Got a compiling version of the algorithm

This commit is contained in:
Your Name 2011-12-13 17:48:37 -05:00
parent 8dd58836e0
commit 8d4419d2fd
3 changed files with 194 additions and 10 deletions

View file

@ -26,3 +26,7 @@ if (HDF5_FOUND)
add_executable(testReadFlash testReadFlash.cpp)
target_link_libraries(testReadFlash ${tolink})
endif (HDF5_FOUND)
add_executable(testEskow testEskow.cpp)
target_link_libraries(testEskow ${tolink})

50
sample/testEskow.cpp Normal file
View file

@ -0,0 +1,50 @@
#include <cstring>
#include <iostream>
#include <iomanip>
#include <vector>
#include "eskow.hpp"
using namespace std;
double Hartmann_Matrix[6][6] = {
{ 14.8253, -6.4243, 7.8746, -1.2498, 10.2733, 10.2733 },
{ -6.4243, 15.1024, -1.1155, -0.2761, -8.2117, -8.2117 },
{ 7.8746, -1.1155, 51.8519, -23.3482, 12.5902, 12.5902 },
{ -1.2498, -0.2761, -23.3482, 22.7962, -9.8958, -9.8958 },
{ 10.2733, -8.2117, 12.5902, -9.8958, 21.0656, 21.0656 },
{ 10.2733, -8.2117, 12.5902, -9.8958, 21.0656, 21.0656 }
};
struct MatrixOp
{
vector<double> M;
int N;
double& operator()(int i, int j)
{
return M[i*N + j];
}
};
int main()
{
MatrixOp M;
double norm_E;
M.N = 6;
M.M.resize(M.N*M.N);
memcpy(&M.M[0], &Hartmann_Matrix[0][0], sizeof(double)*36);
CholeskyEskow::cholesky_eskow(M, M.N, norm_E);
for (int i = 0; i < M.N; i++)
{
for (int j = 0; j < M.N; j++)
{
cout << setprecision(25) << M(i,j) << " ";
}
cout << endl;
}
return 0;
}

View file

@ -1,9 +1,29 @@
#ifndef __ESKOW_CHOLESKY_HPP
#define __ESKOW_CHOLESKY_HPP
#include <cmath>
#include <vector>
#include "mach.hpp"
/* Implementation of Schnabel & Eskow, 1999, Vol. 9, No. 4, pp. 1135-148, SIAM J. OPTIM. */
namespace CholeskyEskow
{
template<typename T, typename A>
void minmax_diag(A&m m, int j, int N, T& minval, T& maxval, int& i_min, int& i_max)
T max_diag(A& m, int j, int N)
{
T maxval = m(j,j);
for (int k = j+1; k < N; k++)
{
maxval = std::max(maxval, m(k,k));
}
return maxval;
}
template<typename T, typename A>
void minmax_diag(A& m, int j, int N, T& minval, T& maxval, int& i_min, int& i_max)
{
minval = maxval = m(j,j);
@ -43,27 +63,54 @@ namespace CholeskyEskow
}
template<typename T, typename A>
T max_row(A& m, int i, int j, int N)
T min_row(A& m, int j, int N)
{
T v = m(i,i) - square(m(i,j))/m(j,j);
T a = 1/m(j,j);
T v = m(j+1,j+1) - square(m(j+1,j))*a;
for (int i = j+2; i < N; i++)
{
v = std::max(v, m(i, i) - square(m(i,j))*a);
}
return v;
}
template<typename T>
int g_max(const std::vector<T>& g, int j, int N)
{
T a = g[j];
int k = j;
for (int i = j+1; i < N; i++)
{
if (a < g[i])
{
a = g[i];
k = i;
}
}
return k;
}
template<typename T, typename A>
void cholesky_eskow(A& m, int N)
void cholesky_eskow(A& m, int N, T& norm_E)
{
T tau_bar = std::pow(mach_epsilon<T>(), 2./3);
T tau = std::pow(mach_epsilon<T>(), 1./3);
T mu = 0.1;
bool phaseone = true;
T gamma = max_diag(m, 0, N);
T gamma = max_diag<T,A>(m, 0, N);
int j;
norm_E = 0;
for (j = 0; j < N && phaseone; j++)
{
T minval, maxval;
int i_min, i_max;
minmax_diag(m, j, N, minval, maxval, i_min, i_max);
minmax_diag<T,A>(m, j, N, minval, maxval, i_min, i_max);
if (maxval < tau_bar*gamma || minval < -mu*maxval)
{
phaseone = false;
@ -72,11 +119,11 @@ namespace CholeskyEskow
if (i_max != j)
{
swap_cols(m, N, i_max, j);
swap_rows(m, N, i_max, j);
swap_cols<T,A>(m, N, i_max, j);
swap_rows<T,A>(m, N, i_max, j);
}
if (max_row(m, j, N) < -mu*gamma)
if (min_row<T,A>(m, j, N) < -mu*gamma)
{
phaseone = false;
break;
@ -93,6 +140,7 @@ namespace CholeskyEskow
}
}
if (!phaseone && j == N-1)
{
T A_nn = m(N-1,N-1);
@ -100,10 +148,92 @@ namespace CholeskyEskow
m(N-1,N-1) = std::sqrt(m(N-1,N-1) + delta);
}
if (!phaseone && j < (N-1))
{
int k = j-1;
std::vector<T> g(N);
for (int i = k+1; i < N; i++)
{
g[i] = m(i,i);
for (int j = k+1; j < i; j++)
g[i] -= std::abs(m(i,j));
for (int j = i+1; j < N; j++)
g[i] -= std::abs(m(j,i));
}
T delta, delta_prev = 0;
for (int j = k+1; j < N-2; j++)
{
int i = g_max(g, j, N);
T norm_j;
if (i != j)
{
swap_cols<T,A>(m, N, i, j);
swap_rows<T,A>(m, N, i, j);
}
for (int i = j+1; j < N; j++)
{
norm_j += std::abs(m(i,j));
}
delta = std::max(delta_prev, std::max((T)0, -m(j,j) + std::max(norm_j,tau_bar*gamma)));
if (delta > 0)
{
m(j,j) += delta;
delta_prev = delta;
}
if (m(j,j) != norm_j)
{
T temp = 1 - norm_j/m(j,j);
for (int i = j+1; j < N; j++)
{
g[i] += std::abs(m(i,j))*temp;
}
}
// Now we do the classic cholesky iteration
T L_jj = std::sqrt(m(j,j));
m(j,j) = L_jj;
for (int i = j+1; i < N; i++)
{
m(i,j) /= L_jj;
for (int k = j+1; k < i; k++)
m(i,k) -= m(i,j)*m(k,j);
}
}
// The final 2x2 submatrix is special
T A00 = m(N-2, N-2), A01 = m(N-2, N-1), A11 = m(N-1,N-1);
T sq_DELTA = std::sqrt(square(A00-A11) + square(A01));
T lambda_hi = 0.5*((A00+A11) + sq_DELTA);
T lambda_lo = 0.5*((A00+A11) - sq_DELTA);
delta = std::max(std::max((T)0, -lambda_lo + std::max(tau*sq_DELTA/(1-tau), tau_bar*gamma)),delta_prev);
if (delta > 0)
{
m(N-1,N-1) += delta;
m(N,N) += delta;
delta_prev = delta;
}
m(N-2,N-2) = A00 = std::sqrt(A00);
m(N-1,N-2) = (A01 /= A00);
m(N-1,N-1) = std::sqrt(A11-A01*A01);
norm_E = delta_prev;
}
}
};
#endif