kNN-CDF secondary halo bias (#40)

* Add seperate autoknn script & config file

* edit ics

* Edit submission script

* Add threshold values

* Edit batch sizign

* Remove print

* edit

* Rename files

* Rename

* Update nb

* edit runs

* Edit submit

* Add median threshold

* add new auto reader

* editt submit

* edit submit

* Edit submit

* Add mean prk

* Edit runs

* Remove correlation file

* Move split to clutering

* Add init

* Remove import

* Add the file

* Add correlation reading

* Edit scripts

* Add below and above median permutation for cross

* Update imports

* Move rvs_in_sphere

* Create utils

* Split

* Add import

* Add normalised marks

* Add import

* Edit readme

* Clean up submission file

* Stop tracking submit files

* Update gitignore

* Add poisson field analytical expression

* Add abstract generators

* Add generators

* Pass in the generator

* Add a check for if there are any files

* Start saving average density

* Update nb

* Update readme

* Update units

* Edit jobs

* Update submits

* Update reader

* Add random crossing

* Update crossing script

* Add crossing with random

* Update readme

* Update notebook
This commit is contained in:
Richard Stiskalek 2023-04-09 20:57:05 +01:00 committed by GitHub
parent 826ab61d2d
commit 5784011de0
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
28 changed files with 2563 additions and 486 deletions

2
.gitignore vendored
View file

@ -15,4 +15,4 @@ build/*
csiborgtools.egg-info/*
Pylians3/*
scripts/plot_correlation.ipynb
scripts/python.sh
scripts/*.sh

View file

@ -7,12 +7,20 @@
## Project Clustering
- [ ] Add uncertainty to the kNN-CDF autocorrelation?
- [ ] Add kNN-CDF differences.
- [ ] Add reading halo catalogues at higher redshifts.
- [x] Add the joint kNN-CDF calculation.
- [x] Make kNN-CDF more memory friendly if generating many randoms.
### Longterm
- [ ] Add uncertainty to the kNN-CDF autocorrelation?
- [ ] Add reading halo catalogues at higher redshifts.
### April 9 2023 Sunday
- [x] Add normalised marks calculation.
- [x] Add normalised marks to the submission scripts.
- [x] Verify analytical formula for the kNN of a uniform field.
- [x] For the cross-correlation try making the second field randoms.
- [ ] Clean up the reader code.
- [x] Correct the crossing script.
- [ ] Get started with the 2PCF calculation.
## Project Environmental Dependence
- [ ] Add gradient and Hessian of the overdensity field.

View file

@ -12,4 +12,4 @@
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
from csiborgtools import (read, match, utils, units, fits, field) # noqa
from csiborgtools import (read, match, utils, units, fits, field, clustering) # noqa

View file

@ -1,4 +1,4 @@
# Copyright (C) 2022 Richard Stiskalek
# Copyright (C) 2023 Richard Stiskalek
# This program is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3 of the License, or (at your
@ -12,58 +12,15 @@
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
"""
2PCF calculation.
NOTE: This is an old script that needs to be updated.
"""
import numpy
from Corrfunc.mocks import DDtheta_mocks
from Corrfunc.utils import convert_3d_counts_to_cf
from warnings import warn
def get_randoms_sphere(N, seed=42):
"""
Generate random points on a sphere.
Parameters
----------
N : int
Number of points.
seed : int
Random seed.
Returns
-------
ra : 1-dimensional array
Right ascension in :math:`[0, 360)` degrees.
dec : 1-dimensional array
Declination in :math:`[-90, 90]` degrees.
"""
gen = numpy.random.default_rng(seed)
ra = gen.random(N) * 360
dec = numpy.rad2deg(numpy.arcsin(2 * (gen.random(N) - 0.5)))
return ra, dec
def wrapRA(ra, degrees=True):
"""
Wrap the right ascension from :math:`[-180, 180)` to :math`[0, 360)`
degrees or equivalently if `degrees=False` in radians.
Paramaters
----------
ra : 1-dimensional array
Right ascension values.
degrees : float, optional
Whether the right ascension is in degrees.
Returns
-------
ra : 1-dimensional array
Wrapped around right ascension.
"""
mask = ra < 0
if numpy.sum(mask) == 0:
warn("No negative right ascension found.")
ra[mask] += 360 if degrees else 2 * numpy.pi
return ra
from .utils import (rvs_on_sphere, wrapRA)
def sphere_angular_tpcf(bins, RA1, DEC1, RA2=None, DEC2=None, nthreads=1,
@ -113,11 +70,11 @@ def sphere_angular_tpcf(bins, RA1, DEC1, RA2=None, DEC2=None, nthreads=1,
NR1 = ND1 * Nmult
NR2 = ND2 * Nmult
# Generate randoms. Note that these are over the sphere!
randRA1, randDEC1 = get_randoms_sphere(NR1, seed1)
randRA2, randDEC2 = get_randoms_sphere(NR2, seed2)
randRA1, randDEC1 = rvs_on_sphere(NR1, indeg=True, random_state=seed1)
randRA2, randDEC2 = rvs_on_sphere(NR2, indeg=True, random_state=seed2)
# Wrap RA
RA1 = wrapRA(numpy.copy(RA1))
RA2 = wrapRA(numpy.copy(RA2))
RA1 = wrapRA(numpy.copy(RA1), indeg=True)
RA2 = wrapRA(numpy.copy(RA2), indeg=True)
# Calculate pairs
D1D2 = DDtheta_mocks(0, nthreads, bins, RA1, DEC1, RA2=RA2, DEC2=DEC2)
D1R2 = DDtheta_mocks(0, nthreads, bins, RA1, DEC1,
@ -127,4 +84,4 @@ def sphere_angular_tpcf(bins, RA1, DEC1, RA2=None, DEC2=None, nthreads=1,
R1R2 = DDtheta_mocks(0, nthreads, bins, randRA1, randDEC1,
RA2=randRA2, DEC2=randDEC2)
# Convert to the CF
return convert_3d_counts_to_cf(ND1, ND2, NR1, NR2, D1D2, D1R2, D2R1, R1R2)
return convert_3d_counts_to_cf(ND1, ND2, NR1, NR2, D1D2, D1R2, D2R1, R1R2)

View file

@ -0,0 +1,16 @@
# Copyright (C) 2022 Richard Stiskalek
# This program is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3 of the License, or (at your
# option) any later version.
#
# This program is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
# Public License for more details.
#
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
from .knn import kNN_CDF # noqa
from .utils import (RVSinsphere, RVSinbox, RVSonsphere, BaseRVS, normalised_marks) # noqa

View file

@ -18,52 +18,16 @@ kNN-CDF calculation
import numpy
from scipy.interpolate import interp1d
from scipy.stats import binned_statistic
from tqdm import tqdm
from .utils import BaseRVS
class kNN_CDF:
"""
Object to calculate the kNN-CDF for a set of CSiBORG halo catalogues from
their kNN objects.
"""
@staticmethod
def rvs_in_sphere(nsamples, R, random_state=42, dtype=numpy.float32):
"""
Generate random samples in a sphere of radius `R` centered at the
origin.
Parameters
----------
nsamples : int
Number of samples to generate.
R : float
Radius of the sphere.
random_state : int, optional
Random state for the random number generator.
dtype : numpy dtype, optional
Data type, by default `numpy.float32`.
Returns
-------
samples : 2-dimensional array of shape `(nsamples, 3)`
"""
gen = numpy.random.default_rng(random_state)
# Sample spherical coordinates
r = gen.uniform(0, 1, nsamples).astype(dtype)**(1/3) * R
theta = 2 * numpy.arcsin(gen.uniform(0, 1, nsamples).astype(dtype))
phi = 2 * numpy.pi * gen.uniform(0, 1, nsamples).astype(dtype)
# Convert to cartesian coordinates
x = r * numpy.sin(theta) * numpy.cos(phi)
y = r * numpy.sin(theta) * numpy.sin(phi)
z = r * numpy.cos(theta)
return numpy.vstack([x, y, z]).T
"""Object to calculate the kNN-CDF statistic."""
@staticmethod
def cdf_from_samples(r, rmin=None, rmax=None, neval=None,
dtype=numpy.float32):
"""
Calculate the CDF from samples.
Calculate the kNN-CDF from a sampled PDF.
Parameters
----------
@ -128,22 +92,21 @@ class kNN_CDF:
corr[k, :] = joint_cdf[k, :] - cdf0[k, :] * cdf1[k, :]
return corr
def brute_cdf(self, knn, nneighbours, Rmax, nsamples, rmin, rmax, neval,
def brute_cdf(self, knn, rvs_gen, nneighbours, nsamples, rmin, rmax, neval,
random_state=42, dtype=numpy.float32):
"""
Calculate the CDF for a kNN of CSiBORG halo catalogues without batch
sizing. This can become memory intense for large numbers of randoms
and, therefore, is only for testing purposes.
Calculate the kNN-CDF without batch sizing. This can become memory
intense for large numbers of randoms and, therefore, is primarily for
testing purposes.
Parameters
----------
knns : `sklearn.neighbors.NearestNeighbors`
kNN of CSiBORG halo catalogues.
knn : `sklearn.neighbors.NearestNeighbors`
Catalogue NN object.
rvs_gen : :py:class:`csiborgtools.clustering.BaseRVS`
Uniform RVS generator matching `knn`.
neighbours : int
Maximum number of neighbours to use for the kNN-CDF calculation.
Rmax : float
Maximum radius of the sphere in which to sample random points for
the knn-CDF calculation. This should match the CSiBORG catalogues.
nsamples : int
Number of random points to sample for the knn-CDF calculation.
rmin : float
@ -164,7 +127,8 @@ class kNN_CDF:
cdfs : 2-dimensional array
CDFs evaluated at `rs`.
"""
rand = self.rvs_in_sphere(nsamples, Rmax, random_state=random_state)
assert isinstance(rvs_gen, BaseRVS)
rand = rvs_gen(nsamples, random_state=random_state)
dist, __ = knn.kneighbors(rand, nneighbours)
dist = dist.astype(dtype)
@ -177,18 +141,20 @@ class kNN_CDF:
cdf = numpy.asanyarray(cdf)
return rs, cdf
def joint(self, knn0, knn1, nneighbours, Rmax, nsamples, rmin, rmax,
def joint(self, knn0, knn1, rvs_gen, nneighbours, nsamples, rmin, rmax,
neval, batch_size=None, random_state=42,
dtype=numpy.float32):
"""
Calculate the joint CDF for two kNNs of CSiBORG halo catalogues.
Calculate the joint knn-CDF.
Parameters
----------
knn0 : `sklearn.neighbors.NearestNeighbors` instance
kNN of the first CSiBORG halo catalogue.
NN object of the first catalogue.
knn1 : `sklearn.neighbors.NearestNeighbors` instance
kNN of the second CSiBORG halo catalogue.
NN object of the second catalogue.
rvs_gen : :py:class:`csiborgtools.clustering.BaseRVS`
Uniform RVS generator matching `knn1` and `knn2`.
neighbours : int
Maximum number of neighbours to use for the kNN-CDF calculation.
Rmax : float
@ -222,6 +188,7 @@ class kNN_CDF:
joint_cdf : 2-dimensional array
Joint CDF evaluated at `rs`.
"""
assert isinstance(rvs_gen, BaseRVS)
batch_size = nsamples if batch_size is None else batch_size
assert nsamples >= batch_size
nbatches = nsamples // batch_size
@ -233,8 +200,7 @@ class kNN_CDF:
jointdist = numpy.zeros((batch_size, 2), dtype=dtype)
for j in range(nbatches):
rand = self.rvs_in_sphere(batch_size, Rmax,
random_state=random_state + j)
rand = rvs_gen(batch_size, random_state=random_state + j)
dist0, __ = knn0.kneighbors(rand, nneighbours)
dist1, __ = knn1.kneighbors(rand, nneighbours)
@ -269,21 +235,19 @@ class kNN_CDF:
rs = (bins[1:] + bins[:-1]) / 2 # Bin centers
return rs, cdf0, cdf1, joint_cdf
def __call__(self, *knns, nneighbours, Rmax, nsamples, rmin, rmax, neval,
batch_size=None, verbose=True, random_state=42,
dtype=numpy.float32):
def __call__(self, knn, rvs_gen, nneighbours, nsamples, rmin, rmax, neval,
batch_size=None, random_state=42, dtype=numpy.float32):
"""
Calculate the CDF for a set of kNNs of CSiBORG halo catalogues.
Parameters
----------
*knns : `sklearn.neighbors.NearestNeighbors` instances
kNNs of CSiBORG halo catalogues.
knn : `sklearn.neighbors.NearestNeighbors`
Catalogue NN object.
rvs_gen : :py:class:`csiborgtools.clustering.BaseRVS`
Uniform RVS generator matching `knn1` and `knn2`.
neighbours : int
Maximum number of neighbours to use for the kNN-CDF calculation.
Rmax : float
Maximum radius of the sphere in which to sample random points for
the knn-CDF calculation. This should match the CSiBORG catalogues.
nsamples : int
Number of random points to sample for the knn-CDF calculation.
rmin : float
@ -296,8 +260,6 @@ class kNN_CDF:
Number of random points to sample in each batch. By default equal
to `nsamples`, however recommeded to be smaller to avoid requesting
too much memory,
verbose : bool, optional
Verbosity flag.
random_state : int, optional
Random state for the random number generator.
dtype : numpy dtype, optional
@ -307,33 +269,30 @@ class kNN_CDF:
-------
rs : 1-dimensional array
Distances at which the CDF is evaluated.
cdfs : 2 or 3-dimensional array
CDFs evaluated at `rs`.
cdf : 2-dimensional array
CDF evaluated at `rs`.
"""
assert isinstance(rvs_gen, BaseRVS)
batch_size = nsamples if batch_size is None else batch_size
assert nsamples >= batch_size
nbatches = nsamples // batch_size
# Preallocate the bins and the CDF array
bins = numpy.logspace(numpy.log10(rmin), numpy.log10(rmax), neval)
cdfs = numpy.zeros((len(knns), nneighbours, neval - 1), dtype=dtype)
for i, knn in enumerate(tqdm(knns) if verbose else knns):
for j in range(nbatches):
rand = self.rvs_in_sphere(batch_size, Rmax,
random_state=random_state + j)
dist, __ = knn.kneighbors(rand, nneighbours)
cdf = numpy.zeros((nneighbours, neval - 1), dtype=dtype)
for i in range(nbatches):
rand = rvs_gen(batch_size, random_state=random_state + i)
dist, __ = knn.kneighbors(rand, nneighbours)
for k in range(nneighbours): # Count for each neighbour
_counts, __, __ = binned_statistic(
dist[:, k], dist[:, k], bins=bins, statistic="count",
range=(rmin, rmax))
cdfs[i, k, :] += _counts
for k in range(nneighbours): # Count for each neighbour
_counts, __, __ = binned_statistic(
dist[:, k], dist[:, k], bins=bins, statistic="count",
range=(rmin, rmax))
cdf[k, :] += _counts
cdfs = numpy.cumsum(cdfs, axis=-1) # Cumulative sum, i.e. the CDF
for i in range(len(knns)):
for k in range(nneighbours):
cdfs[i, k, :] /= cdfs[i, k, -1]
cdf = numpy.cumsum(cdf, axis=-1) # Cumulative sum, i.e. the CDF
for k in range(nneighbours):
cdf[k, :] /= cdf[k, -1]
rs = (bins[1:] + bins[:-1]) / 2 # Bin centers
cdfs = cdfs[0, ...] if len(knns) == 1 else cdfs
return rs, cdfs
return rs, cdf

View file

@ -0,0 +1,193 @@
# Copyright (C) 2022 Richard Stiskalek
# This program is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3 of the License, or (at your
# option) any later version.
#
# This program is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
# Public License for more details.
#
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
"""Clustering support functions."""
from abc import (ABC, abstractmethod)
from warnings import warn
import numpy
###############################################################################
# Random points #
###############################################################################
class BaseRVS(ABC):
"""
Base RVS generator.
"""
@abstractmethod
def __call__(self, nsamples, random_state, dtype):
"""
Generate RVS.
Parameters
----------
nsamples : int
Number of samples to generate.
random_state : int, optional
Random state for the random number generator.
dtype : numpy dtype, optional
Data type, by default `numpy.float32`.
Returns
-------
samples : 2-dimensional array of shape `(nsamples, ndim)`
"""
pass
class RVSinsphere(BaseRVS):
"""
Generator of uniform RVS in a sphere of radius `R` in Cartesian
coordinates centered at the origin.
Parameters
----------
R : float
Radius of the sphere.
"""
def __init__(self, R):
assert R > 0, "Radius must be positive."
self.R = R
BaseRVS.__init__(self)
def __call__(self, nsamples, random_state=42, dtype=numpy.float32):
gen = numpy.random.default_rng(random_state)
# Spherical
r = gen.random(nsamples, dtype=dtype)**(1/3) * self.R
theta = 2 * numpy.arcsin(gen.random(nsamples, dtype=dtype))
phi = 2 * numpy.pi * gen.random(nsamples, dtype=dtype)
# Cartesian
x = r * numpy.sin(theta) * numpy.cos(phi)
y = r * numpy.sin(theta) * numpy.sin(phi)
z = r * numpy.cos(theta)
return numpy.vstack([x, y, z]).T
class RVSinbox(BaseRVS):
"""
Generator of uniform RVS in a box of width `L` in Cartesian coordinates in
:math:`[0, L]^3`.
Parameters
----------
width : float
Width of the box.
"""
def __init__(self, width):
assert width > 0, "Width must be positive."
self.width = width
BaseRVS.__init__(self)
def __call__(self, nsamples, random_state=42, dtype=numpy.float32):
gen = numpy.random.default_rng(random_state)
x = gen.random(nsamples, dtype=dtype)
y = gen.random(nsamples, dtype=dtype)
z = gen.random(nsamples, dtype=dtype)
return self.width * numpy.vstack([x, y, z]).T
class RVSonsphere(BaseRVS):
"""
Generator of uniform RVS on the surface of a unit sphere. RA is in
:math:`[0, 2\pi)` and dec in :math:`[-\pi / 2, \pi / 2]`, respectively.
If `indeg` is `True` then converted to degrees.
Parameters
----------
indeg : bool
Whether to generate the right ascension and declination in degrees.
"""
def __init__(self, indeg):
assert isinstance(indeg, bool), "`indeg` must be a boolean."
self.indeg = indeg
BaseRVS.__init__(self)
def __call__(self, nsamples, random_state=42, dtype=numpy.float32):
gen = numpy.random.default_rng(random_state)
ra = 2 * numpy.pi * gen.random(nsamples, dtype=dtype)
dec = numpy.arcsin(2 * (gen.random(nsamples, dtype=dtype) - 0.5))
if self.indeg:
ra = numpy.rad2deg(ra)
dec = numpy.rad2deg(dec)
return numpy.vstack([ra, dec]).T
###############################################################################
# RA wrapping #
###############################################################################
def wrapRA(ra, indeg):
"""
Wrap RA from :math:`[-180, 180)` to :math`[0, 360)` degrees if `indeg` or
equivalently in radians otherwise.
Paramaters
----------
ra : 1-dimensional array
Right ascension.
indeg : bool
Whether the right ascension is in degrees.
Returns
-------
wrapped_ra : 1-dimensional array
"""
mask = ra < 0
if numpy.sum(mask) == 0:
warn("No negative right ascension found.", UserWarning())
ra[mask] += 360 if indeg else 2 * numpy.pi
return ra
###############################################################################
# Secondary assembly bias normalised marks #
###############################################################################
def normalised_marks(x, y, nbins):
"""
Calculate the normalised marks of `y` binned by `x`.
Parameters
----------
x : 1-dimensional array
Binning variable.
y : 1-dimensional array
The variable to be marked.
nbins : int
Number of percentile bins.
Returns
-------
marks : 1-dimensional array
"""
assert x.ndim == y.ndim == 1
if y.dtype not in [numpy.float32, numpy.float64]:
raise NotImplemented("Marks from integers are not supported.")
bins = numpy.percentile(x, q=numpy.linspace(0, 100, nbins + 1))
marks = numpy.full_like(y, numpy.nan)
for i in range(nbins):
m = (x >= bins[i]) & (x < bins[i + 1])
# Calculate the normalised marks of this bin
_marks = numpy.full(numpy.sum(m), numpy.nan, dtype=marks.dtype)
for n, ind in enumerate(numpy.argsort(y[m])):
_marks[ind] = n
_marks /= numpy.nanmax(_marks)
marks[m] = _marks
return marks

View file

@ -18,5 +18,3 @@ from .match import (RealisationsMatcher, cosine_similarity, # noqa
calculate_overlap, calculate_overlap_indxs, # noqa
dist_centmass, dist_percentile) # noqa
from .num_density import (binned_counts, number_density) # noqa
from .knn import kNN_CDF
# from .correlation import (get_randoms_sphere, sphere_angular_tpcf) # noqa

View file

@ -18,6 +18,7 @@ Tools for summarising various results.
from os.path import (join, isfile)
from glob import glob
import numpy
from scipy.special import factorial
import joblib
from tqdm import tqdm
@ -184,55 +185,53 @@ class kNNCDFReader:
"""
Shortcut object to read in the kNN CDF data.
"""
def read(self, files, ks, rmin=None, rmax=None, to_clip=True):
def read(self, run, folder, rmin=None, rmax=None, to_clip=True):
"""
Read the kNN CDF data can be either the auto- or cross-correlation.
Read the auto- or cross-correlation kNN-CDF data. Infers the type from
the data files.
Parameters
----------
files : list of str
List of file paths to read in.
ks : list of int
kNN values to read in.
run : str
Run ID to read in.
folder : str
Path to the folder where the auto-correlation kNN-CDF is stored.
rmin : float, optional
Minimum separation. By default ignored.
rmax : float, optional
Maximum separation. By default ignored.
to_clip : bool, optional
Whether to clip the auto-correlation CDF. Ignored if reading in the
Whether to clip the auto-correlation CDF. Ignored for
cross-correlation.
Returns
-------
rs : 1-dimensional array
Array of separations.
out : 4-dimensional array
Auto-correlation or cross-correlation kNN CDFs. The shape is
`(len(files), len(mass_thresholds), len(ks), neval)`.
mass_thresholds : 1-dimensional array
Array of mass thresholds.
rs : 1-dimensional array of shape `(neval, )`
Separations where the CDF is evaluated.
out : 3-dimensional array of shape `(len(files), len(ks), neval)`
Array of CDFs or cross-correlations.
"""
data = joblib.load(files[0])
if "cdf_0" in data.keys():
isauto = True
kind = "cdf"
elif "corr_0" in data.keys():
isauto = False
kind = "corr"
else:
raise ValueError("Unknown data format.")
rs = data["rs"]
mass_thresholds = data["mass_threshold"]
neval = data["{}_0".format(kind)].shape[1]
out = numpy.full((len(files), len(mass_thresholds), len(ks), neval),
numpy.nan, dtype=numpy.float32)
run += ".p"
files = [f for f in glob(join(folder, "*")) if run in f]
if len(files) == 0:
raise RuntimeError("No files found for run `{}`.".format(run[:-2]))
for i, file in enumerate(tqdm(files)):
for i, file in enumerate(files):
data = joblib.load(file)
for j in range(len(mass_thresholds)):
out[i, j, ...] = data["{}_{}".format(kind, j)][ks, :]
if isauto and to_clip:
out[i, j, ...] = self.clipped_cdf(out[i, j, ...])
if i == 0: # Initialise the array
if "corr" in data.keys():
kind = "corr"
isauto = False
else:
kind = "cdf"
isauto = True
out = numpy.full((len(files), *data[kind].shape), numpy.nan,
dtype=numpy.float32)
rs = data["rs"]
out[i, ...] = data[kind]
if isauto and to_clip:
out[i, ...] = self.clipped_cdf(out[i, ...])
# Apply separation cuts
mask = (rs >= rmin if rmin is not None else rs > 0)
@ -240,7 +239,7 @@ class kNNCDFReader:
rs = rs[mask]
out = out[..., mask]
return rs, out, mass_thresholds
return rs, out
@staticmethod
def peaked_cdf(cdf, make_copy=True):
@ -295,37 +294,74 @@ class kNNCDFReader:
return cdf
@staticmethod
def prob_kvolume(cdfs, rs=None, normalise=False):
"""
Calculate the probability that a spherical volume contains :math:`k`=
objects from the kNN CDFs.
def prob_k(cdf):
r"""
Calculate the PDF that a spherical volume of radius :math:`r` contains
:math:`k` objects, i.e. :math:`P(k | V = 4 \pi r^3 / 3)`.
Parameters
----------
cdf : 4-dimensional array of shape `(nfiles, nmasses, nknn, nrs)`
cdf : 3-dimensional array of shape `(len(files), len(ks), len(rs))`
Array of CDFs
normalise : bool, optional
Whether to normalise the probability to 1.
Returns
-------
pk : 4-dimensional array of shape `(nfiles, nmasses, nknn - 1, nrs)`
pk : 3-dimensional array of shape `(len(files), len(ks)- 1, len(rs))`
"""
out = numpy.full_like(cdfs[..., 1:, :], numpy.nan, dtype=numpy.float32)
out = numpy.full_like(cdf[..., 1:, :], numpy.nan, dtype=numpy.float32)
nks = cdf.shape[-2]
out[..., 0, :] = 1 - cdf[..., 0, :]
for k in range(cdfs.shape[-2] - 1):
out[..., k, :] = cdfs[..., k, :] - cdfs[..., k + 1, :]
for k in range(1, nks - 1):
out[..., k, :] = cdf[..., k - 1, :] - cdf[..., k, :]
if normalise:
assert rs is not None, "rs must be provided to normalise."
assert rs.ndim == 1
norm = numpy.nansum(
0.5 * (out[..., 1:] + out[..., :-1]) * (rs[1:] - rs[:-1]),
axis=-1)
out /= norm.reshape(*norm.shape, 1)
return out
def mean_prob_k(self, cdf):
"""
Calculate the mean PDF that a spherical volume of radius :math:`r`
contains :math:`k` objects, i.e. :math:`P(k | V = 4 \pi r^3 / 3)`,
averaged over the IC realisations.
Parameters
----------
cdf : 3-dimensional array of shape `(len(files), len(ks), len(rs))`
Array of CDFs
Returns
-------
out : 3-dimensional array of shape `(len(ks) - 1, len(rs), 2)`
Mean :math:`P(k | V = 4 \pi r^3 / 3) and its standard deviation,
stored along the last dimension, respectively.
"""
pk = self.prob_k(cdf)
return numpy.stack([numpy.mean(pk, axis=0), numpy.std(pk, axis=0)],
axis=-1)
def poisson_prob_k(self, rs, k, ndensity):
"""
Calculate the analytical PDF that a spherical volume of
radius :math:`r` contains :math:`k` objects, i.e.
:math:`P(k | V = 4 \pi r^3 / 3)`, assuming a Poisson field (uniform
distribution of points).
Parameters
----------
rs : 1-dimensional array
Array of separations.
k : int
Number of objects.
ndensity : float
Number density of objects.
Returns
-------
pk : 1-dimensional array
The PDF that a spherical volume of radius :math:`r` contains
:math:`k` objects.
"""
V = 4 * numpy.pi / 3 * rs**3
return (ndensity * V)**k / factorial(k) * numpy.exp(-ndensity * V)
@staticmethod
def cross_files(ic, folder):
"""

File diff suppressed because one or more lines are too long

182
scripts/knn_auto.py Normal file
View file

@ -0,0 +1,182 @@
# Copyright (C) 2022 Richard Stiskalek
# This program is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3 of the License, or (at your
# option) any later version.
#
# This program is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
# Public License for more details.
#
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
"""A script to calculate the KNN-CDF for a set of CSiBORG halo catalogues."""
from os.path import join
from warnings import warn
from argparse import ArgumentParser
from copy import deepcopy
from datetime import datetime
from mpi4py import MPI
from TaskmasterMPI import master_process, worker_process
import numpy
from sklearn.neighbors import NearestNeighbors
import joblib
import yaml
try:
import csiborgtools
except ModuleNotFoundError:
import sys
sys.path.append("../")
import csiborgtools
###############################################################################
# MPI and arguments #
###############################################################################
comm = MPI.COMM_WORLD
rank = comm.Get_rank()
nproc = comm.Get_size()
parser = ArgumentParser()
parser.add_argument("--runs", type=str, nargs="+")
args = parser.parse_args()
with open('../scripts/knn_auto.yml', 'r') as file:
config = yaml.safe_load(file)
Rmax = 155 / 0.705 # Mpc (h = 0.705) high resolution region radius
totvol = 4 * numpy.pi * Rmax**3 / 3
minmass = 1e12
ics = [7444, 7468, 7492, 7516, 7540, 7564, 7588, 7612, 7636, 7660, 7684,
7708, 7732, 7756, 7780, 7804, 7828, 7852, 7876, 7900, 7924, 7948,
7972, 7996, 8020, 8044, 8068, 8092, 8116, 8140, 8164, 8188, 8212,
8236, 8260, 8284, 8308, 8332, 8356, 8380, 8404, 8428, 8452, 8476,
8500, 8524, 8548, 8572, 8596, 8620, 8644, 8668, 8692, 8716, 8740,
8764, 8788, 8812, 8836, 8860, 8884, 8908, 8932, 8956, 8980, 9004,
9028, 9052, 9076, 9100, 9124, 9148, 9172, 9196, 9220, 9244, 9268,
9292, 9316, 9340, 9364, 9388, 9412, 9436, 9460, 9484, 9508, 9532,
9556, 9580, 9604, 9628, 9652, 9676, 9700, 9724, 9748, 9772, 9796,
9820, 9844]
dumpdir = "/mnt/extraspace/rstiskalek/csiborg/knn"
fout = join(dumpdir, "auto", "knncdf_{}_{}.p")
paths = csiborgtools.read.CSiBORGPaths()
knncdf = csiborgtools.clustering.kNN_CDF()
###############################################################################
# Analysis #
###############################################################################
def read_single(selection, cat):
"""Positions for single catalogue auto-correlation."""
mmask = numpy.ones(len(cat), dtype=bool)
pos = cat.positions(False)
# Primary selection
psel = selection["primary"]
pmin, pmax = psel.get("min", None), psel.get("max", None)
if pmin is not None:
mmask &= (cat[psel["name"]] >= pmin)
if pmax is not None:
mmask &= (cat[psel["name"]] < pmax)
pos = pos[mmask, ...]
# Secondary selection
if "secondary" not in selection:
return pos
smask = numpy.ones(pos.shape[0], dtype=bool)
ssel = selection["secondary"]
smin, smax = ssel.get("min", None), ssel.get("max", None)
prop = cat[ssel["name"]][mmask]
if ssel.get("toperm", False):
prop = numpy.random.permutation(prop)
if ssel.get("marked", True):
x = cat[psel["name"]][mmask]
prop = csiborgtools.clustering.normalised_marks(
x, prop, nbins=config["nbins_marks"])
if smin is not None:
smask &= (prop >= smin)
if smax is not None:
smask &= (prop < smax)
return pos[smask, ...]
def do_auto(run, cat, ic):
"""Calculate the kNN-CDF single catalgoue autocorrelation."""
_config = config.get(run, None)
if _config is None:
warn("No configuration for run {}.".format(run))
return
rvs_gen = csiborgtools.clustering.RVSinsphere(Rmax)
pos = read_single(_config, cat)
knn = NearestNeighbors()
knn.fit(pos)
rs, cdf = knncdf(
knn, rvs_gen=rvs_gen, nneighbours=config["nneighbours"],
rmin=config["rmin"], rmax=config["rmax"],
nsamples=int(config["nsamples"]), neval=int(config["neval"]),
batch_size=int(config["batch_size"]), random_state=config["seed"])
joblib.dump({"rs": rs, "cdf": cdf, "ndensity": pos.shape[0] / totvol},
fout.format(str(ic).zfill(5), run))
def do_cross_rand(run, cat, ic):
"""Calculate the kNN-CDF cross catalogue random correlation."""
_config = config.get(run, None)
if _config is None:
warn("No configuration for run {}.".format(run))
return
rvs_gen = csiborgtools.clustering.RVSinsphere(Rmax)
knn1, knn2 = NearestNeighbors(), NearestNeighbors()
pos1 = read_single(_config, cat)
knn1.fit(pos1)
pos2 = rvs_gen(pos1.shape[0])
knn2.fit(pos2)
rs, cdf0, cdf1, joint_cdf = knncdf.joint(
knn1, knn2, rvs_gen=rvs_gen, nneighbours=int(config["nneighbours"]),
rmin=config["rmin"], rmax=config["rmax"],
nsamples=int(config["nsamples"]), neval=int(config["neval"]),
batch_size=int(config["batch_size"]), random_state=config["seed"])
corr = knncdf.joint_to_corr(cdf0, cdf1, joint_cdf)
joblib.dump({"rs": rs, "corr": corr}, fout.format(str(ic).zfill(5), run))
def do_runs(ic):
cat = csiborgtools.read.HaloCatalogue(ic, paths, max_dist=Rmax,
min_mass=minmass)
for run in args.runs:
if "random" in run:
do_cross_rand(run, cat, ic)
else:
do_auto(run, cat, ic)
###############################################################################
# MPI task delegation #
###############################################################################
if nproc > 1:
if rank == 0:
tasks = deepcopy(ics)
master_process(tasks, comm, verbose=True)
else:
worker_process(do_runs, comm, verbose=False)
else:
tasks = deepcopy(ics)
for task in tasks:
print("{}: completing task `{}`.".format(datetime.now(), task))
do_runs(task)
comm.Barrier()
if rank == 0:
print("{}: all finished.".format(datetime.now()))
quit() # Force quit the script

144
scripts/knn_auto.yml Normal file
View file

@ -0,0 +1,144 @@
rmin: 0.1
rmax: 100
nneighbours: 64
nsamples: 1.e+7
batch_size: 1.e+6
neval: 10000
seed: 42
nbins_marks: 10
################################################################################
# totpartmass #
################################################################################
"mass001":
primary:
name: totpartmass
min: 1.e+12
max: 1.e+13
"mass002":
primary:
name: totpartmass
min: 1.e+13
max: 1.e+14
"mass003":
primary:
name: totpartmass
min: 1.e+14
################################################################################
# totpartmass + lambda200c #
################################################################################
"mass001_spinlow":
primary:
name: totpartmass
min: 1.e+12
max: 1.e+13
secondary:
name: lambda200c
toperm: false
marked: false
max: 0.5
"mass001_spinhigh":
primary:
name: totpartmass
min: 1.e+12
max: 1.e+13
secondary:
name: lambda200c
toperm: false
marked: true
min: 0.5
"mass001_spinmedian_perm":
primary:
name: totpartmass
min: 1.e+12
max: 1.e+13
secondary:
name: lambda200c
toperm: true
marked : true
min: 0.5
"mass002_spinlow":
primary:
name: totpartmass
min: 1.e+13
max: 1.e+14
secondary:
name: lambda200c
toperm: false
marked: false
max: 0.5
"mass002_spinhigh":
primary:
name: totpartmass
min: 1.e+13
max: 1.e+14
secondary:
name: lambda200c
toperm: false
marked: true
min: 0.5
"mass002_spinmedian_perm":
primary:
name: totpartmass
min: 1.e+13
max: 1.e+14
secondary:
name: lambda200c
toperm: true
marked : true
min: 0.5
"mass003_spinlow":
primary:
name: totpartmass
min: 1.e+14
secondary:
name: lambda200c
toperm: false
marked: false
max: 0.5
"mass003_spinhigh":
primary:
name: totpartmass
min: 1.e+14
secondary:
name: lambda200c
toperm: false
marked: true
min: 0.5
"mass003_spinmedian_perm":
primary:
name: totpartmass
min: 1.e+14
secondary:
name: lambda200c
toperm: true
marked : true
min: 0.5
################################################################################
# Cross with random #
################################################################################
"mass001_random":
primary:
name: totpartmass
min: 1.e+12
max: 1.e+13

View file

@ -13,6 +13,7 @@
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
"""A script to calculate the KNN-CDF for a set of CSiBORG halo catalogues."""
from warnings import warn
from os.path import join
from argparse import ArgumentParser
from copy import deepcopy
@ -20,8 +21,10 @@ from datetime import datetime
from itertools import combinations
from mpi4py import MPI
from TaskmasterMPI import master_process, worker_process
import numpy
from sklearn.neighbors import NearestNeighbors
import joblib
import yaml
try:
import csiborgtools
except ModuleNotFoundError:
@ -38,17 +41,13 @@ rank = comm.Get_rank()
nproc = comm.Get_size()
parser = ArgumentParser()
parser.add_argument("--rmin", type=float)
parser.add_argument("--rmax", type=float)
parser.add_argument("--nneighbours", type=int)
parser.add_argument("--nsamples", type=int)
parser.add_argument("--neval", type=int)
parser.add_argument("--batch_size", type=int)
parser.add_argument("--seed", type=int, default=42)
parser.add_argument("--runs", type=str, nargs="+")
args = parser.parse_args()
with open('../scripts/knn_cross.yml', 'r') as file:
config = yaml.safe_load(file)
Rmax = 155 / 0.705 # Mpc/h high resolution region radius
mass_threshold = [1e12, 1e13, 1e14] # Msun
Rmax = 155 / 0.705 # Mpc (h = 0.705) high resolution region radius
minmass = 1e12
ics = [7444, 7468, 7492, 7516, 7540, 7564, 7588, 7612, 7636, 7660, 7684,
7708, 7732, 7756, 7780, 7804, 7828, 7852, 7876, 7900, 7924, 7948,
7972, 7996, 8020, 8044, 8068, 8092, 8116, 8140, 8164, 8188, 8212,
@ -59,80 +58,58 @@ ics = [7444, 7468, 7492, 7516, 7540, 7564, 7588, 7612, 7636, 7660, 7684,
9292, 9316, 9340, 9364, 9388, 9412, 9436, 9460, 9484, 9508, 9532,
9556, 9580, 9604, 9628, 9652, 9676, 9700, 9724, 9748, 9772, 9796,
9820, 9844]
dumpdir = "/mnt/extraspace/rstiskalek/csiborg/knn"
fout_auto = join(dumpdir, "auto", "knncdf_{}.p")
fout_cross = join(dumpdir, "cross", "knncdf_{}_{}.p")
paths = csiborgtools.read.CSiBORGPaths()
dumpdir = "/mnt/extraspace/rstiskalek/csiborg/knn"
fout = join(dumpdir, "cross", "knncdf_{}_{}_{}.p")
knncdf = csiborgtools.clustering.kNN_CDF()
###############################################################################
# Analysis #
###############################################################################
knncdf = csiborgtools.match.kNN_CDF()
def read_single(selection, cat):
mmask = numpy.ones(len(cat), dtype=bool)
pos = cat.positions(False)
# Primary selection
psel = selection["primary"]
pmin, pmax = psel.get("min", None), psel.get("max", None)
if pmin is not None:
mmask &= (cat[psel["name"]] >= pmin)
if pmax is not None:
mmask &= (cat[psel["name"]] < pmax)
return pos[mmask, ...]
def do_auto(ic):
out = {}
cat = csiborgtools.read.HaloCatalogue(ic, paths, max_dist=Rmax)
def do_cross(run, ics):
_config = config.get(run, None)
if _config is None:
warn("No configuration for run {}.".format(run))
return
rvs_gen = csiborgtools.clustering.RVSinsphere(Rmax)
knn1, knn2 = NearestNeighbors(), NearestNeighbors()
for i, mmin in enumerate(mass_threshold):
knn = NearestNeighbors()
knn.fit(cat.positions(False)[cat["totpartmass"] > mmin, ...])
rs, cdf = knncdf(knn, nneighbours=args.nneighbours, Rmax=Rmax,
rmin=args.rmin, rmax=args.rmax, nsamples=args.nsamples,
neval=args.neval, batch_size=args.batch_size,
random_state=args.seed, verbose=False)
out.update({"cdf_{}".format(i): cdf})
out.update({"rs": rs, "mass_threshold": mass_threshold})
joblib.dump(out, fout_auto.format(ic))
def do_cross(ics):
out = {}
cat1 = csiborgtools.read.HaloCatalogue(ics[0], paths, max_dist=Rmax)
pos1 = read_single(_config, cat1)
knn1.fit(pos1)
cat2 = csiborgtools.read.HaloCatalogue(ics[1], paths, max_dist=Rmax)
pos2 = read_single(_config, cat2)
knn2.fit(pos2)
for i, mmin in enumerate(mass_threshold):
knn1 = NearestNeighbors()
knn1.fit(cat1.positions()[cat1["totpartmass"] > mmin, ...])
rs, cdf0, cdf1, joint_cdf = knncdf.joint(
knn1, knn2, rvs_gen=rvs_gen, nneighbours=int(config["nneighbours"]),
rmin=config["rmin"], rmax=config["rmax"],
nsamples=int(config["nsamples"]), neval=int(config["neval"]),
batch_size=int(config["batch_size"]), random_state=config["seed"])
knn2 = NearestNeighbors()
knn2.fit(cat2.positions()[cat2["totpartmass"] > mmin, ...])
corr = knncdf.joint_to_corr(cdf0, cdf1, joint_cdf)
rs, cdf0, cdf1, joint_cdf = knncdf.joint(
knn1, knn2, nneighbours=args.nneighbours, Rmax=Rmax,
rmin=args.rmin, rmax=args.rmax, nsamples=args.nsamples,
neval=args.neval, batch_size=args.batch_size,
random_state=args.seed)
joblib.dump({"rs": rs, "corr": corr},
fout.format(str(ics[0]).zfill(5), str(ics[1]).zfill(5), run))
corr = knncdf.joint_to_corr(cdf0, cdf1, joint_cdf)
out.update({"corr_{}".format(i): corr})
out.update({"rs": rs, "mass_threshold": mass_threshold})
joblib.dump(out, fout_cross.format(*ics))
###############################################################################
# Autocorrelation calculation #
###############################################################################
if nproc > 1:
if rank == 0:
tasks = deepcopy(ics)
master_process(tasks, comm, verbose=True)
else:
worker_process(do_auto, comm, verbose=False)
else:
tasks = deepcopy(ics)
for task in tasks:
print("{}: completing task `{}`.".format(datetime.now(), task))
do_auto(task)
comm.Barrier()
def do_runs(ics):
print(ics)
for run in args.runs:
do_cross(run, ics)
###############################################################################
@ -145,12 +122,12 @@ if nproc > 1:
tasks = list(combinations(ics, 2))
master_process(tasks, comm, verbose=True)
else:
worker_process(do_cross, comm, verbose=False)
worker_process(do_runs, comm, verbose=False)
else:
tasks = deepcopy(ics)
tasks = list(combinations(ics, 2))
for task in tasks:
print("{}: completing task `{}`.".format(datetime.now(), task))
do_cross(task)
do_runs(task)
comm.Barrier()

29
scripts/knn_cross.yml Normal file
View file

@ -0,0 +1,29 @@
rmin: 0.1
rmax: 100
nneighbours: 64
nsamples: 1.e+7
batch_size: 1.e+6
neval: 10000
seed: 42
################################################################################
# totpartmass #
################################################################################
"mass001":
primary:
name: totpartmass
min: 1.e+12
max: 1.e+13
"mass002":
primary:
name: totpartmass
min: 1.e+13
max: 1.e+14
"mass003":
primary:
name: totpartmass
min: 1.e+14

View file

@ -1,46 +0,0 @@
#!/bin/bash -l
echo =========================================================
echo Job submitted date = Fri Mar 31 16:17:57 BST 2023
date_start=`date +%s`
echo $SLURM_JOB_NUM_NODES nodes \( $SMP processes per node \)
echo $SLURM_JOB_NUM_NODES hosts used: $SLURM_JOB_NODELIST
echo Job output begins
echo -----------------
echo
#hostname
# Need to set the max locked memory very high otherwise IB can't allocate enough and fails with "UCX ERROR Failed to allocate memory pool chunk: Input/output error"
ulimit -l unlimited
# To allow mvapich to run ok
export MV2_SMP_USE_CMA=0
#which mpirun
export OMP_NUM_THEADS=1
/usr/local/shared/slurm/bin/srun -u -n 5 --mpi=pmi2 --mem-per-cpu=7168 nice -n 10 /mnt/zfsusers/rstiskalek/csiborgtools/venv_galomatch/bin/python run_knn.py --rmin 0.05 --rmax 50 --nsamples 100000 --neval 10000
# If we've been checkpointed
#if [ -n "${DMTCP_CHECKPOINT_DIR}" ]; then
if [ -d "${DMTCP_CHECKPOINT_DIR}" ]; then
# echo -n "Job was checkpointed at "
# date
# echo
sleep 1
# fi
echo -n
else
echo ---------------
echo Job output ends
date_end=`date +%s`
seconds=$((date_end-date_start))
minutes=$((seconds/60))
seconds=$((seconds-60*minutes))
hours=$((minutes/60))
minutes=$((minutes-60*hours))
echo =========================================================
echo PBS job: finished date = `date`
echo Total run time : $hours Hours $minutes Minutes $seconds Seconds
echo =========================================================
fi
if [ ${SLURM_NTASKS} -eq 1 ]; then
rm -f $fname
fi

View file

@ -1,14 +0,0 @@
nthreads=20
memory=40
queue="berg"
env="/mnt/zfsusers/rstiskalek/csiborgtools/venv_galomatch/bin/python"
file="run_crosspk.py"
grid=1024
halfwidth=0.13
cm="addqueue -q $queue -n $nthreads -m $memory $env $file --grid $grid --halfwidth $halfwidth"
echo "Submitting:"
echo $cm
echo
$cm

View file

@ -1,14 +0,0 @@
nthreads=10
memory=32
queue="berg"
env="/mnt/zfsusers/rstiskalek/csiborgtools/venv_galomatch/bin/python"
file="run_fieldprop.py"
# grid=1024
# halfwidth=0.1
cm="addqueue -q $queue -n $nthreads -m $memory $env $file"
echo "Submitting:"
echo $cm
echo
$cm

View file

@ -1,12 +0,0 @@
nthreads=100
memory=3
queue="berg"
env="/mnt/zfsusers/rstiskalek/csiborgtools/venv_galomatch/bin/python"
file="run_fit_halos.py"
cm="addqueue -q $queue -n $nthreads -m $memory $env $file"
echo "Submitting:"
echo $cm
echo
$cm

View file

@ -1,14 +0,0 @@
nthreads=15 # There isn't too much benefit going to too many CPUs...
memory=32
queue="berg"
env="/mnt/zfsusers/rstiskalek/csiborgtools/venv_galomatch/bin/python"
file="run_initmatch.py"
dump_clumps="false"
cm="addqueue -q $queue -n $nthreads -m $memory $env $file --dump_clumps $dump_clumps"
echo "Submitting:"
echo $cm
echo
$cm

View file

@ -1,23 +0,0 @@
nthreads=151
memory=4
queue="cmb"
env="/mnt/zfsusers/rstiskalek/csiborgtools/venv_galomatch/bin/python"
file="run_knn.py"
rmin=0.01
rmax=100
nneighbours=8
nsamples=100000000
batch_size=1000000
neval=10000
pythoncm="$env $file --rmin $rmin --rmax $rmax --nneighbours $nneighbours --nsamples $nsamples --batch_size $batch_size --neval $neval"
# echo $pythoncm
# $pythoncm
cm="addqueue -q $queue -n $nthreads -m $memory $pythoncm"
echo "Submitting:"
echo $cm
echo
$cm

View file

@ -1,36 +0,0 @@
#!/bin/bash
# nthreads=1
memory=16
queue="berg"
env="/mnt/zfsusers/rstiskalek/csiborgtools/venv_galomatch/bin/python"
file="run_singlematch.py"
nmult=1.
sigma=1.
sims=(7468 7588 8020 8452 8836)
nsims=${#sims[@]}
for i in $(seq 0 $((nsims-1))); do
for j in $(seq 0 $((nsims-1))); do
if [ $i -eq $j ]; then
continue
elif [ $i -gt $j ]; then
continue
else
:
fi
nsim0=${sims[$i]}
nsimx=${sims[$j]}
pythoncm="$env $file --nsim0 $nsim0 --nsimx $nsimx --nmult $nmult --sigma $sigma"
cm="addqueue -q $queue -n 1x1 -m $memory $pythoncm"
echo "Submitting:"
echo $cm
echo
$cm
sleep 0.05
done; done

View file

@ -1,12 +0,0 @@
nthreads=1
memory=30
queue="cmb"
env="/mnt/zfsusers/rstiskalek/csiborgtools/venv_galomatch/bin/python"
file="run_split_halos.py"
cm="addqueue -q $queue -n $nthreads -m $memory $env $file"
echo "Submitting:"
echo $cm
echo
$cm