Update units to be consistent. (#78)

* Fix Quijote units

* Updates to units

* Fix how things are loaded

* Updating definitions & conventions

* Clear up how fiducial observers in quijote work

* Refactorize array manip

* Move function definition

* More code refactoring

* Remove unused argument

* Remove `convert_from_box`

* Make a note

* Converting particle units

* Add notes about units

* Remove box constants

* Add rho_crit0

* Fix spherical overdensity mass units

* Refactor more code

* Edit catalogue kwargs

* Edit the docstring

* Edit bounds

* Add new checks for empty array

* Remove unused import

* Remove old code

* Remove old function

* Update real 2 redshift

* Clear up the RSP conv

* Add comments

* Add some units
This commit is contained in:
Richard Stiskalek 2023-07-28 21:07:28 +02:00 committed by GitHub
parent fb4b4edf19
commit acb8d9571c
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
23 changed files with 695 additions and 1079 deletions

View file

@ -181,6 +181,8 @@ class DensityField(BaseField):
vel[:, [0, 2]] = vel[:, [2, 0]]
if in_rsp:
raise NotImplementedError("Redshift space needs to be fixed.")
# TODO change how called + units.
pos = real2redshift(pos, vel, [0.5, 0.5, 0.5], self.box,
in_box_units=True, periodic_wrap=True,
make_copy=False)

View file

@ -255,6 +255,8 @@ def field2rsp(*fields, parts, vobs, box, nbatch=30, flip_partsxz=True,
pos[:, [0, 2]] = pos[:, [2, 0]]
vel[:, [0, 2]] = vel[:, [2, 0]]
# Then move the particles to redshift space.
# TODO here the function is now called differently and pos assumes
# different units.
rsp_pos = real2redshift(pos, vel, [0.5, 0.5, 0.5], box,
in_box_units=True, periodic_wrap=True,
make_copy=True)

View file

@ -14,4 +14,3 @@
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
from .halo import (Halo, delta2ncells, center_of_mass, # noqa
periodic_distance, shift_to_center_of_box, number_counts) # noqa
from .utils import split_jobs # noqa

View file

@ -20,6 +20,11 @@ from numba import jit
from scipy.optimize import minimize
GRAV = 6.6743e-11 # m^3 kg^-1 s^-2
MSUN = 1.988409870698051e+30 # kg
MPC2M = 3.0856775814671916e+22 # 1 Mpc is this many meters
class BaseStructure(ABC):
"""
Basic structure object for handling operations on its particles.
@ -85,7 +90,7 @@ class BaseStructure(ABC):
"""
return numpy.vstack([self[p] for p in ("vx", "vy", "vz")]).T
def spherical_overdensity_mass(self, delta_mult, kind="crit", tol=1e-8,
def spherical_overdensity_mass(self, delta_mult, kind="crit", rtol=1e-8,
maxiter=100, npart_min=10):
r"""
Calculate spherical overdensity mass and radius via the iterative
@ -97,7 +102,7 @@ class BaseStructure(ABC):
Overdensity multiple.
kind : str, optional
Either `crit` or `matter`, for critical or matter overdensity
tol : float, optional
rtol : float, optional
Tolerance for the change in the center of mass or radius.
maxiter : int, optional
Maximum number of iterations.
@ -107,33 +112,34 @@ class BaseStructure(ABC):
Returns
-------
mass : float
The requested spherical overdensity mass.
The requested spherical overdensity mass in :math:`M_\odot / h`.
rad : float
The radius of the sphere enclosing the requested overdensity.
The radius of the sphere enclosing the requested overdensity in box
units.
cm : 1-dimensional array of shape `(3, )`
The center of mass of the sphere enclosing the requested
overdensity.
overdensity in box units.
"""
assert kind in ["crit", "matter"]
rho = delta_mult * self.box.box_rhoc
# Calculate density based on the provided kind
rho = delta_mult * self.box.rho_crit0
if kind == "matter":
rho *= self.box.Om
pos = self.pos
mass = self["M"]
# Initial guesses
pos, mass = self.pos, self["M"]
# Initial estimates for center of mass and radius
init_cm = center_of_mass(pos, mass, boxsize=1)
init_rad = mass_to_radius(numpy.sum(mass), rho) * 1.5
init_rad = self.box.mpc2box(mass_to_radius(numpy.sum(mass), rho) * 1.5)
rad = init_rad
cm = numpy.copy(init_cm)
rad, cm = init_rad, numpy.copy(init_cm)
success = False
for __ in range(maxiter):
# Calculate the distance of each particle from the current guess.
for _ in range(maxiter):
dist = periodic_distance(pos, cm, boxsize=1)
within_rad = dist <= rad
# Heuristic reset if there are too few enclosed particles.
# Heuristic reset if too few enclosed particles
if numpy.sum(within_rad) < npart_min:
js = numpy.random.choice(len(self), len(self), replace=True)
cm = center_of_mass(pos[js], mass[js], boxsize=1)
@ -141,41 +147,40 @@ class BaseStructure(ABC):
dist = periodic_distance(pos, cm, boxsize=1)
within_rad = dist <= rad
# Calculate the enclosed mass for the current CM and radius.
enclosed_mass = numpy.sum(mass[within_rad])
# If there are still too few particles, then skip this
# iteration.
if numpy.sum(within_rad) < npart_min:
continue
# Calculate the new CM and radius from this mass.
new_rad = mass_to_radius(enclosed_mass, rho)
enclosed_mass = numpy.sum(mass[within_rad])
new_rad = self.box.mpc2box(mass_to_radius(enclosed_mass, rho))
new_cm = center_of_mass(pos[within_rad], mass[within_rad],
boxsize=1)
# Update the CM and radius
prev_cm, cm = cm, new_cm
prev_rad, rad = rad, new_rad
# Check convergence based on center of mass and radius
cm_conv = numpy.linalg.norm(cm - new_cm) < rtol
rad_conv = abs(rad - new_rad) < rtol
# Check if the change in CM and radius is small enough.
dcm = numpy.linalg.norm(cm - prev_cm)
drad = abs(rad - prev_rad)
if dcm < tol or drad < tol:
success = True
break
if cm_conv or rad_conv:
return enclosed_mass, rad, cm
if not success:
return numpy.nan, numpy.nan, numpy.full(3, numpy.nan)
cm, rad = new_cm, new_rad
return enclosed_mass, rad, cm
# Return NaN values if no convergence after max iterations
return numpy.nan, numpy.nan, numpy.full(3, numpy.nan, numpy.float32)
def angular_momentum(self, ref, rad, npart_min=10):
"""
r"""
Calculate angular momentum around a reference point using all particles
within a radius. The angular momentum is returned in box units.
within a radius. Units are
:math:`(M_\odot / h) (\mathrm{Mpc} / h) \mathrm{km} / \mathrm{s}`.
Parameters
----------
ref : 1-dimensional array of shape `(3, )`
Reference point.
Reference point in box units.
rad : float
Radius around the reference point.
Radius around the reference point in box units.
npart_min : int, optional
Minimum number of enclosed particles for a radius to be
considered trustworthy.
@ -184,16 +189,21 @@ class BaseStructure(ABC):
-------
angmom : 1-dimensional array or shape `(3, )`
"""
pos = self.pos
mask = periodic_distance(pos, ref, boxsize=1) < rad
if numpy.sum(mask) < npart_min:
return numpy.full(3, numpy.nan)
# Calculate the distance of each particle from the reference point.
distances = periodic_distance(self.pos, ref, boxsize=1)
mass = self["M"][mask]
pos = pos[mask]
vel = self.vel[mask]
# Velocitities in the object CM frame
# Filter particles within the provided radius.
mask = distances < rad
if numpy.sum(mask) < npart_min:
return numpy.full(3, numpy.nan, numpy.float32)
mass, pos, vel = self["M"][mask], self.pos[mask], self.vel[mask]
# Convert positions to Mpc / h and center around the reference point.
pos = self.box.box2mpc(pos) - ref
# Adjust velocities to be in the CM frame.
vel -= numpy.average(vel, axis=0, weights=mass)
# Calculate angular momentum.
return numpy.sum(mass[:, numpy.newaxis] * numpy.cross(pos, vel),
axis=0)
@ -205,9 +215,9 @@ class BaseStructure(ABC):
Parameters
----------
ref : 1-dimensional array of shape `(3, )`
Reference point.
Reference point in box units.
rad : float
Radius around the reference point.
Radius around the reference point in box units.
Returns
-------
@ -219,12 +229,18 @@ class BaseStructure(ABC):
Bullock, J. S.; Dekel, A.; Kolatt, T. S.; Kravtsov, A. V.;
Klypin, A. A.; Porciani, C.; Primack, J. R.
"""
pos = self.pos
mask = periodic_distance(pos, ref, boxsize=1) < rad
mass = numpy.sum(self["M"][mask])
circvel = numpy.sqrt(self.box.box_G * mass / rad)
angmom_norm = numpy.linalg.norm(self.angular_momentum(ref, rad))
return angmom_norm / (numpy.sqrt(2) * mass * circvel * rad)
# Filter particles within the provided radius
mask = periodic_distance(self.pos, ref, boxsize=1) < rad
# Calculate the total mass of the enclosed particles
enclosed_mass = numpy.sum(self["M"][mask])
# Convert the radius from box units to Mpc/h
rad_mpc = self.box.box2mpc(rad)
# Circular velocity in km/s
circvel = (GRAV * enclosed_mass * MSUN / (rad_mpc * MPC2M))**0.5 * 1e-3
# Magnitude of the angular momentum
l_norm = numpy.linalg.norm(self.angular_momentum(ref, rad))
# Compute and return the Bullock spin parameter
return l_norm / (numpy.sqrt(2) * enclosed_mass * circvel * rad_mpc)
def nfw_concentration(self, ref, rad, conc_min=1e-3, npart_min=10):
"""
@ -234,9 +250,9 @@ class BaseStructure(ABC):
Parameters
----------
ref : 1-dimensional array of shape `(3, )`
Reference point.
Reference point in box units.
rad : float
Radius around the reference point.
Radius around the reference point in box units.
conc_min : float
Minimum concentration limit.
npart_min : int, optional
@ -247,42 +263,43 @@ class BaseStructure(ABC):
-------
conc : float
"""
pos = self.pos
dist = periodic_distance(pos, ref, boxsize=1)
dist = periodic_distance(self.pos, ref, boxsize=1)
mask = dist < rad
if numpy.sum(mask) < npart_min:
return numpy.nan
dist = dist[mask]
weight = self["M"][mask]
dist, weight = dist[mask], self["M"][mask]
weight /= numpy.mean(weight)
# We do the minimization in log space
def negll_nfw_concentration(log_c, xs, weight):
# Objective function for minimization
def negll_nfw_concentration(log_c, xs, w):
c = 10**log_c
ll = xs / (1 + c * xs)**2 * c**2
ll *= (1 + c) / ((1 + c) * numpy.log(1 + c) - c)
ll = numpy.sum(numpy.log(weight * ll))
ll = numpy.sum(numpy.log(w * ll))
return -ll
res = minimize(negll_nfw_concentration, x0=1.5,
initial_guess = 1.5
res = minimize(negll_nfw_concentration, x0=initial_guess,
args=(dist / rad, weight, ), method='Nelder-Mead',
bounds=((numpy.log10(conc_min), 5),))
if not res.success:
return numpy.nan
res = 10**res["x"][0]
if res < conc_min or numpy.isclose(res, conc_min):
conc_value = 10**res["x"][0]
if conc_value < conc_min or numpy.isclose(conc_value, conc_min):
return numpy.nan
return res
return conc_value
def __getitem__(self, key):
keys = ['x', 'y', 'z', 'vx', 'vy', 'vz', 'M']
if key not in keys:
key_to_index = {'x': 0, 'y': 1, 'z': 2,
'vx': 3, 'vy': 4, 'vz': 5, 'M': 6}
if key not in key_to_index:
raise RuntimeError(f"Invalid key `{key}`!")
return self.particles[:, keys.index(key)]
return self.particles[:, key_to_index[key]]
def __len__(self):
return self.particles.shape[0]
@ -304,7 +321,6 @@ class Halo(BaseStructure):
def __init__(self, particles, box):
self.particles = particles
# self.info = info
self.box = box

View file

@ -1,43 +0,0 @@
# Copyright (C) 2022 Richard Stiskalek, Deaglan Bartlett
# This program is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3 of the License, or (at your
# option) any later version.
#
# This program is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
# Public License for more details.
#
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
"""Fitting utility functions."""
import numpy
def split_jobs(njobs, ncpu):
"""
Split `njobs` amongst `ncpu`.
Parameters
----------
njobs : int
Number of jobs.
ncpu : int
Number of CPUs.
Returns
-------
jobs : list of lists of integers
Outer list of each CPU and inner lists for CPU's jobs.
"""
njobs_per_cpu, njobs_remainder = divmod(njobs, ncpu)
jobs = numpy.arange(njobs_per_cpu * ncpu).reshape((njobs_per_cpu, ncpu)).T
jobs = jobs.tolist()
for i in range(njobs_remainder):
jobs[i].append(njobs_per_cpu * ncpu + i)
return jobs

View file

@ -14,6 +14,4 @@
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
from .match import (ParticleOverlap, RealisationsMatcher, # noqa
calculate_overlap, calculate_overlap_indxs,
cosine_similarity)
from .nearest_neighbour import find_neighbour # noqa
from .utils import concatenate_parts # noqa
cosine_similarity, find_neighbour)

View file

@ -1008,3 +1008,43 @@ def radius_neighbours(knn, X, radiusX, radiusKNN, nmult=1.0,
indxs[i] = indxs[i].astype(numpy.int32)
return numpy.asarray(indxs, dtype=object)
def find_neighbour(nsim0, cats):
"""
Find the nearest neighbour of halos from a reference catalogue indexed
`nsim0` in the remaining simulations.
Parameters
----------
nsim0 : int
Index of the reference simulation.
cats : dict
Dictionary of halo catalogues. Keys must be the simulation indices.
Returns
-------
dists : 2-dimensional array of shape `(nhalos, len(cats) - 1)`
Distances to the nearest neighbour.
cross_hindxs : 2-dimensional array of shape `(nhalos, len(cats) - 1)`
Halo indices of the nearest neighbour.
"""
cat0 = cats[nsim0]
X = cat0.position(in_initial=False, subtract_observer=True)
nhalos = X.shape[0]
num_cats = len(cats) - 1
dists = numpy.full((nhalos, num_cats), numpy.nan, dtype=numpy.float32)
cross_hindxs = numpy.full((nhalos, num_cats), numpy.nan, dtype=numpy.int32)
# Filter out the reference simulation from the dictionary
filtered_cats = {k: v for k, v in cats.items() if k != nsim0}
for i, catx in enumerate(filtered_cats):
dist, ind = catx.nearest_neighbours(X, radius=1, in_initial=False,
knearest=True)
dists[:, i] = numpy.ravel(dist)
cross_hindxs[:, i] = catx["index"][numpy.ravel(ind)]
return dists, cross_hindxs

View file

@ -1,56 +0,0 @@
# Copyright (C) 2022 Richard Stiskalek
# This program is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3 of the License, or (at your
# option) any later version.
#
# This program is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
# Public License for more details.
#
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
"""
Tools for finding the nearest neighbours of reference simulation haloes from
cross simulations.
"""
import numpy
def find_neighbour(nsim0, cats):
"""
Find the nearest neighbour of halos in `cat0` in `catx`.
Parameters
----------
nsim0 : int
Index of the reference simulation.
cats : dict
Dictionary of halo catalogues. Keys must be the simulation indices.
Returns
-------
dists : 2-dimensional array of shape `(nhalos, len(cats) - 1)`
Distances to the nearest neighbour.
cross_hindxs : 2-dimensional array of shape `(nhalos, len(cats) - 1)`
Halo indices of the nearest neighbour.
"""
cat0 = cats[nsim0]
X = cat0.position(in_initial=False)
shape = (X.shape[0], len(cats) - 1)
dists = numpy.full(shape, numpy.nan, dtype=numpy.float32)
cross_hindxs = numpy.full(shape, numpy.nan, dtype=numpy.int32)
i = 0
for nsimx, catx in cats.items():
if nsimx == nsim0:
continue
dist, ind = catx.nearest_neighbours(X, radius=1, in_initial=False,
knearest=True)
dists[:, i] = dist.reshape(-1,)
cross_hindxs[:, i] = catx["index"][ind.reshape(-1,)]
i += 1
return dists, cross_hindxs

View file

@ -1,67 +0,0 @@
# Copyright (C) 2022 Richard Stiskalek
# This program is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3 of the License, or (at your
# option) any later version.
#
# This program is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
# Public License for more details.
#
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
"""Useful functions."""
import numpy
def concatenate_parts(list_parts, include_velocities=False):
"""
Concatenate a list of particle arrays into a single array.
Parameters
----------
list_parts : list of structured arrays
List of particle arrays.
include_velocities : bool, optional
Whether to include velocities in the output array.
Returns
-------
parts_out : structured array
"""
# Count how large array will be needed
N = 0
for part in list_parts:
N += part.size
# Infer dtype of positions
if list_parts[0]["x"].dtype.char in numpy.typecodes["AllInteger"]:
posdtype = numpy.int32
else:
posdtype = numpy.float32
# We pre-allocate an empty array. By default, we include just particle
# positions, which may be specified by cell IDs if integers, and masses.
# Additionally also outputs velocities.
if include_velocities:
dtype = {
"names": ["x", "y", "z", "vx", "vy", "vz", "M"],
"formats": [posdtype] * 3 + [numpy.float32] * 4,
}
else:
dtype = {
"names": ["x", "y", "z", "M"],
"formats": [posdtype] * 3 + [numpy.float32],
}
parts_out = numpy.full(N, numpy.nan, dtype)
# Fill it one clump by another
start = 0
for parts in list_parts:
end = start + parts.size
for p in dtype["names"]:
parts_out[p][start:end] = parts[p]
start = end
return parts_out

View file

@ -26,6 +26,5 @@ from .pk_summary import PKReader # noqa
from .readsim import (MmainReader, CSiBORGReader, QuijoteReader, halfwidth_mask, # noqa
load_halo_particles) # noqa
from .tpcf_summary import TPCFReader # noqa
from .utils import (M200_to_R200, cartesian_to_radec, # noqa
cols_to_structured, radec_to_cartesian, read_h5,
real2redshift) # noqa
from .utils import (cartesian_to_radec, cols_to_structured, radec_to_cartesian, # noqa
read_h5, real2redshift) # noqa

View file

@ -17,29 +17,12 @@ Simulation box unit transformations.
"""
from abc import ABC, abstractmethod, abstractproperty
import numpy
from astropy import constants, units
from astropy.cosmology import LambdaCDM
from .readsim import CSiBORGReader, QuijoteReader
CSIBORG_CONV_NAME = {
"length": ["x", "y", "z", "peak_x", "peak_y", "peak_z", "Rs", "rmin",
"rmax", "r200c", "r500c", "r200m", "r500m", "x0", "y0", "z0",
"lagpatch_size"],
"velocity": ["vx", "vy", "vz"],
"mass": ["mass_cl", "totpartmass", "m200c", "m500c", "mass_mmain", "M",
"m200m", "m500m"],
"density": ["rho0"]
}
QUIJOTE_CONV_NAME = {
"length": ["x", "y", "z", "x0", "y0", "z0", "Rs", "r200c", "r500c",
"r200m", "r500m", "lagpatch_size"],
"mass": ["group_mass", "totpartmass", "m200c", "m500c", "m200m", "m500m"],
}
###############################################################################
# Base box #
###############################################################################
@ -77,6 +60,18 @@ class BaseBox(ABC):
"""
return self.cosmo.H0.value
@property
def rho_crit0(self):
r"""
Present-day critical density in :math:`M_\odot h^2 / \mathrm{cMpc}^3`.
Returns
-------
rho_crit0 : float
"""
rho_crit0 = self.cosmo.critical_density0
return rho_crit0.to_value(units.solMass / units.Mpc**3)
@property
def h(self):
r"""
@ -86,7 +81,7 @@ class BaseBox(ABC):
-------
h : float
"""
return self.H0 / 100
return self._h
@property
def Om0(self):
@ -111,31 +106,70 @@ class BaseBox(ABC):
pass
@abstractmethod
def convert_from_box(self, data, names):
def mpc2box(self, length):
r"""
Convert columns named `names` in array `data` from box units to
physical units, such that
- length -> :math:`Mpc`,
- mass -> :math:`M_\odot`,
- velocity -> :math:`\mathrm{km} / \mathrm{s}`,
- density -> :math:`M_\odot / \mathrm{Mpc}^3`.
Any other conversions are currently not implemented. Note that the
array is passed by reference and directly modified, even though it is
also explicitly returned. Additionally centres the box coordinates on
the observer, if they are being transformed.
Convert length from :math:`\mathrm{cMpc} / h` to box units.
Parameters
----------
data : structured array
Input array.
names : list of str
Columns to be converted.
length : float
Length in :math:`\mathrm{cMpc}`
Returns
-------
data : structured array
Input array with converted columns.
length : float
Length in box units.
"""
pass
@abstractmethod
def box2mpc(self, length):
r"""
Convert length from box units to :math:`\mathrm{cMpc} / h`.
Parameters
----------
length : float
Length in box units.
Returns
-------
length : float
Length in :math:`\mathrm{cMpc} / h`
"""
pass
@abstractmethod
def solarmass2box(self, mass):
r"""
Convert mass from :math:`M_\odot / h` to box units.
Parameters
----------
mass : float
Mass in :math:`M_\odot / h`.
Returns
-------
mass : float
Mass in box units.
"""
pass
@abstractmethod
def box2solarmass(self, mass):
r"""
Convert mass from box units to :math:`M_\odot / h`.
Parameters
----------
mass : float
Mass in box units.
Returns
-------
mass : float
Mass in :math:`M_\odot / h`.
"""
pass
@ -169,124 +203,31 @@ class CSiBORGBox(BaseBox):
"omega_k", "omega_b", "unit_l", "unit_d", "unit_t"]
for par in pars:
setattr(self, "_" + par, info[par])
self._cosmo = LambdaCDM(H0=self._H0, Om0=self._omega_m,
self._h = self._H0 / 100
self._cosmo = LambdaCDM(H0=100, Om0=self._omega_m,
Ode0=self._omega_l, Tcmb0=2.725 * units.K,
Ob0=self._omega_b)
self._Msuncgs = constants.M_sun.cgs.value # Solar mass in grams
@property
def box_G(self):
"""
Gravitational constant :math:`G` in box units. Given everything else
it looks like `self.unit_t` is in seconds.
Returns
-------
G : float
"""
return constants.G.cgs.value * (self._unit_d * self._unit_t**2)
@property
def box_H0(self):
"""
Present time Hubble constant :math:`H_0` in box units.
Returns
-------
H0 : float
"""
return self.H0 * 1e5 / units.Mpc.to(units.cm) * self._unit_t
@property
def box_c(self):
"""
Speed of light in box units.
Returns
-------
c : float
"""
return constants.c.cgs.value * self._unit_t / self._unit_l
@property
def box_rhoc(self):
"""
Critical density in box units.
Returns
-------
rhoc : float
"""
return 3 * self.box_H0**2 / (8 * numpy.pi * self.box_G)
def box2kpc(self, length):
r"""
Convert length from box units to :math:`\mathrm{ckpc}` (with
:math:`h=0.705`).
Parameters
----------
length : float
Length in box units.
Returns
-------
length : float
Length in :math:`\mathrm{ckpc}`
"""
return length * (self._unit_l / units.kpc.to(units.cm) / self._aexp)
def kpc2box(self, length):
r"""
Convert length from :math:`\mathrm{ckpc}` (with :math:`h=0.705`) to
box units.
Parameters
----------
length : float
Length in :math:`\mathrm{ckpc}`
Returns
-------
length : float
Length in box units.
"""
return length / (self._unit_l / units.kpc.to(units.cm) / self._aexp)
def mpc2box(self, length):
r"""
Convert length from :math:`\mathrm{cMpc}` (with :math:`h=0.705`) to
box units.
Parameters
----------
length : float
Length in :math:`\mathrm{cMpc}`
Returns
-------
length : float
Length in box units.
"""
return self.kpc2box(length * 1e3)
conv = (self._unit_l / units.kpc.to(units.cm) / self._aexp) * 1e-3
conv *= self._h
return length / conv
def box2mpc(self, length):
r"""
Convert length from box units to :math:`\mathrm{cMpc}` (with
:math:`h=0.705`).
conv = (self._unit_l / units.kpc.to(units.cm) / self._aexp) * 1e-3
conv *= self._h
return length * conv
Parameters
----------
length : float
Length in box units.
def solarmass2box(self, mass):
conv = (self._unit_d * self._unit_l**3) / self._Msuncgs
conv *= self.h
return mass / conv
Returns
-------
length : float
Length in :math:`\mathrm{ckpc}`
"""
return self.box2kpc(length) * 1e-3
def box2solarmass(self, mass):
conv = (self._unit_d * self._unit_l**3) / self._Msuncgs
conv *= self.h
return mass * conv
def box2vel(self, vel):
r"""
@ -304,105 +245,6 @@ class CSiBORGBox(BaseBox):
"""
return vel * (1e-2 * self._unit_l / self._unit_t / self._aexp) * 1e-3
def solarmass2box(self, mass):
r"""
Convert mass from :math:`M_\odot` (with :math:`h=0.705`) to box units.
Parameters
----------
mass : float
Mass in :math:`M_\odot`.
Returns
-------
mass : float
Mass in box units.
"""
return mass / (self._unit_d * self._unit_l**3) * self._Msuncgs
def box2solarmass(self, mass):
r"""
Convert mass from box units to :math:`M_\odot` (with :math:`h=0.705`).
It appears that `self.unit_d` is density in units of
:math:`\mathrm{g}/\mathrm{cm}^3`.
Parameters
----------
mass : float
Mass in box units.
Returns
-------
mass : float
Mass in :math:`M_\odot`.
"""
return mass * (self._unit_d * self._unit_l**3) / self._Msuncgs
def box2dens(self, density):
r"""
Convert density from box units to :math:`M_\odot / \mathrm{Mpc}^3`
(with :math:`h=0.705`).
Parameters
----------
density : float
Density in box units.
Returns
-------
density : float
Density in :math:`M_\odot / \mathrm{pc}^3`.
"""
return (density * self._unit_d
/ self._Msuncgs * (units.Mpc.to(units.cm)) ** 3)
def dens2box(self, density):
r"""
Convert density from :math:`M_\odot / \mathrm{Mpc}^3`
(with :math:`h=0.705`) to box units.
Parameters
----------
density : float
Density in :math:`M_\odot / \mathrm{pc}^3`.
Returns
-------
density : float
Density in box units.
"""
return (density / self._unit_d * self._Msuncgs
/ (units.Mpc.to(units.cm)) ** 3)
def convert_from_box(self, data, names):
names = [names] if isinstance(names, str) else names
transforms = {"length": self.box2mpc,
"mass": self.box2solarmass,
"velocity": self.box2vel,
"density": self.box2dens}
for name in names:
if name not in data.dtype.names:
continue
# Convert
found = False
for unittype, suppnames in CSIBORG_CONV_NAME.items():
if name in suppnames:
data[name] = transforms[unittype](data[name])
found = True
continue
# If nothing found
if not found:
raise NotImplementedError(
f"Conversion of `{name}` is not defined.")
# Center at the observer
if name in ["x0", "y0", "z0"]:
data[name] -= transforms["length"](0.5)
return data
@property
def boxsize(self):
return self.box2mpc(1.)
@ -428,10 +270,10 @@ class QuijoteBox(BaseBox):
def __init__(self, nsnap, nsim, paths):
zdict = {4: 0.0, 3: 0.5, 2: 1.0, 1: 2.0, 0: 3.0}
assert nsnap in zdict.keys(), f"`nsnap` must be in {zdict.keys()}."
self._aexp = 1 / (1 + zdict[nsnap])
info = QuijoteReader(paths).read_info(nsnap, nsim)
self._cosmo = LambdaCDM(H0=info["Hubble"], Om0=info["Omega_m"],
self._aexp = 1 / (1 + zdict[nsnap])
self._h = info["h"]
self._cosmo = LambdaCDM(H0=100, Om0=info["Omega_m"],
Ode0=info["Omega_l"], Tcmb0=2.725 * units.K)
self._info = info
@ -440,35 +282,9 @@ class QuijoteBox(BaseBox):
return self._info["BoxSize"]
def box2mpc(self, length):
r"""
Convert length from box units to :math:`\mathrm{cMpc} / h`.
Parameters
----------
length : float
Length in box units.
Returns
-------
length : float
Length in :math:`\mathrm{cMpc} / h`
"""
return length * self.boxsize
def mpc2box(self, length):
r"""
Convert length from :math:`\mathrm{cMpc} / h` to box units.
Parameters
----------
length : float
Length in :math:`\mathrm{cMpc} / h`.
Returns
-------
length : float
Length in box units.
"""
return length / self.boxsize
def solarmass2box(self, mass):
@ -502,33 +318,3 @@ class QuijoteBox(BaseBox):
Mass in :math:`M_\odot / h`.
"""
return mass * self._info["TotMass"]
def convert_from_box(self, data, names):
names = [names] if isinstance(names, str) else names
transforms = {"length": self.box2mpc,
"mass": self.box2solarmass,
# "velocity": self.box2vel,
# "density": self.box2dens,
}
for name in names:
if name not in data.dtype.names:
continue
# Convert
found = False
for unittype, suppnames in QUIJOTE_CONV_NAME.items():
if name in suppnames:
data[name] = transforms[unittype](data[name])
found = True
continue
# If nothing found
if not found:
raise NotImplementedError(
f"Conversion of `{name}` is not defined.")
# # Center at the observer
# if name in ["x0", "y0", "z0"]:
# data[name] -= transforms["length"](0.5)
return data

View file

@ -24,6 +24,7 @@ from itertools import product
from math import floor
import numpy
from readfof import FoF_catalog
from sklearn.neighbors import NearestNeighbors
@ -57,6 +58,7 @@ class BaseCatalogue(ABC):
@nsim.setter
def nsim(self, nsim):
assert isinstance(nsim, int)
self._nsim = nsim
@abstractproperty
@ -98,19 +100,9 @@ class BaseCatalogue(ABC):
data : structured array
"""
if self._data is None:
raise RuntimeError("Catalogue data not loaded!")
raise RuntimeError("`data` is not set!")
return self._data
def apply_bounds(self, bounds):
for key, (xmin, xmax) in bounds.items():
xmin = -numpy.inf if xmin is None else xmin
xmax = numpy.inf if xmax is None else xmax
if key == "dist":
x = self.radial_distance(in_initial=False)
else:
x = self[key]
self._data = self._data[(x > xmin) & (x <= xmax)]
@abstractproperty
def box(self):
"""
@ -122,72 +114,156 @@ class BaseCatalogue(ABC):
"""
pass
def position(self, in_initial=False, cartesian=True):
def load_initial(self, data, paths, simname):
"""
Load initial snapshot fits from the script `fit_init.py`.
Parameters
----------
data : structured array
The catalogue to which append the new data.
paths : :py:class:`csiborgtools.read.Paths`
Paths manager.
simname : str
Simulation name.
Returns
-------
data : structured array
"""
fits = numpy.load(paths.initmatch(self.nsim, simname, "fit"))
X, cols = [], []
for col in fits.dtype.names:
if col == "index":
continue
cols.append(col + "0" if col in ['x', 'y', 'z'] else col)
X.append(fits[col])
data = add_columns(data, X, cols)
for p in ('x0', 'y0', 'z0', 'lagpatch_size'):
data[p] = self.box.box2mpc(data[p])
return data
def load_fitted(self, data, paths, simname):
"""
Load halo fits from the script `fit_halos.py`.
Parameters
----------
data : structured array
The catalogue to which append the new data.
paths : :py:class:`csiborgtools.read.Paths`
Paths manager.
simname : str
Simulation name.
Returns
-------
data : structured array
"""
fits = numpy.load(paths.structfit(self.nsnap, self.nsim, simname))
cols = [col for col in fits.dtype.names if col != "index"]
X = [fits[col] for col in cols]
data = add_columns(data, X, cols)
box = self.box
data["r200c"] = box.box2mpc(data["r200c"])
return data
def filter_data(self, data, bounds):
"""
Filters data based on specified bounds for each key.
Parameters
----------
data : structured array
The data to be filtered.
bounds : dict
A dictionary with keys corresponding to data columns or `dist` and
values as a tuple of `(xmin, xmax)`. If `xmin` or `xmax` is `None`,
it defaults to negative infinity and positive infinity,
respectively.
Returns
-------
data : structured array
The filtered data based on the provided bounds.
"""
for key, (xmin, xmax) in bounds.items():
if key == "dist":
pos = numpy.vstack([data[p] - self.observer_location[i]
for i, p in enumerate("xyz")]).T
values_to_filter = numpy.linalg.norm(pos, axis=1)
else:
values_to_filter = data[key]
min_bound = xmin if xmin is not None else -numpy.inf
max_bound = xmax if xmax is not None else numpy.inf
data = data[(values_to_filter > min_bound)
& (values_to_filter <= max_bound)]
return data
@property
def observer_location(self):
r"""
Position components. If not Cartesian, then RA is in :math:`[0, 360)`
degrees and DEC is in :math:`[-90, 90]` degrees.
Location of the observer in units :math:`\mathrm{Mpc} / h`.
Returns
-------
obs_pos : 1-dimensional array of shape `(3,)`
"""
if self._observer_location is None:
raise RuntimeError("`observer_location` is not set!")
return self._observer_location
@observer_location.setter
def observer_location(self, obs_pos):
assert isinstance(obs_pos, (list, tuple, numpy.ndarray))
obs_pos = numpy.asanyarray(obs_pos)
assert obs_pos.shape == (3,)
self._observer_location = obs_pos
def position(self, in_initial=False, cartesian=True,
subtract_observer=False):
r"""
Return position components (Cartesian or RA/DEC).
Parameters
----------
in_initial : bool, optional
Whether to return the initial snapshot positions.
If True, return positions from the initial snapshot, otherwise the
final snapshot.
cartesian : bool, optional
Whether to return the Cartesian or spherical position components.
By default Cartesian.
If True, return Cartesian positions. Otherwise, return dist/RA/DEC
centered at the observer.
subtract_observer : bool, optional
If True, subtract the observer's location from the returned
positions. This is only relevant if `cartesian` is True.
Returns
-------
pos : 2-dimensional array of shape `(nobjects, 3)`
pos : ndarray, shape `(nobjects, 3)`
Position components.
"""
if in_initial:
ps = ["x0", "y0", "z0"]
else:
ps = ["x", "y", "z"]
pos = numpy.vstack([self[p] for p in ps]).T
if not cartesian:
pos = cartesian_to_radec(pos)
return pos
suffix = '0' if in_initial else ''
component_keys = [f"{comp}{suffix}" for comp in ('x', 'y', 'z')]
def velocity(self):
r"""
Cartesian velocity components in :math:`\mathrm{km} / \mathrm{s}`.
pos = numpy.vstack([self[key] for key in component_keys]).T
Returns
-------
vel : 2-dimensional array of shape `(nobjects, 3)`
"""
return numpy.vstack([self["v{}".format(p)] for p in ("x", "y", "z")]).T
if subtract_observer or not cartesian:
pos -= self.observer_location
def redshift_space_position(self, cartesian=True):
r"""
Redshift space position components. If Cartesian, then in
:math:`\mathrm{cMpc}`. If spherical, then radius is in
:math:`\mathrm{cMpc}`, RA in :math:`[0, 360)` degrees and DEC in
:math:`[-90, 90]` degrees. Note that the position is defined as the
minimum of the gravitationl potential.
Parameters
----------
cartesian : bool, optional
Whether to return the Cartesian or spherical position components.
By default Cartesian.
Returns
-------
pos : 2-dimensional array of shape `(nobjects, 3)`
"""
pos = self.position(cartesian=True)
vel = self.velocity()
origin = [0., 0., 0.]
rsp = real2redshift(pos, vel, origin, self.box, in_box_units=False,
make_copy=False)
if not cartesian:
rsp = cartesian_to_radec(rsp)
return rsp
return cartesian_to_radec(pos) if not cartesian else pos
def radial_distance(self, in_initial=False):
r"""
Distance of haloes from the origin.
Distance of haloes from the observer in :math:`\mathrm{cMpc}`.
Parameters
----------
@ -198,9 +274,41 @@ class BaseCatalogue(ABC):
-------
radial_distance : 1-dimensional array of shape `(nobjects,)`
"""
pos = self.position(in_initial=in_initial, cartesian=True)
pos = self.position(in_initial=in_initial, cartesian=True,
subtract_observer=True)
return numpy.linalg.norm(pos, axis=1)
def velocity(self):
r"""
Return Cartesian velocity in :math:`\mathrm{km} / \mathrm{s}`.
Returns
-------
vel : 2-dimensional array of shape `(nobjects, 3)`
"""
return numpy.vstack([self["v{}".format(p)] for p in ("x", "y", "z")]).T
def redshift_space_position(self, cartesian=True):
"""
Calculates the position of objects in redshift space. Positions can be
returned in either Cartesian coordinates (default) or spherical
coordinates (dist/RA/dec).
Parameters
----------
cartesian : bool, optional
Returns position in Cartesian coordinates if True, else in
spherical coordinates.
Returns
-------
pos : 2-dimensional array of shape `(nobjects, 3)`
Position of objects in the desired coordinate system.
"""
rsp = real2redshift(self.position(cartesian=True), self.velocity(),
self.observer_location, self.box, make_copy=False)
return rsp if cartesian else cartesian_to_radec(rsp)
def angmomentum(self):
"""
Cartesian angular momentum components of halos in the box coordinate
@ -214,8 +322,9 @@ class BaseCatalogue(ABC):
@lru_cache(maxsize=2)
def knn(self, in_initial):
"""
kNN object fitted on all catalogue objects. Caches the kNN object.
r"""
kNN object for catalogue objects with caching. Positions are centered
on the observer.
Parameters
----------
@ -225,51 +334,49 @@ class BaseCatalogue(ABC):
Returns
-------
knn : :py:class:`sklearn.neighbors.NearestNeighbors`
kNN object fitted with object positions.
"""
knn = NearestNeighbors()
return knn.fit(self.position(in_initial=in_initial))
pos = self.position(in_initial=in_initial)
return NearestNeighbors().fit(pos)
def nearest_neighbours(self, X, radius, in_initial, knearest=False,
return_mass=False, masss_key=None):
return_mass=False, mass_key=None):
r"""
Sorted nearest neigbours within `radius` of `X` in the initial or final
snapshot. However, if `knearest` is `True` then the `radius` is assumed
to be the integer number of nearest neighbours to return.
Return nearest neighbours within `radius` of `X` in a given snapshot.
Parameters
----------
X : 2-dimensional array of shape `(n_queries, 3)`
Cartesian query position components in :math:`\mathrm{cMpc}`.
X : 2D array, shape `(n_queries, 3)`
Query positions in :math:`\mathrm{cMpc} / h`. Expected to be
centered on the observer.
radius : float or int
Limiting neighbour distance. If `knearest` is `True` then this is
the number of nearest neighbours to return.
Limiting distance or number of neighbours, depending on `knearest`.
in_initial : bool
Whether to define the kNN on the initial or final snapshot.
Use the initial or final snapshot for kNN.
knearest : bool, optional
Whether `radius` is the number of nearest neighbours to return.
If True, `radius` is the number of neighbours to return.
return_mass : bool, optional
Whether to return the masses of the nearest neighbours.
masss_key : str, optional
Key of the mass column in the catalogue. Must be provided if
`return_mass` is `True`.
Return masses of the nearest neighbours.
mass_key : str, optional
Mass column key. Required if `return_mass` is True.
Returns
-------
dist : list of 1-dimensional arrays
List of length `n_queries` whose elements are arrays of distances
to the nearest neighbours.
knns : list of 1-dimensional arrays
List of length `n_queries` whose elements are arrays of indices of
nearest neighbours in this catalogue.
dist : list of arrays
Distances to the nearest neighbours for each query.
indxs : list of arrays
Indices of nearest neighbours for each query.
mass (optional): list of arrays
Masses of the nearest neighbours for each query.
"""
if not (X.ndim == 2 and X.shape[1] == 3):
raise TypeError("`X` must be an array of shape `(n_samples, 3)`.")
if knearest:
assert isinstance(radius, int)
if return_mass:
assert masss_key is not None
knn = self.knn(in_initial)
if X.shape != (len(X), 3):
raise ValueError("`X` must be of shape `(n_samples, 3)`.")
if knearest and not isinstance(radius, int):
raise ValueError("`radius` must be an integer if `knearest`.")
if return_mass and not mass_key:
raise ValueError("`mass_key` must be provided if `return_mass`.")
knn = self.knn(in_initial)
if knearest:
dist, indxs = knn.kneighbors(X, radius)
else:
@ -278,35 +385,26 @@ class BaseCatalogue(ABC):
if not return_mass:
return dist, indxs
if knearest:
mass = numpy.copy(dist)
for i in range(dist.shape[0]):
mass[i, :] = self[masss_key][indxs[i]]
else:
mass = deepcopy(dist)
for i in range(dist.size):
mass[i] = self[masss_key][indxs[i]]
mass = [self[mass_key][indx] for indx in indxs]
return dist, indxs, mass
def angular_neighbours(self, X, ang_radius, in_rsp, rad_tolerance=None):
r"""
Find nearest neighbours within `ang_radius` of query points `X`.
Optionally applies radial tolerance, which is expected to be in
:math:`\mathrm{cMpc}`.
Find nearest neighbours within `ang_radius` of query points `X` in the
final snaphot. Optionally applies radial distance tolerance, which is
expected to be in :math:`\mathrm{cMpc} / h`.
Parameters
----------
X : 2-dimensional array of shape `(n_queries, 2)` or `(n_queries, 3)`
Query positions. If 2-dimensional, then RA and DEC in degrees.
If 3-dimensional, then radial distance in :math:`\mathrm{cMpc}`,
RA and DEC in degrees.
Query positions. Either RA/dec in degrees or dist/RA/dec with
distance in :math:`\mathrm{cMpc} / h`.
in_rsp : bool
Whether to use redshift space positions of haloes.
If True, use redshift space positions of haloes.
ang_radius : float
Angular radius in degrees.
rad_tolerance : float, optional
Radial tolerance in :math:`\mathrm{cMpc}`.
Radial distance tolerance in :math:`\mathrm{cMpc} / h`.
Returns
-------
@ -316,46 +414,50 @@ class BaseCatalogue(ABC):
Indices of each neighbour in this catalogue.
"""
assert X.ndim == 2
# We first get positions of haloes in this catalogue, store their
# radial distance and normalise them to unit vectors.
# Get positions of haloes in this catalogue
if in_rsp:
# TODO what to do with subtracting the observer here?
pos = self.redshift_space_position(cartesian=True)
else:
pos = self.position(in_initial=False, cartesian=True)
pos = self.position(in_initial=False, cartesian=True,
subtract_observer=True)
# Convert halo positions to unit vectors.
raddist = numpy.linalg.norm(pos, axis=1)
pos /= raddist.reshape(-1, 1)
# We convert RAdec query positions to unit vectors. If no radial
# distance provided add it.
# Convert RA/dec query positions to unit vectors. If no radial
# distance is provided artificially add it.
if X.shape[1] == 2:
X = numpy.vstack([numpy.ones_like(X[:, 0]), X[:, 0], X[:, 1]]).T
radquery = None
else:
radquery = X[:, 0]
X = radec_to_cartesian(X)
# Find neighbours
knn = NearestNeighbors(metric="cosine")
knn.fit(pos)
# Convert angular radius to cosine difference.
metric_maxdist = 1 - numpy.cos(numpy.deg2rad(ang_radius))
dist, ind = knn.radius_neighbors(X, radius=metric_maxdist,
sort_results=True)
# And the cosine difference to angular distance.
# Convert cosine difference to angular distance
for i in range(X.shape[0]):
dist[i] = numpy.rad2deg(numpy.arccos(1 - dist[i]))
# Apply the radial tolerance
if rad_tolerance is not None:
assert radquery is not None
# Apply radial tolerance
if rad_tolerance and radquery:
for i in range(X.shape[0]):
mask = numpy.abs(raddist[ind[i]] - radquery) < rad_tolerance
dist[i] = dist[i][mask]
ind[i] = ind[i][mask]
mask = numpy.abs(raddist[ind[i]] - radquery[i]) < rad_tolerance
dist[i], ind[i] = dist[i][mask], ind[i][mask]
return dist, ind
@property
def keys(self):
"""
Catalogue keys.
Return catalogue keys.
Returns
-------
@ -364,11 +466,12 @@ class BaseCatalogue(ABC):
return self.data.dtype.names
def __getitem__(self, key):
# If key is an integer, return the corresponding row.
if isinstance(key, (int, numpy.integer)):
assert key >= 0
return self.data[key]
if key not in self.keys:
elif key not in self.keys():
raise KeyError(f"Key '{key}' not in catalogue.")
return self.data[key]
def __len__(self):
@ -382,7 +485,10 @@ class BaseCatalogue(ABC):
class CSiBORGHaloCatalogue(BaseCatalogue):
r"""
CSiBORG FoF halo catalogue.
CSiBORG FoF halo catalogue with units:
- Length: :math:`cMpc / h`
- Velocity: :math:`km / s`
- Mass: :math:`M_\odot / h`
Parameters
----------
@ -390,74 +496,52 @@ class CSiBORGHaloCatalogue(BaseCatalogue):
IC realisation index.
paths : py:class`csiborgtools.read.Paths`
Paths object.
observer_location : array, optional
Observer's location in :math:`\mathrm{Mpc} / h`.
bounds : dict
Parameter bounds to apply to the catalogue. The keys are the parameter
names and the items are a len-2 tuple of (min, max) values. In case of
no minimum or maximum, use `None`. For radial distance from the origin
use `dist`.
Parameter bounds; keys as names, values as (min, max) tuples. Use
`dist` for radial distance, `None` for no bound.
load_fitted : bool, optional
Whether to load fitted quantities.
Load fitted quantities.
load_initial : bool, optional
Whether to load initial positions.
Load initial positions.
with_lagpatch : bool, optional
Whether to only load halos with a resolved Lagrangian patch.
rawdata : bool, optional
Whether to return the raw data. In this case applies no cuts and
transformations.
Load halos with a resolved Lagrangian patch.
"""
def __init__(self, nsim, paths, bounds={"dist": (0, 155.5 / 0.705)},
load_fitted=True, load_initial=True, with_lagpatch=True,
rawdata=False):
def __init__(self, nsim, paths, observer_location=[338.85, 338.85, 338.85],
bounds={"dist": (0, 155.5)},
load_fitted=True, load_initial=True, with_lagpatch=False):
self.nsim = nsim
self.paths = paths
self.observer_location = observer_location
reader = CSiBORGReader(paths)
self._data = reader.read_fof_halos(self.nsim)
data = reader.read_fof_halos(self.nsim)
box = self.box
if load_fitted:
fits = numpy.load(paths.structfit(self.nsnap, nsim, "csiborg"))
cols = [col for col in fits.dtype.names if col != "index"]
X = [fits[col] for col in cols]
self._data = add_columns(self._data, X, cols)
# We want coordinates to be [0, 677.7] in Mpc / h
for p in ('x', 'y', 'z'):
data[p] = data[p] * box.h + box.box2mpc(1) / 2
# Similarly mass in units of Msun / h
data["fof_totpartmass"] *= box.h
data["fof_m200c"] *= box.h
# Because of a RAMSES bug, we must flip the x and z coordinates
flip_cols(data, 'x', 'z')
if load_initial:
fits = numpy.load(paths.initmatch(nsim, "csiborg", "fit"))
X, cols = [], []
for col in fits.dtype.names:
if col == "index":
continue
if col in ['x', 'y', 'z']:
cols.append(col + "0")
else:
cols.append(col)
X.append(fits[col])
data = self.load_initial(data, paths, "csiborg")
flip_cols(data, "x0", "z0")
if load_fitted:
data = self.load_fitted(data, paths, "csiborg")
flip_cols(data, "vx", "vz")
self._data = add_columns(self._data, X, cols)
if load_initial and with_lagpatch:
data = data[numpy.isfinite(data["lagpatch_size"])]
if rawdata:
for p in ('x', 'y', 'z'):
self._data[p] = self.box.mpc2box(self._data[p]) + 0.5
else:
if with_lagpatch:
self._data = self._data[numpy.isfinite(self["lagpatch_size"])]
# Flip positions and convert from code units to cMpc. Convert M too
flip_cols(self._data, "x", "z")
if load_fitted:
flip_cols(self._data, "vx", "vz")
names = ["totpartmass", "rho0", "r200c",
"r500c", "m200c", "m500c", "r200m", "m200m",
"r500m", "m500m", "vx", "vy", "vz"]
self._data = self.box.convert_from_box(self._data, names)
if bounds is not None:
data = self.filter_data(data, bounds)
if load_initial:
flip_cols(self._data, "x0", "z0")
for p in ("x0", "y0", "z0"):
self._data[p] -= 0.5
names = ["x0", "y0", "z0", "lagpatch_size"]
self._data = self.box.convert_from_box(self._data, names)
if bounds is not None:
self.apply_bounds(bounds)
self._data = data
@property
def nsnap(self):
@ -481,8 +565,11 @@ class CSiBORGHaloCatalogue(BaseCatalogue):
class QuijoteHaloCatalogue(BaseCatalogue):
"""
Quijote FoF halo catalogue.
r"""
Quijote FoF halo catalogue with units:
- Length: :math:`cMpc / h`
- Velocity: :math:`km / s`
- Mass: :math:`M_\odot / h`
Parameters
----------
@ -492,34 +579,30 @@ class QuijoteHaloCatalogue(BaseCatalogue):
Paths object.
nsnap : int
Snapshot index.
origin : len-3 tuple, optional
Where to place the origin of the box. In units of :math:`cMpc / h`.
observer_location : array, optional
Observer's location in :math:`\mathrm{Mpc} / h`.
bounds : dict
Parameter bounds to apply to the catalogue. The keys are the parameter
names and the items are a len-2 tuple of (min, max) values. In case of
no minimum or maximum, use `None`. For radial distance from the origin
use `dist`.
Parameter bounds; keys as parameter names, values as (min, max)
tuples. Use `dist` for radial distance, `None` for no bound.
load_fitted : bool, optional
Load fitted quantities from `fit_halos.py`.
load_initial : bool, optional
Whether to load initial positions.
Load initial positions from `fit_init.py`.
with_lagpatch : bool, optional
Whether to only load halos with a resolved Lagrangian patch.
rawdata : bool, optional
Whether to return the raw data. In this case applies no cuts and
transformations.
**kwargs : dict
Keyword arguments for backward compatibility.
Load halos with a resolved Lagrangian patch.
"""
_nsnap = None
_origin = None
def __init__(self, nsim, paths, nsnap, origin=[0., 0., 0.],
bounds=None, load_initial=True, with_lagpatch=True,
rawdata=False, **kwargs):
def __init__(self, nsim, paths, nsnap,
observer_location=[500., 500., 500.],
bounds=None, load_fitted=True, load_initial=True,
with_lagpatch=False):
self.nsim = nsim
self.paths = paths
self.nsnap = nsnap
self.origin = origin
self.observer_location = observer_location
self._box = QuijoteBox(nsnap, nsim, paths)
self._boxwidth = self.box.boxsize
fpath = self.paths.fof_cat(nsim, "quijote")
fof = FoF_catalog(fpath, self.nsnap, long_ids=False, swap=False,
@ -532,44 +615,29 @@ class QuijoteHaloCatalogue(BaseCatalogue):
("index", numpy.int32)]
data = cols_to_structured(fof.GroupLen.size, cols)
pos = self.box.mpc2box(fof.GroupPos / 1e3)
pos = fof.GroupPos / 1e3
vel = fof.GroupVel * (1 + self.redshift)
for i, p in enumerate(["x", "y", "z"]):
data[p] = pos[:, i] - self.origin[i]
data[p] = pos[:, i]
data["v" + p] = vel[:, i]
data["group_mass"] = self.box.solarmass2box(fof.GroupMass * 1e10)
data["group_mass"] = fof.GroupMass * 1e10
data["npart"] = fof.GroupLen
# We want to start indexing from 1. Index 0 is reserved for
# particles unassigned to any FoF group.
data["index"] = 1 + numpy.arange(data.size, dtype=numpy.int32)
if load_initial:
fits = numpy.load(paths.initmatch(nsim, "quijote", "fit"))
X, cols = [], []
for col in fits.dtype.names:
if col == "index":
continue
if col in ['x', 'y', 'z']:
cols.append(col + "0")
else:
cols.append(col)
X.append(fits[col])
data = add_columns(data, X, cols)
data = self.load_initial(data, paths, "quijote")
if load_fitted:
assert nsnap == 4
if load_initial and with_lagpatch:
data = data[numpy.isfinite(data["lagpatch_size"])]
if bounds is not None:
data = self.filter_data(data, bounds)
self._data = data
if not rawdata:
if with_lagpatch:
mask = numpy.isfinite(self._data["lagpatch_size"])
self._data = self._data[mask]
names = ["x", "y", "z", "group_mass"]
self._data = self.box.convert_from_box(self._data, names)
if load_initial:
names = ["x0", "y0", "z0", "lagpatch_size"]
self._data = self.box.convert_from_box(self._data, names)
if bounds is not None:
self.apply_bounds(bounds)
@property
def nsnap(self):
@ -596,40 +664,12 @@ class QuijoteHaloCatalogue(BaseCatalogue):
-------
redshift : float
"""
z_dict = {4: 0.0, 3: 0.5, 2: 1.0, 1: 2.0, 0: 3.0}
return z_dict[self.nsnap]
return {4: 0.0, 3: 0.5, 2: 1.0, 1: 2.0, 0: 3.0}[self.nsnap]
@property
def box(self):
"""
Quijote box object.
Returns
-------
box : instance of :py:class:`csiborgtools.units.BaseBox`
"""
return self._box
@property
def origin(self):
"""
Origin of the box with respect to the initial box units.
Returns
-------
origin : len-3 tuple
"""
if self._origin is None:
raise ValueError("`origin` is not set.")
return self._origin
@origin.setter
def origin(self, origin):
if isinstance(origin, (list, tuple)):
origin = numpy.asanyarray(origin)
assert origin.ndim == 1 and origin.size == 3
self._origin = origin
def pick_fiducial_observer(self, n, rmax):
r"""
Return a copy of itself, storing only halos within `rmax` of the new
@ -640,22 +680,15 @@ class QuijoteHaloCatalogue(BaseCatalogue):
n : int
Fiducial observer index.
rmax : float
Maximum distance from the fiducial observer in :math:`cMpc`.
Max. distance from the fiducial obs. in :math:`\mathrm{cMpc} / h`.
Returns
-------
cat : instance of csiborgtools.read.QuijoteHaloCatalogue
"""
new_origin = fiducial_observers(self.box.boxsize, rmax)[n]
# We make a copy of the catalogue to avoid modifying the original.
# Then, we shift coordinates back to the original box frame and then to
# the new origin.
cat = deepcopy(self)
for i, p in enumerate(('x', 'y', 'z')):
cat._data[p] += self.origin[i]
cat._data[p] -= new_origin[i]
cat.apply_bounds({"dist": (0, rmax)})
cat.observer_location = fiducial_observers(self.box.boxsize, rmax)[n]
cat._data = cat.filter_data(cat._data, {"dist": (0, rmax)})
return cat
@ -666,26 +699,20 @@ class QuijoteHaloCatalogue(BaseCatalogue):
def fiducial_observers(boxwidth, radius):
"""
Positions of fiducial observers in a box, such that that the box is
subdivided among them into spherical regions.
Compute observer positions in a box, subdivided into spherical regions.
Parameters
----------
boxwidth : float
Box width.
Width of the box.
radius : float
Radius of the spherical regions.
Returns
-------
origins : list of len-3 lists
Positions of the observers.
origins : list of lists
Positions of the observers, with each position as a len-3 list.
"""
nobs = floor(boxwidth / (2 * radius)) # Number of observers per dimension
origins = list(product([1, 3, 5], repeat=nobs))
for i in range(len(origins)):
origins[i] = list(origins[i])
for j in range(nobs):
origins[i][j] *= radius
return origins
nobs = floor(boxwidth / (2 * radius))
return [[val * radius for val in position]
for position in product([1, 3, 5], repeat=nobs)]

View file

@ -531,6 +531,8 @@ class MmainReader:
the position of the parent, the summed mass and the fraction of mass in
substructure. Corresponds to the PHEW Halo finder.
NOTE: this code is no longer used and the units may be inconsistent.
Parameters
----------
nsim : int
@ -642,8 +644,8 @@ class QuijoteReader:
if verbose:
print(f"{datetime.now()}: reading particle velocities.")
# NOTE convert to box units.
vel = readgadget.read_block(snapshot, "VEL ", ptype) # km/s
# Unlike the positions, we keep velocities in km/s
vel = readgadget.read_block(snapshot, "VEL ", ptype)
vel *= (1 + info["redshift"])
for i, v in enumerate(['vx', 'vy', 'vz']):
@ -657,9 +659,9 @@ class QuijoteReader:
if verbose:
print(f"{datetime.now()}: reading particle masses.")
if return_structured:
out["M"] = info["PartMass"] / info["TotMass"]
out["M"] = info["PartMass"]
else:
out[:, 6] = info["PartMass"] / info["TotMass"]
out[:, 6] = info["PartMass"]
return out, pids

View file

@ -18,7 +18,6 @@ Various coordinate transformations.
from os.path import isfile
import numpy
from astropy import units
from h5py import File
###############################################################################
@ -81,7 +80,7 @@ def radec_to_cartesian(X, isdeg=True):
return numpy.vstack([x, y, z]).T
def real2redshift(pos, vel, origin, box, in_box_units, periodic_wrap=True,
def real2redshift(pos, vel, observer_location, box, periodic_wrap=True,
make_copy=True):
r"""
Convert real-space position to redshift space position.
@ -89,18 +88,13 @@ def real2redshift(pos, vel, origin, box, in_box_units, periodic_wrap=True,
Parameters
----------
pos : 2-dimensional array `(nsamples, 3)`
Real-space Cartesian position components.
Real-space Cartesian components in :math:`\mathrm{cMpc} / h`.
vel : 2-dimensional array `(nsamples, 3)`
Cartesian velocity components.
origin : 1-dimensional array `(3,)`
Origin of the coordinate system in the `pos` reference frame.
Cartesian velocity in :math:`\mathrm{km} \mathrm{s}^{-1}`.
observer_location: 1-dimensional array `(3,)`
Observer location in :math:`\mathrm{cMpc} / h`.
box : py:class:`csiborg.read.CSiBORGBox`
Box units.
in_box_units: bool
Whether `pos` and `vel` are in box units. If not, position is assumed
to be in :math:`\mathrm{Mpc}`, velocity in
:math:`\mathrm{km} \mathrm{s}^{-1}` and math:`h=0.705`, or otherwise
matching the box.
periodic_wrap : bool, optional
Whether to wrap around the box, particles may be outside the default
bounds once RSD is applied.
@ -110,55 +104,30 @@ def real2redshift(pos, vel, origin, box, in_box_units, periodic_wrap=True,
Returns
-------
pos : 2-dimensional array `(nsamples, 3)`
Redshift-space Cartesian position components, with an observer assumed
at the `origin`.
Redshift-space Cartesian position in :math:`\mathrm{cMpc} / h`.
"""
a = box._aexp
H0 = box.box_H0 if in_box_units else box.H0
if make_copy:
pos = numpy.copy(pos)
for i in range(3):
pos[:, i] -= origin[i]
# Place the observer at the origin
pos -= observer_location
# Dot product of position vector and velocity
vr_dot = numpy.sum(pos * vel, axis=1)
# Compute the norm squared of the displacement
norm2 = numpy.sum(pos**2, axis=1)
dot = numpy.einsum("ij,ij->i", pos, vel)
pos *= (1 + a / H0 * dot / norm2).reshape(-1, 1)
for i in range(3):
pos[:, i] += origin[i]
pos *= (1 + box._aexp / box.H0 * vr_dot / norm2).reshape(-1, 1)
# Place the observer back at the original location
pos += observer_location
if periodic_wrap:
boxsize = 1. if in_box_units else box.box2mpc(1.)
# Wrap around the box: x > 1 -> x - 1, x < 0 -> x + 1
pos[pos > boxsize] -= boxsize
pos[pos < 0] += boxsize
boxsize = box.box2mpc(1.)
# Wrap around the box.
pos = numpy.where(pos > boxsize, pos - boxsize, pos)
pos = numpy.where(pos < 0, pos + boxsize, pos)
return pos
def M200_to_R200(M200, cosmo):
r"""
Convert :math:M_{200} to :math:`R_{200}`.
Parameters
----------
M200 : float
:math:`M_{200}` in :math:`M_{\odot}`.
cosmo : astropy cosmology object
Cosmology.
Returns
-------
R200 : float
:math:`R_{200}` in :math:`\mathrm{Mpc}`.
"""
Msun = 1.98847e30
M200 = 1e14 * Msun * units.kg
rhoc = cosmo.critical_density0
R200 = (M200 / (4 * numpy.pi / 3 * 200 * rhoc))**(1. / 3)
return R200.to(units.Mpc).value
###############################################################################
# Array manipulation #
###############################################################################
@ -173,215 +142,121 @@ def cols_to_structured(N, cols):
N : int
Structured array size.
cols: list of tuples
Column names and dtypes. Each tuple must written as `(name, dtype)`.
Column names and dtypes. Each tuple must be written as `(name, dtype)`.
Returns
-------
out : structured array
Initialised structured array.
Initialized structured array.
"""
if not isinstance(cols, list) and all(isinstance(c, tuple) for c in cols):
raise TypeError("`cols` must be a list of tuples.")
if not (isinstance(cols, list)
and all(isinstance(c, tuple) and len(c) == 2 for c in cols)):
raise TypeError("`cols` must be a list of (name, dtype) tuples.")
names, formats = zip(*cols)
dtype = {"names": names, "formats": formats}
dtype = {"names": [col[0] for col in cols],
"formats": [col[1] for col in cols]}
return numpy.full(N, numpy.nan, dtype=dtype)
def add_columns(arr, X, cols):
"""
Add new columns to a record array `arr`. Creates a new array.
Add new columns `X` to a record array `arr`. Creates a new array.
Parameters
----------
arr : record array
Record array to add columns to.
X : (list of) 1-dimensional array(s) or 2-dimensional array
arr : structured array
Structured array to add columns to.
X : (list of) 1-dimensional array(s)
Columns to be added.
cols : str or list of str
Column names to be added.
Returns
-------
out : record array
out : structured array
"""
# Make sure cols is a list of str and X a 2D array
cols = [cols] if isinstance(cols, str) else cols
# Convert X to a list of 1D arrays for consistency
if isinstance(X, numpy.ndarray) and X.ndim == 1:
X = X.reshape(-1, 1)
if isinstance(X, list) and all(x.ndim == 1 for x in X):
X = numpy.vstack([X]).T
if len(cols) != X.shape[1]:
raise ValueError("Number of columns of `X` does not match `cols`.")
if arr.size != X.shape[0]:
raise ValueError("Number of rows of `X` does not match size of `arr`.")
X = [X]
elif isinstance(X, numpy.ndarray):
raise ValueError("`X` should be a 1D array or a list of 1D arrays.")
# Get the new data types
dtype = arr.dtype.descr
for i, col in enumerate(cols):
dtype.append((col, X[i, :].dtype.descr[0][1]))
if len(X) != len(cols):
raise ValueError("Mismatch between `X` and `cols` lengths.")
# Fill in the old array
out = numpy.full(arr.size, numpy.nan, dtype=dtype)
if not all(isinstance(x, numpy.ndarray) and x.ndim == 1 for x in X):
raise ValueError("All elements of `X` should be 1D arrays.")
if not all(x.size == arr.size for x in X):
raise ValueError("All arrays in `X` must have the same size as `arr`.")
# Define new dtype
dtype = list(arr.dtype.descr) + [(col, x.dtype) for col, x in zip(cols, X)]
# Create a new array and fill in values
out = numpy.empty(arr.size, dtype=dtype)
for col in arr.dtype.names:
out[col] = arr[col]
for i, col in enumerate(cols):
out[col] = X[:, i]
for col, x in zip(cols, X):
out[col] = x
return out
def rm_columns(arr, cols):
"""
Remove columns `cols` from a record array `arr`. Creates a new array.
Remove columns `cols` from a structured array `arr`. Allocates a new array.
Parameters
----------
arr : record array
Record array to remove columns from.
arr : structured array
Structured array to remove columns from.
cols : str or list of str
Column names to be removed.
Returns
-------
out : record array
out : structured array
"""
# Check columns we wish to delete are in the array
# Ensure cols is a list
cols = [cols] if isinstance(cols, str) else cols
for col in cols:
if col not in arr.dtype.names:
raise ValueError("Column `{}` not in `arr`.".format(col))
# Get a new dtype without the cols to be deleted
new_dtype = []
for dtype, name in zip(arr.dtype.descr, arr.dtype.names, strict=True):
if name not in cols:
new_dtype.append(dtype)
# Check columns we wish to delete are in the array
missing_cols = [col for col in cols if col not in arr.dtype.names]
if missing_cols:
raise ValueError(f"Columns `{missing_cols}` not in `arr`.")
# Allocate a new array and fill it in.
out = numpy.full(arr.size, numpy.nan, new_dtype)
# Define new dtype without the cols to be deleted
new_dtype = [(n, dt) for n, dt in arr.dtype.descr if n not in cols]
# Allocate a new array and fill in values
out = numpy.empty(arr.size, dtype=new_dtype)
for name in out.dtype.names:
out[name] = arr[name]
return out
def list_to_ndarray(arrs, cols):
"""
Convert a list of structured arrays of CSiBORG simulation catalogues to
an 3-dimensional array.
Parameters
----------
arrs : list of structured arrays
List of CSiBORG catalogues.
cols : str or list of str
Columns to be extracted from the CSiBORG catalogues.
Returns
-------
out : 3-dimensional array
Catalogue array of shape `(n_realisations, n_samples, n_cols)`, where
`n_samples` is the maximum number of samples over the CSiBORG
catalogues.
"""
if not isinstance(arrs, list):
raise TypeError("`arrs` must be a list of structured arrays.")
cols = [cols] if isinstance(cols, str) else cols
Narr = len(arrs)
Nobj_max = max([arr.size for arr in arrs])
Ncol = len(cols)
# Preallocate the array and fill it
out = numpy.full((Narr, Nobj_max, Ncol), numpy.nan)
for i in range(Narr):
Nobj = arrs[i].size
for j in range(Ncol):
out[i, :Nobj, j] = arrs[i][cols[j]]
return out
def array_to_structured(arr, cols):
"""
Create a structured array from a 2-dimensional array.
Parameters
----------
arr : 2-dimensional array
Original array of shape `(n_samples, n_cols)`.
cols : list of str
Columns of the structured array
Returns
-------
out : structured array
Output structured array.
"""
cols = [cols] if isinstance(cols, str) else cols
if arr.ndim != 2 and arr.shape[1] != len(cols):
raise TypeError("`arr` must be a 2D array `(n_samples, n_cols)`.")
dtype = {"names": cols, "formats": [arr.dtype] * len(cols)}
out = numpy.full(arr.shape[0], numpy.nan, dtype=dtype)
for i, col in enumerate(cols):
out[col] = arr[:, i]
return out
def flip_cols(arr, col1, col2):
"""
Flip values in columns `col1` and `col2`. `arr` is passed by reference and
is not explicitly returned back.
Flip values in columns `col1` and `col2`. `arr` is modified in place.
Parameters
----------
arr : structured array
Array whose columns are to be converted.
Array whose columns are to be flipped.
col1 : str
First column name.
col2 : str
Second column name.
Returns
-------
None
"""
dum = numpy.copy(arr[col1])
arr[col1] = arr[col2]
arr[col2] = dum
if col1 not in arr.dtype.names or col2 not in arr.dtype.names:
raise ValueError(f"Both `{col1}` and `{col2}` must exist in `arr`.")
def extract_from_structured(arr, cols):
"""
Extract columns `cols` from a structured array. The array dtype is set
to be that of the first column in `cols`.
Parameters
----------
arr : structured array
Array from which to extract columns.
cols : list of str or str
Column to extract.
Returns
-------
out : 2- or 1-dimensional array
Array with shape `(n_particles, len(cols))`. If `len(cols)` is 1
flattens the array.
"""
cols = [cols] if isinstance(cols, str) else cols
for col in cols:
if col not in arr.dtype.names:
raise ValueError(f"Invalid column `{col}`!")
# Preallocate an array and populate it
out = numpy.zeros((arr.size, len(cols)), dtype=arr[cols[0]].dtype)
for i, col in enumerate(cols):
out[:, i] = arr[col]
# Optionally flatten
if len(cols) == 1:
return out.reshape(-1, )
return out
arr[col1], arr[col2] = numpy.copy(arr[col2]), numpy.copy(arr[col1])
###############################################################################

View file

@ -99,12 +99,12 @@ def _main(nsim, simname, verbose):
if simname == "csiborg":
box = csiborgtools.read.CSiBORGBox(nsnap, nsim, paths)
cat = csiborgtools.read.CSiBORGHaloCatalogue(
nsim, paths, with_lagpatch=False, load_initial=False, rawdata=True,
load_fitted=False)
nsim, paths, bounds=None, load_fitted=False, load_initial=False)
else:
box = csiborgtools.read.QuijoteBox(nsnap, nsim, paths)
cat = csiborgtools.read.QuijoteHaloCatalogue(
nsim, paths, nsnap, load_initial=False, rawdata=True)
nsim, paths, nsnap, bounds=None, load_fitted=False,
load_initial=False)
# Particle archive
f = csiborgtools.read.read_h5(paths.particles(nsim, simname))
@ -116,6 +116,7 @@ def _main(nsim, simname, verbose):
for i in trange(len(cat)) if verbose else range(len(cat)):
hid = cat["index"][i]
out["index"][i] = hid
# print("i = ", i)
part = csiborgtools.read.load_halo_particles(hid, particles, halo_map,
hid2map)
# Skip if no particles.

View file

@ -59,12 +59,12 @@ def get_counts(nsim, bins, paths, parser_args):
if simname == "csiborg":
cat = csiborgtools.read.CSiBORGHaloCatalogue(
nsim, paths, bounds=bounds, with_lagpatch=False,
load_initial=False)
nsim, paths, bounds=bounds, load_initial=False)
logmass = numpy.log10(cat["totpartmass"])
counts = csiborgtools.fits.number_counts(logmass, bins)
elif simname == "quijote":
cat0 = csiborgtools.read.QuijoteHaloCatalogue(nsim, paths, nsnap=4)
cat0 = csiborgtools.read.QuijoteHaloCatalogue(nsim, paths, nsnap=4,
load_initial=False)
nmax = int(cat0.box.boxsize // (2 * parser_args.Rmax))**3
counts = numpy.full((nmax, len(bins) - 1), numpy.nan,
dtype=numpy.float32)
@ -74,7 +74,8 @@ def get_counts(nsim, bins, paths, parser_args):
logmass = numpy.log10(cat["group_mass"])
counts[nobs, :] = csiborgtools.fits.number_counts(logmass, bins)
elif simname == "quijote_full":
cat = csiborgtools.read.QuijoteHaloCatalogue(nsim, paths, nsnap=4)
cat = csiborgtools.read.QuijoteHaloCatalogue(nsim, paths, nsnap=4,
load_initial=False)
logmass = numpy.log10(cat["group_mass"])
counts = csiborgtools.fits.number_counts(logmass, bins)
else:

View file

@ -68,7 +68,8 @@ def _main(nsim, simname, verbose):
cat = csiborgtools.read.CSiBORGHaloCatalogue(
nsim, paths, rawdata=True, load_fitted=False, load_initial=False)
else:
cat = csiborgtools.read.QuijoteHaloCatalogue(nsim, paths, nsnap=4)
cat = csiborgtools.read.QuijoteHaloCatalogue(
nsim, paths, nsnap=4, load_fitted=False, load_initial=False)
hid2map = {hid: i for i, hid in enumerate(halo_map[:, 0])}
# Initialise the overlapper.

View file

@ -11,11 +11,16 @@
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
"""
r"""
Script to load in the simulation particles, sort them by their FoF halo ID and
dump into a HDF5 file. Stores the first and last index of each halo in the
particle array. This can be used for fast slicing of the array to acces
particles of a single clump.
Ensures the following units:
- Positions in box units.
- Velocities in :math:`\mathrm{km} / \mathrm{s}`.
- Masses in :math:`M_\odot / h`.
"""
from argparse import ArgumentParser
from datetime import datetime
@ -118,6 +123,14 @@ def main(nsim, simname, verbose):
pars_extract = None
parts, pids = partreader.read_particle(
nsnap, nsim, pars_extract, return_structured=False, verbose=verbose)
# In case of CSiBORG, we need to convert the mass and velocities from
# box units.
if simname == "csiborg":
box = csiborgtools.read.CSiBORGBox(nsnap, nsim, paths)
parts[:, [3, 4, 5]] = box.box2vel(parts[:, [3, 4, 5]])
parts[:, 6] = box.box2solarmass(parts[:, 6])
# Now we in two steps save the particles and particle IDs.
if verbose:
print(f"{datetime.now()}: dumping particles from {nsim}.", flush=True)

View file

@ -12,9 +12,13 @@
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
"""
r"""
Script to sort the initial snapshot particles according to their final
snapshot ordering, which is sorted by the halo IDs.
Ensures the following units:
- Positions in box units.
- Masses in :math:`M_\odot / h`.
"""
from argparse import ArgumentParser
from datetime import datetime
@ -75,6 +79,13 @@ def _main(nsim, simname, verbose):
nsnap = -1
part0, pid0 = partreader.read_particle(
nsnap, nsim, pars_extract, return_structured=False, verbose=verbose)
# In CSiBORG we need to convert particle masses from box units.
if simname == "csiborg":
box = csiborgtools.read.CSiBORGBox(
max(paths.get_snapshots(nsim, simname)), nsim, paths)
part0[:, 3] = box.box2solarmass(part0[:, 3])
# Quijote's initial snapshot information also contains velocities but we
# don't need those.
if simname == "quijote":

View file

@ -89,9 +89,13 @@ def read_single_catalogue(args, config, nsim, run, rmax, paths, nobs=None):
raise KeyError(f"No configuration for run {run}.")
# We first read the full catalogue without applying any bounds.
if args.simname == "csiborg":
cat = csiborgtools.read.CSiBORGHaloCatalogue(nsim, paths)
cat = csiborgtools.read.CSiBORGHaloCatalogue(
nsim, paths, load_fitted=True, load_inital=True,
with_lagpatch=False)
else:
cat = csiborgtools.read.QuijoteHaloCatalogue(nsim, paths, nsnap=4)
cat = csiborgtools.read.QuijoteHaloCatalogue(
nsim, paths, nsnap=4, load_fitted=True, load_initial=True,
with_lagpatch=False)
if nobs is not None:
# We may optionally already here pick a fiducial observer.
cat = cat.pick_fiducial_observer(nobs, args.Rmax)

View file

@ -49,8 +49,10 @@ def open_csiborg(nsim):
cat : csiborgtools.read.CSiBORGHaloCatalogue
"""
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
bounds = {"totpartmass": (None, None), "dist": (0, 155/0.705)}
return csiborgtools.read.CSiBORGHaloCatalogue(nsim, paths, bounds=bounds)
bounds = {"totpartmass": (None, None), "dist": (0, 155)}
return csiborgtools.read.CSiBORGHaloCatalogue(
nsim, paths, bounds=bounds, load_fitted=True, load_initial=True,
with_lagpatch=False)
def open_quijote(nsim, nobs=None):
@ -69,9 +71,11 @@ def open_quijote(nsim, nobs=None):
cat : csiborgtools.read.QuijoteHaloCatalogue
"""
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
cat = csiborgtools.read.QuijoteHaloCatalogue(nsim, paths, nsnap=4)
cat = csiborgtools.read.QuijoteHaloCatalogue(
nsim, paths, nsnap=4, load_fitted=True, load_initial=True,
with_lagpatch=False)
if nobs is not None:
cat = cat.pick_fiducial_observer(nobs, rmax=155.5 / 0.705)
cat = cat.pick_fiducial_observer(nobs, rmax=155.5)
return cat
@ -101,7 +105,7 @@ def plot_mass_vs_ncells(nsim, pdf=False):
plt.yscale("log")
for n in [1, 10, 100]:
plt.axvline(n * 512 * mpart, c="black", ls="--", zorder=0, lw=0.8)
plt.xlabel(r"$M_{\rm tot} / M_\odot$")
plt.xlabel(r"$M_{\rm tot} ~ [M_\odot$ / h]")
plt.ylabel(r"$N_{\rm cells}$")
for ext in ["png"] if pdf is False else ["png", "pdf"]:
@ -198,7 +202,7 @@ def plot_hmf(pdf=False):
ax[1].axhline(1, color="k", ls=plt.rcParams["lines.linestyle"],
lw=0.5 * plt.rcParams["lines.linewidth"], zorder=0)
ax[0].set_ylabel(r"$\frac{\mathrm{d} n}{\mathrm{d}\log M_{\rm h}}~\mathrm{dex}^{-1}$") # noqa
ax[1].set_xlabel(r"$M_{\rm h}$ [$M_\odot$]")
ax[1].set_xlabel(r"$M_{\rm h}~[M_\odot / h]$")
ax[1].set_ylabel(r"$\mathrm{CSiBORG} / \mathrm{Quijote}$")
ax[0].set_xscale("log")
@ -268,7 +272,7 @@ def plot_hmf_quijote_full(pdf=False):
lw=0.5 * plt.rcParams["lines.linewidth"], zorder=0)
ax[0].set_ylabel(r"$\frac{\mathrm{d}^2 n}{\mathrm{d}\log M_{\rm h} \mathrm{d} V}~[\mathrm{dex}^{-1} (\mathrm{Mpc / h})^{-3}]$", # noqa
fontsize="small")
ax[1].set_xlabel(r"$M_{\rm h}$ [$M_\odot$]")
ax[1].set_xlabel(r"$M_{\rm h}~[$M_\odot / h]$", fontsize="small")
ax[1].set_ylabel(r"$\mathrm{HMF} / \langle \mathrm{HMF} \rangle$",
fontsize="small")

View file

@ -99,7 +99,7 @@ def plot_knn(runname):
# color=cols[k % len(cols)], zorder=0)
plt.legend()
plt.xlabel(r"$r~[\mathrm{Mpc}]$")
plt.xlabel(r"$r~[\mathrm{Mpc} / h]$")
plt.ylabel(r"$P(k | V = 4 \pi r^3 / 3)$")
for ext in ["png"]:

View file

@ -54,7 +54,7 @@ def open_cat(nsim):
cat : csiborgtools.read.CSiBORGHaloCatalogue
"""
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
bounds = {"totpartmass": (1e12, None)}
bounds = {"dist": (0, 155), "totpartmass": (1e12, None)}
return csiborgtools.read.CSiBORGHaloCatalogue(nsim, paths, bounds=bounds)
@ -86,7 +86,7 @@ def plot_mass_vs_pairoverlap(nsim0, nsimx):
plt.hexbin(x, y, mincnt=1, bins="log",
gridsize=50)
plt.colorbar(label="Counts in bins")
plt.xlabel(r"$\log M_{\rm tot} / M_\odot$")
plt.xlabel(r"$\log M_{\rm tot} ~ [M_\odot / h]$")
plt.ylabel("Pair overlap")
plt.ylim(0., 1.)
@ -130,7 +130,7 @@ def plot_mass_vs_maxpairoverlap(nsim0, nsimx):
plt.hexbin(x, y, mincnt=1, bins="log",
gridsize=50)
plt.colorbar(label="Counts in bins")
plt.xlabel(r"$\log M_{\rm tot} / M_\odot$")
plt.xlabel(r"$\log M_{\rm tot} ~ [M_\odot / h]$")
plt.ylabel("Maximum pair overlap")
plt.ylim(0., 1.)
@ -214,9 +214,9 @@ def plot_mass_vsmedmaxoverlap(nsim0):
numpy.nanstd(max_overlap, axis=1), gridsize=30,
C=x, reduce_C_function=numpy.nanmean)
axs[0].set_xlabel(r"$\log M_{\rm tot} / M_\odot$")
axs[0].set_xlabel(r"$\log M_{\rm tot} ~ [M_\odot / h]$")
axs[0].set_ylabel(r"Mean max. pair overlap")
axs[1].set_xlabel(r"$\log M_{\rm tot} / M_\odot$")
axs[1].set_xlabel(r"$\log M_{\rm tot} ~ [M_\odot / h]$")
axs[1].set_ylabel(r"Uncertainty of max. pair overlap")
axs[2].set_xlabel(r"Mean max. pair overlap")
axs[2].set_ylabel(r"Uncertainty of max. pair overlap")
@ -287,14 +287,15 @@ def plot_summed_overlap_vs_mass(nsim0):
axs[2].plot(t, t, color="red", linestyle="--")
axs[0].set_ylim(0.)
axs[1].set_ylim(0.)
axs[0].set_xlabel(r"$\log M_{\rm tot} / M_\odot$")
axs[0].set_xlabel(r"$\log M_{\rm tot} ~ [M_\odot / h]$")
axs[0].set_ylabel("Mean summed overlap")
axs[1].set_xlabel(r"$\log M_{\rm tot} / M_\odot$")
axs[1].set_xlabel(r"$\log M_{\rm tot} ~ [M_\odot / h]$")
axs[1].set_ylabel("Uncertainty of summed overlap")
axs[2].set_xlabel(r"$1 - $ mean summed overlap")
axs[2].set_ylabel("Mean prob. of no match")
label = ["Bin counts", "Bin counts", r"$\log M_{\rm tot} / M_\odot$"]
label = ["Bin counts", "Bin counts",
r"$\log M_{\rm tot} ~ [M_\odot / h]$"]
ims = [im1, im2, im3]
for i in range(3):
axins = inset_axes(axs[i], width="100%", height="5%",
@ -338,7 +339,7 @@ def plot_mass_vs_separation(nsim0, nsimx, plot_std=False, min_overlap=0.0):
catx = open_cat(nsimx)
reader = csiborgtools.read.PairOverlap(cat0, catx, paths,
maxdist=155 / 0.705)
maxdist=155)
mass = numpy.log10(reader.cat0("totpartmass"))
dist = reader.dist(in_initial=False, norm_kind="r200c")
overlap = reader.overlap(True)
@ -373,7 +374,7 @@ def plot_mass_vs_separation(nsim0, nsimx, plot_std=False, min_overlap=0.0):
ax.plot(xrange, numpy.polyval(p, xrange), color="red",
linestyle="--")
fig.colorbar(cx, label="Bin counts")
ax.set_xlabel(r"$\log M_{\rm tot} / M_\odot$")
ax.set_xlabel(r"$\log M_{\rm tot} ~ [M_\odot / h]$")
ax.set_ylabel(r"$\log \langle \Delta R / R_{\rm 200c}\rangle$")
fig.tight_layout()
@ -460,10 +461,10 @@ def plot_maxoverlap_mass(nsim0):
axs[0].plot(t, t + 0.2, color="red", linestyle="--", alpha=0.5)
axs[0].plot(t, t - 0.2, color="red", linestyle="--", alpha=0.5)
axs[0].set_xlabel(r"$\log M_{\rm tot} / M_\odot$")
axs[1].set_xlabel(r"$\log M_{\rm tot} / M_\odot$")
axs[0].set_ylabel(r"Max. overlap mean of $\log M_{\rm tot} / M_\odot$")
axs[1].set_ylabel(r"Max. overlap std. of $\log M_{\rm tot} / M_\odot$")
axs[0].set_xlabel(r"$\log M_{\rm tot} ~ [M_\odot / h]$")
axs[1].set_xlabel(r"$\log M_{\rm tot} ~ [M_\odot / h]$")
axs[0].set_ylabel(r"Max. overlap mean of $\log M_{\rm tot} ~ [M_\odot / h]$")
axs[1].set_ylabel(r"Max. overlap std. of $\log M_{\rm tot} ~ [M_\odot / h]$")
ims = [im0, im1]
for i in range(2):
@ -518,9 +519,9 @@ def plot_maxoverlapstat(nsim0, key):
m = numpy.isfinite(key_val) & numpy.isfinite(mu)
print("True to expectation corr: ", kendalltau(key_val[m], mu[m]))
axs[0].set_xlabel(r"$\log M_{\rm tot} / M_\odot$")
axs[0].set_xlabel(r"$\log M_{\rm tot} ~ [M_\odot / h]$")
axs[0].set_ylabel(r"Max. overlap mean of ${}$".format(key_label))
axs[1].set_xlabel(r"$\log M_{\rm tot} / M_\odot$")
axs[1].set_xlabel(r"$\log M_{\rm tot} ~ [M_\odot / h]$")
axs[1].set_ylabel(r"Max. overlap std. of ${}$".format(key_label))
axs[2].set_xlabel(r"${}$".format(key_label))
axs[2].set_ylabel(r"Max. overlap mean of ${}$".format(key_label))
@ -622,10 +623,9 @@ def plot_mass_vs_expected_mass(nsim0, min_overlap=0, max_prob_nomatch=1):
gridsize=50, C=mass[mask],
reduce_C_function=numpy.nanmedian)
axs[2].axhline(0, color="red", linestyle="--", alpha=0.5)
axs[0].set_xlabel(r"True $\log M_{\rm tot} / M_\odot$")
axs[0].set_ylabel(r"Expected $\log M_{\rm tot} / M_\odot$")
axs[1].set_xlabel(r"True $\log M_{\rm tot} / M_\odot$")
axs[0].set_xlabel(r"True $\log M_{\rm tot} ~ [M_\odot / h]$")
axs[0].set_ylabel(r"Expected $\log M_{\rm tot} ~ [M_\odot / h]$")
axs[1].set_xlabel(r"True $\log M_{\rm tot} ~ [M_\odot / h]$")
axs[1].set_ylabel(r"Std. of $\sigma_{\log M_{\rm tot}}$")
axs[2].set_xlabel(r"1 - median prob. of no match")
axs[2].set_ylabel(r"$\log M_{\rm tot} - \log M_{\rm tot, exp}$")
@ -636,7 +636,8 @@ def plot_mass_vs_expected_mass(nsim0, min_overlap=0, max_prob_nomatch=1):
axs[0].plot(t, t - 0.2, color="red", linestyle="--", alpha=0.5)
ims = [im0, im1, im2]
labels = ["Bin counts", "Bin counts", r"$\log M_{\rm tot}$"]
labels = ["Bin counts", "Bin counts",
r"$\log M_{\rm tot} ~ [M_\odot / h]$"]
for i in range(3):
axins = inset_axes(axs[i], width="100%", height="5%",
loc='upper center', borderpad=-0.75)
@ -758,10 +759,10 @@ def plot_dist(run, kind, kwargs, runs_to_mass, pulled_cdf=False, r200=None):
fig, ax = plt.subplots()
if run != "mass009":
ax.set_title(r"${} \leq \log M_{{\rm tot}} / M_\odot < {}$"
ax.set_title(r"${} \leq \log M_{{\rm tot}} / (M_\odot h) < {}$"
.format(*runs_to_mass[run]), fontsize="small")
else:
ax.set_title(r"$\log M_{{\rm tot}} / M_\odot \geq {}$"
ax.set_title(r"$\log M_{{\rm tot}} / (M_\odot h) \geq {}$"
.format(runs_to_mass[run][0]), fontsize="small")
# Plot data
nrad = y_csiborg.shape[0]
@ -778,12 +779,12 @@ def plot_dist(run, kind, kwargs, runs_to_mass, pulled_cdf=False, r200=None):
ax.plot(x2, y2, c="gray", ls="--",
label="Quijote" if i == 0 else None)
fig.colorbar(cmap, ax=ax, label=r"$R_{\rm dist}~[\mathrm{Mpc}]$")
fig.colorbar(cmap, ax=ax, label=r"$R_{\rm dist}~[\mathrm{Mpc} / h]$")
ax.grid(alpha=0.5, lw=0.4)
# Plot labels
if pulled_cdf:
if r200 is None:
ax.set_xlabel(r"$\tilde{r}_{1\mathrm{NN}}~[\mathrm{Mpc}]$")
ax.set_xlabel(r"$\tilde{r}_{1\mathrm{NN}}~[\mathrm{Mpc} / h]$")
if kind == "pdf":
ax.set_ylabel(r"$p(\tilde{r}_{1\mathrm{NN}})$")
else:
@ -796,7 +797,7 @@ def plot_dist(run, kind, kwargs, runs_to_mass, pulled_cdf=False, r200=None):
ax.set_ylabel(r"$\mathrm{CDF}(\tilde{r}_{1\mathrm{NN}} / R_{200c})$") # noqa
else:
if r200 is None:
ax.set_xlabel(r"$r_{1\mathrm{NN}}~[\mathrm{Mpc}]$")
ax.set_xlabel(r"$r_{1\mathrm{NN}}~[\mathrm{Mpc} / h]$")
if kind == "pdf":
ax.set_ylabel(r"$p(r_{1\mathrm{NN}})$")
else:
@ -901,7 +902,7 @@ def plot_cdf_diff(runs, kwargs, pulled_cdf, runs_to_mass):
ax.fill_between(r, *numpy.percentile(dy, [16, 84], axis=0),
alpha=0.5, color=cmap.to_rgba(runs_to_mass[i]))
fig.colorbar(cmap, ax=ax, ticks=runs_to_mass,
label=r"$\log M_{\rm tot} / M_\odot$")
label=r"$\log M_{\rm tot} ~ [M_\odot / h]$")
ax.set_xlim(0.0, 55)
ax.set_ylim(0)
@ -909,17 +910,17 @@ def plot_cdf_diff(runs, kwargs, pulled_cdf, runs_to_mass):
# Plot labels
if pulled_cdf:
ax.set_xlabel(r"$\tilde{r}_{1\mathrm{NN}}~[\mathrm{Mpc}]$")
ax.set_xlabel(r"$\tilde{r}_{1\mathrm{NN}}~[\mathrm{Mpc} / h]$")
else:
ax.set_xlabel(r"$r_{1\mathrm{NN}}~[\mathrm{Mpc}]$")
ax.set_xlabel(r"$r_{1\mathrm{NN}}~[\mathrm{Mpc} / h]$")
ax.set_ylabel(r"$\Delta \mathrm{CDF}(r_{1\mathrm{NN}})$")
# Plot labels
if pulled_cdf:
ax.set_xlabel(r"$\tilde{r}_{1\mathrm{NN}}~[\mathrm{Mpc}]$")
ax.set_xlabel(r"$\tilde{r}_{1\mathrm{NN}}~[\mathrm{Mpc} / h]$")
ax.set_ylabel(r"$\Delta \mathrm{CDF}(\tilde{r}_{1\mathrm{NN}})$")
else:
ax.set_xlabel(r"$r_{1\mathrm{NN}}~[\mathrm{Mpc}]$")
ax.set_xlabel(r"$r_{1\mathrm{NN}}~[\mathrm{Mpc} / h]$")
ax.set_ylabel(r"$\Delta \mathrm{CDF}(r_{1\mathrm{NN}})$")
fig.tight_layout()
@ -1104,7 +1105,7 @@ def plot_significance(simname, runs, nsim, nobs, kind, kwargs, runs_to_mass):
cbar_ax = fig.add_axes([1.0, 0.125, 0.035, 0.85])
fig.colorbar(cmap, cax=cbar_ax, ticks=runs_to_mass,
label=r"$\log M_{\rm tot} / M_\odot$")
label=r"$\log M_{\rm tot} ~ [M_\odot / h]$")
ax[0].set_xlim(z[0], z[-1])
ax[0].set_ylim(1e-5, 1.)
@ -1216,7 +1217,7 @@ def plot_significance_vs_mass(simname, runs, nsim, nobs, kind, kwargs,
corr = plt_utils.latex_float(*kendalltau(xs[mask], ys[mask]))
plt.title(r"$\tau = {}, p = {}$".format(*corr), fontsize="small")
plt.xlabel(r"$\log M_{\rm tot} / M_\odot$")
plt.xlabel(r"$\log M_{\rm tot} ~ [M_\odot / h]$")
if kind == "ks":
plt.ylabel(r"$\log p$-value of $r_{1\mathrm{NN}}$ distribution")
plt.ylim(top=0)