csiborgtools/scripts/pre_dumppart.py
Richard Stiskalek acb8d9571c
Update units to be consistent. (#78)
* Fix Quijote units

* Updates to units

* Fix how things are loaded

* Updating definitions & conventions

* Clear up how fiducial observers in quijote work

* Refactorize array manip

* Move function definition

* More code refactoring

* Remove unused argument

* Remove `convert_from_box`

* Make a note

* Converting particle units

* Add notes about units

* Remove box constants

* Add rho_crit0

* Fix spherical overdensity mass units

* Refactor more code

* Edit catalogue kwargs

* Edit the docstring

* Edit bounds

* Add new checks for empty array

* Remove unused import

* Remove old code

* Remove old function

* Update real 2 redshift

* Clear up the RSP conv

* Add comments

* Add some units
2023-07-28 21:07:28 +02:00

198 lines
6.5 KiB
Python

# This program is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3 of the License, or (at your
# option) any later version.
#
# This program is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
# Public License for more details.
#
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
r"""
Script to load in the simulation particles, sort them by their FoF halo ID and
dump into a HDF5 file. Stores the first and last index of each halo in the
particle array. This can be used for fast slicing of the array to acces
particles of a single clump.
Ensures the following units:
- Positions in box units.
- Velocities in :math:`\mathrm{km} / \mathrm{s}`.
- Masses in :math:`M_\odot / h`.
"""
from argparse import ArgumentParser
from datetime import datetime
from gc import collect
import h5py
import numba
import numpy
from mpi4py import MPI
from taskmaster import work_delegation
from tqdm import trange
from utils import get_nsims
try:
import csiborgtools
except ModuleNotFoundError:
import sys
sys.path.append("../")
import csiborgtools
@numba.jit(nopython=True)
def minmax_halo(hid, halo_ids, start_loop=0):
"""
Find the start and end index of a halo in a sorted array of halo IDs.
This is much faster than using `numpy.where` and then `numpy.min` and
`numpy.max`.
"""
start = None
end = None
for i in range(start_loop, halo_ids.size):
n = halo_ids[i]
if n == hid:
if start is None:
start = i
end = i
elif n > hid:
break
return start, end
###############################################################################
# Sorting and dumping #
###############################################################################
def main(nsim, simname, verbose):
"""
Read in the snapshot particles, sort them by their FoF halo ID and dump
into a HDF5 file. Stores the first and last index of each halo in the
particle array for fast slicing of the array to acces particles of a single
halo.
Parameters
----------
nsim : int
IC realisation index.
simname : str
Simulation name.
verbose : bool
Verbosity flag.
Returns
-------
None
"""
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
if simname == "csiborg":
partreader = csiborgtools.read.CSiBORGReader(paths)
else:
partreader = csiborgtools.read.QuijoteReader(paths)
nsnap = max(paths.get_snapshots(nsim, simname))
fname = paths.particles(nsim, simname)
# We first read in the halo IDs of the particles and infer the sorting.
# Right away we dump the halo IDs to a HDF5 file and clear up memory.
if verbose:
print(f"{datetime.now()}: loading PIDs of IC {nsim}.", flush=True)
part_hids = partreader.read_fof_hids(
nsnap=nsnap, nsim=nsim, verbose=verbose)
if verbose:
print(f"{datetime.now()}: sorting PIDs of IC {nsim}.", flush=True)
sort_indxs = numpy.argsort(part_hids).astype(numpy.int32)
part_hids = part_hids[sort_indxs]
with h5py.File(fname, "w") as f:
f.create_dataset("halo_ids", data=part_hids)
f.close()
del part_hids
collect()
# Next we read in the particles and sort them by their halo ID.
# We cannot directly read this as an unstructured array because the float32
# precision is insufficient to capture the halo IDs.
if simname == "csiborg":
pars_extract = ['x', 'y', 'z', 'vx', 'vy', 'vz', 'M', "ID"]
else:
pars_extract = None
parts, pids = partreader.read_particle(
nsnap, nsim, pars_extract, return_structured=False, verbose=verbose)
# In case of CSiBORG, we need to convert the mass and velocities from
# box units.
if simname == "csiborg":
box = csiborgtools.read.CSiBORGBox(nsnap, nsim, paths)
parts[:, [3, 4, 5]] = box.box2vel(parts[:, [3, 4, 5]])
parts[:, 6] = box.box2solarmass(parts[:, 6])
# Now we in two steps save the particles and particle IDs.
if verbose:
print(f"{datetime.now()}: dumping particles from {nsim}.", flush=True)
parts = parts[sort_indxs]
pids = pids[sort_indxs]
del sort_indxs
collect()
with h5py.File(fname, "r+") as f:
f.create_dataset("particle_ids", data=pids)
f.close()
del pids
collect()
with h5py.File(fname, "r+") as f:
f.create_dataset("particles", data=parts)
f.close()
del parts
collect()
if verbose:
print(f"{datetime.now()}: creating a halo map for {nsim}.", flush=True)
# Load clump IDs back to memory
with h5py.File(fname, "r") as f:
part_hids = f["halo_ids"][:]
# We loop over the unique halo IDs.
unique_halo_ids = numpy.unique(part_hids)
halo_map = numpy.full((unique_halo_ids.size, 3), numpy.nan,
dtype=numpy.int32)
start_loop = 0
niters = unique_halo_ids.size
for i in trange(niters) if verbose else range(niters):
hid = unique_halo_ids[i]
k0, kf = minmax_halo(hid, part_hids, start_loop=start_loop)
halo_map[i, 0] = hid
halo_map[i, 1] = k0
halo_map[i, 2] = kf
start_loop = kf
# We save the mapping to a HDF5 file
with h5py.File(fname, "r+") as f:
f.create_dataset("halomap", data=halo_map)
f.close()
del part_hids
collect()
if __name__ == "__main__":
# And next parse all the arguments and set up CSiBORG objects
parser = ArgumentParser()
parser.add_argument("--simname", type=str, default="csiborg",
choices=["csiborg", "quijote"],
help="Simulation name")
parser.add_argument("--nsims", type=int, nargs="+", default=None,
help="IC realisations. If `-1` processes all .")
args = parser.parse_args()
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
nsims = get_nsims(args, paths)
def _main(nsim):
main(nsim, args.simname, verbose=MPI.COMM_WORLD.Get_size() == 1)
work_delegation(_main, nsims, MPI.COMM_WORLD)