/jo+b+qyDrqID0Y/kRCtACCGRUlJSglWrVqlN9nVGB12d1sHO9qyWbZW8eOXoME9IePw4Pm7qsw660s7aL4921tv4cXzc1OewujbrZbyaqW3z96BjowzMGX4olozpguPb1oqpveIAMO3rXLR9eDtu/zgfuwPVUJJWHasKm2NVURuU1GsDZNUHkGSk2t27xfigRI5u/RFWQDtLO0vcj5vmpA668nrWfnm0s97Gj+Pjpj7roKvu58iv6OvOJ4SQEFJSUtCnT5+yfZ3RQVendbCzPatlWyUvXjk6zBMSHj+Oj5v6rIOutLP2y6Od9TZ+HB839Tmsrh1OB5bPMPYlta1EcebuBKo3wDGta+HTUUfif9/twC1vrle1RKMlp6AEE97fiKc/3YzbTm+OE3v8hLTUFKQkJ6s2kJphRI2KczQty0iru/oNoPdt9vXZAmhnCXEGN81JHXTl9az98mhnvY0fx8dNfdZBV93PkV9JCgQCgUQr4Qfatm2L9evXY9q0abjqqqsSrQ4hlvD333+jUaNG5d7bunUrGjZsmDCdCCGEEEKcQq57pk6dWukxI0aMOOB6iRDXs3AC8Ms8IH+34aSUKM6aTYGMmmWHFBUH8MKXf+GOdzbgz+yCmJtq3SAT/z6rJQZ1b4jk5NJaovu2AbnbDcdsnRYqrS8ummWk+SWEKHi/TgghhCQe/h7rCSNGHWLHjh3qddeuXYlWhRBCCCGEEEIIiZ3DBhiOUYnWlHqfEr0pDtKifCCrDpCcitSUJFx5XFNc0LMRHlv4ByZ9tAnZucVRN7VuWx4ueO5HPDDvd0w+txVO6VjXaCN3hxGtKpvw0wdAlwut7yvRkuzsbMydO7fSY/r27YvatWs7phMhhBBCCHEHdIw6hDhEk5KSsH379kSrQohrkQD3PXv2qP2aNWuq75Su6KCr0zrY2Z7Vsq2SF68cHeYJCY8fx8dNfdZBV9pZ++XRznobP46Pm/pcqa6NOgLdLzPqe9ZobLwnzlGJ4hSHpUSOplUHkpNRraQEtxyXhiGd6+O+T/biiS9zUBC9fxTLN+5Fn0e+Q9/OdTH5nFboUqemEbGalw3UyAQ2fhm3Y5R21j12Nj8/Hz/88EOlx5x44omO6EL0wjN21gU6SBDIa6+9Vukx559/PurVq2dJe1VBO0sSgR/Hx0191kFXJmzVk+REK+AHJIWuCSNGCYmdwsJCPPzww2qTfZ3RQVendbCzPatlWyUvXjk6zBMSHj+Oj5v6rIOutLP2y6Od9TZ+HB839blKXcUx2ulMY1+co5JKV1LbImA4LPduBnb/Ybzm70b9akl48MyG+OmGhrj4yEzE+lxq7g870e2+Fbhk5jb8trMYKC7Y75iNE9pZ2lniftw0J3XQNR4dioqKVIrIyjY5xqr27OyLnfJoZ72NH8fHTX3WQVfdz5FfoWPUASZPnnxASl1CSGwkJyerzQ3ooKvTOtjZntWyrZIXrxwd5gkJjx/Hx0191kFX2ln75dHOehs/jo+b+lypruLZPGGU4SAVJK2u1PuULbMOkFbNcJTKq/xd+n8t66fjxYG1seLq+ujXNj0mvWTh/UvLdqLDI9tw07vbsH1vIVCQAyugnU2cHoRYhZvmpA668nrWfnm0s97Gj+Pjpj67SVfiHEkBD8fyPvvsswltf+3atZg9ezbWrVunQqYlVLtPnz746KOPEqoXIVbB4tGEEEII8TNy3TN16tRKjxkxYsQB10uEeI6tPwKr3wDWfQwUV7IqPiXNSH0ra7Rz/gYKc7DgzxoY878tWLFxb8zN18pMwS1nH47rn/sc1apVi1kOcQ+0v1XD+3ViN/weEkJI1fD3WE88XWN0zJgxyM6Wm67EEex3ln1GjBJCCCGEEEII8RRSc7T3bcAxVwM/fWDU+5TUthLFmV4aMdr8aKDD6cC8O4HNqwwnaSFwSqtkfH1LV7y+/G/c9vZvWLctL+rmd+cV49bXvsGTn7XH3XffjUsvvRSpqZ5+3EEIIYQQQgiJEU/fKUhx70TX9Awu6CuO0UTrQwghhBBCCCGE2EJWXaDLhcYWjma9DMeoOEslejR/D5KrN8L5PRvh3K4NMO2zzbjnvY3YJulxo+SPP/7AVVddhYceeggTJ07EmWeeWe6evIycHYYDd9NSIHcnUJgLpGUZ+ot+Hfsb+4QQQgghhBDP4WnHaOvWrVUa2wpvhByIEq2oXUaMEhI7RUVFZamo+/Xrp/UqcB10dVoHO9uzWrZV8uKVo8M8IeHx4/i4qc866Eo7a7882llv48fxcVOfbdNVokaXzzD2pQZpUZ7hnKzeAOmpybju5INx6dGNcf+83/HQ/N+RU1ASdRM//PADzjrrLBx//PGYMmUKjjnmmKCUv7OBdYsqTPlbtHMTPvopF1jwKfp1OQSpRww0omEtgHaWEGdw05zUQVdez9ovj3bW2/hxfNzUZx10FR2Ifni66mydOnUOcFjavQlt2rRRTtlWrVqV28z3CCGxUVJSgmXLlqlN9nVGB12d1sHO9qyWbZW8eOXoME9IePw4Pm7qsw660s7aL4921tv4cXzc1GfbdK1WD2h9krFvRmXm7lCRoya1slJx779a4oe7e6F79+4xL3ZevHgxjj32WJx77rn4afZ9wJvDgF/mGU5Rccju/QvI3gTs2qBeS/ZuxbKcQ7Bs30Eo+WWhcfyyGfIwIe5u084S4gxumpM66MrrWfvl0c56Gz+Oj5v6rIOuup8jv6KvO98CxBFpIk7LoUOHYuzYsZY5J6V+qUSASlTqvHnzsGLFCsyfP1+9N27cOIwePdqSdgghBikpKTjxxBPL9nVGB12d1sHO9qyWbZW8eOXoME9IePw4Pm7qsw660s7aL093O1u9evUy+ZUdQ/T9HjuNm/psq66HDTAclBm1jDS2Uo90z2agKB/IqgMkG48qDqmTjgfOb4+NvZvhrXmf4c1vtsfU3Jtvvol33n4TVx7XBHedWh9N0/cajtEQUgJ5ODHpa9V+SkE2kFkTWP48kLMdOGGUpIWKucu0s4Q4g5vmpA66xqNDLNdBvJ6lnfUafhwfN/VZB111P0d+JSlghjl6kPvvv185QmV1qThFp06danub4iydNm0aJk2ahAYNGqj9k08+2fZ2ibeZPXu2mkvihJdNoqF79OiBgQMHYtCgQQdERzvF33//jUaNGpV7b+vWrWjYsGFC9CGEEEIIIYS4BInEFKejsHeL4RxVJAEZNYG06kBysiyzBwr3qYjSLzbmY8xHe7F4Q/T1R02qpQE3HlsdY06ojlq1a5e2kwKUFJe1A5Q+JpE6qDUaG/vdLwN6XB5vr4lFyH1nVc94RowYccD9qp/g/TohhBCSePh7rCfJfokYFQeSE9SuXRtjxoxRUaPnnHMO+vTpg+eee86Rton3kAjkunXrqvnbrVs3FZm8c+dOLF++XP09bNgw9f/PPPNMolUlhBBCCCGEkMgRR2OnM419cT7WbGrUHBWnZP5uYO9mYPcfxqv8jQCOaV0Ln97YGe9cfSg6N60WU7M5hcC/P9mHNo/swGNfl6AgtQaQXh3IrGXoUK8NkFXfcNCKs1actoI4caVGKSGEEEIIIcTVeNoxGhxFF+wkdYrJkydj5syZGDJkCJ2jJGrE2Xnqqaeq/bVr16r5JPNY5rW8yt/iJJV9cZDK5nUkwD0vL09tuge766Cr0zrY2Z7Vsq2SF68cHeYJCY8fx8dNfdZBV9pZ++XRznobP46Pm/psu66SllbS04qDVJC0unVaGJtEaqZVQyAlE3mptZGX0RCB2sb/JWXWxplH1MeqOY/iuWefxcEHHxxT89v2FuH619ei413L8OrXW1FSElClRPOQgbysJgjUaLrfOaocswBWvxFzd2lnCXEGN81JHXTl9az98mhnvY0fx8dNfdZBV93PkV/xtGM02Blar169hOgwYMAAvP766yqV76pVqxKiA3FnpKjp6Jw1a1ZYx744SSWK1HSkej1ytLCwUDmEZZN9ndFBV6d1sLM9q2VbJS9eOTrMExIeP46Pm/qsg660s/bLo531Nn4cHzf12RFdxTkq6WnPmQa06wukpBlRoxJBWrsZCmu3wuS8CzF53wAUplQz/l+OO2caUo++CldceSV+/vlnVcpGsjfFwvptebjwuR/Rc9JKfLhmFyZv/YfaCtNrA1mlzxFydwIlRcB3s4A3hwMzLwFeGmC8vjMSWPmycUwl0M4S4gxumpM66MrrWfvl0c56Gz+Oj5v6rIOuup8jv+Jpx6g4Q8877zy11apVK2F6iHP0qquuUhshkWCmfpZ0uZKOuTLEaSqOd0Gcqbt2mbV5CCGEEEIIIcQFNOoI9L4NuGgW0GsY0PRIoG4LoHqD/cf0vNL4fzlOji+lWrVqGDt2rMqyc9NNNyE9PT0mFVZs3Iv+j32LF198EZs3bzbezKojy/yNuqPbfwX2/gVs+BzYtRHY97fxunkV8NUzwMsDgYUTmG6XEEIIIYQQzUkKMJbXEcRZJY7alStX4sgjj0y0OkRjpkyZom7shWnTppU5PStjxYoV6N69u9qX4+VzXiweLeaqpKRE7ScnJyNJVphrig66Oq2Dne1ZLdsqefHK0WGekPD4cXzc1GcddKWdtV8e7ay38eP4uKnPOugaiw6//fYb7rjjDrz00ovKpxkrF/VsiAn9aqNl2g4gUAwkpYoSQFKySvOLQImxL1GskvpX1UctRdIDyxakL+2stch959SpUys9ZsSIEQfcr/oJp+/XdUEH2+UmXXk9a788t9pZEhl+HB839VkHXeW3t3Hjxr77PdYdOkYdZNCgQahfv36VF+/E37Rp0wbr1q1T+7LqOdL6uMGG3amvtV9vtAghhBBCCCF6s2rKGbjlv0vw4feVp7itjPQU4OqjMnHb8WloUE2covJuMpBaQVSqOEaz6hq1UoVOZxo1VDV+WOhm6BitGt6vE0IIIYmHv8d64ulUurrRs2dPLFu2LNFqEI2RyE/TKSpE6hQNPXb27NmW60YIIYQQQgghbuHIgzLxwXWHY8FVjdD9oNSYZBQUA498kYc2j+3BxM/ykFMgT1FSgBpNgVqHGK/KEZoEFOUBezYDe7cYH17zLrD8eWs7RQghhBBCCIkbOkYdRBxXwU4vQkKZP39+2X6dOnWi+mywY3TevHnwIsXFxZg7d67aZF9ndNDVaR3sbM9q2VbJi1eODvOEhMeP4+OmPuugK+2s/fJoZ72NH8fHTX3WQde4dEjLUi+921XHV8Pr4bX/a4HWDYLS3UbB7nzg1oX5aPf4Hjz7TTGK0moC6dWBzFpAzaZAvTZAVn3DQZq3a79zVByjpTVHaWcJcQY3zUkddOX1rP3yaGe9jR/Hx0191kFX3c+RX6FjNAG1RgkJx9dff122LzVpoyHYkRrsYPUS8kPyxRdfqE33HxUddHVaBzvbs1q2VfLilaPDPCHh8eP4uKnPOuhKO2u/PNpZb+PH8XFTn3XQNS4dJK2tkJKG5OQkDD48HWvu6oHHBrdBgxppMenz554SDJmzE0fcuxxvf7NtfwkTiSKt3sBwkprO0fzdxv+tfiP+vlQA7Swh7p+TOujK61n75dHOehs/jo+b+qyDrrqfI78SWz4ZEhOMFiWRpNKNJY1uqCPVq3MtJSUFxxxzTNm+zuigq9M62Nme1bKtkhevHB3mCQmPH8fHTX3WQVfaWfvl0c56Gz+Oj5v6rIOucenQrBeweRWQWQfIywby9yC9eiNcd/LBuPToxnhg3u94cP7vyCkoiVqvNX/l4Oynf8BxbWphyrmtcGyb2sZ/ZNQEivKB3O1A7k4jze66j4FjrkZKei3aWUIcwE1zUgddeT1rvzzaWW/jx/FxU5910FX3c+RXkgJlSxyJ3QwfPhyzZs3C9u3bE62Kpzj11FNV7dadO3c60p5EY06bNk05H2WTKGBxYsomugwdOjTqNLgmSUlJZft9+vSJKiXu2LFjMWXKlLK/5XzEqkeksHg0IYQQQgghREtydgCvDAKKC4FdG4waoJLuViI7S9mcnY973tuI6Ys3ozh6/2gZZx9ZHxPPaYWOTaoBJUXADlmoGgDqtABSM4Few4AuF1rTL1J23zl16tRKjxkxYsQB96t+gvfrhBBCSOLh77GeMGLUQV5//XX07Nkz0Wp4KrpyyJAhZVGW4qC00xEoTkfTISrtiONy8ODBan/t2rXKYSrOSdnk/+TYaKM+g4m3Lzt27LDdMUoIIYQQ4meKiorUNVdVWT1SU3nbRYjjVKsHtD4J+GWekVZ3z2YgdweQmmFEdgJoWjsDUy9shxt6H4zb3v4Nb6zcFlNTb63ajne/244rj2uCO//ZAgeJfEmlK5GqNTKBjV8C7U8DfvoA2LTUiCYtzDXqoIpuEt3asf/+9L+EEEIIIYQQ2+AdukNMnz5dOe66deuWaFVcjzgmxfk4e/Zsx9qTSFAzPe2YMWMwbty4Cp2O4hwdNmyYem3Tpg0mT56sjk8EXqxnKwHuJSXGUu7k5ORyEba6oYOuTutgZ3tWy7ZKXrxydJgnJDx+HB839VkHXWln7Zenu50Vpygjltz9PXYaN/VZB13j1uGwAYZjVFLaiiNSan+Kg1TS3WbVAZKNRyIdmlTD7GGd8cU3P2LMBzuxeENh1LpKxOkzn/2FF7/ciptOaogxvUpQK63AiFTd+AUCLw9CSXGR0RcEUNaVXRv/n73zgJOiPP/4b3dvr99xd1RROgoiCnIg9kaxxJiogCUxaiyIif6NBeyaxIigppgYImo0iZWiiSaxAGKLhSqKBREQUDrX+7b/53nn9jgO9u52d2bvnZnf18+6c8vsM8877+yzM/Pb53mgSv4uf9IQcsXnboPb3J5b4iwh8WKnY1IHX5PxQSqV/etf/2p1nR/84AcoLNzzow+ezzLOOg03zo+dxqyDryzYqicURlPAm2++qcQy+eCJwEbiQwRJyQpdunSpEhyb9+G0GtnWmDFjmkRGKYU8YcKEmOtLpqhkj8o8RzNI5W/JHk21kNlW9oIdCQQCmD59uloWcTo9PR26ooOvqfbByu2Zbdsse8na0eE4IbFx4/zYacw6+Mo4a709xlln48b5sdOYdfA1aR9EYCy+FFj+FJDb3XhNxFHVA7TEyBz158idMiAcRvEBXoy59Db0+uorfLxwDr7YGYrb59pAGL9ZsB2P/s+DO06uw9VHVSMj3Y+ALxfTd5xijCXzGaSjAfB4AZ/f6IMqiIgrD/FZHq3cvGOcJcT+x6QOvibjg7x348aNba5j1vba4w/PZ0mqceP82GnMOvjaMg4SPaAwarEgKoJYNLNRyqqeeuqpHe2WLZBfk8USCqPCpNUZo7L95qKozGVromhzpDeoZIyKqDt79my13FbmqNlCphMzRgkhhBBCCCEkLkRgrNkNfPGKIY5K+VopZSuZnFLuVh5RIiH1g+ZBgwbhiYGd8NynDbjrzRp8VxF/A9JdNRFc/99K/OGDGtw7Ng/nDt+05x8DNYDHyB6F3CuTkrvSi1RK6Up2qwi54vMJN7YqjhJCCCGEEELixxNxcC7vaaedlvKsORGjZJvNRSnZxXJxJWIZhdH2EU1rl3K1IiiPHDlSZWFKRqa8Jv0+JRuzZQkPM3tqRrM+BSmBvHz58rjeL+9tniEsmaOt9RyV7NTi4uKmv0WElQzV9iL7Q/ZLlLayW+3YPFo+S/X19Wo5IyND+1INHe1rqn2wcntm2zbLXrJ2dDhOSGzcOD92GrMOvjLOWm9P9zgr5z0spWvvz3GqsdOYdfDVNB/ktoeIjfKIIsKoCJKhBiASVtmbkYYa1Ef8QDiIDNTC4/GhNqM7Hv6oDtNf24Ty2vgzSKOM6JmGX48vwqlDuiDDnw6PzweEQ0CgGqivFCeNFSV7NJrdKqLuyMtcHWdjwfir3/W6LugQu+zkazI+JPI55PmsfeIsaR9unB87jVkHXyVWdu/e3XXfx7rj6IxRKb1aXl7eoXWc5cMmj6uuuoqiaBx0tF4vomZUFI2m2seLiLgiqEZL/06cOLFVcdVMUdcKezogn6XMzEzYAR18TbUPVm7PbNtm2UvWjg7HCYmNG+fHTmPWwVfGWevtMc46GzfOj53GrIOvpvkgN8FEYOx9DLB6PrB+sfF67t62PTW7kVmzS35CDoR9gNePrPwiTDvNhyuO64Hpr23GH9/6Dg3B+K9XV2wJ4ntP7cD4IQHc/8N+OLJ3jvEPmflATjcji1XK+0qpX+Vbd0PIFZ/303OUcZYQ+x+TOvjK81nr7THOOhs3zo+dxqyDrzoLx27GCwcj2XnRbM2WQmUqHoJsX0TRtn5BRfSieTaqCIyJZl6ef/75TcsikKayP2pRUVHKtkUIIYQQQggh2iMC46m3Az+aC4yeDBwwDCjsA+R0NZ77HAfk9gC6HGz0H5XLehEsAXTO9ePBCf3x1S9H4eLR3RKucPvG56UYcd8K/PivX2LDrlrjRa8PyOkC5B0gdy0McTRa4leEXEIIIYQQQohpODpjtLkw1FyoTBWSLfjYY4/hyCOPTNk2SfK0FDAl8zNRRFBtLrJKn1J5tEfITLZHqBMzRkOhEN599121fMIJJ8An5ac0RQdfU+2Dldsz27ZZ9pK1o8NxQmLjxvmx05h18JVx1np7jLPOxo3zY6cx6+CrZT5IL8/hFxmPltv7+2+A3etxQmYNfFVbjCzOtAxDKAXQp3Mm/n7ZYNw47iDc8tIGvPaZIZzGyzNLdmDuip245sSeuP3M3uiS6ze2EawHancbgqz0G5Xs1mOuMXxu6SvjLCG2PiZ18JXns9bbY5x1Nm6cHzuNWQdfxQeiH44WRlv2cxRRVMTK1vo8xktzMWvAgAFNPTHHjBlj2jZIamkpXI4aNSphWy2PtdmzZ8cURpMVMlsKqU7MGJUvkrffflstH3vssdp/8Xa0r6n2wcrtmW3bLHvJ2tHhOCGxceP82GnMOvjKOGu9PcZZZ+PG+bHTmF0bZzfJj6n74dhuG+HLrDGyNyu3GoJlVgHgNW6jDDsoF69eezje/LIUU19cj+WbquPenpTk/f2b3+Gv72/DtNN64foxByJbtiFirPRAlYew5tX9iriMs4TY+5jUwVeez1pvj3HW2bhxfuw0Zh18pTCqJ44WRqNCU7ScrvR3ZPYmaYs5c+bs9beI6ckg4uj69eub/p43b17M0rxyzEYFzpKSkri203J9J2aMer1ejBw5smlZZ3TwNdU+WLk9s22bZS9ZOzocJyQ2bpwfO41ZB18ZZ623xzjrbNw4P3Yas6vj7M4v4a2LGH0+BRFHVRZniZHV6c+RlYFwGKceWIclV+Ri7mdpuO2NSqwvDce93Yq6EG7/1zd45K0t+OX3++DSoblIC1YCdeVGH9RNH+4jjDLOEmL/Y1IHX5PxISsrq+m9ra1j1vbaguezpCNw4/zYacw6+Kr7PnIrnkgqa8umGCljO3nyZCWKzpgxAzfddFNHu0RMYubMmXuVqBVKS0uTFgNFwJTM3+asW7cuqSzjiRMnKjE0ivScjZU1Om7cOCxcuFAtyzZl2+2luLi4qQRwvO9NlJ07d6Jbt257vbZjxw507drV8m0TQgghhHQ0ct4za9asVteZMmXKPudLhBDNkdsk7z4EfPGK8bf0+5TSttEMzv2RlomGunrMXlaNXy2uws7qxG+1HNo9A9PHZuLswwvhKeht9D+d9PeE7TkRxt+24fU6IYQQ0vHw+1hPHC1XNy8lmkyfSOIeoqJkc5ItvdyypO3+ttFcGI0Sb8Zo81K6yWa5EkIIIYQQQohr8XiAE24Eii81/pZenwV9jEdmAeDPVkKoepa/G/8tPd2Hnx+dja9/0RV3npyN7PTEbrl8sb0eP3ymHCfM2or315UDDTXmjo8QQgghhBAX42hhtLmgZWZfUeJcFixYYLrNllmszcvqtqS5gN+yZ2hbNLfbXGAlhBBCCCGEEJKAODryMuCcR4GDxwM+vyGGSnndTr0MMVSe5W95Xf497wCgUx/k5+XgV2PzsO6OQ3H1iQfAl+Cdl/9trMdxD6zCOQ8vwZdffmn2CAkhhBBCCHElrugxSkh7aSlamnEMde7ceZ/XpOTt/rI65bXmPUljrdeSliLqpEmT4EQaGhpUWWxBSimnp6dDV3TwNdU+WLk9s22bZS9ZOzocJyQ2bpwfO41ZB18ZZ623xzjrbNw4P3Yasw6+ahFnuw0GTr0dOOYaYM2rRr9P6TkqWZzpjRmjvY8GBp0BLLgb2LrKEEkDQI+sBsy66GD8YsyBuOWf3+CllbsS8uufSzfj5cMOw+WXX4577rkHPXv2ZJwlxAHHpA6+ahFnNbXNOEvagxvnx05j1sFX8YHoh6OF0X79+jVlAObn53e0O8SGwmjLMriJsD9xVbYTS/CUvrjR/qlSdrc9wmjz8rwTJkxw9I8CwuEw7IIOvqbaByu3Z7Zts+wla0eH44TExo3zY6cx6+Ar46z19hhnnY0b58dOY9bBV23ibFYhMPwi4xGLXqMNYVTE0rpyoL4SyOmGQ7pn4/krh+Ka5QPUPYpNmzYl5Ndjjz2Gp59+Gr/4xS9w/fXXM84S4oBjUgdftYmzGtpmnCXtwY3zY6cx28lXkjo8kUgkksLtEWIKM2fObBIPo5SWliYtCHqkXFIzJHtz3bp1SdmcPXu2EjubI79UmTp1asz3FBYWqizQ9m5/4sSJmDdvnlqW9VNVOjrVzaMlXFVWVqrlvLy8feZLJ3TwNdU+WLk9s22bZS9ZOzocJyQ2bpwfO41ZB18ZZ623p3uclfOeWbNmtbrOlClT9jlfIvp8jlONncasg6+2i7M1JcCzk4BQACjbCATrgKzOQE4XyJ2XynC62sY7n2/Drf/cgM+21CRVmejmm2/GT3/6U3Tp0sWxcTYWjL/6Xa/rgg6xy06+2i7OptC2W85nSXK4cX7sNGYdfJXv3u7du7vu+1h3HJ0xSkg87K+npxmZl/vLOt29e3er71m0aBGKi4tVZqkIq1dddVWr2aJRUVQEVyf305UvL7tkf+vga6p9sHJ7Zts2y16ydnQ4Tkhs3Dg/dhqzDr4yzlpvj3HW2bhxfuw0Zh18tV2czS4C+p8MrF1gZJhWbgVqS4C0DHgy8pDvM0qpff+IzjhzaBH+/uF23PXKN/i2NP4Sa3JNecstt+DRRx/FvffeiwsuuABeb/zNTBlnidOw0zGpg6+2i7MptM3zWdIe3Dg/dhqzDr7qLBy7mfjPmglxKCUlJR1WsrclUj43Wv9csk2l12gsO5ItKoh42loWKiGEEEIIIYQQixk6wXjOyDdK6kJSRbcC1buAcLBpNZ/Xg8uO7YGvfjkKM37YB50yE7s9s2HDBvzoRz/CyJEjm1oJEUIIIYQQQmLDjFFCWskY7UhE5BSBVIRPyR4V4VNEUnlNBFHJEo2WE5ZfCbeWVZpKEilVdPfdd+POO+9EKBRSv3JOS0vbp0G13+9XNeE//PBD9SwX/vJa83UDgYAqkSCvRX8tLesGg0H16xxZP1XryutLlixRrx111FFNrzVfV94vdnw+n3q0Znd/64pN2Z7QvHl4dF1h6dKl6nn06NFNr+1v3Vh2xYfoL5tkfuQRa13ZNx999JFaHjVqVNNrseazpV2z5z6WXVlXxr18+XLlw9FHH62eE5l7eU38EuRzGt2W1cdJW3Of6nXjnc+OWjfez7JZx0mi61odI/a3ruy36I9xZMzyulkxwuz5rK2tVTFOXj/mmGPUNuOZezOOk7q6OvUZbu6Dld879fX1asyyHZkfee6ouW/Lrrz2/vvvq+Vjjz22aR/HO/fy+rJly9T60TGn8jhpa47a069G3i8+OyFGxLtuWzHCrOPEiu8HM4+T5uvKax988IFaPu6445r2RSq/S9o7nzJ+8VVek3O7rKyslB0n0f0uy3KuJc/iQ2ZmpqXnEbKOHJPin5w/Z2RkxL/fuw1GYPhPEFnxNNJyuhu/Rq8rQ6C6DB9U9QF86TguZxN8Po8YQFpDHa4vDuGnh3bB/e9U4Y8f1qIhFH/Ho5UrV2L8+PEYN26c+pHt4Ycf3q4YIWP+3//+p5YlzkbnLhXHSTLnEdHX28JuMcLMdff3HdVyvznxWqOta0ddrjXaez1o9fdD8/sGqbgmldei19AyP7Its2KE2XMvrze/HoyuH2+MkPdbfd9Ax/MIt9yPSOY46ajvh2SvNeRZxmzWtaNV1xqyrlyzt/d60KrjRHwg+kFhlJAOyBhtrwg7duxY1TtVyunOnTsXY8aMUe+VEr9SMlcueEUQNaPkb0cjX1Kvv/66uoA/99xzm17/wx/+gJqaGtUfRsYppYOFN998E4MGDVIlo6I88sgjKC8vxxVXXIEDDzxQvbZ69Wq89NJLan9dfPHFTes+9thjqufKJZdcgr59+6rXvvrqK7zwwgvo1auX6tUT5amnnsKWLVtw4YUX4pBDDmn6ZfbTTz+tasRfffXVTes+88wz2LhxI374wx82+XrAAQfgH//4hyqrfO211zatO2fOHKxduxY/+MEPMHz48KYa8yJ0S937G264oWldGcPnn3+OM844Q50IR4/ZP/3pT+qGjZTRivLvf/8bq1atwimnnILFixer1wYPHqzWlS9nEaGjyD6XG84nnXQSTj75ZPWa3HiPZizfcccdTScUUuJZbnrIiYTcdBHkBGX69Olq+Re/+EXTmOVL/7333lMXI9/73veatid25T2ybrSUhVwgyPuGDRum9luU3/72t8qXn//852p/NJ/7IUOGNGVLC3/84x9VzwD58UCPHj3Ua59++in+9a9/4eCDD8ZFF13UtO5f/vKXvT7vcgNH5kF+bNCnTx9ceumlTf/2xBNPYPv27fjxj3+MAQMGqNe+/vprPPfcc+jZs6c6fqJ+ffHFF/juu+9w/vnnq/0tbNq0CX/7299U34Brrrmmye7zzz+vfuDw/e9/v+n9cszKup06dcL111/ftK74tWbNGpx11lnqIkqQY1d6KmVnZ6veUlFefvllNe7TTjut6YRcPhPyOZKTtdtuu61p3f/+97/qBpocJyeeeKJ6TT5rDz74YNMPFqKIjyJ6H3/88SoOCXIiGp37W2+9tenk9a233lJzLzcTTz/99CYb0XVvuukm5OTkqGW5CSfH6JFHHomzzz67aV3xQez/3//9X1N8a0+MiP4w4+OPP1afAzNiRPPjRObMrBgxYcIEHHbYYeq1b7/9Fk8++WTKY4R8x8hNeUE+P7/73e9UjIjeIJExS+aJWTFCfswjN7SFd999F2+//XZSMULmXnwRZMzih1ycvfrqq6bEiMsuuwy9e/du+nzvL0bIvMmcNPeheYy48sorm9aV74HNmzfHFSPOOeccHHHEEeq1rVu34vHHH9/rmJTtmRkjoheYYvu1115LKkbI90D0O0h+1JWbm5twjGg55nhihMy9iKPN58jMGNE8dsXin//8p1rXKTHCzPMImcfoHMsYop97M2JE8/MI6cUopDpG7O88QuYsOuao2G9mjDDzPEJu7Mi8CfK57YjzCPEheq4k+83q8wjZnpxrRj97zec+rhixvB47d56MSwpXoK+EP38W1lQWYHFwNBAEjq5aBp/HyB59KngetqAbLsxdgAcnVePaM9Pxi39uxUtLNyMR5LtbHvJjA4mbcky2FiNkzNFjUr4L5DMaT4xofpzI59aqa439nUe0B7vFCDPPI2S/t+Svf/2r2u9OvtYQX5pfO+p8rSHHTtRXid/z589P+bWGfM9GfZBjVo4RK88j5LMc3Z7YkB/mmRUjxH7zuTfjPCKKxFOZ+0RihMxH1C+JM3KfL54YIcdZ9P2FhYXq/qBV1xq8H5FYjGh+nMg+MCtGWHXPMtlrDbm2q6qqahqzHOs6XmvI533mzJlN9qLXg6m+1pC4SvSDwmgCNL8p1RwJIBLIosGCEMEM0VLET10yQjsS+YKULyLppyNf3HbwtSNryct2U+mDlWOO2t61a5cSH81g4MCB6oQ4kV5MLf1qT+/gtt6fjB/EOuQmlZz0u2l+7HZMyoV/R/sq53+p8kFuKsiFlhXbM3Pum9tI1p6cY8sNgER75wlyY6KjjxNi7XFiF6LHpGTV6T5m8e/QQw9VN2w70geJTXIDLVXbO+igg9S1hinns4NOB755XpXV9YQ7A+VANurg9YvAFwQ8XiDsA+Q3STndgIzd6JMBPPDLW9D95U/VjbvPPvssoU1L5qvczJMbq3LjtkuXLjHHLDfC5WZtImOW98v3ktwQJUQHonFDBKVt27ZBZ3jfwJr7BjLvMv9mXWuIsGPWfQMRK3WfIxI/cq0hP97R/dzOzfcNhg4dahtfSWrwRCSn2MFUVFSoZzOb7Lb2IYp+QckNMvlFhvx6p6Mb/DoR+bVHtIxsFPnFVTIipPz6Q8oONUcyHKKlAcy0K7+KcUL/F7nITqR0bqKldK0oXaNrWQpdypd0ZJlMN5S3Yumajj9O7Db3uh0njBEdvy5jRMfGCPkltPxqujXkekAECcYIxoiOWJcxQoPziF1fAavnI7xuMYLBEGQzfs+eEqeBiBdyVyYtzQfvgFOAoech3OWQJruS+SJtViRjIlHknoRcP1933XVqbpwQI0T4iPWj9SiS5SdZHG6NEXKPJJq9FkV+ZCqZZh0994wRHb8uzyN4HsHziI4/Tuw297odJ3aJEZLRG80SjiLZt5LNTToOxwujciDKQ8qRRFPPrUB+XSllCOQhN0jeeOMNVQJDPhhyAXLfffdZtm03YidhVMpONE+fFyiM7iuM3nPPPab4RAghhBCSKuSCVkqJtUbz8nuEEBdTWwqseRXY9KHqOYqGGiA9G8gsAHofDQw6A8gq3O9b5aagXFdKGcJ169Yl7IK0+PjlL3+pSjg2v2FnRxh/E7te541YQgghJLXw+1hP7H0m3E5Sof1K6RmpSS4PIVrnXQQ8qaMtops8mD2qL1KmjSQPAzshhBBCCCGEtEBEz+EXGY84kR97T5o0SfW2kr5jIm4274XeXqSHnLRokb5Y0m9N+oaxLCMhJJkkEUkMaQ3p9Sf3TAkhhBCdcIUw2pFIyRtpaCwnAnIh89prr3W0S4TYFilTIBfxwg033LBXeQXd0MHXVPtg5fbMtm2WvWTt6HCckNi4cX7sNGYdfGWctd4e46yzceP82GnMOvjKOLs38p6f/exn+MlPfoIZM2bggQceaCrlFg9ffvklzjnnHBx77LH4zW9+o3qRJuqXDscJIXY9JnXwNRkf6uvr2+wvfNJJJ5m2vbbg+SzpCNw4P3Yasw6+JnKuRqyHwmgKkH6j8guqgQMH4qWXXlIXIMQelJWVWWI3mZK/bkdOvO2CDr6m2gcrt2e2bbPsJWtHh+OExMaN82OnMevgK+Os9fYYZ52NG+fHTmPWwVfG2X3Jy8vDXXfdhbq6Orz99ttYuXKl6mkVL++//z5OOeUUDBo0SLV7sfNxQohdj0kdfGWctd4ez2edjRvnx05jtpOvJHW4oseolIaRPhxW9hhtD5I1Kr68/vrrHeqHE7Cix6j0hx0wYMA+onYyPVyE2bNnY/LkyftkEssvfO1OqmukS7iSHr7R0sc6l33SwddU+2Dl9sy2bZa9ZO3ocJyQ2Lhxfuw0Zh18ZZy13p7ucZY97uz/OU41dhqzDr4yzrbP3q5du3DHHXeoPqTJ3Dv56U9/qsr09uzZU/vjhPG3bdza00yH2GUnX5PxIZHPoV3jrJPPZ0lyuHF+7DRmHXyVWNm9e3fXfR/rDjNGU8iIESNUPxCiJyKCporOnTunbFtOQr687LLvdPA11T5YuT2zbZtlL1k7OhwnJDZunB87jVkHXxlnrbfHOOts3Dg/dhqzDr4yzrbPnjzPnTsXH330kfoR7jvvvBO3vXA4jMcffxzPPPMMfvGLXyg77ekLqMNxQohdj0kdfGWctd4ez2edjRvnx05j1sFXnYVjN+PtaAfchGQkWlWalZhDy4zT6C9KkmF/c85SuoQQQgghhBBCzGT06NF466238Morr+Cwww5LyEZtbS3uu+8+VU3p97//PcvPEUIIIYQQx0FhNIWsWLEipVmJJH4kpb45ZgjZu3fv3ue1kSNHJm3XjUjfnCVLlqhHIj103OZrqn2wcntm2zbLXrJ2dDhOSGzcOD92GrMOvjLOWm+PcdbZuHF+7DRmHXxlnI3fnmQlnHXWWVi1ahX++te/4qCDDkr4OlYyRwcPHqyySCWjNB4/COko7HRM6uAr46z19ng+62zcOD92GrMOvuq+j9wKS+mmiPnz56uM0XHjxnW0K6SNcscyT2ayP3GVAnniXySvvvqqWh4+fDh8Ph90RQdfU+2Dldsz27ZZ9pK1o8NxQmLjxvmx05h18JVx1np7jLPOxo3zY6cx6+Ar42zi9uTvyy67DBdccAH++Mc/qizQ8vLyuLfzzTff4Mc//jEeeughzJgxY597Gnv58d3T8DWUAoFawJ8FZBUCvUYDg880lglxSeyyk6+Ms9bb4/mss3Hj/NhpzDr4SmFUTyiMpoAXX3wREydOVL/cFOGN6MuoUaMwb968fYTNZErftizHK6IoS+kmhtfrxZAhQ5qWdUYHX1Ptg5XbM9u2WfaStaPDcUJi48b5sdOYdfCVcdZ6e7rH2YyMjCb7ra1D9P0cpxo7jVkHXxlnk7eXlZWl+oVeccUVmD59uhJJEymPu3LlSowfP14Jo/fff79xb2PHl/B+MhdDMncCkQi82z8HPM0yS8s2AVtXAcufBPqfDAydAHQbDDNg/CU6xy47+ZqMD4l8Dp0YZ622o8NxQmLjxvmx05h18FX3feRWPJFIJAIHIweeCJLr1q1D3759Uy6IPvroo1i4cCFkN3eUH05k5syZmDZt2l6vlZaWJi04Srnj4uLivV5bvnx5UoK22BO7UcaOHYsFCxbACezcuRPdunXb67UdO3aga9euHeYTIYQQQgghhJD9s3HjRtx11134xz/+oe5TJMpFpx2Ne08IoV+XLOOFYB1QVwaEAkAkDHi8gM8PZBYAaZl73lh8qfHweEwYDWkNXq8TQgghHQ+/j/VE+4xREReXLl2atB0p+WJ1lp5kFkp2oJRibS6ERUXRCRMmUBTVnP0JoMuWLUtKGG1ZmleyhwkhhBBCCCGEkFTTp08f/O1vf8ONN96IW265pam8XLw8+/qHmLvQg2uO74w7TsxEl4zAvivJS3XlhjAqpXQz8oHlTwE1u4ETbqQ4SgghhBBCOgTthdHnn39+n9KmggiN7UWEydmzZ5vsWevba+mnlE997LHHUuYDSRwRsJsfc5Llm4xY3rLH6KRJk5LyjxBCCCGEEEIISYYjjjgC//3vf7F48WJVjSmRH6QHQhH84e1dePJDD6aekIPrT+mOnJw8wOsDwiEgUA3UVxrZpJVbjd6jud2BL14BsjsDIy+zZGyEEEIIIYTYWhidM2eOei4vL1fZmJKJKRl4ctIuJWqjolNUgIxVCiaVFYObi7ayXck2XLRoEfLz81PmA0mcW2+9dS9hVI6zRGn5XhFd2V80cQKBgOqJI1x77bXw+/3QFR18TbUPVm7PbNtm2UvWjg7HCYmNG+fHTmPWwVfGWevtMc46GzfOj53GrIOvjLPW2zv++ONx/vnnY/DgwXj//fcT+mFwRX0EdyyswiNLG/DLs/rgsmN7IC3dA2TmAzndgNpSoLbEKLUriDgqmaO9jzGt5yghOsUuO/nKOGu9PZ7POhs3zo+dxqyDr+ID0Q/thdEonTp1Uo9+/frt9fqGDRswd+5c3H///UokbZlJGhVE48kwTQbZXnSbIoBJCd8rr7wyJdsm5iBCtjyi5ZCbl0WOl5a9RCdPnpy0f25GPluVlZVNyzqjg6+p9sHK7Zlt2yx7ydrR4TghsXHj/NhpzDr4yjhrvT3GWWfjxvmx05h18JVx1np78t6qqioMGDAAf/7zn1WZ3V/+8peqH1a8bC1vwFXPrMVvF32L6T/shx8M6wyPZI/mdAHSMoysURFH/VlGWd3V84FTb0/Yd0J0jV128pVx1np7PJ91Nm6cHzuNWQdfdd9HbsUTcdDMSJbfVVddtZdAGu3vKaKq1RQVFamSuSKqjRs3DmPGjLF8m25l5syZqtxPc+SXrbL/zTqWmvcCffTRR9WxFS/NBXk5LpYvXw4nkerm0eFwWNkXZLterxe6ooOvqfbByu2Zbdsse8na0eE4IbFx4/zYacw6+Mo4a709xlln48b5sdOYdfCVcdZ6e/uzIzcQH3roITz44IOorq5O2Mdj++dj5rn9cNzAxvsx1buA2t1Gz9GCPoDPD/xortF/lNj+el0XdIhddvKVcdZ6ezyfdTZunB87jVkHX7dv344ePXq47vtYdxwljDbPypN+niJKRYVREc369u3b0a4RkxBRVMRRq4RRobi4uClbVOzGW1KopXhrtn864NYLLUIIIYQQQghxOtu2bcOvfvUrzJ49G6FQKGE7kjkqGaSHdk8HStbLT9gNYVQE0tGTgeEXmeo3MeD1OiGEENLx8PtYT/SV85NAsvtuvvlmpik7mP2Vt02m5O3+kBLN0X6g0te2pRDbGpK13FwUlZLKThNFCSGEEEIIIYQ4F8lukPK6n3/+OSYcOzBhO/9atRtDf7UMVz6zHt/VZRkv1pUbz5s+NMlbQgghhBBCHNZjNF5EiBIxa/78+R3tCjERET9F+F64cOE+/ya9XEtKSjB27FhTREixsWjRIpU5KojQKa9NmDChTVG0eRllORanTp2atD8E6lfKn376qVo+/PDD4fP5oCs6+JpqH6zcntm2zbKXrB0djhMSGzfOj53GrIOvjLPW22OcdTZunB87jVkHXxlnrbfXHjuHHHII5l53ND46IRdT53yJdzbUxb2dcAR4/H/b8MwSD64/JgvTTs1Ep1wRSMv2rFRTAqx5Fdj8EVBbCgRqjX6kUmq312hg8Jksu0tsEbvs5CvjrPX2eD7rbNw4P3Yasw6+JlN1g1iHY4VRQTL8KIzaExEhpVxPc7GxLWQdKaPcnGjGpyAip/T5jIdoX1DpNypCuzy3JnSKcBtdV6Aoav4Xyb/+9S+1PGTIEO2/eDva11T7YOX2zLZtlr1k7ehwnJDYuHF+7DRmHXxlnLXeHuOss3Hj/NhpzDr4yjhrvb122wnUYnS/fLx1VTf89/MK3LKwDqu3xi+Q1gYimP5ODWYv24w7vufDlDOKkLHjS2D1PGD9W0AosO+byjYBW1cBy58E+p8MDJ0AdBsc97aJO9AhdtnJV8ZZ6+3xfNbZuHF+7DRmHXylMKonjhZG+/Xrh/POOw8vvvhiR7tCEkCEzqiw2VzgTMROMog4Kv1Bo2KtPE+fPh2TJk1qyiaVf5cs1mg5X8kqZflc85EG2QcffHDTss7o4GuqfbBye2bbNstesnZ0OE5IbNw4P3Yasw6+Ms5ab49x1tm4cX7sNGYdfGWctd5eu+1I5iYAj9eH7w3KwOlH9sE/Pq7Fna9sxLel9XFvd3dNGL+Yux5/ePM73PvuF7hwVDd4vR4gWGdkkYpAGgnLBgGfH8hsvCewdoHxKL7UeHg8CY6cOBUdYpedfGWctd4ez2edjRvnx05j1sFX3feRW/FEHN6I87HHHsPVV1+thKu+fft2tDvEAcybNw8vvPCCygqVR1TAFRFUyvief/75cWem2hU2jyaEEEIIIYQQF/DydUbWZtU2oz9oRj6QdwBqG0L44+ItmP76ZpTVBBM2P/zALMw4LQ/j+7cidKZlGqV0ZdvCod8HTriR4mgMeL1OCCGEdDz8PtYTR2eMCiNHjoTDtV+SYiQbtK0+o4QQQgghhBBCiGOQHp8ijErmpgij9ZVATjdkpfsw9bReuOL4Hpj+2mb8cfF3qA/Gfw/m4+9qcdpfazF2QDpmnNUdI/p1Brw+IBwCAtXG9iSbtHKr0Xs0tzvwxStAdmdg5GWWDJkQQgghhDgTx2eMCuXl5ejUqVNHu0GI4+AvXgghhBDiZuS8Z9asWa2uM2XKlH3OlwghxHbUlADPTjJK3JZtNETKrM5ATpe9VttUUoe7Xt6Iv3+0HcncbbpwVFfce3Zf9O9qlPBVAmltKVBbAjG8w9sNswLntWrD7fGX1+vEaiorK/HOO++0us6JJ56IvLy8lPlECCG6we9jPXF8xqhAUZQQZxAIBPCXv/xFLUuJbL/fD13RwddU+2Dl9sy2bZa9ZO3ocJyQ2Lhxfuw0Zh18ZZy13h7jrLNx4/zYacw6+Mo4a729dtvJLgL6n2z095RytpK5WVuCgC8bf6k81Xh/lyXoXZSJpy4dhBvGHohbXtqAVz8rTciv55buxLwVuzDlxANwx5m90TUvHcjIBRoke7QcCFW3baRkA+BiYdSt6BC77ORrMj7U1tZi2bJlra4zatSovYRRxlmezzoNN86Pncasg6/iA9EPVwijhBBnIAnuJSUlTcs6o4OvqfbByu2Zbdsse8na0eE4IbFx4/zYacw6+Mo4a709xlln48b5sdOYdfCVcdZ6e3HZGTrBEEalx6eUs60rQ6RyG0pC2Y3vl7pkxqpHHJSL/157OBZ/sRvTXlyHpZvr4vYtEIrg4cVb8OQH2zHtlM64fhSQk+4BPFJid8+2YrLwl0DVRKD4UvYhdRE6xC47+co4a709ns86GzfOj53GrIOvuu8jt+KKUrqEEGeUAgiHw/j222/V8kEHHQSv1wtd0cHXVPtg5fbMtm2WvWTt6HCckNi4cX7sNGYdfGWctd6e7nGWpXTt/zlONXYasw6+Ms5aby9uO8ueBJY/ZSxXbUe4thzfortSKQ/KqIE3PRsQG+FwU2/QSCSMeZ/V47aFNfh6V+JZEwfkeXHPKdn46TAfSrxFmOW5pNX1p3T+CN381cCh3wdOuNF14qhbS/fpELvs5GsyPiRyHsQ4q9/5LEkON86Pncasg6/bt29Hjx49XPd9rDsURlPU43TSpEnweDx47bXXOtodQkzDrRdahBBCCCEChVFCiOuQW0jvPgR88Yrxd32F0ftTeo7GIi1Tld8NpOXisTe+wC8XlWFHVShhFwZ19uLuMw/EVwMub3W9KVn/QbdOjT1KJWt05GVwE7xeJ1bD8yBCCGkbfh/rib5yvoOQdO0FCxZg6dKlHe0KIYQQQgghhBBCSGJI1qVkX4rQKEhZ3YI+xiOzAPBnG0KoPMvf0X/LyIff58U1pw/B1/eOxt1jC4yyuAmwZncY//daO0rzNlSqrFaFZLnu+DKh7RFCCCGEEGfBHqMpoKysrKNdIMQRSPmDL774Qi0feuih2pdq6GhfU+2Dldsz27ZZ9pK1o8NxQmLjxvmx05h18JVx1np7jLPOxo3zY6cx6+Ar46z19hKyI+KoZF/2PgbhT+fhi89XA+EgDs3Jgtezn6JkPj/Q/xRg6HnAG3cgz7MT94zthKuL0/Dr/3kw+/1dCIatKGbmAepKAX+WIeCung+cersF2yE6oUPsspOvjLPW2+P5rLNx4/zYacw6+Co+EP3Q96h1EOvXr1fPRUVFHe0KIbYmGAxi3rx56iHLOqODr6n2wcrtmW3bLHvJ2tHhOCGxceP82GnMOvjKOGu9PcZZZ+PG+bHTmHXwlXHWentJ2ek2GMETpmJeyaGYV3Y4gt2PAAr7ADldjecDhgGjJwM/mmsIkt0GGyKl4PGiR54Pj0w4EJ/fPRITR3SB6WR0Mp6l1K+wfvGeZeJYdIhddvKVcdZ6ezyfdTZunB87jVkHX3XfR26FGaMp4NFHH+1oFwhxBNKnt0+fPk3LOqODr6n2wcrtmW3bLHvJ2tHhOCGxceP82GnMOvjKOGu9PcZZZ+PG+bHTmHXwlXHWZnH2rNsAv7/1N2QVAmWbjCzSAIBANQ7ufgDmXDUESzZUYOqLG/D22vI2t1tRUYE5c+bs83q6z4PvHV6EHwzvgvzsdKDBY/Q/jfZAXfMqMPyiuMdJ7IMOsctOvibjg9/vb3pva+uYtb22cEWc1fyYdiNunB87jVkHX3XfR27FE4lErKhXkjQff/wxpk+frrItR40ahfvvvx/5+flx2Tj//PPR0SV0ly1bpp5lNw8YMABr167tUJ8IMRM2jyaEEEKIm5HznlmzZrW6zpQpU/Y5XyKEENey8hlgyWxDqCzbaJS7LRoAeH3qn+XeyaurSzFt/hqs3ibKaWIU5aThjjN645piDzJCVUa/09zuRhbr2Q/DDfB6nRBCCOl4+H2sJ1pmjK5cuRIjR45s+nvFihXql4AiksYjji5YsADl5W3/0tBKNNWdCSGEEEIIIYQQQlLLoDOA5U8ay2mZhkAq5W1zujRlVZx5eBFO69kd/1hegTsXVuLbivjvq5RUB3HDvPX4wyI/7h2ThYuKs4xeUnVlJg+IEEIIIYTYDS17jF555ZVKUIyKivJcWlqKW265JS47/fv3b7LT/JFK5KSe6dKEEEIIIYQQQghxPdlFQP+T95TVFWpLgPrKvVbzeSK4dEQWvrq2E2aOy0RBZmL3VTaWBnDxvAoUP/wd3vi8BGioSXoIhBBCCCHE3miZMSoZos3FxOjy0qVL47JTVFS01/uFVIujFEUJMY9AIIAnnnhCLV9++eX79KrQCR18TbUPVm7PbNtm2UvWjg7HCYmNG+fHTmPWwVfGWevtMc46GzfOj53GrIOvjLMOjbNDJwBrFwAZ+UCg1sjirNwKBOuBrALAmwZ4jN/xZ6V7cPNxGbh8RBbuf68WD39Yh/pQ/OP8eGsApz28GmMP34X7D12O4uLi+I0QW6BD7LKTr4yz1tvj+ayzceP82GnMOvgqPhD90FIYPfLII1WP0SgiZIrA2Ly8bnszRpvbEMaOHateLygogJVIX9GSkhIsXLhQLRNCkkc+x9u3b29a1hkdfE21D1Zuz2zbZtlL1o4OxwmJjRvnx05j1sFXxlnr7THOOhs3zo+dxqyDr4yzDo2z3QYDxZcCy58y+n4KIo7W7jayRzPygEgYCIfEqHoUZYYwc1wGfj7Kj7vfqsffVjWof4qXhZ9uU/eWLrzwQtx777173TcizkCH2GUnXxlnrbfH81ln48b5sdOYdfBV933kVjwRDWdGxMTx48c3ZVtGhdF169ahb9++7bbzwAMPYNq0aeq9crL7xhtvoF+/fkg148aNw6JFizBgwACsXbs25dsnxCnNo8PhMDZs2KCW5bPs9WpZDVwbX1Ptg5XbM9u2WfaStaPDcUJi48b5sdOYdfCVcdZ6e7rHWTnvmTVrVqvrTJkyZZ/zJaLP5zjV2GnMOvjKOOvgOCu3ot59CPjiFePv+gqj16j0HFWGQ0A4AKg7Vo23rTw+wGs8Pt0WwC0L6/HfL6uRKJI1IjH6jjvusOwa1k3X67qgQ+yyk6+Ms9bb0/18liSHG+fHTmPWwVcRZnv06OG672Pd0VIYjYqjImrKgSu/5psxY4bKJI2Hxx57DJMnT1bC6Ny5c3HuueeiI5g/fz4mTpxIYZQ4DrdeaBFCCCGECBRGCSEkCeR2lGSNyiOKCKN15UZZ3fpy47Vw2HiWEru+xsJn2Z2BrM5466tyTH1xA5Zu3LtHaTzk5eVh6tSp+MUvfoGcnBw4BV6vE0IIIR0Pv4/1RMtSutGSt8uXL0/KRvOSKCNGjDDBq+T8kNK6hBBCCCGEEEIIIa5HqoSNvAzofQywej6wfrHxem6m8Sx9RyWT1BPNHg0Bvlyj/K7fWOfkQQX46JbhmLdiF2775wZ8vbMx4zQOKisrceedd+KRRx7BPffco3qQpaU1u11WUwKseRXY/JGR1Sp9Uf1ZQFYh0Gs0MPhMY5kQQgghhNgCbYVRMygqKtrvcqqxup8pIW5Byh98/fXXanngwIHal2roaF9T7YOV2zPbtln2krWjw3FCYuPG+bHTmHXwlXHWenuMs87GjfNjpzHr4CvjrEvirPQcPfV24JhrDAFy04dGz1ERH3d8DohIGQkaWaSheqChysgclQxSpa96MLG4K344vDMee+c7/PI/m7CjKhS3G9u2bcPVV1+N3/3ud5g+fTp+eOxgeD4TwfYtIBTY9w1lm4Ctq4DlTwL9TwaGTjDGQuD22GUnXxlnXRJniWW4cX7sNGYdfBUfiH7oe9SalKkptaM7oq/o/igrK+toFwixNcFgEM8995x6yLLO6OBrqn2wcntm2zbLXrJ2dDhOSGzcOD92GrMOvjLOWm+PcdbZuHF+7DRmHXxlnHVZnJWsy+EXAWc/DEz6O/DT14CxvwQKegGF/RqzMiNA7W6gZL2RUVpXYQildRXw12zHNYfX4utfFOGeU3OQk+5JyI01a9aoVkzHHXs03nt1niGKSonfqm1A+WagbKPxLH/L6/LvaxcAL00Glj1plAgmro5ddvKVcdZlcZaYjhvnx05j1sFX3feRW3F0xminTp2wbt26jnZDCbM6+EGI3ZFfAvfs2bNpWWd08DXVPli5PbNtm2UvWTs6HCckNm6cHzuNWQdfGWett8c462zcOD92GrMOvjLOWm9P+zhbfClQsxv44pXGErpZRjlbESSlzK48WpCXk427f3Agrj49E7/6z0bMfm87gqH4szU+WF+BEx5chbMPzcL0cdkY0q3FLTRJIpV+qGmZhmibkW/0SxV/T7jRKBVMXBm77OQr46z19rSPsyQp3Dg/dhqzDr7qvo/ciicS4U/ZCCGJwebRhBBCCHEzct4za9asVteZMmXKPudLhBBC4kBuW4ngKI8oIoyKKBlqACJhwOMFfOlAZidDqIxSfCnW5h+H2++4A3Pnzk3YBa8HuGxUPn555kE4sCgLCIeAQDVQX2lksQqZBYZ427hd1T+1A+H1OiGEENLx8PtYTxydMUoIIYQQQgghhBBCbIxkWojI2PsYYLX0/FyMurAP69J67XtXS6rVhdOAbodhwLE/QGavI3AwgDlz5mDJkiWYOnUq3n777bhdCEeAJ5ZU4NmVX+L6MQdi6vheKMjLB3K6GRmstSVGX1RBxFERccVf9hwlhBBCCNEOCqOEEEIIIYQQQgghRG9EZDz1duCYa1Cx9J+Yt3hT7HVLwphySg80yx3FUUcdhcWLF+PVV1/FtGnTsHr16rhdqA2EMf21zXj03a2444zeuOaknsjI6QKkZTT2PC0zyv1KWV0RccVfQhxKdXU1li5d2uo6o0aNQk5OTsp8IoQQQtoDhVFCiG0IBAL4xz/+oZYvvvhi+P1+6IoOvqbaByu3Z7Zts+wla0eH44TExo3zY6cx6+Ar46z19hhnnY0b58dOY9bBV8ZZ6+3ZMs5KP8/B3wMWt17KPFafrzPPPBOnnXYann76adx5553YvHlz3HZKqoO4Yd56/OHN73DvD/riolHd4M0qAmp3GxmkIoyuX6xEXOUvcVXsspOvyfggwmhbGdhDhgzZSxhlnLVJnCXtxo3zY6cx6+Cr+ED0g8JoCtiwYQMGDBgAr9eLYFDquhBCEkFaIkcvWnVvj6yDr6n2wcrtmW3bLHvJ2tHhOCGxceP82GnMOvjKOGu9PcZZZ+PG+bHTmHXwlXHWentujbM+nw+XXHIJzj//fPzxj3/Efb++B2WVNXHb2VhSj4ufXIMHF3yLGT/sjfHdAY/0P5WHsOZVYPhF5g+AOOKY1MFXxlnr7bk1zroFN86Pncasg6+67yO3QmE0hXTq1KmjXSDE1qSlpakL1+iyzujga6p9sHJ7Zts2y16ydnQ4Tkhs3Dg/dhqzDr4yzlpvj3HW2bhxfuw0Zh18ZZy13p7b42xmZiZuvvlmXHHgWkx/6lU8vPg71Afjv4G56ttqnP6nLzBmYBZmjMtCcWY5kJsJbPqQwmiKsdMxqYOvjLPW23N7nHU6bpwfO41ZB19130duxROhZG05K1euRHFxMQoLC7F79+6OdocQ09i5cye6deu212s7duxA165dO8wnQgghhJBUIec9s2a1XspxypQp+5wvEUII0Sz+vnAxULYJmzduwF2v7cTfPq5DMnfLLhiWg99MGIL+hwwGJv0dHQGv14nV8DyIEELaht/HeuLtaAfcwPr169VzUVFRR7tCCCGEEEIIIYQQQpoTqFVPvTp58eR5nbBq2hCcOTTxezjPr6rG4HuW4brH31c3RAkhhBBCiD5QGE0BL7zwQke7QIgjCIfD+Oabb9RDlnVGB19T7YOV2zPbtln2krWjw3FCYuPG+bHTmHXwlXHWenuMs87GjfNjpzHr4CvjrPX2GGcb8WcZzx7jNtnhPdLxn58PxeJfHIGj+uYlZDIQiuCPC9ZhwIABuPfee1FdXW2mx8QBx6QOvjLOWm+PcdbZuHF+7DRmHXzVfR+5FVcXOJYPRFlZmcroLCkpMd2+2F6wYAEWLlxoum1C3EgwGMTf/vY3tXzrrbciPT0duqKDr6n2wcrtmW3bLHvJ2tHhOCGxceP82GnMOvjKOGu9PcZZZ+PG+bHTmHXwlXHWenuMs41kFapSuvD5gYComtVAZj5OHlSAD6cNx/wVu3Dbv77B2h1GZmk8VFZW4s4778QjjzyCe+65Bz/96U/h9/stGQax1zGpg6+Ms9bbY5x1Nm6cHzuNWQdfxQeiH64TRh988EGVwblixYqUbZNtXAkxB4/H01R/XZZ1RgdfU+2Dldsz27ZZ9pK1o8NxQmLjxvmx05h18JVx1np7usfZtLS0NnvDyDpE389xqrHTmHXwlXHWenu6x9mU0Ws0sHUVkFkA1JUD9ZVATjfA61PjmlDcFT8Y3hmPvbsNv/zPRuyoFPU0PrZt24arr74av/3tbzF9+nScc8459t5nmmKnY1IHX5PxIZHzIMZZF8dZh+LG+bHTmHXwVfd95FY8EZeodm+++SYmTpyosjhTPWQ5+GWbUj5l7dq1Kd02IVbC5tGEEEIIIYQQQlKNXHfOmjWr1XWmTJmyz/VqTGpKgGcnAaEAULYRCNYBWZ2BnC77rFpVF8JDC7/FAws2o7o+8fJ4xxxzDGbOnInjjz8eVsDrdUIIIaTj4fexnriix+hjjz2GcePGobS0VAmUIlSm8kEIIYQQQgghhBBCNCW7COh/8p6yukJtiZE52oLcTB/uPqsP1v36KPzspJ5I8yZ23+eDDz7ACSecgLPPPhuff/55Uu4TQgghhJD243hhdOXKlZg8efJegqgsp/JBCCGEEEIIIYQQQjRm6ATjOSPfKKmLCFC5FajeBYT37Q/WPT8dfzq/Lz6f2h+ThmYmvNlXXnkFhx9+OC6//HJ8++23yYyAEEIIIYS0A8c3vJHyuUJUEO3fvz8mTJigMkhluaioCJ06dbJk2+Xl5ViwYAGuuuoqVcKXEJIcgUAAzz//vFq+4IIL4Pf7oSs6+JpqH6zcntm2zbKXrB0djhMSGzfOj53GrIOvjLPW22OcdTZunB87jVkHXxlnrbfHONuMboOB4kuB5U8Bud2N1+rKgNrdRvZoRh7gzwG8XiAcBgLVKqP04NwIXrigE27a0Q1TXyvHW1+Vx73pcDiMv/71r3j22Wdx/fXXY9q0aSgoEHGWxIudjkkdfGWctd4e46yzceP82GnMOvgqPhD9SHN6tuj69euVKNqvXz/MnTsXRx55ZMq2L4KriLDiwy233JKy7RLiVOTHDfJ5ii7rjA6+ptoHK7dntm2z7CVrR4fjhMTGjfNjpzHr4CvjrPX2GGedjRvnx05j1sFXxlnr7THOtkCE0ZrdwBevGOKoPwuoLTV6jtZXGI+WpGWq8rujuuTjzUMjeK3iEEx7egk+/fTTuDdfV1eH+++/H7Nnz8btt9+On/3sZ8jIyDBnbC7BTsekDr4yzlpvj3HW2bhxfuw0Zh181X0fuRVHC6MvvPCCeh4xYgSWLl3aYX4UFxer55KSkg7zgRAnkJaWhnPOOadpWWd08DXVPli5PbNtm2UvWTs6HCckNm6cHzuNWQdfGWett8c462zcOD92GrMOvjLOWm+PcbYFHg9wwo1Admcjc1TK6spDhNG6ciDUAETCgMcL+NKBzE6GMBp9+8jLcEbxpRh/YxjPPPMM7rjjDmzevDluN+T+0Y033oiHH34Yv/71r/GjH/0IXslUJY46JnXwlXHWenuMs87GjfNjpzHr4Kvu+8iteCIOlqzHjx+PRYsWYd26dejbt2+HZq6KOFpYWIjdu3d3mB+EmM3OnTvRrVu3vV7bsWMHunbt2mE+EUIIIYQQQghxNnLdOWvWrFbXmTJlyj7Xq/Ft5Etg9Xxg/WIg1EoZPJ8f6H8KMPQ8oxxviwzQP/3pT7jvvvtQWlqasCvDhg3DjBkz1H0uqYrWHni9TgghhHQ8/D7WE0f/3EzSpMeOHduhoqgQ7QvBPqOEEEIIIYQQQgghNkBEzlNvB340Fxg9GThgGFDYB8jpajzL3/K6/Lus10IUFTIzM3HTTTepH+xPnTo14bK4q1atwumnn67ucS1fvtyEwRFCCCGEuBdH5/FK6ZGrr766o91AUVERzjvvvHb/qo8Qsn/C4TC2bt2qlg844ACtSwnp4GuqfbBye2bbNstesnZ0OE5IbNw4P3Yasw6+Ms5ab49x1tm4cX7sNGYdfGWctd4e42w7yCoEhl9kPBJEKohJxufPf/5z3H333XjqqacS6jn25ptvYuTIkbjgggtw7733YsCAAQn75FTsdEzq4CvjrPX2GGedjRvnx05j1sFX8YHoh75HrQlIhmb//v072g106tQJc+fOxZw5czraFUJsTTAYxOOPP64esqwzOviaah+s3J7Zts2yl6wdHY4TEhs3zo+dxqyDr4yz1ttjnHU2bpwfO41ZB18ZZ623xzibWnr16oW//vWv+OSTT/C9730vYTvPP/88Dj30UFx33XWqRB+x5zGpg6+Ms9bbY5x1Nm6cHzuNWQdfdd9HbsXRGaMiikrWKCHEGUjWtfzQILqsMzr4mmofrNye2bbNspesHR2OExIbN86Pncasg6+Ms9bbY5x1Nm6cHzuNWQdfGWett8c42zEMHToU//73v/H222+rErtLliyJ20YgEMAf//hHlX16880344YbbkBOTg7cjp2OSR18ZZy13h7jrLNx4/zYacw6+Kr7PnIrnkgitTtsgjSlLy4uxvTp0zvaFUIcCZtHE0IIIYQQQghJNXLdOWvWrFbXmTJlyj7Xqzoit+Xmz5+P2267DWvXrk3YTo8ePVSZ3ssvvxx+v5/X64QQQogG8PtYTxxdSlea0s+bN6+j3SCEEEIIIYQQQgghZL+ZJBMmTMBnn32GP//5z+jevXtCdrZt26bEYMlGffHFFxPqYUoIIYQQ4gYcXUpXTixvueUWrFq1CsOGDetodwghhBBCCCEOQtp2SJ+31rjgggtQVFSUMp8IIYTYE8nyFGHz4osvxm9/+1s88MADqKqqitvOV199hfPOO09VUCPESmpra/Hpp5+2us7hhx+OrKyslPlECCGEwO3CqPQYlZPBK6+8MqF+DWYiDX6FK664okP9IMTOSLPqaBa4/PAhLU3fEKaDr6n2wcrtmW3bLHvJ2tHhOCGxceP82GnMOvjKOGu9Pd3jrNiX0khtrUP0/RynGjuNWQdfGWett6d7nHUjubm5uOuuuzB58mT8+te/xqOPPprQd8ny5cvhRux0TOrgazI+VFZW4tVXX211nb59++4ljDLOMs46DTfOj53GrIOvvB7UE32PWpN47LHHlEAqvRruu+++DvFhw4YNuOqqq+D1eimMEpIE4XAYa9asaVrWGR18TbUPVm7PbNtm2UvWjg7HCYmNG+fHTmPWwVfGWevtMc46GzfOj53GrIOvjLPW22Oc1RcpqfunP/0J119/PW6//XbMmTMnaZtbtmxxfE8zOx2TOvjKOGu9PcZZZ+PG+bHTmHXwVfd95FYcL4wWFBSok8fx48ejc+fOuPHGGzvMl06dOnXYtglxAj6fD2eddVbTss7o4GuqfbBye2bbNstesnZ0OE5IbNw4P3Yasw6+Ms5ab49x1tm4cX7sNGYdfGWctd4e46z+DBw4EC+88AJuuukmTJ06FW+99VbCtkaPHq2EVmk7JffLnIidjkkdfGWctd4e46yzceP82GnMOviq+z5yK56IS7qxr1ixAmPHjlUCqWSR5uXlpWzbK1euVL0dCgsLsXv37pRtlxCrkdJx3bp12+u1HTt2OP4XqIQQQggh0fOeWbNmtbqO9Itreb5ECCEkOdwaf+UW3muvvYZp06a12duxNaT3tWShXnPNNcjMzDTVR+Ie3Po5JISQeOD9cz3xwiWMGDEC69evx9q1a1V9+yeeeCJl2162bFnTiSchhBBCCCGEEEIIIfHi8XhwxhlnqB/g/+1vf0Pv3r0TslNSUqIqqg0aNAj/+Mc/WOaPEEIIIa7CNcKoIGVCpPn89OnTcfPNN6s0Zvl13IsvvoiKigpLtvnNN99gxowZltgmxG3Ir2PlFzXy0D3ZXQdfU+2Dldsz27ZZ9pK1o8NxQmLjxvmx05h18JVx1np7jLPOxo3zY6cx6+Ar46z19hhn7Yncz/rJT36i+qY9+OCDqkJZImzatEnZkWQCyURtmsOaEmDlM8DL1wEvXAw8PcF4lr/l9dpS6IqdjkkdfGWctd4e46yzceP82GnMOviq+z5yK47uMXrrrbfG/LerrroKs2fPxqOPPqoeUfr3729an4WysjKVpUoIMYdAINBUpkU+3+np6dAVHXxNtQ9Wbs9s22bZS9aODscJiY0b58dOY9bBV8ZZ6+0xzjobN86Pncasg6+Ms9bbY5y1N1IGVzI/f/rTn+L+++/HH/7wB9TX18dtZ9WqVSoT9dTjj8aMi4ZjpH8tEAoY/xgOAnXlQEMNEAkCn70IvHE70KkXMOQHwKjLgazEhFkrsNMxqYOvjLPW22OcdTZunB87jVkHX8UHoh+OFkZF8CwvL49LsV+3bp3FXhFCkiE7Oxt2QQdfU+2Dldsz27ZZ9pK1o8NxQmLjxvmx05h18JVx1np7jLPOxo3zY6cx6+Ar46z19hhn7Y9kjEq1sp///Oe4++67VZndRMrjvvnehxj13oc4f2RX/Ob0zhiQVQ4E6+XmGeCRNTyAN80QS3evBd59EFjxd+Dwicaj22DogJ2OSR18TdQHr9fb5ntlHbO21x4YZ0lH4Mb5sdOY7eQrSR2eiINzeUeOHIkVK1a02pshVchuHjBggOpxSohTYPNoQgghhLgZOe+J/gI5FlOmTNnnfIkQQkhyMP62zurVq3HDDTdgwYIFCdtI8wJXj0zHnSdmoFuOiFvNbx96AI8X8KUZz5kFQG53oPhS45HC+22EEEKIzvD+uZ44usdoUVFRkwDa/NFcrLT6QQghhBBCCCGEEEJIqhg6dCieeeaZpGwEw8CfljRgwMOV+PXbdahqaP6vESASAoINxqNmt/FY/hTw7kNGhikhhBBCiKY4upSu9AttjgiV8po0lU8F0mN02bJl6pkQQgghhBBCCCGEEDshguhdb9XjkWUNuOeUbFw+IhN+T9gQRpVAGgakbG/lViA9B/jiFSC7MzDyso52nRBCCCHEfcJoQUFBkyAq/RbmzJmDMWPGpNQHEUXHjh3baklfQkj7CAaDePnll9Xy2WefjbQ0fUOYDr6m2gcrt2e2bbPsJWtHh+OExMaN82OnMevgK+Os9fYYZ52NG+fHTmPWwVfGWevtMc66C+lD+tvf/hbbt2+P+73bqyKY8ko1fvdBHe4bl4tzB6fDEw40iqNSnS0ElH8LdB5oZI72PqZDeo7a6ZjUwVfGWevtMc46GzfOj53GrIOv4gPRD0eX0pWenoKUz7311ltTLopGxdnJkyenfLuEOJFwOIxPP/1UPWRZZ3TwNdU+WLk9s22bZS9ZOzocJyQ2bpwfO41ZB18ZZ623xzjrbNw4P3Yasw6+Ms5ab49x1l1cdtll+Prrr/HLX/4Subk5Cdn4alcIE54rx7GPl+PdzZHGfqKNbasCNUBdY9W01fPREdjpmNTBV8ZZ6+0xzjobN86Pncasg6+67yO3oq+cb2KPUUGyNjuKkSNHqueSkpIO84EQJ+Dz+XDaaac1LeuMDr6m2gcrt2e2bbPsJWtHh+OExMaN82OnMevgK+Os9fYYZ52NG+fHTmPWwVfGWevtMc66j9zcXNx11124+rgu+PW9v8Ff3tmKYDj+nqAfbg7gxL8GcNYhabh/bCYO655ulNet2gFkFgDrFwPHXANkFSKV2OmY1MFXxlnr7THOOhs3zo+dxqyDr7rvI7fiiUidWYeycuVKFBcXq4zRdevWoW/fvh3ix4YNG1T2qpTz3b17d4f4QIgV7Ny5E926ddvrtR07dqBr164d5hMhhBBCSKqQ855Zs2a1us6UKVP2OV8ihBCSHIy/Jlyvv3wdsHUVvv5mE27/9xbMWd2Q8La8HuCSYen41SmZOKjAB3Q+GEjLBEZPBoZflOxQCCGEENvC++d64uhSutEeo7og/UYJIYQQQgghhBBCCOlQakvV08BCD16YkIMlkzvhlH6JFZaThNMnP27AwX+swC1v1KCstLFi2qYPzfSYEEIIIcQUHF1Kt1+/fliwYIFa7qhs0ZZ+EEISRxLcy8vL1XKnTp1UNriu6OBrqn2wcntm2zbLXrJ2dDhOSGzcOD92GrMOvjLOWm+PcdbZuHF+7DRmHXxlnLXeHuOsiwnUGs8R6X0WwagD07HoJx68/nUDpi2sxyfbQ3GbrAsCM/5Xj9kr1uP2M8P42Q8PQiZSi52OSR18ZZy13h7jrLNx4/zYacw6+Orggq22xtEZo8KYMWPUo6PRxQ9C7EwgEMAf/vAH9ZBlndHB11T7YOX2zLZtlr1k7ehwnJDYuHF+7DRmHXxlnLXeHuOss3Hj/NhpzDr4yjhrvT3GWRfjzzKePdFbgxF1w/j0g/1YMaUAfzsvH707JXbbsLQ2jJvmr8eg6/+Jv//97wiF4hdZE8VOx6QOvjLOWm+PcdbZuHF+7DRmHXzVfR+5FccLo4QQZ+H3+9XDDujga6p9sHJ7Zts2y16ydnQ4Tkhs3Dg/dhqzDr4yzlpvj3HW2bhxfuw0Zh18ZZy13h7jrEvJKjSeff5mmaONL3k9+MmRWVhzfRc8eHouCrMSy7DZtLsGl1xyCUaMGIHXXnstZVkzdjomdfCVcdZ6e4yzzsaN82OnMdvJV5I6PBEX5PJ+/PHHKCkpwamnntrRrhDiKNg8mhBCCCFuRs57Zs2a1eo6U6ZM2ed8iRBCSHIw/ppwvb7yGWDJbCBYB+xaqzJGVfZoJAR4fHsE08YM0BnvVOMPH9SocrmJcsopp2DmzJkYOXJk4kYIIYQQG8H753ri+IzR0047DcXFxRg3bhwOOeQQ6EZFRYUSbt9880188803He0OIYQQQgghhBBCCHE6g84wxM+0TCAtwxBGo0j2aLM8isIsL+4/LQ9fXd8FPx2RCW+CLdoWL16MUaNG4fzzz8e6detMGAQhhBBCSPw4Whi95ZZbsGDBArUsibFy0iVCZEcjPtx6663o3LkzCgsLm4TbAQMGwOfz4ZprrtHCT0IIIYQQQgghhBDiQLKLgP4nG8s5XZuV0xXVMwKE9+0L2qvAhyfO7YRVP++Msw5JT3jTc+bMweDBg3HttdeqrBliT+rq6vDZZ5+1+pB1CCGEEN1Ig4OZN2+e6mOwYsUK9ffYsWORn5/foT498MADSrAVYlUxfvTRRzF79mwl6kqZEUKIQTAYxH//+1+1fOaZZyItTd8QpoOvqfbByu2Zbdsse8na0eE4IbFx4/zYacw6+Mo4a709xlln48b5sdOYdfCVcdZ6e4yzLmfoBGDtAqPfaM1uIFC9J3E0EgQ8HsDr2/s9kQiGdgFeuSgb73zjx9SF9fjo2/jr68qx86c//QlPPfUUbr75Ztxwww3I9TYAa14FNn8E1JYCgVrAn2X412s0MPjMPb1RHXBM6uBrMj5IUofce22rpHVmZqYp22sLxlnSEbhxfuw0Zh18FR+Ifjg6Y3T9+vW47bbbVKaoiIyvv/56h/ojJwMiikYFUY+cYO4H+fdwOKyE3JdeeinFXhKiL/K5WLlypXrIss7o4GuqfbBye2bbNstesnZ0OE5IbNw4P3Yasw6+Ms5ab49x1tm4cX7sNGYdfGWctd4e46zL6TYYKL7UWM4/CPCkGQmjSh2NAKEGINgAhEJGBmkoYLwmoikiOLFvBj64Ih/zJmXjkM6J3WKsqqrC3XffjYG9D8Csq45F4IO/AFtXAWWbgOqdxrP8Lf1Qn5kIvHkvsONLRxyTOvjKOGu9PcZZZ+PG+bHTmHXwVfd95Fb0lfNNoKCgACUlJejXr596dCRSOlcyQaOCqIif/fv3x7Rp01TTeVkWX5cvX477779fZbnKOhMmTFACb58+fTrUf0J0QEpNR7OoZVlndPA11T5YuT2zbZtlL1k7OhwnJDZunB87jVkHXxlnrbfHOOts3Dg/dhqzDr4yzlpvj3GWKGFUskW/eAXI6w5U7TBE0EhjKd1Is+UmvI0CahgeRHDeYVk4u/ggPLEqjHv+vRHbKwJxu7G9tArXPLMGv1+wEfedXohzh2Qo2/B4jV6omQXGipLhKg/xWx4tkg7sdEzq4CvjrPX2GGedjRvnx05j1sFX3feRW/FEYtVzdQAiOEpT91mzZnWoHxs2bFD9Q6OCqDyL+CmlQmIxc+ZMlV0q60oP0iVLlqTUZ0Law86dO9GtW7e9XpP+IF27NvYnIYQQQghxMHLe09a1hlSNaXm+RAghJDkYf02+Xpdbg8ufApY9CVTvAOrKjNckQ1T1HY3eOmwUIZtrkWlZQF4PIMNoXVXVZzx+tySEmQ88oLJBE2X0QX7MPC0XJ/Zr1ss0LdMopdu4LRz6feCEG/cRR0lq4OeQEELahvfP9cTRpXTHjBmDhQsXdrQbKitUiIqiU6dObVUUFWQdaUYv75Es0ieeeCJF3hJCCCGEEEIIIYQQ1yDC4sjLgHNnA8N/DOR0M15LSwf8mUBaBuBNA7ySKSoPH+DPAQr6Al0O2SNUFl+K3NNuw5133aXaWl177bUJ93P76NsATnqiFN9/rharSzMMNTZYB1RuBaq2GytJlqsIuoQQQgghceBoYXTy5MnqRGzVqlUdmi0qjcij/USlZO706dPb9V4poyuZpSKOzpgxw2JPCdEf+SxUV1erh+7J7jr4mmofrNye2bbNspesHR2OExIbN86Pncasg6+Ms9bbY5x1Nm6cHzuNWQdfGWett8c4S/bpOTrmDmDy28AJNwOdDzayNH3pQHqOUc6204FAt0OBzgOBzE5GmduDxwPnPGqIq433vyQ75uGHH8aXX36J888/P2GX/v1ZBYb9dhN++p8wvq0XAdZjZLRGxVERRpv1HLXTMamDr4yz1ttjnHU2bpwfO41ZB19130duxdHCqIiQkjUazdhsyTfffKN6f5522mno3LmzqvcszwcffLA6aXv88cdRUVGRlA8iijbPFo3lS2uZo9IfVQTexYsXJ+ULIXYnEAjgwQcfVA9Z1hkdfE21D1Zuz2zbZtlL1o4OxwmJjRvnx05j1sFXxlnr7THOOhs3zo+dxqyDr4yz1ttjnCX7RcrVnngjcPW7wHUrgTNmAkN+CPQ9HugyCCjqDxwwDBg9GfjRXODU2w1RdT9Ia6nnn39etYiK9nmLl3AEePKDHTj4/nWYtjiM0tqIIY7WN96zWz3flsekDr4yzlpvj3HW2bhxfuw0Zh181X0fuRVHC6PCo48+ijfeeGMvUfHjjz9WYqicnEkvTym3W1paqsRLeRYRUgRNyTgtLCzEbbfdlrBAumDBgr3+vuKKKxIag/gmz4QQQgghhBBCCCGEpEwkHX4RcPbDwKS/Az+eZzzL3/K6/Hs7GDVqFBYtWoRXX5qDIw7KTciVukAYMxftwIDf7sKD71WjrqLE+If1i4Ha0oRsEkIIIcR9eCIuyOWVLE35VcD69etV385bbrlFvd586NFSt1Fa/psIpHPnzo37121er1e9X+wVFxdj6dKlCY1BRNyysjLs3r07ofcTYgVsHk0IIYQQQgghhOiHttfrK59B+MNH8cyH3+GOf32DTeXhhE317uTFr8/uix8dcyB8x1xtCLWEEEKIRmj7fexyHJ8xKkh/zlNPPVWV1hVRNCp6imAZfbSk+b/J+iUlJRg7dixeeumluPqLNrcn708UyV4VYVSyXQkhhBBCCCGEEEIIsR2bP4LX68HFR6RhzfVd8OBZXVCYnZaQKRFVL/nHeoz4zQq8+tLz7ONGCCGEkHbhCmE0mnHZXBCV5eaPTp06NT1a/lvz90yYMAGrVq1q1zYlQ1WI2pCyIYkyceJEZWfZsmUJ2yCEEEIIIYQQQgghpMOIlrwNBZDp9+DGsQdh/b1HYdppvZDpT+w25SffVePMX72CMWPGJFypjRBCCCHuIbGfZNmM+fPnY/bs2U3iZkFBASZNmoRx48ZhxIgR6Nev337ft3LlSiVESgld6UMqyPvlREtEz/z8/HYJo1Fku4kiPsr7ly9fnlCfUkKcQDAYbPosSgZ2Wpq+IUwHX1Ptg5XbM9u2WfaStaPDcUJi48b5sdOYdfCVcdZ6e4yzzsaN82OnMevgK+Os9fYYZ0nKCdQaz5HGErpeHwoy03D/Of3w85N74u5XvsFTH2xHOIHkz8WLF+Ooo47CiSeeiEsuuQQ/+clPtD4mdfj8MM5ab49x1tm4cX7sNGYdfBUfiH64ImP0yiuvbBI1payulMX9y1/+gvPOOy+mKCoceeSR6r1vvPEGvv76a7W+UFpaivvvv7/N7a5bt26vv6WUbzKMHDmSGaPE1YTDYXz00UfqIcs6o4OvqfbByu2Zbdsse8na0eE4IbFx4/zYacw6+Mo4a709xlln48b5sdOYdfCVcdZ6e4yzJOX4s4xnT+MtyXCo6Z8OKszAEz8ZhE/uLMb3jyhKeBPvvPOOup933XXXqT5uuqLD54dx1np7jLPOxo3zY6cx6+Cr7vvIregr55uYLSq9OQsLC5Wo2JoQ2hoiakrmqGSeXn311UpglX6lbWWNNqeoKPGTuqgPixYtSsoGIXbG5/Ph+OOPb1rWGR18TbUPVm7PbNtm2UvWjg7HCYmNG+fHTmPWwVfGWevtMc46GzfOj53GrIOvjLPW22OcJSknqxAo2wT4/EBAMkirgcy9760d1jMHL18zFO+sLcO0Fzfgww2VCd2InjVrFv7xj3/g5ptvxg033IDc3FzohA6fH8ZZ6+0xzjobN86Pncasg6+67yO34ok4vDP5+PHjlZgoJWiHDx9uis1p06bhwQcfVCLp5ZdfHnM9EVBlHUHK+EqmaTxCaktEiH3sscewe/fuhG0QYiY7d+5Et27d9npNfo3ZtWvXDvOJEEIIIYQQQghxO9per698BlgyGwjWAWUb5Y4ZUDRAldTdH3Lb8qWPd+PWf27AV9sby/AmQPfu3XH33Xer9lR+vz+JARBCCCEO+D52OY4vpSs1pCdMmGCaKCpItminTp1Uid14SEYUFTp37qyyXwkhhBBCCCGEEEIIsR2DzjCyRdMyjQciQG1pzNUl0eDcI7tg9V3FmHXRQHTPT0zU3L59O6655hocdthhmDdvnhJcCSGEEOJOHC2Mrly5Uj2ff/75ptuWZr0rVqxodR3pZWomBQUFptojxG7IhUtDQ4N66H4Ro4OvqfbByu2Zbdsse8na0eE4IbFx4/zYacw6+Mo4a709xlln48b5sdOYdfCVcdZ6e4yzJOVkFwH9T95TVleoLQHqWy+X6/d5cfWJPfH1HYfiV2NykZvuSWjza9euxcSJE3HMMceoXqQdiQ6fH8ZZ6+0xzjobN86Pncasg6+67yO34mhhVIRJ+WWZ9OY0G7FptvDZFuvWraM4SlxNIBDA9OnT1UOWdUYHX1Ptg5XbM9u2WfaStaPDcUJi48b5sdOYdfCVcdZ6e4yzzsaN82OnMevgK+Os9fYYZ0mHMHSC8ZyRD2TKfa4IULkVqN4FhIP7f4+8Xr0LuQ07cOcpOVh3a39ce0pP+H2JCaQfffQRTjrpJJx11llYvXo1OgIdPj+Ms9bbY5x1Nm6cHzuNWQdfdd9HbsXRwmgUK8TEjihrK9srKipK6TYJIYQQQgghhBBCCDGNboOB4kuN5dzue8TR2t1AyXpDJK2rABqqjGf5W16Xf5f1MgvQ7YAD8fD5A/HFvOlJVYr7z3/+gyOOOAKXXXYZNm/ebN4YCSGEEKItnoiDc3mllG5xcbHqM3rqqaeaavvqq6/GokWLVAmOWEyaNEn1LRAkczUUCiW1zfHjx6O0tBRLly5Nyg4hdm0eLeEq+isbv9+vPle6ooOvqfbByu2Zbdsse8na0eE4IbFx4/zYacw6+Mo4a709xlln48b5sdOYdfCVcdZ6e4yzziXV1+txI7cj330I+OIV4+/6CqPXaLAu9nukJ6mU35VMU+HQ7wMn3Cg33bBs2TJMmzYNb775ZsIuZWZm4rrrrsMtt9yCwsLGMr8WosPnh3HWenuMs87GjfNjpzHr4Kt893bv3l3f72OX4uiM0WgJ3WivUTMRsdWKEr2tISd5I0eOTOk2CdEJ+fJKT09XD52/dHXxNdU+WLk9s22bZS9ZOzocJyQ2bpwfO41ZB18ZZ623xzjrbNw4P3Yasw6+Ms5ab49xlnQYcryIqBnNHBWxs6CP8ZAMUn+2IYTKs/wd/beoKCrvaxRFBblfJvfqXnvtNQwbNiwhl+rq6jBz5kwMGDAADz74oPrbSnT4/DDOWm+PcdbZuHF+7DRmHXzVfR+5lTQ4mE6dOmHEiBG47777cOWVVyI/v/HkKUnmz5+P9evXq6zRVFFeXq5K6crJGSGEEEIIIaTjkXP0N954o82qL3JdQgghxDwYfx2C3CweeRnQ+xhg9Xxg/WLj9dzM/a/v8wP9TwGGnmeU493HnAennXYaxo0bh2eeeQZ33HEHNm3aFLdbUq3t5ptvxsMPP4xf//rX+PGPfwyfzxe3HafT0NCALVu2tLpOz549lSBBCCGE6ISjhVFhzJgxeOCBB3DVVVfh+eefT9reN998o0RWOdmaMKGxWXwKmD17ttqmCL2EuBUpR/3WW2+p5ZNPPlnrCxMdfE21D1Zuz2zbZtlL1o4OxwmJjRvnx05j1sFXxlnr7ekeZ+vr6/H555+3us5JJ51k6jadhA6f41RjpzHr4CvjrPX2dI+zsWD8dRgicp56O3DMNcCaV4FNHwJ1ZUBDDZDemDHa+2hg0BlGKd12HJMiyMkx8uijj+I3v/kNSkpK4nZLeo5eeumleOihhzBjxgycfvrppmb+2D3OSgLH3/72t1bXmTJlyl4lnRln7RNnSftw4/zYacw6+Jpse0ViDY4upSvcdttt6nnu3LnqBKaysjJhW9KnQHqWyi8Tx44di759+7a6/ooVK/Y6YRJRNVFeeOEF9Wx2r1RC7IR8kbz33nvqofuXig6+ptoHK7dntm2z7CVrR4fjhMTGjfNjpzHr4CvjrPX2GGedjRvnx05j1sFXxlnr7THOEq0Q0XP4RcDZDwOT/g78eJ7xLH/L622Ioi2PSeknd8MNN2DdunWqb6j0EE2ETz/9FGeeeaa6J7d06dKEbLTlK+OsfrYZZ0l7cOP82GnMOviq+z5yK47PGJWyKVL+QrJGFyxYgIKCAkyePFllkA4fPrzN91dUVKgeBdOnT1dCpzTsFbFTfinWGtLXVMrtNhdG5f1tian7Y9GiReq9EydOjPu9hDgJr9eL0aNHNy3rjA6+ptoHK7dntm2z7CVrR4fjhMTGjfNjpzHr4CvjrPX2GGedjRvnx05j1sFXxlnr7THOEqexv2NS7gXKfb2f/exnuPvuu/HUU08hHA7HbVuyjo466ih1f07adg0cOHDPP9aUGNmumz8CakuBQC3gzzLE3F6jgcFn7iPs6vD5YZy13h7jrLNx4/zYacw6+Kr7PnIrnogofS5AenNKxmZU2IwipWn79++PoqIidaIULQUhomb0IUR3k7xXRNVZs2bF3JZklEpm6YYNG5reK7alx0E08zMepIG8CK2S9XruuefG/X5CrGLnzp17lUQRduzYga5du3aYT4QQQgghqULOe1q7LthfCTlCCCHJw/jbNrxej81nn32GW2+9Fa+88krCNtLS0lTixV1TLkS37YuB9W8BoUDsN6j+qCcDQyfstz+qHeHnkBBC2obfx3ri+IzRKJItKmKlZIA2FzqXL1+usjH3R3PNWARR+Vse0u9TxMrLL798n/e8+OKLmDZtWpMoKkg/A2ncLiddq1atwrBhw9rt94MPPqj8KywspChKCCGEEEIIIYQQQkgSHHbYYXj55Zfx7rvvYurUqfjwww/jthEMBvHII4/gb4//BTeNOwg3jj0IuWkBozeqCKSRMODxGoKo9EgV1i4wHsWXGg8T+5USQgghpP24Jo9XskJFBJVSttGs0egjKni2fLRcR0plSKkNKb9x5ZVXqma9p512Gs4//3z13LlzZ7WOZJlGbdx///1qXfkVmfw9ZswYbNy4sd09TeUErT2lewkhhBBCCCGEEEIIIe3jhBNOwPvvv4/58+fjkEMOSchGVX0I9/x7Iwbc8QH+/PoXCFSXAYEaIFhnPNeVA2UbjUe9kayB5U8B7z4kGRnmDogQQggh7cI1GaNRcVQarotI+dhjj6nXosJnaxmjUgZX1j/vvPPU3yJWSjldEUjl5ClabjeKrD9p0iSVOdqvX7+mXqfyfllfyvfOmzcPp5xySkxfZXtXX3218k38vuKKK0zbD4TYlYaGBvW5EyQDOz09Hbqig6+p9sHK7Zlt2yx7ydrR4TghsXHj/NhpzDr4yjhrvT3GWWfjxvmx05h18JVx1np7jLPEacR7TMp9N6nQdvbZZ+OJJ57APffcg23btsW93R1VYfzslUr8/oM63HfWgTjvyCJ4JGs0UA3UVxpCaeVWo/dobnfgi1fQkF6I6a9/225frYBx1np7jLPOxo3zY6cx6+Cr+ED0wzUZo82R0rYikN58881KuIyVMSoCpvT1LCkpaRJFm4ufksX59ddfqzK5ko0qD7Er6//lL39pEkWjPP7440oglR6mY8eOxemnn65K70bL+8qzZImOGjVKiaJRYVZ8IIQQQgghhBBCCCFARkYGhgwZ0upD1iEk3p6hcp/v17/+NfLy8hKys3ZXABOf+gZH/24t3t4UBvIOAIoGAFmdRYY1Su1WbTdWXvm0uYMghBBCSLvwRJo30nQp5eXlKutTHiJ4SoZmS1HTLKRfqPQnjZWlGiU6LSLiSileQnQk1c2j5XNRU1OjlrOzs9v8HHUkOviaah+s3J7Zts2yl6wdHY4TEhs3zo+dxqyDr4yz1tvTPc7Kec+sWbNaXWfKlCn7nC8RfT7HqcZOY9bBV8ZZ6+3pHmeJXtfrZTUNWPD5dnywfhfWbq/CrqoGhCMReD0edMnNwCHdc3F0/84Y3a8IH20owYpNpSirCaA2EEKW34eCbD9G9C7E+CE90CnbDysw65iU/Xfvvfeq7/lAIJCwP987vAjTf9gPhx+YY2SOStYoIkowjaTno6bvOOCEX9gyzkq7sdra2lbXycrKgte7Jy+HcZZx1mm4cX7sNGYdfJXv3u7du6fs/jlpHxRGO4CFCxeqX6Ft2LChqX9plOZ/S6Zoy0xVQtwsjBJCCCGE6ASFUUIIIW64Xl+7vRIvr9qCBV9sx+6qBlTVBfe7XgSGSCr3tXIz/SjI8iPT79tnvTSfB8cP7IKzh/XEwd0Ty8xMFVIZ7o477sDzzz+fsA25D3/J0d3xq+/3Qa+MKqBmt/GiPwuQcrs9hgGZ+UBWIdBrNDD4TGOZEEKI7eH9cz2hMNqBNO912pwJEyaoMr1WZa0SYhYM7IQQQghxMxRGCSGE6EI0mzOapVm6exdeuP70pK7X5Zbhc0s249mPNqK0JoCSaiNDNBSOqOe97ih6ZH31pP7na8zKSU/zwu/1wOf1wO/zIr+FWHrhUb1x4VG9ksriaTl2KzJUly1bhmnXXII3l36esI2MNA+uO64Tbj06jMIs2UnS685rCKQy/nDQEEq9aUCnXsChPwCOupwiKSGE2BjeP9cTCqMasHLlSlXGV0r4HnnkkR3tDiHaBvZQKIT//e9/avm4446Dz7fvL091QQdfU+2Dldsz27ZZ9pK1o8NxQmLjxvmx05h18JVx1np7usdZCqP2/xynGjuNWQdfGWett6d7nCXtz+Z87+tdCIb23OKrryzFgtvP3mvde154HxedNLRdWZpyu/DPb63Dq59uxc6qepRWB/YIonH452kUSdO8nibxMyPNq4TK/ExDrDx9aA9cc/KAuMXR/Y3dEwmjR91Gtbwtsw8iHq9pGaqRf12LNxa9hWnz12LVlvqE7RRkenDb8Rm4ZnQmlqeNVErycZ4V8HkigNcHePaUnkVON+Dwicaj22CYDeOs9fYYZ52NG+fHTmPWwddt27bhgAMO2Os1CqMdT1pHO0CgxFAKooS078ts8eLFavnoo4/W/ou3o31NtQ9Wbs9s22bZS9aODscJiY0b58dOY9bBV8ZZ6+0xzjobN86Pncasg6+Ms9bbY5y1L9FszueWbGp6rS4QQkVtAIFQGA1V+/Z+/N/Xu7Bs+6p2ZWmK7ddWb0NJTYMqnyuiaIsEUSV6CuFWlFIprev1epCTkaayRqvqg6gPhrGjol752zUvQ22nMDsdF43unfTYw8EAirFevba6oRtysjORCR/eWrNTPZLJUPXUleG0w4owrucBeHZ5Ce5YVIuNpfH3Hy2ri2Dqwjr8cUkDik/NxRFHHIGjsRy+SNDIGpW9K+Kozw9U7wA+fgZYuwAYeRlQfOmeHW8CjLPW22OcdTZunB87jVkHX8UHoh8URpNEGojv72SqoKAAI0eOxKRJk3D55Zd3iG+EOPHzFv0RgSzrjA6+ptoHK7dntm2z7CVrR4fjhMTGjfNjpzHr4CvjrPX2GGedjRvnx05j1sFXxlnr7THO2pNoNqcIikJFXQDlNQElOEYJNluOUlkfREaeiJ6bUFrTEDNLUzIxZR0RG0XADDVmiUbL5KZ5jNK48lpDKKx0ulj16ERQlWzRmoYQDirMQpfcDFX6VkrzVtQavUq75WWq7Y3qW9hmRmdbY/cignVeIwunPBhCaX3tXhmqbY29VQKG2Oz1RPDj4VmYcMwAzPqgHPe+ugkl1fvvu9oamyvC2PzPf2Ll+29i5NgwzhoYzaqNAJEQEAwBHp/Rk1QySZc/ZSyfcKNp4ijjrPX2GGedjRvnx05j1sFX3feRW2Ep3SSZOXPmfk+kdu/ejRUrVmDhwoUoLCzE448/jnPOOadDfCTEKlgjnRBCCCFuhqV0CSGEdATPfrRJCXwiV+6sqEdFnSHKye2p3Iw0ZKf7EKwux/9+ufd9qIG/eA5FXbqoLE0PPCp7cn9Zmg+9sUZlV24qqTZsR+8cegC/16tEUUEyU0U0VTpeK/76PNJr1Ie8zDR0z89Ur0nm6LbyOrXcPT8DeZl+nDKoK24YPyjpsUuWqpT8FTFWthO985mfldbm2FvlhYuBsk1A+WYgUAPkHgBk5qOsJogZr2/G79/8DnWBfQXp9nJyXz9mjMvGUQd6DWE0igzOkwYUDQD8mUbWqGSPEkII0R7eP9cTZowmydSpU9tcZ9q0aZgwYQLmzZtHcZQQQgghhBBCCCGEJEQ0m1NoLgwWZvtRkJ3eJFrWB/ZfLrCtLE3J5lQ9O8NhVNU1inON+QDRTFFBhEklihr5jXtWiyY8NtumtP+U9SvrguiSG1E2RMQUnyVztKwmoITRd7/ehcuP76+yO5MZexSx2SUcSSpDdS+yCg1hVErcSgXdQLUSRguy0zD9nH74+ck9cfe/N+LJ97e1Wl44Fm99E8Dox8oxcWgG7huTjYEFjSKr2JIyu6UbgPRcYOHdwCcvADldDZ96jQYGn2ksE0IIIaRNmMebAmbMmIFzzz0XV1xxRUe7Qgg0GO1tAAEAAElEQVQhhBBCCCGEEEJsysurtjSVkI0Kgz06ZaJzbsY+wmBLujVma4pAWFln9MZ8pdFelAWfb0cwFEFJVQPCzRROsdzcvpTIVexPANyPG2LT2PaenpwiZkoypJTBlbK9ss6CL7abOnZ5Xf5d1mtr7G0iAqSQWWA811cC4T2ZnQcWZuDxiw/BJ3cW4+wjipAoc1fX49A/luJn/63D9qpoBmoECNUD9RVAqAEoWW+ItFtXAUtmA89MBN68F9jxZcLbJYQQQtwCM0ZTxNVXX4358+fjiSeeYM9RQhKkoaEBDz74oFq+6aabkJ6eDl3RwddU+2Dl9sy2bZa9ZO3ocJyQ2Lhxfuw0Zh18ZZy13h7jrLNx4/zYacw6+Mo4a709N8VZyRoU0W/FplKVoVgbCCHL70NBth8jehdi/JAeMTMVdSGazWksB5qyJSX7sj3kpPsQ8bSepSn7Jyo+Cqp/qOqrGe1/abBfXbQVXVayS2UL1Q1BFOYYx0k0c1QySUUwzfT7sHxjCSYUH5Tw2L2REIaVvqOWVxWeiLD06AQSylDdh0FnAMufNJbTMoFgHVBbCuR02Wu1IT1z8MxF3fDhiBDuXFiND7+Nv/+otEz989J6/H1VPW46JgM3HJOOvAwPEA4AkTAQ2gWEAkBa+h6hdu0C4yGlduXRjj6kjLPW23NTnHUjbpwfO41ZB1/FB6IfFEZTxPr169XzsmXLKIwSkgSBwJ5fl+qODr6m2gcrt2e2bbPsJWtHh+OExMaN82OnMevgK+Os9fYYZ52NG+fHTmPWwVfGWevtOT3OSvlVyTRU5WEbsxab821pLVZ/V4Fnl2zC8QO74OxhPeMrr5pCotmckl3ZEAwr3UuyLuNB1i+rDTRlaWbCp7I0o2JkVHQMtqgFK8JocyLRxp2NtJTgGivqNntDi0zTRrLSfUoYDTTOTXmzjNJEx+5DOKGxt0l2EdD/ZEN8lLK1lVuB2hIgLQPIMI4ZGcXOynpk1FXh+D7pePunHrzyZT1uX1SPNbvj7z9a1QDc83Y9/rysAXeflIErR/jh9zXaaagCgj6grtwQasWnjHxg+VNAzW7ghBvbJY4yzlpvz+lx1u24cX7sNGY7+UpShyfS8kyGWMLAgQOxYcMGXHXVVZg1a1ZHu0OILZtHS7gqLy9Xy506ddrr16q6oYOvqfbByu2Zbdsse8na0eE4IbFx4/zYacw6+Mo4a7093eOsnPe0dW4/ZcqUfc6XiD6f41RjpzHr4CvjrPX2dI+zySC+PbdkM57+8BtVdrWmPoiGUBgNQel2GYEHHvh9HmSnp6msUclWjHLhUb1x4VG9tBqPcOuLnygRd0dFnRpTXmYaujeWx21JfWUpFtx+9l6vjfvNy8jIK8T2ijolRuZnpqnyukMPzMf0c49Q61z65BLsrmrAF1srVJZnVOD0e717lautD4aM1pfNSu3upY626DMqSIau2OjXJafpter6ILaW1yEjzYteRdnonJuOpy47KvGxRyJID9epxQZv5j7CYGtjbxdSqvalycZy1XagrswYeFYRkFWA3bVhlFQ34IDwVvgiQfgjASXUBsIR/HVlAL98ux7bqhK/FTuwyIv7xmRhwtBMePyZgD/bKOkb3duSPZrb3ViWrNGRl7Vqj3HWentOjrPEnfNjpzHr4KtcM3bv3j1l989J+2DGqIV88803WLhwoeoxKhmj8sEbMGBAR7tFiG2Rz1BBQWOJGM3RwddU+2Dl9sy2bZa9ZO3ocJyQ2Lhxfuw0Zh18ZZy13h7jrLNx4/zYacw6+Mo4a709u8TZeMvgyo3QX/37c/znk62orA8iFIqoTEXVM3PPWgiEgZpACKU1DSpzsSgnHfmZfjy3ZJN67ZqTB2h1wzeazRkIGRmD2el7xNx4aC1LU/aroIZtYipFdC+2bAUq4qvxuqfVMbV77B4PGnxZMf1ob4ZqTLoNNgRHycqMCpAijtbuRrimBAhlINuTCW8kAG8kDK9kr3qgRPjJI9Px4yP8+N2HDXjgf/WoTKC64tclYUyaW42jPqjHjDO8OLl4AJDTzSjpK9mrSqiV2sHdDR97H2P4HAPGWevt2SXOksRw4/zYacw6+KrTeQTZg6uF0RdffBFLly5VomW01G1ZWeMJRIKUlJTsY6d5Uq5kjBJCCCGEEEIIIYSQxMrgZgar0K/iI7X8+afA5//Z973/DR6OCmSp94koGn233J6Ue5SeZjcrw5EIquqDqrxqXU4IXfMy8NrqbSjMTsdFo3tDF0QQFqLVaFuWt20vvmbjFmoaDLuCiM1SXjjN69mrnK6s62uWEir7rvn9rsi+CaN70/iPzbNO1Zgaty3CodApy99hY283IoxKqdovXjEESH+WEiZD9bXIidQgO1IDfyQIr2Qmt3AzJ92D20/MxOXFmfjNO/V4bFmdEujjZcm3QZzy2E6c8k4Dbh5/IIYckI1sD1AY2gVfbRk84pOU1V09Hzj1dlhBMBhsug8ai6KiIqSlufr2MyGEEA1x3TdTRUUFpk+fjtmzZ8cUL80meqI9Z84c5OfnW7YdQpxOKBRSP2YQRo0aBZ8vsV/HusXXVPtg5fbMtm2WvWTt6HCckNi4cX7sNGYdfGWctd4e46yzceP82GnMOvjKOOveOBstgyuZm1FEtKyoDaiMwZxIHYa2w04gGGnKSGzCY4h26tVIBF54msQyEQKljKzQLS9TbX9U30Jteo5Gszmj2mJU3IuX1rI0JQNXStZK5mxdVb1RKtdjbEvmJXqPS3wQkXKvxNKW6mgzovs4J33PrUgRrEWQFvIbBdHiPkVJjd0TCaNr/bdqeWfGQYh4vO0ee7uR90r/zuzORlZmRj6C/jxs3VWKHE8VPJItihDgCavdIQJpcySPtCjHh5lnZOLEo0fg8TfXYeHq7fH7AWDxmnK89VU5zhlehOtO6YlD8/OQH6lApGIXPIW5yFy/GDjmGqP/qMmfYRFF420pwDirT5wl5uDG+bHTmHXwVXwg+uEqYfTjjz/GmDFjlCC6T5N4i1KaZTvyePTRR3HeeedZsg1C3IJ8kbz++utqecSIEdp/8Xa0r6n2wcrtmW3bLHvJ2tHhOCGxceP82GnMOvjKOGu9PcZZZ+PG+bHTmHXwlXHWnXFW7qH8+a11KmNTqKgLoLwmgPrgnrQ6v5QnbeOOlgioURHM05ipqMSwRiVPhDX1gDwbwl00S1J6RIoQl5fpxyurtuCG8YOgA9FsTr/Pi9pAWGU7io/x0lqW5rgh3fHskk0oyk3HrqoGhD3GPow0Cplpje/xRTNK91dydz+aZfR9UQE0WiJZpkj6i0qPV1ln3KHdkxq7BxH0rlmrlndlHLiPK+3NUG0TOZakf6eUql09H+WfvI56pKPOU4SGcBgFqEQXVCh/0mGI7S3uRCIEL74sGo/jJwB3HPMn/GphGd7cYAjF8SD78MWVJfj3J6X4yegu+OXxERRl1WN7SRlyc3JR9OV/4TnyR/t9L+Os9fZ0jLPEPNw4P3Yasw6+UhjVE9cIoytXrsTIkSObBNHmQmhUvGxJy7IgbdHSZv/+/TFhwgTceuutqrkvISQ5vF4vDj/88KZlndHB11T7YOX2zLZtlr1k7ehwnJDYuHF+7DRmHXxlnLXeHuOss3Hj/NhpzDr4yjjrzjgrmaIiikrx250V9aioM4QiueWSm5GmMvxyIyGgtnU7e0quAulpkhfa7AfxHqiysLINEftE4BMRVV5L8xiC3+7qBiW8vfv1Llx+fP+9eph2FE3ZnFl+tV8k27JLOLJPedrWaCtLsyA7HccP7IK31uxEbqbP2P+N+zIopWEbtyf/iZgs+y2qjRpZuPtuUzRIWT8vM63JV/GhtLFvqIiewgkDu8Tcz+0du2x+d7ohrrZ0JZ4M1XYj/TtPvR1/2nUy8jcuQL+aT5GJSlR7c5GPOtlj8EQiSEMAIfjgU/miIvJLtnIEQyJfGX70TMNrF+dg0foAbl1Yh4+3xV9ftyEUwePv78TcFR5MPT4bPxldgRKkY9uSBRgy/KL9JoUwzrozzhLzcOP82GnMOviq+z5yK56IlTVkNaG8vBz9+vVTmaItxU4RL6MPIdqMV3qOzp8/H1deeWWrDXrFppSOkOdly5ap58LCQsydOxennnpqCkZHSMexc+fOvUqiCDt27EDXrl07zCdCCCGEkFQh5z3xlpAjhBDSek/RG+asUss7KuqaRNHCbL8S7KIimPQYHdrYYzQWL9UdhvJIlspGbKtKmIh7kmEqiDAqf0t2ab8uOSqT8ZJj+2JC8UHoaCTD8rKnlqq+qZtLalQWreybzrkZ+6xbX1mKBbefvddr437zMqo82UqQlP3SqyhbZWk+delRewmS0XmQ8sUbdlWr/SG30tRe9Bj7SOZC7q41NO631u4uyrZkfx5UmKUyPmUcUVE0PytNlS0WfjtpWMyyxfGMPRa7q+rbHHuiTHl6ucpo/a60RmW0ds/PwNXh51HcsAx5kUp0C+/Yq9qwiKTyaI4fAUOuD4fx7OoA7nyzHhvLE79te2C+D9eOOQhHjzgU34171PR+uTwPIoSQtuH9cz1xRcboxIkT9xJFJW1asjjHjh0bM5MzKozOnDkzrr6gGzZswF/+8hdle/z48aqEbp8+fUwcDSGEEEIIIYQQQojzeHnVlqbyuVFRtEenTJUpmijtaZ0kmY+RxtKwkmkqIp6IgWU1AfTo5MPyjSVaCKPNszlFzNtR0Sj0+X3t2kfVDSGUhtrO0hRx8sKjeqseq93yM9R2lDgq/xgBAhEjyzZamTianbs/ogJqVroP5bUBlbEZFVFFFO2aZwibsr3WerkmO/Z4M1TjpTYQapGp7ME76ScpYbTSk4d8VCATdY15y5KdrPJvVf7o3hii/I+PSMfEIX78eWkDfvNuA0pq4xdIv6sI4ZaXNmLg+7tQ+O0LGNlnMg7p0f57nIQQQohTcXwer4ibCxcuVCfCIoJKJqdkdkq/z9bK23bu3FmJqJINGg+SmTpjxgz1PhFEJRN18eLFJoyEEEIIIYQQQgghxJlIRuB7X+9qXDYELMkITEYUNcq7tk9QMsrDQvUcjVLTYIizIujpwtnDeqrn/Ey/EhaFbeV1KhtSSsW2hmThqvdmpTX15/x+o72WXHhUL5w+tAeKstPROTddZXqKgByVmWVLsrk2Nmn0cQ1HUFMfRGWdIYpKxqZkVEqmqFiU7cj2rBi7vC7/Luu1d+yJID1phWhlXxn35rTeeD3zdPX3Tm9X1VNU8DQ+JENUSuwa3UZDSiZtLuNnpHlw/TEZWHddLm45Lh2NQ46br7dXY+mjU3HmaWOxZMmSJEdKCCGE2B/HZ4xOnz5dPYtAKYJoe3t9RteTzNG+ffvGvV0pvyvZosXFxarP6Jtvvolhw4bFbYcQsoeGhgb84Q9/UMv/93//h/T0dOiKDr6m2gcrt2e2bbPsJWtHh+OExMaN82OnMevgK+Os9fYYZ52NG+fHTmPWwVfGWXfF2QWfb1dlUqV8a0MwrLIRJUswWUQYS2tHD04R6KKZotEWTIGQ8VzTYGQD6kDzbM5otmVFrZENWVYbUEKyZGeGYvjc3ixNSTC45uQBKMxOx7MfbUSa14uS6gYl+Mk+lee9yud6sFe5XRFRBenv6vdK6V0v/D6P6u0p5YmjiA8iirYns7c9Y8/xA8fWGuLfm75ilDdEEspQjRfJQpVSuiIgSyldOWZEgH0943TkhytwTMP7KPUWoSBcporoSp/RBqThYVyh3n8dHt9LFFXI/vSIEOzBr8Zk4/KjcvCbt2rx94/r2hSk98e6T5Zi9OjR6j7lfffdh64H9sHrn3yLLxa+oPbRpp4nITMjQ41FerqOH9LD9N66jLM8n3UabpwfO41ZB1/FB6IfjhZGV65ciRUrVqienwsWLGi3KNocEUaT6RV61VVXqTK+YkPK7MZTlpcQsi81NTWwCzr4mmofrNye2bbNspesHR2OExIbN86Pncasg6+Ms9bbY5x1Nm6cHzuNWQdfGWfdE2dXbCpVzxWN2ZkickV7iiZDPAJSkzDa+Hd0KTt9716QHY0IiaU1DXht9TaVdZnlD6gsW+m7KVmZ8ghWGxmSzRFRsHNjP8/2ZGmKWCl9KUf1LcQrq7bgjS+2o6SqQdnfH7K/ZB+KsCyiYKcWImgU6e0pZWwlYzNecbKtsdfUhZCeZhxDlVK2Fz6VoSpiXzRTtL0ZqvEgQuLq7yqU8CtloKV0b5dwRB3Dc7MmocKbj9PqXoPXE0ZupEplh0p+aI0n2zCw56DbC+ngGoz4EIYPB+V78MAPDsCk4zLx0MItWPRleUK+zps3Dy++9E/0Oe77OHjcxTg21KBE2ZLqAMI1YSXwylieXbJJlS+WTF0zRWTG2Y7zg1iDG+fHTmO2k68kdXgi0Z/BOZAHHngAt9xyi8rcvOIK4xdY8TBw4ECMGzeuzUbi7UHsHHzwwfjzn/+ctC1C3No8WsKVbFOQbbTnF6UdhQ6+ptoHK7dntm2z7CVrR4fjhMTGjfNjpzHr4CvjrPX2dI+zwWCwzdYbRUVFSEtz9O9Rbf05TjV2GrMOvjLOuivOTnl6uRJkviutURl3Umo1KmS1JDNYhaEVH7Vq76W6w1AWyVKlTTPS2idsiigaCIUNccoDlf03qHsehh6Yj+nnHgGdkH3/3JLNKnsyimTbirAsma4NVaX47IHz93rPuN+8jIy8wriyNJtTXhPAgi+244N1u7B2RxV2VtYrP8SOiK4Hd8vFMQO6YHTfInz0TYnqzSpliCV7UsRlEUqL+xRh3KHdk8pEbHXswTByUAMvPKjzZSM/Oz3hDNV4S0Ff9tRSlfW8uaRGCbVSCrpzrpGhKvQKbsKJ9W/j5IbFKnNUDrNdKIJ0Ye2OnerZFwk3pt0aGbhBjw+hiE+ljlZ681Hu2ZP0sWxjFR544zus3FydsN++9Ez0Ou6H6Hn02ajOKFLCthz37cnsTeQ8iHFWv/NZkhxunB87jVkHX+Veeffu3VN2/5y0D0cLo+PHj8fy5cuxe/fuhN8vWZ5r165N2hfJXB01ahRKS0uZNUocQ6qFUUIIIYQQQgghzuTSJ5dgd1VDk6h0QKdM5MToLxqPMCq3QPeXtbg/pERsgwijKlsSyEn3oV+XXFxybF9MKD4IOrJ2e6XK5nz3611KlItSX1mKBbefvde6v3zhfVx40lBTs/90HLuZGarx8NAba/DWmp2oqAtgR0W9eq1Hp8x9+uTmhCtxRt1/cXzDe+ga3glfJKSyRwMRL9IQQronqDJK/Qgp8bQiko0ybxGC3j0iaxS5rbvgi3I8tPA7bNhlbDMRfDkF6HLCRSg48gx4fIa/kmkrArb0dI1m2kp5ZZ1FEEII0Q3eP9cTR/90WcrgTpo0KeH3jxgxAosWLUJFRUXSYqbYOvLIIzF79mzcdNNNSdkihBBCCCGEEEIIcRJZjeJltHqu9LBMNc23KRmH6T6vEtUkw1FXROi7YfwgXH58f5XNGc3SLAnvm0U45ZSB6NrVGaJoa2M3O0O1vUjJWRFGRUg0MliD2FZepzJHpV9utDR0tTcP87LPV4+sYCUOr/4fBjV8jnxPFbp7yjHQsxmBsBd+TxhpCCADQWSjFlWRNIQ9e4v8IlKefmgezjn4QLy0cgfufasG26oMcT8eQtVl2P7an1Gx9F/oOe4y+Aceq36gIAKvjEUygqV8sfSclfLKhBBCiJ1xvDBaXFyc8PsHDBigfnk1d+5cXH755Un7M3bsWCxdujRpO4S4lVAohI8//lgtDx8+HD6fXn1edPM11T5YuT2zbZtlL1k7OhwnJDZunB87jVkHXxlnrbfHOOts3Dg/dhqzDr4yzrorzkoPSCmlK2U8pZSuiFuxSunGQ6QxE7StfqXSH1PWE2RNWT87I01lGqZCVEsW8VGyWqOZrZKh8sL1cAXNx773MXlYSmOXCLVSclZK/IqQKIg4WloTQFltQGWOZqX74GvsZVtXH0DXwE58GDkEz0WORV5munrf6XWvqX6kamyh3chDNTpFKpEfqUKNJwt1nkyE4YUXYWRG6pAdqYXHG8HlxVn4/hFF+P1HAcx+bzuq6+MXSGt3f4d1z9+LTr0H48DxVyDc4zA1BkF6usrYpOdsopm3jLM8n3UabpwfO41ZB1/FB6IfjhZGo7XskxEyBelRaoYwKkKrZKASQhL/Ivn3v/+tlg8//HDtv3g72tdU+2Dl9sy2bZa9ZO3ocJyQ2Lhxfuw0Zh18ZZy13h7jrLNx4/zYacw6+Mo46644O6J3IVZ/V6F6G1bUBVFVH0SXdgiabSHvDoTDiEQ8ytb+yoDKj+KlhG40X1TW8/k8KvNPyq8S+9DRsUv6cJbWNKjsShESs/wBlNUEVPZlZV1QPaL4EMKZaRvUcm1WT+RkZaplT/GlWLemHgN2LcZuTxFqIxkoQBUyEEBOpEY9WtLg8aPKk4f6zBxMOQnof8yZ+O275fjmvX8iEtqzzfZSvulLlD9+E4oGj0b+iZcA3fqpsciPFaR8sWTqJgLjLM9nnYYb58dOY9bBVwqjeuJoYbR///4qazRR+vXrh4KCAtWndNWqVRg2bFjSIq30GiWEJIbX68WgQYOalnVGB19T7YOV2zPbtln2krWjw3FCYuPG+bHTmHXwlXHWenuMs87GjfNjpzHr4Cvj7N6U1TRgwefbsWJTKcqq6pCX1U1lnt398mcY0bcLxg/pEXdmo05xdtyQ7nh2ySZkwqd6G4qQJGPunLtvX8X2Es38lOy8YCSCUCgCr8ejHs3L50qmaJMo6vGo8rl5GWn48dF9HNOP0y10dOwS4V36cErJWcmuFCExr6m0bgCBUEQdc3IMZni92O3prJZzM/3qGJSMUxFX5+Vdh9ffysD42tdQiWxURrKR5wsgN1KNNEgPUjlmPQgiDVXeXDQgvcmH1zNPx+udTsfgcwDP0DOwffHfUf352wmNp+TLj1CyZgnyDx8Dz6mXIK9/X9XTVcoXJ5JJrXuctcKeTnGWmI8b58dOY9bBV933kVvxRORncQ5l/PjxKCwsxAsvvJCwDelROm/ePGXrtdeMMhaJ8thjj+GWW27B7t27k7JDiC6weTQhhBBCCCGEWIcIg09/uBGvrt6G70prEQyLoAKkNZZ5lYzGaEaliHnHD+yi+hzaVcx76I01qkdjRV1A9TYUenTKVCVIm5MZrMLQio9atfVS3WEoi2TB7zP2TzgM7MkJbUbEKLcryKrpaUY2yQVH9cJdZw3Zb4apHeD1esezdnulyq4UITEYin37VT67UrL5+80+u/LZv+yppTigfiOGlS/E6MgnyPCG1Wd/f4Q8afjYPxzvpJ+EzWlGD9DdVfXYWVWvjv3gjnXY8eZfUfeNUVIyETw+P3qfcC4GnfYTXDnuiKayzYQQQmLD72M9cbQwOnPmTNx6661JpSvPnz8fEydOVCfCIpCec845SYmsK1euxNq1axO2QYhOMLATQgghhBBCiHlEs0IXf7kDX26rwJayOlXiVe5JiB4iz+FodqP8zwNkpnnRJTdDlaCNEs06s5uoJ0LSDXNWqeUdlXVNvQ0Ls/0oyE5vEoHbI4z+q/4wVCBbZYvKuyQrT3aHtBGVW2FyNyzSIrNUBCr577TDeuB35w+z3f5rDq/X9aG8JoAFX2zH8o0lKK8NqP652ek+dMryo7hPEcYd2n2/2ZfNfyhQV7Ebp3iW4/j0r1HgrUZmpB51ngxUeXLxRdoQfJQ+GtXePT+IkFLU28qN+CFZ0JKlKvi2fIJtC/+Kiu8Svzfpz8rFcROuwH8fvQ9ZWVkJ2yGEEDfA72M9cbQwumHDBtXX84EHHsCNN96YVAncsrIylX0qpXD79OmTsC/jxo3D66+/nrAvhOgEAzshhBBCCCGEmCMIvrxqC95buws7KutVppdkh4qo1zyjsTlKsmum22Wm+dAtP0NlkQqnD+2hSnraTdx79qNNqgSpyL87K+ubxFEZhmSOZqX7kBepwajaZa3a+Z9/BBr8udhd1YDaQMjYl/vBC6P3qDzyMtPwvSMOsHWmaBRer9uf9v5QoDlSFlp+YFFaE1B/R8v2ikAq2aYHSAZ2ug/fLV+INf95HLUlWxP2r1evXvjVr36Fiy++WOseg4QQ0pHw+1hPHC2MCpMnT1aZnt988w3y8vYtJSOvy78LY8eOxfDhw/ebeSolcIWBAweqnqP7s9UaUop30aJFuOqqqzBr1qyEx0OImwN7IBDAI488opZ/9rOfwe+Pv59FqtDB11T7YOX2zLZtlr1k7ehwnJDYuHF+7DRmHXxlnLXeHuOss3Hj/NhpzDr46oY4K7dknluyWQmBIn+KKFpWI30IwyqzMRY+hHBOxmdKF/1nw2EIwafEU8kM65ybjq55GSrzUTJHLxrd27IxW7HPZJ/8+a11eG31NvV3ZV1A7RPpORolHzU4M+3TVu2szj8KdWnGvRvp7yhikWTqyb41km09SE/zwO/zIic9TWXcSk9RO2ba7g+33ojVIXaZ6Wt7figgn3sR/msbQipTNHqnNz8rDdX1ISWWRhFhNKexNHUo0IBN772I9a8/idqamoTHMXToUNx///0488wz2/zs8HxWjzhLzMON82OnMevg65YtW3DggQe67vtYd/Zu0uBARNScO3euKofbskeoCJUiWDZnf+VyRVwVYVS+3L/++mv069dP2TzllFPa5cODDz6IhQsXqvdLxighJPEL5PLy8qZlndHB11T7YOX2zLZtlr1k7ehwnJDYuHF+7DRmHXxlnLXeHuOss3Hj/NhpzDr46vQ421IAlLK5IgDGymxsjkgPed6GRuOGSCJZYfLekmrj9W55mUpQGdW3MGbPUR3jrNw7kUzXwux05X9epl89RNysqBXROIL0iLdNO1NPH4x3Nzeo/o6Z8KFHp6x293ck9kWH2GWmryLUl9Y0qDghn+ks/54fClTWBdWjJRlpXhRkG5+bjQ3VyMlKQ0MghLpgpKmkruDzp2PAyRPx/UF5+N///of3P1yCUMDo7RsPq1evxllnnYWTTjoJM2bMwOjRo5Mac6LwfJZ0BG6cHzuNWQdfdd9HbsXxGaOCiJIigMpjzpw5yM/PV6+PHDlSlcZtjmSEfvXVV/vYmDZtmirJKyfossvkWcRWEUz3l2UqVFRUqHVk+9H3lJaWNm2fkPYgx48I8fK8fv169Vr//v3VQ4R2yUIuKChwxS9Qw+Ewtm41yrwccMAB8HrbvhjuKHTwNdU+WLk9s22bZS9ZOzocJyQ2bpwfO41ZB18ZZ623xzjrbNw4P3Yasw6+Oj3ONs8E21pWh5IaQ9Bsz10aDyLo7DEyvEoi2Yh4PCprTMTRQDiMdJ9XZYaJMHLKoK64YfwgS8Zs9RxJKdFXVm1R4mYwtGfHtKfH6JQpU9T1aqL9He2OWzNGdYhdZvu6d2a5QfMfCkTL5fp9HpX5nOnfU9Y20+9VmaQq27QuqMpFd8/PbG4c2aFKtbi7sg5fvfYkNn/4XyCyJ0M7XiZMmID77rsPBx98cMJjTgSez5KOwI3zY6cx6+Dr9u3b0aNHD9d9H+uOK4TRaCbopEmTVL/Qxx57TGWFynL0FwNCVLwMhUL7tSE9QqX0bvN1BRGlxLb8uyxLP9KlS5c2leiNrisnBi+88EJKxkvsj4igkq0sguiIESOUkC/H2Lp16/YSSQURRx999NGU++jWCy1CCCGEEEIIMa13YEUddlc3qGxPTwTYnxyhbj803r2JxHhd0kj9Xq+6ByEvSZnNXkXZKiPyqUuPsrX411LcDFSV4aBt77VLGHUrvF53HrF+KNBaFvTHm8vw9w82KiH129JaFTP6ds7Zb3/SKJVbN+DLf8/G9k9b/4y1RlpaGq688krcfffd6N69e8J2CCHE7vD7WE9cI4wKkh0qGZwibkYFzJaIACWi5v4QIUrEqf2lX++vhn5UEI0+S2/SWNmlhLQ8VseMGaOyQkXIl+OyJbNnz1bCaRRZV46xVGaPMrATQgghxM1UV1fHvHaIMmrUKOTk5KTMJ0KIPXjojTV4a81OVNQFsL2iTpXFFFEz2v+yJXvdcojspYWq/0X1US+MrLGGUBjpaV70KsxW2WOXHNsXE4oPglOQ685Zs2a1ug6FUV6vO5V4sqClt+5lTy1VQurmkhoVawqz/eicm9HmdkrWfYIvXp6F0g2r9/vvknmVmdks+zTGOjfccANuuukm5OWxVDUhxH3w+1hPHN9jtDkiLkm2nQhKkl23cuXKvf5dBCUpWRoLEZ4kU2/s2LFKHG0uhu5PX47+uzxPnTqVoihpFyLYR0VRETpjIVmi0XK6UeG+uLg45eJoqssfSO8KYejQodqXauhoX1Ptg5XbM9u2WfaStaPDcUJi48b5sdOYdfCVcdZ6e7rHWRFG33777VbXGTJkCIVRjT/HqcZOY9bBV6fG2YP6H4L3vt6lllVP0XAEaR6PEj/bFEXVC4A3EkFfX4n685twESKGRAqRVWVZ9RsNR1SpTRFGRUDZnzCqe5wlJF7sdEwm6quInvJ5bs+PHQqy03H8wC7qhxjyvh0V9SitCSDD71NZ5VIyt6hhh1q3JL0b4NnjQ9GAI3DElIfx9dLF2Pnmk2jY/e1etjt37oyf/exnrW7/kUcewa9+9Sv85S9/wV133YUrrrgCa9asiXvM7YHns6QjcOP82GnMOvgqPhD9cJUw2lxQkoeImyImyUMEpiOPPLJd4uqyZctU5qkIq83Fz/0hgqkIV9OnTzd9HMSZSD9bYdGiRW2uKyK9HMsi9gtyLMv7O6KsbioIBoN46aWX1PLgwYORnp4OXdHB11T7YOX2zLZtlr1k7ehwnJDYuHF+7DRmHXxlnLXeHuOss3Hj/NhpzDr46tg4e9rFKntLSls2BMOqp2ia14NguP0FvXwI46T0DWp5c20Bgh5fU9aoCKJKGI1EVP9BQbLK2vSLcZY4ADsdk6ny9exhPZUwmp/pb+xNGsS28jqVOVqU5UP/6s/UemXpXZtKeUsckWxTEVHzBh2Lnocfh7rPFuGrV/+K+ordcfsg2VE///nP8bvf/U7dfz3ssMP2HnNNCbDmVWDzR0BtKRCoBfxZQFYh0Gs0MPhMY7kVeD5LOgI3zo+dxqyDr+ID0Q9XCqNROnXqpL6M2yOINieaySc9RO+//35V9jQWIlJRFCXxZIuKyDljxox2Z33KulFhVJBlOe7kOHUa8gOE6Lhi/RhBF3TwNdU+WLk9s22bZS9ZOzocJyQ2bpwfO41ZB18ZZ623xzjrbNw4P3Yasw6+OjXOfvyt0Z5HsjkFafWn2vA05os2bxsai4jHg+9CRlnKcGO2aNO/RZ8jEYQbq1tJqc22/GKcJU7ATsdkqnw9uHseLjyqN55bsgld84wSuiKOiuhZWVuPvmmd4PN4UF0fRABh1DaEUFUfVD/aEPKz0tT7PMedjeuv/im2/m++uheVCFLJTx5yL/W4447DuGG9gNXzgPVvAaH9/ICjbBOwdRWw/Emg/8nA0AlAt8H7tc3zWdIRuHF+7DRmHXzVfR+5FVf1GLWKDRs2qBK78sUezT4dMGAAJk2apMRXQtpLtG+oiKLSz1YyP9sjcEpWshyDUeQEVco3Ww1rpBNCCCHEzbDHHSEkEaY8vRzfltbiu9Ia1AYkYzSibppJ9qhkebYURmPeT2vea7RFn1GfykANoyArHQcWZqFXURb+/KNiOAXG37bh9TppjsSZP7+1Dq+t3qb+rqwLqFLe0nM0FhlpXhRk+5GXafQrPX1oD1xz8gAVr3bt2oX77ruvzfueUkpXjsVYnHFYIe4/px+OOCgXCNYBdWWGQBoJG2V9fX4gswBIa9bLtPhS40GxgRBiA/h9rCeuzhg1i379+uHKK6/saDeIA4j2FJXMURE6pWdoaWlpm+9rKZ4uWLAgJcIoIYQQQgghhJD4qA0Y2ZvRyrler8fIzGpPqmgrNL3VI7aNv/w+QzjolGUIG4QQdyJipoiahdnpKnNUxM68ptK6AVV2W+KGlOGWuJGf5Vf9iaNIxumFR/Vqynzq0qULbrnlljZ/oNAWr35Witc+L8VPjszBr07NQu+CPdtUSBJpXbkhjEop3Yx8YPlTQM1u4IQbKY4SQghJCAqjhGhESUnJXn+LQBrNQm4NyVBuzQ4hhBBCCCGEED3IahQbpIRu9FlagUZv77fUSEXjbNe9/6Y3RlSfQBEwRNwQivsUWTEUQoiNkJhw0ejeGNW3EK+s2oJ3v96FTPj2EkCbk+bz4ISBXfD9YT1VOV6rkBj3txXVeP6Talx7XAFuHX8QiqTkbzgEBKoRqa9EqKEW4boa1HjLUeorgvd/L2D5mjqEjrwE44f0QKds/viDEEJI+6EwSohGSElc6V0bRUrqOrFXaKIEAgE89thjalmytP1+fU98dfA11T5YuT2zbZtlL1k7OhwnJDZunB87jVkHXxlnrbfHOOts3Dg/dhqzDr46Nc4WdDsa36psTq8qpWtkYEUay982yqFtZI/6EMJZGV+o5VfqD0UYviZdVOxJ5ldmmlcJHiJujDu0uyVj1uE4IcSux2RH+Soi5w3jB+Hy4/vj9dXf4bM3X1Qx49tuxyIrM11lmMuPKSRupFJwrA8CD75dhseXVuHW03rhyhN6oD6SjppwNnLDVciPVCAzVIX8cAQl3iIcvu0l/O7d/nh2SR8cP7ALzhzSFYtffl7Z4vksSRVunB87jVkHX8UHoh8URgnRiKuuukqV05VeoyKISo/R9iD9bZtTVFTk2J4Y0d4UurdH1sHXVPtg5fbMtm2WvWTt6HCckNi4cX7sNGYdfGWctd4e46yzceP82GnMOvjq1Dg7fEQBVm+tUdmcFXVBBENhozeoxwOfx6P6jMoLrWWNeiJAobdOLXsby/IqUTQChBrf1Tk3XT1LxlcscYNxljgNOx2THe2rxIUfDu+JL16tVHHk0YuLkZ5uxI2OpKwmiGkvbcDvFn2L/zu1J344vAhlnk6ojaShG0qQHalCdSgd1Z4cHFv7Fl5I+wneWrMT73y5DSNKeT5LUosb58dOY9bBV933kVvxRDgzJIGsxmXLlrWr96UZSK9NEQilpKw8pLysiIbyEF9ETJTMSjcj+0H2U5QZM2akpMdoqptHh8NhbNq0SS337t0bXq+cuuuJDr6m2gcrt2e2bbPsJWtHh+OExMaN82OnMevgK+Os9fZ0j7Ny3tNWb60pU6bsc75E9Pkcpxo7jVkHX50aZ/O79MDlf1+OYCiCzSU1qA+GVbZoKBxRj4ZQuNWkURFIPZEIunkr1d87wnkINxbiVf/3ANl+H/p3zVWv/XbSsJhlMHWPs7Fg/NXvel0XdIhddvI1GR8aGhqwZcuWVv/9P//5D37zm99g9+7dCft4cLdMXH/qATjh4Hx09lSgEJWoRzq+RTcE4cO1ntvgzSlEfkYa8oJlGNWvCNedfTR8vv2XCG4vbjmfJcnhxvmx05h18HX79u3o0aOH676PdYfCaAooLy9X4p2Us3n+eaOkgx1ZsWKFSjmXZ0GEUSsFyZkzZzYJorKdsWPHYtSoUWpZMiRFCIz6Iv8m67qx7KwIxYWFhXu9JvsnFfvCrRdahBBCCCECb8wTQhLloTfWqAyniroAdlTUqzKWcndGBNJAKLynpG6ciGgqWaf9uuSoMroXHtVb9RR0Goy/bcPrdaLTfVG5x/e73z6I2rqGhO2M7JOLaeN64HsHlqsfgXyHrqiNpOPpyOn4V+Qk5GeloWteBjzwODb2EULsB7+P9YSldFNASUkJ5s6da1thVITJadOm7dX70urtSQakPAuS+XjrrbfuV4QVcXTy5MnqecCAASnLlNQJKbvbnAkTJrhSICaEEEIIIYTYi7KaBiz4fDtWbCpFWU0AtYEQsvw+FGT7MaJ3IcYP6ZHS/nap5OxhPZUwmp/pR10ghIraIIKRsMoi9XmN0rmhOLVREURFWBVhQETR04f2wIVH9bJqCIQQ0i46deqkskavGbgV9zzxKv76/jZV/jtelm2swsTHv8b3D83Gb8ZkoGeXGoR9mTgmshb/Cpyk4qjQLS8Tzy3ZhFF9C2NmyxNCCHE3FEZTiF3KvYogKZmYS5cu3SsrMxXItsaMGaOyIAURlEXoi4Vkikp2ZLSUrAi48nd7e3M6geZjlWMs2lDaiUj5g6+++kotH3LIIdqXauhoX1Ptg5XbM9u2WfaStaPDcUJi48b5sdOYdfCVcdZ6e4yzzsaN82OnMVvha1QIXfzlDqzZXomdlfXqdRHzctLTVM9NWf62tBarv6vAsx99g6M7N2BU3yKcfNQwR8VZuVkvGU1y816ETKGiNoBAKKIeqt8oIko82G85XUTQy2tcN38bKYDf51PvkYypohy/si2iqPxA28ox2+mYJu7ATsekDr6m0ocDswN49MeD8MNRB+F3r63Doi8Ta9H1yhc1+O+XNbi0uAE/PSUPnQtq0CM7E9vLa5FXtwMZHj/qc7rjlVVbcMP4QQn7y/NZ0h7cOD92GrMOvooPRD/0PWodRDTzUWekFKtcMMlDMi8nTpyoylyIUCnCZGvipFmIGNpcFBXBr73bXbBgQVOWpGRQiu9uQMbZ/PgSIdkuAnwiBINBvPDCC+ohyzqjg6+p9sHK7Zlt2yx7ydrR4TghsXHj/NhpzDr4yjhrvT3GWWfjxvmx05jN9HXt9kpVOvayJ5fi9wvXYvGandhSVqcEQOmvWVkXxNaKOqzZVqnW3VJao7Iow6Ew6ta8h3dffxnPfrABVncCSnWcFeFSsjql7KNkOHXPz0RORprRbzQSgbqNFkPX9CGMMRnr1CMrDUoU7ZKbjkkje+G3k4arEpJtiaJmjNlOxzRxB3Y6JnXwNaU+BGoRjHiwrOAsnHDB/2Hx/x2KY/vnJ2RKMuqfWFaNcX/4DH9b+AUyIw3onOXDCb61OLzhc3gRwbtf70J5TSBhd3k+S9qDG+fHTmPWwVfd95FbYcZoCohmXBYVFUFXomKkiGoiMI4cOVJlYUpGprwmApzVpXRFjI36MWLECNWXNR5ESBWfBckcdXpJ2WiJ4+aiqMyXk5EL+169jFJQ7bnId7uvqfbByu2Zbdsse8na0eE4IbFx4/zYacw6+Mo4a709xlln48b5sdOYzfBVhMznlmxWWZGS97ijsl6VzA2FI009NaNSp9qCB6gXsbQ2jIr6IHL9HvT35SPN68Gc5d+ivCGCa04eYNm+S3WclWcZT2F2utpHeZl+9RBRuKS6AdUNQSUey36Rd3g9xv6SxAMRU3eGcyGJD/265OKMww/Ej4/uG3fpYcZZ4jTsdEzq4GtKffBnqT7Ivbw7gHAIx/XNwns3D8O/Vu3G1BfXY+2OurhN1jSE8fjib5C+9HwMHP8TbB/SE15fmoqjRZEarP7vn3FAxSeoLt8JT6AWtchAXVo+tuUfAf+Qs3DK8EEx4ybPZ0l7cOP82GnMOviq+z5yK56I1T+5dDEVFRWYM2eO6nkpgp9kYq5duxZ2RITR5iKcUFpaalp2opTBjYqa7SmhG4vi4uImIVrE1eXLl8OpNB+riMLxCslmwObRhBBCCHEzct4za9asVteZMmXKPudLhLgBudXw57fW4bXV29TfW8pqlSgahiGItkRuGcl9I8l8FEQ4lWURReWmtZSbFTFQSsRKNqTTkExZKfsoGU7SZzSKiMgVdQHU1EsPUkNJ7pafgUO65+HUwd0x7tDuju3D2hqMv23D63WiHS9fB2xdBVRtA+rKgYx8IO8A9U/f7K7B0x/twMNvbsHOqsSzqzKKemLIyWdhyuENONqzGr5IEH5p3LwfQp40fJI+HNWH/BDHH3M8+5ESQiyB38d6kuZWsVJKr0rGnTyiWYpWQe25bZqLriK2Jlq69/zzz28SC+VZHiKQtoWIsqkqeSxZrMmWvJ08eXKHi6KEEEIIIYQQEgvJFBVRNIIItpbVoaSmQb3e/PJY7lWL+CmvqQxSVR4xAp/Hg3SfVy3Lo6LWuEku5WYls3JU30LH3cCW8UgvvMuP748FX2zH8o0lKK8NoKYhhL5dstEpy4/iPkWuFUIJIQ6g12hDGM0sMITR+kogpxvg9akfxpw/sgtOP6wT/vHhLvz1/e2oqo+/L199yRasfHE2/vBBFnxje+LE/hkoCNfAFwmo8rryPeNVhcrlpzZAr9AmRFa9gm9W98EHgy/A0Wf+BJ7sQkuGTwghRB/S3CSIivgm/SdTLVhKujTF0dhEBcwoyZSDFUG1ucgqoqE82iIqkqeCkpKSpN4vx3D0OE40s5YQQgghhBBCrMx+NMrnAjsr6pXAJ3jhQQgRdQNcMnhEAI0i18ySHRlsFEPlvrWso3ptNoqjWf6AKjUrmZUiIjoRET0nFB+kHoQQ4igGnQEsf9JYTssEgnVAbSmQ00XFeSEr3YcrT+iOC0d1wV/e2YZnl+4ySorHyWdba3H5P9Zh3AA/7h2bgyO6+1RvZhFFo988shRSr/gwMLgOVZ/9Htu/mYPuR54Oz+ETgW6DzRw9IYQQjXCFMPrNN980ZQRGBUoRK1nfWQ9aCpejRo1K2FbLnqIiILZHGF23bh3sgPR5lWxRQbKend5TtCWBQABPPfWUWr700kvh9+v7S2kdfE21D1Zuz2zbZtlL1o4OxwmJjRvnx05j1sFXxlnr7THOOhs3zo+dxpyMry+v2qKepQRseV1AiZt+r1cJn3IZLuVxm4uiglyfp/k88IQjCITDxnvCIZzu/0LdxF4UGqJK8YowKuVmJbPS7MxJxlnGWWJ/7HRM6uBrSn3ILkKgz0l4akkZEDkSl2Iu/LUlQFoGvB6f6kUt8V7u3BbmpOH2M3vhJ8d0w+8XbcErn5QmtMkF6wJYuK4MFw1Lx92nZKNPJ5+SQpUcKhUKImGEEULY40VepBJl1dtRsuq/6Pz1QgSG/wRPfWJkrTLOkli4cX7sNGYdfBUfiH44XhgtLy9XpVTlWYiKoanM4KQA2zpS2rg57Sl925Y42jz7U8REJ2RVSlbtxIkTVQle6Z3aUgR2A/K53bLFuMmiexa2Dr6m2gcrt2e2bbPsJWtHh+OExMaN82OnMevgK+Os9fYYZ52NG+fHTmNO1Neymga89/WuxuWAEkPT1A+TJTvHuOnt88a+RpZ/i0Q8KnM0HA6js6e68V/CqA+GURcIIRM+VW7W7KxKxlnGWWJ/7HRMuvJ8dsg52PL+fGM5pwCo3w1UbkU+clESyYHH41U118MRKbUO9CrMwO/O643/OyYH0xdsx6L18QsMMqpnVjVg3uoGXHNUBm47IR1FWR5EPEZ/a28kAk8kBJ8njC6R3dhdGUFdRk94VzyNLTtONmwwzpIYuHF+7DRmHXzVfR+5FccLo1deeaXqIdq8nK0IS5JpJ8JS586d1d9FRUWml0uV7UpW38KFC0217ST21+M1WcFPhNXmwqjMgd2FURnPmDFj1L4RUbSt/qSyT5PpYaoraWlpuPDCC5uWdUYHX1Ptg5XbM9u2WfaStaPDcUJi48b5sdOYdfCVcdZ6e4yzzsaN86PbmEXEXPD5dqzYVKpEzNpACFl+Hwqy/TjyoE74wbmTkJ3hi8tXsRcMRZSA2RAMq/6hkiEalLvccgNaRNKmQoaxxdFQKIIAPHgreIgSVb2+NIRCQEVtAJl+n+rBabYwyjjLOEvsj52OSVeezx4wBBeOfAf4eiHSMroCnhBQV4a8cAUywxWoQRYqkYFw2IsMTwSZkTpkR2pxYI8I/n1xAf6z3ou7Flbg8621cW+7PgT87oN6/HVFPaYdn4VrRmch2y99rUOGeioCqQcoipSittyDnKKDcGHBKmDgWMZZEhM3zo+dxqyDr7rvI7fiiThYspYs0cLCwiZR9KqrrlJlSI888siU+iFZfvPnz8eAAQOwdu1a2JGZM2fu1btTKC0tTVp8k1K30dKwUZI9JMVe816yIibapVRuLJGzX79+SrxvjygqY5feoyIIW83OnTvRrVu3vV7bsWMHunbtavm2CSGEEEI6GjnvmTVrVqvrTJkyZZ/zJUJ06AEq5W4ls1NEzFhIadvjB3bB2cN64uDuee2yfeuLn2D1dxXYUVGHirogQuEwfF4vGkJh1UNOSuq2ljEaJRAyyulKyV3Vj9QLhMJQwu2BhVnoVZSFP/+oOK5xE+fA+Ns2vF4n2iL3/d59CPjiFePv+gqEa0rRUFdj/LOolPLVpH5IY9Dg8aPKk4dqTw7C4Qh+/2UX/O2NT1Fbsi1hNw7M9+Kuk3Pwk2FpSPfKd5QHYSnrjjAa4Ed6bhG8eT2Mlc95lD1HCSEJwe9jPUlzS4lWEZRSLYhGueCCC5QwSvbFCvGupXDYPHvUjhQXF7dbFBXcWmaXEEIIIYQQ0jryI9TnlmzGc0s2Nb0mmZ2ShSlCZLR0oQiR+Vl+VbL2rTU71ePCo3rjwqN6tdkqRjJPBbEXzRA1Nt64Qjs7zcj7RBiNvi36+1kRV4WahlA8QyeEEKIL8r1wwo1Admdg+VNARj68GfmoKiuHp64cvkhQlU8XoTLk9aPGm4sGpDe9fUH2Gfj2mNNx8qgAMt6eibcWLERZbfzfCd9VhDH55Ur84QMfpo/NwPcGiiTqR9DjVT1Iw7Vl8KZnK/+wej5w6u0m7whCCCEdhaOFUcmak4s2ee4oUVSIilRSXpegVdHSjPKvUh55f/05k+1d2lGiqOyTRYsWtXvfLFu2bJ8sXKcgPYY2bNigliWL1uv1Qld08DXVPli5PbNtm2UvWTs6HCckNm6cHzuNWQdfGWett8c462zcOD8dOWYRRf/81jq8ttrIrqmoC6C8JqD6drakNhBGZV0AB6ZVIicjDaHsrkpMLa1pwDUnD2hVHJVyvEJj5Vx4Vc/QRkFUlSpsvzjqQQQHeCqQ5vFie0QyVr1NQmt2ug9mwzjLOEvsj52OSR18TcaHRDK399reiEvg7X2MITquX4zc3DxsbjBiu5Rflx7VCAM++dLw+rAq/Ui8k34SNqf1Vuv4/Om4anQ+pg4eghfe34jZH1agVjTVOPl8Zwg/eK4GJ/bx4b4x2RjRK1N9A4XDwMaqLACF6LduMbzHXANkFcZtn3HW2bhxfuw0Zh18FR+Ifuh71JqACJEiSp577rkd6ocTez1aJYya0et1f/vbjlmjUoJZiEcUlbK7IgI7NWM0GAzi6aefVg9Z1hkdfE21D1Zuz2zbZtlL1o4OxwmJjRvnx05j1sFXxlnr7THOOhs3zk9HjlkyRUUUlRxMKXO7o6JeiaKiM+ZlpqF7fgYO6JSpnuVvnyeM4/EFjqz/FLsra9T75P1ipzWk1K0QrZYbfY5qodGMz/bgQxjj0r/CKb4v4YkYN5X8PsNSpyw/zIZxlnGW2B87HZM6+Nrh57NSnlYyMX80F5nHTYGn5zBs93VHdVoBtnu74/NIP/wtdBouC0zFb4MT8VnwAFTXB9WPe7ZX1MFbX4bcDC/uPDUPy6/tqpIi2qpsEIt3NoZw/F8rcdGccny5W8rppuHpwGl4uvRIBIMhYM2r5ow5xe8n1uLG+bHTmHXwVfd95FYcnTEqYphOmXMiWpGO2Sd2E0bluJ03b57qizt9+vR27UP5IcDChQvV8siRI+FE5OS2e/fuTcs6o4OvqfbByu2Zbdsse8na0eE4IbFx4/zYacw6+Mo4a709xlln48b56agxS0/RaPncnRX1qvenUJjtR0F2+j49P/My/QiH0lBRkaMydirqQgh56tEtL1PZGdW3MGbP0YJsP74trVXleCXz1BhnRG0jFIooYVT+29M5bv8YAqoHJeEsZUMSW30+qBK/QnGf5H9U2xLGWcZZYn/sdEzq4Ks257OSiTn8IgwYdiFeb1bdQKoXlEWrG9QFUdn4/dX0Nm+9evYhgp55Xlzy/RNw5tGH4uM35+HfXxr/Fi///KIBr3y5Cz8uzsehJ21Ep0756kdE2PSh8tG0Mafo/cRa3Dg/dhqzDr7qvo/ciici9XQciqRGz549G1dccUVHu2J7Zs6ciWnTpu31WmlpaVLZsCLoFRbuXYJCftklPTKTQQTFaLZllKlTp2LGjBmw676Ol1R9rNk8mhBCCCFuJpEScoR0BA+9sUb1CZUMG8kUFXp0ykRuRtu/la6qD2JbeZ1aNrJJ/ThlUFfcMH7Qftefu2wz/v7BRtW7VARSEUUNidODhmAYYUSQ5vUgrZVSZnI90xCSNYF0n7cpyzQnPQ29irKR5vPgqUuPQqds87NGiT1g/G0bXq8Tu34OW++HbfzARsqqSwWBByIPoXNwGw6I7EQm6rE9Uogu3irpFIqPNtXitoW1eH9z4j2p5WvmxhMLcPP3hyDvgAHApL8nbIsQ4k74fawnji6lyxK2epPKnqt2yRgVUTdZUdSOvVQJIYQQQggh1lBW04D3vt7VuBxoyhRtjygqyHqyfvP3v/v1LtWfdH+MG9JdCZeZfh8y0uSWwx4RNJqZqnrHtfJjTslSlX/1qi6jxvo+j0dlowonDOxCUZQQQhyKZFddNLo3fjtpmPohTvQ7pVt+Jg4szFI/kJFn+bvGl6fqDwQ9aSqrM8dTL91BlZ3je6fhnctyMPf8PAzqklhfavmq+/WiMgy4cyn+9J9P0NDQYPJoCSGEdASOFkalXyXL1+oL52ZfXnjhhaRtOLW/KCGEEEIIISR+Fny+HcFQRGXbSMam3DiW8rnxIOvL+6SUodgRewu+2B5z3eMHdlHLUfEyEAorsVOEURE4o68Fw5IVurdAKusFo6Kpx1hP3iO2JFtV+P6wnvHvCEIIIbZCSrZLdQKpEHDJsX0x9MB89CrKQufcdPUsf3c+9AQlkNYpgdSDXNQiFDG+Z1S1Ao8HZw9Ox7Iphfjz93NxQF5it8J3VgZw7d9XYciQIereXThsiK+EEELsiaN7jI4dOxYLFizATTfd1NGukA7OGLWLCDt37lzYnURKFd1999248847EQqFVAnstLQ9oSn6azy/36+aVT/zzDOqrMqkSZOQkZGx17qBQED9m7wmdgQ5WZX3ycmw2EjVuqr0y3PPqdcuvPBCtV7LdeX9Ysfn86lHa3b3t65sQ7YnpKen77OuPJ5//nn12kUX7emDsb91Y9kVH6K18GV+5BFrXeHZZ59VzxdccIHaV63NZ0u7Zs99LLuyrtieM2eO8uFHP/qRGk8icy+IX4L4Jeul4jhpa+5TvW6889lR68b7WTbrOEl0XatjxP7WlUf0u0jGLNsxK0aYPZ/V1dXqpoSs9+Mf/1i9J565N+M4qampUXG2uQ9Wfu/U1taqMctrMj/R+NgRc9+WXZnLp59+Wi3LvomuH+/c19XV7fU5lH9P5XHS1hy156aYvF98dkKMiHfdtmKEWceJFd8PZh4nzdetr69vOne4+OKLm9a38rtkxTc74YmEVQlCITfdB78nrO4Yhz17Mmg8kZDKupHunxGPV/19SMVK9W9f5x2hMkelt5vYyUrzYPmGHThn+AH7nfuzh/VUpXvzM+UzG1A94gKRCIIhL3zictjYnjw3hL3wyvaMkchg1M3tiMoXDeH09K9U6d1NOcNU+cQLR/dRN8utOE7EfzkmZSxybpaVlaXt3Mt4mp8fy+cnkRjRfMxyzZCZmRnX5775+88//3zk5OS06oNZ5xHNr0Faw24xwsx19/cd1XK/OfFao61rR12uNdp7PWj1tUbz+waJXpO2RfN1xXY0FkrMiNpsbe7lhzHyfXP24d32Xbe8O4LbXkZpdQNqPJn4J05X+aLn4FXkIIJ0BOBFGGneNPxoRB7OOTwXj35Ygd/+rxYV9fG3oVq3bp263/Hggw+qll2nnnpqmzFC/s3q+wapvCa1e4wwe13xo/n1iqyj+/dDstca8pAxm3XtaNW1hqwr1+ztvR606jgRH4h+OFoYnTBhAk477TRUVFQgPz+/o90hKYIllO3J0qVL8frrr+Pwww/Hueee2/T6H/7wB/UFIn0pZG43btyoXpeT0EGDBqkT0iiPPPIIysvLVV/hAw88UL22evVqvPTSSyqTVm5ARHnsscdUjfdLLrkEffv2Va999dVX6suyV69e+OlPf9q07lNPPYUtW7aoE9BDDjlEvbZhwwZ1A0AaeF999dVN68rJrvj4wx/+sMnX7777Dv/4xz9UFvu1117btK6cRKxduxY/+MEPMHz48KYa848++ijy8vJwww03NK0rY/j8889xxhln4Kijjmr6ccGf/vQndaF3yy23NK3773//G6tWrcIpp5zS5ENlZaVa9//ZuxM4KapzffxPb7PvLIPIDq4hAVljolHDolnUqwKKuYteF8Sbm0QTccm+XHFJvD+T/EXQXE1M3MAsGqOyuEQTI7JIoiJhBwUZYHZmeqaX+n/e01NjM0zP0l3Vfarq+cbO9Azdp96aqjldVW+d9/j9fpWENsnvfN26dTjrrLNw9tlnd160Mefk/da3vtV5QLFmzRq8/vrrOP300zF79mz1MzlAWbx4sXp+ww03dC7vL3/5C1577TVMmTIFX/jCFzqXJ+3Ke+S1Zr/8t7/9DatXr8aECRPU7810zz33qFi+/OUvq99H8raXuzST5xL+2c9+ptZxwYIFGDJkiPrZP/7xD/zhD3/ACSeccFRi+P777z/qxgw5UNq8ebMqZT1y5EhcccUVnf/2i1/8AgcOHFAHT2PHjlU/27ZtmzopGTp0qNp/zLgkKSzbWk7uTj75ZPWzPXv24Je//KWaN+D666/vbFdOPKXE9/nnn9/5/v3796vXlpeX42tf+1rnayWuLVu24Itf/CImT56sfib7rszlUlRUhJtuuqnztU8//bRab/ns++QnP6l+Jn8T8nckB2u33XZb52v/9Kc/YePGjWo/+cxnPqN+Jn9r8vs1b1gwyfZ54403cMYZZ2DGjBnqZ3Igam77W2+9tfPg9eWXX1bbfvr06TjvvPM62zBfKzcrmRfMZD956aWXcNppp+GCCy7ofK3EIO1/9atf7ezT+9JHmDdmvPXWW+rvwIo+Ink/sbKPkGOUj33sY+pn77//Ph566KGs9xFyA9mnP/1p9TP5+/nf//1f1UeYF9FknVeuXGlZHyGl4s2Lra+++ipeeeWVjPoI+buXWMxYhcxT/txzz1nSR1x55ZUYMWKE+lmqPkL+ZmWbJMeQ3Edcc801na+Vz4G9e/f2q4+46KKL8IlPfKKzj3jwwQeP2iet7iPME0xpW36PmfQRcqIo62s+z6SP6LrO/ekj5O9eEsrJ77eyj0juu1L5/e9/r17rlj7CyuMIuXBg7ieSBDf3Eyv6iOTjiAEDBuSkj+juOEIuqJrrbO6TVvYR3R1HFGzZggFFJ+P9WKX62cBQGybV/RURXwibKhN/32LUkc0Y0H4Ae4pOQE3BCJWoLI01qH/7RP1fUFd0hkqMyvxuI1q2oOCdffjL4OaUfcT8aSPU/HATA3sxJPg+3okfhw2RYer9eb445hckkq6PtJ6GaMfonknBDzAh/0O8Ex2MNyMjIHvPEH9zIu7611D1yUswf9pw244jZJvI7938u0ne9pmea8jfa3fbPt3jCNk3k4+P0+0jktdZ+n35G+1PH5H8fvm7s+tco7vjiL5wWh9h5XGE/N67+r//+z/1e3fzuYbEkvy3ofO5huw7Zqzy9/rUU09l/VxDPmfNGKSPkH2kr8cRycemPUk+jpC/ZXN5su03bNiQWR9x7/1SNBdXFK5EU2sp9voSv/uf42pMMv6OL2CNSozKbT/34mrE8wK4/syHcdXkJtz55xbc/2ZYlWvvL+nbZH+V/VB+1/I7S9VHyPYw11l+Z3V1df3qI2Q/M98vxxFyM6Nd5xq8HpFeH2GSz0Qr+wi7rllmeq5RUlKC5ubmznWW8x0dzzWkjzD3KTPWXJxryDYi/bg6MSp/YKNHj8Ydd9yB22+/PdfhEFGG5G4b+fCWAzg5eNaZfDBLrObzXJADimzGYG4fYSYKrG5bLhTIQaYV5KBq4MCBR93FlW5c5sFSJvtJJnGQfeQkTS6CeGn7OG2flBPvXMVq3hl65plnZi0GuQDx+c9/3pblWbntk9vItD05npcLMem0Y26jWbNm2fI7kwsr5u9NLkj89a9/VSfGcpHHJBdnyP79xCnMY7LKysqsr7N53dff8XfR6+vhw+6iEzGy5Z/qe7MEroza7AtJYNa1tOOdNxLvL84LotgfREt7VJXLNXUXjYwVzQv6UVmYh2354zHuyNvq51d+elTn37UdZJtMmjRJnWtYvRxzZIb0EVb1s9L/HDp0SF0IzqQduUArN/iZMfb3/XJR8dlnn0W2yYVk2V4mSSrJRU+JR0b78gZ5bzL/NiTZ9M4770BnyeeDdvZtfY0hnesG8vtOThZIAkkSL5JAksSQ/B0mz8uZfA69a9cuWKW8MA8HwoU4z3gJO41h2OI7QSVDJSUqPVugY95R08AiH+45rxBnTp+IH73UrBJ66Xj++ec7E2ZyjG4mRpMlr/OLL77oyOtL1DM515CksleOZ6W/ctp1A0l+5/q6AenFZyTfquhCktGXC2ZyYiOZ/VyQuzTk7j85yZAh4E501113qbu6kskdTpmMzpRtIx8cyeSkRu6uyITczZR8V0ZyWWWylty9lE7p3HRL6dpRukbXshS6lC/JZZlML5S3Yuma3O8nTtv2uu0n7CNy/1r2Eewj2Eewj+ht23/l0fV4v74N79eH0RqJo7o0D+UFHftMD6V0OzZSx0gboL4tjprGNhSGAhhWkY9hlfn42eVTetxPVPnAv+3C8jf3dLYrc5TWNrchHGlXc5VGVRrUp+YfDfrUq9RrK4oLMKg0D585YRA+d+ogjB1cot1+ovu2Zx/h7T5Crtl0TdJIAlxGmuV62/M4IvevdV0fsenXqH31AdQeaUdZvB4lRhNCRgxBRBOfbT6gBfnqdhwpryuJUp8BxOBHO4LY+GEU31/TjNXb+1YeuDuybjLiTkYwyvVSt+4n7CPYR+iynzjlOEJuoDVHCZtkQImM5qbccX1iVEgpA0mWyV05uUiOmolRuSv48OHDcCI7EqOSrDbLMJiYGPVuYvR73/ueJTEREREREdFHbv3t3/H2B42oaQyjMRxFaUEQ1WWJkqT9caAxrErplhUEMbisAOOPL8PiixMl+Hqz9UATntm0D69uO6SSoSYZOdoYjqClLYqoXJowgMFl+TixuhSfPbkas06pVnPLEZE15+u8EEuuJXNxvvoTHFy7Ag2tEZQbDRgQP6xutpF/M8drJT6BzFmtfYj5/DBU4XbgiK8If9kdwfeer8HG/ekPbJGRg5Ic/cpXvnLUXNVE5E38PNaTM8Y6Z0hqX0sCTybElqRZcmmrbKivr8/q8ohyyc6OXe4Sktr3YtiwYWmVesoWHWLNdgx2Ls/qtq1qL9N2dNhPKDUvbh8nrbMOsbKftb899rPu5sXtk4t1njSiUiVGywpDKjHa3BbFwLihRmj2yDBQEk3MMdrgL1PvE9KOmDyyqs8xnFBdihtnn4SrzhiDVZsPYP3uWnXhuqU9hlEDi1BeGFLtdU2Eyu/LnL+S/aw97bGfJbdx0j6pQ6yuOZ71+WB8+ga0hkvQ9tYfUBdO1NAtj9fD74snRoiqegSSHJUSu1IPIaC+9yGOdoRQ5mvF+WN9+OLCKjz+XgDffKEWuw639TsUmUdS5lSU+Yl/8IMfqLkjZQ7P5HWub2nHqncPYMOeOtS3RNAaiamKDBVFIfW5PfvUIZ2fhzrsJ5SaF7ePk9ZZh1glBtKPJxKj5uS5MmpTJmmWSYfle5kYOxtkPkQhkxhTbpLImYxsJX1ICQWZELzr5Oo60iHWbMdg5/Ksbtuq9jJtR4f9hFLz4vZx0jrrECv7WfvbYz/rbk7YPv25cKnrOs86tRqPrt2DAgSQH/SjLRpX6zWgREoKpiaXjE9uSlTzWR06XfKk6v0FoQCCAZ9KYvaX/K7mTB6mHn3Bftb+9tjPkts4aZ/UIVZX9bOxGB5+/QCAT2LBhBii29aguSWO4ngzYh2fawFI2XgpEy+PqEqQGr4AigJGYg7uYAF8hZW4/DNlOH86MO+5IrzyyitobW3tdzxSuvqqq67CT37yE1XB8MQTT8SlV38Ff3r3IF7rUkHB9H5dq7qZST63zxg3EBdMGIqRlfk5309I77/jbHPSOusQq1OnVnQ7zyRGxbXXXospU6Zg8eLFKlEm5VblDp6JEyfautwnnnjC1vadyq5kZW1t7TE/GzNmjC3LouySmu3mDQa6T1ytQ6zZjsHO5VndtlXtZdqODvsJpebF7eOkddYhVvaz9rfHftbddNs+yUnQ92tbsaeuBQ0tERmEguK8oBopaY6y7O7CpYyK1HGdK4ryVIwvbzmoEpMyT2hdSwT5oQBK8nu+JBD2FyJuAHWtMj9TIiEszhw3MCslbtnP2t8e+1lyGyftkzrE6tZ+dsAXrkMoegNa/v4Mmt54CMX1/1TjRCNGvqqkK0uWeQhDAX9iBFkgDygoV4lRU8H0f8fnfS2q8qBMJ3bvvfemlSB999131WPU6DFY0zgYFaMTZehlzu3G1ggisbj6rJVDDIlHjjfkZib53JbHpZOH5nw/Ib3/jrPNSeusQ6y6/468yhNzjHZnzZo1KjEq5Q3MOSgleSajSq1K2MnoR5nXcvXq1WqyX2l769atcCI75hjtrmOQbbB9+/aM2ly2bJmaVzaZjBBetGhRRu3SsVgjnYiIiIicTua/fHrTvo7RG3HUHomg9kh757/HDUPNhSknzkG/DwUdoybVhctQYl4yMX/aCMyfNlzLix+yjjc+uUk9r2kKo7E1ced6ZVFIJU67K6sr6yzJYkmiirLCIAaXJi4Y3zNvQp8SwUSUOzxfJ0pS8x7w9lPAjpeAWOJzrVuBEDDmHGD8JcDgk4/6p3379uH73/8+fvGLXyAWkzGo6Rn48c9gwFn/Dl/F8SlfIxUa5AaksoLETUjnjR+C688eq+UxBhH1jJ/HevLUiNHGxkaVNJM5R83ytmZeWJKXdvFo7rlPJLGaXD63u9GeVpTjZSldIiIiIiLqep722Nq9eGxtYg5LmXVsX31YzX1pdPy7nMrJc3UZ0ge0xwy0x+JoicTU6yQxal64lHbqWtq1vHApSUxJ3EqMg0oTJXQlOSpJz/rWiBo5WpgXQMDnQ8ww0NoeU3OKmqeykhQ13yftMClKRESOIknOz34TOP16YMtzwJ6/AeF6oL0FyCsCCiqAEZ8ETvocUFjZbRNDhw5V15RvuOEGVZLz97//fVqhHPrHn3Ho7ddQMek8jJz576gYMFiV8ZUbsVo6Pn+l7L1UeJBRpfL5+/zbH6KyKA+XTx+R4S+CiIg8lRh96qmnMG/evGMSleYJq53JS1kGk6Pdk6HsyYlMK+YYPXz48DE/kxLKREREREREQs7P7nt5u7rQKBrDkcQFyGhiBEjX0zf51i8Pn6/z4mUMhrpg2dYYd8SFSxnNKolbiVFGfhaGImreVLn42hSOqkd3I1akfG5p0ogVaYeIiMiRJOk58fLEI00nn3wyfve73+Gvf/2rqk73l7/8pf+NGHHUr/8Tmv7xIsaccynGzrgcwYIi9Xk7MKlig1nhQT635eamqaMqeXMSEZEFPJEYvfvuu9VcomZysru7d3W7o9crJk2a1Dl61yrdJVc5x6g7yGTVTz75pHouNzoEg/p2YTrEmu0Y7Fye1W1b1V6m7eiwn1BqXtw+TlpnHWJlP2t/e+xn3S2X20dGikqCUArkHmxsU6MmZSSor0tSNCDZ0I6fyY9lNKUIBnydicP2qNHnC5e5XGc555XRrJK4lRjl4qs8PprjzFAJX0n8hgI+lBf48bG2d4EIsD3/47hs+uislwpmP2t/e+xnyW2ctE/qECv72fTb+9SnPoVXX30VTz/9tLru/N577/V7GbH2MLa+8Evs/ssfcMJ5V2Dkpy5AIBjCgJJ8NRf4hw1hBFprMS36DspwBNHH7wEG+IFQYSLJO3w6cPLnU45yJW/8HWebk9ZZh1glBtKPvnuthXOJytyYcvKWjdGh3WHSNbWpU6dixYoVxyQ2Myl927UcryRFWUrXHeLxeOc8vfJcZzrEmu0Y7Fye1W1b1V6m7eiwn1BqXtw+TlpnHWJlP2t/e+xn3S1X20fm2zTL50pStDEcVfNpBjvO26IwVII0FPCr0rLmOaS8Jipf5Xwylvh3SYpWFeepOUklOSqjMCXZ+Mymfbhx9knarHPyuamMZpXErcT46rZDKEDgqLlSTX4jhormRDWeOy/+OE4ZVpX1eNnP2t8e+1lyGyftkzrEyn42s/bkc/XCCy/EF77wBTz88MP47ne/q+Yi7a/25nq8s+L/YefLy3HyF6/BcRPPwSmBffj3vDX4ePRtPGt8HvUoRaRuD3Yd8akbu+RGpsDmv6HwlaUoPmUmCk6bd8y8qOSNv+Nsc9I66xCr7r8jr3J9YnTBggWdz+VkVpJkc+bMwaxZs9RzKeVaXl5uy7IbGhqwatUqXHvttZaUiHWjmTNnHvMzGUEqI0nT1XUEKkeLukcgEFAHnOZznekQa7ZjsHN5VrdtVXuZtqPDfkKpeXH7OGmddYiV/az97bGfdbdcbZ+nN+3rLJ8rSVF1cdHvU0nQ9mjiwkWw4/vkC58yStQXNxCJx1Vy1B83EPD7EInFUVkUSszX2ZJIjErC8aozxqj5R3VY565kNKskbiXGVZsPYP3uWjVnqsxtVpQXQHlhCJOGV+B4o0R9f+Jx9pwz94b9rP3tsZ8lt3HSPqlDrOxnrWlPRqFdffXVuPzyy3HvvffijjvuQGNjY7+X2XLoA2x4+HsYfvz9mDerFNNHlyBsGJgefwOFaMdxOIC89jjg8yOKII74S1DbHkPdm39Ayd+fhW/KFag++zo5cEl7vcl5f8fZ5qR11iFW3X9HXuUzXDz5pYwWlQSonMSOHj0ay5cvx2mnnZb1OO666y5VUmHs2LGddyg4jayDjLxNVldXZ8lIzK4jamUic0kmp6uysvKoRHSm7VFqBw8exODBg4/6WU1NDQYNGpSzmIiIiIiIUpE5u658+E1EYwb21LaoRKiUw5V5NqWMrFlONy/oh089O1Y0FlcjR+UV8joxoqoIe+taVMndYZWFagTmf3xqFOZMHpblNSQiSuD5OlHuHDp0CJ+78gasf+5xGLH0y2h+ZmwRfjSjCJOHfPQzdXTSeYjiQ8QXQrOvFEd8xeonR8Z+HhMu+z58/o75AIgop/h5rCdXjxiVRKiQ0YdvvvlmzuKYPHlytyVeKUFG8CaX092+fXvabUlCtOvoXKkfTkRERERktXA43Ouxq9wcWVBQkLWYqGer3j2gkqIyr6YkRRP3aCbuFZZSuUJK06VKigoZJRqT+Tjx0ZycR9qiKMkPoikcVfN1SmJURmEyMUpkD/a/RKSzgQMHYsqlX0PZ5POx8XdLUff3F9Nq58/bW3DW9hZc9ol83Hj2AAwoL0YcfgRgoAhhlKAVIaMdlb7DCPnaUO+vQvH2P+Hlx0px9uU3cXo3IiIvJkalpKp8AJgJ0lyRcr2U2q233npUYnT16tVpt9X1vZJ05fyi7iE12eWOGiF32vg1vvtNh1izHYOdy7O6bavay7QdHfYTSs2L28dJ66xDrOxn7W9P935WSqQlH8d2Z+HChbww38ftI2VtJXG5YU+dKknbGomhMBRARVEIk0ZUYvapQ44pTdtf0raQ5KWQZKYkSYVZSkkSnT2Rc0x5jZTTlWSqP+DDkfYoygpDKjEaiSVaktK0va0z+1m9YmA/q18/mwr7X9K573JSrJnEIKMiH3rooR5fc+WVV6okoRXLc1o/K8cxRQOGYsTFizBs2nn48JXHcHDrxn7HIUcVj/29DSve2Y/Lpg7EtWdUY1BpCG0oRl08hlKjCRVGM0qMZlW5oiFQhWE7nsCza6biizPP6ffyyHl/x9nmpHXWIVbOMaonffdaixKjMoflqFGjchqHmZjjPKPdkxG9yXOKbtiwIe22ZE7XVHPMkvNFo1FVGlke8lxnOsSa7RjsXJ7VbVvVXqbt6LCfUGpe3D5OWmcdYmU/a3977GfdLXn73PPCZlXi9lev78bbHzTi/bpWHG5uV1/le/n5FQ+vxU9WbsHWA01pL1MSrkLmBRUyf2bHQNGPMqN9GFxhJk/Nt0iC1JyTVEaRCpmv08n7pA6xsp+1vz32s+Q2TtondYg1kxjkYn9LS0uPj64JAS/1s3JzlwghjkuGteC/vnQhTr/+xygbdkJa8ciNV4/87SA+/7N38cCrB9AelZuzgjgSrMRBXxUM+FBqNKMg1qxe37z+8YyOmcg5f8fZ5qR11iFW3X9HXuXqEaNSuva6667LdRhqxOgll1ziuvIF8vu1ajSmjBqdO3du5/fLli1La15QeZ9Jkq2SGCf3kL+h0tLSzuc60yHWbMdg5/Ksbtuq9jJtR4f9hFLz4vZx0jrrECv7WfvbYz/rfoH8IrS2x7Bh6yHEfQE1elNGc0riUhKWfh8QCvjVaMwCBPDyloPqMX/aCMyfNrzf21VGbwgzGSoJTlmG+qk0ZXQ8+tpsRzvSnowgNds0k65O3id1iJX9rP3tsZ8lt3HSPqlDrOxn7WtPKl7IDV7BgB8t0ZA6Phh00hSc+Y2p2LfxRWz54zK0HN7f73ab2uL4yep9+PXag/jqZ4/DRRMHoD1QjKZ4BGXxRpUcbTGKMTHyFlaufw8nfH5qv5dBzvo7zjYnrbMOser+O/Iqn2F0nL25kAyNltIqF198ca5Dcbybb74Zd91111E/k/k8xowZY+lcrOZoUWm3v3ONSnwSp13x0bE4eTQRERF5mRz3LFmypNdSjl2PlwiQ09D7Xt6O59/+UH3fGI6goSWCtmjqUlP5Qb8qpVtWkCine974Ibj+7LH9utiw8Nfr1UXKD+pa0BqJo7osXyVi5bkkYyW5KSM/JRnbExkhGonH1UXOvIAfoYBPzSsqpXTLCoIYXFaA8ceXYfHFn+hzbETUd+x/e8fzdbIb/w57tnzdXlXxQm76kmMPOVwZNaBYzVUuYpF27Pnr09j6/MNoP9KQ9nLGDSrAN2YNxYwTSzDU2C8X+/GBbzCMQAGeK7oA/7HwtoynIiCi9PHzWE+uLqUrSTEZ1UiZ6668bSYlb7sjc8GaI1ClDHLXRGxPpExxclL0zjvvZFKUiIiIiEhTj63dq5KiBgzUNIZR09imkqJy0bC0IKgSlseVF6iv8r38XP5dXlfTFFbvk/dLO/0dvSHMxKeUuy3KTxRSMi9USilc+V9PzHK5ZkpWEqTNbYkyWTK6VUweWdWv2IiIiMg9Zp1ajWDHjVNyc5ccOtS3tHf+eyCUh9FnzcE533kCl519CgqC6Y0q23YwjOse3YH5D+3Aq+8nqlWUGkfU8k5sfwerNh+wbJ2IiNzC9YnR/o46pGOTnzJP5+rVq4/5t2uuuUaVrpUkplXba82aNZ3fS6JTRvz2JSk6Y8aMo5KiixYtsiQmIiIiIiKylsx39djaPer5wcY2NIYTCcXKopAaSVFdVoDSghCK84Pqq3wvP5d/F42tURxsalPPpZ3+zJ81aUTlUclLSWYWS8lbX0dZXfhUSlRGhPY02tVMjJrJ1MTPE6Na5QKoXAiddUp1Gr8dIiIicoOKojycMW6gem6O2KxriXTeSGUKFRbjy7NG4bmvnIr/mFSEQJpVN9ftbsZ5v/gQ85c3YtehVlUFo8RoxvrdHDREROSpxKjML9mXxBolkpCVlZWdDylHJQ8pb5s8b2fXhKQkTceOTZSvkkdyG+mMKJV5QdevX9852lPmHe1p5KgsI7kEL5Oi7iaTVcvIYnnoPnG1DrFmOwY7l2d121a1l2k7OuwnlJoXt4+T1lmHWNnP2t8e+1l3enrTPvW1ubUN49s341P+rRhalocBJflHJRqTyc/l34eUF3QmR5vCEfX8mY720h29IeVvS7uMGo3Gjc45Q7uSpKn8iyRRJZkqSVIpk5c8IvXMcQO7LVvnpH1Sh1jZz9rfHvtZchsn7ZM6xMp+1t72LpgwFD4jhomR93BWaBv8iOPDhjAON7cddRNWvtGGQaUh/L8vVuDNhRWYdVJJ2nH/YXM7Pr2kBt97Zg+aGxvR0Jo4XiL3/h1nm5PWWYdYdf8deZWrE6Nz5sxRI0Y3bdqU61AcQRKdJilpm87DbCe5rXSSo7LdJMEpbZpJW0nCSpJWHvIzSYjKQ0asmtuaSVF3i8fjePfdd9VDnutMh1izHYOdy7O6bavay7QdHfYTSs2L28dJ66xDrOxn7W+P/WxuSJk3mRfr1t/+Xc3JecVDa9VX+V5+LnOBZtL2a9sOqecNre0Y4a9Vj5L8ROm33pTkBztHjtZ3xPHqtkN9jinV6A2ZI9RMjMoco0LmHI3G40eV1ZWLmNGOhKnfLwnUuPqZ3CRaVpgY4SrOnzDU8fukDrGyn7W/Pfaz5DZO2id1iJX9rL3tnVBdinmTh6EqUoPjjMMoLwh0HnvsOnwEBxrDap71I/GQulkrDh9OGhjE0nnH4ZdXjMNpw4vSWm7MAJ5cfxgX3fM3/OXx/w+NjY1ptUPO+DvONietsw6x6v478qrEbbEuJaMOL7nkElXyde3atTmN5cEHH1Rfr776auhIRlrKQ8eYZNTvE088gXXr1uHJJ59USVdJmMr2lUTopZdeqpKp5H6BQACf+9znOp/rTIdYsx2Dncuzum2r2su0HR32E0rNi9vHSeusQ6zsZ+1vj/1sdklJWhnNKYnLqFxR6+L9ula8/UEjHl27RyUXZRSEXPDrj1XvHlBtywjLcNTAev9IDCjOh9E5W2ffkpv1rRE156i0U4CAmj9rzuRhfXq/xP3yloMoKwip98vo09ojEeQF/WiLxNSIUsTkoqKRGDkqiU/1zsToUPXM99HI0byAXyVFB5Xmq3+bP21Eyt+Lk/ZJHWJlP2t/e07tZwcPHozvfve7WVseOYcOfZeTYs0khtLS0s739vQaq5bn1H72sukj8f92TcG7+xoxML8QeXkxdXOXHMdI1Qp5HPAVoQoG2n1BFKANRb42nDa8Er+84gS89M8m3L3mIN4/1PepA0xynPP3Pz6EceP+iG9/+9tq0EleXl7a60J6/h1nm5PWWYdYdf8deZXPkAlSXEySaJJAu+6663D77bfnJIadO3eqcrN+v59Dp8lVDh48qE5Ik9XU1GDQoEE5i4mIiIgoW+S4Z8mSJT2+ZuHChcccL+lGTgkfW7u3c95PkUgYRtSoSan0JhVmQyoBGFJlaE2SBJw/bbgaMdkXMupUkqs1aoREFKUFQTWHaH/JCAu5kFhWEMTgsgKMP74Miy/+RJ/f/+gbe9T6SmpT5iuV5CiQSITKGbJZIjceN9DdPd5qbX1AQTCA6rL8zpGi540fguvPTkw1QkSUSzxfJ3LKsZaBL8ZfxDzjeVVS93jfQXXD2C5jCAxfAEG/Tx2b/O6tw7j3xf2oaUq/codcI/+f//kfzJs3T12nJiL78fNYT67vAWVkoYwyvOOOO/CTn/wkp7GUl5fndPlERERERERdL9Td9/L2zgt1Us5tb22LGh0qicvWSFyNaJCv8r38XP5dXifkffL+vt5va5a/lYSrKMpL7w7qwo73ycVE0d/5sySZK0lMH3wYXFqgkpv5wcTFR8lpRqRErmHA8HUkQTuSoZIgVuV2/T5UFeVh7KDizqSoJImZFCUiIqKu5Njg8ukjcM+8CTjnpEGd853LzV3HVxZia+VnAH8Qbb58tCMPPhioQLMq9S/HHPL6uZMHYtVXP4avzxyKkvz0LunLdGTz58/HtGnTsGbNGsvXk4jIKVxdStc0c+ZMVYZVvr755pt44IEHjinlYKdM5tskoo/IBbfa2lr1vKqqSuuLTjrEmu0Y7Fye1W1b1V6m7eiwn1BqXtw+TlpnHWJlP2t/e+xn+zZnp5Sn3bCnTiUdJWEpow9a2mMoyguivDCkRmVWFIUwaUQlZp86pHNuTSGjF55/+8PEyMnGNpX8FPKrkvk8JXFpjp6UNpvboipRWtPYpkY6SPlYeX9lUZ664Neb1khMfZVRqDJCs9hoRX4sgjZ/YWKhfWTOA2qWtpXY+kP2BUliStyS3JXkpjzM0RvhaAzhiMwxKvOHJpKh8nswVRXnqblOQ0E/zhw3UM0p2peywk7aJ3WIlf2s/e2xnyW3cdI+qUOs7Gftby+5nXGDq3Dj7JNw1Rlj1DQA63fXqpu7WtrzsNOYirH1r6PJV4KBRi0q0YxoPA9t/mI0oVi9vzR0BAs+MwTzpgzEklc+xG/WHuy8Saw/1q9fr66Tn3vuuWoaswkTJqS1bqTH33G2OWmddYjV5QVbHcsTiVEhc1DKXTEzZszAqFGjcNddd+Gqq67KyrIlKWv+8RFR+iKRCH7+85+r57feeqvW8yLoEGu2Y7BzeVa3bVV7mbajw35CqXlx+zhpnXWIlf2s/e2xn+37fKCS0JN5N5s7EpudfEBpfiJB2nV+UGGOFE1OikrCT+bxlGRgMkkcDowbKhlbJ0lYVX4WasSltDN1VGWvycHCjjK8auQl4pjWug5oBTZUno04+j56VEZzJtrxpT3y1By9IXE/s2kfXt12SM1XmlwqWOYRlWRzS1tUJXMlqTyiqgjDKgsxeWQVZp1SfVSi2U37pA6xsp+1vz32s+Q2TtondYiV/az97XXXjhw7yNzoR82PXlOGD3+5Hk1hP5rj7SgxmjHIqEWtlOHFBeol83zPIogYKouCuO1zw3DF9AH4+Yt78dTfm9W85/31wgsvYOXKlfjSl76EH/7wh+qaOTnv7zjbnLTOOsQqMZB+PJMYNcvqyh0xy5Ytw0033YRrr71WTTotd8jIo6yszPJl7tq1S915Q0TWyM/Ph1PoEGu2Y7BzeVa3bVV7mbajw35CqXlx+zhpnXWIlf2s/e2xn+15jir5vqapDbVH2hMXxAz576NLY1Iq9nC0Xf27jHKUkrEvbzmoHgNL8tT7m9qinUnRIeUFaqRoKpIsHVCSj/xQAB82hFVytDAUUUlTSS7KKIieyMhVKccr85W2R4AIAmndud3aMUJUSswJSfymS5K53Y/ekFG3AdV2OklQN+yTOsTKftb+9tjPkts4aZ/UIVb2s/a316d2Bp8M35QrgNceRL2/Ss0rWmo0ozTeiHxfmyrvX2gcQQAG/IijwAhjWHkrHrmoEF8/PYTbVrfipe3hfscmx4K//vWv1VR0X/7yl3HbbbdhwIAB6a2oR+nwd5xtTlpnJ8VK2eMzXDyWV+4CSEVWWxKkDQ0Nx0xCLQlUq0royihVc3ljx47F1q1bLWmbSAecPJqIiIi8TI57lixZ0uNrFi5ceMzxUqbzgUrpWtHQ2q5K2rZ1zNeZSIoeS6UOO3KP+UE/qssKUJwXwM7DLSgrCKoko5Rhk5GikvTsq8PNbWrkqLQ5vKpIzX/18BXTekweLl+3F796fbca4SoJUsmJjhpQfMzo1J7IKM5dh4+oC4YyclNGeP7Hp0YdPeqCiMjjeL5O5ECGgbce+w6Kt/9JfVsQa1bJUZl5VOm4mUz+3zzmazNCaEAJmlCEtbua8YM1Ddj9wcG0QygvL8ctt9yCr371qygsLDz6H1tqgS3PAXvfAFrrgEgrECoECiuB4dOBkz+feE5Enfh5rCdXjxhdunTpMYnPrrrmhbdv325zVERERERERP3XdT7Q2pZ2NQdm8gWyrulFw/x5xz/K/KD76ltVSVs5F5J5SWWeThnBKeVz+0NeL+V7pU1JdEoZWhlx2VOCctap1aqcr7xWEqryXinN25+ErLxeTuPk/ZIUlYSsjOYkIiIicjSfDxMu+z5efqwUw3Y8gXCgBC1GMQLxNpQaRxAyovDDQBw+RBBEI4rRhjyVLw35fWgZPw/jT5uNcw5twCuP/gw7d+7sdwhyLV0GG0n50e9///v4j//4DwRrtwFvrwB2vAzEuikLWr8H2L8JWP8QMOZsYPwcNQKWiEhXfriYjP6Uk/1UDyFlm7LxICIiIiIiymRO0eT5QCUhKUnRoN+HgM+XGDXgg/reTBjmh/yq1Kw6HfElTv6CPp96X3NbVM1NKqMv5fuCoL9fozaFvN4su9vYmrhIJmVoe0umyhynwhxZKqNOJZ6+kNfJ6xNtJd5/5riBlpS4JSIiIso1n9+Psy+/CVtO/zHW502B4Q/BCBSgITAAB/yDsc83GPt9g3DYV4moPx/+YAj/KJyGe0u/gRcKPofLTx+N//vh1/Dee+/h3nvvxcCBieOu/vrggw9w9dVXY8KJI/H09+bA+OfKRFI0Gka86UO0Hd6NlprtaDqwE3U1e7HvUB3eP9yI2k3PIvrUtcC6h9QIWCIiHbl6xGhVVZX62jUxaSZFs1FFmElRIutEo1H88Y9/VM+/+MUvIhjUtwvTIdZsx2Dn8qxu26r2Mm1Hh/2EUvPi9nHSOusQK/tZ+9tjP/uRpzftU18bwxE1H6gkNGWUp2REo0ailG7If3RyU+YXlUSpz2cgEotDXiVJ1JDPp76PwegcYRpL89yoMC+ApnBUleIVMjdnby6YMFTNcVqeH8CJoZ0qljcbRqOtKF8lTrtL0Mr6ykhRMylaVhhU85qK8ycMhVM4aZ/UIVb2s/a3x36W3MZJ+6QOsbKftb+9dNqR68lfnHkOtn58Cl548x00bXoBZfE6fDywFUUII+zLR7OvBJuDp+KNvOloC5WpG8VumDBUzZ0u8vLy8JWvfAVXXHEF7r77btxzzz1oaWnpd/zv7tyHC5fswxljirF4dgmmH5e4sU74Ox5yRFYYa0Z7NITmtlLUHilGyUv3I1izHwM/d2tnCWA30uHvONuctM46xCoxkH703WstGjGaTBKh8rNJkyZlZfkyx+i6devUVyLKXDwex6ZNm9Tzz3/+89CZDrFmOwY7l2d121a1l2k7OuwnlJoXt4+T1lmHWNnP2t8e+9kESQi+tu1Qx/OIOq+R60uS5GzvmF9URoKmGvGpRpT6EyNF5UJWXtCPSCzxbyof6gPCkbj6t36PGu240CXleEVLe0fDPZALdvOnjcATb+zEMKNGXVFbFx+lkp4yElZGoUrCVdqWhK3MgSojRc3crSRFB5UmSu9KO+YFQCdw0j6pQ6zsZ+1vj/0suY2T9kkdYmU/a397mbQjxzgjZ0/C4vUv4BAq8dwpP0RDm6GOt4ryAigvDGHOyCo1pUCq6hllZWX44Q9/iOuvv16Vxn3wwQcRi/V+vNbVazuO4Mz7j+DCU/Jxy4wBGDawFFHDDz9kOoUwStCKkBFBlVGLfKMNteEqYP1T2H4kH9Pm3OjawUM6/B1nm5PWWYdYJQbSj6sToxUVFeqrXDiorKzEk08+iRkzZmQ1BkmKzpw5Exs2bMjqconcKBAIqL8n87nOdIg12zHYuTyr27aqvUzb0WE/odS8uH2ctM46xMp+1v722M8mrHr3gCp7K/N4tkfjKgkpCUz5Gu8Y9dlbQlP+XRKf8noziSmjTc35R+VHUg63srh/84yaI039HRe75CJdX8yfNhy1za14a/049f0gFKCuNabmHJURqPLoSkoES/lcc6ToeeOHqHacxEn7pA6xsp+1vz32s+Q2TtondYiV/ayz+tlPfnJC2rEcd9xxuP/++/G1r30Nt912G373u9+l1c4fNrfhj+/tw8WTBmDhZ4aom9UaUYRDiKMCTahAM4rQDMkF1furUPXeo3js2Y9j/hdmuTI5qsPfcbY5aZ11iFX335FX+Yxs1JPNkQceeAALFixQne6dd96Jb3zjGzmNY+zYsdi6dWtOYiCyw8GDBzF48OCjflZTU4NBgwblLCYiIiKibJHjniVLlvT4moULFx5zvNRft/7273j7g0bUNIZVGV1DJUM7yuFKklTK40pZ3V4kv15OAuNxaSlBSu6WFgQxrLKoX7EdaAyrJGZZQRCDywow/vgyLL74E316r5yKPrZ2b+fcqUKSv5KgldK8ksCVhKvMk1pWGFLzpppkpKgkRd14gY2IyAo8Xyeinrz++utYtGgRXnvttbTbKAz5ccXpg3DVp6tRUhCAVNgtiLegGrWQo81DviqEAyVqrtT42d/E5dNHWLoORE7Az2M9eWKOUWHeGZALU6ZMUV9ra2tzFgMRERERETmTlM81E5tCkoVye6uZ1DRHa/ZGXieJUXmfDDCV1uSdKklqGKrUbn/ICFQpcSskcSkmj/zoHKw3ktSUC2RTR1XimU378Oq2QyhA4KgEaLJgwKfmz5I5RZ1UPpeIrNfQ0ICVK1f2+JrZs2ejvLw8azERETnJ6aefjj//+c945plncMstt2Dz5s39bqM1EseSPx/A4+sO47/OHoLLpgxEJFiM+lg7KowmlBhNqI8W4ZTYevz38+tQe6QN//bJUSnL/hIRZYtn5hg1y+rmQi6XTeQmMqqgqalJPS8tLdV6hIAOsWY7BjuXZ3XbVrWXaTs67CeUmhe3j5PWWYdY2c/a3x772YTWjglBzbxlZ82f/tb+MVffkJJOPlWeV36mSukCqkxvf+c+lVikxK0kMyVxKXNc9Xf7VBcCN8w6EVedMQarNh/A+t21aGiNHDV/1uRe5s9yCiftkzrEyn7W/vac2s+2tbXh3Xff7fE1Z511VlZiIb3o0Hc5KdZMYpABII8//niPr7nsssuOGrjCflavflbauuCCC9Tci7/85S/xne98B/v27et3O3UtUfzoT+/jl6/X4L/POQ6f+1gpyn3NyEdEzTfaZuTjU3gTv3q9DGveq8EZ4wbiApfc6KbD33G2OWmddYjVxQVbHc3ViVHdEpIy3ygRpS8SieB///d/1fNbb70VeXn9mwPLa7FmOwY7l2d121a1l2k7OuwnlJoXt4+T1lmHWNnP2t8e+9mEwo4RlOY0onI+r86vzeGefWW+VpKh8CXmHTWMRHsdI1JlBGhJfu+nifK6uo6RrDLvp5DRnP1JXHbdPuVFeZgzeZh6uJWT9kkdYmU/a3977GfJbZy0T+oQayYxRKNRVSKyt9dYtbzesJ9NXzAYxFVXXYX58+fjp9fNxB0r1qKhNXFjXn/srWvHot/uxsOvF+L7M0rx+TEGytCCGuRhovEeft/6GQwsycfLWw6qx1FTI7TUAlueA/a+AbTWAZFWIFQIFFYCw6cDJ38+8VwzOvwdZ5uT1lmHWCUG0o+rE6OjR4/GqlWr1PNRo0ZpEQcRZcbv733+LF3oEGu2Y7BzeVa3bVV7mbajw35CqXlx+zhpnXWIlf2s/e2xn00kHt+va1XziErJMil7K4lN835n+T7Q+V1q8jphvlJ+NbHYR6V45Z8/bAijsiiEiqI8lTjtrnyujBQ1k6JlhUGUFiSSoVLi1ovbx83rrEOs7Gftb4/9LLmNk/ZJHWJlP2t/e07pZ4uKinDLF8bimgnAD3/3Npb8rQnt/c+P4t39rZj761bMHBvCN2f4UFVdgTI0oy0Wx67DRzCoNB9lBaHEPPMH38P8wjfg2/kKEOsmgVS/B9i/CVj/EDDmbGD8HGDwydCJDn/H2eakdXZSrJQ9PoNjeYkoTZw8moiIiLxMjnuWLFnS42sWLlx4zPFSfy1ftxe/en03wpGYSpDG4nH4/Yl5RttjcZXozAv4eywNJTOLSqlcw3xtR2le+bkkRuWt8vOIlNftGJUqI0cL8wIIdMxN2toeUyNFzTNISYrKhS1J0cod/zJfKBGRm/pfJ+P5OtmNf4cu9es5wJGDaKnZjr2HW3HLS1H84e+N/Z7BwSTHnJ//eCW+dNY4fLPku+p4VY45ywoC+Ne8l3Fe+HlUFedhQHEeEA0D4fpEgtSIAz4/EAgBBRVAsOCjRidfkXhoXMKVyMTPYz0xXU5ERERERKSxWadWq/k7ZR5Pmc9TEpkyclO+SopTLlTJ9z2Rf5dXyOvV+w1DjRgtzguqEamS3BxWWYTqsny1DEl+NoWjqGlsw/6GsPoq35tzisrrBpcWqPedN36IKoNGRERERA4n5Wvl2NHwY2RFAPdeNARPXnsizhiX3nygcvz57D/q8O9L1qH+xQfhb5P5Hg1c1rYCM1ueU69pa65DrHYXUL8bCDcAkZZEklS+yvfyc3m0NSYaXf8w8OpPOuaWICLqP1eX0iUiIiIiInI6KWt7xriBai4mmcOzrTEOI26o5KaUu43HDUSlvG488X1X8rpoR+JUzSsqSVIjMc+oJEVLC4I49bhyHGpuU2Vx5SGjUxtbI2oEqZTglWRqKOBDWWFIJWhNR80NRURERETOJvN41u9B1BeETJZQgDBOHlKFB/9tHP62owl3r/wA7+xv7Xez0ZiBurW/R8OmlTj3rKk4Y3IdYj4fBqIBpcYRxCM+BAJ+IL8UCBUD/gAQjwGRI4AkUyVR2rQ/MfdoSTWw+RmgaAAw5Upbfg1E5G5MjBKRY0SjUbzwwgvq+bnnnqsmh9eVDrFmOwY7l2d121a1l2k7OuwnlJoXt4+T1lmHWNnP2t8e+9mPXDBhqEqMlnUkLetbIqqMbtDv6yx1G4nHYRg+lfyURKWMEZUkqJkUlXJBMpOKJFFVCbOk+UFv+3xirqZnNu3Dq9sOoQCBoxKgyWT06pnjBqo5RU+oTm/0gNu2jxvXWYdY2c/a3x77WXIbJ+2TOsTKftb+9hzXzw6frub0bPWXoDDWjBK04hDicnsdPjW2DE8tKMWf3qnDPav34f269n43H29rwXMrX8GG10O4+exSXD3Rpya+r0Mpqiqqj12/gjKgeDDQWge01iZK7QpJjsrI0RGn53TOUR3+jrPNSeusQ6wSA+mHpXSJyDHi8TjWrVunHvJcZzrEmu0Y7Fye1W1b1V6m7eiwn1BqXtw+TlpnHWJlP2t/e+xnPyIJSBmdKWReTxnpKUlRSXpKUlSN1zSgvm+LxlXytC0SVyM+VZUxA+qSliRF5X3yfmlHSLvSvjxunH0SHr5iGv7jU6Mw/vgyDK8qxICSPPVVvpefy7/L6zJJirpt+7hxnXWIlf2s/e2xnyW3cdI+qUOs7Gftb89x/exJn1PzesaDBWj3yXQLQAWa1Nz0Qua5/9zHKvH09SfjlvOOR2VR9zfS9eZAUwQ3PlOL6ffX4zdb8lCPMjS2pyiNK6NHiwcCpcclZi2V5KhZVvftp+D1v+Nsc9I66xCr7r8jr9I3nU9E1EUgEMBZZ53V+VxnOsSa7RjsXJ7VbVvVXqbt6LCfUGpe3D5OWmcdYmU/a397uvezxcXFne339BqrSMnaupZ2PP/2h2p+z4KgHwca29AWi6v5m0R3l5NU0rSj0m1iftACNfJUdDc/qJTrnTN5mHq4/e8425y0zjrEyn7W/vZ072eJ3LxP6hBrJjGkcxzEftYB/WxRFTDmbBQ1PYvmtlJUGbWoQDPa4nmI+hPbU6ZZCAX8uHzqQJz/iUr88q81eOSNQ2iN9D8BtPlgDFc//gEmj6jHt78wAhdOGJT6xVJmN9oGtB5OjCDNLwN2vAScfn2iBLBH/46zzUnrrEOsuv+OvMpnSC0lIqI0HDx4EIMHDz7qZzU1NRg0qIeDGCIiIiJKm5y+PbZ2Lx5bu6fz+5qmNtQeaU8kRQ3576NTPJlHtOM/VBXnobosvzNLyvlBicip5LxzyZIlPb5m4cKFx5yvegnP14kobTXvIfrUtdh1+AgqY7UoMprVdA2NvlIc8ZciHPepiiRyHGp0HG/WNofx4J8/wGMbmhDLINtw0cQBWPwvo3HSkKLuXxCPArU7Ege9FSOBYAEwfQEw8fL0F0pkI34e64mldImIiIiIiBxCkpiXTx+Be+ZNwDknDUKoYwTo6IHFGFCch7ygH/nBQOcjL+RXP5d/l9cFA371Pnm/tMOkKBEREREdZfDJCE69EiX5QdT6q9DsK4HMXl9uNGJofB8GGbUoQQuKEEYpWjDYV4uppYex7Av5WL+wAl84OUVSsw9+99ZhfOwH67DgN//E/oa2Y1/gDyZGjopwQ+Lrnr+lvTwi8iaW0iUix5A70draEgdF+fn5Wl/I0yHWbMdg5/Ksbtuq9jJtR4f9hFLz4vZx0jrrECv72fTbq29px6p3D2DDnjrUt0TQGomhMBRQ815OGlGJ2acOUeVc2c+mZs4HetUZY7Bq8wGs312LhtaIejSFozjSFkVxflCVzC0rDKK8MITJI6sw65Rq9bvVgZu3jxvWWYdY2c/a3x77WXIbJ+2TOsTKftb+9hzbz06+AsGa/cD6p1Dvr0LYyEOp0Yx8o10lQ+VhJIUiT9uQh/KBVVg8txCXvn8E31ndhF17D/R70bE4sOzVD/HrN2pww4zjsWj2cHU82ylUnJhjNNae+F7mHPXw33G2OWmddYiVBVv1xMQoETlGJBLBnXfeqZ7feuutyMvLg650iDXbMdi5PKvbtqq9TNvRYT+h1Ly4fZy0zjrEyn62/+1tPdCEpzftw2vbDiGaVGMrFo+jMRxFS1sUz/59P374x3cxqDQfJw0uRPWO59OOS4f9xG7Zmg/UDl7YPk5eZx1iZT9rf3s8niW3cdI+qUOs7Gftb8+x/azPh4GfuxXbj+Sj6r1HEQ6UoDlejGC8DaU4ghCi8MNAHD5EEESTUYwwEjffyVH+5uPOh/9Ln8XxO9bh4IsPof1QYhqI/mhpj+N/ntuLpa9+iG9/fgSu+8xxqjoK/B1FMI2OOU3bW+Dlv+Nsc9I66xCrxED6YWKUiIiIiIiyOi+mCEdial7MI+1RRDqSpHL/bsDvg9/nw776MA7UH8HcjjOWn67ZigsnjVAjJYmIiIiIyGY+H6bNuRGPPftx+N95ChMjbyHuAw7F8hDvZhRcFAG8Fv84no1/Cjt9w5EX9CHvxE9i6PjT0bb5Jex/9v/hYGM35XF7cag5gq8+uR3/78UP8D8XjsKlH8tPzA/o60iQ5qVfupeIvMlncCwvETlk8mjpruLxxN1gfr9f+1INuY412zHYuTyr27aqvUzb0WE/odS8uH2ctM46xMp+tm/tSVtLXtmB59/+UH3fGI6o8rkt7VFE40mnIkbi7nL1nsR1GPh9gNwUXlEYwsCSAvj8fsyfNgLzpw3vU4w67CeUmhe3j5PWWYdY2c/a355Tj2flvHPJkiU9vmbhwoXHnK96SbbP13WhQ9/lpFjZz9rfnlP72e5ucnz6b+9gevsbODnyLnzhehSgDS1GHuqNYqw3TsJLxmQc8ZeqmxxNVcV5qCqWkaQ+XFV7D1577Q088Op+NLaln5KYdHw+7pxViJnjq4GSauC4CcAFP0Uu6LB9ss1J66xDrPLZW11d7bnPY91xxCgROYZ8eAUCATiBDrFmOwY7l2d121a1l2k7OuwnlJoXt4+T1lmHWNnP9q29R9/Yo5KiBgx1h7gkRmWEqNxlHug4MY3HpQzXR+Qyidy+KXlTmWPoYHMU7fE2HF9RqEad1rW04/qzx/Z6YqvDfkKpeXH7OGmddYiV/az97fF4ltzGSfukDrGyn7W/PTf0sxLD5dNHYOqoSjyzaQyWbTuE9+ta0RyOIhY3EOlIPIX8/sTxvQ8ozU/McV8Q+ij2XUUfx4LP7MaXJpXi4T/vxv1vhtEe6388Gz5ow6yH2zD75DjuvKQYE6d/Ermiw/bJNietsw6x6pw49rKO8eZERERERETWkjlFzfK5iaRoYpSonBqGAokTxJhhwOgcHepDyO9T5XSTTx/jMFQydF99i0qwSqJV7lonIiIiIqLskCktbpx9Eh6+Yhr+41OjUBjyoyDPj1DAr47d5bg+P+jHiMoiVJcVHJUUFX8NTkdb3I9QQSG+P7sKm75chbmfKFGVYtKx8r1GnPY/G/Cvd/4eu3btsmYlicgTOGKUiBwjFothzZo16vmMGTNyfseP7rFmOwY7l2d121a1l2k7OuwnlJoXt4+T1lmHWNnP9t7eul118BnHoaEtppKiMkpUUp6BgA+RWFxdPBHBzmToR1dFYj4DsXgUk4IfqJ+vjw5FQ2sUwUAbBpcWqISr3LXe05yjOuwnlJoXt4+T1lmHWNnP2t8ej2fJbZy0T+oQK/tZ+9tzYz9bXhTCl88Zh6qiPHVMrirDNLWhsTWKtmgce+taUJIfRGFeQI0glWP+1vYYmtv8eBXjcabvLTT5SjCqIoJfXVSIr5wzBP+z+jCef6curXh+8/hyLF/xFP5r5hh885LTMGDwEGD4dODkzwOFlbCTjtvHbk5aZx1ilRhIPxwxSkSOIR8kr7/+unro/qGiQ6zZjsHO5VndtlXtZdqODvsJpebF7eOkddYhVvazvbcX2f8efDDUnKJC7iaXBKiU3DKTovKzoMz3ctQYUajXhXzA+OABfCz4IfICiYsqDS0RNIUT7T2zaV9W14us5cXt46R11iFW9rP2t8fjWXIbJ+2TOsTKftb+9tzcz86fNhznjR+ijuPlxsXqsnw1YlQO85vCUdQ0tmF/Q1h9le/l56v8Z6jKMeFACY74itUx/6cHNeO5/zwOa776MUweUZJWLO3ROP73+W0Y89+/xeKHnkHLa0uA38wFXvwRUPMe7KLz9rGLk9ZZh1h1/x15FUeMEpFjyF09p59+eudznekQa7ZjsHN5VrdtVXuZtqPDfkKpeXH7OGmddYjVq/1sfUs7Vr17ABv21KmEZ2skhsJQABVFIUwaUYnZpw5BSX4AA8aMxzv7GtEaiasLFTJzaKKMbiIx2jlStIfaWX6/H29Hqzu+86nXS3JUlltaEMKr2w7hqjPGqLvWM10vyj4vbh8nrbMOsXq1n81mezyeJbdx0j6pQ6zsZ+1vz839rMydeP3ZY1HZMXJUjs/lEY7E0NgaQSRmqIoxfp9PJUPLCkOIhE7CqvDncG74eaB0CIJGHXzheqD1MD47yIe1/zUEy9+J4LZn92PH4fZ+x9QYjuG23+/Cz1/6AIvOHY4LJzTA98Yf8GLx57G28nxUFOd1nrOkOodwy/axi5PWWYdYdf8deZXPMDpu1SYi6qeDBw9i8ODBR/2spqYGgwYNyllMREREZN98oU9v2ofXth1CNJb6FCIY8OGMcQOxvaYZe+taUdMYVmV05efRjosj7bG4Gh+aFzx2pGhXZsldSaBKG3KBJS/gx7DKQjVvkcxvNGfyMBvWmIiIdCXnnUuWLOnxNQsXLjzmfNVLeL5ORNk+V5BqLq/24VzhzLED8O+x32Lg3hcSP2xrBFrrgGi483XtUQNL32zFD15qxqGW9NMXJwzKww0zh2HGyeX4W/6nsbxwnmR0O89ZLpgwtMepOYgyxc9jPXHEKBERERERpST3UT62dq+6C9z00V3gccjgT78vURJX7gIvQAAvbzmI3YePqDvGJQlqtiPM0aJy53hvSVHzdZIYlXfJ64Mdk4HI8iUxun53bc4So9FoFLW1tT2+pqqqCsEgT7uIiIiIyL0kuXjj7JNUNZdVmw+oY/SG1gha2mMoygugvDCEySOrMOuU6sRITeNWYP1xwPqHgfyyxEMSo+EGINaOvGAc//2ZYvzH6dX48Wst+MmL+9HS3v8E6daD7bj+sR04bXgxvj6rGZ8aVYgXi7/Qec4ij/nTRqiywDICloi8gWfoROQYckE1Ho93ltbT+YBFh1izHYOdy7O6bavay7QdHfYTSs2L28dJ66xDrF7oZ+Xn9728Hc+//aH6vjEcUXN8tqnSuEeTkrkyMlTmFSovDMIw4qg7Eka8I6EZNzraTEp49iEyead6wEhkRM23ychRIRdc+rteVpGkKEcsOfvvONuctM46xOqFfjbX7fF4ltzGSfukDrFmEkNdXR3+8Ic/9PiaCy+8EJWVlZYsrzfsZ/UgSU+5abHXGxdlPaZcCYw4HXj7KWDHS4mflxQc9bIyAD/4QhgLJ0Twg1fa8cDaBnTcd9kvG/cewb/+31Z89qRliJ1TioNDpqtYywpC6gbQupZ2VRbY7dvHCk5aZx1iZcFWPTExSkSOEYlEsHjxYvX81ltvRV5eHnSlQ6zZjsHO5VndtlXtZdqODvsJpebF7eOkddYhVi/0szJSVJKiMl7zYGObSnwKOZ8syQ+qu78lwSnlceVu8Oa2qEqaHm5qxdzgOsAPPNo2CTFfAAFfYh6izsxoH85JA4jjsrx16rm0Iz+Rkroy6FSWKWS5/V0v0oMXt4+T1lmHWL3Qz+a6PR7Pkts4aZ/UIdZMYpD37t69u9fXWLW8vsTDftaBBp8MfPabwOnXA1ueA/b8DZA5R9tbgLwioKACaK7BccEQlgw9gq9N34tvrm7GU++0pbW4F7c0wP/P76Js4nkY8JkvITy4GoNK89U5j8yVevn0Ef1qz/Xbx+HrrEOsXftB0gMTo0RERERE1O08QWb53OSkaGVRCBVFeQhI/dwkUjZ3YNxAfUs7Gls+SlbKq6Kq3i4QlMSo/EBymonauH1mvlTd5KvK9yZ+IslZIiIiIiJysMJKYOLliUeyllrgUZkXNKDmIT1pUBAr/nMs/nYgD4t+uwOvbmvs96LkBsv6jc+h4R8von76RYh99jIcN2iAOveZOqqSc44SeYDP4FheInLI5NHSXbW1Je4Iy8/P175UQ65jzXYMdi7P6ratai/TdnTYTyg1L24fJ62zDrG6vZ/9ycotas4dKZ9b05j4tyHlBWqkaG+awxEcqG9S84nG/UGYlXfzA36VJJU5Q2Xkp8xL2nNccRixjjtsAyH4fX4EAz5EYwbKCoIYXFaA8ceXYfHFn+jzellJjntYStfZf8fZ5qR11iFWt/ezOrTn1ONZ9r/6na/rQoe+y0mxZhJDOn+H7Ged089qY+NvgLXLEvOP1ssIZR9QNRbwB9Tv5pE3PsQPn92LbQfDaS8iUFSGUTP/DSeedTFmjj9ezZXaV17cPk5aZx1ilb6yurrac5/HuuOIUSJyDPnwKig4eq4BXekQa7ZjsHN5VrdtVXuZtqPDfkKpeXH7OGmddYjVzf2sjPp8bduhjueRzpGifUmKipKCEFqLinCguQ3+uE8Gi6o7syUpKiNNYzFDfS//k/lHU5H5g6IIwg8f8nyJJGpUTSrkQ1lhSH0/eWRVn9eL9OLF7eOkddYhVjf3s7q0x+NZchsn7ZM6xMp+1v722M9maO8bia9SXlfkl6qkqIgZwKfGluKZ/zoFyzccws9f+hA1Tf0vWxpracT2p/8/7P/Lb1Fz/jW48lO3obIkv0/v9eL2cdI66xCrzoljL+v5Fm0iIiIiIvKcVe8eUKMyw5EY2qNxVb5Wyuf2R1VJfmI+UBjwy1mHTxKdBqRejSQ6pWyNfJ+K/Fu0o7iNWbY3McDUh/ygHwWhgBo9OuuUo+++JSIiIiIil2itS3w1q8iEijv/SSrbqHMLnw8XTRyAZ798Cr4xayhKC9KbaqPl8H6sf/gHmDx1KlavXm1J+ESkJ44YJSLHiMViePXVV9XzM888E4GAvnOK6RBrtmOwc3lWt21Ve5m2o8N+Qql5cfs4aZ11iNXN/eyGPYkLEI2tiQsQMlK065yiPfEZcQwP70J5fgRrw4NhGAGVJI3BQCQeTyRGjcTcoz5foqxucrkjMynqRxwTgh+qZf8jdhwiMb+68FFRlBgteua4gSjveO70fdqLvLh9nLTOOsTq5n6Wx7NE9nDSPqlDrOxn7W+P/WyGIq2Jr0bH3Bwdo0VFS3tMfZVpOkRxfgDXnjkEcycPxNI/f4hH3jiIiAwr7aed7/0Ds2bNwuzZs3HHHXfgtNNOS/laL24fJ62zDrFKDKQfjhglIseQD5JXXnlFPXT/UNEh1mzHYOfyrG7bqvYybUeH/YRS8+L2cdI66xCrm/tZs3xuRJWtBYry+ncCKeNBh4Z34mS8j5AfanSojO4MqaGjUKNIhVzDkBGp7bEYovG4Wl57LN45UjTkAyYE92G8/wN1MUSSomWFQZQWJJKh508Y2q/1Ir14cfs4aZ11iNXN/awu7fF4ltzGSfukDrGyn7W/PfazGQoVJr52TKuB+Ee/A7P6jNxYKcz7OCuLgrjlvGFY+dVTceGEKlX9Jh0rV67EpEmT8K//+q/YuXNnt6/x4vZx0jrrEKvuvyOv4ohRInIMv9+PKVOmdD7XmQ6xZjsGO5dnddtWtZdpOzrsJ5SaF7ePk9ZZh1jd3M+2RhInb2alW0lI9ofMHFqTf7y6Q9sf8SPkk5lEfcgL+lAaDKrEa9yXKKsrJP8qo0mFLEkWJ8uMw4f3ooPUvCx+nx+lhUEMKk3M9zN/2gicUF3ar/UivXhx+zhpnXWI1c39rC7t8XiW3MZJ+6QOsWYSQ2FhYed7e3qNVcvrDftZlyqsBOr3AIEQIPduRo4ABWXqn+IdJxOpxoQeX5GPuy8Zhf/89GD8dOUurNkWTiuE3/zmN1i+fDmuv/56fPOb38TAgQM9vX2ctM46xKr778irfIZ5SwURUT8dPHgQgwcPPupnNTU1GDRoUM5iIiIicpv6lnY156eUt5WEoiQtC0MBVU520ohKzD51SI/lZNOx8Nfr8X5dKz6oa0FrJI7qsvzOUZr9IfP+1DS2oSDoR1F+EE1tEYysKkJNU5taF7nLWy5oyBmJeVKiUrBJedig34eiUACVxXmdMZw3fgiuP3usSpjmkhz3LFmypMfXLFy48JjjJSIiygz7397xfJ2IXGHjb4C1y4BoGKjfnThRqBqrSururm1R1Wek6ozc0BkKyM2Ux54f+I0Yhsb345WdbVi0ug3/2JdeglSUlZXhlltuwVe/+lUUFRVluHLkBfw81hNHjAJ46623sG7dOqxfvx47duxAbW2t+jpgwAA1ZH7UqFE9vn/jxo249tprVe1x+drb64mIiIiIerP1QBOe3rQPr207hGg3c+NI4vLtDxrx6No9OGPcQFwwYWivIyj7SpKu0n4oIKNH42r+nnQSo60d8/7kBf2oKs7DhOHlGDeoBK9uPYSg34/aI+2dr5UEqSRK1Zp2XNgozgugqiQfBaGPSvnKSNH504bnPClKREREREQ2O+lzwPqHEs+DBYkEaWsdUDwQgY7aueq8wJAbLj8qp5us1GhWU318akwJll87Bs++24jvrDmCI4c/7Hc4jY2NuO222/Dzn/8c3//+93HFFVcgGGSKhchpPPtXu2vXLixduhTLli1DfX39Mf8uA2nl5939W1cVFRXqIZMx33nnnZg7d676OnLkSJuiJyIiIiK3kuPQx9buxWNr93T+LByJobE10nk3tJzwS9KyrDCEAgTw8paD6mFV0lBGokrSVdpvDEfR3BbFwLjRefGhLyTJKe8T0o747MnVmDN5GK46YwxWbT6AFzcfwD8PNKkRpHL3t7RfnBdUr09elsxPeua4gWpOUauSv0REREREpLmiKmDM2cDWVYmyuk37gdZaIJiPorx8dSNmwOdT03LI+YdUm0lWaLSgzGhUz5t9JWpE6dBJM3DWJy/D7r8+ja3PP4z25t6v/3e1b98+XHPNNbjnnnuwePFiXHDBBbxxk8hBPJkYlXIqkhAVXSsJp9OBjR49GqtWrUJDQwNuv/123H333aruuCzjqquusixuIq9rb29XNx2Im2++GXl5edCVDrFmOwY7l2d121a1l2k7OuwnlJoXt4+T1lmHWO2IQY5N73t5O55/+8POUrQNLRG0ReMIIIZLAuvVz5+KTkZrJKCSlvlBvyqlW1YQUsnUupb2fpeZ7bous06tViNRJekq7cvypaTvgJLE/J69kXJVk+pfwVQ/8EffVDXiU5Kbs06pVv8u8UqCVB5C1lESpet316KhNaJGqBblBVCe70PBu39UFzC+fDX7Wbfx4vZx0jrrECuPZ+1vj8ez5DZO2id1iJX9rP3tsZ+1wPg5icRofhkQaQXC9SpBWl5QiXrkIeYLoGPQKKIdyVE5H5GRomZS9IivWD3En/POgj8YwujPXIKiU8/BjhcfR90bv0U8Ijdr9s/mzZvxL//yLxgxYgR+9atf4ayzzoLbOWmf1CFWiYH04/dayVwpjysJS7noJA+5YGQ+hPnzdJSXl6s/tLq6Olx99dXqrhGZlJmIrBOPx9XDCXSINdsx2Lk8q9u2qr1M29FhP6HUvLh9nLTOOsRqdQwyUlSSolJQtqYxrObnlKSkHKqW5gfh9xnqMbhU5vwMqp/Lv8vraprC6n3yfmknk3WpKMpT5XmFOX9pXUukcwRob+R1fiRiLe8YLSojPlPNhWomShdf/Anc96XJePjKaerr9y8YnyiLxX7Wtby4fZy0zjrEyuNZ+9vj8Sy5jZP2SR1iZT9rf3vsZzM0+GRg8hWJ5yXVQEGFmnsjEK7FMONDVMUPo8zXgiKEURg/gsrYYTWnaHJStNZfpZ6/UHAe9gZHdJ6zNMXzMOjsf8f0W36DkZ++EH7/R1N49MeePXtw9tln46KLLsJ7770Ht3PSPumkWCl7fEa6WUCHWbNmDWbPnt2ZDBVdV33SpEmoqqpSZXHl6wMPPKDmHZ04cWJay5QE7HXXXace9913nyXrQeTlyaPlb7apqUk9Ly0t1bpEhQ6xZjsGO5dnddtWtZdpOzrsJ5SaF7ePk9ZZh1itjkHmFL3xyU3quSRFZTSoqCwKqURlQMrnGom7mCO+fCl1ospFyUhOSVqKssIgBpcWqOf3zJvQ57Kz3a3LUfE0hdHY2iWebsrqfhRPOwoRQUlBAOWlZSrW/sTTU1zZfH9v5LhnyZIlvVar6Xq8RPr8HWebk9ZZh1h5PGt/e7r3s6mw/9XvfF0XOvRdToqV/az97Tm1n9WOXMd/9SfA5mcS37c1qrlG45Ew2qOJpJe60m9e7/f5EPGF0Owr7Rwp+nrep7C8cB5iBlKeQ/335CIsu+d2PPXUU2mH6vf7VRXJ733vexg6dCjcxkn7pA6xymdvdXW15z6PdeeJUrobN27ErFmz1HPZ+c2E6MyZM9V8oPJVyuF2ZZbbTde1116rEqzz5s3D5MmTWVaXKEPy91tWVgYn0CHWbMdg5/Ksbtuq9jJtR4f9hFLz4vZx0jrrEKvVMTy9aV9n+VwzKTqkvAAl+R8dskd8iRN2kyQnpbxtfiiADxsSycvCUASlBSE8s2kfbpx9UtrrIklMmbNUyvMOKk2U0JX25QJCfWtExVWYF0jM6WMYan4fues6cajtQ6iwCGXqfT7VTjpzg7KfdTcvbh8nrbMOsfJ41v722M+S2zhpn9QhVvaz9rfHftYiktA68+tA0QBg/cOJsrr5ZfBHw4g3HkakvQ0+mWdUSpcaQTQaxWgzEjdzys+fDZ2Lp32z0NrUlnTOkkiKmuc6cs4ye/oIzP7UCvztb3/DokWL8Oqrr/Y7VBmdKAOufv3rX+OGG25Q7UilSbdw0j6pQ6w6J469zBOldCX5aZKkqHRGUu525cqVqtxtd0lRq8yZMwc33XSTSpLu3r3btuUQERERkXPJHcuvbTvU8TzSOTIzOSnaE3mdvD75/a9uO6Tm7szE/GnDcd74IZDLCXIXdXVZvppzVC4kNIWjqoTv/oZEyV/5Xn4u/y6vk9fL++T90g4REREREVHaJME05UrgoqXACbOBQAgIFqCw6ni0FR+PA/5qHApUoz5QhXZfHqII4KXYRHwjcj0ebDkLNU3tfT5n+eQnP4lXXnkFzzzzDD72sY+lFW5raytuv/12jB07Fvfeey/a2vo/hykR2cP1I0bvvvtu7Nixo7NUrpTUzfYdGjLv6IoVK7BgwQI8//zzWV02kZvEYjF1x5Z5gBIIpFf33yuxZjsGO5dnddtWtZdpOzrsJ5SaF7ePk9ZZh1itjGHVuwcQjRkIR2KqFJSc80u52mQ+I47B4cTcoTUFw2H4jr7HUV4vIzllzlFppwABrNp8QM3dme66yN2t1589FpVFeWrkqIxElYe039gaQSRmIG7IXKI+hAI+lBWGUBAKJGJt3Y3TRlRgwZmfTPsuWfaz7ubF7eOkddYhVh7P2t8e+1lyGyftkzrEyn7W/vbYz9o05+hnvwmcfj2w5Tn49vwNgyrrET14GDsaDDT7SrA5eCr+7J+KfeF8dc6S3805i0lGikpStOs5i3z/xS9+EZ/73Ofwq1/9Ct/5znfw/vvv9zvcw4cP42tf+5pKjv7oRz/CZZddpsrtOpWT9kkdYpUYSD+uT4wuXrxYdWIycvOJJ57IWRySHL300kvR2NiY8+HbRE4lHySrV69Wz6dOnar9B2+uY812DHYuz+q2rWov03Z02E8oNS9uHyetsw6xWhnDhj116qskG80RoF3n8JQSUMNbt6nnBwuGJebQSSKvl/fJXdDSjpzsr99d2+fEaKp1kWPpy6ePwNRRlao8r4xElaRr8sWEZMGAD2eMHoDmtS/h0BYpJZWY0iId7GfdzYvbx0nrrEOsPJ61vz32s+Q2TtondYiV/az97bGftVFhJTDxcvWQMyeZzfPIgSas7ThnkRtPBx99r+lR5yxnjhuI8ycM7XXKD/mdX3nllSqh+dOf/lTlGxoaGvod7s6dO/GlL30JP/7xj1WuwJz6z2mctE/qECsTo3pydWJURofW19er4eq5TIoKScxKGV+pL/71r389p7EQOZXcTTVhwoTO5zrTIdZsx2Dn8qxu26r2Mm1Hh/2EUvPi9nHSOusQq5UxmOVvI7G4+lqUd+wJmwEfDuUd1/m8OzLnpyRG5a5o0dCRaLViXeSCgcxZetUZY9RIVEm6Svst7TEVb3lhCJNHVmHWKdUozvPhj23sZ6lnXtw+TlpnHWLl8az97bGfJbdx0j6pQ6zsZ+1vj/1sdvXnnKW8YyqSviosLMTNN9+spuaTErk/+9nP0N7e3u8YN27ciNmzZ2PY+OmYeMl/Ydi4U1FRFMKkEZWYfeqQfseVbU7aJ3WIVfffkVf5DMnWudR1112nEpHr16/HxIkT09ppN2zYkNZ7uyMdntxx/8ILL1jSHlGuHTx4EIMHDz7qZzU1NRg0aFDOYiIiItJp3lApkSujQSXx2RqJoTAU6Pak94qH1uJwczv21raoUrjHlReguI/ziyY70hZVc37KnDnDq4owoCQPD185zYa1I/O4Z8mSJT2+ZuHChcccLxERUWbY//aO5+tERPbavXu3Kq/7yCOPqAFR6Ro6eRZO/uLVKBowNFF9Z9xAXNCHkazkDPw81pOrR4zK3KIyr6hVic1MjRkzRiVpiYiIiEjfJGWmth5owtOb9uG1jvJNXb1f14q3P2jEo2v3dJ70SizCrJ4r83amI9bxPpk/J9XIUyIiIiIiIsrMyJEj8ctf/hI33ngjbrnlFjz//PNptbNv/Srsf+slDPvUhTjlc1fg5S0GXt5yMOXcp0SUOdcnRufOnQtdVFRUqJiIiIiIKDvSSVKme2eu3CX82Nq9eGztns6fhSMxNd+nlMiNG4nEZyjgR1lhSM3TKSe88igISXkdQ/1baySuSj2VFvQ/Udvanpi/JBRInDxLqSgiIiIiIqvJHIsrV67stXpeeXl51mIiygUp1frcc8/hxRdfVKV2161b1+82jFgUe199Ch+sfQ4jzpmPU2Zeps4r61racf3ZY5kcJbKY6xOjMr+oLmS+U3kQUXqkbv8999yjnsvdWHl5KWZQ14AOsWY7BjuXZ3XbVrWXaTs67CeUmhe3j5PWubdYM0lS9vXO3OQYbrjhBjz41714/u0P1feN4QgaWiKqLG5XkvhsDEdVuVsZpVpWEML++jAi8biKRf6tuS2KgXEDAXMIqYwCNWL4RP1r6vnfK85A3Hf0aNBY3FDvE9KOkPlzrPh99hf7WeoLL24fJ62zDrHyeNb+9tjPkts4aZ/UIdZMYmhra8O7777b42vOOussy5bXG/azlAtdt88bb7yBFStW4LbbbsP27dv73V68rQW7nv8FPvjL73DyF67Cn2KfR2VRHi6fPgK6cNI+qUOs6cxDS/ZzdWJUVFX17WJQNsjdIlJOl4jSJwfeTqFDrNmOwc7lWd22Ve1l2o4O+wml5sXt46R1ThWrJEXve3l72knK/tyZa8awfN37ankGDBxsbFNtCnl7SX5QlbSV8rZSIldGg0oCU+KpaWxTCdvK4jzsPtSCoN+vYpF/k/K/A0ryj1pe0Ei02x15vVTSlfcXhAJqfppZp1T34Td59LpYhf0s9YUXt4+T1lmHWHk8a3977GfJbZy0T+oQK/tZ+9tjP+tuydvH7/dj3rx5+NjpM3DZjf+Dfz7/ENqb+z9QKtJUi388fjd2vvQkas6/FlNGfhknDimDLpy0TzopVsoen5HJzMCaGzdunCqlu3jx4rTeLx3Zhg0bLJujVNqbNWsWXnjhBUvaI/La5NHSXdXW1nbe9KBzGQkdYs12DHYuz+q2rWov03Z02E8oNS9uHyetc0+xPvrGHpXc7E+S0jwiLisMYlBpPnzwqZGjPd2Za8aw69ARfO+F3WoBNY3hzuVVFoVQUZR31KjP5NGdksisa4l0LldGsTaHo+p95s+HlBeomDsWiPx4q3ra5i9MrFAHWYcPG8LqeXVZvirDe85Jg3Dj7JMy/n2mwyv9rBz3LFmypMfXLFy48JjjJXJen+PFddYhVh7P2t+e7v1sKux/9Ttf14UOfZeTYs0khnT+DtnPOqefpcy2z09WblHViGrrG7Bl1aOo/dtvYUQS52vpGPWxSfj10p/i05/+NHLNSfukDrFKX1ldXe25z2PduXrEqIzOXL16ddqJUSvdfffd6uukSZNyHQqRY8mH14ABA+AEOsSa7RjsXJ7VbVvVXqbt6LCfUGpe3D5OWudUscqcomb53OSkaKokpSQQByYlKRtbE68fXFqg2pk6qjLlnKNmDA+vP6SSlDIy1VzeUQnNbkgcMho0PxRQCU1ZrsQoonFDJUrlZ/JvybG3BYp6TbCac5OeP2Foxr/PdLGfpb7w4vZx0jrrECuPZ+1vj/0suY2T9kkdYmU/a3977GfdrbvtI+dnr207pJ43x0MYdNa/YdQZ/4JDrz6KPX99BkY81u/l7HpnA8444wxceOGFKtdxyimnIFectE/qEKvOiWMv88PFTjvtNDXic9OmTbkORXVY8kdw6aWX5joUIiIiItd6etM+9bVrklKSkN2N3ExOUsrr1Htbo2gKJxKNz3S0l0rySW99R3JSEpk9JUWTyevMhKiMXq0qzkNTW1R9lSSnkKTnrsNHcECNRo3gSFtUfZXv5efJSVEZ7SpktGuqhC4RERERERHZY9W7BxCNGWrKlPZoXBX6GVw9BB+f93WcdduvcNzEs9Nu+w9/+APGjx+Pa6+9Fvv29XyuSkQeTYxed911arj0zTffnNM4pGxEfX29GsFqVVleIi+KxWJYu3ateshznekQa7ZjsHN5VrdtVXuZtqPDfkKpeXH7OGmdu4vVyiSl+f5Xtx1S85OmiuGJP72EyiN70NYe6TzpldGd/SGvl/fJvKKFIT/KCoJoCkfVqFUpiytzhkqp3+ZwO8qadqO4cRcONraq15hzisrr5PVSAvi88UMwf9rwfsXAfpZywYvbx0nrrEOsPJ61vz32s+Q2TtondYiV/az97bGfdbfuts+GPXXqa2NrpPM807xJt2TwCEz+zx/i0zfej6qxE9JaZjwexwMPPKCmEfzmN7+JhoYGZJOT9kkdYtX9d+RVri6lO3r0aDVqdNWqVbjttttw++23Zz2GBx98EEuXLlWjRRcsWJD15RO5iXyQPPfcc+q53GQQCASgKx1izXYMdi7P6ratai/TdnTYTyg1L24fJ61zd7F2d2duOknK+taISlJKOwUIYNXmA5gzeVi3MXz4zt8wEsB7gapjTnr7Sl4v75NEpzxk1GdhXgDhSFyVxZWHxHKkJYwpsd3qPR9iCPzBIMoKQygIfbSdZKSoJEX7W66H/Szlghe3j5PWWYdYeTxrf3vsZ8ltnLRP6hAr+1n722M/627dbR/zJttILK6+FuUdu80qR30Mp3/lZ6h5569475mlaNq/s9/Lbm1tVfkOyT1861vfUoOz8vMTFYTs5KR9UodYmRjVk6sTo+LWW2/FvHnzcOedd6p60l//+teztuwf//jHarSqXJiS0aLf+MY3srZsIjfy+/049dRTO5/rTIdYsx2Dncuzum2r2su0HR32E0rNi9vHSevcXaw93ZmbTpJS2pGk4/rdtd0mRmW54eLjVAnc9oiR8qS3LyQRKsuMxAx17CjJ0RtmnqhK+cqoVUnQFpYVoLZ5sHr9cSWFMHyJZQUDPpw5bqCaUzTd8rnsZ9MjFx7M9nt6DTm/z/HiOusQK49n7W9P9342Ffa/pHPf5aRYM4khnb9D9rPO6Wcp/e3TGkkkwuKJU0T4U9y0Kud91eM/jcGnfhLvr30eW/70fwjX1/Q7hsOHD+OGG27Avffeix/96EeYP3++rfuKk/ZJHWLV/XfkVT5Das263Ny5c/HUU0+pzmbWrFlYvnw5SktL+7TTyhyl/S1/29jYqJa5evVqVcpXliujVj/72c9msBZE+jl48CAGD05coDXV1NRg0KBBOYuJiIjsJyVrZXSmJCLlblg58SsMBVBRFMKkEZWYfeoQlHeUpM2mhb9ej/frWvFBXQtaI3FVXlZGW/aXzN9Z09im1un4ykIMryrEfV+a3O1rr3hoLQ43t2NvbYsaZXpceQGK+1i6N5nMG7q/IazK4g6vKsKAkjw8fOU09W9SyldGrUqCtqE1ohKxkoAtLwxh8sgqzDqlOie/byIiItIXz9eJiHIj3fPSWHsbdv55Bbat+jWirc1pL18qaMogMcmDUO7x81hPrh8xapazlSSlJCxXrlyJiooKNZLzlltuQVlZmWXL2bVrl+p0li1bpr43k6IyGTKTokREROR0Ww804elN+9Q8nlKytis5+Xv7g0Y8unYPzhg3EBdkMIIxHX29M7c3gY73xTvuH5REZCqSPE0sC0e9p79iHe8zY04eeSpJTxmx2t2oVSIiIiIiItKH3DAs58ahgF8lRuV8si+J0UBePsbN/BJGnH4+tq16BDv//BSMaKIaUn9s3LgRs2fPVonRO+64A5MmTUpzTYjcyxPjeMvLy7FmzZrORKV8lQRmZWUlpk6dqkrevvXWW2m1Le+TxOu5556LsWPHqqSoOQhXljVnzhwsWbLE4jUiIiIiyh45tnn0jT248clNeHnLwc55PGsaw+ouWBktKV/le/m5/Lu8Tl4v78tWgZJsJCm7O+kVctLbWxK1J60d7wsFEsuU0aBERERERETkLFJFSZR1nNM1t0URM+/e7YO84jKcdMH1GLvwAZR9fIYkGdKKQypYTp48GV/60pewc2f/5zAlcjNPjBgVcmfEunXrMGXKlM7kqFi/fr0ql2uS0aQyH6g8xOLFizuf19fXo7a2Vn3dsWOHeiRLTojKc7kr44knnsjiWhK5WyQSwc9+9jP1/L//+78RCul70ViHWLMdg53Ls7ptq9rLtB0d9hNKzYvbp7t1lmOa+17ejuff/rCzzKyUdpWysV3J3bCN4agqByujHMsKQnhs7R7UtbTj+rPHqmMkO2NN987cdJOUEkPJP1/AJ9pjWFc8DY3hxEnvwLjRr7lN5SRZ3pd88iwlcvuyzlZhP0u54MXt46R11iFWHs/a3x77WXIbJ+2TOsTKftb+9tjPult322fWqdWqilIBAurcWM6dZTqaASV9n/taXh8sr8boSxah/PP/ii3PLMWBd/+WVoyPPvqomlrw+uuvx7e+9S0MHDgQmXDSPqlDrBID6cczidHk5KjM/yl3SZgX55JHMdTV1R2VLF2xYkW3bXU38iG5PRmRetNNN9m0JkTeJH9bTU1Nnc91pkOs2Y7BzuVZ3bZV7WXajg77CaXmxe3T3To/tnavSooaMHCwsU0lPoUc9pTkB9VoShlZKaMzJREpCT458ZM5OmX06KDSfPX+yqI8XD59hK2xyp25UspXkosSp51JSnO50bYW5AEoCGV20iurIO+XdoIBn5o3tC/rbBX2s5QLXtw+TlpnHWLl8az97bGfJbdx0j6pQ6zsZ+1vj/2su3W3fSqK8tTUMlJFSW4YlnPjupYI8kMBdQ7dGzkfldcn2gqhtGocFv3vwzgttA+LFi1S+Y10knP33nsvHnroIdXG1772NRQXFyMdTtondYhV99+RV/kMj26ZBQsW4IEHHlDPu45e6MuvpLsRD/I+GXEqZXtlkmMit8v25NHxeFy1L2S5fr++1cB1iDXbMdi5PKvbtqq9TNvRYT+h1Ly4fbqu8/aDR1Q5XCFlcs2kaGWRjM7M6zbhKIlFSfSZJ3JlhUEMLi1Qz++ZN8GyOUe72z6y3CsfflOV8pXyvpKklFj7k6Q83Nxx0hr0Y3hVkUpSPnzFNHVCmyqGX72+C6/ujaCxLapOesWQ8oI+n/R+2BBWz6vL8tUI13NOGoQbZ5/Up3W2CvtZygUvbh8nrbMOsfJ41v722M+6V7bP13XhpH1Sh1jZz9rfHvtZd0u1fbYeaProXLopjMZWa86lJf8goz9vu+02bN++Pe24jzvuOHz/+9/HlVdeiWAw6Np9UodYDxw4gCFDhnju81h3nk2MmhMR33777XjqqafU9+mUdzN/fVJu9+abb8Y111xjeZxEuvLqiRYRkVf8ZOUWdZerlM+1M+Hn9JjtOuklIiIiShfP14mIcuvRN/aoqWVU9aWmts7zRLP6UmFeAAGfDzHDUNO5yPmomamR80OpvuSDD/OnjTim+lJ7e7sa9CXJTenv03XyySerqQQvvPBCS6e+oY/w81hP+qbzs0BGdcodFnJ3hZS9HT16tEp09vVRXl6OOXPmqDa2bdvGpCgRERG5hiTtXtt2qON5pDPR15cEo5DXyeuT3//qtkNqflI7XTBhqPoq85vKyaSQZKeMBJVkZHfk5/LvZlJU3mfOTXp+R3s9kSSmnKwKOXk1lytJz12Hj+CAGm0bwZG2qPoq38vPk5Oi8j4h7TApSkRERERE5Gzzpw3HeeOHqOSm3AQrN99KZSJJfjaFE9WG9jeE1Vf53pxeRV4nr5f3yfulna7y8vLwX//1Xyqv8Z3vfCftsrjvvfceLrroIpxxxhn4y1/+YsFaEzmDp0eMdqehoQGrV6/Gm2++ifr6etTW1qqv5qhQKZU7duxYTJkyheVyyfOyfcdLLBbDP/7xD/X84x//OAKBAHSlQ6zZjsHO5VndtlXtZdqODvsJpebF7ZO8zv9sr8Qjb+xV84S+X9eq7modNaC43/N1SgJQjjaHVRaq+TP/41OjMGfyMFu3j5135qaKYfz48Vj66i41n6poCkdUQljK+aYiJ71qzpiOJKyc9F5/9tiUd+qyn2U/6zZe3D5OWmcdYuXxrP3tsZ91L6+OUHHSPqlDrOxn7W+P/ay79bZ9JPXy2Nq96vzUJOfYja0RRGIG4oYBv8+HUMCHssKQOmc2yfmoJEX7MpLzww8/xA9+8AMsW7ZMxZQuGTkqI0hPOeUUV+yTOsQq20ZKF3vt81h3/Ssg7QEyCvSSSy5RDyLS78PsD3/4g3p+6qmnav/Bm+tYsx2Dncuzum2r2su0HR32E0rNi9sneZ3DHztffZUTNiEJxf4kRYW8Xt4nd79KO3KSt353rWWJ0VTbR04e61raVZJS7rQtDH2UpJRY5NGXJGV3d+b2FIMkNSuL8tRJr7QjDytPetnPsp91Gy9uHyetsw6x8njW/vbYz5LbOGmf1CFW9rP2t8d+1t162z5yfic3204dVYlnNu1TVZQKEDjqXDBZMODDmeMGqspF/akkJHNY3nffffja176Gb37zm1ixYkVa6yPr8swzz+A///M/VZneoUOHOnqf1CHWTBLVZB8mRonIMWSC7BNOOKHzuc50iDXbMdi5PKvbtqq9TNvRYT+h1Ly4fZLX+dWWRPIwEkuMeCzKS+8EQkZnSiJSEoOioSPRamWsXbePnHzanaTsLga7T3rZz7KfdRsvbh8nrbMOsfJ41v722M+S2zhpn9QhVvaz9rfHftbd+rp95Hzvxtkn4aozxmDV5gPqhmE5N25pj6lz7fLCECaPrMKsU6pR3jElTTpOPPFENe3fG2+8gUWLFuHPf/5zv9uIx+N48MEH8Zvf/AY33HCDakcGkzlxn9QhVt1/R17FUrpElDavluYhIvKCKx5ai8PN7dhb26JGWh5XXoDiPs4vmkzm1ZR5U2RE5vCqIgwoycPDV05Dtmw90NSZpIx2JGetvDO3JzKfqp0nvURERESp8HydiMjbJO3zpz/9CbfccgvefvvttNsZMGAAvvWtb2HhwoXIz8+3NEYv4OexnpgYJaK0sWMnInKvhb9er+YW/aCuBa2ROKrL8jvLzPZHYziCmsY2FIYCOL6yEMOrCnHflyYj25ikJCIiIi/h+ToREZmlXB955BF8+9vfxvvvv592O6NGjcKPfvQjzJ8/n6Mg+4Gfx3piKV2LTJ06VT0WLFiACRMm5DocIiIioozIfJuSGA0F/CoxKonEdBKjre2J+TSkZK2QRGQuSNJT5ja1Yn5TouQT2iVLlvT4GrmzuuuJMBERZYb9L1HuNTU19Vqm8zOf+QxKS62pxkJE6ZF5Na+44gpceuml+Nnib2Px//5/qG8O97udXbt24V//9V/x4x//GHfeeSdmz55tS7xE2eDZxOhvf/tbLF26FDt27FCPMWPG4LrrrsPXv/71tO+YuP/++1WbkydPVp3DOeecY3ncRF4WiUTU35mQv9dQSN+RPTrEmu0Y7Fye1W1b1V6m7eiwn1BqXtw+yes8cdoX8fYHjWr+zcZwFM1tUQyMGwj4e553M1ksbqj3CWlHyOhMq2NlP6tf2+xnqS+8uH2ctM46xMp+1v722M+S2zhpn9Qh1kxiaG1txbp163p8jQwiSU6Msp9lP+s2jtk+hoHCdx7HouPfxNXfPw2Ln9+Ln730Adqi/S8m+tZbb+Hcc8/FSSedhF/96leYNi17U+U4cftIDKQfzyVGZeLgm2++GfX19ep7s5Lw9u3b1UTCIp3kqExqLJYtW4a77roLM2fOVKNH77vvPkvjJ/Iy+Xutra3tfK4zHWLNdgx2Ls/qtq1qL9N2dNhPKDUvbp/kdb7spEF4fP0+FCCg5geVeUbrW9oxoKTvc4rI6+VXJ+8vCAXUPJ5SstbqWNnP6tc2+1nqCy9uHyetsw6xsp+1vz32s+Q2TtondYiV/az97bGfdTdHbB+J69WfAJufUd9WBVtx94wA/nvCAHxnTTN+9VZYvaS/tmzZgunTp6vSulJiVwae6UaH7aPtfuFxnppjVIaLSwJT/khlROfcuXPh83006kF+FWPHjsXWrVszXpYkR2Vi4ylTpmD16tUoKyvLuE0ir9dIj8fjnbXwhw0bpnU9ex1izXYMdi7P6ratai/TdnTYTyg1L26fruv8v6u34uUtBzvnCRVDygtQkt/7vXUyUvTDhkR5HnN+0nNOGoQbZ59kS6zsZ/Vq2yv9LEs5Ov/vONuctM46xMp+1v72dO9nU2H/2zuvzmmmQ9/lpFgziSGdv0P2s87pZ8lF22fdQ8D6hxPPmw8A4cSAMcAH5Jfi7wf9uOWP+/Hcu41pL0JGYsrf+7e+9S2tPmd02D4HDhzAkCFDPPd5rDvPJEal5vWaNWtw00034Y477lA/q6qqQkNDw1Gvk6SpFYlRISV6payu7OT//Oc/LWmTSCdePdEiIvKKrQeacOOTm9TzmqYwGlsTZXEri0KoKMrrtqyulM+VkaJ1LYlyMWWFQQwuLVDP75k3ASdUc44hcg9emCciyg32v73j+TrZjX+HRA5Q8x7wuwVdkqI+oLAKKKwE/IHOl760pR43/3Yn3tzdlPbipHS2VOv82te+huLiYivWwPH4eawnDW9hsJ6M3JRRm1Iq10yKChkxauaF5as8pPytVSTJunPnThw6dAiXXXaZZe0SERERZYMkMedPG6GeDyrNV0lOIUnPXYeP4EBjWI0mPdIWVV/le/l5clJU3iekHSZFiYiIiIiIiLLk7RWJr22NHyVFS48DigcelRQV55xUgTdumYgnrzkF4wYlbm7ur6amJjVq9IQTTlBTDkajiZuriXTj+sToxo0bVVnbWbNmYfHixUf929KlS3HJJZegvLy8s7zuN77xDUuXX1FRoZKyTz75JH73u99Z2jaR10j5g3feeUc95LnOdIg12zHYuTyr27aqvUzb0WE/odS8uH26W+f504bjvPFD4INPjfyUsrgyZ6jcW9YUjqoSu/sbwuqrfG/OKSqvk9fL++T90o7dsWYb+1n722M/625e3D5OWmcdYmU/a3977GfJbZy0T+oQK/tZ+9tjP+tuWm+fllpgx8uJ5611ia8yUjS/yw3L8VjitQ174avfhbmjG/HuVwfi5xcOwKDi9NJH+/fvVwPQxo8fr3IiuSpaqsP20W6/IG8kRmXodmVlpZpbtDvyc5mAd9u2barMrh0mTZqkErC33367Le0TeYXcZbRixQr10P2OIx1izXYMdi7P6ratai/TdnTYTyg1L26f7tZZ5mO//uyxnSNHZa7Q4VVFGFZZiLKCIApDAZUIla/yvfxc/l1eJ+R98v7ked3tijXb2M/a3x77WXfz4vZx0jrrECv7WfvbYz9LbuOkfVKHWNnP2t8e+1l303r7bHkOiEWAaDjxUCV0Kz/6d/lZ036gdjvQchCItACxdiAeRQgR/NfUILbfUIXvnpWP4rw0Q9iyBRdffDHOOOMM/OUvf4EXt492+wUpiXpoLiVlbGW0piRHy8rKchqLjEaVIeS7d+/GyJEjcxoLkVPJRXXz78fqC+xujDXbMdi5PKvbtqq9TNvRYT+h1Ly4fVKtszy/fPoITB1ViWc27cOr2w6hAAEUhI4uvWMKBnw4c9xAnD9hqG3lc3XYPuxn7W+P/ay7eXH7OGmddYiV/az97Tm1n5VrPHPmzOn1NeQ9OvRdToo1kxhCoVCv1zjlNVYtrzfsZykXtN4+e99IfFUldJEYKWqWz205DLQc+ui1MqIzLgk8Q/0nOVT5v9L8IL732WJcNyUPP/xzO5atb0M0jQGQf/3rX1Vy9IILLlBVPU899VR4Zftot1+Q4jNyNY45C+6++241v+j27dsxatSoXIeDcePGqXlNu5b0JXIqTh5NRORNDS0RrNp8AOt316KhNYKW9hiK8gIoLwxh8sgqzDqlGuVFR18EIXIjOe5ZsmRJj69ZuHDhMcdLREREduP5OhGRxz3xb0D9HlUiV40GLTkOKCgDmg98lCyVMrryQA/ZTkMSewbg92NrnR+3vWJgxcbatMP68pe/jJ/97GfwCn4e68nVI0ZXrVql5g7VISkqJJYNGzbkOgwiIiKijEjSc87kYepBRERERERERJqJtCa+Gh1JTxktKiNFzaRoLAoYZplXH+DzJx5quKiMHI13vLfj/fE4ThiYh+Vzg3jjK9/EzQ+/hldeeaVfIZWUlODb3/62ZatIlC5XzzG6Y8cONb+nLiQxKjERERERERERERERERHZIlSY+KqSnR2JUrN8bmdSVBKiQSCQDwRCieSp35/4Kt/Lz33mFDpG4n0+P6a3vYqXnliCZ599FuPHj+9zSDfddBOr6ZAWXD1iVJKQUrpWFxUVFUyMEmUgEongF7/4hXp+1VVXHTNXhU50iDXbMdi5PKvbtqq9TNvRYT+h1Ly4fZy0zjrEyn7W/vbYz7qbF7ePk9ZZh1jZz9rfHvtZchsn7ZM6xMp+1v722M+6m9bbp7AyUUpXEpwRAK11iZ9L6VwzKeqXZGgPY+dk8KjMkanK6UpuNIpI3IdfHJoKPPIkrvrqbTj33HPxyCOPqJGg77//fsqmqqurceONN8Jr20diIP24OjEq6us7hoZrQKdYiJxIpkQ+cOBA53Od6RBrtmOwc3lWt21Ve5m2o8N+Qql5cfs4aZ11iJX9rP3tsZ91Ny9uHyetsw6xsp+1vz32s+Q2TtondYiV/az97bGfdTett8/w6cD+TUBBBdDaAMRagUBex5yikvDsGB2aiqxOPJp4JN4gKwkj0ooDKAVk0GlLHQLlg3HFFVfg0ksvxc9//nPcfvvt3eZBvve976lSul7bPtrtF6T4DBdvmXHjxmHs2LF44YUXoIMpU6agoaEBW7duzXUoRI6cPDoej2Pnzp3q+ejRo+Hv6cM7x3SINdsx2Lk8q9u2qr1M29FhP6HUvLh9nLTOOsTKftb+9nTvZ+W4Z8mSJT2+ZuHChSwXpfHfcbY5aZ11iJX9rP3t6d7PknPO13XhpH1Sh1jZz9rfHvtZd9N6+7TUAo/OA2IR4NA/gWhrIhlqSGLU11Emt5v3SbpIkqGdc4yaEnOPxuHDzsAYAAGMHjMW/lnfAwaf3Pmq2tpa3HHHHfjpT3+KtrY29bMTTzwRb7/9dtZHbOqwfSQxO2TIEM99HuvO1YnR2bNnY82aNYjFOu6CyCH5A5Qk7axZs7RJ1BJlyqsnWkRERESCiVEiItIVz9eJiAgv/gjYugqo3Q60NyeSnsIv84p2k6RMHiHaU9rIfH+wCKgYDky+IvGQsrsd9uzZg+9+97v45S9/ieXLl+OSSy6BF/HzWE8a3cJgvdNOO019NetI59Kdd94Jn8+HSZMm5ToUIiIiIiIiIiIiIiJys/FzEl99/sRoUZMkPbsmPmMdSdHu/q0reV20HYiGE9+vfxh49SdHvW/EiBF46KGHsHnzZlx88cXWrRORBVydGL3uuutUDeebb74ZjY2NOYtj48aNWLZsmXoutbaJKP3yB//85z/VQ57rTIdYsx2Dncuzum2r2su0HR32E0rNi9vHSeusQ6zsZ+1vj/2su3lx+zhpnXWIlf2s/e2xnyW3cdI+qUOs7Gftb4/9rLtpv32kxK2M5JSSuH4ZIdoxolO+j7UnyuzKnKPyPB7pISHqA3xBNVJUSun+E6PxT4xEXBKjzYk5PLH5mUSCtIuTTjpJDRjz6vbRcr8gdydGpW60jBqtq6vDtddem5MYZE7RuXPnqudjxozBxIkTcxIHkRtEo1E89thj6iHPdaZDrNmOwc7lWd22Ve1l2o4O+wml5sXt46R11iFW9rP2t8d+1t28uH2ctM46xMp+1v722M+S2zhpn9QhVvaz9rfHftbdHLF9JDFadnwiJ6rm2JQkZ2K+UDXfqJkc7VbHa/0BIBBUI0+jviAe812Ex/AviCIIhOs/So5KYrTmPehCh+2j7X7hcUG43K233op58+apOtbi8ccfz2pSdMqUKdixY4e6K0JGrhJR+uTvaOjQoZ3PdaZDrNmOwc7lWd22Ve1l2o4O+wml5sXt46R11iFW9rP2t8d+1t28uH2ctM46xMp+1v722M+S2zhpn9QhVvaz9rfHftbdHLF9JK5h0xJzjDZ9mEiQSmldSXZKQlSSo8e+qXNwqZpPVMrwSjtxGS8KDIUkQn3whQoBoz2RHA0VIhoqxT9XPYRHCr+E+pYIWiMxFIYCqCgKYdKISsw+dQjKi0Ke2j7a7hce5zOk1qzLzZo1C2vWrFE7oTxfunQpRo4caesyX3zxRSxYsADbt29Xy5XRolu3brV1mUTZxsmjiYiIyMvkuGfJkiU9vmbhwoXHHC8RERHZjefrRETUaeNvgLXLgHAD0LA3UUo3kJ/4t1hbx+hR4+ikqCRDJXkqSVQh/y4ld+W1gbzEz4sGqbbiLYfRhhA+wGA1ivR7pd/DEX/pMWEEAz6cMW4gLpgwFCdUH/vvbsTPYz25fsSokETouHHj1POVK1eqJOVdd92Fr3/965YvS+YylZGh5pyiJnPEKhERERERERERpS8cDqsb0XsyduxYFBQUZC0mIiIibZ30OWD9Q0BBeWJ0Z6QVCBZ0JDpFR2ldc4SoSoh2Gemoyu3Ka/wdyVIfjIIy1LVEUBg9BJ+kRgPtiBvAKY2v4Q/GWeq53weEAn6UFYZQgABe3nJQPeZPG4H504ZzRCXlhCcSo5IIlYTo7Nmz1R+aDJJdtGiResj8n7fcckvGc3/KCFFJwK5YsUJ9bw7EleXdcccdnFuUiIiIiIiIiMiim9LN6y89jdhnYpTIPkeOHMGbb77Z42umTp2K4uLirMVERCkUVQFjzga2rgIKK4FoODFSVJKgwfzEPKOS9PR1zCXalSq52zFXpiRN5dX5pTh4JIaG1hiqfIUoMlpQGGtCk1GJU4zNeNw4s/PtrZE4GsNR5Af9qpRuWUEIj63dg7qWdlx/9lgmRynrPJEYFTNnzsSTTz6p5hs1k6PmSE5zNKe8ZtKkSepDW5KpFRUV6udVVVUoKytTB961tbWor69X84bKh//q1auxYcOGzuUkJ0TNBOxNN92Uk3UmcptIJIJHHnlEPf+3f/s3hELZq0nvxFizHYOdy7O6bavay7QdHfYTSs2L28dJ66xDrOxn7W+P/ay7eXH7OGmddYiV/az97bGfJbdx0j6pQ6yZxCCJ0VdeeaXH15x66qlHJUbZz7KfdRtHbZ/xcxKJ0fyyxIhRGTnafiQx+lNK6wqzbK5Jch3JSVFfABFfHh6Jno9oPA9nGq8j6AOOGPkoMo4giMTrBgRaUF2UD7/Ph7hhoKU9hua2KNqicdQ0tiEciWFQaT6ef/tDVBbl4fLpI1y7fSQG0o9nEqNizpw5RyVHRfIUq5LklEd/dJ2iNbldKam7ePFiS2InosTf1d69ezuf60yHWLMdg53Ls7ptq9rLtB0d9hNKzYvbx0nrrEOs7Gftb4/9rLt5cfs4aZ11iJX9rP3tsZ8lt3HSPqlDrOxn7W+P/ay7OWr7DD4ZmHwFsP5hoKQ68bPmA4mkpxm7JEg7cqTquUqYdvybmnM0BAM+7MVxidf5fIjGDQSMREI14DOQH/Cj3B9BacFHSUh5PjBuoL6lXZXebWxNJFAHlxaokaNTR1XaMueoDttH+/3CozyVGDWTo9u2bVMldDdu3HjUMO10d9KubchIUxmFOmPGDEtiJqKEYDCISy+9tPO5znSINdsx2Lk8q9u2qr1M29FhP6HUvLh9nLTOOsTKftb+9tjPupsXt4+T1lmHWNnP2t8e+1lyGyftkzrEyn7W/vbYz7qb47aPJEZbDgObn0kkR8ONibK6iH1UMtfX8byTP1E+t6OEbjC/FLMj61R5XMOIIR434Ec8kSPpGHEa9uUfs+iA34cBJfnIDwXwYUNYJUcLQ4kE6jOb9uHG2Se5cvs4Yr/wIJ/h4ZT1XXfdpeb/lNK4mdaxNn+Nknh94IEHUF5eblGURPo6ePAgBg8efNTPampqMGjQoJzFRERERJQtctyzZMmSXue463q8REREmWH/2zuer5Pd+HdI5FCSx5BRo/Jo2AtEWmBE2wEjpkaDykO9TJ77AvD5/Qj4fDI4FCgagGh+FXbVtqhm2mOSHAWqfXUoRQuO+IpR66/C9uBY/H8lX0kZwuHmNjVyVOYcHV5VhGDAh4evmKbmH3Ubfh7rqUvRaG+R+T9lztD7778fo0ePVslN89EXya+/9tprsX37dlWql0lRIiIiIiIiIiIiIiLSimQ4p1wJXLQUzYMmoT1moN0IdCZEIwgighCiCCJm+BCJGaiLFeBgcAjCeVVobIuqZKj58COGErSq9zb7S9TXzcFTewyhoihPhSFzjsp8o9GYgVWbD2Rh5YkSOI4XUElNeezcuRMrVqzAqlWrep1rdMyYMZg5c6YqycuSuUTZEY/HsWfPHvV8xIgR8Pv1vbdDh1izHYOdy7O6bavay7QdHfYTSs2L28dJ66xDrOxn7W+P/ay7eXH7OGmddYiV/az97bGfJbdx0j6pQ6zsZ+1vj/2suzl1+8hAr8d2FuGZxqvwfd8ulPkaUGXUIqAmDjXQhhDi8KMVBWjxlcCQMrrtQH1ti2RWccAYgJhhoAqHUOU7osaZtvvy0I48xHxBvJE3vcflS1ndkvwgmsJRNLZGUBAKYP3uWsyZPMx120diIP044y81S2TU6E033YSVK1eqHVYedXV1WL9+vXrIiFD5Xn4u85TKSFMmRYmyJxqN4pe//KV6yHOd6RBrtmOwc3lWt21Ve5m2o8N+Qql5cfs4aZ11iJX9rP3tsZ91Ny9uHyetsw6xsp+1vz32s+Q2TtondYiV/az97bGfdTcnbh9Jit738nY8tnYPmv2leN0/EYeNEuw3BqLdCCJu+FFrlOEDYxBqjVKE4z5VMlcSoaIlBqwxPo2XcQby0Y5yNKmfN/sSo0XfCk3EEX9pr3EU5iXmLJURqaKhNeLK7eOU/cJrOGK0F1IW97TTTst1GESkKj34OuuvZzovsBdizXYMdi7P6ratai/TdnTYTyg1L24fJ62zDrGyn7W/Pd372WAw2OvcMPIa0vfvONuctM46xMp+1v72dO9nidy8T+oQayYxpHMcxH6W/azbOHH7PLZ2L55/+0MYMHCwsQ3Lw5/EZP96NKEIhb52lOEIhqAWjb5S1BsliBh+VTJXyt0aMszO8KEMjfAjjmrUqQK8MreoPMSf887qUxwyb6mImwnX9pgrt49T9guv8Rl9nVCTiKgLTh5NRERERERE2SbnnUuWLOnxNQsXLjzmfNVLeL5ORERdbT3QhBuf3KSe1zSG0RhOjGa8Iv8lXGwkphasitei2Diinsu8oy2+Qhwx8hE1/CoZWoRwx5yiiVlJZV7Ren+Vev0LBefhhYLP9SmWxnAENY1tKAwFcHxlIYZXFeK+L02G2/DzWE+8fZmIiIiIiIiIiIiIiMjFnt60rzMpaSZFh5QX4LW8L+K41hac3v5X1Pqr0Gbko8RoQp4RQbHRgmK0yNSiqgyvOcquHSE1orQVJSrJ9Hrep/BC/nl9jqW1Y4RoKJAYUVleGLJ8fYk8nRhtbGzE6tWr8eabb2Lq1Km4+OKLcx0SERERERERERERERGR7epb2vHatkMdzxPzeVYWhVCSn0gRLS+ch0Z/Gc4NP99ZGjcP7SiJNyOIKHwwIKlMmYe0wShCuy8fcRjwxw2sKvwcVhWcJ3Vj+xRLLG6guS2RmC3rSIhOHpkYdUqUDa5PjL711luYMWMG6uvrO382a9YsPP/88zmNi4j6LxKJ4PHHH1fPL7vsMoRC+t5JpEOs2Y7BzuVZ3bZV7WXajg77CaXmxe3jpHXWIVb2s/a3x37W3by4fZy0zjrEyn7W/vbYz5LbOGmf1CFW9rP2t8d+1t2ctH1WvXtAzRMajsTQHo2rHGZFUd5HL/D5VBncd4Mfw2faX8HEyFtoN6BGkCZriQJ/8X9SFdKNxVrwnPFJNMTGYkA/5tKUJK1M8Jgf9KMgFEAw4MOsU6rhxu0jMZB+XJ0YbWhowKRJk9QEt8lTqa5atUolTCdOnJjT+Iiof+TveMeOHZ3PdaZDrNmOwc7lWd22Ve1l2o4O+wml5sXt46R11iFW9rP2t8d+1t28uH2ctM46xMp+1v722M+S2zhpn9QhVvaz9rfHftbdnLR9NuypU18bWxOJOhkpGvAfm8zcGxyB3wT/Db+P/wumt7+BU6LvosRoRoHRhrAvHwfiRTiIxJyZjxuT0R73I68lgvxQoHP0aU9kpGhdx4jViqJEovLMcQNR3vHcbdtH9/3Cq1ydGF28eHHnc0mOJu+ItbW1OYuLiNITDAZx0UUXdT7XmQ6xZjsGO5dnddtWtZdpOzrsJ5SaF7ePk9ZZh1jZz9rfHvtZd/Pi9nHSOusQK/tZ+9tjP0tu46R9UodY2c/a3x77WXdz0vYxy+dGYnH1tSgv0OPrj/hL8WLBTLyImUf9vKm1HflNHyBmAD5/AMGO3OqHDWFVmldGoXaXcJXyuTJS1EyKlhUGUVqQSIaeP2Eo3Lp9dN8vvMpnuDhlPWXKFPV1w4YNRyVGKysrsXPnTpSVleU4QiJnO3jwIAYPTtwhZKqpqcGgQYNyFhMRERERERG5m5x3LlmypMfXLFy48JjzVS/h+ToRESW74qG1ONzcjr21LWiLxnFceQGK+zDCs6sjbVHsbwh3fi9J0OL8ABpbE3OGShpGRo4W5gUQ8PkQMwy0tsfUSFEzEyVJ0UGl+fDBh/nTRuDy6SPgVvw81pMfLiYJ0euuu06Vzh01apRKikpp3dWrVzMpSkRERERERERERERErlcYSowQNQdzxtMcLyeJzkR7fpXglPYGlxaguixfzRkq/9wUjqKmsU0lUOWrfG/OKSqvk9dLUvS88UMwf9pw61aSqI9cPY63oqJCfZ0xYwa2b9+e63CIKEPxeBz79+9Xz4877jj4/fre26FDrNmOwc7lWd22Ve1l2o4O+wml5sXt46R11iFW9rP2t8d+1t28uH2ctM46xMp+1v722M+S2zhpn9QhVvaz9rfHftbdnLR9ZD7P9+taEQr40RqJo6U91lnKtj9a26KoQjOK/QHklwxAQV4Q4UhctSWPcCSm5jGNxAyVfPX7fAgFfCgrDKGgIzkrZKSoJEXNSp9u3T4SA+lH379UC4wZMwbr16/PdRhEZJFoNIoHH3xQPeS5znSINdsx2Lk8q9u2qr1M29FhP6HUvLh9nLTOOsTKftb+9tjPupsXt4+T1lmHWNnP2t8e+1lyGyftkzrEyn7W/vbYz7qbk7bPpBGV6qskKIWUtpV5P/tDXt/a3o7ZwXfw6djf4YeBS6eOwD3zJuCckwYhGPCp5OfgsgIcX1mI4VVF6qt8Lz+Xf5fXyeulfK6dSVFdto/u+4VXuXrEqIwU/e1vfwsdyB+fuPrqq3MdCpFjyYdleXl553Od6RBrtmOwc3lWt21Ve5m2o8N+Qql5cfs4aZ11iJX9rP3tsZ91Ny9uHyetsw6xsp+1vz32s+Q2TtondYiV/az97bGfdTcnbZ9Zp1bj0bV7UICAKmkr84zWt7RjQEl+n9uQ10tJ3CPIR9DvQyDgw6xTqlFeFMKNs0/CVWeMwarNB7B+dy0aWiNqVGpRXgDlhSFMHlnV+VovbR/d9wuv8hky8aZL7dixA+PGjcNTTz2Fiy66KGdx7Ny5E2PHjlVDtXmHALkJJ48mIiIiIiKibJPzziVLlvT4moULFx5zvuolPF8nIqKufrJyC17echCN4Yia+1MMKS9ASX7v4+dkhOmHDWH1XOYJlbK5MvpTEqKUGj+P9eT6UrrXXHONGqW5e/fuXIfTeXcCERERERERERERERFRtlwwYaj6WlYQQllhIhkqyc7DzW0py+rKz+XfzaSovM+cm/T8jvaInMbVpXTF0qVLsXr1asyaNUvNN1paWprrkIiIiIiIyAVqa2vx+OOP9/iayy67DFVVVVmLiYiIiCgbWltb8Y9//KPH13z84x9HYWFh1mIiop6dUF2K+dNG4LG1ezCoNFFCt7E1irqWCOpbI2rkaGFeAAGfDzFD5hONqZGiZs1RSYqa75N2pD0iJ3J9YlRs2LABn/3sZzFq1Cg112e2y+rW19err7wgQpQZKUW9YsUK9XzOnDkIBvXtwnSINdsx2Lk8q9u2qr1M29FhP6HUvLh9nLTOOsTKftb+9nTvZ6V9KY3U22tI37/jbHPSOusQK/tZ+9vTvZ8l6i8n7ZM6xJpJDE1NTXjuued6fI1ci01OjLKfZT/rNk7cPvOnDUddSzuef/tDDC4tQGEogvqWiJpztCkcVY+uZE7SiqKQGinqM2I43b8N/p3vIzp5qNbrrMP24fmgnvTday0uYSujRe+66y5ccsklmD17Nm6++Wacc845WVn+unXrsrIcIreLx+PYsmVL53Od6RBrtmOwc3lWt21Ve5m2o8N+Qql5cfs4aZ11iJX9rP3tsZ91Ny9uHyetsw6xsp+1vz32s+Q2TtondYiV/az97bGfdTcnbh+fz4frzx6LyqI8NXJUkp3yCEdiaGyNIBIzEDcM+H0+hAI+lBWGUBAKdL5/3uRh2L76ZWw5rP8667B9dP8deZUnEqOmRYsWqTsDFixYgBkzZmDs2LHq+0svvRQTJ060tZwvEWUuEAjgi1/8YudznekQa7ZjsHN5VrdtVXuZtqPDfkKpeXH7OGmddYiV/az97bGfdTcvbh8nrbMOsbKftb899rPkNk7aJ3WIlf2s/e2xn3U3p24fSY5ePn0Epo6qxDOb9uHVbYdQgMBRCdBkwYAPZ44bqOYUHTOwCG8VOGOdddg+uv+OvMpnGGaFaPfZtWtXyn/bvn27Slg+9dRTnT8bM2YMJk2apL6KAQMGoKKiIu3yuYcPH1ZDtXfs2AH5NUsiduvWrWm1R6QjKR03ePDgo35WU1ODQYMG5SwmIiIiomyR454lS5b0+JqFCxcec7xERESZYf/bO56vk934d0jkHg0tEazafADrd9eioTWClvYYivICKC8MYfLIKsw6pRrlRaFch+lI/DzWk6tHjEqSs6GhocfXJOeFJVkqSUwruTjvTEREREREREREREREDiZJzzmTh6kHkRe4OjFaVVWlRm72NmzczkSm2T4TpESZk78juctGyF01Xf9+daJDrNmOwc7lWd22Ve1l2o4O+wml5sXt46R11iFW9rP2t8d+1t28uH2ctM46xMp+1v722M+S2zhpn9QhVvaz9rfHftbdvLh9nLTOOsTKvJCe/HAxsySu7PDdPcwdM/lhleRlEJE1IpGIKtMiD3muMx1izXYMdi7P6ratai/TdnTYTyg1L24fJ62zDrGyn7W/Pfaz7ubF7eOkddYhVvaz9rfHfpbcxkn7pA6xsp+1vz32s+7mxe3jpHXWIVbdf0de5eoRo13nBzUTn5IwTXfu0L6Skaq1tbW9jlglov4pKiqCU+gQa7ZjsHN5VrdtVXuZtqPDfkKpeXH7OGmddYiV/az97bGfdTcvbh8nrbMOsbKftb899rPkNk7aJ3WINd0Y/H5/r++V11i1vL5gP0u54MXt46R1dlKslD0+w8VjeW+55Rbcdddd6rmM3rz//vtxzTXXZDUGmbN09uzZ6uvYsWOxdevWrC6fyE6cPJqIiIi8TI575O7jnixcuPCY4yUiIsoM+9/e8XydiIgo9/h5rCdXl9IdMGBAZ1J00aJFWU+KmqNTZdlERERERERERERERERElDuemGNUzJo1K2dxTJ06VX2V0rpERERERERERERERERElH2emWM0OUmayziIKH3RaBRPP/20en7BBRcgGNS3C9Mh1mzHYOfyrG7bqvYybUeH/YRS8+L2cdI66xAr+1n722M/625e3D5OWmcdYmU/a3977GfJbZy0T+oQK/tZ+9tjP+tuXtw+TlpnHWKVGEg/nhkxqoP6+vpch0DkaPF4HP/4xz/UQ57rTIdYsx2Dncuzum2r2su0HR32E0rNi9vHSeusQ6zsZ+1vj/2su3lx+zhpnXWIlf2s/e2xnyW3cdI+qUOs7Gftb4/9rLt5cfs4aZ11iFX335FX6ZvOt8Do0aOxdOlS9XzUqFFaxEFE6QsEAjj33HM7n+tMh1izHYOdy7O6bavay7QdHfYTSs2L28dJ66xDrOxn7W+P/ay7eXH7OGmddYiV/az97bGfJbdx0j6pQ6zsZ+1vj/2su3lx+zhpnXWIVfffkVf5DMMwch0EETnTwYMHMXjw4KN+VlNTg0GDBuUsJiIiIqJskeOeJUuW9PiahQsXHnO8REREmWH/2zuerxMREeUeP4/15OoRo0RERDr73ve+16efERFRetjPEhHZi/0sEZG92M8SEVmPI0aJyDF3vEh31dDQoJ6Xl5fD5/NBVzrEmu0Y7Fye1W1b1V6m7XT3en4s60OHv+Nsc9I66xAr+1n729O9n+WIJef/HWebk9ZZh1jZz9rfnu79bCrsf3vn1REqOvRdToqV/az97Tm1nyXn/B1nm5PWWYdY5bO3urrac5/HuvPnOgAior6KRCK499571UOe60yHWLMdg53Ls7ptq9rTYTuTfby4fZ20zjrEyn7W/vZ02M5kHy9uXyetsw6xsp+1vz0dtjORlZy0T+sQK/tZ+9vTYTuTfby4fZ20zjrEqvvvyKtYSrcbu3btwoYNG7Bjxw4cPnxYfa2vr8eYMWNQUVGBsWPHquef/exncx0qkeeEQiE4hQ6xZjsGO5dnddtWtafDdib7eHH7OmmddYiV/az97emwnck+Xty+TlpnHWJlP2t/ezpsZyIrOWmf1iFW9rP2t6fDdib7eHH7OmmdnRQrZQ9L6XZ48cUXsXz5cqxevVolQvtq5syZmDdvHq666ipb4yPSkVdL8xBZhSVxiIjsxVK6RET2YildffF8ncgdeN2AyNn4eawnz5fS/e1vf4upU6di1qxZWLZsGbZv364+XPr6kETqtddeiwEDBuAnP/lJrleHiIiIiIiIiIiIiIiIiLoR9HK5XEmGmqNDzTtt+jsBr/m+uro6LFq0CIsXL8YDDzyAiy66yIaoiYiIiIiIiIiIiHIrHA6rASY9kenICgoKshYTERFRX3hyxKgkLuWDWZKiyQlRMynal5GiJvN98pCf19bWYs6cObj++utztn5Ebi07kPz3Jg/5mY50iDXbMdi5PKvbtqo9HbYz2ceL29dJ66xDrOxn7W9Ph+1M9vHi9nXSOusQK/tZ+9vTYTuTfQ4dOtSnn7mJk/ZpHWLNNIbGxkasWLGix4e8xqrl2bkudrWnw3Ym+3hx+zppnXWItbsyuqQHz40YlTkmpGSuJDHlj0EkJzrHjBmDiooK9bWqquqY90viUxKq9fX1x8xFmtze0qVLsW7dOqxdu9b2dSIiIiIiIiIiIiIiIiKingW9mBQ1SQJz5syZqqSufD3ttNP63ebOnTvVPKPr16/Hk08+qRKmZoJUfnbeeefh+eeft3Q9iIiIiIiIiIiIiIiIiKh/PFNK99Zbb1WjOM1SuFLuVhKXK1euxE033ZRWUlSMHj0a11xzDe6//341mlSSo9KWOQp11apVuOyyyyxeGyIiIiIiIiIiIiIiIiLqD08kRjdu3Ig777xTPZcSuTIxuJnAtJokXKWErrRvJmGXL1+O3/3ud5Yvi4iIiIiIiIiIiIiIiIj6xhOldOfOnavK286YMUMlKcvLy21fpiRIt23bpsr0SrldGVV60UUX2b5comyKx+PH/OzQoUO2LKu7du1alhtizXYMdi7P6ratas+uddZ10nqv0eHvONuctM46xMp+1v72nNDPSjxHjhzp9TXmVBuk199xtjlpnXWIlf2s/e05oZ9Nhf1v76SqWXc/c/P5hg59l5NizTSG/v4dsp/NPC6Tm/+OnUSHv+Nsc9I66xBrquV1d02dsstnmDVfXeqBBx7AggULMHbsWGzdujXry5c5R6XcbmNjI+666y58/etfz3oMRHbZvHkzTj311FyHQURERERERERERESkvXfffRennHJKrsPwNNeX0pUSunJnksz1mQsVFRVqlKrkn2+//facxEBERERERERERERERETkda5OjEoJ2x07dmDRokUYNWpUzuKYOXMmLrnkEjV69K233spZHERERERERERERERERERe5erE6NKlS9Vo0VtvvTXXoagYZNTok08+metQiIiIiIiIiIiIiIiIiDzH1XOMzp49WyVGX3jhBehg3Lhxaq5TXeIhylQ0Gj1m7t6qqir4/a6+54KIiIiIiIiIiIiIqEfxeBy1tbVH/eyEE05AMBjMWUwEuPq3L2V0586dC11MmjQJGzduzHUYRJaRDpwTRRMRERERERERERERHau6ujrXIVAXrh7WJZl4GaGpizFjxqhkLRERERERERERERERERFll6sTo/X19bkOgYiIiIiIiIiIiIiIiIg04OrEqIzQ3L59O3SxYcMGFRMRERERERERERERERERZZfrE6OSjNSFlNFlYpSIiIiIiIiIiIiIiIgo+1ydGD3ttNOwevVqNDY25joUbNy4kYlRIiIiIiIiIiIiIiIiohxxdWL00ksvhWEYuOOOO3IdCm6++Wb4fD4sWLAg16EQEREREREREREREREReY7PkMyhi40dOxa7du1CfX09SktLczZadPLkyaisrMThw4dzEgMRERERERERERERERGRl7l6xKiQEZqS+50xY0ZOlr9z5061bBkteu211+YkBiIiIiIiIiIiIiIiIiKvc31idNGiRRg9ejTWr1+P8847L6vLlpGqs2fPVqNVKyoqsHjx4qwun4iIyAoyX7fcaCRVGORGH3nI81mzZuGuu+5Sn3NERGSdHTt2qH5WpuMgIvK6FStWqONO81hUqnHJ98uWLeNxKBGRxXgcSkRe4PrEqFi6dKkaNbpq1SqceOKJ2L17t+3LfOqpp9SHyPbt29WB+wMPPGD7MomIiKw+IZKLTvJYt24dZs6ciTvvvLOzAoIkTOVkSS5OcQ5tIiJryIV+OY+QPlgeREReJceacpw5d+5cTJo0SV3TqaurUze+y/dy/Cn/Lv0mERFljsehROQVrp9j1CQXbu+++271XBKVcgAto0lHjRpl6XJefPFFddFYDuDlVyvLmjNnDp544glLl0NERGSnDRs2qFLwY8aMUTf3yMWn7k6akhOi8lq5UCVVEoiIqG/kopP0uXLBv+vFfTmPWL58ec5iIyLKFfM4U44r5fhSjjO7ktGikydPVv2o3LgnN8UTEVHf8TiUiLzKM4lRIQfV5shNSVgKGf0idx/K13SSpI2NjSoJ+uabb6ryLubdNGZSVC4ky78RERE5hVxkkjL0ZqKzJ/IZKCNKTUyOEhH1jXk3vkn6Tbmwn3xOwQtSRORFyceXcrFertf0VvJRSGLUrGxCRESp8TiUiLzOU4lRIUlQKXMrSUszeZlMLuiaD5F8Ydecu0I+IGpra9XX5PkszF+l2ba0IXfdlJWVZWntiIiIrLmR6Mknn8TOnTv7lOCU1yffXco79omIemf2m3LOMGXKlM7+VkY/yTmE4AUpIvIiKY8r11rkRvPebtLreiwqpXZ5gx4RUc94HEpEXue5xKi46667cMstt3QmRbv+CromS7vT3a8tuT1JwLJ8LhEROY1chJKLUVIWXkrO9+c9yWSO7e5KnhERUc94QYqIvEyu18hUSP0ZASp9pvSdgjfoERGlj8ehROQVfniQXOhdt26dKp1rjhpNfsjPenuIVO+Tg3AmRYmIyIlkpKhYvHixKmGWXF4nFbm7tGuJMynBQ0RERETUH8lJzZ5K6CaTkaWmrnPkERERERF15cnEqHngLKNZ7r//fjWPWk8Jz1QPkZwslYSrlG255pprcrx2RERE6THLlckoUJnfybz7vjddR4fKfFBERERERH0lo5SSb8rrT/WR5NfyBj0iIiIi6olnE6MmKbOybds2NUJGSgSUl5f3acSo+ZAEq5QblIToHXfcod5PRETkVDKHdjJJkPZl1OjYsWN7bIeIiIiIqCdyU56pv/OEJidGeYMeEREREfUkCIdpbGxUF2jlgqt8lVGf5kVb8+dVVVXYunVrv9qVpKg8xMaNG1Wp3eS2zQNzaVsu/spB9yWXXGLLOhIREeWKlM9NvstePvs4VygRERER2e3NN9/sfC7XXvojOZGanGAlIiIiItI6MWomPc3H4cOHO593N2LFLH0rZOSmlMSdMWNGn8v+pXLaaaepBxERkRcrKUg5XZmfSRKiyfM89URuJkrW34tZRERERORtUkrX1N8b85KPPftS7YSIiIiIvEurxKgkN3fu3Jny381EqBwgy+jOqVOndiZEiYjIW6MaZWS/lDHPBrnrXBKEyTfryGeRPCQWSSb2t9yXzmRd+5oQTXUBSn4vRORc7GeJiJzBTf11JgnNrsuUuPi5QURWcFM/S0REms4x2nUOz+SfLVq0SI1IkTlBZT5PKWXLpCgRkbfuIpeqAHKiICcH8rDTXXfdpcqny8mHLFNORG699VZ1kiI36Ej59ptvvhmVlZXqNV69O122Q9eSZWZ5eiJyFvazRETO4Pb+OtOL/pzvnogy5fZ+lojIy7QaMSp8Pt9R30tCVDr/Bx54AOXl5TmLi4iIckcO+OUEIHnuS7uXl3yiITfmyAlJdxdo5IRlwYIF6qucxNx5553q9V4iZXeTyec25yUlchb2s0REzsD+um/sTmAQkXuxnyUicj/tEqPJCVFJkkpnv2TJklyHQ0REWSQnBHJ35ptvvqkO+JPnG7KbLEvmqzYvpixfvrzH0Y8zZ85U1QzMuzrlBEq+728pWidLXlc5eZObmYhIb+xniYicwSv9tdWJTI4YJaK+8ko/S0REmidGzaSofBAwKUpE5A1SDibVBRHzxMDuOzZl+cknJWbJmr5YtWqVumNTTqpkBKU898Kdm1LuJ7mEj5zIcb4TIj2xnyUicgYv9tdWJzI5YpSIeuLFfpaIiDSeYzSZlAMgIiJvME8GJKk2adIkXHvttSrJVldXp75OnTrV9hjmzp3bGYcZQ38k36Upd266fc4Ps8SQSbaT3MFKRHpiP0tE5Axe7K+ZyCSibPJiP0tERBqPGDVHi8qHwahRo3IdDhERZbH/zyUpQyMPk8zp0V+SFJQTGrP0jpzorF+/Hm4l62fqz92tRJQb7GeJiJzBi/211RVHWMGEiHrixX6WiIg0ToyaZG5RIiKibEke+SgXUtJN8l166aWdJybyVR5ystIbmSMkW3d4jhkzJuOSt/I5ba6nJEX7e3crEXkP+1kiImfIdX9thaqqqqwsh4jIq/0sEZGTaZsYnThxYq5DICIijzBPIEyZlIOVE5rkkxxJGiaXuElFLtZn64J9pnM4yRwm8hBy4Z8jRYmoN+xniYicIVf9dddEZqaldXljChHpSofjYiIir9NujlEpo8s7W4iIKJu6njhkMp+IjBJKZiYQe7N9+3ZVzicbD5k3Jd2LRStWrOis6rBq1SomRYmoT9jPEhE5Q67660z7zK6JVI4YJSJd6XBcTETkddolRsWUKVNyHQIREXnIk08+edT3md6g0/XkRJKJbiB3tcq8JXLhShIMmdzZSkTewn6WiMgZctlfJydH+zvyvuvreXMKEemKx8VERLmnZSndTA9gzz33XFhN5iT6xje+YXm7RESUW1JWsesd5l1PLPpLTmySyzW6YWSlrM+MGTPU72b9+vW9flbL75QXpIhIsJ8lInKGXPfXcpP86tWr0yqlm7yMTGMmInJrP0tERBonRgcMGJDR+w8dOqRK8soHjdw1mPyBIz/viZS+MskFXSm/wgu7RETuZV58sfLEpGvpru6W4STyOTp58mS1Xn1Jikr5Hpl7VE7IiIjYzxIROUOu+2u5Id389/6OGE2+7sPpmYhIV7nuZ4mISOPEaKaJSLlo29XGjRtx//3344EHHlDJ0eQEaPJyb731VnVXzejRozOKgYiInMGO5F3Xz7HkuzedqD9JUSGv4536RGRiP0tE5Ay57q+Tp2nIZMSoJFiJiHSU636WiIg0nmO0650uVjjttNPU5Nbbtm1DeXm5So6ao0flq1z0lTsSb7rpJiZFiYg8pOtJgxVVArqrfCDzczqRfD7K76SvSVGxbt069T4iIsF+lojIGXLdX8tIz+Sb6/rar3dNos6bN6/fcRIReaGfJSIijROjdpKDbCkp0HXE6Jo1a3IWExER6XNiYsXNOd2d3Djxrs25c+d2fkb29YRNLkzJSRhHjBKRif0sEZEz6NBfL1iwoN/lIJNfJxXAOB0SEelKh36WiIg0LaVrN7kLUR5y4VZGi1577bUoKyvLdVhERJQD/S3TlS6nnZjIRakVK1aoz8jFixf36XcolRfMC1NTpkzJSpxEpD/2s3r+voiIdOyvFy1apI49JRap+iXf9+aJJ57ofH7nnXdaFicRkRv72Z7wOJSIvMKTiVFz7gqzrADnnyAi8qbuDvqtuMO8u7s+Dx8+DKe46667sGzZMvXc/NpfvFOfiAT72f7/vpIvZLEMGhF5sb+WaiUyLYP0h3IsKjfqpSI35cnNfGZSlFVLiEhXOvWz3eFxKBF5iWcTo5IMlQu/QkaPEhGR98gIx2xxykgmubB08803Z9QGP1eJyMR+Fj1ezJeYzYtk27dvP6ZspPy7JAfkpk5z/ii5gCaj8tnXEpFb+2vp3yTJKcekUsUkVZ8n7ZhTP0jytC+jS4mIckWnfpbHoUTkdZ5NjCbfTWNFPXciInIelonpuRRZuninPhGZ2M+mtnz5cjUSqutIga7fmyOmkn+nkjDgBSkicnN/LUlO6eck8SkX5iXxKUlS+Zn0i8k380nJ3Z5GlRIR6UCnfpbHoUTkdZ5NjCZ39HbPL9rQ0IBbbrlFzWd633332bosIiLS845NnU6CejtBIiKyCvvZ1ORCvjyIiHSgY38to5Tq6urURXk5Rp0xY4Z6r1zPkRvx5OK8JEQ5hQMROYFO/SyPQ4nI6zybGM32B5982DAxSkTkDbw4Q0RkL/azRETe6a8l+ckRoURE3eNxMRFR//nTeA8RERERERERERERERERkaMwMZpFvIOHiMgbnFbOkYjIadjPEhE5A/trIiJ7sZ8lIuo/JkazgB9QRER6qqqqynUIRESuxn6WiMgZ2F8TEdmL/SwRkT6YGM3i5Nr8ACQiIiIiIiIiIiIiIiLKDb/OiUS32LBhQ65DICKiHI/yZzl1IqIE9rNERM7A/pqIyF7sZ4mIckPLxKjbEolPPPFErkMgIqIsnix0d4PPmDFjbFkWEZHO2M8SETkD+2siInuxnyUi0kcQmjEMA0uXLlXPZ86cadtykj80fve736nl2rEMWZeNGzda3jYREWUumycLAwYMyNqyiIh0wX6WiMgZ2F8TEdmL/SwRkT60S4z6fL7O5KiZILWTLGvOnDm2tk9ERHrftZlcvsaKcu7dlcNhKRsi8ir2s0REzsD+mojIXuxniYj0oGUpXTM5avfDZPcyZH2IiEhPVVVVls/xcfjw4WN+NmXKlIzbJSJyIvazRETOwP6aiMhe7GeJiPSgZWLUTCba/cjWsoiISF+TJk2yvM3uTm44xwcReRX7WSIiZ2B/TURkL/azRER60DYxmg1MXBIR0dSpU4/5WaZ3bXYthyMnJSxlQ0RexX6WiMgZ2F8TEdmL/SwRkR60TYxmo5Ruth5ERKSvmTNnHvOzHTt2ZNRm1/fzbk0i8jL2s0REzsD+mojIXuxniYj0EIRmJJEoozjlg+Lmm292dGcud/zcf//9eOCBB3IdChER9aOUzbp16zIqcdP1xGTu3Llpt0VE5HTsZ4mInIH9NRGRvdjPEhHpQbvEqCRF5cNg5cqVcIOlS5eqr0yOEhHpa86cOVixYkXn99u3b8/oppiupXDmzZuXUXxERE7HfpaIyBnYXxMR2Yv9LBFR7mlZSvfSSy+Fm/ADiYhIb7feeutR369evTrttrq+V056OL8HEXkd+1kiImdgf01EZC/2s0REuadlYtRtHXhVVVW3k2ETEZEepFJBcumaDRs2pN3WqlWrjvp+wYIFGcVGROQG7GeJiJyB/TURkb3YzxIR5Z5f50SiW7gt0UtEpAsrbzjpetfmsmXL0mon+X1ysiNzZhMRORX7WSIiZ2B/TURkL/azRETuoWVi1K261nwnIqK+O3z4sK3tS8mZ5Ls277zzzn63cddddx31/fLlyy2JjYgoG9jPEhE5A/trIiJ7sZ8lInI3rRKjp512mnq4bYSljIA1142IiNLTXXmZTErOdEdOJMzPoB07dhxzotHbzS8333zzUSc2Y8aMsTQ+IiI7sZ8lInIG9tdERPZiP0tE5G4+wzCMXAdBRESUipx8LF26tNvSMnISIScAUi7GqpMAWd7kyZOPOlmRuzl7OymZMWNG54mSxLRo0SJL4iEishv7WSIiZ2B/TURkL/azRETewMQoERFpQe52TD75SLf8eHLVgTVr1hxVnqav5ARj7ty56q7N3k40+vNaIqJcYj9LROQM7K+JiOzFfpaIyNuCuQ6AiIgo+WTEPLHIpKx6pnM6y8nM9u3bO0+W5OvixYsxb968zrs55d9Xr17deZem3NXJ8jVEpDv2s0REzsD+mojIXuxniYi8iyNGiYiIerFixQo88cQT6q5MeZgnUHISImV0Lr300rTuDCUiogT2s0REzsD+mojIXuxniYjsx8QoEREREREREREREREREbmeP9cBEBERERERERERERERERHZjYlRIiIiIiIiIiIiIiIiInI9JkaJiIiIiIiIiIiIiIiIyPWYGCUiIiIiIiIiIiIiIiIi12NilIiIiIiIiIiIiIiIiIhcj4lRIiIiIiIiIiIiIiIiInI9JkaJiIiIiIiIiIiIiIiIyPWYGCUiIiIiIiIiIiIiIiIi12NilIiIiIiIiIiIiIiIiIhcj4lRIiIiIiIiIiIiIiIiInI9JkaJiIiIiIiIiIiIiIiIyPWYGCUiIiIiIiIiIiIiIiIi12NilIiIiIiIiIiIiIiIiIhcj4lRIiIiIiIiIiIiIiIiInI9JkaJiIiIiIiIiIiIiIiIyPWYGCUiIiIiIiIiIiIiIiIi12NilIiIiIiIiIiIiIiIiIhcj4lRIiIiIiIi+v/bu3+fOa79PvwPL24QB0ZskYpvG5js7E6iUn4dgJKBIEUaikyZFKLg/AEUWBmpCDJ9DIpNypC8bRpTApKapEp3vELK2CApG4kTI4b5xfu5OfTh4eyPmZ3ZnZ19vYAVHz3P7uzMmZkz55zP+QEAAACLJzAKAAAAAAAALJ7AKAAAAAAAALB4AqMAAAAAAADA4gmMAgAAAAAAAIsnMAoAAAAAAAAsnsAoAAAAAAAAsHgCowAAAAAAAMDiCYwCAAAAAAAAiycwCgAAAAAAACyewCgAAAAAAACweAKjAAAAwFH44Ycfzi5cuLDV6/79+4feXRjdd999d3blypWzr7/++mxpclzb3Nt5HwDAUAKjAAAAAHAEEhD91a9+dfbtt9+e/fTTT4feHQCAo/PzQ+8AAAAAwBAfffTRoL/BsY6YTlC0XN9Lu8Y3HZNAMAAwBoFRAAAA4Ohcv3797MmTJ4feDdibR48evfv51q1bZ0vz4sWLtX/PNLoAALsSGAUAAACAmcv0ucXNmzd33l5GYGYE6uvXr8//zf+/evXq3c/lb/n5wYMHiwzGAgCnR2AUAICj98UXX5x99913e/u+TPN2+fLls6tXr559+umnZzdu3FjcdHYAS16jsQ4wbfLJJ59sHMm2b9n/HEcfb9++nWx/2M80umUq2ZRBcl3u4ptvvjm7f//+1u83jS0AsBQ/O/QOAADAsUnjYBooS8P0xYsXzwOkfRraATgOye9/+ctfns1JglqclozYrKeRHuO67uPzzz/f+TsBAObgwltdBgEAWECgMlO91T9n3blVgcqM7rx37975iM9tR3qW7ebfZ8+enY9Q7WpUzPbu3Llzdvv27bOpZR/SOJ79yMiRhw8f7jyCBGDOkt+lI8oua4x2PTOePn36bvRc8vF2dFyCQnnPHCTvz0wJye+7nkPZ13TayajC+hmX/+d4pRNWuS5fvny58/nMtp4/f/7uHsg2V5VtYg7Nh2WN0Rx79hcAYAiBUQAAFmvVNHFjrpOV4GuCrFmHq5YG6zTYT9UQXRrGW5nuUXAUWKoxAqOr5HmR50a2m+9p8/U3b97MYtr0L7/88vzfBLTaaeTnOO0v4z7zpw4K1gHYuXUMEBgFAMZgKl0AABZr1fprYwYrE2BN41wbBE2j+pUrV3qt3zXGNIp3796d5PsAlq7uMNM1VekcpktPwCrT+q56vvVdd5TjUHcAOMQ57uqIBQBwrARGAQBYrEuXLvX6/S7SiJ4AaTuFbgKYZXTPmNqRTJt+f2ySZnNb0w9Ytno0aFfwqV7j8VAeP358vp+r1nuc4vnG2SzO+5jri64LvLejRcP6ogDAkgiMAgCwWIeY8jDT6rZTOybAN3ZwNOuj9vn9sUmaZS1XgEPIDADttOTpeLJq/cV9SXD2xo0bB90H9j+NbglW5pqccq3YdmrmwhT9AMCSCIwCAMDIMpqjXeNt7OBoArBdgeCu3x+brtEqAPs2t1GjJTBrutzTUl9zN2/enPS7utYRNVoUAFgagVEAAJhARle0DYxjBkez/UzdmzXx8nP+/fHHHw8ySnZsr1+/PvQuAHSOzKynNN23PEO6RrKybPW08vU6uPsaMWp9UQBgaQRGAQBgIhll0a45mgbOb7/9dpTtp4E8I0kyOjX/LiEoGoeeqhIgkqe26zlmRPuq6UanlnzeaNHTDYomID7lcz7Xdtc65UaMAgBLIzAKAAATytS27eieNGybLna1roZZgFOeTjcdRpI3Tj1ikHl59OjRu5+nDopbXxQAOBUCowAAMLGHDx9+8Lsx1xtdmmfPnh16FwDejZZrR+llFN++O7ckGNu1L5zOiNGuqZ3HZH1RAOBUCIwCAMDEMtqibVzMyIyxptRdmkNNUwkw17VG83061JxuUHQfQXHriwIAp0JgFAAA9jSlbuubb745yL7MWaaKNM0wMCeHnk63jFA1je5pqa+xqYPi1hcFAE6JwCgAAOxp1Gi7TlcaIo0aXT1CBmAOkndfvny5c83PfQXIrl+/vpfvYh5SPqhHcE49ja71RQGAUyIwCgAABxx11DWS9JTdvXv30LsAsFX+vY+OHCVA1vX9LFc9VfM+ptG1vigAcEoERgEAYE+6RnxkxJE1Nd+fLhJgbrqmsd3HdLoJkCUoJkh1Wp48efLu530Exa0vCgCcEoFRAADYkzRut9MxhlGjv/bVV18dehcAOnUFJ9OxJVPqTinBV2uLnvY0ulNPo2x9UQDg1AiMAgDAHnU1cBox+usRMUaLAnP25Zdf7nXUaAm8mkb3dKfR3cfastYXBQBOjcAoAADs0Weffdb5+1MOjn7zzTdn33777aF3A2CtrpGbdRBrbAm6ZpaBrpkGWK462H7z5s3Jv8/6ogDAqfn5oXcAAABOyaoRGGmY3NQQWaa7e/369fm/+f+XL1++97tso16bbJdp/LJPz58/P///bL+M6EwjfY4j6491BQoyuunKlStnt2/fXvs92d8ERbO26Fxkn7I/Ofb8XKYXLMGJHHPSeMyRNOVclvOYc9qe66TzqimXu/Y5035eunTp3blK4/o+R/9kH9K4n9Fuq9IxI6GmDPhs2oe8MgLw2AIA6USQezz3ZjnHOY5tp1vNtZVt1NdLSY9cI3fu3Dm/fuiW67bOs5Ke+f8pRvblPOV87Eu5Hkr+8+rVqw/yp+RDq6613GuPHj16N9K15EX1fZ+1tg9xfc0hT9pG0rqenvlQI0ZXrS9a8o9nz569d72U85z8dN/PGwCA3t4CAMCCpcjbvl68eDG7ffrkk082fu7y5cudn61f169fH7xfL1++fHvr1q132/r888/f3rt37+2TJ0/ePn369Dzd8u+DBw/O3/fRRx+dvy/vKfJzfpe/d8k28vns56Zj6ft68+bN4GPPZ+tjz/6VY2+Pt5yv/G1XSc9tju327dud+1zSMddG3pN9zX5l33P+6m3kPVNf+/nupE39vdmPpF/2L/tbX8f529j71O5Dfs53l3OZn+u/57zW1/Bc5XyX/c4+J+3qa3LT+W2v8fKZbKdNj6TTXOUYx8jvVtm03a57Nmk4tvI96/K19h7Pa2i+lHO+TV7UdW3U91y5Nss9316nJX3zvNmHOeRJfZRn6FTXdyvX1zblpFyP7XO7K/+o03GKc1x/NwDAUAKjAAAs2hwDo6sCnIcMjJZG8b5BovK5NIKmAbrsR1dgdFUD7KEDo2nwzXFvc+w53rqRP8e9S0B2aGC07HMapNddz2mYbhutpwh65XvqIM2m4Fren2MqadkV+O2rDhRvE+DI3+p7ah+B412U89heo226dwUjyvVSAsWrgmd1cGyMwP8SA6PRBvp2yX9WSR66KeB66MBojrnsQ9Is19m67bfPsCk7JMwhTxqizq/XrwqpCQAAdFJJREFUpedY6uf2qvJI3aEiP6/ar6RZvY2k5dh5qsAoADAGgVEAABZtjoHRrsbsbfYrjdB5pQE3jZldgdIhgYLSmJntDRnhkf1uAwWrRoxm+6teXdtY9/72tUujcJ8AZ76rTvtdG3/L/mcbCRR0BV3qRvoSGOrTcN9eK2M2uLfB3VyD26ZlHVjZZdRdew32SZt2FNQ+ghFD79Gu46oDhV0BgzrwsS4w1F57+XmO5hAYbQNAU3Q42CbIOWZgtM6Lcg90HWN9nOWe69uhoN3nBALHDirPIU8aImm/7/uvHUVeH3f9rNvUCador5uxA5gCowDAGARGAQBYtDkGRrsaIoc0aNeNqEMDBXXQZJdp79rgzKrA6DptQHDqETtln4c0fqfxvN3fsa6rrlGkJS3K9/YdadWen7Ea3dvRRkMDVaUxfcjn22MbMgqtHVV76Dyia6T1ukDAqrykvpbWBXxX5UlzSoc5BUa78t5tpkPve19tMnZgdN20rnVgtBz/0MBh15SsYwVH55AnjZHeQ56hQ3R1sMp+1J2V+gT9u2aGGHNksMAoADCGn/VflRQAANjFRx991Pn7169f99rO5cuXzz7//POd9uWrr746//fWrVvn2xvqk08+Obt9+/bZMfnyyy/Pz8WTJ096fzafe/jw4Xu/u3bt2tlPP/20837lnK46F/mO/L1vWuf81NvMft6/f3+n/fzlL395noZF9mtIWsa9e/fOjynb/Pbbb7f+3A8//HD26aefvrcPQ67D77///oN0nou7d++e//vNN99snac8evTo7Fe/+tXZF198cf7/T58+XZlXJA1XpXnfPOlU5F5q79GkY9J8DA8ePDjPkw+t6156+fLl+T2XPCXX1RDJJ+r0S7rV9/Ex50m7nveiPo6p5DnQdc3m3OR85O9Jvz7XYvKiXBtdeRgAwFwIjAIAwEwMCartEsxMg2/5zjEaYe/cuXN2LNLQnQbhBDdXBao3uX79+nsNwEnLsRqA24bldp+H7m8bPBsq+9FeM3Wj/tBARK7ndQHAVrsPQ4MguQbqIFDO5ddff302ByUosy440eYd33333bu0SZqs60Cx7jq4evXqgD0+DV3Xx673QDmX9fk7tPYZUzpUtJ0J+mqDqslTdrnn5pIn7bL/JUiZ/GjXTk/byHXWJcdbgqLtc2PINbMqAAsAcCgCowAAsGcff/xx5+8zEqevoUG9NiAyRgBkX425Y0iDefZ3SKPvumDwlCOL0lidhvqh57yMHqxHuA3VBiBKAGFX2U4a0RO03yRBlLqxPYHNXe6HrnN56Mb8BC6SHn2CouV3Ob+5vode4/ncLum5dF3nZIz7P9uYU17adQ3skg8VyS/aEak59lXBumPIk3ZRB3Fv3Lhxtg+rRvwm38txD807Ll269MHvdnneAACMTWAUAABmYt/TVk7RUDmXUU7rlKBR/r148eL5lIFDG+Pb4MVUDegJGGwKkG3SFSQYEvjLiLH22tl1GuUEOXMuyvWzaaRX1/Svu45Y7gpGjTECcBdlBOy6++r58+dbT/fcpWuUXkYsDx2ZfCq6rpcy2nMJ0+iuO+6x9q/rnh3yDJlDnrSr+rmxr9Hqq67VoVOSr2NabgBgTgRGAQDgRNUNlauCK30dw9SbdTCwBEkzmnJIkDBBgjbg+OzZs7Ox7RoUXTWKZ8j0ze10wbuOuk3goQR+i03not2HBPLGGN3YBmX2tbbgKo8fPz7/d93owVUdHLYd1ZfrN6PVEwjJNZZg7IsXL4wW3UJXAGvodM71dKpzmca5y5gjWdsprCP5QN/7bg550i7q9Wm71uicwrrpbXe5huPQI+0BADYRGAUAgJnoClzt6/vGGg2zjwbdXa1qtB060rMNjE7VKNxOhdtXV6Cr7762wYIxRmp2jVpat1/5W3uubt68eTaGrhGAh5oCMseZ798UiOoKxOc+7BNIzzWcQGrygV2DSqekK612CaYn/XPuxpgC9lieU133bq7FY8qTdlVPa7+v0cKrRouOMU1yV1rN+ZoGAE6PwCgAAOzZq1evOn9/5cqVve5H3VCZQNPUa6jNxdgNtPsKjE6x5mDf6Q27Aha7BsO7Ai3rzlFXEH+stOn63rFGU/dV7sdNU4t2BTjmPOJwaboCWUPz0gT5Tu3cdQWCk4duOyXxHPKkXdXB9LE6eQxZX7RrBO8QAqMAwNwJjAIAwEzse+rKdgRimT5wjFFUu45unNKqaVenCDyO6dBTm5ZpPsdOs65A0LrgUFfQacyRyu22Mq3sIZSRoOvSOCPluqZDvnHjxqT7xt/rClwPGYGfQGDO5Smeu65rvCtwN9c8aRdlvesSPNzXrAtdHT7GGK26KqAtMAoAzInAKAAA7NmqEYX7bjjsagRN4++nn3660+jRrE829+k4E+wqDdBJ9+zz0AbpNmA5ZN3OTebQqDxVQDIjlDLqK8dYpnRdNWqpa128sQPG7WixQ62Xl5FjSYd1574rCJH0OHQQ/ZQkENemdwly9pFgate2TkGeOa1tRozOIU/aVR1E39dzc9UU4WOMVu0KaB/DFPsAwGkRGAUAgD1b1WC+7zVGV02blwbTjIK6cOHCeaA0jc9TBPsOKY3dCY6+ffv27OXLl7MP5M4hWNLV4P3ZZ5+Nsu1chzkPea0LQHQFS8YOGrdp3Xe64bHkmty01mLXOZn7yOcl6upk0nf0ffLZU5tGd901W4+knHOetKvHjx+/+3lf53/V9OBjBDC78uh9TQ8MALAtgVEAANizVSPQDjGqIoGXdUHBNO4nSHrx4sXzNVCXGigdooxePNSIwn3bR1By2+llp9yHuYwYHXpO5jyN9VJ1BbT6TKebfDYB+bl30JjKqnt40703hzxpF/XI4jI6dR+m7FDRNRJVZw0AYG5+fugdAACAU9PV2HvIhsNMI5uG/U0jnLLfeU95Xxpxs98JnC614TPHnMbrjBpKg+8pBULnOJK1KyCfQH1GN09l3yO5t9U1rXAs9V6cs7I2ZB0UKnnFNsGu5MGnuLZom5e093fSr2+HoTmMrt9Wznuxz9HCU3WoWDX9sal0AYC5ERgFAIA9WhVUO/Qor4xuyj588803Wwf+6kBpGj4fPny4iAbQBNoePXr0wTqBJRCc9fDK6J4EzZJmfafNPDZzGSHcNa1tRtnduXNnsu+ca6Bl1fqixzRibkkS2GqDW8lXN02HnHsr5zJTe5+y5KVtPrNuGuu55EljTaO7z9HCU43qrAO9xamOggYA5k1gFAAA9mjViIo5jPJKA2ZeCQymQX/Vvq5qaE3AMJ/rWm9v7tLInuDm3bt332twT6A3wY6M5loVIJtr4GxMq4Ll+x5N2RUMKaP1To31RecleUQbGE2esikwmvec6jW8KR9dF/ycS540VN3xJud+Xx0aphzVWQd659LpCwCgizVGAQBgj7pGBaVBeE6N4gmOJujy5s2b8xEgCXRuu38JDNy/f//smGTEZ9ZQzb+loToBppyrvHL8pxD8HEK6HI71Red3L7SB6TIadJ10JtnnNKpLdyx5Ur0G7c2bN4++Q0U6R3UFsk99imgAYJ4ERgEAYI+6RlTMteEwDcwJkqYBNwHCt2/fnv+bEVDrGlKPZWrZjDi6cuXKe4HcHHOCwWk8nlOweq7Bhn1PZ9k1qmoJU2r2ZX3ReeoKcNYBsFZZt9h0o9338bog51zypKEyM0Oxz1kWpupQkennu/KjYwlUAwCnRWAUAAD2ZNWIigQSj0WChbdv3z4PHCZQmiBiVwAxAYJt1yo9hDL1b72PCbol8CtIsf30lOvWAJxCVyP7vvdhrh0srC96eMk72mu0DoB1BU33OY3qnHXdx+vSZS550hD1NZHzv8/g4VTri3Zd519++eXO2wUAmILAKAAA7EnXiIo0pB+qUTyjOrsaSfvI/ieYmGBpa9PaemO7cOHCViNVEwy9du3ae0HqNEznOAQo5j06KyN8D70Pc2B90fnqmgFgVXA0AW7T6K6+j9etFzqXPGnXssA+z/9U64vmmdrVEWqus2EAAAiMAgDAnnQF7e7cuXN2KBmpevfu3VG2lSBoGwid63S6GcXSNp5n5Ksp/9brChrve1Tw1atXD74Pc9DVocH6osc1nW6CVMmH9jmN6lyt6qCzKWA3hzxpiDpQvs/gYVeHijGmjO+6vk2jCwDMmcAoAADsQYKEbTAuDYeHXsdy1QiSITJqtJ2Gdsztj9Ug3TbCZ5+NttusK42ePXu2133omnbyGAIhY7K+6Lx1TY1bgqBtMMm03b/2/PnzQdfzHPKkXYKi+w4edj2PDzWNbu6HdM46hhG+AMDyCIwCAMAedK0j2jXKYt/SKLnrdLq1dtTo3IJWXSNkdx2126dh9/79++dT/h6jrobuQwS+uxryx7yG564rza0vOv9Ro/UI+uQZCSaZRvfXMo35kBHQc8mT+qif+/teg3OKkebZZtdzftNI6DyL8zyc+/kCAJZJYBQAACaWxu+uqVvnEsgYs2Eyx1QHrl6+fHk2F2m8bRuGE1DaddTu69evz07BXAKSN2/e3GrE2VTXzKFZX3T+ukaC1gGxrC2avMd5+/v0aG0zmnYuedK2Ug6on7f7nEZ31XN+12uwq4PXNueujDJ1DwAAhyAwCgAAE0ojbbvWZhoN5zSFYlegZReHmB54m1GbXQ3DYzRMn9JUgF2jgKYY8ZORVJ9++mnn33LvtJ0K0tFgqk4NX3311dmcdAWBP/vss4PsC91yfbb5YB1kTzDJ2qKrpxlOsGzbjkNzyJOGBID3PY3uVOuLdgW1N42Ezr2QV9fU6AAA+yAwCgAAE0lj77Vr1977XRoBHz58eDYnYzciX7ly5d3PH3/88dafu3Tp0uCAY5nKr91GrWv0ar2vQ001WvGUp4TOaKKrV69uvR+5hseetrmM7prTiKZVU1/PaR9ZHRzKvVICpF0jn4/B2CPku/KPdkr2Y8iTtlF34Nj3NMpTrC/aFdTeZiR0GS1qKmkA4FAERgEAYAJpLMzokrrRMA2GWUttjiMk2lGtu6gDkH1GpLQjhPo0wJeg2LpRRl2Bs13PRbbZNgwveWrdpG872jmN3GOOmi3X4rpG84wSa89dn2BKn/Vo59R4v2p90UOM0l6yMa7nrtHoGV2XoF3XiNJjMeZUtck/S5CsSFCt73NjDnlS32l09z1rxBTri3aNQt1mFoaSt+5zKmEAgJrAKAAAjCyNvb/7u7/7XiAujbcJis5lXdEpR9jUDbB9RqR0TT25rRKMXNeg3pX2uzaeJ93mGOieUkY8t8fcNWprqAQ4cx43BUe+//77D4IXYwVDsp379+93Ttt7SF2BiF1HsfH3yvUzRueG3CNt8KtcV3MKtveVfHmsWQZWjao91jxp2yln9x0UnWp90a5n9KZgawlad3VuAQDYF4FRAAAW6xBrPyY4k+lZ6++eMig61jEmmNmO3Nl1atm+ja5tg2qfkUkJGG1K365pc589e3Y2VAlytOtbrjsnr169OvrG4Ox/e8y57scIliQ909i+zejPBCna92UdwDGUoMrYo1B31ZXGu4764sO8a6xRkasCoMe+vugYgd1cy+31nHxlyHNyLnnSOnXAd9/TKE+1vmjXs27Tc3+ueSsAcFoERgEAWKxVo36mmOo0DekJULQNxhkZMuX0ue2x7BIo/eqrr3ben3oKw74Nn2lQbdNp22Bt3repsb5r2r5dplxMA2/2Oa+2MX/VaNdcJ9uM8Gv3aYwAeNc2hm43x3z79u33fpf032U/k2ZJ0wSNtg2qZx/q9yYQkkDGLhJQyatMeToXSduu68r6ouOpRxnueh2tytO6fjdU17Ns6qm8E1DLdbhLJ4Suz+de3mUk5VzypG3WBp7DiNEx8o2u4Oq6azv5atI05+nYOwgBAMdNYBQAgMVaNSVfnylat2lwTEA064nWjY9p9MsojYximbIBsG3wLCOe+koAKI23u4w+y+dLcDUNyUNGpLTB1G2mVSwBjE2jsHIe2obzGNLAXwfPuhq6V41Uyu83fV/SsT2PuWZ3vW679qlrJFGfc1WnZ/avXVe375q8uWb6TqWZY6jTP4GMoWvmlgB7rqW5jepbdW8f61qVc5P7sg5e7XIdreuQMdY0urnfuka2jjktepd07Mg9l3tlSPC4PGfqfCL5yBgjCOeSJ7Xq62jfQdHouk4+++yznbfbzsKwrqyTc5FrP2UNo0UBgIN7CwAAR+7NmzdvX758ef568eLF26dPn769ffv22xR3u14fffTR2wcPHrz7zLavbPvJkydv79279/bzzz8/307X9vPdU2j3I/vQ9f35ff6e9+X9SZ8u9f6Xbebn69evD9q3y5cvv/v+XXzyySfvHU/2a9339k3zrnTLOd1W3pu0y3VWJI3r7SUtWtnHfG7dec112R5/vc38vZzXvDbdE+V+KPvctd2c7/p6WbfdVenR7me2ta28N/uWz626Vrdx69at9/Yj/99HyTP6fm5fuvK0Xe+1Y5Trpb52h8h1VvK8nO9V90ZeuR9zjec+6nNdd+3v0CaY9jmUfGDdPrfPgCH3ddHmR+X+KPd9n/ulfk6UV45lbHPJk7rSsH5u7EO+r+saGeO4or0OV5338r6h12Gx7hkLALAtgVEAAI7eqgDhPl9ppEtj7FiNjasCgENeq4InpaGybtguwdEcz7YNuHUj9BhB4aRh23jeFRwtjexpdB4ryLSu0TaN5SUg3tXIngb+rkBm0jEBnK7jWNVove1rVVChfN/QV19Jj/ac5bpal575W9nPoQGuVtKz3o+cq01B75yT8pkpgjRT5nNz3t85B0bbIHqf15DAVrm+huxvyZPHeI0ZGI2kRe6xvGdduiRPb4OV+cyQQPOx5Un1s7urY8zU2udSeTaNpb0+22dc/r+UNcY431McAwBwen5+6BGrAABwbDJdXKaDy5SCmWqva43JKb87Ll26tPG926w1l+3V09plmr+XL1+eT3mX6Q7z90wFmSnzyjFmu3lPpmYtU/QlDbKdMab1zHdmXdZMy1vWGM00l/n+bD//5nvz/fneTFfcV/b15s2bZ3fv3n33HdlejjNpkGNPGrfHmulVV02PnL/lM2Wq3DJ1YDmmfG7VNIpDzus200NOtd1WzkvSKVNGJm1z7GW64fwt90r2payTWV7527p06SvXQ/YjU3xm+suyRmBeXftRphfO5zI96JzWFG2111z+f27T/R6bbe+PXe6NyD2Ra3CXKUTr87/N/dw+A8ZYp7iV++bHH388z6uTZ+b+yb2cfDT7mHvs2bNn760Vnfvwzp07k08pO5c8qT72rnWup9aVp405lW3SKXltedbl+VfWL83030nfpOnDhw9N+w0AzMaFREcPvRMAAMD+pSE7jZmrGoDToJlG5ASM6jUu05icRu80cmYbUwaG851pdE1QsuxDvj+N2uv2vY8cZwJk9XEmoFAadHNsWY8tQaht1ost6ZZG+Ujw/NQCWDlfjx49eu+8RdKyBLjLenP73o/SsSHXcK7fbc/roWXfyzqYuedyX8w5kDuVHH/uqcj9P6RjBNtLWtdrVOZ+6Vpzs+t5UZ4VuU5zr+V8HeqaPVSelCBx+a6kTQka7lOOK+cmx5YA/RTPoxxjAq55ltb5bFmzeSwXLlw4/zfbLs9YAIC+BEYBAACAoyAwOs/AKB9KgDCB0Uig8M2bN4fepaMnMAoAjOFno2wFAAAAADhXB5APMY0uAADdBEYBAAAAYET1+qJlDU4AAA5PYBQAAAAARlLWMi3T6GYNUwAA5kFgFAAAAABG8ujRo/fWZQUAYD4ERgEAAABgJN9+++27n2/evHnQfQEA4H0CowAAAAAw0jS6P/300/nPly9fNo0uAMDMCIwCAAAAwAgePHjw7ufr168fdF8AAPiQwCgAAAAAjODx48fvfv76668Pui8AAHxIYBQAAAAAdvTdd9+9N41uXgAAzIvAKAAAAAAf+NWvfvXe/79+/fpg+3IMnjx58u5no0UBAOZJYBQAAACAD4KiZfRj8cMPPxxsf45tGl3riwIAzNPPD70DAAAAAMxjdGiCoc+fPz+7d+9e53u++OKL89GQmSb2o48+Ov+9KWPfn0b3k08+kSYAADMlMAoAAABwwr799tutp35NADCv2osXL86DgafswYMH736+efPmQfcFAIDVBEYBAAAAeDcC9NKlSxvfW9YbbafbPVW//OUv3/1869atg+4LAACrCYwCAAAAnLAE8gTzxgmKZuRsCTADADA/Pzv0DgAAAADAsXr06NG7n7edkhgAgMMQGAUAAACOcpTehQsXVr7u379/6F3kBEeM3rhx46D7csyuXLmy9p4GABiDwCgAAAAADFCvsXr9+nXT6AIAzJw1RgEAAICjsW3gSYCKfch19uDBg7MXL16c3bt379C7c/Rpuc19694GAHZx4e3bt2932gIAAAAAAADAzJlKFwAAAAAAAFg8gVEAAAAAAABg8QRGAQAAAAAAgMUTGAUAAAAAAAAWT2AUAAAAAAAAWDyBUQAAAAAAAGDxBEYBAAAAAACAxRMYBQAAAAAAABZPYBQAAAAAAABYPIFRAAAAAAAAYPEERgEAAAAAAIDFExgFAAAAAAAAFk9gFAAAAAAAAFg8gVEAAAAAAABg8QRGAQAAAAAAgMUTGAUAAAAAAAAWT2AUAAAAAAAAWDyBUQAAAAAAAGDxBEYBAAAAAACAxRMYBQAAAAAAABZPYBQAAAAAAABYPIFRAAAAAAAAYPEERgEAAAAAAIDFExgFAAAAAAAAFk9gFAAAAAAAAFg8gVEAAAAAAABg8QRGAQAAAAAAgMUTGAUAAAAAAAAWT2AUAFicX/3qV2effvrp2f379w+9K8CIfvjhh7MrV66cfffdd4feFQAAAOAICYwCAIsLnCQo+tNPP53dunXr0LsDjOiTTz45u3z58tkXX3xx9u233x56dwAAAIAjc+Ht27dvD70TAABjBkU/+uijsx9//PH8X2B5cp/nfr93797Z7du3D707AAAAwJEwYhQAWFRQNL7//ntBUViw3OMZOfrNN98YOQoAAABszYhRAGAxa4pm+tynT5+eff7554feJeD/yXqguUdzf7569erdz69fvz7/N///8uXL80BnH+57gP1JXpv8/NGjR+f5b8nL0xHt0qVL53lwpjnPv+s6p+U9eRntDwDAoQiMAouQSnoq2NvKuoMPHjwY5TtLxT8NAquk8bf25s2bnb4beN+VK1fOG+i2vbfr0aVTSL6QIE/yhdJImLURh0rD48WLF7d+f77rxYsXZ/v2y1/+8uzLL7/ca17MvG177Q4JjNbXXO65XPNDtgHA+ny8a3R+CYim/NVK0PPOnTsfBEhLnn1sz/+UG0swOB18SueeuqNPpna3tj1z4HoFgM1+vsV7ABYnFfsEK65fv77ztlK5qP/dxPSey5CGnTQSpYKZoFcadzTIH8bXX399fh6S/n0a2XIvbnvfdn22VW8rP6dRonSiKJ9JI2EaIYbkA332N9+da3SMPK6P3BN9yA+Xn1/lHOc6LA1x5b4YS7adV2lsP0SHAIClajs8Jb9NuasdoV9G/6fMc/fu3bP79++f17cePnz4XlmkbzlhLr766qvRn18wFdcrAGxmjVFgEVI5zwD4+pXRJ0+ePFlbYRgaFGm/Mw2xq6aDKsGa7E/ea7TochqJSg/5NAJNOfqQ1ZL2ZQRDn6BoRlTmXqzzjNzHq6bizPvLPVzu4/ZV/y3bSv5Tb6+MuMjouTQY9g0utfub/SmNjV0Bxn2PxCi907vSMPuX9GiPIb3VWX5+lXOfqW5zX+S8jz3lbRrec43lGjzWRneAuUlZpQRFy6j8tmxT5O8pK6U+lGd9qYPl8yVfTnmta3TpMcgxp8yVYxyzU1ee0Zn15MKFC+eddo81fTiN6xUAlsRUusDipaK5aqRVKg1prB1Lvd5ZpEKyLjjLcco57uqFm0DUMUxJVNaI2vdowimn0B3rXls17eeu5zajK9op6NJYkX3edeRe9jfbyCsNbGNMTzr0GMu04e1+JABqLbHDmGN+1TWV9a7Xau6vXIORxvtdpq4GOHV1npq8Oflq3wBLymcl2JcyQLZZ6kjHNpVuK8HetpNb3+dq1/IDpSMczO16BYClMWIUOAk3btzobJRPcKhtwN9FGg7qEVAZxcLyrBppvMsI5H16/PjxeyPIjlUq+OUYxhp5uKrRb90awttI40PbCaMEh3Y9D2XfMk1v1/ceohG1JUh1OHPMr6YI1tdTVGdGCACGSfmkfp6n/DJk1Fny+tLpJWW2Yyknb2OMcmemHG4ljdqOdH1lG2PWbzl+ZmgBgA8JjAInVSHoaozddUrdriBsmLpmuVZNAzn29JBTSSPVsUswsUzNltGiYwZaprpvc320o1qT99SjzHfZ3+Q5bTrs2ri2rXxP9uNY7oFTMsf8aqp7rDT8lTV2Aeiv7lySjqW7lrHGnJ1nTnZNl6k6Li2lAyTj2tcMMgBwLARGgZPSNdVmKp9jji4pDb4qH8uVxvd2BFwajo5lVNwSeuzX6wgeUy/oBHHbgFTORzuV2lDtiM0ybfLUTMc1X8eeX/Vh1CjAblJmqKdf75qNoq/UiY552typOvlM1XFpCR0gGZ8O2wDwPoFR4KSkIbhrSt2MLDG6hD4Vy6y1lB7waehJA8QxBeeOvQd5PUVYGo+OrRNCHdQde1rvruDk1I2RuZ7aafeYj2PPr4beA2NMRwhwauoyQ8pYYwVTkjcfW3ntWDsuLaEDJADA1ARGgZOzryl1Wb40GB1jQ8/z58/Pjlm9JtMxBuNWjQToWmuqr67pbBNwnTJvSyPqMQaoT82x5ld91XnCkgPAAFOoO2mNPbNAV8ewUzZVx6Vj7wAJALAPAqPASdrHlLowR2ksOfYOAPUosExNe4y6Ghsz6nKMxqyuYPGUI+ey7WMMULNMCfyW+yv30z6mkgZYgnoK3fj4449H3f6NGzdG3d5SjN1x6dg7QAIA7IPAKHCSTKnLqTr26ztBuBLYPeY1LVc1frWNkkMkWNxOfTfVdLrlejrWADXLZNQoQH+vX79+7/9fvXo16va7ZrVgXEvoAAkAsA8Co8DJMqUup2iM6VoPqQ7wffHFF2fH6tKlS5NOf9YGjcs6oFOcDyNAmJu64T0jRj3TATZryyBTTMl6zGW3Y3DsHSABAPZFYBQ4aabU5ZTUoy2PUfa9Du4tcdTBWKMzuqa2HXvUaM5Hgk6m0WVu0ump7vj0+PHjg+4PwDF22ppiKvIllt3m5Ng7QAIA7IvAKHDSTKnLqUiv/2MPYNXBjdy77XSxxzxdXXHlypXR11mcap3RbC/f0bVeKhxa3fje1QkKgPe15ap0gLp///6o36HMMJ1j7wAJALBPAqPAyTOlLkuX63gJU5c9ffp0MSMOVuUtV69eHe07ugLhY3b4yAjUYw+2jymjmdOAnDT58ssvR29Mpp86z3v+/PlB9wXgGHSVQb755pvR60PH3LFtrpbQARIAYJ9+vtdvA5ipjCb59NNPO6fUNdKkW6bXStqkwTmV8aRXGjoSZL558+b5GoerGj7SozmV95cvX3YGpcv2s81sO9OL5ueMsivflZ/v3LnTOeK3DVbkM+u2k31NgHydskZj3p/97tpOttGu7biNbCMBqwT+8nO2VRqhysi/pFcdDEzgJTZdn9nuUoL8dVDvs88+OztmXYGarlGeu8i12DaSZYq169ev77zt3J+5Vpe2vmju8UePHr07vjpfy/2X9GzzrLw3Dcf5bH0O87ts68WLFx9cx+UeT15Sfi75SRqm604Akd8nfyn7lX3K+/K7rmtmyvxqVbolUJ7ruuTbZR9L/rUqr59KnS5ln/a9DwDHJPl28s52TfJr16598Czbxffffy8/HtFSOkACAOyTwCjA/2tATQNxO9VkmVJ3jEDCOgnKphGiBBLbNX7a6TdTAU6j9rqgYBrQU0let83SIP/27dut9zVp1PYeT/qUBo4cR/6eAMzDhw87026btQ7TkJ6G7F0lKNg28AyR9B57KtKSVjlXOU8JMuW483POVwmSJviZc5nrND/nM7kuVwXRSpC1BFFW2Wba1lxjm4LG+9Cew2Oeiq0Ep1pT9PRv87XSUWDXBsncw7m3lzLqo74XI+mTtPv444/PA4v5fUaA5pUAaY4/78k5S/omLZLfleuynMtst36GJO1Lp4ZtlY4k+b5sJ/dtvj/7lGdHfm4DnFPkV9s8D3L8ZR+jTrukW/KvfV0zSa98V9m37MdYgWCApcrzpi2P5FmW500CmmPk4duU4epOROnYWHfsKZ1d3rx588H+5HPplFQ6B+W9Zd3plKXrOsshjN1xaUkdIKfsKLpJuW5KZ9q6Y1w6eeV7x6p7pDxS19PKd6Xul2Mr1+kSOksn7XKO5j7TT51vlM59pV6+7rzn2HO/lo6B5TpN5+1jrqsCnAqBUYD/pzQ0t4GkVDZTmN9HY26p/I1ZuR1rm6kopGJTp8+q4Gy+K43leX8qdnVltTQIbJI0LxXiUtkYIttJRbNudBgiDUI5lny+BE92rYCVynxXYCNKhSp/KwGVbYKZCUqX81Su21XHvem6TmBoDto0P+aRBl2B5hzPptHPQ5TAXS3X2y7B7lxLpeFqCUrgsUh+1dUgVd6XazH3YRlVk3RoG3zq67XOM0ujV92wu04CislL67w2v6vz0OxTGm/qe3ns/GrT8yDHtGr0amQfsp+/+7u/e56++2ogS4NcOf6cJ4FRhvjzP//zs6X5rd/6rbPf+I3f6PWZ//N//s/ZX/3VX619zy9+8Yve+/KXf/mXZ3/zN39zdmyGHOsxKLOotM+n5PsXL148/3ueS1OWw4Z2IioddcosD6VzTOoReRaUGR7qDk77NkbHpaV1gJyqo+gmpb5an4/SWbp0jMt35+95bSrrbHOcpcNuPRNJOcYE5sp35djHnNljH53jUu4sx/Ps2bPz46yPZ1WH6UOqy7PlfGRfM0K+7HvbllHk2FMmz99zrnLcuS8fP378rlOkmccA5k1gFKCSSnI7FdE+ptStp6eqp2XsqrxuOyVhCvfpSV0qLbVS2Wob07cJ4pXPp9f4qoph/l7SMp8rDfvbjhbtel9XgGcbbWW/VGL6SsW0rpwO3U45xyU9c+63qWDnnOe9SdNNgY6u6c5S4WsbSNZNZTw32dfimHvglgaW1lRBxqRVznHdcJbv36URLBX+0qCztKBoV5CzKPd/PRo0+VTX+/Oeku/WjUDJG+tznedLgphdDZvlWdAGaruulby3fs+Y+dWm58E2japJo9zDyb/y2ldQvc7fxpg5gNP0J3/yJ2dLk/zi93//93t9JvfwpnWq//iP/7j3vvzpn/7p2Z/92Z+dHZshx3rM9aGiBAtSviij28YuD/TpRJS/Z6rf5PElQNFVtq2DUqWD0yGCgmN0XFpSB8gpO4r2DeolcLcqvUqZrJy/vu0C9ewfq8qauR5LHTH7lffne/Y528Y2yjko5aqutCtl0jrwWEaOzqVjZbn2cn111YlzrnMOyvvqc57/z+/bMnrJg9IRMH+v20AAmB+B0QX6u7/7u/PpZmBTJehnP/vZoXdjdlJYXzWlbioq+wgE5DsSdEyBuq7klmBmH/lMKlkp7JdjSuG/z1RYbeCg9KLcJqCWykEqufl8aTgZ2kt6rKkhs50xAgRlf4aMQC0NALnW+gb5UgFrr41TUK/JeSzB3G3XgNr2fhqqDtKV/dglPyv39LFLY019HLkfN6VJ3pPjL41BSdeuDibJd7eZrq/uRNLKvuX7xuhdv0t+te55sGlK91Yaw0pwdB/qhtMxpmYHOAV5FiZvX1deznMwr/KeMQOlXZ2ISvCzVoItCaCu69hU9i/lrRLQiOx7trHPUV1jdFxaSgfIqTuKrtKm+aqAbC3XVhlFWOq12wb4ymdKGXLT9/z444/v6no5xvyc380hOJp7MPdiKU9uKgeW+650AixL/Rw6OFquvXVB7rrMXy+vlPOZn7uu2bbzYK4zgVGA+RIYXaAERZc6tQ/jTgv2O7/zO4fejaOaUjeF3H1VSvIdKYzXlbZdGrSz72Uamz5B0TZwEKk89Klk5zjymWwnFYOhx5F9rteL20WZAnNXSYe+20mFqRzDkOBA17VxCur7cc6NPKvUPcC3HXk9ljLtXW3VSMdNylTY2e9jl5EjtTaNtll/bd2MAttep13vS36dht6uBrQynW99HW0TPB2SX617HpSG87722bmjTdsx1tcFOAVlOt1No4TXBUpv3rx5XgbZte5UOoe25eYyEq1PADDPoARpyvMwx3fIQM1YHZeO0SE6irYzEG0TFF01e0i2s+mzuT7LuqjbzppU6ge5TuvZRerZcw4hx1L2KVL23KYcWDo6lMB9GX17qIBhjqN04NjUKaIu82ekdlnnNsfdXrM5T11TgJc1VwGYH8PFADp0VVxKA/i+3Llz54PfDR0xWYJKqYBsWzAvvbNrqQANCaYkPbMPu6ZfptY6dnXDy9AG+iWM1usj12Ld8LHr9Fn7VBrc8qqPIQ0pmep6H9MC555v79s6QN9H8pB9rbk8pTTK1EHCHM+292NXWu4yGrHN1xIQTTp3PQNKPlzWy0zDTDrsTK3rebBtA19ryOwHYwZGAdhOggZD1zgs60ZmXdKUW3cN/HU9o5On53nYtzzddhJNmeCQHQ5PscPOWB1F+35nXZcuM0X1DQyWetg2ZZnynr6dcvP+utNbvvvQnWLb85Tpc/tc4/Xx5FgOtcRBgpe5frYZKd4uyVA+23Xus9TIqo7dAMyTwChAh1UVpTKl7j50BTOGNkSn0aBvBbJed2VIBahW1iM8xd7Q66aEHdpIn/Q8pUpWm06HCJCX6WM3vVJhTqNJgrcXLlw4//86z8g9mB7fQ+/lobpGQw7paJFK/xIC821jSJ9Gya73bjuiZtvrPa91+XUZedCns8su2ufBNtMEr3P16tWzfRAYBdhNnjVDgo9teSMB0l2elV1lv22mwO+S52bb+SjPOWtRL7ejaJl2uda3LF6PNC7b3FSuKMGyBALz+a4RhdseX0YsHkr2pT7WIeXP9p47xPEkL8o5XLee7Dr57KryeVceZRpdgHkTGAVYIZWlrgJznwrN2MGMMk1VH2nMTkPEqtFHqz7TBk3SEL5LA/w+0+1Y7BIcO6Xe5RlBd+hjT3Az98SmV+613KPZ5+xnenxnVF8agN6+fXt+zg+x/12jPPtef6VBc4w1L+fUQSH6npN2pO+zZ8/OxpL8d06dH7qeB7sGx/d1bO33HHoaOoBjlDJE8s+UZXYpA5SlPcayS90iZbP2GbHtlPocX0fR9tzmmu5T9ss+dnXwXbfv7Yw3fWcZaYP+Zc3Rfcv+tvftkJHkKTvX52vo7DW7SKCyHY27Ttf+rSoDZ5slXXJt9Z2mGYD9s8boAn388cfn60fCpuuE7UYVtdPGpICcAvE+RnyVYEZdKM/39vnuUpHpUzDv6sG5a0P4vkYIzV29zl8qt0OvpWznVEbgzuE4U5Eesp7inLRr05b1QredzndJFfyxRw6Ovb0hI2Cm0vU8mNP+HVteAnCskveX/D/lh5RjHz161KvTZsq9GVk1RierXWcQactFZZr9fSxzwPvly6HXwzbBza61cvsGwVdda0M6O/ZZ7zzvq8uYh5j5oh31uEvnvRs3brwXZM2I2n3VLUpQepspdFd1fMyxrzt3fdtpADgsgdEF+tnPfnb2O7/zO4feDVjUlLptL8n8f3op76NxOCM968pbvrtPgbtUNvtUYLqmutr1WE9phOM6CbTX6ZvzmUpa6cG6rT6VuqWZy0i6Y5PGyHZ9om0r8KWXusr+fsxpHd32eXDMDcbt6HMAhsmzoMyKUQcVM6p006i2r776ahbrld+8efODclE6A51yGXuJHUW7pjPt22E312qu9fp6SRvBuvptWb++DWb2+e7284eY+aJrFqmhMp1w7cWLF2f7Uq6vPvvfdvo41o6BAHQTGAXYohCd3oxtpSuB0Tdv3kz+/al0tb1aU0HZpndlKpqpTPWpaHatlzJGQ/ihGz/mopzP+nrKeUpFMemcRppUuo45+DA2wYxxlKl960r+th0t0lCYzy6lg0MapcacjmzsdJlLOnc9D+ayb9tqZ12Avv7oj/7obGl+67d+a1CHjSnS4g//8A/P/uAP/mD07XKY0aR1oDQBqa5nbfLkBEcPHYAsU3vWz4gx1wxnHh1Fyzqfu454zL6lnpZpgLONbYJk6SiQNoOUvcv0qrvUifddnum6f3fpvNeWIfc5NXDOW9/Rqe3SG+1MYgAcN4FRgJlPqZvKUypedcVh2yktS+WrT+/GrgqKaXDH9fDhw851kdo1ZNMwkLTPtTeHnvWH0jYC7Dp12ilLntVOi71NR4u8p6vH/bFqG2b6rt3cBgs/++yzszHNJfjY9TwY+1j3SYCUIX7xi18cehdm4Td+4zfOX2P77d/+7dG3yXwCpQl+dZV5y7SWh37edXWUMp3ucjqKdq0Nuss2y0jpbeX63mVU5KHrfl2B513u2faz++z8+uOPP/ZKz+QD7bVjxCjAsvzs0DsAcAxSCO6adiXBgn30dGxHjLYBtC4pyKfRIVPx7tpwPKdpHZcg19I2Qaac4zJt88WLF88DpH0DOFDrCoBu6tyRPC75wlLWF402ONx3zaY2nxxjrbQ5NYQtKZCoIwXA4eT5uGr6zzl0uOoKcu1zFNupdxTtkrpO6r4Jkl64cOH835TbUq/tWy7pOpeHDsbvEtTdt3bE5K7p15bJ9nl8fcvW7bVTRpgDsBwCowA9Km9dheGuXtBj6xotuCmYUdYD6RvM6Gq8UAkYX6YaSy/cPmlbelK3QZ1TY2rd3bR5Qhqg1gUGtx2hfky6pgXetiG0fV8afcduZJtLMG8Jz4M6vzi2fQdYgjwju0aezSEA+fHHH3/wu1evXh1kX07NPjqKdpVjus75odTHlo7IOb4Eg/PK/x/6HlnVYbrsY99Xju9YPHv27L3/N1oUYHlMpQuwpTSoHnJK3Yz8rEeOblobMH9LhbNvQ7Cg0/7k/OR1//798/O17ai1nPv04N1laqZjIpgxruRXpeNEkeuvq3GqjDxf4rWW/DwdDeo02KbRo02nOYx4mUrX82AuQdshjnnfAfYhgZgpAgAp77ZLg5R1rA85gq+rjNl3Fgl26yia8581Z7cdPVg6iqbT3qb6d9c2D12vyP6nDNqWxXN/pIxeOu+lzJKA6SGDo133QtZNHcucR++26W59UYDlERgFGDClbgIFtdLTc8qehGUtlvZ7u0ZypSCfisyQYK2G48M0CuSVc5ZzlyBUOYfrehjvIyA/B4ecdmmJSoNLfX2tWkP08ePH5+9d4lpbOabcd+mYEMnXN60rlvfUDSVpHJpzo86uup4Hx9Z5ps4vDt0YCjBnKQukbPnmzZtJ8svUY9pgw6EDo13POeXM5XQUnVOZJdd+7q/6+EowdNWSDHMst5zCyMmuaYxP4bgBTo2pdAFGmlJ36ulN851tpWnVSKVUKtPIMKQA33VsGgj2I+es9H7O1E9v3749D7wkeNN1Xva1xi3L0+ZXZWRoK3nMkqdubnt/X7t2beU9VTrAFLk3l95IMscGOQCmNVUwKc/MNgh66NGZXcfq2XcYqe+k/pNXWcZhU9C8dBSdc4fflLFT3syrXO/phJeAbsqSY69TP6ZTbRfoWl8UgOURGAUYUEFIcLSVis7UAYR2+/nOdo2VEuAYui9ZN2Sb9VkYpkwb1qcRKcGp9N7vCoRPPY1npqraxzq667SNInPq/X2sukaat6OPy9qjS1tftJZ8MseXhqk0epTGq1z3GdmSYGj+Tb5Y8tTck8kTlx4UXfU8OKYGsXZf57SuGMBcTRmsbAMMh36mdH3/kmeCOLWOoocO7OVeSpmy3r8EQhMUPYZgW9e9cAr1sHa64FMo8wOcIoFRgB2m/Nn3CL6untZtMKOsVzI0mNFV8M80RYwjQcZ2SuRtpUEga9LUTmHE6NxGFyxB1wj0XEt1Y9HQdYqPRZmuOvdj8r00UuWVvDPpkCndynqsSYPcf6V3/6k0ml69evWoO8q0jXenct4AdtF2uhxTmw8fOl9+9erVB787pU40h+oAua+Ooofs8JuyZNK3Ps6UMdu63Jx13Z+H7sywD9YXBTgNAqMARzalbrv9NNqPGcxIBaj97JQNJIdw6ArdLsHMnNsEaJZ8flrt9XhMgZk568qrSseK8vOSp9EtnUrqRp/03q9HKOSVRrgERNPodgy9+8eU423vv2PqKNM2uh66AR7gGDx79myybbeBqkN3vuoqQxsdtpyOol3ncl8dLHOM7TrnbYfmuesKCC69g+oY64vu2taQ6znXT/LLCxcunF28ePHdbDYAjEdgFGCCKXWn1DUS9PHjx++NgNo1mHHjxo0Pfrdr8G2MYORYjSeHrtAlLXbZh7ZX9JTHc+ggcldAYy77dOxSyW/vqdJgk+m487clNw4mTzt0g+wxaJ8Hx9QRo80rTi2wDTBE15rjU+XLXTMT7FMbUEu5wLNiOR1Fuzr87qODV46tPb6udoNNtqnzlNlPpqgfddUDpuw4MQfteevbqS7tMNeuXdt5Pdqsj5sOAOmg+eOPP57X/3OuEyQ9prI4wJwJjAJMMKXuvqfALIGyBDVSeN81mNHVG/HRo0dHHYws5lKR2LXRqT7H2wR3UrkaOhXl0M+Oqa6UzuVaWoK2o0VZt/ju3buLXlu0XNtpgBBo7/88mENHmW3UeYXRogDbq2eQGFMdVOkKWu1T17Osq3Pokh2yDLSvjqLtOd31e+vtrKrPdY0MHdJmsM16nrmOs/zDFGt/5h5ty09jLeOSczBVPnPI9UXTYX1Ih48y9XLSN/uQa6jM3FI6qyZQmvrZ0MArAO8TGAVOwhQVhU1T6k6pHRGaikUqZnmNMfVlKkBt5W3XisuugdVoA3Rd6wLtYz/GsOt+1NfcNoHLrmt0m8aQvKdrfZ59q3vvH9NUnnNv2OrKL7766qvzRpYlT6Nb3zdlxD3dujrb7Jp/TflMXtcAD8B2Vq3ZuKs6qLLvzqXbBK+OdarKY+0AuY+Ool3ndIxR0elEuOp62XXUYTGHznttXjBWJ+Ok3RzrGu25S7ByW7mucs6GrNub+lfadJLe64KxGU2a7xgrQA1wygRGgUUrlYkpKxWrptSdUgrLbQWrFMDHGuXVVoKShumNOkQ+O0aP0PaYh5zXufRMTaVyl4pl3dN52ym/+k4lVdJ3DgGFeo0bo/w+vBaGBpq6gl65LnNNzeG8T6kc31TTjy1J23icZ8EuabavNbbqPNbUiAD9yhZDy/2rpCG/fnbcuXNnp+3tOuqvrROkDnWsZZ9j7QC5j46iXR1+xyiH5PpZFcBq037odTWHWXKSdu3+71qfLqNt99U5Ivtb1utcF4xt86joM/ozwfKUN/uOMk15tQTr2ymia9n3UieeyyxYAMdMYBRYtHrtzSkbvg8xpW5XoT77MNbo1VSA2kpjCvtD0jFB2zHSvw6ORd9gUCpF2Y+2sjLWtdF3O+kZOlSpDPW57trjfvHixdr3l56ocwgotPs+5ajRrvM4ZHTyPuQ6KIHioRXkrrxkl8bKYwkyluu6TF1Venmfij7Huup5METylSnXr1vVoNg+PwBYLx2HxhyVVHe6TBBy1zrLLkG1dqRf9mWqUbL7cowdIPfVUbRr2t1dyiKlzDjlCOOu/VtX951y5G9bBtz1uEsZctfOEdtIB4/Udcq1kvaAVflapqptbZtP5XzlWh6Sj5S8bNO9WAek51A/Bzh2AqPAYrWVlV2CUHOcUrdrZOjY09HkO+rvGTI1TCojqXyM0djQBgH7VmhzPWQ/2vM0tDdu+7m+wbNUnob0uK2Pu0+63rx5873/39TYVdY2mUvv+boCOFUv2VXBojn02O5S52tD87iu4PouHT260mqOvZrrxpjsc/K2ixcvnvcmX/XK39PjPIHUvL/kb7voSq8pAv+75lft8yDH3ve8Zh8SoOxqzBn7Gmm3t+va2wCnKHn2GJ1Z6mDEWEHI7NeQ8lnXaNgERHatxx2qo+Wxd4DcR0fR1GXaoFe+d2ha57NdIynr76sNKSsmeNgeV9f+lmBp3+u3z7Hn2qrv2V1mkir3X45tH9deV0e+rnyjzHDV7tO2I69zTSSdhpQ3y3W8KT8rHUryr3ItwAjeAizMixcv3t6+ffttsrj2dfny5bcPHjx4+/Lly0m++8mTJ+++6/r162+nlu+oj20qbXreunVrq8/du3fv/P35N2neno8h56Fss7yS5tv4/PPP337yyScfpFvf7cSbN2/O06DrGnv69Onaz2Yf+n6mljT76KOPzj+X89JX+/2rvrucrz7pMrX6Opzi/krekeuk67zmlbwj5/7Qcm5yH5TroH7ld+V+66O+nre9v7v2a1Xem/3KtTSH9FuXnwx95fhy7H2PL9dcV56Q/LxPvjBVftWl3laOe9trLd+V9+d4c9xdxzzm9VGf29zXAKyXck5b7tm1bFDy/3q7eQb0lefDqrpd3+3kM/U28rwYoi2HDSmXj7mduh66TdrUdaN9a8s+udZ2Od5tyyJtOXVIfaLUFdaVWbrKl33KXEmPXBfRljdbuTe3uQ/GuM7aOnTfcmS5/7Iv+6gTrMo3ur476Vj2q06rberCuSZ2OaY6T8q2pmqrAuB9AqPAIrQV7j6N2WMrlaV9BEbr4x5aqR/aWLKu0J7fl4pT2a+xAqNRB69yDtdVyvIdqXzXje5dgdHSgJBt5+9tBb1UeHa9vuqGgDQMlX3ZpnKailnZh12CV/Vx5Oe2gaq8Z8pg+xj3+S5yzDnGvue0Pb/7Crisqthv89qmkl4HqrZtsNwl/cpnhzb+jWlVMHfoa13jXrm3huQlJbi8jbHyq20b/NYdc66/ksbludj1PCiv5JF5X167NJrVz4khDa4Ap6YrEFqXG0vnqz55c/u8GNrpp6scVMrFeW5ss095zxgBufq51rVPh+q4dEwdIA/ZUXSX4GgpW2yzr20AftvAWanvlO9o6631OSv3xbo0GOt6Ldprdttt5JyVoOiQzhFDbXOdlTQvx9Knc105P7scU1fbRNIq522sjpIAfEhgFFiEUpgtjcfbvPo2BPftCbmvBv9S6dpXr8u24J7/T+UhFYn8WyqM2a+6gjBmYDTaCl4q2Pn+NHC0+9I2sK8KjNavNvBYKvB9rq+8WmU7dUNMXfmq07McR35Xtpl03bURowSL2/OYNC2V3XzPHHur1mm7SwW0BAL75Bld53hfPe1Lw8eQfdw2byjBqG3V+ejQ9NtlBMqucn3XjTt1x4j2ld+XV9vQ1fVa1VGl5IND02vbBtyx8qs+z4NsJ+lZ8uDkJ+Xvbb61LjA61jNirO0AnGJgtC47dAVWSifCrrJYmdmifl629YIxAqPZXh1sWVc+LrMW1PvTJ+AwtMPRVB0tj70D5KE7itbb2OZ6yHks19m2103X6ORN31Puszb42Z7TUtZKOnZdH2Ndr9t2eMh5WFfWKu/fd1A06rptV52o5A1t2b3uYNeVt9T16V2Dl10zqbSvXTsMAvChC/nPGFPyAnAYWfMua0y066ZMKetoPH78+Pw7sxZGXlnvIuup5JW1Ttt1L/KerM1Xe/ny5c7rV2YtkKdPn56vzZE1Vso6INlu1gjp2pesDZi1Xi5dunS+3/W/2cf8fPXq1UnWPcl3Z9+61lbKeis5lqwvWI6jpGuOIes8jbmeSNIg64iWc5jvLOfv9u3bZ3OUdWLLmjbZxzHWqOL0JN8oazLnPk9e1jcvyj2TfCf3bNdawWPkb8eg63lQ58FZ27hdI6s8D0q+m/fWefHHH398/u+NGzcGrfmWvC35ZWQfNq2zBsDfPxtTtuoqBybvzt+S5/dZn3DV9vrI96XOU0venjy+rO+XNUfzPMkzp9Q58iyu1yLNMyVrjPfdn6wtnmd+n2dS9qs99r7bKencp9murJter7Vd1sMs6yjm55RfDlVOKemQekhZvzzl+5Tzy/5+9tln7/Yvx/Ts2bPz53upryRtN60tuk62k++ry3Cl7JHrJ2uxZx9LvazUt/uWS3Jcpb5VZFu5dvM92XaOLddpfpfjaut72Y9r1659cN+tKsOOdb1uen+57+r9yb6nHJd7L8dc1lfNeU46HELuh+xnWZ8z11baDXIP5Perjrt8LnKtlbJl0jzHNbQO0SXfk+9bJ/v/448/7rweMgC/JjAKcMRK428K9WMGzKYwVWCU01JfR7l2cg3B0OB68s3kn2OoG09CQO5w0rBfGjrTYLVLwynAKdUrkn9uU7ZK0OXRo0fvOiaWDnZ1R8mujjFTBEbr99y9e/d8n9qOm+nwmOf03OtLY5pzB8g5dRSNlN9yPbdpVXe03bXOWt8zXddnjmvd/ZJ9yjkt5dZN7z9UB7nSUbmkX/YzwchDB/PK/VDSP/uT6ygdJdZ1hs7763xlXefrXZWOC+U66TJm3QXg1AmMAhyxVDRSQD+G4JDAKGMpvaC7GsVgnVw3uX4iDSJv3ryZLCAX8rjDuHDhwmTnGID92yYwCrAkZVR1OzON+gXAOH420nYA2LMyNU2ZDhJORXr2FoeakonjlCm/uq6jsbTXYz2ClP2o03yKcwwAAFNLx4/ULdIJpB5xu2o0KQD9CIwCHKnSAF/WZYFTkWmjSuWwa21HWDXapF1vawr16JVjGM2/NJnurPB8BABgblKHzSj4zKi1KdCZuoUyLcD4BEYBjrgwXQeI4JQ8fPjw3c+Co2wjax7VLl26NMn3ZJ2oVd/JtNKwVBqX5rCeFQAA1FJWzaxf6bSZWcDqTn2rfPbZZ+9+PqW1kgGmJDAKMBNffvnl+bpo6TWYKXI3TRWYgrRpAjlV6RRQ1lb55ptvDr07HIE2EJqGiCnU260bMZheyQsSEL13796hdwcAAN7TtvVss15oqV9k9KiOfwDjEBgFmIH79++/Wxcthd4vvvhi7fvTqzA9BespG+HUPHny5PzfdBLIPQTrpBGhzjMfPXo0+nfkWqwbO/To3m/v+5L2GVGu0QgAgDlLXWGbznxlGSUd4wHGIzAKMANPnz794HerRjMlgJoG4GMbDZOAAYypXm9lmymIoM43E0wfe9ToV1999e5nnVf2q6R90n2q9WMBAGAXpX7w8uXLznagVpaNSZ0l5VtlXIDxCIwCzEDbeJ6RLl1TqiS4mMbfFIiPrcG9KwAx1VSWnI70ns29knsja7XAOgma3b59+93/f/rpp6PlQ5nGtYz8zzVZRjQzvTQYlbVFS496AJaja81u63gDx1ofyStLKW1Txk0dN+9XtwAYl8AowAzUU+emQf3777/vfF8Kz1kn79gKxWmw7loHMoX80pgNQ5X7IRXHTevzQkaNlpGjCahnXedcO0OV6c/LdM7ptJLe36Zy3Y+kf+kUUTpKALAsXTPPmI0GOFapK6Rd5+LFi+d1iLpNJGXb1E3SgTNl3HTq3GZkKQD9XHj79u3bnp8BYAIp9KYAnIbdMj1oXfFPUDRBnxcvXsx+tGgK9teuXevVaFGCCDk+Ddv0VXrT5jr68ccfBaXYKp/KCPzSEJF8Jx04bty4sdX1k/w4+XUZJRppuDi2ac6PXRqNcg7z3DRaFGB5EiRIPajtTFlmZ5h7vQhgleRrWRIm+VxeaTtJ3pZX8r1t6yUA9CcwCjAjKfymkT0V/Js3b54XgtM7MA3w6VGYn48haJgCfhqr+xbiUxHIWhvHcIzMT4Ja6XGb+ycBdthG8tcEM+vRxsmDMmVVRpOWfCz506tXr87zt+fPn7/r9JH3JiifwJyGi8N0KMq50pMeYBkSHEg9YkgHy8y6I1AKAMAmAqMAM1NGIaXxPQ0DpdG9XhcPWB8oyTq8xzblNIeXjinPnj17l/9m/bLSKJtG13RQyb9Xr149b7RNQE5HjsNIJ4h0htARAmBZ8vytOyZtK8/rdJLJsxkAANYRGAUAFhkcNa0pLDeAnRkWBEUBAACAvgRGAYDFKaPJutbsBY5/JJFR4QAAAMAQAqMAwGIDKGGqU1iOTJWYNV5NlQgAAAAMITAKAAAAAAAALN7PDr0DAAAAAAAAAFMTGAUAAAAAAAAWT2AUAAAAAAAAWDyBUQAAAAAAAGDxBEYBAAAAAACAxRMYBQAAAAAAABZPYBQAAAAAAABYPIFRAAAAAAAAYPEERgEAAAAAAIDFExgFAAAAAAAAFk9gFAAAAAAAAFg8gVEAAAAAAABg8QRGAQAAAAAAgMUTGAUAAAAAAAAWT2AUAAAAAAAAWDyBUQAAAAAAAGDxBEYBAAAAAACAxRMYBQAAAAAAABZPYBQAAAAAAABYPIFRAAAAAAAAYPEERgEAAAAAAIDFExgFAAAAAAAAFk9gFAAAAAAAAFg8gVEAAAAAAABg8QRGAQAAAAAAgMUTGAUAAAAAAAAWT2AUAAAAAAAAWDyBUQAAAAAAAGDxBEYBAAAAWOmnn346++Uvf3n25Zdfnn366adnFy9ePLtw4cL5v1euXDn7+uuvz/+e963zxRdfnN2/f39v+w0AAK0Lb9++ffvBbwEAAAA4aQl0fvPNN2fffvvte7//6KOPzi5dunT2q1/96oPP3L59++zOnTvn76mVwOqtW7fOHjx4sPI7v/vuu/PvzbZfvXr17ufXr1+f/5x/Hz58eHb9+vURjxQAduP5Bcfj54feAQAAAADmpQQyizTkZmTo559//t77SsNvGoTv3r17PiI0gdS28TcB1m3kO7oCrgAwZ55fcDxMpQsAAADAOwlulqBoRn6+ePHi7MmTJx8ERcvfP/nkk/ORom/evDl/X+TzJRiaQOm2jcX5jgRUs8121CkAzJXnFxwPI0YB4AB++OGH88aheoqVTKuS/y8/37t373yqsVMgPejLNEUAMI0EMUtA8/Lly+dB0T4NvKVRuF5PtJ2Kd512mt3si3VJAZg7zy84HgKjwGKCKp9++ulk209DQBoFso5OKvjpBZbKPgz11VdfnV+3/Jr0oC/TFAHA+FIeyzO2ePr06aBRL6k7vXz58uzKlSs7Nwqnc5yG5cNKp7N0StPhDGB7nl8wX6bSBRZjl2kq8tn21VYE00iQymB6fCUIe/HixfMCTv7GfNZBSuPLhQsXzgPYcw6amGLlfdKDvlwzfy/PpjRil2dT8sD8m/ww0xj2mb4QgNOWzmpFpsZNgHMXCayO4dSf9Yf2+PHj8zKF8gRAP55fME8Co8AipGE869m8ffv23StTPnWtgVPenx7M5b35bPuq/9a1pk4CogmSlgAphw+K1pX1BAqmHEU8Rs/BXFO5tnKNpeHplEkPhkxTdOrXTPK9PIPSESTBz3TgKZ11ytTCeU+CpgmS5n3JGwGgS54R9Qwed+7c2XmbCay2UwsOkZl7OJzUnQHoz/ML5klgFFisBD/TaN4ljcTb9n5O765sKyOT0uM5wdJ2ncMyilQP2u2kwT6N9WO6e/du5/f0Wc/o0IFB/p70WK4p7v9TvGYS5ExnkKRnnkkJENedg9KAmTSpn3Vp8K4/BwC1OoCZDqFjjXLJc2rXkacclnIDALAkAqPAoq2qzO/aYyuNBu20UGWdU8HRw0zFtKqyfkyVeA1G75MeyzTlVGynME1R8rQ8axLkTKN1AqB5JrXrXuf+ySja/L0dTZvAtOcVAK2641L7XNlVOpJyvJQZAIAlERgFFm+qhvI0SLcjUkuD9TEF45YyFdOqaZNX/X6OTiGo04f0WKYpp2I7hWmKrl27dt4RJ6Nv0kFnmw4EGTnaTmOYBk7PKwCKegrd+Pjjj0fd/o0bN0bdHvv1/PnzQ+8CAMBoBEYBdpDpddvAWxqZMxqK1aZoiE/Df9uzPaOkxu7tDuxGIG630TZpuM5zp+96bQmktiNHS2ceAHj9+vV7///q1avRO7wdU4dF3u9MpfwGACyJwCjABNNCZYrDKdbQW4qpptDMGnsZQZWAQVlfD5gXU7ENT7f79++fjxBtp3LfVrvmaL1dAE5b+3ye4nmdda45Puq1AMDSCIwC7GhVz+e7d+/ufV+OxZRTMeV8ZGSU9SlhnkzFNkzp6LHrGm1dn8/zykgQgNPWTkefjp5jM2L0OKnXAgBLIzAKMIKu6Voz3aGRUR8yFROcLvf/cN9+++35v+n4sYuuz+ecPH78eKftArCstd3zbBh7RgFLXBxn+UPZDQBYGoFRgBGsGp2Y4CjvMxUTnC73/zBl1E5G2ozxXOlqmH7y5MnO2wXgeF29erVzloGxg2JtAJZ5d2j7+uuvD70bAACjExgFmGDqqcKI0Q+ZiglOl/t/mLKmaAKkn3766dmFCxfejSAdayrDKaZMBOB4JGDZ1XHm2rVro37P999//256eOYrAXFrwnJI6QyYUesJzn/55Zejj2AH4LQJjAJM6NWrV4fehVkxFROcLvf/cF2dbNJINLTzzZUrV0bYKwCWpmt0YIIT6ZQz1jM8wdepRo1mH1PeSEDv4sWL5x2J8srPCazs0qlo25kx8j1Jr/L9eeZmfzL6dpdZH7Lt7H8dKMp2y3d1BTHLiM/sQ0mHvG/TfuS7fvd3f/eoOvnuM31WSSeznOf6/OffbD/fM8bMKfmOcpz5rmy3HGc5jq7zVt8b5X37uDeSll1pkv/P77v2tXQEzOvBgwdnr1+/Pv992c4Q2WbSqms/8vs5dBCcwzV8iLTax32zSx5eH/uUM8Id+vk1ZXrW1+c26Zhrok6HfD7bMSMfo3sLsHAfffTR22R39evJkyejfsf169c/+I68Hjx4MOr3HLOXL19+kD75HX/vk08+cf1UpMdy7Ov+v3z58qR5/aF8/vnnoz5jki5d25MnA9A+S+vXrVu3Dvas2PSMz/+n3pdX9jPPyPzu9u3b7302fx+zTPnmzZvz7yvbz3flO8v337t3773neP7+9OnTnctR7SvfUcv3t/tTl63bNMi+5jjWnf9tX/m+fdpH+qzz4sWLd5/N9urrL+e/3u6u198256e9R7MP5bv3dW8kTdrrPt+XfWmvs7yv7HO5l9K+km0U9T3Wp3yf46nbg7Ld+vjrfcz7DlV3OPQ1fIi02ud90ycPzyvfXV+v9bHn5/raPObn11SSPmW/k15Jx+x3nc65vrrkmNvrL58r1+aqz8EQAqPA4u0jMLqq0bpvgWmpUtjsqsRphH+fQOD7pMf8JE8rFcRUSvLznO7/pQZGV3W+GXp8AqOwvf/xP/7H2tf//t//e9B2/+Iv/mLtdv/6r/960HZfvXq1drv/83/+z0Hbff369drt/tVf/dWg7f70009rt5u/D5H9WbfdHM8QSb98fskStNvUQF8ajfsG+KZ6xuc5uanBuK2vbVOG2aQEJkrD/rr0aBvfsz/53Tbyvrw/6b4qMFYHTUogrD7G8rv6VX9/tl0a5str1flv39e+xkjbPvaRPqvUwal15z9/q9O0z/mvlSBNW09aVZ47xL1R3xfryqvt+8oxdaVjfV632b+kQZ1GSYdV6V0Hcdpr5RSu4UOk1b7vmz7B4HXbz/6UtOoToJvj82sqpZ6ZdOqqW9b3fZuGpc7blWfkvJRzte/ONyzXhfxn/HGoAPOR6RfaqZ+ePHlydv369Um/4/Lly2cvX77sva1MG5H15PJvpkbJdjPdVNYxzbpwmVJi133PlBaZkibbzj6Wn/NvvvPq1avv1rQr8vusB1T2K/uU9+V3XesR1d/11VdfdU6/le9OOg2V/ch0GtnvbKs+hvJz9u/WrVtnY8ixPHr06Hz79bnJMSQtMi3IurTYJFO01NODZOqgMfY95yzX/PPnzzv3O9OSdK05eGjHkh71vZrps/Nv/r/cV/m561rP3x4/fny+L+WaiuxLudfHunZrSdNcx20ek/3L9+Y6bve1THGUz+Zv5TrPPZGfX7x4sff7v0um2amn5OrK6+t0zzVQ9m3qdN9FmU6olv398ccfB01HmKmYuqZLfPPmzWTTG8Kx+vf//t+v/XvymN///d/vvd3/8B/+w9lf//Vfr/z7v/gX/+Lsn/2zf9Z7u//xP/7Hs7/4i79Y+fc/+IM/OPvn//yf997uf/pP/+nsv//3/77y73l+/st/+S97bzd58Z/92Z+t/Pvv/d7vnT+X+/ov/+W/nOfxq/zTf/pPz/7Nv/k3vbf7X//rfz37b//tv5398R//8dmS5ZnfZz2/lAXKM3SqMuWqZ3yZ2jF1l03linYb+czQ/c33lqkNsx/Zn77P9DxzU4bqWx5K2SXl5PpYchylDpntt2Wg/K6dAnNTnTjbb6ffn6L8NrZ9pU8pT6XcmHrKNvuVKYrrsufQslyR/LGdarScozL15D7vjbaMuWk77ftX1ffK1MH18a2SY87ayCWd0x5w+/btXtdMuV6Wfg0fIq3mcN90Pef6tDWUY9j22Of2/JpKuTY3PRPrdp6SFiVN80xs29TKlLw14SzGYI1RgB2VwEKrq9F5nbJ+TwoSefCXoGMKCnfu3Dkv+KWwkAJBArFD1xjI/mYb2b8UBrOdfF8KMdmHrmPJe1IQy3tSaEmhMQW3sv5Huy/ZXlnrIt+1ak2ien2TVa9SAeqS9CnHkkJtOZYcx6rz0le2ke1nX+qKZwrN+f4bN26cB63z3eX8zWXtg+xTWWckP+eclWsq+1/2u6zfsM/1O5aUHrk+yv1UrsNyP61amynvy3fkM9mP/Jv9SEU0+1HuoV3u9Vb2p6xTk+/PtV1fx/n//L6shVX2vaxdlP1MRSWNEdnX7GfZbp1W+7r/hyhrZpV0L+d/ynQfQyq92c9SYc7/f//994MbBFZ12hkzKFrWlCprWdVr5ZQ1ZuaSVwLwvjwf+3TETH6eMkTy/OTxdVljSnlWp7PTtsHFtn42tJxRr/eWBtxtg6JRN6SXAEPf52Ge16sCCiXgMGYn4GOzj/QpazvmfG4T3Cn7lfJbUc7/Lh4+fNj5+9x/qY/s897IdVxvJ+m8KXCT99RBkHxvV76RsnrKrwmGrDuenJd6TeSc502BvnJu6gBX6RS69Gt432k1l/umtB8N7YBdgrplzd9jen5NJee2dI7a9Eysj+Xu3bvvrotcf21QNOe7q4Pc1OULToPAKMAIDQetFGy2KVQWJaiWh3sKmSn0l8JZKaCmwJS/pWBYgnUpePQtEJSRpylwbFMAS4Ex35XjzH7l33xnXYHP3+v9SOEmhbyMmMv+rmtsL39f9fr4449XfjZplvSZqqdczkuCKHVv8IyoyrkovSlznnJeUknLvznm7NeQ0Q1jKZWccl7KfpcAYP4/+5/9LQXxUuBsR6UtwdTpkeuv3FPbyHZzj+TayX7U93q5z8o1Xe71PqM21uUxpRdxjr3cz+U6LvlO5H0JZpWOD0mbfKY+xrpHch0A3tf931fSPaNXc8z7SvcxZT9Lg1DOxy6j07saYMfKR0vQvzSK1yOTo5zb3GdGpwLMVykn7dI5Js+Dtp4wlpQzsu3s57bPkzaQsKpT6Dp5ttUdwuoG+23lmVvqiqXM2Xc/uupxKbMlXboCDm2jetJsycHTqdOntAGkPNYnsJ3319tNGWmX8mYpU9WyzdLpcp/3RsrZQwI3ddrnO9vtFNu0XbR1t1WB41Xbr9Mh5+WQnfimvoYPkVZzuG+Sf9fBzOTHfZ51ddvCqvbAuT6/ppTnWI5lm45C9bWd4yif7UrLtCu0NrUxwLZ+vvU7OUp//ud/fpDv/fnPf/5uJEnfh8Pf/u3fnh3CL37xi96f+cu//Muzv/mbvzk7hKRv0rmP//W//tfZb/7mb062T6cohaKuHmJTTSWSQlumDSlTiaTBOT/3mUqk7eHXNU1L2/uvnYKl6/jKaNLomlZziqmYkmZ1IbbvtF9jT62S85NjL+c0lY19T8HTdzqcMg1quQbK9CeHnDro2NKjvW+7prSq/5Z92tQzNN9XT5eT67FMUzfllFblGi/vz77m+LreX0bJRp0/7Ov+7yP7uu90n7N2mq3YtVNE8ssExesAaEYi55rPDAgqrwDHJ2WAMjvLqlkwtimH5DX2UiZDntFdZYBMubztNkrAt0iZcujzLTMClbpG0jbBoD4jT9v2lrKESLbbJWlfOrpln1e9bymmTp/SWJ9zmFef6ZRzP9V1hZSf+nSq3qQsdbPPe6PMlrMuYLtK+x1Jm9wTfesJbT6VdOh7f+a8t+emz315LNfwodLq0PdNmT2ttu3I1aIeZVu22fd6PcTza0p5xuf+7xPoreWzq85lV2xhSDAaugiMLtyf/MmfHOR7f+d3fufs3/27f9f7c//5P//ntWviTGnIOjF/+qd/unZNnCn90R/9Ue9g7rNnzwatKUS3FIa6GpL7rBOzy1QiZfqQEtgcsp5p2V6+u+tYjm0qphSQUijbtedcvWbQ0KlV6u3sa73C0nux6DsdTglclYD4sRc4D5Ue6W3bFRgto+e27chQBx4jP69ay3PsKa1yzZfGjXxvAlztPictk6ZzX2eqTFO0z3Sfs1XTPQ1tkEt+m84HdWNYtnXs+QcAv5ZyQ+oZKcOkfDB06YU0Ro+1Xnx5/gwJ7qXcUgcE+gR82wb1XYKLKZMkLcpzuSxtMrSRu8zOsC59yywnp2jM9Ml22vpmn2Be+x2lw/NY5ybbGhLM2+XeaL+vT/2g671Jzz5l064O60PymgSrygxdZT/y8xw6+I11DR8qreZw37SjmPPZPtfqquWa+gZGD/H8mlLpjLFtu2GfpciyzfKsLEsQ7at9jeUzlS7AAGWkZl0QSQGwa6HwuU8lsrSpmHYN0sxhapWhljR10DGnhymt5mOJ0xTtqitPGhoULc/Ccm+U56CgKMDylHXDMqV7yev7TuvejvjZ1ZD6R1se2PYZXxrw6/TYNVjSBlp3WTMux2Ga+sOmT58gRVddYUz7vDfKyLVd6ghtXpJO/X20Zc9dznU6hG6ayvOYr+G5pdW+7pu8t33+9M1zV82MOKROvO97dCrl2dgn0Nve30m/dWmYNsmUPdJJS1CUMQmMAvR86CfY0q7tmYdz1qzr2zhQTyXSd13KNjiZqUT2PU1LjjsN6hmJtQRjTa1SB9DK1CpTG2s6nLGuqUObW3qMOaXVtqaY0urYjDlN0RLkemjPY453SCAz22qfhZnNYJe1TwE4DsnrUwdIgLSsfZ1nyTbP23S2GqMxd6znzatXr7Z6X1sOHOP72/TKs7Vruvuh22Oa9FlVps7SAdtqPz909qc53Bsxdj2h7/baEZC7dNquZxyKOc0cM8Y1fKi0OvR901Xf6fPd5RjaDqVpE9u1I8A+7tGplPayPtdR2+Hcs4tDMZUucJLy8N5mDcUECMt0GV2F8xSC0vA+pIfYHKYSWeVUp2Kay9QqfZ3C1EHHnh6nOKXVHCxtmqJddY38HXJdJj0yfW67HUFRgNNU6gWlnJByTxqhu4J8ZSaKXdft2+esFXnutQ25u67NvarMkXQZWsdq13NnuvRJW0I61Oa6yDlM+8IudaYxR37NfUaXsXXlM7uc6zb9dumsMLdr+NBpdcj7ph3NOnSkbJ5tN2/ePO84m20Mya+XdI8mHfq2tbSdjsd6nkJfAqPASepbuC292/JvCj55cE8VFOwTRJuq8f4Up2Ka29Qqh5wOpw4qpgJxbNOVzDU9jnFKq7oRsO+UVnOxlGmKdpXruG3UHRrMbEeKJo3nMp06jO2P/uiP1v79t37rtwZt99/+23979nd/93cr//6P//E/HrTdf/2v//XZ3/7t3678+2/+5m8O2u6/+lf/6uz//t//u/Lv/+gf/aNB2/3DP/zDsz/4gz9Y+fd/+A//4aDt/n//3/939tlnn638+z/4B/9g0Hazzd/7vd8b9NlTDJSmbN01I06fzqBzaFjuqjuuKvf31dbndgnCLKmxfQpjpk+2tctIwinr2Ye4DjLybswAYp9j6OpkMWbeks7yc7HruT10Wh3qvunqwL5Lh858dpfPLymvzuxxfc5L1zI1SxtwwfEQGAVOUgInhx75VIKtbTCz71Qi9efHnILn1AonY06tUq/3OmRqlb5OZeqgY06PU5zSag6WNE3RLlL5bKdfT5435N5I/tZeC0NG5cKx+MUvfjHJdv/JP/knk2x3rGBN6+LFi5Ns97d/+7cn2W4Cy0ODy+sksDw0uHyK8pxJ/aRrRFKeQ32XrKh9/PHHZ/vSNdPQWOX7tkG5LMMxZPtLamyfwlzSZ9UsQ2PZ572xKm3bznibtGXLdR1btlnyYpdz3T5H59RBctdr+JjTapf7pitof8j84BD36FT6Bqvbc1Fm6YJDEBgFOKA5T8FzalMxzWlqlWOaDmdu5poec2mIOTXS/dfa0TpDOwflGdOOpN+1xzQAy38WZ5RS+yw6pjJmV+ewsRpyuzozDA2MalyeT/qkfp/6YOr7+Tkj6eYUYBtbOuDVnVP7dqhs06ZP572udF1qW8au1/Dc02qq+6ZrAMGSgpPHpJ2F6tQGZDAvAqMAB2QKnnmY29QqxzQdztzMNT1ObUqruTjGfR5bApn1dbDLjAl379794HftSFQAjleeF1M0UibIke3Wz6NdRkbu275nzRgaCJhqxPgYcu7HWEfu7du3gz87dfrkGFMXaWevybWf8lLqh7nesx/pKHBMnQM2KcfWTgu9TX7SpkPyiz75Qtf92TXKe6g55VG7XsNzTKt93DddeaqOJIfRnj/ri3JIAqMnvibOVH7+859PsibO3GxaE2duBaI+05Ewf1NPwTOnCsDU5ja1yqlMh3NK6XFqU1rNxan3BE4DQz21967TyLfrMMexrUEMwOpnRhqh37x5M0mDcdtRJ44lMLrv8vCxdUw8dbmuc+/UZecS1Fk18nGJQZkEt+plSDIb1jaB0XZJm64lbvoyCm3+abXP+0aeOt82TPcqhyQwunBTrYkzlTn3cNznmjhTsR7O8TnkFDxLrKwtcWqVuU+Hs2/SYx5TWnF4eWbUoznTOLVLEDPb67qGLly40Ou5kkYzFWCA+Up9Y4p6QPL+dkTZMa5fDnVZuR3BltFtDx8+PMllBnLM6YBXOuWlQ13Kj+vSIu+p0y/tHn07SyS/aust+f9Tas84prQ6xH1zbG3NS9W1vigcksAowMzMZQqeUyo8HvPUKnOcDueQpMc8prTisHLOr1279u7/80zZNbD96NGjzt/3yStzDbmOAOZtylGcKZvU5ZJjmZmkLU+NGUzoGsm0xGdljmlJs0zkesgUkPV1kbJW17IepyRpUs9WkvLoqk5xZZR6XWcb0nku11Y7M85UHTyO3aHT6lD3TdfxHcvzZ0nadhmdZTk0gVGAmTAFz+EsbWoVBcz3nXJ6zGlKK/Yjlfyc81LZH9rItE2ng4y2X2LjLcApS6P5VGWn9plxLM+QrjrXWMGErsb5Y++gmnJIzm0d7Mj/pxy6xLJWJOi7lOPbRdoukhbpwJ3ps5OfJBCWThHJVzKTT8qPGSlaypb5fdJuaH7QFewT9JpfWh3yvumaQapr1jCmZX1R5uZnh94BgFOXgmEKBHXPuVQcXrx4cd6gbfrK6R1z44Pej++THt1TWhVlSqt1xpjSisOoGxxyL+Q5Mlbjdldg1HUBsDzPnj3bW+P0sXTy7HqWjlW+7OqgaXrBeUvQrz7/uY4FRX8d9Eh5MQHR3DMph+aV4FfSKyNJy1IfSbPUUUqbxy5lyq7gimm655dWh7xvuvJw18jxrS+67XM3eUzKGxcvXjy/5rvaP7I/yY/yviwNkzp0O2sfyycwCnBAeRjnAVwHIRIITQVBhXh/jjmY1lWJXNoI2D6kx+YKcKa0WjUFdyoDqbQWY402ZD9ybvNcKUHRMZ8jbZ4oKAqwTOkgNZX2WXL16tWzYw0mPH/+fJRtt43zyl3zljJ0W47O2oh9bVPXLEHGY6mXliBXXUZMWTS/z+i8t2/fnr/evHlzXk7NjDRjlFW77pkpO3gcs0Ol1aHvm1yTbZvPWHk422nPf9+6ZIKY9VIxq6Q9I3lL8p3kMznPaXOtyzZ5T36XayLtHcmT7ty5c37d1NN7s3wCowAHHtlTV4bTm/LU1yVpJY3qQM0Ujnlqla4C5bFUnqcgPVZPaZVCfxofyij13Fsp/KdikH9zH5SKQCrNuQcO3Ti3j/t/KUpv2NwDP/744+iBy7aDgcAowHJNNWqiboDvaqieq67yUBpcpxhBs4Ryz5LL3l0j3IbM8LRNx82U6zLK8lg6eWZ/D3FPd61hv6oT6JB7dEmjyA6VVnO4b27cuPFBPjXGqNFsZ8oORUux6/qijx8/3tiZKuci7RplXeNc6+W8f/XVV+f/5tpI4LR0zsh7cq2UYHqu4SU/w3ifwCjAgZiCZz6OeWoVUwe9T3rMY0or9v88ybnOOcv569solcp8phBad6+0U44fS2M2AP1NtbZ4O0vOMamXJhgrmNBO75dna8pox77cSBqZj3mpkilHPRVLbHjPec9xHeLY2jxr09Ih21riCLJDpNUc7pvsX2uMgObdu3c7t836ayAdoLeV85Rzv6njUNo0EjytR6KXOms+n+sz56tt66iXNYtj6YzC7gRGAQ7g0FOJ8L5jnlrF1EHvkx7zmNKK/UkFL5XFsjb1kIBluUfWNVK0211qgycAv64/pPPUmFL3qesjmbbumLT7mzTaNaDQdoqdW5oMXW4k7+makWcJxlpaYIkdN0vZMCO79i0dLdpzsetIzzIS8Ng6ccwxreZw3+Q72/0bY2BC0u7QsywdSlnLMx1s13UgaJ//fafSTzAzdd1N6fzo0aMP9qP+3uxvRpO21199XeW5p4P46RAYBTiAOUwlciz2FdA91qlVTB30PukxjymtxqJDx3rJ23NNpqL4/fffDz7XZQredVQQAU5LOlaOVYZqRyllVOSxlU+yv+1Iq10a1VPGqdM3z9l2VOoc9O08Wspuyg2rddUN19XVj6UzWjnnh+qU3d6Pu47iSzBmjh0WTjWtxrhv2jw89ftd2mrKSMZTHDFaZp4qbWapk64qM3QtF7ZtGSBpnLrqppksSmeltl21fmblb13B1fLsLXVqTofAKMABzGEqkX2b+1RMxzy1iqmD3ic95jGl1THd/8eorA27y0jRusK4aaTwzZs3Fz/SAYD3ZXq5McrDdYNpV4BxiFevXp3tWxpP60bXHNfQcmZZ72zV+mtz0TYib1pbtZznpc5AMkYHzNQP28b7rrJ6Cfr0LeMd4t6oz3mOJdNklqDRPq/VOm8py4bsMmo+52mJ1/K+02ou9032ow3SJS8eep3ms10jcOd6j46pBMM31Q/Lup3ttbHt7ANJ41yvm0aLlhmUWvUzelXZI7/PLFp5vi3xfmc1gVGAA5jDVCL7NvepmI55ahVTB71PesxjSqtjuv+PTRoTEqQv68buIs+RpPOm51Cbjx3T8weA/ko5OGt67dIxrDyziqEzHLTPnaHPoV23k0b1uuH02rVrvRvVE0SoA85dU/tt0rXfUywF0naM2hTQyHWT9Dn0iNGp0qfrXugT5EmdJPvWBme69i1lvG3ScS73Rj1aMJ9N3nHx4sXzaTZXvfL3lPUTSM37c2/sMlK97bwwZOR77ud0Ckk+NWS5o7FMfY/vM63mdN/kmOvR+SX41leOO5/d5hqZyz06llUdr9tZ2Mp1leujffZvs+9lTdGuEaddweb2OquvMVPk0uktwMJ99NFHb5Pd1a979+4ddJ/a/fn88897b+PJkycfbOf69esr3/fmzZuV28rf2m2te/9Y5+LBgwdr31/2K8ewrU8++aTXd9Revnz5QTr0+e5VaZ/tTr3vT58+fe+zSetd3L59+3w7L168eHsox5wely9fHiXPadMg+9FH8pZy/FPc03O7/+eS7lPKNbgqvx/i1q1bW6dzee+UzwkADiPP5ZK/J7+PlGHL8zv/5rnaJ+/P++vnRspnfWUf2udPXU7fdn/yvlXbybH3faaVMlZeKTds+/kx0iRlgbasklfKQUO2t0n7Xau+o9Sldqk/jWHq9GnLm9uWs0v9pOxDynKr6p2lHLyuDDrHe6O9voe+kqY59qFlzfZ4tr0mk6Y5v/n+Q9aD93mP7yut5nLftPX78upTtyr5/6ZzMcd7dCztfnSlRTl35RzV+cOmNtBynne5D+vvG6vuzLIIjAKL11V4OHQjd1sozKuvFJTbQmFX4aI0cqyzr8Bou7+l0WWswGK0FYi+gZE24LxLQCmf7VMA23Xf24ro0KBQadQ4dOHxmNOjvceH5jm7BujqCl/2qU8F7Bjv/7mk+1TqBurk90NfOb42rbapdLadRw7dyQiAaQKjdVkhP3c1IOf9Xc+OPCvyfKifM/m5T+NmnlNdnVs3BVLa51KeeUO2s+1zv06XfG5dp68cfx1M7ZMm5fk/5Fjy2jVQWZc/ynbbfS/vyXHt277TJ/dEW47aFLAq10obxGnTNddQ3lPugWO8N9r8YtdXn86x6+qCqXusq1eU9x8iKHroe3wfaXXI+2aVfKbe1qb9yfeUYPCq9x3DPTqGEqhNenS1LyR9Vh1X2d+u6zbXXamL79oJoP6uofkIyyYwCixaV8BvDgGfrp6UfR76eaiXAl9bEOoqsGyqoJYRSEP3Z2jQcdN+lQb8PtrC45CC4S69B9tCWJ8g1Bj73gaf+p7HUmGZ4wjDY0qPsfKcNg36bmdVHripQpVjLp0vkl+NkR/s4/6fS7pPoW0EGPs1pOF8DvkEAOMo+fuqTi9l5EvfZ9GQTjSl8bw0+m/z6iorlsbVvtvZ1HmrTZe2vJn/z77k2EtdrH529m2gLR2T+hxHfTxjNAjXjdXtcdYN5H06tI3lUOnTdgDIK+XXpEm2mb+XayNp11WeTj28657K+7vScs73Rjs6Lvua9EgatK+6w15Xp/Ex8pFIObW9P3Ps9f1ZB0/63PtjmsM9vq+0OsR903c0Zrad32Vfsl91kDI/r6v/zPkeHVs5TyUgm/p+zmH5/ar7tr7OSkervMr1NeQ8dqnP6SGeTcyfwCiwWG2v3LlMOTG3qUSWMhXTuulFhhzHPqZWqfd9Vc/aIb0/j33qoGNOjzlOlzOXKa2mvP/nmO5j6uphPear7+iOOo36TAVfGly6OvEAcFh5Jm/7PEi5qDQW16Nj8m/pWHXo6VT3Lc+40rBbyo/lGVuCC4csX495neT81uc9x3jKs0jU90MdFEkapcy06V7ItZP35L3bvH+O6o5zQ4Ma+UxJh67y6i6BjXX3Z37Xd5rwJdtXWs3xvsk2uvK3ErgVXFv9TKjPYf5/0/Muf68/l3/z/2O1QdaDP9Q9WUVgFFiE0mOsq9dYn0b/IWt9DnWoqUSWNBXT0OlFDjm1yq77vm1v0GOaOujY0+MYpsuZy5RWY97/x5DuY2k7wIz9GvLsq6+pTQ1g+Vt5/zb5IwAAx6EuE47ZntI1ehFgG33WM+V0/fwMYCF++umns48++uj8NfTzr1+/PtuX7OfLly/P7t+/f/bgwYOzX/3qV+evL7744uzzzz8/++STT86uXLlyvl/Pnj07++Uvf3n+u6dPn57/vd7O999/f3bt2rXz9+b19ddfn/8t73/x4sVoaTVGGl2+fPl8n7788suzH3744Xybn3766dn169fP/5b///bbb89/zrGuk30px7Lt/ue1rexT0vqbb74536dyfvJ9N27cOD8/r169Oj+O58+fn28778/xbdqnvvved/9v3759duvWrbOvvvrq/NrJ/ueVayL7+PHHH59ffzmm77777vwzeX+uxUM45vQo+9F333PtTJ0GOZ579+6dH2vkvsqr6zvq7ZT8aJXkMXl/0vVQ9/+c031sU39X7oO+cl0lP0z+mHOZ/LB+dkXuqdxP+XvSN9fLnTt3Bj+nAQCYj5Tx0p4RKd9tKr/38eTJk/M6R6nH5LtSP0k9AWCdOi9KnRW6XEh0tPMvAOxVCvqPHj16V+DPK5WLFPyvXr16/jBP8GBdw3kaoEsBYNP75yD7WweFcww53lSA+gZc9iEBtZyjdn/zSjAg+z3Hilr28/Hjx+eVy+x3CQSVfc+1kiDgqQQrTiU90ohQd5LI8fa9PpM+yZOSr5RGiVoCX0Ov+WO7/9n8/Mo5Lecy90+eXTmnCYTXHXoAADh+6eCYcmDpNDdFGf7ChQvvfp7qO4BluXjx4rvOxemYPaQjMMsnMAoAsDAZxVd6bycgNVbv7QS40kGgWDUqHQAAWK4EHRJ8GKPD5LbB10POcAQch3TULTMYhdAXq/xs5V8AADg6U09plQaJ+rvWTbkLAAAsT7vEzqVLlyb5nsxAsuo7AVplaaQwUpR1BEYBABYk66gWWc9xbG0v7XoEKQAAsHxtIHSqzpL1dj/77LNJvgNYjrpjuOVcWEdgFABgQVNalammYqp1huuel5k2CwAAOB2ZmaauE2S9+SnqNvXoL0EOYJM6z/jiiy8Oui/Mm8AoAMBCmNIKAADYh3v37r37OUt5jD1qtJ4JJ0FR02ICmzpT5FXoTME6AqMAAAthSisAAGAfEnS4ffv2u///9NNPR6t/fPPNN++W7Lh8+fLZkydPRtkusFzPnz9/97OOFGwiMAoAsBCmtAIAAPY5arSMHE094cqVK2fffvvt4O0lsJrpLzMCNVK3yZqBqecArJO2iXSk0JmCbVx4+/bt263eCQDA7CVoWa+lkTVAUzEYy5dffvmu93YqHmmoAAAATtcPP/xwPvVt/o3UPzLq88aNG1sFNVOHefDgwbt6RmQ0aj1dLwCMRWAUAGBh0ghRelmnIeLFixejBEfr7WZ72a7e2wAAQAlwJphZzzCTekM6VGY0aak7ZHTpq1evzgOpmf6yrAuY93799ddnt27dUs8AYDICowAAC5QAZgKZRXpgp4Fh6JRWaaAoDRyZ0ipT04w5EhUAAFiOjP589uzZefAz9YnXr1+/C4Am6Hnp0qXzf69evXq+PmmZBhMApiYwCgCwUKa0AgAAAIC/JzAKALBwprQCAAAAAIFRAICTYkorAAAAAE6VwCgAAAAAAACweD879A4AAAAAAAAATE1gFAAAAAAAAFg8gVEAAAAAAABg8QRGAQAAAAAAgMUTGAUAAAAAAAAWT2AUAAAAAAAAWDyBUQAAAAAAAGDxBEYBAAAAAACAxRMYBQAAAAAAABZPYBQAAAAAAABYPIFRAAAAAAAAYPEERgEAAAAAAIDFExgFAAAAAAAAFk9gFAAAAAAAAFg8gVEAAAAAAABg8QRGAQAAAAAAgMUTGAUAAAAAAAAWT2AUAAAAAAAAWDyBUQAAAAAAAGDxBEYBAAAAAACAxRMYBQAAAAAAABZPYBQAAAAAAABYPIFRAAAAAAAAYPEERgEAAAAAAIDFExgFAAAAAAAAFk9gFAAAAAAAAFg8gVEAAAAAAABg8QRGAQAAAAAAgMUTGAUAAAAAAAAWT2AUAAAAAAAAWDyBUQAAAAAAAGDxBEYBAAAAAACAxRMYBQAAAAAAABZPYBQAAAAAAABYPIFRAAAAAAAAYPEERgEAAAAAAIDFExgFAAAAAAAAFk9gFAAAAAAAAFg8gVEAAAAAAABg8QRGAQAAAAAAgMUTGAUAAAAAAAAWT2AUAAAAAAAAWDyBUQAAAAAAAGDxBEYBAAAAAACAxRMYBQAAAAAAABZPYBQAAAAAAABYPIFRAAAAAAAAYPEERgEAAAAAAIDFExgFAAAAAAAAFk9gFAAAAAAAAFg8gVEAAAAAAABg8QRGAQAAAAAAgMUTGAUAAAAAAAAWT2AUAAAAAAAAWDyBUQAAAAAAAGDxBEYBAAAAAACAxRMYBQAAAAAAABZPYBQAAAAAAABYPIFRAAAAAAAA4Gzp/n81kQTM+BGe8gAAAABJRU5ErkJggg==",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plot_force_distance_comparison(rr=[r1, r2], ff=[fmag1, fmag2], ll=[\"PM (smoothed)\", \"P3M\"], L=L, Np=Np, Npm=Npm, a=Newton_prefactor, title=\"Particle's contributions to total force\")#, ss=[\"o\", \".\"])"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f26ada41",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "p3m",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.13.3"
}
},
"nbformat": 4,
"nbformat_minor": 5
}