csiborgtools/scripts_plots/plot_data.py

674 lines
24 KiB
Python
Raw Normal View History

# Copyright (C) 2023 Richard Stiskalek
# This program is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3 of the License, or (at your
# option) any later version.
#
# This program is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
# Public License for more details.
#
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
from os.path import join
from argparse import ArgumentParser
import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy
from h5py import File
2023-06-01 21:57:55 +00:00
import healpy
import scienceplots # noqa
import plt_utils
from cache_to_disk import cache_to_disk, delete_disk_caches_for_function # noqa
from tqdm import tqdm
try:
import csiborgtools
except ModuleNotFoundError:
import sys
sys.path.append("../")
import csiborgtools
def open_csiborg(nsim):
"""
Open a CSiBORG halo catalogue. Applies mass and distance selection.
Parameters
----------
nsim : int
Simulation index.
Returns
-------
cat : csiborgtools.read.CSiBORGHaloCatalogue
"""
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
bounds = {"totpartmass": (None, None), "dist": (0, 155)}
return csiborgtools.read.CSiBORGHaloCatalogue(
nsim, paths, bounds=bounds, load_fitted=True, load_initial=True,
with_lagpatch=False)
def open_quijote(nsim, nobs=None):
"""
Open a Quijote halo catalogue. Applies mass and distance selection.
Parameters
----------
nsim : int
Simulation index.
nobs : int, optional
Fiducial observer index.
Returns
-------
cat : csiborgtools.read.QuijoteHaloCatalogue
"""
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
cat = csiborgtools.read.QuijoteHaloCatalogue(
nsim, paths, nsnap=4, load_fitted=True, load_initial=True,
with_lagpatch=False)
if nobs is not None:
cat = cat.pick_fiducial_observer(nobs, rmax=155.5)
return cat
def plot_mass_vs_ncells(nsim, pdf=False):
"""
Plot the halo mass vs. number of occupied cells in the initial snapshot.
Parameters
----------
nsim : int
Simulation index.
pdf : bool, optional
Whether to save the figure as a PDF file.
Returns
-------
None
"""
cat = open_csiborg(nsim)
mpart = 4.38304044e+09
with plt.style.context(plt_utils.mplstyle):
plt.figure()
plt.scatter(cat["totpartmass"], cat["lagpatch_ncells"], s=0.25,
rasterized=True)
plt.xscale("log")
plt.yscale("log")
for n in [1, 10, 100]:
plt.axvline(n * 512 * mpart, c="black", ls="--", zorder=0, lw=0.8)
plt.xlabel(r"$M_{\rm tot} ~ [M_\odot$ / h]")
plt.ylabel(r"$N_{\rm cells}$")
for ext in ["png"] if pdf is False else ["png", "pdf"]:
fout = join(plt_utils.fout, f"init_mass_vs_ncells_{nsim}.{ext}")
print(f"Saving to `{fout}`.")
plt.savefig(fout, dpi=plt_utils.dpi, bbox_inches="tight")
plt.close()
2023-06-01 21:57:55 +00:00
###############################################################################
# HMF plot #
###############################################################################
def plot_hmf(pdf=False):
"""
Plot the FoF halo mass function of CSiBORG and Quijote.
Parameters
----------
pdf : bool, optional
Whether to save the figure as a PDF file.
Returns
-------
None
"""
print("Plotting the HMF...", flush=True)
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
# csiborg_nsims = paths.get_ics("csiborg")
csiborg_nsims = [7444]
print("Loading CSiBORG halo counts.", flush=True)
for i, nsim in enumerate(tqdm(csiborg_nsims)):
data = numpy.load(paths.halo_counts("csiborg", nsim))
if i == 0:
bins = data["bins"]
csiborg_counts = numpy.full((len(csiborg_nsims), len(bins) - 1),
numpy.nan, dtype=numpy.float32)
csiborg_counts[i, :] = data["counts"]
print(data["counts"])
print(csiborg_counts)
csiborg_counts /= numpy.diff(bins).reshape(1, -1)
print("Loading Quijote halo counts.", flush=True)
quijote_nsims = paths.get_ics("quijote")
for i, nsim in enumerate(tqdm(quijote_nsims)):
data = numpy.load(paths.halo_counts("quijote", nsim))
if i == 0:
bins = data["bins"]
nmax = data["counts"].shape[0]
quijote_counts = numpy.full(
(len(quijote_nsims) * nmax, len(bins) - 1), numpy.nan,
dtype=numpy.float32)
quijote_counts[i * nmax:(i + 1) * nmax, :] = data["counts"]
quijote_counts /= numpy.diff(bins).reshape(1, -1)
x = 10**(0.5 * (bins[1:] + bins[:-1]))
# Edit lower limits
csiborg_counts[:, x < 1e12] = numpy.nan
quijote_counts[:, x < 10**(12.4)] = numpy.nan
# Edit upper limits
csiborg_counts[:, x > 4e15] = numpy.nan
quijote_counts[:, x > 4e15] = numpy.nan
with plt.style.context(plt_utils.mplstyle):
cols = plt.rcParams["axes.prop_cycle"].by_key()["color"]
fig, ax = plt.subplots(nrows=2, sharex=True,
figsize=(3.5, 2.625 * 1.25),
gridspec_kw={"height_ratios": [1, 0.65]})
fig.subplots_adjust(hspace=0, wspace=0)
# Upper panel data
mean_csiborg = numpy.mean(csiborg_counts, axis=0)
std_csiborg = numpy.std(csiborg_counts, axis=0)
ax[0].plot(x, mean_csiborg, label="CSiBORG")
ax[0].fill_between(x, mean_csiborg - std_csiborg,
mean_csiborg + std_csiborg, alpha=0.5)
mean_quijote = numpy.mean(quijote_counts, axis=0)
std_quijote = numpy.std(quijote_counts, axis=0)
ax[0].plot(x, mean_quijote, label="Quijote")
ax[0].fill_between(x, mean_quijote - std_quijote,
mean_quijote + std_quijote, alpha=0.5)
# Lower panel data
log_y = numpy.log10(mean_csiborg / mean_quijote)
err = numpy.sqrt((std_csiborg / mean_csiborg / numpy.log(10))**2
+ (std_quijote / mean_quijote / numpy.log(10))**2)
ax[1].plot(x, 10**log_y, c=cols[2])
ax[1].fill_between(x, 10**(log_y - err), 10**(log_y + err), alpha=0.5,
color=cols[2])
# Labels and accesories
ax[1].axhline(1, color="k", ls=plt.rcParams["lines.linestyle"],
lw=0.5 * plt.rcParams["lines.linewidth"], zorder=0)
ax[0].set_ylabel(r"$\frac{\mathrm{d} n}{\mathrm{d}\log M_{\rm h}}~\mathrm{dex}^{-1}$") # noqa
ax[1].set_xlabel(r"$M_{\rm h}~[M_\odot / h]$")
ax[1].set_ylabel(r"$\mathrm{CSiBORG} / \mathrm{Quijote}$")
ax[0].set_xscale("log")
ax[0].set_yscale("log")
ax[1].set_yscale("log")
ax[0].legend()
fig.tight_layout(h_pad=0, w_pad=0)
for ext in ["png"] if pdf is False else ["png", "pdf"]:
fout = join(plt_utils.fout, f"hmf_comparison.{ext}")
print(f"Saving to `{fout}`.")
fig.savefig(fout, dpi=plt_utils.dpi, bbox_inches="tight")
plt.close()
def plot_hmf_quijote_full(pdf=False):
"""
Plot the FoF halo mass function of Quijote full run.
Parameters
----------
pdf : bool, optional
Whether to save the figure as a PDF file.
Returns
-------
None
"""
print("Plotting the HMF...", flush=True)
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
print("Loading Quijote halo counts.", flush=True)
quijote_nsims = paths.get_ics("quijote")
for i, nsim in enumerate(tqdm(quijote_nsims)):
data = numpy.load(paths.halo_counts("quijote_full", nsim))
if i == 0:
bins = data["bins"]
counts = numpy.full((len(quijote_nsims), len(bins) - 1), numpy.nan,
dtype=numpy.float32)
counts[i, :] = data["counts"]
counts /= numpy.diff(bins).reshape(1, -1)
counts /= 1000**3
x = 10**(0.5 * (bins[1:] + bins[:-1]))
# Edit lower and upper limits
counts[:, x < 10**(12.4)] = numpy.nan
counts[:, x > 4e15] = numpy.nan
with plt.style.context(plt_utils.mplstyle):
cols = plt.rcParams["axes.prop_cycle"].by_key()["color"]
fig, ax = plt.subplots(nrows=2, sharex=True,
figsize=(3.5, 2.625 * 1.25),
gridspec_kw={"height_ratios": [1, 0.65]})
fig.subplots_adjust(hspace=0, wspace=0)
# Upper panel data
mean = numpy.mean(counts, axis=0)
std = numpy.std(counts, axis=0)
ax[0].plot(x, mean)
ax[0].fill_between(x, mean - std, mean + std, alpha=0.5)
# Lower panel data
for i in range(counts.shape[0]):
ax[1].plot(x, counts[i, :] / mean, c=cols[0])
# Labels and accesories
ax[1].axhline(1, color="k", ls=plt.rcParams["lines.linestyle"],
lw=0.5 * plt.rcParams["lines.linewidth"], zorder=0)
ax[0].set_ylabel(r"$\frac{\mathrm{d}^2 n}{\mathrm{d}\log M_{\rm h} \mathrm{d} V}~[\mathrm{dex}^{-1} (\mathrm{Mpc / h})^{-3}]$", # noqa
fontsize="small")
ax[1].set_xlabel(r"$M_{\rm h}~[$M_\odot / h]$", fontsize="small")
ax[1].set_ylabel(r"$\mathrm{HMF} / \langle \mathrm{HMF} \rangle$",
fontsize="small")
ax[0].set_xscale("log")
ax[0].set_yscale("log")
ax[0].legend()
fig.tight_layout(h_pad=0, w_pad=0)
for ext in ["png"] if pdf is False else ["png", "pdf"]:
fout = join(plt_utils.fout, f"hmf_quijote_full.{ext}")
print(f"Saving to `{fout}`.")
fig.savefig(fout, dpi=plt_utils.dpi, bbox_inches="tight")
plt.close()
def load_field(kind, nsim, grid, MAS, in_rsp=False, smooth_scale=None):
r"""
Load a single field.
Parameters
----------
kind : str
Field kind.
nsim : int
Simulation index.
grid : int
Grid size.
MAS : str
Mass assignment scheme.
in_rsp : bool, optional
Whether to load the field in redshift space.
smooth_scale : float, optional
Smoothing scale in :math:`\mathrm{Mpc} / h`.
Returns
-------
field : n-dimensional array
"""
2023-06-01 21:57:55 +00:00
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
return numpy.load(paths.field(kind, MAS, grid, nsim, in_rsp=in_rsp,
smooth_scale=smooth_scale))
2023-06-01 21:57:55 +00:00
###############################################################################
# Projected field #
###############################################################################
def plot_projected_field(kind, nsim, grid, in_rsp, smooth_scale, MAS="PCS",
vel_component=0, highres_only=True, slice_find=None,
pdf=False):
r"""
Plot the mean projected field, however can also plot a single slice.
Parameters
----------
kind : str
Field kind.
nsim : int
Simulation index.
grid : int
Grid size.
in_rsp : bool
Whether to load the field in redshift space.
smooth_scale : float
Smoothing scale in :math:`\mathrm{Mpc} / h`.
MAS : str, optional
Mass assignment scheme.
vel_component : int, optional
Which velocity field component to plot.
highres_only : bool, optional
Whether to only plot the high-resolution region.
slice_find : float, optional
Which slice to plot in fractional units (i.e. 1. is the last slice)
pdf : bool, optional
Whether to save the figure as a PDF.
Returns
-------
None
"""
print(f"Plotting projected field `{kind}`. ", flush=True)
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
nsnap = max(paths.get_snapshots(nsim, "csiborg"))
box = csiborgtools.read.CSiBORGBox(nsnap, nsim, paths)
if kind == "overdensity":
field = load_field("density", nsim, grid, MAS=MAS, in_rsp=in_rsp,
smooth_scale=smooth_scale)
density_gen = csiborgtools.field.DensityField(box, MAS)
field = density_gen.overdensity_field(field) + 1
elif kind == "borg_density":
field = File(paths.borg_mcmc(nsim), 'r')
field = field["scalars"]["BORG_final_density"][...]
else:
field = load_field(kind, nsim, grid, MAS=MAS, in_rsp=in_rsp,
smooth_scale=smooth_scale)
if kind == "velocity":
field = field[vel_component, ...]
field = box.box2vel(field)
2023-06-05 21:29:51 +00:00
if highres_only:
csiborgtools.field.fill_outside(field, numpy.nan, rmax=155.5,
boxsize=677.7)
2023-06-06 07:41:39 +00:00
start = round(field.shape[0] * 0.27)
end = round(field.shape[0] * 0.73)
2023-06-05 21:29:51 +00:00
field = field[start:end, start:end, start:end]
if kind == "environment":
cmap = mpl.colors.ListedColormap(
['red', 'lightcoral', 'limegreen', 'khaki'])
else:
cmap = "viridis"
2023-06-06 07:41:39 +00:00
labels = [r"$y-z$", r"$x-z$", r"$x-y$"]
with plt.style.context(plt_utils.mplstyle):
fig, ax = plt.subplots(figsize=(3.5 * 2, 2.625), ncols=3, sharey=True,
sharex="col")
fig.subplots_adjust(hspace=0, wspace=0)
for i in range(3):
if slice_find is None:
img = numpy.nanmean(field, axis=i)
else:
ii = int(field.shape[i] * slice_find)
img = numpy.take(field, ii, axis=i)
2023-06-06 07:41:39 +00:00
if i == 0:
vmin, vmax = numpy.nanpercentile(img, [1, 99])
im = ax[i].imshow(img, vmin=vmin, vmax=vmax, cmap=cmap)
2023-06-06 07:41:39 +00:00
else:
ax[i].imshow(img, vmin=vmin, vmax=vmax, cmap=cmap)
frad = 155.5 / 677.7
R = 155.5 / 677.7 * grid
if slice_find is None:
rad = R
plot_circle = True
elif (not highres_only and 0.5 - frad < slice_find < 0.5 + frad):
z = (slice_find - 0.5) * grid
rad = R * numpy.sqrt(1 - z**2 / R**2)
plot_circle = True
else:
plot_circle = False
if not highres_only and plot_circle:
theta = numpy.linspace(0, 2 * numpy.pi, 100)
ax[i].plot(rad * numpy.cos(theta) + grid // 2,
rad * numpy.sin(theta) + grid // 2,
lw=0.75 * plt.rcParams["lines.linewidth"], zorder=1,
c="red", ls="--")
2023-06-06 07:41:39 +00:00
ax[i].set_title(labels[i])
if highres_only:
ncells = end - start
size = ncells / grid * 677.7
else:
ncells = grid
size = 677.7
# Get beautiful ticks
yticks = numpy.linspace(0, ncells, 6).astype(int)
yticks = numpy.append(yticks, ncells // 2)
ax[0].set_yticks(yticks)
ax[0].set_yticklabels((yticks * size / ncells - size / 2).astype(int))
ax[0].set_ylabel(r"$x_i ~ [\mathrm{Mpc} / h]$")
for i in range(3):
xticks = numpy.linspace(0, ncells, 6).astype(int)
xticks = numpy.append(xticks, ncells // 2)
xticks = numpy.sort(xticks)
if i < 2:
xticks = xticks[:-1]
ax[i].set_xticks(xticks)
ax[i].set_xticklabels(
(xticks * size / ncells - size / 2).astype(int))
ax[i].set_xlabel(r"$x_j ~ [\mathrm{Mpc} / h]$")
cbar_ax = fig.add_axes([0.982, 0.155, 0.025, 0.75],
transform=ax[2].transAxes)
if slice_find is None:
clabel = "Mean projected field"
else:
clabel = "Sliced field"
if kind == "environment":
bounds = [0, 1, 2, 3, 4]
norm = mpl.colors.BoundaryNorm(bounds, cmap.N)
cbar = fig.colorbar(
mpl.cm.ScalarMappable(cmap=cmap, norm=norm), cax=cbar_ax,
ticks=[0.5, 1.5, 2.5, 3.5])
cbar.ax.set_yticklabels(["knot", "filament", "sheet", "void"],
rotation=90, va="center")
else:
fig.colorbar(im, cax=cbar_ax, label=clabel)
fig.tight_layout(h_pad=0, w_pad=0)
for ext in ["png"] if pdf is False else ["png", "pdf"]:
fout = join(
plt_utils.fout,
f"field_{kind}_{nsim}_rsp{in_rsp}_hres{highres_only}.{ext}")
if smooth_scale is not None and smooth_scale > 0:
smooth_scale = float(smooth_scale)
fout = fout.replace(f".{ext}", f"_smooth{smooth_scale}.{ext}")
print(f"Saving to `{fout}`.")
fig.savefig(fout, dpi=plt_utils.dpi, bbox_inches="tight")
plt.close()
###############################################################################
# Sky distribution #
###############################################################################
2023-06-02 11:48:38 +00:00
def get_sky_label(kind, volume_weight):
"""
Get the sky label for a given field kind.
Parameters
----------
kind : str
Field kind.
volume_weight : bool
Whether to volume weight the field.
Returns
-------
label : str
"""
2023-06-02 11:48:38 +00:00
if volume_weight:
if kind == "density":
label = r"$\log \int_{0}^{R} r^2 \rho(r, \mathrm{RA}, \mathrm{dec}) \mathrm{d} r$" # noqa
if kind == "overdensity":
2023-06-23 14:31:48 +00:00
label = r"$\log \int_{0}^{R} r^2 \left[\delta(r, \mathrm{RA}, \mathrm{dec}) + 1\right] \mathrm{d} r$" # noqa
2023-06-02 11:48:38 +00:00
elif kind == "potential":
label = r"$\int_{0}^{R} r^2 \phi(r, \mathrm{RA}, \mathrm{dec}) \mathrm{d} r$" # noqa
elif kind == "radvel":
label = r"$\int_{0}^{R} r^2 v_r(r, \mathrm{RA}, \mathrm{dec}) \mathrm{d} r$" # noqa
2023-06-02 11:48:38 +00:00
else:
label = None
else:
if kind == "density":
label = r"$\log \int_{0}^{R} \rho(r, \mathrm{RA}, \mathrm{dec}) \mathrm{d} r$" # noqa
if kind == "overdensity":
2023-06-23 14:31:48 +00:00
label = r"$\log \int_{0}^{R} \left[\delta(r, \mathrm{RA}, \mathrm{dec}) + 1\right] \mathrm{d} r$" # noqa
2023-06-02 11:48:38 +00:00
elif kind == "potential":
label = r"$\int_{0}^{R} \phi(r, \mathrm{RA}, \mathrm{dec}) \mathrm{d} r$" # noqa
elif kind == "radvel":
label = r"$\int_{0}^{R} v_r(r, \mathrm{RA}, \mathrm{dec}) \mathrm{d} r$" # noqa
2023-06-02 11:48:38 +00:00
else:
label = None
return label
2023-06-23 14:31:48 +00:00
def plot_sky_distribution(field, nsim, grid, nside, smooth_scale=None,
MAS="PCS", plot_groups=True, dmin=0, dmax=220,
plot_halos=None, volume_weight=True, pdf=False):
r"""
Plot the sky distribution of a given field kind on the sky along with halos
and selected observations.
TODO
----
- Add distance for groups.
Parameters
----------
field : str
Field kind.
nsim : int
Simulation index.
grid : int
Grid size.
nside : int
Healpix nside of the sky projection.
smooth_scale : float
Smoothing scale in :math:`\mathrm{Mpc} / h`.
MAS : str, optional
Mass assignment scheme.
plot_groups : bool, optional
Whether to plot the 2M++ groups.
dmin : float, optional
Minimum projection distance in :math:`\mathrm{Mpc}/h`.
dmax : float, optional
Maximum projection distance in :math:`\mathrm{Mpc}/h`.
plot_halos : list, optional
Minimum halo mass to plot in :math:`M_\odot`.
volume_weight : bool, optional
Whether to volume weight the field.
pdf : bool, optional
Whether to save the figure as a pdf.
2023-06-02 11:51:34 +00:00
"""
2023-06-01 21:57:55 +00:00
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
nsnap = max(paths.get_snapshots(nsim, "csiborg"))
2023-06-01 21:57:55 +00:00
box = csiborgtools.read.CSiBORGBox(nsnap, nsim, paths)
if field== "overdensity":
field = load_field("density", nsim, grid, MAS=MAS, in_rsp=False,
smooth_scale=smooth_scale)
density_gen = csiborgtools.field.DensityField(box, MAS)
field = density_gen.overdensity_field(field) + 1
else:
field = load_field(kind, nsim, grid, MAS=MAS, in_rsp=False,
smooth_scale=smooth_scale)
2023-06-01 21:57:55 +00:00
angpos = csiborgtools.field.nside2radec(nside)
2023-06-02 11:48:38 +00:00
dist = numpy.linspace(dmin, dmax, 500)
out = csiborgtools.field.make_sky(field, angpos=angpos, dist=dist, box=box,
volume_weight=volume_weight)
2023-06-01 21:57:55 +00:00
with plt.style.context(plt_utils.mplstyle):
2023-06-02 11:48:38 +00:00
label = get_sky_label(kind, volume_weight)
if kind in ["density", "overdensity"]:
2023-06-01 21:57:55 +00:00
out = numpy.log10(out)
2023-06-23 14:31:48 +00:00
healpy.mollview(out, fig=0, title="", unit=label, rot=90)
2023-06-01 21:57:55 +00:00
if plot_halos is not None:
2023-06-02 11:48:38 +00:00
bounds = {"dist": (dmin, dmax),
2023-06-01 21:57:55 +00:00
"totpartmass": (plot_halos, None)}
cat = csiborgtools.read.CSiBORGHaloCatalogue(nsim, paths,
bounds=bounds)
2023-06-01 21:57:55 +00:00
X = cat.position(cartesian=False)
healpy.projscatter(numpy.deg2rad(X[:, 2] + 90),
numpy.deg2rad(X[:, 1]),
2023-06-23 14:31:48 +00:00
s=5, c="red", label="CSiBORG haloes")
2023-06-01 21:57:55 +00:00
if plot_groups:
groups = csiborgtools.read.TwoMPPGroups(fpath="/mnt/extraspace/rstiskalek/catalogs/2M++_group_catalog.dat") # noqa
healpy.projscatter(numpy.deg2rad(groups["DEC"] + 90),
numpy.deg2rad(groups["RA"]), s=1, c="blue",
label="2M++ groups")
if plot_halos is not None or plot_groups:
2023-06-23 14:31:48 +00:00
plt.legend(markerscale=5)
2023-06-01 21:57:55 +00:00
for ext in ["png"] if pdf is False else ["png", "pdf"]:
fout = join(plt_utils.fout, f"sky_{kind}_{nsim}_from_{dmin}_to_{dmax}_vol{volume_weight}.{ext}") # noqa
2023-06-01 21:57:55 +00:00
print(f"Saving to `{fout}`.")
plt.savefig(fout, dpi=plt_utils.dpi, bbox_inches="tight")
2023-06-01 21:57:55 +00:00
plt.close()
###############################################################################
# Command line interface #
###############################################################################
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument('-c', '--clean', action='store_true')
args = parser.parse_args()
cached_funcs = ["load_field"]
if args.clean:
for func in cached_funcs:
print(f"Cleaning cache for function {func}.")
delete_disk_caches_for_function(func)
if False:
plot_mass_vs_ncells(7444, pdf=False)
if False:
plot_hmf(pdf=False)
if True:
plot_hmf_quijote_full(pdf=False)
if False:
2023-06-23 14:31:48 +00:00
kind = "overdensity"
grid = 1024
plot_sky_distribution(kind, 7444, grid, nside=64,
2023-06-23 14:31:48 +00:00
plot_groups=False, dmin=45, dmax=60,
plot_halos=5e13, volume_weight=True)
if False:
kind = "overdensity"
grid = 256
smooth_scale = 0
# plot_projected_field("overdensity", 7444, grid, in_rsp=True,
# highres_only=False)
plot_projected_field(kind, 7444, grid, in_rsp=False,
smooth_scale=smooth_scale, slice_find=0.5,
MAS="PCS",
highres_only=True)
if False:
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
d = csiborgtools.read.read_h5(paths.particles(7444, "csiborg"))
d = d["particles"]
plt.figure()
plt.hist(d[:100000, 4], bins="auto")
plt.tight_layout()
plt.savefig("../plots/velocity_distribution.png", dpi=450,
bbox_inches="tight")