csiborgtools/notebooks/knn.ipynb
Richard Stiskalek 5784011de0
kNN-CDF secondary halo bias (#40)
* Add seperate autoknn script & config file

* edit ics

* Edit submission script

* Add threshold values

* Edit batch sizign

* Remove print

* edit

* Rename files

* Rename

* Update nb

* edit runs

* Edit submit

* Add median threshold

* add new auto reader

* editt submit

* edit submit

* Edit submit

* Add mean prk

* Edit runs

* Remove correlation file

* Move split to clutering

* Add init

* Remove import

* Add the file

* Add correlation reading

* Edit scripts

* Add below and above median permutation for cross

* Update imports

* Move rvs_in_sphere

* Create utils

* Split

* Add import

* Add normalised marks

* Add import

* Edit readme

* Clean up submission file

* Stop tracking submit files

* Update gitignore

* Add poisson field analytical expression

* Add abstract generators

* Add generators

* Pass in the generator

* Add a check for if there are any files

* Start saving average density

* Update nb

* Update readme

* Update units

* Edit jobs

* Update submits

* Update reader

* Add random crossing

* Update crossing script

* Add crossing with random

* Update readme

* Update notebook
2023-04-09 20:57:05 +01:00

717 KiB

In [2]:
import sys
import numpy as np
import matplotlib.pyplot as plt
import scienceplots
import astroquery
from tqdm import trange, tqdm

sys.path.append("../")
import csiborgtools

%matplotlib widget 
%load_ext autoreload
%autoreload 2
In [38]:
# # Norma
cluster = {"RA": (16 + 15 / 60 + 32.8 / 60**2) * 15,
           "DEC": -60 + 54 / 60 + 30 / 60**2,
           "DIST": 67.8}

Xclust = np.array([cluster["DIST"], cluster["RA"], cluster["DEC"]]).reshape(1, -1)
In [39]:
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
nsims = paths.get_ics(False)
In [29]:
Xclust = np.array([cluster["DIST"], cluster["RA"], cluster["DEC"]]).reshape(1, -1)
In [33]:
matches = np.full(len(nsims), np.nan)

for ii in trange(101):
    cat = csiborgtools.read.HaloCatalogue(nsims[ii], paths, minmass=('M', 1e13))
    dist, ind = cat.angular_neighbours(Xclust, ang_radius=5, rad_tolerance=10)
    dist = dist[0]
    ind = ind[0]

    if ind.size > 0:
        matches[ii] = np.max(cat['M'][ind])
100%|██████████| 101/101 [00:44<00:00,  2.25it/s]
In [37]:
x = np.log10(matches[~np.isnan(matches)])


plt.figure()
plt.hist(x, bins=10)
plt.show()
Figure
No description has been provided for this image
In [ ]: