New matches (#69)

* Remove old file

* Add velocity plotting

* add smooth scale

* Fix bug

* Improve paths

* Edit plotting

* Add smoothed density

* Update boundaries

* Add basics

* Further docs

* Remove blank

* Better catalog broadcasting

* Update high res size

* Update plotting routines

* Update routine

* Update plotting

* Fix field saving name

* Add better colormap for environemnt
This commit is contained in:
Richard Stiskalek 2023-06-17 19:52:26 +01:00 committed by GitHub
parent 73687fd8cc
commit 35ccfb5c67
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
9 changed files with 343 additions and 169 deletions

View file

@ -305,7 +305,7 @@ class VelocityField(BaseField):
vel *= mass.reshape(-1, 1) / mpart
for i in range(3):
MASL.MA(pos, rho_vel[i], self.boxsize, self.MAS, W=vel[i, :],
MASL.MA(pos, rho_vel[i], self.boxsize, self.MAS, W=vel[:, i],
verbose=False)
if end == nparts:
break
@ -417,11 +417,8 @@ class TidalTensorField(BaseField):
Returns
-------
environment : 3-dimensional array of shape `(grid, grid, grid)`
The environment of each grid cell. Possible values are:
- 0: void
- 1: sheet
- 2: filament
- 3: knot
The environment of each grid cell. Possible values are 0 (void),
1 (sheet), 2 (filament), 3 (knot).
"""
environment = numpy.full(eigvals.shape[:-1], numpy.nan,
dtype=numpy.float32)

View file

@ -356,8 +356,8 @@ class Paths:
fname = f"parts_{str(nsim).zfill(5)}.h5"
return join(fdir, fname)
def field(self, kind, MAS, grid, nsim, in_rsp):
"""
def field(self, kind, MAS, grid, nsim, in_rsp, smooth_scale=None):
r"""
Path to the files containing the calculated density fields in CSiBORG.
Parameters
@ -373,6 +373,8 @@ class Paths:
IC realisation index.
in_rsp : bool
Whether the calculation is performed in redshift space.
smooth_scale : float
Smoothing scale in :math:`\mathrm{Mpc}/h`
Returns
-------
@ -387,6 +389,9 @@ class Paths:
if in_rsp:
kind = kind + "_rsp"
fname = f"{kind}_{MAS}_{str(nsim).zfill(5)}_grid{grid}.npy"
if smooth_scale is not None and smooth_scale > 0:
smooth_scale = float(smooth_scale)
fname = fname.replace(".npy", f"smooth{smooth_scale}.npy")
return join(fdir, fname)
def halo_counts(self, simname, nsim):

View file

@ -1,76 +0,0 @@
# Copyright (C) 2022 Richard Stiskalek
# This program is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3 of the License, or (at your
# option) any later version.
#
# This program is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
# Public License for more details.
#
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
"""
MPI script to calculate the density fields on CSiBORG simulations in the final
snapshot.
"""
from argparse import ArgumentParser
from datetime import datetime
from distutils.util import strtobool
import numpy
from mpi4py import MPI
try:
import csiborgtools
except ModuleNotFoundError:
import sys
sys.path.append("../")
import csiborgtools
comm = MPI.COMM_WORLD
rank = comm.Get_rank()
nproc = comm.Get_size()
verbose = nproc == 1
parser = ArgumentParser()
parser.add_argument("--ics", type=int, nargs="+", default=None,
help="IC realisations. If `-1` processes all simulations.")
parser.add_argument("--kind", type=str, choices=["density", "velocity"],
help="Calculate the density or velocity field?")
parser.add_argument("--MAS", type=str, choices=["NGP", "CIC", "TSC", "PCS"],
help="Mass assignment scheme.")
parser.add_argument("--grid", type=int, help="Grid resolution.")
parser.add_argument("--in_rsp", type=lambda x: bool(strtobool(x)),
help="Calculate the density field in redshift space?")
args = parser.parse_args()
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
mpart = 1.1641532e-10 # Particle mass in CSiBORG simulations.
if args.ics is None or args.ics[0] == -1:
ics = paths.get_ics("csiborg")
else:
ics = args.ics
for i in csiborgtools.fits.split_jobs(len(ics), nproc)[rank]:
nsim = ics[i]
print(f"{datetime.now()}: rank {rank} working on simulation {nsim}.",
flush=True)
nsnap = max(paths.get_snapshots(nsim))
box = csiborgtools.read.CSiBORGBox(nsnap, nsim, paths)
parts = csiborgtools.read.read_h5(paths.particles(nsim))["particles"]
if args.kind == "density":
gen = csiborgtools.field.DensityField(box, args.MAS)
field = gen(parts, args.grid, in_rsp=args.in_rsp, verbose=verbose)
else:
gen = csiborgtools.field.VelocityField(box, args.MAS)
field = gen(parts, args.grid, mpart, verbose=verbose)
fout = paths.field(args.kind, args.MAS, args.grid, nsim, args.in_rsp)
print(f"{datetime.now()}: rank {rank} saving output to `{fout}`.")
numpy.save(fout, field)

View file

@ -40,7 +40,23 @@ from utils import get_nsims
###############################################################################
def density_field(nsim, parser_args):
def density_field(nsim, parser_args, to_save=True):
"""
Calculate the density field in the CSiBORG simulation.
Parameters
----------
nsim : int
Simulation index.
parser_args : argparse.Namespace
Parsed arguments.
to_save : bool, optional
Whether to save the output to disk.
Returns
-------
field : 3-dimensional array
"""
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
nsnap = max(paths.get_snapshots(nsim))
box = csiborgtools.read.CSiBORGBox(nsnap, nsim, paths)
@ -50,10 +66,47 @@ def density_field(nsim, parser_args):
field = gen(parts, parser_args.grid, in_rsp=parser_args.in_rsp,
verbose=parser_args.verbose)
fout = paths.field("density", parser_args.MAS, parser_args.grid,
nsim, parser_args.in_rsp)
print(f"{datetime.now()}: saving output to `{fout}`.")
numpy.save(fout, field)
if to_save:
fout = paths.field("density", parser_args.MAS, parser_args.grid,
nsim, parser_args.in_rsp)
print(f"{datetime.now()}: saving output to `{fout}`.")
numpy.save(fout, field)
return field
def density_field_smoothed(nsim, parser_args, to_save=True):
"""
Calculate the smoothed density field in the CSiBORG simulation. The
unsmoothed density field must already be precomputed.
Parameters
----------
nsim : int
Simulation index.
parser_args : argparse.Namespace
Parsed arguments.
to_save : bool, optional
Whether to save the output to disk.
Returns
-------
smoothed_density : 3-dimensional array
"""
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
nsnap = max(paths.get_snapshots(nsim))
box = csiborgtools.read.CSiBORGBox(nsnap, nsim, paths)
# Load the real space overdensity field
rho = numpy.load(paths.field("density", parser_args.MAS, parser_args.grid,
nsim, in_rsp=False))
rho = csiborgtools.field.smoothen_field(rho, parser_args.smooth_scale,
box.boxsize, threads=1)
if to_save:
fout = paths.field("density", parser_args.MAS, parser_args.grid,
nsim, parser_args.in_rsp, parser_args.smooth_scale)
print(f"{datetime.now()}: saving output to `{fout}`.")
numpy.save(fout, rho)
return rho
###############################################################################
@ -61,9 +114,28 @@ def density_field(nsim, parser_args):
###############################################################################
def velocity_field(nsim, parser_args):
def velocity_field(nsim, parser_args, to_save=True):
"""
Calculate the velocity field in the CSiBORG simulation.
Parameters
----------
nsim : int
Simulation index.
parser_args : argparse.Namespace
Parsed arguments.
to_save : bool, optional
Whether to save the output to disk.
Returns
-------
velfield : 4-dimensional array
"""
if parser_args.in_rsp:
raise NotImplementedError("Velocity field in RSP is not implemented.")
if parser_args.smooth_scale > 0:
raise NotImplementedError(
"Smoothed velocity field is not implemented.")
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
mpart = 1.1641532e-10 # Particle mass in CSiBORG simulations.
nsnap = max(paths.get_snapshots(nsim))
@ -73,10 +145,12 @@ def velocity_field(nsim, parser_args):
gen = csiborgtools.field.VelocityField(box, parser_args.MAS)
field = gen(parts, parser_args.grid, mpart, verbose=parser_args.verbose)
fout = paths.field("velocity", parser_args.MAS, parser_args.grid,
nsim, in_rsp=False)
print(f"{datetime.now()}: saving output to `{fout}`.")
numpy.save(fout, field)
if to_save:
fout = paths.field("velocity", parser_args.MAS, parser_args.grid,
nsim, in_rsp=False)
print(f"{datetime.now()}: saving output to `{fout}`.")
numpy.save(fout, field)
return field
###############################################################################
@ -84,7 +158,23 @@ def velocity_field(nsim, parser_args):
###############################################################################
def potential_field(nsim, parser_args):
def potential_field(nsim, parser_args, to_save=True):
"""
Calculate the potential field in the CSiBORG simulation.
Parameters
----------
nsim : int
Simulation index.
parser_args : argparse.Namespace
Parsed arguments.
to_save : bool, optional
Whether to save the output to disk.
Returns
-------
potential : 3-dimensional array
"""
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
nsnap = max(paths.get_snapshots(nsim))
box = csiborgtools.read.CSiBORGBox(nsnap, nsim, paths)
@ -93,6 +183,9 @@ def potential_field(nsim, parser_args):
density_gen = csiborgtools.field.DensityField(box, parser_args.MAS)
rho = numpy.load(paths.field("density", parser_args.MAS, parser_args.grid,
nsim, in_rsp=False))
if parser_args.smooth_scale > 0:
rho = csiborgtools.field.smoothen_field(rho, parser_args.smooth_scale,
box.boxsize, threads=1)
rho = density_gen.overdensity_field(rho)
# Calculate the real space potentiel field
gen = csiborgtools.field.PotentialField(box, parser_args.MAS)
@ -102,10 +195,12 @@ def potential_field(nsim, parser_args):
parts = csiborgtools.read.read_h5(paths.particles(nsim))["particles"]
field = csiborgtools.field.field2rsp(field, parts=parts, box=box,
verbose=parser_args.verbose)
fout = paths.field(parser_args.kind, parser_args.MAS, parser_args.grid,
nsim, parser_args.in_rsp)
print(f"{datetime.now()}: saving output to `{fout}`.")
numpy.save(fout, field)
if to_save:
fout = paths.field(parser_args.kind, parser_args.MAS, parser_args.grid,
nsim, parser_args.in_rsp, parser_args.smooth_scale)
print(f"{datetime.now()}: saving output to `{fout}`.")
numpy.save(fout, field)
return field
###############################################################################
@ -113,9 +208,28 @@ def potential_field(nsim, parser_args):
###############################################################################
def radvel_field(nsim, parser_args):
def radvel_field(nsim, parser_args, to_save=True):
"""
Calculate the radial velocity field in the CSiBORG simulation.
Parameters
----------
nsim : int
Simulation index.
parser_args : argparse.Namespace
Parsed arguments.
to_save : bool, optional
Whether to save the output to disk.
Returns
-------
radvel : 3-dimensional array
"""
if parser_args.in_rsp:
raise NotImplementedError("Radial vel. field in RSP not implemented.")
if parser_args.smooth_scale > 0:
raise NotImplementedError(
"Smoothed radial vel. field not implemented.")
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
nsnap = max(paths.get_snapshots(nsim))
box = csiborgtools.read.CSiBORGBox(nsnap, nsim, paths)
@ -124,11 +238,12 @@ def radvel_field(nsim, parser_args):
nsim, parser_args.in_rsp))
gen = csiborgtools.field.VelocityField(box, parser_args.MAS)
field = gen.radial_velocity(vel)
fout = paths.field("radvel", parser_args.MAS, parser_args.grid,
nsim, parser_args.in_rsp)
print(f"{datetime.now()}: saving output to `{fout}`.")
numpy.save(fout, field)
if to_save:
fout = paths.field("radvel", parser_args.MAS, parser_args.grid,
nsim, parser_args.in_rsp)
print(f"{datetime.now()}: saving output to `{fout}`.")
numpy.save(fout, field)
return field
###############################################################################
@ -136,7 +251,23 @@ def radvel_field(nsim, parser_args):
###############################################################################
def environment_field(nsim, parser_args):
def environment_field(nsim, parser_args, to_save=True):
"""
Calculate the environmental classification in the CSiBORG simulation.
Parameters
----------
nsim : int
Simulation index.
parser_args : argparse.Namespace
Parsed arguments.
to_save : bool, optional
Whether to save the output to disk.
Returns
-------
env : 3-dimensional array
"""
if parser_args.in_rsp:
raise NotImplementedError("Env. field in RSP not implemented.")
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
@ -150,6 +281,9 @@ def environment_field(nsim, parser_args):
print(f"{datetime.now()}: loading density field.")
rho = numpy.load(paths.field("density", parser_args.MAS, parser_args.grid,
nsim, in_rsp=False))
if parser_args.smooth_scale > 0:
rho = csiborgtools.field.smoothen_field(rho, parser_args.smooth_scale,
box.boxsize, threads=1)
rho = density_gen.overdensity_field(rho)
# Calculate the real space tidal tensor field, delete overdensity.
if parser_args.verbose:
@ -157,12 +291,16 @@ def environment_field(nsim, parser_args):
tensor_field = gen(rho)
del rho
collect()
# TODO: Optionally drag the field to RSP.
# Calculate the eigenvalues of the tidal tensor field, delete tensor field.
if parser_args.verbose:
print(f"{datetime.now()}: calculating eigenvalues.")
eigvals = gen.tensor_field_eigvals(tensor_field)
del tensor_field
collect()
# Classify the environment based on the eigenvalues.
if parser_args.verbose:
print(f"{datetime.now()}: classifying environment.")
@ -170,10 +308,12 @@ def environment_field(nsim, parser_args):
del eigvals
collect()
fout = paths.field("environment", parser_args.MAS, parser_args.grid,
nsim, parser_args.in_rsp)
print(f"{datetime.now()}: saving output to `{fout}`.")
numpy.save(fout, env)
if to_save:
fout = paths.field("environment", parser_args.MAS, parser_args.grid,
nsim, parser_args.in_rsp, parser_args.smooth_scale)
print(f"{datetime.now()}: saving output to `{fout}`.")
numpy.save(fout, env)
return env
###############################################################################
@ -194,6 +334,7 @@ if __name__ == "__main__":
parser.add_argument("--grid", type=int, help="Grid resolution.")
parser.add_argument("--in_rsp", type=lambda x: bool(strtobool(x)),
help="Calculate in RSP?")
parser.add_argument("--smooth_scale", type=float, default=0)
parser.add_argument("--verbose", type=lambda x: bool(strtobool(x)),
help="Verbosity flag for reading in particles.")
parser_args = parser.parse_args()
@ -203,7 +344,10 @@ if __name__ == "__main__":
def main(nsim):
if parser_args.kind == "density":
density_field(nsim, parser_args)
if parser_args.smooth_scale > 0:
density_field_smoothed(nsim, parser_args)
else:
density_field(nsim, parser_args)
elif parser_args.kind == "velocity":
velocity_field(nsim, parser_args)
elif parser_args.kind == "radvel":

View file

@ -119,7 +119,6 @@ def collect_dist(args, paths):
out = data["counts"]
else:
out += data["counts"]
remove(fname)
fout = paths.cross_nearest(args.simname, args.run, "tot_counts",

View file

@ -19,7 +19,6 @@ nbins_marks: 10
- totpartmass
- group_mass
min: 12.4
max: 12.8
islog: true
"mass002":
@ -28,7 +27,6 @@ nbins_marks: 10
- totpartmass
- group_mass
min: 12.6
max: 13.0
islog: true
"mass003":
@ -37,7 +35,6 @@ nbins_marks: 10
- totpartmass
- group_mass
min: 12.8
max: 13.2
islog: true
"mass004":
@ -46,7 +43,6 @@ nbins_marks: 10
- totpartmass
- group_mass
min: 13.0
max: 13.4
islog: true
"mass005":
@ -55,7 +51,6 @@ nbins_marks: 10
- totpartmass
- group_mass
min: 13.2
max: 13.6
islog: true
"mass006":
@ -64,7 +59,6 @@ nbins_marks: 10
- totpartmass
- group_mass
min: 13.4
max: 13.8
islog: true
"mass007":
@ -73,7 +67,6 @@ nbins_marks: 10
- totpartmass
- group_mass
min: 13.6
max: 14.0
islog: true
"mass008":
@ -82,7 +75,6 @@ nbins_marks: 10
- totpartmass
- group_mass
min: 13.8
max: 14.2
islog: true
"mass009":

View file

@ -165,6 +165,8 @@ def open_catalogues(args, config, paths, comm):
if args.verbose and rank == 0:
print(f"{datetime.now()}: opening catalogues.", flush=True)
# We first load all catalogues on the zeroth rank and broadcast their
# names.
if rank == 0:
cats = {}
if args.simname == "csiborg":
@ -182,12 +184,27 @@ def open_catalogues(args, config, paths, comm):
name = paths.quijote_fiducial_nsim(nsim, nobs)
cat = ref_cat.pick_fiducial_observer(nobs, rmax=args.Rmax)
cats.update({name: cat})
names = list(cats.keys())
if nproc > 1:
for i in range(1, nproc):
comm.send(cats, dest=i, tag=nproc + i)
comm.send(names, dest=i, tag=nproc + i)
else:
cats = comm.recv(source=0, tag=nproc + rank)
names = comm.recv(source=0, tag=nproc + rank)
comm.Barrier()
# We then broadcast the catalogues to all ranks, one-by-one as MPI can
# only pass messages smaller than 2GB.
if nproc == 1:
return cats
if rank > 0:
cats = {}
for name in names:
if rank == 0:
for i in range(1, nproc):
comm.send(cats[name], dest=i, tag=nproc + i)
else:
cats.update({name: comm.recv(source=0, tag=nproc + rank)})
return cats

View file

@ -16,6 +16,7 @@
from os.path import join
from argparse import ArgumentParser
import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy
import healpy
@ -209,8 +210,8 @@ def plot_hmf(pdf=False):
plt.close()
def load_field(kind, nsim, grid, MAS, in_rsp=False):
"""
def load_field(kind, nsim, grid, MAS, in_rsp=False, smooth_scale=None):
r"""
Load a single field.
Parameters
@ -225,13 +226,16 @@ def load_field(kind, nsim, grid, MAS, in_rsp=False):
Mass assignment scheme.
in_rsp : bool, optional
Whether to load the field in redshift space.
smooth_scale : float, optional
Smoothing scale in :math:`\mathrm{Mpc} / h`.
Returns
-------
field : n-dimensional array
"""
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
return numpy.load(paths.field(kind, MAS, grid, nsim, in_rsp=in_rsp))
return numpy.load(paths.field(kind, MAS, grid, nsim, in_rsp=in_rsp,
smooth_scale=smooth_scale))
###############################################################################
@ -239,9 +243,9 @@ def load_field(kind, nsim, grid, MAS, in_rsp=False):
###############################################################################
def plot_projected_field(kind, nsim, grid, in_rsp, MAS="PCS",
def plot_projected_field(kind, nsim, grid, in_rsp, smooth_scale, MAS="PCS",
highres_only=True, slice_find=None, pdf=False):
"""
r"""
Plot the mean projected field, however can also plot a single slice.
Parameters
@ -254,6 +258,8 @@ def plot_projected_field(kind, nsim, grid, in_rsp, MAS="PCS",
Grid size.
in_rsp : bool
Whether to load the field in redshift space.
smooth_scale : float
Smoothing scale in :math:`\mathrm{Mpc} / h`.
MAS : str, optional
Mass assignment scheme.
highres_only : bool, optional
@ -273,11 +279,16 @@ def plot_projected_field(kind, nsim, grid, in_rsp, MAS="PCS",
box = csiborgtools.read.CSiBORGBox(nsnap, nsim, paths)
if kind == "overdensity":
field = load_field("density", nsim, grid, MAS=MAS, in_rsp=in_rsp)
field = load_field("density", nsim, grid, MAS=MAS, in_rsp=in_rsp,
smooth_scale=smooth_scale)
density_gen = csiborgtools.field.DensityField(box, MAS)
field = density_gen.overdensity_field(field) + 2
field = density_gen.overdensity_field(field) + 1
else:
field = load_field(kind, nsim, grid, MAS=MAS, in_rsp=in_rsp)
field = load_field(kind, nsim, grid, MAS=MAS, in_rsp=in_rsp,
smooth_scale=smooth_scale)
if kind == "velocity":
field = field[0, ...]
if highres_only:
csiborgtools.field.fill_outside(field, numpy.nan, rmax=155.5,
@ -286,10 +297,11 @@ def plot_projected_field(kind, nsim, grid, in_rsp, MAS="PCS",
end = round(field.shape[0] * 0.73)
field = field[start:end, start:end, start:end]
if kind != "environment":
cmap = "viridis"
if kind == "environment":
cmap = mpl.colors.ListedColormap(
['red', 'lightcoral', 'limegreen', 'khaki'])
else:
cmap = "brg"
cmap = "viridis"
labels = [r"$y-z$", r"$x-z$", r"$x-y$"]
with plt.style.context(plt_utils.mplstyle):
@ -309,12 +321,15 @@ def plot_projected_field(kind, nsim, grid, in_rsp, MAS="PCS",
else:
ax[i].imshow(img, vmin=vmin, vmax=vmax, cmap=cmap)
if not highres_only:
frad = 155.5 / 677.7
if not highres_only and 0.5 - frad < slice_find < 0.5 + frad:
theta = numpy.linspace(0, 2 * numpy.pi, 100)
rad = 155.5 / 677.7 * grid
z = (slice_find - 0.5) * grid
R = 155.5 / 677.7 * grid
rad = R * numpy.sqrt(1 - z**2 / R**2)
ax[i].plot(rad * numpy.cos(theta) + grid // 2,
rad * numpy.sin(theta) + grid // 2,
lw=plt.rcParams["lines.linewidth"], zorder=1,
lw=0.75 * plt.rcParams["lines.linewidth"], zorder=1,
c="red", ls="--")
ax[i].set_title(labels[i])
@ -343,17 +358,32 @@ def plot_projected_field(kind, nsim, grid, in_rsp, MAS="PCS",
(xticks * size / ncells - size / 2).astype(int))
ax[i].set_xlabel(r"$x_j ~ [\mathrm{Mpc} / h]$")
cbar_ax = fig.add_axes([1.0, 0.1, 0.025, 0.8])
cbar_ax = fig.add_axes([0.982, 0.155, 0.025, 0.75],
transform=ax[2].transAxes)
if slice_find is None:
clabel = "Mean projected field"
else:
clabel = "Sliced field"
fig.colorbar(im, cax=cbar_ax, label=clabel)
if kind == "environment":
bounds = [0, 1, 2, 3, 4]
norm = mpl.colors.BoundaryNorm(bounds, cmap.N)
cbar = fig.colorbar(
mpl.cm.ScalarMappable(cmap=cmap, norm=norm), cax=cbar_ax,
ticks=[0.5, 1.5, 2.5, 3.5])
cbar.ax.set_yticklabels(["knot", "filament", "sheet", "void"],
rotation=90, va="center")
else:
fig.colorbar(im, cax=cbar_ax, label=clabel)
fig.tight_layout(h_pad=0, w_pad=0)
for ext in ["png"] if pdf is False else ["png", "pdf"]:
fout = join(plt_utils.fout,
f"field_{kind}_{nsim}_rsp{in_rsp}.{ext}")
fout = join(
plt_utils.fout,
f"field_{kind}_{nsim}_rsp{in_rsp}_hres{highres_only}.{ext}")
if smooth_scale is not None and smooth_scale > 0:
smooth_scale = float(smooth_scale)
fout = fout.replace(f".{ext}", f"_smooth{smooth_scale}.{ext}")
print(f"Saving to `{fout}`.")
fig.savefig(fout, dpi=plt_utils.dpi, bbox_inches="tight")
plt.close()
@ -404,8 +434,8 @@ def get_sky_label(kind, volume_weight):
return label
def plot_sky_distribution(kind, nsim, grid, nside, MAS="PCS", plot_groups=True,
dmin=0, dmax=220, plot_halos=None,
def plot_sky_distribution(kind, nsim, grid, nside, smooth_scale, MAS="PCS",
plot_groups=True, dmin=0, dmax=220, plot_halos=None,
volume_weight=True, pdf=False):
r"""
Plot the sky distribution of a given field kind on the sky along with halos
@ -425,6 +455,8 @@ def plot_sky_distribution(kind, nsim, grid, nside, MAS="PCS", plot_groups=True,
Grid size.
nside : int
Healpix nside of the sky projection.
smooth_scale : float
Smoothing scale in :math:`\mathrm{Mpc} / h`.
MAS : str, optional
Mass assignment scheme.
plot_groups : bool, optional
@ -445,11 +477,13 @@ def plot_sky_distribution(kind, nsim, grid, nside, MAS="PCS", plot_groups=True,
box = csiborgtools.read.CSiBORGBox(nsnap, nsim, paths)
if kind == "overdensity":
field = load_field("density", nsim, grid, MAS=MAS, in_rsp=False)
field = load_field("density", nsim, grid, MAS=MAS, in_rsp=False,
smooth_scale=smooth_scale)
density_gen = csiborgtools.field.DensityField(box, MAS)
field = density_gen.overdensity_field(field) + 2
field = density_gen.overdensity_field(field) + 1
else:
field = load_field(kind, nsim, grid, MAS=MAS, in_rsp=False)
field = load_field(kind, nsim, grid, MAS=MAS, in_rsp=False,
smooth_scale=smooth_scale)
angpos = csiborgtools.field.nside2radec(nside)
dist = numpy.linspace(dmin, dmax, 500)
@ -519,7 +553,22 @@ if __name__ == "__main__":
if True:
kind = "environment"
grid = 256
smooth_scale = 0
# plot_projected_field("overdensity", 7444, grid, in_rsp=True,
# highres_only=False)
plot_projected_field(kind, 7444, grid, in_rsp=False,
slice_find=0.5, highres_only=False)
smooth_scale=smooth_scale, slice_find=0.5,
highres_only=False)
if False:
paths = csiborgtools.read.Paths(**csiborgtools.paths_glamdring)
d = csiborgtools.read.read_h5(paths.particles(7444))["particles"]
plt.figure()
plt.hist(d[:100000, 4], bins="auto")
plt.tight_layout()
plt.savefig("../plots/velocity_distribution.png", dpi=450,
bbox_inches="tight")

View file

@ -648,7 +648,32 @@ def plot_significance(simname, runs, nsim, nobs, kind, kwargs, runs_to_mass):
plt.close()
def plot_significance_vs_mass(simname, runs, nsim, nobs, kind, kwargs):
def make_binlims(run, runs_to_mass):
"""
Make bin limits for the 1NN distance runs, corresponding to the first half
of the log-mass bin.
Parameters
----------
run : str
Run name.
runs_to_mass : dict
Dictionary mapping run names to total halo mass range.
Returns
-------
xmin, xmax : floats
"""
xmin, xmax = runs_to_mass[run]
xmax = xmin + (xmax - xmin) / 2
xmin, xmax = 10**xmin, 10**xmax
if run == "mass009":
xmax = numpy.infty
return xmin, xmax
def plot_significance_vs_mass(simname, runs, nsim, nobs, kind, kwargs,
runs_to_mass):
"""
Plot significance of the 1NN distance as a function of the total mass.
@ -667,6 +692,8 @@ def plot_significance_vs_mass(simname, runs, nsim, nobs, kind, kwargs):
(Kolmogorov-Smirnov p-value).
kwargs : dict
Nearest neighbour reader keyword arguments.
runs_to_mass : dict
Dictionary mapping run names to total halo mass range.
Returns
-------
@ -686,8 +713,12 @@ def plot_significance_vs_mass(simname, runs, nsim, nobs, kind, kwargs):
y = make_kl(simname, run, nsim, nobs, kwargs)
else:
y = numpy.log10(make_ks(simname, run, nsim, nobs, kwargs))
xs.append(x)
ys.append(y)
xmin, xmax = make_binlims(run, runs_to_mass)
mask = (x >= xmin) & (x < xmax)
xs.append(x[mask])
ys.append(y[mask])
xs = numpy.concatenate(xs)
ys = numpy.concatenate(ys)
@ -715,7 +746,7 @@ def plot_significance_vs_mass(simname, runs, nsim, nobs, kind, kwargs):
plt.close()
def plot_kl_vs_ks(simname, runs, nsim, nobs, kwargs):
def plot_kl_vs_ks(simname, runs, nsim, nobs, kwargs, runs_to_mass):
"""
Plot Kullback-Leibler divergence vs Kolmogorov-Smirnov statistic p-value.
@ -731,6 +762,8 @@ def plot_kl_vs_ks(simname, runs, nsim, nobs, kwargs):
Fiducial Quijote observer index. For CSiBORG must be set to `None`.
kwargs : dict
Nearest neighbour reader keyword arguments.
runs_to_mass : dict
Dictionary mapping run names to total halo mass range.
Returns
-------
@ -741,9 +774,16 @@ def plot_kl_vs_ks(simname, runs, nsim, nobs, kwargs):
xs, ys, cs = [], [], []
for run in runs:
cs.append(reader.read_single(simname, run, nsim, nobs)["mass"])
xs.append(make_kl(simname, run, nsim, nobs, kwargs))
ys.append(make_ks(simname, run, nsim, nobs, kwargs))
c = reader.read_single(simname, run, nsim, nobs)["mass"]
x = make_kl(simname, run, nsim, nobs, kwargs)
y = make_ks(simname, run, nsim, nobs, kwargs)
cmin, cmax = make_binlims(run, runs_to_mass)
mask = (c >= cmin) & (c < cmax)
xs.append(x[mask])
ys.append(y[mask])
cs.append(c[mask])
xs = numpy.concatenate(xs)
ys = numpy.log10(numpy.concatenate(ys))
cs = numpy.log10(numpy.concatenate(cs))
@ -768,7 +808,7 @@ def plot_kl_vs_ks(simname, runs, nsim, nobs, kwargs):
plt.close()
def plot_kl_vs_overlap(runs, nsim, kwargs):
def plot_kl_vs_overlap(runs, nsim, kwargs, runs_to_mass):
"""
Plot KL divergence vs overlap for CSiBORG.
@ -780,6 +820,8 @@ def plot_kl_vs_overlap(runs, nsim, kwargs):
Simulation index.
kwargs : dict
Nearest neighbour reader keyword arguments.
runs_to_mass : dict
Dictionary mapping run names to total halo mass range.
Returns
-------
@ -802,12 +844,15 @@ def plot_kl_vs_overlap(runs, nsim, kwargs):
prob_nomatch = prob_nomatch[mask]
mass = mass[mask]
kl = make_kl("csiborg", run, nsim, nobs=None, kwargs=kwargs)
xs.append(kl)
ys1.append(1 - numpy.mean(prob_nomatch, axis=1))
ys2.append(numpy.std(prob_nomatch, axis=1))
cs.append(numpy.log10(mass))
x = make_kl("csiborg", run, nsim, nobs=None, kwargs=kwargs)
y1 = 1 - numpy.mean(prob_nomatch, axis=1)
y2 = numpy.std(prob_nomatch, axis=1)
cmin, cmax = make_binlims(run, runs_to_mass)
mask = (mass >= cmin) & (mass < cmax)
xs.append(x[mask])
ys1.append(y1[mask])
ys2.append(y2[mask])
cs.append(numpy.log10(mass[mask]))
xs = numpy.concatenate(xs)
ys1 = numpy.concatenate(ys1)
@ -877,7 +922,7 @@ if __name__ == "__main__":
delete_disk_caches_for_function(func)
# Plot 1NN distance distributions.
if False:
if True:
for i in range(1, 10):
run = f"mass00{i}"
for pulled_cdf in [True, False]:
@ -886,12 +931,12 @@ if __name__ == "__main__":
plot_dist(run, "pdf", neighbour_kwargs, runs_to_mass)
# Plot 1NN CDF differences.
if False:
if True:
runs = [f"mass00{i}" for i in range(1, 10)]
for pulled_cdf in [True, False]:
plot_cdf_diff(runs, neighbour_kwargs, pulled_cdf=pulled_cdf,
runs_to_mass=runs_to_mass)
if False:
if True:
runs = [f"mass00{i}" for i in range(1, 9)]
for kind in ["kl", "ks"]:
plot_significance("csiborg", runs, 7444, nobs=None, kind=kind,
@ -902,12 +947,14 @@ if __name__ == "__main__":
runs = [f"mass00{i}" for i in range(1, 10)]
for kind in ["kl", "ks"]:
plot_significance_vs_mass("csiborg", runs, 7444, nobs=None,
kind=kind, kwargs=neighbour_kwargs)
kind=kind, kwargs=neighbour_kwargs,
runs_to_mass=runs_to_mass)
if False:
if True:
runs = [f"mass00{i}" for i in range(1, 10)]
plot_kl_vs_ks("csiborg", runs, 7444, None, kwargs=neighbour_kwargs)
plot_kl_vs_ks("csiborg", runs, 7444, None, kwargs=neighbour_kwargs,
runs_to_mass=runs_to_mass)
if False:
if True:
runs = [f"mass00{i}" for i in range(1, 10)]
plot_kl_vs_overlap(runs, 7444, neighbour_kwargs)
plot_kl_vs_overlap(runs, 7444, neighbour_kwargs, runs_to_mass)