cosmotool/src/eskow.hpp

240 lines
4.5 KiB
C++
Raw Normal View History

#ifndef __ESKOW_CHOLESKY_HPP
#define __ESKOW_CHOLESKY_HPP
#include <cmath>
#include <vector>
#include "mach.hpp"
/* Implementation of Schnabel & Eskow, 1999, Vol. 9, No. 4, pp. 1135-148, SIAM J. OPTIM. */
namespace CholeskyEskow
{
template<typename T, typename A>
T max_diag(A& m, int j, int N)
{
T maxval = m(j,j);
for (int k = j+1; k < N; k++)
{
maxval = std::max(maxval, m(k,k));
}
return maxval;
}
template<typename T, typename A>
void minmax_diag(A& m, int j, int N, T& minval, T& maxval, int& i_min, int& i_max)
{
minval = maxval = m(j,j);
for (int k = j+1; k < N; k++)
{
maxval = std::max(maxval, m(k,k));
minval = std::min(minval, m(k,k));
}
for (int k = j; k < N; k++)
{
if (m(k,k) == minval)
i_min = k;
if (m(k,k) == maxval)
i_max = k;
}
}
template<typename T, typename A>
void swap_rows(A& m, int N, int i0, int i1)
{
for (int r = 0; r < N; r++)
std::swap(m(r,i0), m(r,i1));
}
template<typename T, typename A>
void swap_cols(A& m, int N, int i0, int i1)
{
for (int c = 0; c < N; c++)
std::swap(m(i0,c), m(i1,c));
}
template<typename T>
T square(T x)
{
return x*x;
}
template<typename T, typename A>
T min_row(A& m, int j, int N)
{
T a = 1/m(j,j);
T v = m(j+1,j+1) - square(m(j+1,j))*a;
for (int i = j+2; i < N; i++)
{
v = std::max(v, m(i, i) - square(m(i,j))*a);
}
return v;
}
template<typename T>
int g_max(const std::vector<T>& g, int j, int N)
{
T a = g[j];
int k = j;
for (int i = j+1; i < N; i++)
{
if (a < g[i])
{
a = g[i];
k = i;
}
}
return k;
}
template<typename T, typename A>
void cholesky_eskow(A& m, int N, T& norm_E)
{
T tau_bar = std::pow(mach_epsilon<T>(), 2./3);
T tau = std::pow(mach_epsilon<T>(), 1./3);
T mu = 0.1;
bool phaseone = true;
T gamma = max_diag<T,A>(m, 0, N);
int j;
norm_E = 0;
for (j = 0; j < N && phaseone; j++)
{
T minval, maxval;
int i_min, i_max;
minmax_diag<T,A>(m, j, N, minval, maxval, i_min, i_max);
if (maxval < tau_bar*gamma || minval < -mu*maxval)
{
phaseone = false;
break;
}
if (i_max != j)
{
swap_cols<T,A>(m, N, i_max, j);
swap_rows<T,A>(m, N, i_max, j);
}
if (min_row<T,A>(m, j, N) < -mu*gamma)
{
phaseone = false;
break;
}
T L_jj = std::sqrt(m(j,j));
m(j,j) = L_jj;
for (int i = j+1; i < N; i++)
{
m(i,j) /= L_jj;
for (int k = j+1; k < i; k++)
m(i,k) -= m(i,j)*m(k,j);
}
}
if (!phaseone && j == N-1)
{
T A_nn = m(N-1,N-1);
T delta = -A_nn + std::max(tau*(-A_nn)/(1-tau), tau_bar*gamma);
m(N-1,N-1) = std::sqrt(m(N-1,N-1) + delta);
}
if (!phaseone && j < (N-1))
{
int k = j-1;
std::vector<T> g(N);
for (int i = k+1; i < N; i++)
{
g[i] = m(i,i);
for (int j = k+1; j < i; j++)
g[i] -= std::abs(m(i,j));
for (int j = i+1; j < N; j++)
g[i] -= std::abs(m(j,i));
}
T delta, delta_prev = 0;
for (int j = k+1; j < N-2; j++)
{
int i = g_max(g, j, N);
T norm_j;
if (i != j)
{
swap_cols<T,A>(m, N, i, j);
swap_rows<T,A>(m, N, i, j);
}
for (int i = j+1; j < N; j++)
{
norm_j += std::abs(m(i,j));
}
delta = std::max(delta_prev, std::max((T)0, -m(j,j) + std::max(norm_j,tau_bar*gamma)));
if (delta > 0)
{
m(j,j) += delta;
delta_prev = delta;
}
if (m(j,j) != norm_j)
{
T temp = 1 - norm_j/m(j,j);
for (int i = j+1; j < N; j++)
{
g[i] += std::abs(m(i,j))*temp;
}
}
// Now we do the classic cholesky iteration
T L_jj = std::sqrt(m(j,j));
m(j,j) = L_jj;
for (int i = j+1; i < N; i++)
{
m(i,j) /= L_jj;
for (int k = j+1; k < i; k++)
m(i,k) -= m(i,j)*m(k,j);
}
}
// The final 2x2 submatrix is special
T A00 = m(N-2, N-2), A01 = m(N-2, N-1), A11 = m(N-1,N-1);
T sq_DELTA = std::sqrt(square(A00-A11) + square(A01));
T lambda_hi = 0.5*((A00+A11) + sq_DELTA);
T lambda_lo = 0.5*((A00+A11) - sq_DELTA);
delta = std::max(std::max((T)0, -lambda_lo + std::max(tau*sq_DELTA/(1-tau), tau_bar*gamma)),delta_prev);
if (delta > 0)
{
m(N-1,N-1) += delta;
m(N,N) += delta;
delta_prev = delta;
}
m(N-2,N-2) = A00 = std::sqrt(A00);
m(N-1,N-2) = (A01 /= A00);
m(N-1,N-1) = std::sqrt(A11-A01*A01);
norm_E = delta_prev;
}
}
};
#endif