#ifndef __ESKOW_CHOLESKY_HPP #define __ESKOW_CHOLESKY_HPP #include #include #include "mach.hpp" /* Implementation of Schnabel & Eskow, 1999, Vol. 9, No. 4, pp. 1135-148, SIAM J. OPTIM. */ namespace CholeskyEskow { template T max_diag(A& m, int j, int N) { T maxval = m(j,j); for (int k = j+1; k < N; k++) { maxval = std::max(maxval, m(k,k)); } return maxval; } template void minmax_diag(A& m, int j, int N, T& minval, T& maxval, int& i_min, int& i_max) { minval = maxval = m(j,j); for (int k = j+1; k < N; k++) { maxval = std::max(maxval, m(k,k)); minval = std::min(minval, m(k,k)); } for (int k = j; k < N; k++) { if (m(k,k) == minval) i_min = k; if (m(k,k) == maxval) i_max = k; } } template void swap_rows(A& m, int N, int i0, int i1) { for (int r = 0; r < N; r++) std::swap(m(r,i0), m(r,i1)); } template void swap_cols(A& m, int N, int i0, int i1) { for (int c = 0; c < N; c++) std::swap(m(i0,c), m(i1,c)); } template T square(T x) { return x*x; } template T min_row(A& m, int j, int N) { T a = 1/m(j,j); T v = m(j+1,j+1) - square(m(j+1,j))*a; for (int i = j+2; i < N; i++) { v = std::max(v, m(i, i) - square(m(i,j))*a); } return v; } template int g_max(const std::vector& g, int j, int N) { T a = g[j]; int k = j; for (int i = j+1; i < N; i++) { if (a < g[i]) { a = g[i]; k = i; } } return k; } template void cholesky_eskow(A& m, int N, T& norm_E) { T tau_bar = std::pow(mach_epsilon(), 2./3); T tau = std::pow(mach_epsilon(), 1./3); T mu = 0.1; bool phaseone = true; T gamma = max_diag(m, 0, N); int j; norm_E = 0; for (j = 0; j < N && phaseone; j++) { T minval, maxval; int i_min, i_max; minmax_diag(m, j, N, minval, maxval, i_min, i_max); if (maxval < tau_bar*gamma || minval < -mu*maxval) { phaseone = false; break; } if (i_max != j) { swap_cols(m, N, i_max, j); swap_rows(m, N, i_max, j); } if (min_row(m, j, N) < -mu*gamma) { phaseone = false; break; } T L_jj = std::sqrt(m(j,j)); m(j,j) = L_jj; for (int i = j+1; i < N; i++) { m(i,j) /= L_jj; for (int k = j+1; k < i; k++) m(i,k) -= m(i,j)*m(k,j); } } if (!phaseone && j == N-1) { T A_nn = m(N-1,N-1); T delta = -A_nn + std::max(tau*(-A_nn)/(1-tau), tau_bar*gamma); m(N-1,N-1) = std::sqrt(m(N-1,N-1) + delta); } if (!phaseone && j < (N-1)) { int k = j-1; std::vector g(N); for (int i = k+1; i < N; i++) { g[i] = m(i,i); for (int j = k+1; j < i; j++) g[i] -= std::abs(m(i,j)); for (int j = i+1; j < N; j++) g[i] -= std::abs(m(j,i)); } T delta, delta_prev = 0; for (int j = k+1; j < N-2; j++) { int i = g_max(g, j, N); T norm_j; if (i != j) { swap_cols(m, N, i, j); swap_rows(m, N, i, j); } for (int i = j+1; j < N; j++) { norm_j += std::abs(m(i,j)); } delta = std::max(delta_prev, std::max((T)0, -m(j,j) + std::max(norm_j,tau_bar*gamma))); if (delta > 0) { m(j,j) += delta; delta_prev = delta; } if (m(j,j) != norm_j) { T temp = 1 - norm_j/m(j,j); for (int i = j+1; j < N; j++) { g[i] += std::abs(m(i,j))*temp; } } // Now we do the classic cholesky iteration T L_jj = std::sqrt(m(j,j)); m(j,j) = L_jj; for (int i = j+1; i < N; i++) { m(i,j) /= L_jj; for (int k = j+1; k < i; k++) m(i,k) -= m(i,j)*m(k,j); } } // The final 2x2 submatrix is special T A00 = m(N-2, N-2), A01 = m(N-2, N-1), A11 = m(N-1,N-1); T sq_DELTA = std::sqrt(square(A00-A11) + square(A01)); T lambda_hi = 0.5*((A00+A11) + sq_DELTA); T lambda_lo = 0.5*((A00+A11) - sq_DELTA); delta = std::max(std::max((T)0, -lambda_lo + std::max(tau*sq_DELTA/(1-tau), tau_bar*gamma)),delta_prev); if (delta > 0) { m(N-1,N-1) += delta; m(N,N) += delta; delta_prev = delta; } m(N-2,N-2) = A00 = std::sqrt(A00); m(N-1,N-2) = (A01 /= A00); m(N-1,N-1) = std::sqrt(A11-A01*A01); norm_E = delta_prev; } } }; #endif