2330 lines
673 KiB
Text
2330 lines
673 KiB
Text
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "340c92c6",
|
|
"metadata": {},
|
|
"source": [
|
|
"Tristan Hoellinger<br/>\n",
|
|
"Institut d'Astrophysique de Paris</br>\n",
|
|
"tristan.hoellinger@iap.fr"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "94047ef1",
|
|
"metadata": {},
|
|
"source": [
|
|
"# P3M force diagnostic"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "cd240b53",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Set up the environment and parameters"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 1,
|
|
"id": "1dfed55e",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# pyright: reportWildcardImportFromLibrary=false\n",
|
|
"from wip3m import *"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 2,
|
|
"id": "aea2278a",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"workdir = ROOT_PATH + \"results/\"\n",
|
|
"output_path = OUTPUT_PATH\n",
|
|
"\n",
|
|
"L = 64 # Box size in Mpc/h\n",
|
|
"N = 32 # Density grid size\n",
|
|
"Np = 32 # Number of dark matter particles per spatial dimension\n",
|
|
"Npm = 64 # PM grid size\n",
|
|
"n_Tiles = 8 # Make sure Npm/n_Tiles >= 6\n",
|
|
"\n",
|
|
"go_beyond_Nyquist_ss = True # for the summary statistics\n",
|
|
"\n",
|
|
"force = True\n",
|
|
"force_hard = True\n",
|
|
"run_id = \"notebook1\"\n",
|
|
"\n",
|
|
"# Good set of parameters for the force diagnostic\n",
|
|
"# nPairsForceDiagnostic_spm = nPairsForceDiagnostic_p3m = 3\n",
|
|
"# nBinsForceDiagnostic = 30\n",
|
|
"# maxTrialsForceDiagnostic = int(1e9)\n",
|
|
"\n",
|
|
"# Faster force diagnostic\n",
|
|
"nPairsForceDiagnostic_spm = nPairsForceDiagnostic_p3m = 3\n",
|
|
"nBinsForceDiagnostic = 20\n",
|
|
"maxTrialsForceDiagnostic = int(1e8)\n",
|
|
"\n",
|
|
"# Simulation parameters\n",
|
|
"# nsteps_spm = 200\n",
|
|
"# nsteps_p3m = 200\n",
|
|
"nsteps_spm = 20\n",
|
|
"nsteps_p3m = 20"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 3,
|
|
"id": "28a4e070",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Automatic reloading of modules\n",
|
|
"%load_ext autoreload\n",
|
|
"%autoreload 2\n",
|
|
"\n",
|
|
"from os.path import isfile\n",
|
|
"from pathlib import Path\n",
|
|
"import numpy as np\n",
|
|
"\n",
|
|
"from pysbmy import pySbmy\n",
|
|
"from pysbmy.power import PowerSpectrum\n",
|
|
"from pysbmy.field import read_field\n",
|
|
"\n",
|
|
"from wip3m.tools import get_k_max, generate_sim_params, generate_white_noise_Field\n",
|
|
"from wip3m.params import params_planck_kmax_missing, cosmo_small_to_full_dict, z2a, BASELINE_SEEDPHASE\n",
|
|
"from wip3m.plot_utils import * # type: ignore"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 4,
|
|
"id": "3f0eaa51",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"k_max = 2.721\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"corner = 0.0\n",
|
|
"RedshiftLPT = 19.0\n",
|
|
"RedshiftFCs = 0.0\n",
|
|
"ai = z2a(RedshiftLPT)\n",
|
|
"af = z2a(RedshiftFCs)\n",
|
|
"k_max = get_k_max(L, N) # k_max in h/Mpc\n",
|
|
"print(f\"k_max = {k_max}\")\n",
|
|
"cosmo = params_planck_kmax_missing.copy()\n",
|
|
"cosmo[\"k_max\"] = k_max\n",
|
|
"\n",
|
|
"wd = workdir + run_id + \"/\"\n",
|
|
"simdir = output_path + run_id + \"/\"\n",
|
|
"logdir = simdir + \"logs/\"\n",
|
|
"if force_hard:\n",
|
|
" import shutil\n",
|
|
" if Path(simdir).exists():\n",
|
|
" shutil.rmtree(simdir)\n",
|
|
" if Path(wd).exists():\n",
|
|
" shutil.rmtree(wd)\n",
|
|
"Path(wd).mkdir(parents=True, exist_ok=True)\n",
|
|
"Path(logdir).mkdir(parents=True, exist_ok=True)\n",
|
|
"\n",
|
|
"input_white_noise_file = simdir + \"input_white_noise.h5\"\n",
|
|
"input_seed_phase_file = simdir + \"seed\"\n",
|
|
"ICs_path = simdir + \"initial_density.h5\"\n",
|
|
"simpath = simdir\n",
|
|
"\n",
|
|
"# Path to the input matter power spectrum (generated later)\n",
|
|
"input_power_file = simdir + \"input_power.h5\"\n",
|
|
"\n",
|
|
"# Paths to the force diagnostic CSVs\n",
|
|
"OutputForceDiagnostic_spm = simdir + \"force_diagnostic_spm.txt\"\n",
|
|
"OutputForceDiagnostic_p3m = simdir + \"force_diagnostic_p3m.txt\""
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "4f013d1f",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Generate the parameter files"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "88742aca",
|
|
"metadata": {},
|
|
"source": [
|
|
"The first preparatory step is to generate all the parameter files required for all the simulations.\n",
|
|
"\n",
|
|
"To this end we use the `generate_sim_params` function defined in `params.py`."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 5,
|
|
"id": "dd3f8a0c",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"common_params = {\n",
|
|
" \"Np\": Np,\n",
|
|
" \"N\": N,\n",
|
|
" \"L\": L,\n",
|
|
" \"corner0\": corner,\n",
|
|
" \"corner1\": corner,\n",
|
|
" \"corner2\": corner,\n",
|
|
" \"h\": cosmo[\"h\"],\n",
|
|
" \"Omega_m\": cosmo[\"Omega_m\"],\n",
|
|
" \"Omega_b\": cosmo[\"Omega_b\"],\n",
|
|
" \"n_s\": cosmo[\"n_s\"],\n",
|
|
" \"sigma8\": cosmo[\"sigma8\"],\n",
|
|
"}\n",
|
|
"\n",
|
|
"lpt_params = common_params.copy()\n",
|
|
"lpt_params[\"method\"] = \"lpt\"\n",
|
|
"lpt_params[\"InputPowerSpectrum\"] = input_power_file\n",
|
|
"lpt_params[\"ICsMode\"] = 1\n",
|
|
"lpt_params[\"InputWhiteNoise\"] = input_white_noise_file\n",
|
|
"\n",
|
|
"spm_params = common_params.copy()\n",
|
|
"spm_params[\"method\"] = \"spm\"\n",
|
|
"spm_params[\"EvolutionMode\"] = 5\n",
|
|
"spm_params[\"TimeStepDistribution\"] = 0\n",
|
|
"spm_params[\"ai\"] = ai\n",
|
|
"spm_params[\"af\"] = af\n",
|
|
"spm_params[\"RedshiftLPT\"] = RedshiftLPT\n",
|
|
"spm_params[\"RedshiftFCs\"] = RedshiftFCs\n",
|
|
"spm_params[\"Npm\"] = Npm\n",
|
|
"spm_params[\"nsteps\"] = nsteps_spm\n",
|
|
"spm_params[\"n_Tiles\"] = n_Tiles\n",
|
|
"spm_params[\"RunForceDiagnostic\"] = True\n",
|
|
"spm_params[\"nPairsForceDiagnostic\"] = nPairsForceDiagnostic_spm\n",
|
|
"spm_params[\"nBinsForceDiagnostic\"] = nBinsForceDiagnostic\n",
|
|
"spm_params[\"OutputForceDiagnostic\"] = OutputForceDiagnostic_spm\n",
|
|
"spm_params[\"maxTrialsForceDiagnostic\"] = maxTrialsForceDiagnostic\n",
|
|
"\n",
|
|
"p3m_params = common_params.copy()\n",
|
|
"p3m_params[\"method\"] = \"p3m\"\n",
|
|
"p3m_params[\"EvolutionMode\"] = 4\n",
|
|
"p3m_params[\"TimeStepDistribution\"] = 0\n",
|
|
"p3m_params[\"ai\"] = ai\n",
|
|
"p3m_params[\"af\"] = af\n",
|
|
"p3m_params[\"RedshiftLPT\"] = RedshiftLPT\n",
|
|
"p3m_params[\"RedshiftFCs\"] = RedshiftFCs\n",
|
|
"p3m_params[\"Npm\"] = Npm\n",
|
|
"p3m_params[\"nsteps\"] = nsteps_p3m\n",
|
|
"p3m_params[\"n_Tiles\"] = n_Tiles\n",
|
|
"p3m_params[\"RunForceDiagnostic\"] = True\n",
|
|
"p3m_params[\"nPairsForceDiagnostic\"] = nPairsForceDiagnostic_p3m\n",
|
|
"p3m_params[\"nBinsForceDiagnostic\"] = nBinsForceDiagnostic\n",
|
|
"p3m_params[\"OutputForceDiagnostic\"] = OutputForceDiagnostic_p3m\n",
|
|
"p3m_params[\"maxTrialsForceDiagnostic\"] = maxTrialsForceDiagnostic"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 6,
|
|
"id": "1d617059",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"[01:48:10|\u001b[1;36mINFO \u001b[00m]|\u001b[38;5;147m(wip3m.tools)\u001b[00m Generating parameter file...\n",
|
|
"[01:48:10|\u001b[38;5;113mSTATUS \u001b[00m]|Writing parameter file in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/example_lpt.sbmy'...\n",
|
|
"[01:48:10|\u001b[38;5;113mSTATUS \u001b[00m]|Writing parameter file in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/example_lpt.sbmy' done.\n",
|
|
"[01:48:10|\u001b[1;36mINFO \u001b[00m]|\u001b[38;5;147m(wip3m.tools)\u001b[00m Parameter file written to /Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/example_lpt.sbmy\n",
|
|
"SPM nsteps = 20:\n",
|
|
"[01:48:10|\u001b[1;36mINFO \u001b[00m]|\u001b[38;5;147m(wip3m.tools)\u001b[00m Time-stepping distribution file: /Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/nsteps20_ts_spm.h5\n",
|
|
"[01:48:10|\u001b[38;5;113mSTATUS \u001b[00m]|Write timestepping configuration in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/nsteps20_ts_spm.h5'...\n",
|
|
"[01:48:10|\u001b[38;5;113mSTATUS \u001b[00m]|Write timestepping configuration in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/nsteps20_ts_spm.h5' done.\n",
|
|
"[01:48:10|\u001b[1;36mINFO \u001b[00m]|\u001b[38;5;147m(wip3m.tools)\u001b[00m TS.ai = 0.050000, TS.af = 1.000000, TS.nsteps = 20\n",
|
|
"[01:48:10|\u001b[38;5;113mSTATUS \u001b[00m]|Read timestepping configuration in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/nsteps20_ts_spm.h5'...\n",
|
|
"[01:48:10|\u001b[38;5;113mSTATUS \u001b[00m]|Read timestepping configuration in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/nsteps20_ts_spm.h5' done.\n",
|
|
"[01:48:10|\u001b[1;36mINFO \u001b[00m]|\u001b[38;5;147m(wip3m.tools)\u001b[00m Generating parameter file...\n",
|
|
"[01:48:10|\u001b[38;5;113mSTATUS \u001b[00m]|Writing parameter file in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/nsteps20_example_spm.sbmy'...\n",
|
|
"[01:48:10|\u001b[38;5;113mSTATUS \u001b[00m]|Writing parameter file in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/nsteps20_example_spm.sbmy' done.\n",
|
|
"[01:48:10|\u001b[1;36mINFO \u001b[00m]|\u001b[38;5;147m(wip3m.tools)\u001b[00m Parameter file written to /Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/nsteps20_example_spm.sbmy\n",
|
|
"P3M nsteps = 20:\n",
|
|
"[01:48:10|\u001b[1;36mINFO \u001b[00m]|\u001b[38;5;147m(wip3m.tools)\u001b[00m Time-stepping distribution file: /Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/nsteps20_ts_p3m.h5\n",
|
|
"[01:48:10|\u001b[38;5;113mSTATUS \u001b[00m]|Write timestepping configuration in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/nsteps20_ts_p3m.h5'...\n",
|
|
"[01:48:10|\u001b[38;5;113mSTATUS \u001b[00m]|Write timestepping configuration in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/nsteps20_ts_p3m.h5' done.\n",
|
|
"[01:48:10|\u001b[1;36mINFO \u001b[00m]|\u001b[38;5;147m(wip3m.tools)\u001b[00m TS.ai = 0.050000, TS.af = 1.000000, TS.nsteps = 20\n",
|
|
"[01:48:10|\u001b[38;5;113mSTATUS \u001b[00m]|Read timestepping configuration in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/nsteps20_ts_p3m.h5'...\n",
|
|
"[01:48:10|\u001b[38;5;113mSTATUS \u001b[00m]|Read timestepping configuration in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/nsteps20_ts_p3m.h5' done.\n",
|
|
"[01:48:10|\u001b[1;36mINFO \u001b[00m]|\u001b[38;5;147m(wip3m.tools)\u001b[00m Generating parameter file...\n",
|
|
"[01:48:10|\u001b[38;5;113mSTATUS \u001b[00m]|Writing parameter file in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/nsteps20_example_p3m.sbmy'...\n",
|
|
"[01:48:10|\u001b[38;5;113mSTATUS \u001b[00m]|Writing parameter file in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/nsteps20_example_p3m.sbmy' done.\n",
|
|
"[01:48:10|\u001b[1;36mINFO \u001b[00m]|\u001b[38;5;147m(wip3m.tools)\u001b[00m Parameter file written to /Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/nsteps20_example_p3m.sbmy\n"
|
|
]
|
|
},
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAb0AAACMCAYAAADof3f4AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAANTFJREFUeJztnQdcFMcXx390aSJFQEUsIMauiBpr7D3RRI3GHluCGnv9xxIr2MXeeyyxxBrR2LvG3jsxCqLY6Qrc//MGD++ou8cdnNz7fj77udu93XdvZmfnzbx5M2ukUCgUYBiGYRgDwDi7FWAYhmGYrIKNHsMwDGMwsNFjGIZhDAY2egzDMIzBwEaPYRiGMRjY6DEMwzAGAxs9hmEYxmBgo8cwDMMYDKb4jElISEBISAhsbW1hZGSU3eowDMMw2QStsxIeHo78+fPD2Ng4Zxo9MngFCxbMbjUYhmEYPeHx48dwc3PLmUaPenjKRObOnVtjOcW/KI7Qp6Gwz2uPpQeWpnrOo6UmSIg0gbF1PAr1jNf4v7Qhh3XRrRzWRbdyWBfdytEnXaTwaKkpEiKNYZXbDB3HV4OmvHv3TnSClHYhRxo9pUuTDF5mjJ6yK2xsYgxHe8dUz3luEYeED8YwtkiAo73m2aYNOayLbuWwLrqVw7roVo4+6SKFMIt4xH8wgqWFWabqcSUZDXVxIAvDMAxjMLDRYxiGYQwGNnoMwzCMwcBGj2EYhjEYPutAFl3y5+o/sWnxJrwKewWPEh74pmQfuNuWTPP8K2evYNOiTbh77S5ePn+JCUsnoEajGrL+8/d5v+N44HH89+A/WOSyQKmKpdBrZC+4e7hLlrFj7Q7sXLsToU9CxX5hr8Lo3L8zqtSpgsywfv56LJ2yFK26tULf3/pKvm7VzFVYPXu12rGCHgWx5vAaWf8fFhqGJX5LcO7wOcREx6BA4QIYPn04ipcrLllGu2rt8OzJsxTHW3RugQETB0iSER8fj9WzVuPvP//Gq+ev4OTihEZtGqFTv06y54pGRURhxfQVOLHvBF6/eI1ipYuJvP2i3BcalzOaq7Ry5krsWb8HEe8iUNqnNAZOHgjAVZacY3uPYde6XeL3d2/eYenepfAs5SlLn7gPcVg+bTnOHj6Lp/89hbWtNbxreKNO3m7IDWfJulAZOrTrEMJCwmBqZgqvMl7oPqw7jOAlK02qzBw5E7t+34XWtX1Ru3hryTL8B/lj35Z9arIqfVUJP/pMlq3Lo3uPRJmmc+Pj4lGoWCF0qjIGeYxdJcup414n1fS1rNILDWu0kSQjOjIaS/yXiHL47vU75CuYD9/9+B2KoWmqsqXqRnUnpe/8sfOiLJatUhb9xveDW5G0pxNkBdzTS4VDOw9h4YSF6DKgC5bsWSKM3tytIxEe/TrNa2KiYuBR0gP9J/bX+H+pELXs0hLzt8/HtN+nIS4uDsM6DkN0VLRkGXld86LniJ5YvGcxFu1ehArVKmBUj1EIuhOksV63r9zGrvW7ULREUY2uJ8O79fzWpG3u1rmyrg9/E45fvvsFpqam8F/jj1UHV8F3tC9s7GxkyVm0a5GaHtN/ny6O125WW7KMDQs3iIYFPbyrD60WjZKNizZi28ptkMu0YdNw/vh5jJw9Eiv+XgGfmj4Y0n6IMPCalrONCxN1Geg3EAt2LkAuq1yiDH2Iey9LDv1eulJpkb70SE8ONU7uXb8nGgSL/1qM8UvG4/HDx1i0fYwsXdyKuqH/+P5Yvn855mydA9eCriJN4VFvZMlRQg3Lm5duigaLnPQoqVy7slo5Gj13tGw5wf8Go1+rfqIBOGvTLCzbt0zkk5mpmSw5qnrQNmz6MBjBCOWL1pQsY/74+Th35Bx+DfhVlOlW3VshYEwArt4/lWYeZCSXGl+je44WjZ2Jyydiyd4lcCngIsq3nPpMF3BPLxU2L9uMZj80Q5Pvm4j9QX6DcGLXGZy+HYjGedumeg31pDLbm5q6dqra/ogZI/BthW9FS6pclXKSZFRroD7PpcewHqLnRw95keJFZOtErcBJ/SZhiP8QrJ27FppgYmoCB2cHaAoZGud8zhg+Y3jSsXzu+WTLyeOYR21//YL1yF8oP8p9KS1viRvnb6B6w+qoWq+q2KcK+ODOg6JhIIfYmFjRm5q4bGLSve06qCtOHTgl7lf3od1llzOqaLYs34JOv3RCjYaJLe6Rs0biu4rf4cr9k/B2qydJDtGwVUPxGfo40WOQFunJscltg+nrExsWSvpP6A/fr33xKvwZnGzyStKlfsv6avu9R/fGXxv/QnDYQ3g5Osh6BqlBMWfMHPGsjfxxpKz0KDEzN0ulPMfJkkM9YPr9519/TjpG3otbt+KQECFdTnI9Tu4/CS/3cnDKnZ/WrJIk48aFG2jUuhHKVy0v9r/u8LXoBf8begelXdP2VqUn90nQE9y8eFM05pT1DnkcWlVshUM7Don6Nbvgnl4yPrz/IIxMxRoV1ebxfeHujaBnN7NUl8jwSPGZO49mc1fIFUe9Vmpxl/IupZGM2aNm48u6X6JizU/5IZfgoGC09mmN9tXbY2K/iXgWnNLFmB6n/j6F4mWL47effxONgJ5NemL3+t3I7H0mF2WTtk1kuSVL+ZTCxZMXRY+FuH/zPq7/c120/uVA7qyE+ASYW5irHSe39rV/rkETqFVNLiXVskuGp0T5EngYkrVlNy0i30WKnoilhbxeuup9o3tvndsabnk9ZC9b6DfAD21/aqtRA1DJ5TOXRTnsXLszZv1vFt6+fitbjzOHzoge7NCOQ4Us3298hXsxM9C9J7nVSic21qVSqmIp8YxRg4AaTpdOXRJGq0RhzZ95uk+EavmmepQaDJqWb23BPb1kvH31VlRG9k72asdtrewR+iKxossK6MGY99s8MSYj9wF9ePsh+rTsg/ex72FpbSncSuRilAsZTHJPkVtQU0pUKCF6aOTGIb//mtlr0L91f9ECtLKxkiQj5HEIdqzbgTY92qBD3w6iVzV37FwxvtO4TWON9KIKhsYZGreWd3373u0RFR6FLnW6iMUMqKxQr6zBtw1kyaG0U2Wzds5aFPIsJFYDohYwtY6pxa9ppUckL7u0/+5e2q75rOJ9zHss9lsMny/qwNLcOqknIoXTB05jfN/xiI2OhaOzo3BNK47YqfWKMmLDgg0wMTER49KaQo2bmo1rCk9DyKMQLJuyDCM6j0DfurMl9yHevHgjPCikT7eh3fDTyJ+Ee3FMrzHo32YaPO0raKQbjTVaWVuhfLEaQIz06/qN74cZI2bg+8rfC68MGafB/oPhHlxWVv6qQnEI5M6kOIDBfoOFm33Lsi0Iexom6oHshI2enhIwKgBBd4Nkj38RBYsWxLLAZaJSP/bXMTH4PvuP2bIM3/OQ58Lo0tiieS713ogcVN0fNDZasnxJEVByePdhNGsnzcWhSFCInl7P4T3FPgV80BgluWA0NXp/bfoLVWpXgZNrynGd9Diy+wgObD+AUXNHify8f+M+5o+bD0cXR9m6kOtx6tCpaFO5jTCgXqW9ULdFXeFpyGlQUMu43uPE93b1+wGJHQHJlK9WXpRpapTu3rBbyBrYfA6skfoKSsm5c/UOtq7cKsboM7M4fd1v6iZ9L/pFUbF1qNkBd4tdgZejj+QGLVGtYTXRkCMoSIjcjCeu7IZnbc2M3t4/9qL+t/VhZmouozkB/LnqT9y6dAuTlk+Ci5sLrp69ioDRAejZxF5ympJDDdJxi8eJcetvyn4jyjd5IKg+oN5kdsJGLxl2DnbiBlE0nSrhUa+R21LzcSk5UIE7ffA0AjYHIG++xHEPOZALQdlbIGNBPaOtK7aK1ptUqOKlPOjV9FMgA/Vq6IGgyNb99/eLVrNcKPiEordC/g2RfA217CmyTRXaP773ODSBIlsvnriIcUsSK2E5LJq0CD/0/iGp8qNKj9y1ND4o1+jRPaJ7TAP71Hskw0mVuSbjlYRD3sTySfeNZCmhfQdrzYKQtGnwQoNDMXPjTISssUaCTKNnaWUp8ou2kt4l0bFWR5y8FoiGpTpIuv7auWuih9W2alu18rw1eDEOnd+GiT+tgybQmDDVGWFvQuAlzf6K86lHVbiYeiPU3dMd525e1UgPei4fP3iMMfPH4MPf8saWl01dJrxBynFqapyS2/7Amc3waqSZ0VPWPcrGN5UBGlMnNy4dz07Y6KViMCgkmsZtlOG31DK7898l1CrZUqf/TS0gGmQ/EXgCs/6YpXHll5pcpY9dKt7VvYULUpUpg6cItwVV+poYPILcOuQWavBdA1njaPRAq/Lk4RPRKtWEwD8CxQNYtW7iQy4Hcq8lf20J7VNvVFOoQqeNolT/OfaPcHdpApUXMnxUdpXTC2hc+NblW+hUvzmy0+DRGBFFKdrZ2yEkWdCHJlB+x8VLL9MNWjVIMS5NEaDe7vVQpai8MTBVyF1HYf521g6y6hialpKiTAc9gUNuF409F1RveZb0xK2/42Tdn7gPcamW6QSFnP5i2tC4sjJ9d6/eRbch3ZCdsNFLBXI5+A/2F4WIggAoIi72Qwy+LN4o3cqcwpCVPH38VLi+bPPYCt+21KCRgzsOiog+8s3TPDCCBu0pwEEKS/2XonKdynDJ74KoyCgc3H4Ql09fThEZKmXMKflYIvnlc9vnljXGuHDiQlStXxWuBVzx4tkLMeeKetL1WnyKJJRyP/p+2xfr5q1DneZ1RCVOwQyD/AdBLtSACdwcKKLVqLUtF0rLurnr4JzfGUW8iuDejXsi2lcZ6SuHc0fPAYpEdzSVnUWTF4lGRXqyMipnrbu3FuOE1CMiI0jzAJ2cnVDOs7raOE9Gcmhu3vPg5+KeETR3lHgbmRu2cJIkh3roY38eK8aFJ6+cLHpWVKbfRsbBMt4O5jDJUAaVN8rv6g2qi0hFcm9uX7MdYc/C4F2nlqy8IYOriomZCXJbO8AlD72eLCFjXfLkFnNOazWpJRoXwY+CsXjyYpHXJQr7yMpfCqYZ32e8mLtG04poTI8idwe0niErTcqGzdE9R+E7ylejMlPuy3LCg0F1DO3T1Kn9W/fjuxqfIks1kUtDAdS4pGfl4Z2HYrikeqPqqFSrErITNnqpQK4rerioghaT00t6oG+rychtRa25hDTHDAa2pUnAiSwYv0B8UuU6YuYISf9LoerEwO8/ySEoEESq6+z1y9fwG+gnKheaDEzuNzJ4PrU0d1NkBmoJT+w7UVSi5NYpU6mMmIeYfPpAelCreMKSCWJQfE3AGjF5ts/YPrKDR4gLJy4IdyRFbWoCDfqTIaExV3Ib0lwvCvGmBQA0iWSkQAiKmrO1s0WtprVEUAyNh6RFRuWsnW87REdHY8bIGcKtVManDKasnYKIXerjPBnJoWg+6tkrmdB3gvhsWrUTmpbtKklO14FdhRyiZ+Oe6vn49Qx8YVc2QxmDJg8SPaKxW8aKKEkyPLQgwZwtc6A4Ulgt0EIbz2B6Mijk/sGtByJghPKWXMg0t5J6Ls/Wy8tfCoYhebToAwVlUaAXjYE53iotO00UcEbeHBoPlpumETNHYMy8MeLZoqlJ9JySB4Um/5eObA5FYgC5RnIpYGXBhAWJ7nZnRzENhuYiZjdGiuweVcwE9P4kOzs7vH37NlOvpCjgVgAhwSFwdHXElnNbUj3nVgDNnzGGsU0CSvTXvK2gDTmsi27lsC66lcO66FaOPukihdsB8YiPMIKVnRl+nPJpUr2u7AHP02MYhmEMBjZ6DMMwjMEg2+jVrl0bAwakvjhv165d0bKltAjHf//9V8yXuXz5MrKVhHjg47qExvFxifupnGP8McZafKZ2jsT/yrQc1kW3clgX3cphXXQrR590IRLikefpNTg/OCY+U8hR+R/Ev9f8f7KrpxcQEIBVq1bhs+HmTmB2aRhFJa4QYB7zDl/+0RNO/55OOoW+0zGLmHCxT5/Jz5GCNuSwLoaTJn3SJSemSZ90yelpKv/XKJQ8MkN8qspR/k71LiHq4dmlE+vlz8Xo0SBinjzSo/KyFcrYPzoD79QnSVtEvkSpg/7ihtBG3+lYWudIQRtyWBfDSZM+6ZIT06RPuhhqmoqeW5Xq73j3NLFe1qHhy7TR27NnjzB2v//+ewr3Js2Jmjp1Kjw9PWFhYQF3d3dMmjQpzcWRu3Xrhi+++AL//Zc4J0hnUBc6kFbsTwxctTQFrMwSP5ULFHmeWiI2go6ZIhamRjHiM+mc00thHBsJ4w8xaW+xkfA8nUk52pCRE3XJiWnSJ11yYpr0SRcDSZMqyv2C17an+J/E+vjjZILAETpzdcqeskBjeuXLl8fs2bOxfv16/Pzzz+KzefPmwui9efMG27cnJmj48OFYunQpZs2ahRo1auDp06e4ffs2evToIcb0ihQpgkuXLqFEiRL44YcfxLF9+/Yhb97Ul96KjY0Vm2qIasGCBeVPWQg6DqzOnhUqGIZhmJSsez4PHZ1VXlDdZTdQpKb+TFmYP38+evfujV27dgmDl5zw8HAxxkc9vS5dusDDw0MYPjJ4qkRERKBZs2YICwvD4cOH0zR4hJ+fn0iUciODpxER6b/aZnFccwz70BPnE9TfzJweUQoLFI5ZLzb6rgnakKFvclgX3cphXXQrR5900ZacqGzUJU5hDL8P7fDj+6GIVphnqp7WFI1mHG7ZsgXPnz/HyZMnUalS6kvK3Lp1S/TK6tVLf7kp6uG5ubnh0KFDsLS0TPfckSNHYtCgQSl6erKxUV8WrMaKCDyLUMDFxggnutngQLw3/lF8gWrGN+ED9RXvt78Yi5ZOnxYqjmq7BvEFv0TU+3hg6iVxLLz/ZcSbJy6xZPL4DKw2pVytIzU54S6VMi1DW7qkJUefdOH85fw1pPz93NNEmBolYEv8V3gJO9xXFEAZoyBsfTEJ0Ql2MDeOQnr1dLYavQoVKuDixYtYsWIFfHx8Un1VR0YGTEnTpk2xbt06nD59GnXrpr6MjhIaF6Qt0xSqBtCbhWnQFAph6JSQs/eOItGQetnEANGUtk8e4E8330jIsCreHDA2gcn7T4u82to4w8r8Y9bS7yr/la6cOEXmZWhLl7Tk6JMunL+cv4aUv595mpR4GT/B6QQ7Uc+WQRBaOf0KdRL/R9TTOkAj9ya5KskVuWPHDvzyyy+pnlOsWDFh+A4ePJiuLF9fX/j7++Obb77B0aNHkSUYmwCNlesKqhvsZ3DAO1jDxEiBok1Tn4+YdE1j/0RZH3GwNhdb2v+VsRxtyNCpHH3SRQM5+qRLqnL0SRcN5OiTLqnK0SddDDRNxY2eiG93EgqmHeqS7H/0JpDlzp07Yr9t27ZiP3kgy7hx48S4Hv1WvXp1MW5348YNdO/eXS2QRSlv9OjR2Lt3rxj7y5K1NykslqI4VaYtxNq646r3JITYV0SL8gUSz9k7FAgP/XRd7gKJN6XkN/L+K7NyWBfdymFddCuHddGtHH3SJR051yv5I8ShMspEnUO+4+r1r0b/I9ceKGTy1VdfKfr375+0f/PmTYWzs7Ni0KBBii5duihatGiR9Ft8fLxi4sSJikKFCinMzMwU7u7uismTJ4vfgoKCRHzqpUuXks6fMWOGwtbWVnHy5ElJurx9+1bIoE+NiY9TKB4eUyiubk78pP3kRL9VKMbmTtzu7E/9HCloQw7rols5rItu5bAuupWjT7pIkSOl/pWIVHsge0zvyJEjavs03eDZs9SjbOhFhL/++qvYklO4cOEUr42nIBXVQJUsgbrQGYXFqnazC1fTvNutDTmsi27lsC66lcO66FaOPukiRY6U+lfL8Pv0krHs+EPY5jJFw5KusFf6qo1MgGINP31PhZgP8eiy4pz4vrpbZeQyS+W8DORoQ0aWytEnXSTI0SddJMnRJ10kyNEnXSTJ0SddDCxNx++F4crjN2hcOh88nT8FEmYFbPRUSEhQYMb+u4j+EA+fwg6fjJ5ZLqDD5vSvVShwNuhV0vdUyUCONmRkqRx90kWCHH3SRZIcfdJFghx90kWSHH3SRVty9EmXdOQsOx6Eo3fDRB2b1UaPXy2kwpPX0cLgmZsao5CDVXarwzAMkyMp7morPu+GJi5qnZWw0VPhzrPEG+CZ1wamJpw1DMMwusDLxVatzs1KuGZX4e7HG6BshSTxPhKYlC9xo++aog05rItu5bAuupXDuuhWjj7pko6c4kqjFxqeIqBR1/CYngp0A1RbIWp8SLZEjqZoQw7rols5rItu5bAuupWjT7qkIYfG8Wghr9dRH/Ai4j3y2mphpS2JcE8vlZ6el0vWDqwyDMMYEpbmJklxE8p6N6vgnt5HPsQn4EFYRNo9PQlYphaymw0y9E0O66JbOayLbuXoky7akmOpB7pQPfvvyyjcDg1HdU8nZBVs9D5iamyEkyPq4m5oBArkkbZYtipW5qa4NaFxpnTQhgx9k8O66FYO66JbOfqki7bkWOmJLoMbFseQRsVR2NEaWQkbvY/QmyKcbXOJjWEYhtEtKQIGswge02MYhmEMBu7pfWT+4fuIiI1DK2+3lCsEGBkDhWp8+p7Gkjy+6y6I7ws7VkxjSZ705WhDRpbK0SddJMjRJ10kydEnXSTI0SddJMnRJ10MNE0rTwbhRsg7DGlYHK52WeNlY6P3ka0XnuDhi0hU93BKafTMLIEf96R7PS3Dc/hOWNL3VMlAjjZkZKkcfdJFghx90kWSHH3SRYIcfdJFkhx90kVbcvRJFwlyNp57LCaoNyuTL8uMHrs3P7ZY/n2ZOHHSy5WnKzAMw2QFXq5ZvzKLVowevUh2wIC03jIO8cJYChS5fPly0rGTJ0+iTJkyMDMzQ8uWLZFdxCcosO1iMBIUgI2FKRyszDWWo+Tsw1dq+1kpQ9/ksC66lcO66FaOPumiLTnxeqRLsY9etYO3nuH0g5ca66LTN6dn9Db11IiPjxdvTXdycoKpaaJHtUqVKvDy8oKfnx9sbGzEtfTGdVXDqOs3pwdef4pxu27i6duYpGP57HJh7NclxSsvkqDlc2aXSfw+4Bpgbp1CztidN/DsXazGcrQhI8vl6JMunL+cvzk4f3NimgKvP8XIbdfEqizpytCyPdC5e/P9+/cwMTGBq6trksEjHjx4gLp168LNzQ158uRBVkMZ7rvuoprBI0Lfxojj9LsaUS8TtzTkqN58uXK0ISPb5OiTLmnI0SddZMvRJ13SkKNPusiWo0+6GFCaAj/KUDV46crQIrKNXmRkJDp37ix6Z/ny5cOMGTNSvBF9woQJ4hyytr169VJzbyq/v3z5Et26dRPfV61ahXHjxuHKlStiX3lMV1AXmnp4qXVxxfvmAdGKCY/5gKj3cYh6H48ohUXiRt/FsTjxO52XGTnakJF9cvRJF85fzt+cl785MU3hGcggqH7WlatTtnuzd+/e2LNnD1asWAFnZ2f873//w9GjR4UBIxclGb3Xr19jzJgxSWN11NMrUqQILl26JMbxyNVZvHhxjB8/Hm3bthVd0tGjRyMwMBAHDhwQ19AxS0v1lVFiY2PFptqdLViwoGz3JvmOf1h6Rk6yGYZhGB1SK8oUx6zikvY39PwSVT0cte7elDVlISIiAsuXL8e6detQr149cWz16tXCRakKuS0HDx6ctE+9OyVKVyf15khB+k5Qz5Hcn8r91KDxP+oRZpbn4eouTYZhGCZ7KfbBBMcQp/N6WpbRo3E4GqOjIBQlDg4Ootemio+PD3TByJEjMWjQoBQ9PbkkX2oseHFPxEe+gom1Awr8tDTpeN8mgGc+ozTl3H+qwLy9n/a7v7WAjcIIEUYKLLeLlSRHGzL0TQ7rYjhp0iddOE2fR5rupyEjxkjd6airJSF1Mjnd2lo3C4haWFiILbNULuIgooRo0FT4oePeQ/EhVnwqcbAxgndhSxgbp10AvAsrYG8djdeRiTfLDEYwhxHMVM7JSI42ZOibHNbFcNKkT7pwmj6PNHmnIUNpMukqmqhO9XS2B7J4eHiIeXVnz55NOkbjd3fv3s20Iubm5mJqQ1ZgYmwkwmKJtG5v+xrm6d58gn7vUDP9eX0ZydGGDH2Tw7roVg7rols5+qSLtuR8LroYffyk+pnq6Ww3ejTu1r17dwwdOhSHDh3C9evX0bVrVxgbZ37mAwXABAUFiQjPFy9eqAWs6AKaB7Kwo3eKpW+oldK3sQV8PKR1guk8Ot/e2khjOdqQoW9yWBfDSZM+6cJp+rx1cbXLJeplTebp6Sx6k4JZfH19sW3bNtja2oqAFYrmVE5OJ+NFq7OortBCgSzK6E06j6C5eXQ+GU2CjFyHDh1w8OBBvHnzBitXrkz6TVeT0wkKi3XNnx8vnoXCLq8jtv2zOcPWTmokJChwY3Y8jKONkWCZgFIDTGTL0YYMfZPDuuhWDuuiWzn6pIu25CTomS43AxJgFGUEUxtT9JhaU+Menk6iN5W9vbVr14pNCfX8UovUVEKGMLltJcOmCo3VbdmyBVkNZbC5aWJP1dQkseutCXQdXZ+QCTnakKFvclgX3cphXXQrR5900ZYcY33TxRiggS1zEyOduTRV4bcsSOTP1X9i0+JNeBX2Ch4lPNBvfD+UKF9C8vVXzl7BpkWbcPfaXbx8/hITlk5AjUYfX7khkd/n/Y7jgcfx34P/YJHLAqUqlkKvkb3g7uEuS86OtTuwc+1OhD4JFfuFvQqjc//OqFLnU1SuXNbPX4+lU5aiVbdW6PtbX8nXrZq5Cqtnr1Y7VtCjINYcXiNbh7DQMCzxW4Jzh88hJjoGBQoXwPDpw1G8nHp0cXq0q9YOz548S3G8RecWGDAx7fVlVaGx6dWzVuPvP//Gq+ev4OTihEZtGqFTv05iqo4coiKisGL6CpzYdwKvX7xGsdLFRP5+Ue4LjcsaNUBXzlyJPev3IOJdBEr7lMbAyQPJuSRLzrG9x7Br3S7x+7s377B0L0U+F5YsI+5DHJZPW46zh8/i6X9PYW1rDe8a3ug1ohf5gmTpQuXo0K5DCAsJg6mZKbzKeKH7sO4wgpcsOarMHDkTu37fhda1fVG7eGvJMvwH+WPfln1qsip9VQk/+kyWrcuje49EmaZz4+PiUahYIXSqMgZ5jF0lyajjXifVtH1bqyfqlWgnWZfoyGgs8V8iyuG71++Qr2A+fPfjdyiGprLSRPUnpef8sfOi7JWtUhbNPfrA0Ux+FL6m8FsWJHBo5yEsnLAQXQZ0wZI9S4TRG9ZxmKiEpBITFQOPkh7oP7G/xnpQgWrZpSXmb5+Pab9PQ1xcnNAjOipalpy8rnnRc0RPLN6zGIt2L0KFahUwqscoBN0J0kiv21duY9f6XShaoqhG15PR3Xp+a9I2d+tc2TLC34Tjl+9+EXM9/df4Y9XBVfAd7QsbO3lvzVi0a5GaLtN/ny6O125WW7KMDQs3iIYFNYxWH1otGiYbF23EtpXbZKdr2rBpOH/8PEbOHokVf6+AT00fDGk/RBh4TcvaxoWJugz0G4gFOxcgl1UuUY4+qEQvS5FDv5euVFqkTxNdqGFy7/o90RhY/NdijF8yHo8fPsav3X+VnSa3om7oP74/lu9fjjlb58C1oKtIU3jUG42eQ2pc3rx0UzRY5OpCVK5dWa0cjZ47Wrac4H+D0a9VP9EInLVpFpbtWybyyszUTLIMVR1oGzZ9mGh4VShWU5Yu88fPx7kj5/BrwK+iTLfq3goBYwJw9f4pyXKosTW652jRwJm4fCKW7F0ClwIuCNg8DLEf5NVhmYF7ehLYvGwzmv3QDE2+byL2B/kNwtlDZ7F3016079NekgzqRWWmJ0VMXTtVbX/EjBH4tsK3olVVrko5yXKqNaimtt9jWA/R86OHvEjxIrJ0ohbgpH6TMMR/CNbO/eTyloOJqQkcnDMXnkyGxjmfM4bPGJ50LJ+7/MHwPI7qPYz1C9Yjf6H8KPel9Py9cf4Gqjesjqr1qop9qoAP7jwoGgdyiI2JFb2picsmJt3froO64tSBU+J+dR/aXXZZo4pny/It6PRLJ9RomNgCHzlrJL6r+B2u3D8Jb7d6kuQQDVs1FJ+hjxM9BnJ1scltg+nrExsVSvpP6A/fr33x6svnSb0ZKbrUb1lfbb/36N74a+NfCA57CC9HB1nPITUo5oyZI563kT+OlJUmJWbmZqmU6ThZcqgXTL///OvPScfIe3HrVhwSIqTJSK7Dyf0nUb5qeTjlyZckQ4qcGxduoFHrRuJa4usOX4te8L+hd1DatYYkOU+CnuDmxZui8aasZ8jDcOTPVrhw/xDqO2XN23a4p5cBH95/EEalYo2KSccoWpXcMDcu3shW3SLDE98BmDuPZkE8Slcc9WSp1V3Ku5Ts62ePmo0v636JijU/5Y9cgoOC0dqnNdpXb4+J/SbiWXBK92JGnPr7FIqXLY7ffv5NNAR6NumJ3et3I7P3nlyUTdo2keWWLOVTChdPXhS9FuL+zfu4/s910fqXA7mzEuITYG6hHt5Nru1r/1yDJlArm1xMquWZjA+56h+G3ER2E/kuUuS1pYV1pu4b3Xvr3NZwy+sh69qEhAT4DfBD25/aym4AqnL5zGVRDjvX7oxZ/5uFt6/fytbjzKEzogc7tONQIcv3G1/hXtQUuu9nDp1B03bqLkkp0FAKPWPUIKCG06VTl4QRK1G4oqz7QqiWZ6pLzUzM8CD0OrIK7ullwNtXb0XFY+9kr3ac9mlsLbugh2Leb/PEeIwmD+fD2w/Rp2UfvI99D0trS+FaIjejHMhYknuKXIKaUqJCCdE7IxcOjQGsmb0G/Vv3F61BKxsryXJCHodgx7odaNOjDTr07SB6VXPHzhXjO43bNNZIN6pgaNyhcWt517fv3R5R4VHoUqcLjE2MRfmhXlmDbxvIkkPpp8pm7Zy1KORZCPZ57XFoxyHRWqYWv6YVH5FaeX53T7q7Xhe8j3mPxX6LUbdFXWH0EtQX4M+Q0wdOY3zf8YiNjoWjs6NwTSuO2Kn1aDJiw4INYqlEGpvWFGrc1GxcU3gaQh6FYNmUZRjReQT61p0tuZ/x5sUb4UUhfboN7YafRv4k3Itjeo1B/zbT4GlfQbZeNM5oZW2FWo1r4cFiedeSq37GiBn4vvL3wjNDxmqw/2C4B5eVnL8Ue0DuTBr7H+w3WLjVtyzbgtcRYXgblVguswI2ep8pAaMCEHQ3SKPxL6Jg0YJYFrhMVOrH/jomBt9n/zFbsuF7HvJcGF0aWzTPpdmLdwlVVwiNlZYsX1IEkxzefRjN2jWTLEeRoBA9vZ7De4p9CvigMUpywWhq9P7a9Beq1K4CJ9eU4zrpcWT3ERzYfgCj5o4S+Xn/xn3MHzcfji6OsnUh1+PUoVPRpnIbYUC9SnsJo0Deh5wEBbWM6524ru7ASQPx3wr5MspXKy/KNDVUd2/YLeQNbD4H1pC2aPGdq3ewdeVWMW4vN+BIlbrf1E36XvSLomLrULMD7ha7Ai9HH8mNWqJaw2qiIUd4lvIUbsYTV3bDs7Z8o7f3j72o/239j8+ruqs1I/5c9SduXbqFScsnwcXNBVfPXkXA6AD0bGIvOU3UAB23eJwYp/6m7DeiPJPHoVSRylDE6f7lsUl6ZNk/fabYOdiJm5M8aIX2HfLqZpmcjKDCdvrgaQRsDkDefHk1kkFjDsreAhkL6hltXbFVtN6kQJUu5UGvpp+CGKhHQw8DRbruv79ftJjlQoEnbkXcEPJviKzrqGVPkW2q0P7xvcehCRTZevHERYxbIn+B80WTFuGH3j8kVX5U6ZHLlsYH5Ro9ukd0nylYiXqPZDipMtdkvJJQllm6dyRLrTxbaxaIpC2DFxocipkbZ4ooTrmVMmFpZSnyi7aS3iXRsVZHnLwWiIalOki6/tq5a6KH1bZqW7UyvTV4MQ6d34aJP62DJtCYMNUjYW9C4CXxpQF0PvWoChdTb4S6e7rj3M2rsnWg5/Lxg8cYM3+M7GtpbHnZ1GXCG6Qcp6YGKrntD5zZDK9G0tdaprpG2dim+05j6D9W9kVBB/UoW13CRk+CcaDwZxqjUYbeUiuM9r/t8m2W6kK+dBpgPxF4ArP+mKVxxZeWbKXPXQre1b2FC1KVKYOnCBcGVfiaGDyCXDrkEmrwnTxXII2j0UOtypOHT0SrVBMC/wgUD2TVuokPuRzIvZZ8lSLap96oplCFThtFqf5z7B/h7tIEKjNk+Kj8Us9BOTZ86/ItdKrfHNll8Gh8iCIU7ezttCab8jsuXnqZbtCqQYqxaYoA9XavhypFE4PYNCHsaZgI87ezdpBV79C0lBRlOugJHHK7aOS1oHrMs2TiPZd7j2hLrUwnKBJ7pHKhcWRleh49u4tm3j8iq2CjJwFyL/gP9heFhgb8KfqNQnMbf99YVmVOIchKnj5+KtxetnlshZ9batDIwR0HRTQf+eZpDhhBA/YU3CCVpf5LUblOZbjkd0FUZBQObj+Iy6cvp4gOzWi8KflYIvnoc9vnljXGuHDiQlStXxWuBVzx4tkLMd+Ketb1WnyKIpR6j/p+2xfr5q1DneZ1RCVOwQyD/D+9lUMq1KgJ3BwootWotS0XSs+6uevgnN8ZRbyK4N6NeyICWBn9K4dzR8+JN2uSO5rKz6LJi0TDIj1ZGZW11t1bi3FC6hGREaR5gE7OTijnWR2IkS6H5uY9D34u7htBY9xxz+NgCyfkscmToQzqnY/9eawYF568crLoVSnLdFy8JYzxqUynJ4fKHOV39QbVRbQiuTe3r9mOsGdh8K5TS1beJDe6JmYmyG3tAJc8NI8sIWNd8uQW805rNaklGhfBj4KxePJikdclCvvIyl8KphnfZ7yYy0bTimhMjyJ3B7SeIateoUbN0T1H4TvKV+MyQ9HL5MGgeob2afrU/q378V2Nn2XJIdc/NSbp2Xh456EYIinnWQ0lCurmzTypwUZPAuSmogeJKmQxOb2kB6asnSLLvUnjBQPb0gTgRBaMXyA+qWIdMXOEJBkUpk4M/P6THIICQeS4zV6/fA2/gX6igiFXErnfyOD51Mq6gqfaCp7Yd6KoQMmlU6ZSGTEPMfnUgYygVvGEJRPEIPmagDVi8myfsX1kB48QF05cEO5IitrUBBr0J0NC467kNqS5XhTiTQsAaBLNSIEQFDVna2eLWk1riaAYGh/RtKy1822H6OhozBg5Q7iZyviUEeU5Ypf5x2pdmhyK5qPevZIJfSeIzyYVO+Nr504Zyug6sKuQQfRsnDgWq2TA99PVgjXSkzNo8iDRIxq7ZayIkiTDQwsSzNkyB4ojhdUCLbTxHKYng0LwH9x6IIJGKG/JhUxzK7sN6YZn6+XlLwXDkDxa+IGCsijYi8bEHG+VTkqTlPRQwBl5cmgsOC0ykjNm3hjxbNH0JHpWyYNCk/9LRzaHIlK6HApWWzBhQaJ73dlRTHupbNweyLppevLX3tQntLH2JlHArQBCgkPg6OqILec0XwrtVgDNnzGGsU0CSvQ3zTYZ+iaHddGtHNZFt3L0SRdtybmlR7rcDohHfIQRrOzM8OMU9UnzurAHPE+PYRiGMRjY6DEMwzAGAxs9hmEYxmBgo8cwDMMYDGz0GIZhGIOBjR7DMAxjMLDRYxiGYQyGz3pyunKKIc3PyAzKxV1pRYiXr19qLCc61gQJ701gHBuPl6/js02GvslhXXQrh3XRrRx90kVbcqL1SJeoWFMkvDeGUaxZpupy5bUZTT3/rCenP3nyBAULZt1r5hmGYRj95vHjx3Bzc8uZRo96aCEhIbC1tc3Uq0AY6S0pamRQocrMCjiMdDjPsx7O888zv8mUhYeHI3/+/CkWx84x7k1KWHoWndENVDC5MshaOM+zHs7zzy+/aRmyjOBAFoZhGMZgYKPHMAzDGAxs9BjJWFhYYOzYseKTyRo4z7MezvOcnd+fdSALwzAMw8iBe3oMwzCMwcBGj2EYhjEY2OgxDMMwBgMbPYZhGMZgYKNn4MyfPx+FCxdGrly5UKVKFZw7dy7Nc5cuXYqaNWvC3t5ebPXr109xfteuXcXqOKpb48aNsyAlOTPPV61alSI/6TpVKBZtzJgxyJcvHywtLcV9uXfvXhakJOfld+3atVPkN23NmjVLOofLePocO3YMX3/9tVgZhfJm+/btGVwBHDlyBN7e3iKC09PTU5T7zNzH9GCjZ8Bs2rQJgwYNEuHCFy9eRLly5dCoUSM8f/48zYL5ww8/4PDhwzh9+rRYOqhhw4YIDg5WO48qgKdPnyZtGzZsyKIU5bw8J2iVCtX8fPTokdrvU6dOxZw5c7Bo0SKcPXsW1tbWQmZMTAwMHbn5vW3bNrW8vn79OkxMTNCmTRu187iMp01kZKTIZzJSUggKChKNijp16uDy5csYMGAAevTogX379mXquUkTmrLAGCaVK1dW9OnTJ2k/Pj5ekT9/foWfn5+k6+Pi4hS2traK1atXJx3r0qWLokWLFjrR1xDzfOXKlQo7O7s05SUkJChcXV0V06ZNSzr25s0bhYWFhWLDhg0KQyezZXzWrFmijEdERCQd4zIuHTIxf/75Z7rnDBs2TFGqVCm1Y23btlU0atRIa/dRFe7pGSjv37/HhQsXhCtMdS1T2qdenBSioqLw4cMHODg4pOgROjs7o3jx4vD19cXLl5q/riknoWmeR0REoFChQqJn3aJFC9y4cUOtlRwaGqomk9YfJPeP1PuYU9FGGV++fDnatWsnes+qcBnXHnQvVO8RQb045T3Sxn1UhY2egfLixQvEx8fDxcVF7TjtUyUqheHDhwu/vWphJLfPmjVrcPDgQUyZMgVHjx5FkyZNxH8ZOprkOVWqK1aswI4dO7Bu3TrxZpFq1aqJ12oRyusycx9zKpkt4zRmRO5NcrWpwmVcu9C9SO0e0dsXoqOjtVJX5Zi3LDDZh7+/PzZu3ChavKqBFdQqVlKmTBmULVsWHh4e4rx69eplk7afL1WrVhWbEjJ4JUqUwOLFizFhwoRs1S2nQ708KsOVK1dWO85l/POGe3oGipOTkxigf/bsmdpx2nd1dU332unTpwujt3//fvHAp0fRokXFf92/fx+GTmbyXImZmRkqVKiQlJ/K6zIjM6eSmfymYAxq1HXv3j3D/+EynjnoXqR2jyiAi6KRtfHcqMJGz0AxNzdHxYoVhYtGCbnOaF+1Z5EcihSkHkZgYCB8fHwy/B9yw9F4B4XTGzqa5rkq5Oa5du1aUn4WKVJEPPiqMsktRFGcUmXmVDKT35s3b0ZsbCw6duyY4f9wGc8cdC9U7xHx999/J90jbTw3asgOfWFyDBs3bhRRfqtWrVLcvHlT0atXL0WePHkUoaGh4vdOnTopRowYkXS+v7+/wtzcXLFlyxbF06dPk7bw8HDxO30OGTJEcfr0aUVQUJDiwIEDCm9vb0WxYsUUMTEx2ZbOzznPx40bp9i3b5/iwYMHigsXLijatWunyJUrl+LGjRtq94Vk7NixQ3H16lURWVikSBFFdHS0wtCRm99KatSoISIIk8NlPGMojy5duiQ2MjEzZ84U3x89eiR+p/ymfFfy8OFDhZWVlWLo0KGKW7duKebPn68wMTFRBAYGSr6PcmCjZ+DMnTtX4e7uLowZhQWfOXMm6bevvvpKhGcrKVSokCjEybexY8eK36OiohQNGzZU5M2bV2FmZibO79mzp0YFMycjJ88HDBiQdK6Li4uiadOmiosXL6aYtjB69GjxO1UM9erVU9y5cydL05RT8pu4ffu2KNf79+9PIYvLeMYcPnw41XpCmc/0Sfme/Jry5cuLe1S0aFExVUfOfZQDv1qIYRiGMRh4TI9hGIYxGNjoMQzDMAYDGz2GYRjGYGCjxzAMwxgMbPQYhmEYg4GNHsMwDGMwsNFjGIZhDAY2egzDMIzBwEaPYRiGMRjY6DEMwzAGAxs9hvmMGTt2rHinG73Zm16qSW/xprfZMwyTOvwSWYb5TPm4YLx4oWyBAgVw8+ZNdOnSRbzjkIwfwzAp4QWnGSYH0b59ezg7O2P27NnZrQrD6CXs3mSYz5RHjx6hT58+KF26NOzt7WFjY4M//vgDbm5u2a0aw+gtbPQY5jMkLCwMlSpVEm/snjlzJk6cOIFTp07B2NgY5cqVy271GEZv4TE9hvkM2bVrF+Lj47FhwwYYGRmJY/PmzRNBLOXLl89u9RhGb2GjxzCfIY6Ojnj37h127tyJkiVLCiPo5+cnAlry5s2b3eoxjN7CgSwM8xmSkJCA3r17Y/369bC0tETHjh0RExMjxvl2796d3eoxjN7CRo9hGIYxGDiQhWEYhjEY2OgxDMMwBgMbPYZhGMZgYKPHMAzDGAxs9BiGYRiDgY0ewzAMYzCw0WMYhmEMBjZ6DMMwjMHARo9hGIYxGNjoMQzDMAYDGz2GYRjGYGCjxzAMw8BQ+D/maY4QR2ov7QAAAABJRU5ErkJggg==",
|
|
"text/plain": [
|
|
"<Figure size 500x100 with 1 Axes>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAb0AAACMCAYAAADof3f4AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAANTFJREFUeJztnQdcFMcXx390aSJFQEUsIMauiBpr7D3RRI3GHluCGnv9xxIr2MXeeyyxxBrR2LvG3jsxCqLY6Qrc//MGD++ou8cdnNz7fj77udu93XdvZmfnzbx5M2ukUCgUYBiGYRgDwDi7FWAYhmGYrIKNHsMwDGMwsNFjGIZhDAY2egzDMIzBwEaPYRiGMRjY6DEMwzAGAxs9hmEYxmBgo8cwDMMYDKb4jElISEBISAhsbW1hZGSU3eowDMMw2QStsxIeHo78+fPD2Ng4Zxo9MngFCxbMbjUYhmEYPeHx48dwc3PLmUaPenjKRObOnVtjOcW/KI7Qp6Gwz2uPpQeWpnrOo6UmSIg0gbF1PAr1jNf4v7Qhh3XRrRzWRbdyWBfdytEnXaTwaKkpEiKNYZXbDB3HV4OmvHv3TnSClHYhRxo9pUuTDF5mjJ6yK2xsYgxHe8dUz3luEYeED8YwtkiAo73m2aYNOayLbuWwLrqVw7roVo4+6SKFMIt4xH8wgqWFWabqcSUZDXVxIAvDMAxjMLDRYxiGYQwGNnoMwzCMwcBGj2EYhjEYPutAFl3y5+o/sWnxJrwKewWPEh74pmQfuNuWTPP8K2evYNOiTbh77S5ePn+JCUsnoEajGrL+8/d5v+N44HH89+A/WOSyQKmKpdBrZC+4e7hLlrFj7Q7sXLsToU9CxX5hr8Lo3L8zqtSpgsywfv56LJ2yFK26tULf3/pKvm7VzFVYPXu12rGCHgWx5vAaWf8fFhqGJX5LcO7wOcREx6BA4QIYPn04ipcrLllGu2rt8OzJsxTHW3RugQETB0iSER8fj9WzVuPvP//Gq+ev4OTihEZtGqFTv06y54pGRURhxfQVOLHvBF6/eI1ipYuJvP2i3BcalzOaq7Ry5krsWb8HEe8iUNqnNAZOHgjAVZacY3uPYde6XeL3d2/eYenepfAs5SlLn7gPcVg+bTnOHj6Lp/89hbWtNbxreKNO3m7IDWfJulAZOrTrEMJCwmBqZgqvMl7oPqw7jOAlK02qzBw5E7t+34XWtX1Ru3hryTL8B/lj35Z9arIqfVUJP/pMlq3Lo3uPRJmmc+Pj4lGoWCF0qjIGeYxdJcup414n1fS1rNILDWu0kSQjOjIaS/yXiHL47vU75CuYD9/9+B2KoWmqsqXqRnUnpe/8sfOiLJatUhb9xveDW5G0pxNkBdzTS4VDOw9h4YSF6DKgC5bsWSKM3tytIxEe/TrNa2KiYuBR0gP9J/bX+H+pELXs0hLzt8/HtN+nIS4uDsM6DkN0VLRkGXld86LniJ5YvGcxFu1ehArVKmBUj1EIuhOksV63r9zGrvW7ULREUY2uJ8O79fzWpG3u1rmyrg9/E45fvvsFpqam8F/jj1UHV8F3tC9s7GxkyVm0a5GaHtN/ny6O125WW7KMDQs3iIYFPbyrD60WjZKNizZi28ptkMu0YdNw/vh5jJw9Eiv+XgGfmj4Y0n6IMPCalrONCxN1Geg3EAt2LkAuq1yiDH2Iey9LDv1eulJpkb70SE8ONU7uXb8nGgSL/1qM8UvG4/HDx1i0fYwsXdyKuqH/+P5Yvn855mydA9eCriJN4VFvZMlRQg3Lm5duigaLnPQoqVy7slo5Gj13tGw5wf8Go1+rfqIBOGvTLCzbt0zkk5mpmSw5qnrQNmz6MBjBCOWL1pQsY/74+Th35Bx+DfhVlOlW3VshYEwArt4/lWYeZCSXGl+je44WjZ2Jyydiyd4lcCngIsq3nPpMF3BPLxU2L9uMZj80Q5Pvm4j9QX6DcGLXGZy+HYjGedumeg31pDLbm5q6dqra/ogZI/BthW9FS6pclXKSZFRroD7PpcewHqLnRw95keJFZOtErcBJ/SZhiP8QrJ27FppgYmoCB2cHaAoZGud8zhg+Y3jSsXzu+WTLyeOYR21//YL1yF8oP8p9KS1viRvnb6B6w+qoWq+q2KcK+ODOg6JhIIfYmFjRm5q4bGLSve06qCtOHTgl7lf3od1llzOqaLYs34JOv3RCjYaJLe6Rs0biu4rf4cr9k/B2qydJDtGwVUPxGfo40WOQFunJscltg+nrExsWSvpP6A/fr33xKvwZnGzyStKlfsv6avu9R/fGXxv/QnDYQ3g5Osh6BqlBMWfMHPGsjfxxpKz0KDEzN0ulPMfJkkM9YPr9519/TjpG3otbt+KQECFdTnI9Tu4/CS/3cnDKnZ/WrJIk48aFG2jUuhHKVy0v9r/u8LXoBf8begelXdP2VqUn90nQE9y8eFM05pT1DnkcWlVshUM7Don6Nbvgnl4yPrz/IIxMxRoV1ebxfeHujaBnN7NUl8jwSPGZO49mc1fIFUe9Vmpxl/IupZGM2aNm48u6X6JizU/5IZfgoGC09mmN9tXbY2K/iXgWnNLFmB6n/j6F4mWL47effxONgJ5NemL3+t3I7H0mF2WTtk1kuSVL+ZTCxZMXRY+FuH/zPq7/c120/uVA7qyE+ASYW5irHSe39rV/rkETqFVNLiXVskuGp0T5EngYkrVlNy0i30WKnoilhbxeuup9o3tvndsabnk9ZC9b6DfAD21/aqtRA1DJ5TOXRTnsXLszZv1vFt6+fitbjzOHzoge7NCOQ4Us3298hXsxM9C9J7nVSic21qVSqmIp8YxRg4AaTpdOXRJGq0RhzZ95uk+EavmmepQaDJqWb23BPb1kvH31VlRG9k72asdtrewR+iKxossK6MGY99s8MSYj9wF9ePsh+rTsg/ex72FpbSncSuRilAsZTHJPkVtQU0pUKCF6aOTGIb//mtlr0L91f9ECtLKxkiQj5HEIdqzbgTY92qBD3w6iVzV37FwxvtO4TWON9KIKhsYZGreWd3373u0RFR6FLnW6iMUMqKxQr6zBtw1kyaG0U2Wzds5aFPIsJFYDohYwtY6pxa9ppUckL7u0/+5e2q75rOJ9zHss9lsMny/qwNLcOqknIoXTB05jfN/xiI2OhaOzo3BNK47YqfWKMmLDgg0wMTER49KaQo2bmo1rCk9DyKMQLJuyDCM6j0DfurMl9yHevHgjPCikT7eh3fDTyJ+Ee3FMrzHo32YaPO0raKQbjTVaWVuhfLEaQIz06/qN74cZI2bg+8rfC68MGafB/oPhHlxWVv6qQnEI5M6kOIDBfoOFm33Lsi0Iexom6oHshI2enhIwKgBBd4Nkj38RBYsWxLLAZaJSP/bXMTH4PvuP2bIM3/OQ58Lo0tiieS713ogcVN0fNDZasnxJEVByePdhNGsnzcWhSFCInl7P4T3FPgV80BgluWA0NXp/bfoLVWpXgZNrynGd9Diy+wgObD+AUXNHify8f+M+5o+bD0cXR9m6kOtx6tCpaFO5jTCgXqW9ULdFXeFpyGlQUMu43uPE93b1+wGJHQHJlK9WXpRpapTu3rBbyBrYfA6skfoKSsm5c/UOtq7cKsboM7M4fd1v6iZ9L/pFUbF1qNkBd4tdgZejj+QGLVGtYTXRkCMoSIjcjCeu7IZnbc2M3t4/9qL+t/VhZmouozkB/LnqT9y6dAuTlk+Ci5sLrp69ioDRAejZxF5ympJDDdJxi8eJcetvyn4jyjd5IKg+oN5kdsJGLxl2DnbiBlE0nSrhUa+R21LzcSk5UIE7ffA0AjYHIG++xHEPOZALQdlbIGNBPaOtK7aK1ptUqOKlPOjV9FMgA/Vq6IGgyNb99/eLVrNcKPiEordC/g2RfA217CmyTRXaP773ODSBIlsvnriIcUsSK2E5LJq0CD/0/iGp8qNKj9y1ND4o1+jRPaJ7TAP71Hskw0mVuSbjlYRD3sTySfeNZCmhfQdrzYKQtGnwQoNDMXPjTISssUaCTKNnaWUp8ou2kt4l0bFWR5y8FoiGpTpIuv7auWuih9W2alu18rw1eDEOnd+GiT+tgybQmDDVGWFvQuAlzf6K86lHVbiYeiPU3dMd525e1UgPei4fP3iMMfPH4MPf8saWl01dJrxBynFqapyS2/7Amc3waqSZ0VPWPcrGN5UBGlMnNy4dz07Y6KViMCgkmsZtlOG31DK7898l1CrZUqf/TS0gGmQ/EXgCs/6YpXHll5pcpY9dKt7VvYULUpUpg6cItwVV+poYPILcOuQWavBdA1njaPRAq/Lk4RPRKtWEwD8CxQNYtW7iQy4Hcq8lf20J7VNvVFOoQqeNolT/OfaPcHdpApUXMnxUdpXTC2hc+NblW+hUvzmy0+DRGBFFKdrZ2yEkWdCHJlB+x8VLL9MNWjVIMS5NEaDe7vVQpai8MTBVyF1HYf521g6y6hialpKiTAc9gUNuF409F1RveZb0xK2/42Tdn7gPcamW6QSFnP5i2tC4sjJ9d6/eRbch3ZCdsNFLBXI5+A/2F4WIggAoIi72Qwy+LN4o3cqcwpCVPH38VLi+bPPYCt+21KCRgzsOiog+8s3TPDCCBu0pwEEKS/2XonKdynDJ74KoyCgc3H4Ql09fThEZKmXMKflYIvnlc9vnljXGuHDiQlStXxWuBVzx4tkLMeeKetL1WnyKJJRyP/p+2xfr5q1DneZ1RCVOwQyD/AdBLtSACdwcKKLVqLUtF0rLurnr4JzfGUW8iuDejXsi2lcZ6SuHc0fPAYpEdzSVnUWTF4lGRXqyMipnrbu3FuOE1CMiI0jzAJ2cnVDOs7raOE9Gcmhu3vPg5+KeETR3lHgbmRu2cJIkh3roY38eK8aFJ6+cLHpWVKbfRsbBMt4O5jDJUAaVN8rv6g2qi0hFcm9uX7MdYc/C4F2nlqy8IYOriomZCXJbO8AlD72eLCFjXfLkFnNOazWpJRoXwY+CsXjyYpHXJQr7yMpfCqYZ32e8mLtG04poTI8idwe0niErTcqGzdE9R+E7ylejMlPuy3LCg0F1DO3T1Kn9W/fjuxqfIks1kUtDAdS4pGfl4Z2HYrikeqPqqFSrErITNnqpQK4rerioghaT00t6oG+rychtRa25hDTHDAa2pUnAiSwYv0B8UuU6YuYISf9LoerEwO8/ySEoEESq6+z1y9fwG+gnKheaDEzuNzJ4PrU0d1NkBmoJT+w7UVSi5NYpU6mMmIeYfPpAelCreMKSCWJQfE3AGjF5ts/YPrKDR4gLJy4IdyRFbWoCDfqTIaExV3Ib0lwvCvGmBQA0iWSkQAiKmrO1s0WtprVEUAyNh6RFRuWsnW87REdHY8bIGcKtVManDKasnYKIXerjPBnJoWg+6tkrmdB3gvhsWrUTmpbtKklO14FdhRyiZ+Oe6vn49Qx8YVc2QxmDJg8SPaKxW8aKKEkyPLQgwZwtc6A4Ulgt0EIbz2B6Mijk/sGtByJghPKWXMg0t5J6Ls/Wy8tfCoYhebToAwVlUaAXjYE53iotO00UcEbeHBoPlpumETNHYMy8MeLZoqlJ9JySB4Um/5eObA5FYgC5RnIpYGXBhAWJ7nZnRzENhuYiZjdGiuweVcwE9P4kOzs7vH37NlOvpCjgVgAhwSFwdHXElnNbUj3nVgDNnzGGsU0CSvTXvK2gDTmsi27lsC66lcO66FaOPukihdsB8YiPMIKVnRl+nPJpUr2u7AHP02MYhmEMBjZ6DMMwjMEg2+jVrl0bAwakvjhv165d0bKltAjHf//9V8yXuXz5MrKVhHjg47qExvFxifupnGP8McZafKZ2jsT/yrQc1kW3clgX3cphXXQrR590IRLikefpNTg/OCY+U8hR+R/Ev9f8f7KrpxcQEIBVq1bhs+HmTmB2aRhFJa4QYB7zDl/+0RNO/55OOoW+0zGLmHCxT5/Jz5GCNuSwLoaTJn3SJSemSZ90yelpKv/XKJQ8MkN8qspR/k71LiHq4dmlE+vlz8Xo0SBinjzSo/KyFcrYPzoD79QnSVtEvkSpg/7ihtBG3+lYWudIQRtyWBfDSZM+6ZIT06RPuhhqmoqeW5Xq73j3NLFe1qHhy7TR27NnjzB2v//+ewr3Js2Jmjp1Kjw9PWFhYQF3d3dMmjQpzcWRu3Xrhi+++AL//Zc4J0hnUBc6kFbsTwxctTQFrMwSP5ULFHmeWiI2go6ZIhamRjHiM+mc00thHBsJ4w8xaW+xkfA8nUk52pCRE3XJiWnSJ11yYpr0SRcDSZMqyv2C17an+J/E+vjjZILAETpzdcqeskBjeuXLl8fs2bOxfv16/Pzzz+KzefPmwui9efMG27cnJmj48OFYunQpZs2ahRo1auDp06e4ffs2evToIcb0ihQpgkuXLqFEiRL44YcfxLF9+/Yhb97Ul96KjY0Vm2qIasGCBeVPWQg6DqzOnhUqGIZhmJSsez4PHZ1VXlDdZTdQpKb+TFmYP38+evfujV27dgmDl5zw8HAxxkc9vS5dusDDw0MYPjJ4qkRERKBZs2YICwvD4cOH0zR4hJ+fn0iUciODpxER6b/aZnFccwz70BPnE9TfzJweUQoLFI5ZLzb6rgnakKFvclgX3cphXXQrR5900ZacqGzUJU5hDL8P7fDj+6GIVphnqp7WFI1mHG7ZsgXPnz/HyZMnUalS6kvK3Lp1S/TK6tVLf7kp6uG5ubnh0KFDsLS0TPfckSNHYtCgQSl6erKxUV8WrMaKCDyLUMDFxggnutngQLw3/lF8gWrGN+ED9RXvt78Yi5ZOnxYqjmq7BvEFv0TU+3hg6iVxLLz/ZcSbJy6xZPL4DKw2pVytIzU54S6VMi1DW7qkJUefdOH85fw1pPz93NNEmBolYEv8V3gJO9xXFEAZoyBsfTEJ0Ql2MDeOQnr1dLYavQoVKuDixYtYsWIFfHx8Un1VR0YGTEnTpk2xbt06nD59GnXrpr6MjhIaF6Qt0xSqBtCbhWnQFAph6JSQs/eOItGQetnEANGUtk8e4E8330jIsCreHDA2gcn7T4u82to4w8r8Y9bS7yr/la6cOEXmZWhLl7Tk6JMunL+cv4aUv595mpR4GT/B6QQ7Uc+WQRBaOf0KdRL/R9TTOkAj9ya5KskVuWPHDvzyyy+pnlOsWDFh+A4ePJiuLF9fX/j7++Obb77B0aNHkSUYmwCNlesKqhvsZ3DAO1jDxEiBok1Tn4+YdE1j/0RZH3GwNhdb2v+VsRxtyNCpHH3SRQM5+qRLqnL0SRcN5OiTLqnK0SddDDRNxY2eiG93EgqmHeqS7H/0JpDlzp07Yr9t27ZiP3kgy7hx48S4Hv1WvXp1MW5348YNdO/eXS2QRSlv9OjR2Lt3rxj7y5K1NykslqI4VaYtxNq646r3JITYV0SL8gUSz9k7FAgP/XRd7gKJN6XkN/L+K7NyWBfdymFddCuHddGtHH3SJR051yv5I8ShMspEnUO+4+r1r0b/I9ceKGTy1VdfKfr375+0f/PmTYWzs7Ni0KBBii5duihatGiR9Ft8fLxi4sSJikKFCinMzMwU7u7uismTJ4vfgoKCRHzqpUuXks6fMWOGwtbWVnHy5ElJurx9+1bIoE+NiY9TKB4eUyiubk78pP3kRL9VKMbmTtzu7E/9HCloQw7rols5rItu5bAuupWjT7pIkSOl/pWIVHsge0zvyJEjavs03eDZs9SjbOhFhL/++qvYklO4cOEUr42nIBXVQJUsgbrQGYXFqnazC1fTvNutDTmsi27lsC66lcO66FaOPukiRY6U+lfL8Pv0krHs+EPY5jJFw5KusFf6qo1MgGINP31PhZgP8eiy4pz4vrpbZeQyS+W8DORoQ0aWytEnXSTI0SddJMnRJ10kyNEnXSTJ0SddDCxNx++F4crjN2hcOh88nT8FEmYFbPRUSEhQYMb+u4j+EA+fwg6fjJ5ZLqDD5vSvVShwNuhV0vdUyUCONmRkqRx90kWCHH3SRZIcfdJFghx90kWSHH3SRVty9EmXdOQsOx6Eo3fDRB2b1UaPXy2kwpPX0cLgmZsao5CDVXarwzAMkyMp7morPu+GJi5qnZWw0VPhzrPEG+CZ1wamJpw1DMMwusDLxVatzs1KuGZX4e7HG6BshSTxPhKYlC9xo++aog05rItu5bAuupXDuuhWjj7pko6c4kqjFxqeIqBR1/CYngp0A1RbIWp8SLZEjqZoQw7rols5rItu5bAuupWjT7qkIYfG8Wghr9dRH/Ai4j3y2mphpS2JcE8vlZ6el0vWDqwyDMMYEpbmJklxE8p6N6vgnt5HPsQn4EFYRNo9PQlYphaymw0y9E0O66JbOayLbuXoky7akmOpB7pQPfvvyyjcDg1HdU8nZBVs9D5iamyEkyPq4m5oBArkkbZYtipW5qa4NaFxpnTQhgx9k8O66FYO66JbOfqki7bkWOmJLoMbFseQRsVR2NEaWQkbvY/QmyKcbXOJjWEYhtEtKQIGswge02MYhmEMBu7pfWT+4fuIiI1DK2+3lCsEGBkDhWp8+p7Gkjy+6y6I7ws7VkxjSZ705WhDRpbK0SddJMjRJ10kydEnXSTI0SddJMnRJ10MNE0rTwbhRsg7DGlYHK52WeNlY6P3ka0XnuDhi0hU93BKafTMLIEf96R7PS3Dc/hOWNL3VMlAjjZkZKkcfdJFghx90kWSHH3SRYIcfdJFkhx90kVbcvRJFwlyNp57LCaoNyuTL8uMHrs3P7ZY/n2ZOHHSy5WnKzAMw2QFXq5ZvzKLVowevUh2wIC03jIO8cJYChS5fPly0rGTJ0+iTJkyMDMzQ8uWLZFdxCcosO1iMBIUgI2FKRyszDWWo+Tsw1dq+1kpQ9/ksC66lcO66FaOPumiLTnxeqRLsY9etYO3nuH0g5ca66LTN6dn9Db11IiPjxdvTXdycoKpaaJHtUqVKvDy8oKfnx9sbGzEtfTGdVXDqOs3pwdef4pxu27i6duYpGP57HJh7NclxSsvkqDlc2aXSfw+4Bpgbp1CztidN/DsXazGcrQhI8vl6JMunL+cvzk4f3NimgKvP8XIbdfEqizpytCyPdC5e/P9+/cwMTGBq6trksEjHjx4gLp168LNzQ158uRBVkMZ7rvuoprBI0Lfxojj9LsaUS8TtzTkqN58uXK0ISPb5OiTLmnI0SddZMvRJ13SkKNPusiWo0+6GFCaAj/KUDV46crQIrKNXmRkJDp37ix6Z/ny5cOMGTNSvBF9woQJ4hyytr169VJzbyq/v3z5Et26dRPfV61ahXHjxuHKlStiX3lMV1AXmnp4qXVxxfvmAdGKCY/5gKj3cYh6H48ohUXiRt/FsTjxO52XGTnakJF9cvRJF85fzt+cl785MU3hGcggqH7WlatTtnuzd+/e2LNnD1asWAFnZ2f873//w9GjR4UBIxclGb3Xr19jzJgxSWN11NMrUqQILl26JMbxyNVZvHhxjB8/Hm3bthVd0tGjRyMwMBAHDhwQ19AxS0v1lVFiY2PFptqdLViwoGz3JvmOf1h6Rk6yGYZhGB1SK8oUx6zikvY39PwSVT0cte7elDVlISIiAsuXL8e6detQr149cWz16tXCRakKuS0HDx6ctE+9OyVKVyf15khB+k5Qz5Hcn8r91KDxP+oRZpbn4eouTYZhGCZ7KfbBBMcQp/N6WpbRo3E4GqOjIBQlDg4Ootemio+PD3TByJEjMWjQoBQ9PbkkX2oseHFPxEe+gom1Awr8tDTpeN8mgGc+ozTl3H+qwLy9n/a7v7WAjcIIEUYKLLeLlSRHGzL0TQ7rYjhp0iddOE2fR5rupyEjxkjd6airJSF1Mjnd2lo3C4haWFiILbNULuIgooRo0FT4oePeQ/EhVnwqcbAxgndhSxgbp10AvAsrYG8djdeRiTfLDEYwhxHMVM7JSI42ZOibHNbFcNKkT7pwmj6PNHmnIUNpMukqmqhO9XS2B7J4eHiIeXVnz55NOkbjd3fv3s20Iubm5mJqQ1ZgYmwkwmKJtG5v+xrm6d58gn7vUDP9eX0ZydGGDH2Tw7roVg7rols5+qSLtuR8LroYffyk+pnq6Ww3ejTu1r17dwwdOhSHDh3C9evX0bVrVxgbZ37mAwXABAUFiQjPFy9eqAWs6AKaB7Kwo3eKpW+oldK3sQV8PKR1guk8Ot/e2khjOdqQoW9yWBfDSZM+6cJp+rx1cbXLJeplTebp6Sx6k4JZfH19sW3bNtja2oqAFYrmVE5OJ+NFq7OortBCgSzK6E06j6C5eXQ+GU2CjFyHDh1w8OBBvHnzBitXrkz6TVeT0wkKi3XNnx8vnoXCLq8jtv2zOcPWTmokJChwY3Y8jKONkWCZgFIDTGTL0YYMfZPDuuhWDuuiWzn6pIu25CTomS43AxJgFGUEUxtT9JhaU+Menk6iN5W9vbVr14pNCfX8UovUVEKGMLltJcOmCo3VbdmyBVkNZbC5aWJP1dQkseutCXQdXZ+QCTnakKFvclgX3cphXXQrR5900ZYcY33TxRiggS1zEyOduTRV4bcsSOTP1X9i0+JNeBX2Ch4lPNBvfD+UKF9C8vVXzl7BpkWbcPfaXbx8/hITlk5AjUYfX7khkd/n/Y7jgcfx34P/YJHLAqUqlkKvkb3g7uEuS86OtTuwc+1OhD4JFfuFvQqjc//OqFLnU1SuXNbPX4+lU5aiVbdW6PtbX8nXrZq5Cqtnr1Y7VtCjINYcXiNbh7DQMCzxW4Jzh88hJjoGBQoXwPDpw1G8nHp0cXq0q9YOz548S3G8RecWGDAx7fVlVaGx6dWzVuPvP//Gq+ev4OTihEZtGqFTv05iqo4coiKisGL6CpzYdwKvX7xGsdLFRP5+Ue4LjcsaNUBXzlyJPev3IOJdBEr7lMbAyQPJuSRLzrG9x7Br3S7x+7s377B0L0U+F5YsI+5DHJZPW46zh8/i6X9PYW1rDe8a3ug1ohf5gmTpQuXo0K5DCAsJg6mZKbzKeKH7sO4wgpcsOarMHDkTu37fhda1fVG7eGvJMvwH+WPfln1qsip9VQk/+kyWrcuje49EmaZz4+PiUahYIXSqMgZ5jF0lyajjXifVtH1bqyfqlWgnWZfoyGgs8V8iyuG71++Qr2A+fPfjdyiGprLSRPUnpef8sfOi7JWtUhbNPfrA0Ux+FL6m8FsWJHBo5yEsnLAQXQZ0wZI9S4TRG9ZxmKiEpBITFQOPkh7oP7G/xnpQgWrZpSXmb5+Pab9PQ1xcnNAjOipalpy8rnnRc0RPLN6zGIt2L0KFahUwqscoBN0J0kiv21duY9f6XShaoqhG15PR3Xp+a9I2d+tc2TLC34Tjl+9+EXM9/df4Y9XBVfAd7QsbO3lvzVi0a5GaLtN/ny6O125WW7KMDQs3iIYFNYxWH1otGiYbF23EtpXbZKdr2rBpOH/8PEbOHokVf6+AT00fDGk/RBh4TcvaxoWJugz0G4gFOxcgl1UuUY4+qEQvS5FDv5euVFqkTxNdqGFy7/o90RhY/NdijF8yHo8fPsav3X+VnSa3om7oP74/lu9fjjlb58C1oKtIU3jUG42eQ2pc3rx0UzRY5OpCVK5dWa0cjZ47Wrac4H+D0a9VP9EInLVpFpbtWybyyszUTLIMVR1oGzZ9mGh4VShWU5Yu88fPx7kj5/BrwK+iTLfq3goBYwJw9f4pyXKosTW652jRwJm4fCKW7F0ClwIuCNg8DLEf5NVhmYF7ehLYvGwzmv3QDE2+byL2B/kNwtlDZ7F3016079NekgzqRWWmJ0VMXTtVbX/EjBH4tsK3olVVrko5yXKqNaimtt9jWA/R86OHvEjxIrJ0ohbgpH6TMMR/CNbO/eTyloOJqQkcnDMXnkyGxjmfM4bPGJ50LJ+7/MHwPI7qPYz1C9Yjf6H8KPel9Py9cf4Gqjesjqr1qop9qoAP7jwoGgdyiI2JFb2picsmJt3froO64tSBU+J+dR/aXXZZo4pny/It6PRLJ9RomNgCHzlrJL6r+B2u3D8Jb7d6kuQQDVs1FJ+hjxM9BnJ1scltg+nrExsVSvpP6A/fr33x6svnSb0ZKbrUb1lfbb/36N74a+NfCA57CC9HB1nPITUo5oyZI563kT+OlJUmJWbmZqmU6ThZcqgXTL///OvPScfIe3HrVhwSIqTJSK7Dyf0nUb5qeTjlyZckQ4qcGxduoFHrRuJa4usOX4te8L+hd1DatYYkOU+CnuDmxZui8aasZ8jDcOTPVrhw/xDqO2XN23a4p5cBH95/EEalYo2KSccoWpXcMDcu3shW3SLDE98BmDuPZkE8Slcc9WSp1V3Ku5Ts62ePmo0v636JijU/5Y9cgoOC0dqnNdpXb4+J/SbiWXBK92JGnPr7FIqXLY7ffv5NNAR6NumJ3et3I7P3nlyUTdo2keWWLOVTChdPXhS9FuL+zfu4/s910fqXA7mzEuITYG6hHt5Nru1r/1yDJlArm1xMquWZjA+56h+G3ER2E/kuUuS1pYV1pu4b3Xvr3NZwy+sh69qEhAT4DfBD25/aym4AqnL5zGVRDjvX7oxZ/5uFt6/fytbjzKEzogc7tONQIcv3G1/hXtQUuu9nDp1B03bqLkkp0FAKPWPUIKCG06VTl4QRK1G4oqz7QqiWZ6pLzUzM8CD0OrIK7ullwNtXb0XFY+9kr3ac9mlsLbugh2Leb/PEeIwmD+fD2w/Rp2UfvI99D0trS+FaIjejHMhYknuKXIKaUqJCCdE7IxcOjQGsmb0G/Vv3F61BKxsryXJCHodgx7odaNOjDTr07SB6VXPHzhXjO43bNNZIN6pgaNyhcWt517fv3R5R4VHoUqcLjE2MRfmhXlmDbxvIkkPpp8pm7Zy1KORZCPZ57XFoxyHRWqYWv6YVH5FaeX53T7q7Xhe8j3mPxX6LUbdFXWH0EtQX4M+Q0wdOY3zf8YiNjoWjs6NwTSuO2Kn1aDJiw4INYqlEGpvWFGrc1GxcU3gaQh6FYNmUZRjReQT61p0tuZ/x5sUb4UUhfboN7YafRv4k3Itjeo1B/zbT4GlfQbZeNM5oZW2FWo1r4cFiedeSq37GiBn4vvL3wjNDxmqw/2C4B5eVnL8Ue0DuTBr7H+w3WLjVtyzbgtcRYXgblVguswI2ep8pAaMCEHQ3SKPxL6Jg0YJYFrhMVOrH/jomBt9n/zFbsuF7HvJcGF0aWzTPpdmLdwlVVwiNlZYsX1IEkxzefRjN2jWTLEeRoBA9vZ7De4p9CvigMUpywWhq9P7a9Beq1K4CJ9eU4zrpcWT3ERzYfgCj5o4S+Xn/xn3MHzcfji6OsnUh1+PUoVPRpnIbYUC9SnsJo0Deh5wEBbWM6524ru7ASQPx3wr5MspXKy/KNDVUd2/YLeQNbD4H1pC2aPGdq3ewdeVWMW4vN+BIlbrf1E36XvSLomLrULMD7ha7Ai9HH8mNWqJaw2qiIUd4lvIUbsYTV3bDs7Z8o7f3j72o/239j8+ruqs1I/5c9SduXbqFScsnwcXNBVfPXkXA6AD0bGIvOU3UAB23eJwYp/6m7DeiPJPHoVSRylDE6f7lsUl6ZNk/fabYOdiJm5M8aIX2HfLqZpmcjKDCdvrgaQRsDkDefHk1kkFjDsreAhkL6hltXbFVtN6kQJUu5UGvpp+CGKhHQw8DRbruv79ftJjlQoEnbkXcEPJviKzrqGVPkW2q0P7xvcehCRTZevHERYxbIn+B80WTFuGH3j8kVX5U6ZHLlsYH5Ro9ukd0nylYiXqPZDipMtdkvJJQllm6dyRLrTxbaxaIpC2DFxocipkbZ4ooTrmVMmFpZSnyi7aS3iXRsVZHnLwWiIalOki6/tq5a6KH1bZqW7UyvTV4MQ6d34aJP62DJtCYMNUjYW9C4CXxpQF0PvWoChdTb4S6e7rj3M2rsnWg5/Lxg8cYM3+M7GtpbHnZ1GXCG6Qcp6YGKrntD5zZDK9G0tdaprpG2dim+05j6D9W9kVBB/UoW13CRk+CcaDwZxqjUYbeUiuM9r/t8m2W6kK+dBpgPxF4ArP+mKVxxZeWbKXPXQre1b2FC1KVKYOnCBcGVfiaGDyCXDrkEmrwnTxXII2j0UOtypOHT0SrVBMC/wgUD2TVuokPuRzIvZZ8lSLap96oplCFThtFqf5z7B/h7tIEKjNk+Kj8Us9BOTZ86/ItdKrfHNll8Gh8iCIU7ezttCab8jsuXnqZbtCqQYqxaYoA9XavhypFE4PYNCHsaZgI87ezdpBV79C0lBRlOugJHHK7aOS1oHrMs2TiPZd7j2hLrUwnKBJ7pHKhcWRleh49u4tm3j8iq2CjJwFyL/gP9heFhgb8KfqNQnMbf99YVmVOIchKnj5+KtxetnlshZ9batDIwR0HRTQf+eZpDhhBA/YU3CCVpf5LUblOZbjkd0FUZBQObj+Iy6cvp4gOzWi8KflYIvnoc9vnljXGuHDiQlStXxWuBVzx4tkLMd+Ketb1WnyKIpR6j/p+2xfr5q1DneZ1RCVOwQyD/D+9lUMq1KgJ3BwootWotS0XSs+6uevgnN8ZRbyK4N6NeyICWBn9K4dzR8+JN2uSO5rKz6LJi0TDIj1ZGZW11t1bi3FC6hGREaR5gE7OTijnWR2IkS6H5uY9D34u7htBY9xxz+NgCyfkscmToQzqnY/9eawYF568crLoVSnLdFy8JYzxqUynJ4fKHOV39QbVRbQiuTe3r9mOsGdh8K5TS1beJDe6JmYmyG3tAJc8NI8sIWNd8uQW805rNaklGhfBj4KxePJikdclCvvIyl8KphnfZ7yYy0bTimhMjyJ3B7SeIateoUbN0T1H4TvKV+MyQ9HL5MGgeob2afrU/q378V2Nn2XJIdc/NSbp2Xh456EYIinnWQ0lCurmzTypwUZPAuSmogeJKmQxOb2kB6asnSLLvUnjBQPb0gTgRBaMXyA+qWIdMXOEJBkUpk4M/P6THIICQeS4zV6/fA2/gX6igiFXErnfyOD51Mq6gqfaCp7Yd6KoQMmlU6ZSGTEPMfnUgYygVvGEJRPEIPmagDVi8myfsX1kB48QF05cEO5IitrUBBr0J0NC467kNqS5XhTiTQsAaBLNSIEQFDVna2eLWk1riaAYGh/RtKy1822H6OhozBg5Q7iZyviUEeU5Ypf5x2pdmhyK5qPevZIJfSeIzyYVO+Nr504Zyug6sKuQQfRsnDgWq2TA99PVgjXSkzNo8iDRIxq7ZayIkiTDQwsSzNkyB4ojhdUCLbTxHKYng0LwH9x6IIJGKG/JhUxzK7sN6YZn6+XlLwXDkDxa+IGCsijYi8bEHG+VTkqTlPRQwBl5cmgsOC0ykjNm3hjxbNH0JHpWyYNCk/9LRzaHIlK6HApWWzBhQaJ73dlRTHupbNweyLppevLX3tQntLH2JlHArQBCgkPg6OqILec0XwrtVgDNnzGGsU0CSvQ3zTYZ+iaHddGtHNZFt3L0SRdtybmlR7rcDohHfIQRrOzM8OMU9UnzurAHPE+PYRiGMRjY6DEMwzAGAxs9hmEYxmBgo8cwDMMYDGz0GIZhGIOBjR7DMAxjMLDRYxiGYQyGz3pyunKKIc3PyAzKxV1pRYiXr19qLCc61gQJ701gHBuPl6/js02GvslhXXQrh3XRrRx90kVbcqL1SJeoWFMkvDeGUaxZpupy5bUZTT3/rCenP3nyBAULZt1r5hmGYRj95vHjx3Bzc8uZRo96aCEhIbC1tc3Uq0AY6S0pamRQocrMCjiMdDjPsx7O888zv8mUhYeHI3/+/CkWx84x7k1KWHoWndENVDC5MshaOM+zHs7zzy+/aRmyjOBAFoZhGMZgYKPHMAzDGAxs9BjJWFhYYOzYseKTyRo4z7MezvOcnd+fdSALwzAMw8iBe3oMwzCMwcBGj2EYhjEY2OgxDMMwBgMbPYZhGMZgYKNn4MyfPx+FCxdGrly5UKVKFZw7dy7Nc5cuXYqaNWvC3t5ebPXr109xfteuXcXqOKpb48aNsyAlOTPPV61alSI/6TpVKBZtzJgxyJcvHywtLcV9uXfvXhakJOfld+3atVPkN23NmjVLOofLePocO3YMX3/9tVgZhfJm+/btGVwBHDlyBN7e3iKC09PTU5T7zNzH9GCjZ8Bs2rQJgwYNEuHCFy9eRLly5dCoUSM8f/48zYL5ww8/4PDhwzh9+rRYOqhhw4YIDg5WO48qgKdPnyZtGzZsyKIU5bw8J2iVCtX8fPTokdrvU6dOxZw5c7Bo0SKcPXsW1tbWQmZMTAwMHbn5vW3bNrW8vn79OkxMTNCmTRu187iMp01kZKTIZzJSUggKChKNijp16uDy5csYMGAAevTogX379mXquUkTmrLAGCaVK1dW9OnTJ2k/Pj5ekT9/foWfn5+k6+Pi4hS2traK1atXJx3r0qWLokWLFjrR1xDzfOXKlQo7O7s05SUkJChcXV0V06ZNSzr25s0bhYWFhWLDhg0KQyezZXzWrFmijEdERCQd4zIuHTIxf/75Z7rnDBs2TFGqVCm1Y23btlU0atRIa/dRFe7pGSjv37/HhQsXhCtMdS1T2qdenBSioqLw4cMHODg4pOgROjs7o3jx4vD19cXLl5q/riknoWmeR0REoFChQqJn3aJFC9y4cUOtlRwaGqomk9YfJPeP1PuYU9FGGV++fDnatWsnes+qcBnXHnQvVO8RQb045T3Sxn1UhY2egfLixQvEx8fDxcVF7TjtUyUqheHDhwu/vWphJLfPmjVrcPDgQUyZMgVHjx5FkyZNxH8ZOprkOVWqK1aswI4dO7Bu3TrxZpFq1aqJ12oRyusycx9zKpkt4zRmRO5NcrWpwmVcu9C9SO0e0dsXoqOjtVJX5Zi3LDDZh7+/PzZu3ChavKqBFdQqVlKmTBmULVsWHh4e4rx69eplk7afL1WrVhWbEjJ4JUqUwOLFizFhwoRs1S2nQ708KsOVK1dWO85l/POGe3oGipOTkxigf/bsmdpx2nd1dU332unTpwujt3//fvHAp0fRokXFf92/fx+GTmbyXImZmRkqVKiQlJ/K6zIjM6eSmfymYAxq1HXv3j3D/+EynjnoXqR2jyiAi6KRtfHcqMJGz0AxNzdHxYoVhYtGCbnOaF+1Z5EcihSkHkZgYCB8fHwy/B9yw9F4B4XTGzqa5rkq5Oa5du1aUn4WKVJEPPiqMsktRFGcUmXmVDKT35s3b0ZsbCw6duyY4f9wGc8cdC9U7xHx999/J90jbTw3asgOfWFyDBs3bhRRfqtWrVLcvHlT0atXL0WePHkUoaGh4vdOnTopRowYkXS+v7+/wtzcXLFlyxbF06dPk7bw8HDxO30OGTJEcfr0aUVQUJDiwIEDCm9vb0WxYsUUMTEx2ZbOzznPx40bp9i3b5/iwYMHigsXLijatWunyJUrl+LGjRtq94Vk7NixQ3H16lURWVikSBFFdHS0wtCRm99KatSoISIIk8NlPGMojy5duiQ2MjEzZ84U3x89eiR+p/ymfFfy8OFDhZWVlWLo0KGKW7duKebPn68wMTFRBAYGSr6PcmCjZ+DMnTtX4e7uLowZhQWfOXMm6bevvvpKhGcrKVSokCjEybexY8eK36OiohQNGzZU5M2bV2FmZibO79mzp0YFMycjJ88HDBiQdK6Li4uiadOmiosXL6aYtjB69GjxO1UM9erVU9y5cydL05RT8pu4ffu2KNf79+9PIYvLeMYcPnw41XpCmc/0Sfme/Jry5cuLe1S0aFExVUfOfZQDv1qIYRiGMRh4TI9hGIYxGNjoMQzDMAYDGz2GYRjGYGCjxzAMwxgMbPQYhmEYg4GNHsMwDGMwsNFjGIZhDAY2egzDMIzBwEaPYRiGMRjY6DEMwzAGAxs9hvmMGTt2rHinG73Zm16qSW/xprfZMwyTOvwSWYb5TPm4YLx4oWyBAgVw8+ZNdOnSRbzjkIwfwzAp4QWnGSYH0b59ezg7O2P27NnZrQrD6CXs3mSYz5RHjx6hT58+KF26NOzt7WFjY4M//vgDbm5u2a0aw+gtbPQY5jMkLCwMlSpVEm/snjlzJk6cOIFTp07B2NgY5cqVy271GEZv4TE9hvkM2bVrF+Lj47FhwwYYGRmJY/PmzRNBLOXLl89u9RhGb2GjxzCfIY6Ojnj37h127tyJkiVLCiPo5+cnAlry5s2b3eoxjN7CgSwM8xmSkJCA3r17Y/369bC0tETHjh0RExMjxvl2796d3eoxjN7CRo9hGIYxGDiQhWEYhjEY2OgxDMMwBgMbPYZhGMZgYKPHMAzDGAxs9BiGYRiDgY0ewzAMYzCw0WMYhmEMBjZ6DMMwjMHARo9hGIYxGNjoMQzDMAYDGz2GYRjGYGCjxzAMw8BQ+D/maY4QR2ov7QAAAABJRU5ErkJggg==",
|
|
"text/plain": [
|
|
"<Figure size 500x100 with 1 Axes>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"reset_plotting() # Default style for Simbelmynë\n",
|
|
"\n",
|
|
"generate_sim_params(lpt_params, ICs_path, wd, simdir, None, force)\n",
|
|
"\n",
|
|
"print(f\"SPM nsteps = {nsteps_spm}:\")\n",
|
|
"file_ext = f\"nsteps{nsteps_spm}\" # \"spm\" is already in the filename\n",
|
|
"generate_sim_params(spm_params, ICs_path, wd, simdir, file_ext, force)\n",
|
|
"\n",
|
|
"print(f\"P3M nsteps = {nsteps_p3m}:\")\n",
|
|
"file_ext = f\"nsteps{nsteps_p3m}\" # \"p3m\" is already in the filename\n",
|
|
"generate_sim_params(p3m_params, ICs_path, wd, simdir, file_ext, force)\n",
|
|
"\n",
|
|
"setup_plotting() # Reset plotting style for this project"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "4cbfc7f9",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Generate the initial phase"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 7,
|
|
"id": "ac1596ef",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"generate_white_noise_Field(\n",
|
|
" L=L,\n",
|
|
" size=N,\n",
|
|
" corner=corner,\n",
|
|
" seedphase=BASELINE_SEEDPHASE,\n",
|
|
" fname_whitenoise=input_white_noise_file,\n",
|
|
" seedname_whitenoise=input_seed_phase_file,\n",
|
|
" force_phase=force,\n",
|
|
")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "b1dfa6e3",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Generating the input power spectrum\n",
|
|
"\n",
|
|
"The second preparatory step is to compute the initial power spectrum to be used in the simulations, given the cosmological parameters and prescription specified in ``params.py``. The power spectrum is saved in `input_power_file`."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 8,
|
|
"id": "3c2cf19b",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"[01:48:11|\u001b[38;5;113mSTATUS \u001b[00m]|Setting up Fourier grid...\n",
|
|
"[01:48:11|\u001b[38;5;113mSTATUS \u001b[00m]|Setting up Fourier grid done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113m[01:48:11|\u001b[38;5;113mSTATUS \u001b[00m]|Write power spectrum in data file '/Users/hoellinger/WIP3M/notebook1/input_power.h5'...\n",
|
|
"STATUS \u001b[00m]|Computing normalization of the power spectrum...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]|Computing normalization of the power spectrum done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]|Computing power spectrum...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]|Computing power spectrum done.\n",
|
|
"[01:48:11|\u001b[38;5;246mDIAGNOSTIC\u001b[00m]==|\u001b[38;5;246mL0=64, L1=64, L2=64\u001b[00m\n",
|
|
"[01:48:11|\u001b[38;5;246mDIAGNOSTIC\u001b[00m]==|\u001b[38;5;246mN0=32, N1=32, N2=32, N2_HC=17, N_HC=17408, NUM_MODES=464\u001b[00m\n",
|
|
"[01:48:11|\u001b[38;5;113mSTATUS \u001b[00m]|Write power spectrum in data file '/Users/hoellinger/WIP3M/notebook1/input_power.h5' done.\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"# If cosmo[\"WhichSpectrum\"] == \"class\", then classy is required.\n",
|
|
"if not isfile(input_power_file) or force:\n",
|
|
" Pk = PowerSpectrum(L, L, L, N, N, N, cosmo_small_to_full_dict(cosmo))\n",
|
|
" Pk.write(input_power_file)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "5f00a570",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Running the simulations\n",
|
|
"\n",
|
|
"We are now ready to run the actual simulations using the Simbelmynë executable. Warning: the following may take some time, even in relatively low dimension, and should not be run on a login node."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 9,
|
|
"id": "9a1ac822",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"[01:48:11\u001b[00m|\u001b[38;5;227mCOMMAND \u001b[00m]|\u001b[38;5;227msimbelmyne /Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/example_lpt.sbmy /Users/hoellinger/WIP3M/notebook1/logs/lpt.txt\u001b[00m\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]|\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| .-~~-.--.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| : )\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| .~ ~ -.\\ /.- ~~ .\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| > `. .' <\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| ( .- -. )\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| `- -.-~ `- -' ~-.- -'\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| ( : ) _ _ .-: ___________________________________\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| ~--. : .--~ .-~ .-~ } \u001b[1;38;5;157mSIMBELMYNË\u001b[00m\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| ~-.-^-.-~ \\_ .~ .-~ .~ (c) Florent Leclercq 2012 - SBMY_YEAR \n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| \\ ' \\ '_ _ -~ ___________________________________\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| `.`. //\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| . - ~ ~-.__`.`-.//\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| .-~ . - ~ }~ ~ ~-.~-.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| .' .-~ .-~ :/~-.~-./:\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| /_~_ _ . - ~ ~-.~-._\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| ~-.<\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]|\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]|2025-06-16 01:48:11: Starting SIMBELMYNË, commit hash bcdce9c1b02682972d65f1d3d414b5774015c141\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]|Reading parameter file in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/example_lpt.sbmy'...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]|Reading parameter file in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/example_lpt.sbmy' done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleLPT: Initializing snapshot...\u001b[00m\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleLPT: Initializing snapshot done.\u001b[00m\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]|LPT snapshot initialization: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleLPT: Returning initial conditions...\u001b[00m\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Reading field in '/Users/hoellinger/WIP3M/notebook1/input_white_noise.h5'...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Reading field in '/Users/hoellinger/WIP3M/notebook1/input_white_noise.h5' done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Reading power spectrum...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Reading power spectrum in '/Users/hoellinger/WIP3M/notebook1/input_power.h5'...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Reading power spectrum in '/Users/hoellinger/WIP3M/notebook1/input_power.h5' done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Reading power spectrum done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Generating Gaussian random field (using 8 cores)...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Generating Gaussian random field (using 8 cores) done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Writing field to '/Users/hoellinger/WIP3M/notebook1/initial_density.h5'...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Writing field to '/Users/hoellinger/WIP3M/notebook1/initial_density.h5' done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleLPT: Returning initial conditions done.\u001b[00m\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]|LPT initial conditions: 0.003 CPU - 0.003 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleLPT: Evolving with Lagrangian perturbation theory (using 8 cores)...\u001b[00m\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Computing Lagrangian potentials, periodic boundary conditions (using 8 cores)...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Computing Lagrangian potentials, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Computing Lagrangian displacement field (using 8 cores)...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Computing Lagrangian displacement field (using 8 cores) done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Changing velocities of particles...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Changing velocities of particles done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Displacing particles...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Displacing particles done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleLPT: Evolving with Lagrangian perturbation theory (using 8 cores) done.\u001b[00m\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]|LPT evolution: 0.053 CPU - 0.015 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleLPT: Computing outputs...\u001b[00m\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Writing field to '/Users/hoellinger/WIP3M/notebook1/lpt_density.h5'...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Writing field to '/Users/hoellinger/WIP3M/notebook1/lpt_density.h5' done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Writing header in '/Users/hoellinger/WIP3M/notebook1/lpt_particles.gadget3'...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Writing header in '/Users/hoellinger/WIP3M/notebook1/lpt_particles.gadget3' done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Writing snapshot in '/Users/hoellinger/WIP3M/notebook1/lpt_particles.gadget3' (32768 particles)...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing block: 'POS '...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing block: 'POS ' done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing block: 'VEL '...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing block: 'VEL ' done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing block: 'ID '...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing block: 'ID ' done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Writing snapshot in '/Users/hoellinger/WIP3M/notebook1/lpt_particles.gadget3' done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleLPT: Computing outputs done.\u001b[00m\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]|LPT output: 0.013 CPU - 0.004 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]|ModuleLPT: 0.070 CPU - 0.022 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]|Simbelmynë: 0.072 CPU - 0.023 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]|Everything done successfully, exiting.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;227mCOMMAND \u001b[00m]|\u001b[38;5;227msimbelmyne /Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/nsteps20_example_spm.sbmy /Users/hoellinger/WIP3M/notebook1/logs/nsteps20_spm.txt\u001b[00m\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]|\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| .-~~-.--.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| : )\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| .~ ~ -.\\ /.- ~~ .\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| > `. .' <\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| ( .- -. )\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| `- -.-~ `- -' ~-.- -'\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| ( : ) _ _ .-: ___________________________________\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| ~--. : .--~ .-~ .-~ } \u001b[1;38;5;157mSIMBELMYNË\u001b[00m\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| ~-.-^-.-~ \\_ .~ .-~ .~ (c) Florent Leclercq 2012 - SBMY_YEAR \n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| \\ ' \\ '_ _ -~ ___________________________________\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| `.`. //\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| . - ~ ~-.__`.`-.//\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| .-~ . - ~ }~ ~ ~-.~-.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| .' .-~ .-~ :/~-.~-./:\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| /_~_ _ . - ~ ~-.~-._\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| ~-.<\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]|\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]|2025-06-16 01:48:11: Starting SIMBELMYNË, commit hash bcdce9c1b02682972d65f1d3d414b5774015c141\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]|Reading parameter file in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/nsteps20_example_spm.sbmy'...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]|Reading parameter file in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/nsteps20_example_spm.sbmy' done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleLPT: Initializing snapshot...\u001b[00m\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleLPT: Initializing snapshot done.\u001b[00m\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]|LPT snapshot initialization: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleLPT: Returning initial conditions...\u001b[00m\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Reading field in '/Users/hoellinger/WIP3M/notebook1/initial_density.h5'...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Reading field in '/Users/hoellinger/WIP3M/notebook1/initial_density.h5' done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleLPT: Returning initial conditions done.\u001b[00m\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]|LPT initial conditions: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleLPT: Evolving with Lagrangian perturbation theory (using 8 cores)...\u001b[00m\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Computing Lagrangian potentials, periodic boundary conditions (using 8 cores)...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Computing Lagrangian potentials, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Computing Lagrangian displacement field (using 8 cores)...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Computing Lagrangian displacement field (using 8 cores) done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Changing velocities of particles...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Changing velocities of particles done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Displacing particles...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Displacing particles done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleLPT: Evolving with Lagrangian perturbation theory (using 8 cores) done.\u001b[00m\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]|LPT evolution: 0.053 CPU - 0.015 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]|ModuleLPT: 0.054 CPU - 0.016 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleP3M: Evolving with P3M...\u001b[00m\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Read timestepping configuration in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/nsteps20_ts_spm.h5'...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Read timestepping configuration in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/nsteps20_ts_spm.h5' done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|OutputForceDiagnostic: /Users/hoellinger/WIP3M/notebook1/force_diagnostic_spm.txt\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|OutputSnapshotsBase: particles_\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin sPM step 1/20, time_kick:0.050000, time_drift=0.050000.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 1/20 done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End sPM step 1/20, time_kick:0.073750, time_drift=0.097500.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 1/20: Density: 0.010 CPU - 0.002 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 1/20: Potential: 0.005 CPU - 0.002 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 1/20: Accelerations (long-range): 0.092 CPU - 0.020 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 1/20: Accelerations (short-range): 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 1/20: Kick: 0.006 CPU - 0.002 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 1/20: Drift: 0.002 CPU - 0.001 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 1/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 1/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 1/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 1/20: Total Evolution: 0.115 CPU - 0.028 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin sPM step 2/20, time_kick:0.073750, time_drift=0.097500.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 2/20 done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End sPM step 2/20, time_kick:0.121250, time_drift=0.145000.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 2/20: Density: 0.011 CPU - 0.002 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 2/20: Potential: 0.005 CPU - 0.002 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 2/20: Accelerations (long-range): 0.091 CPU - 0.028 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 2/20: Accelerations (short-range): 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 2/20: Kick: 0.006 CPU - 0.002 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 2/20: Drift: 0.001 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 2/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 2/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 2/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 2/20: Total Evolution: 0.115 CPU - 0.035 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin sPM step 3/20, time_kick:0.121250, time_drift=0.145000.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 3/20 done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End sPM step 3/20, time_kick:0.168750, time_drift=0.192500.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 3/20: Density: 0.006 CPU - 0.003 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 3/20: Potential: 0.005 CPU - 0.003 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 3/20: Accelerations (long-range): 0.090 CPU - 0.027 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 3/20: Accelerations (short-range): 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 3/20: Kick: 0.006 CPU - 0.002 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 3/20: Drift: 0.002 CPU - 0.001 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 3/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 3/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 3/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 3/20: Total Evolution: 0.108 CPU - 0.034 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin sPM step 4/20, time_kick:0.168750, time_drift=0.192500.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 4/20 done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End sPM step 4/20, time_kick:0.216250, time_drift=0.240000.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 4/20: Density: 0.012 CPU - 0.003 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 4/20: Potential: 0.005 CPU - 0.002 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 4/20: Accelerations (long-range): 0.092 CPU - 0.023 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 4/20: Accelerations (short-range): 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 4/20: Kick: 0.006 CPU - 0.002 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 4/20: Drift: 0.002 CPU - 0.001 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 4/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 4/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 4/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 4/20: Total Evolution: 0.117 CPU - 0.030 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin sPM step 5/20, time_kick:0.216250, time_drift=0.240000.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 5/20 done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n"
|
|
]
|
|
},
|
|
{
|
|
"name": "stderr",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"HDF5-DIAG: Error detected in HDF5 (1.14.6):\n",
|
|
" #000: /tmp/hdf5-20250207-38588-gjrv3m/hdf5-1.14.6/src/H5Adeprec.c line 202 in H5Aopen_name(): unable to open attribute\n",
|
|
" major: Attribute\n",
|
|
" minor: Can't open object\n",
|
|
" #001: /tmp/hdf5-20250207-38588-gjrv3m/hdf5-1.14.6/src/H5VLcallback.c line 1125 in H5VL_attr_open(): attribute open failed\n",
|
|
" major: Virtual Object Layer\n",
|
|
" minor: Can't open object\n",
|
|
" #002: /tmp/hdf5-20250207-38588-gjrv3m/hdf5-1.14.6/src/H5VLcallback.c line 1092 in H5VL__attr_open(): attribute open failed\n",
|
|
" major: Virtual Object Layer\n",
|
|
" minor: Can't open object\n",
|
|
" #003: /tmp/hdf5-20250207-38588-gjrv3m/hdf5-1.14.6/src/H5VLnative_attr.c line 164 in H5VL__native_attr_open(): unable to open attribute: '/info/scalars/time'\n",
|
|
" major: Attribute\n",
|
|
" minor: Can't open object\n",
|
|
" #004: /tmp/hdf5-20250207-38588-gjrv3m/hdf5-1.14.6/src/H5Aint.c line 514 in H5A__open(): unable to load attribute info from object header for attribute: '/info/scalars/time'\n",
|
|
" major: Attribute\n",
|
|
" minor: Can't open object\n",
|
|
" #005: /tmp/hdf5-20250207-38588-gjrv3m/hdf5-1.14.6/src/H5Oattribute.c line 498 in H5O__attr_open_by_name(): can't locate attribute: '/info/scalars/time'\n",
|
|
" major: Attribute\n",
|
|
" minor: Object not found\n",
|
|
"HDF5-DIAG: Error detected in HDF5 (1.14.6):\n",
|
|
" #000: /tmp/hdf5-20250207-38588-gjrv3m/hdf5-1.14.6/src/H5A.c line 1022 in H5Aread(): can't synchronously read data\n",
|
|
" major: Attribute\n",
|
|
" minor: Read failed\n",
|
|
" #001: /tmp/hdf5-20250207-38588-gjrv3m/hdf5-1.14.6/src/H5A.c line 987 in H5A__read_api_common(): not an attribute\n",
|
|
" major: Invalid arguments to routine\n",
|
|
" minor: Inappropriate type\n",
|
|
" #002: /tmp/hdf5-20250207-38588-gjrv3m/hdf5-1.14.6/src/H5VLint.c line 1786 in H5VL_vol_object_verify(): identifier is not of specified type\n",
|
|
" major: Invalid arguments to routine\n",
|
|
" minor: Inappropriate type\n",
|
|
"HDF5-DIAG: Error detected in HDF5 (1.14.6):\n",
|
|
" #000: /tmp/hdf5-20250207-38588-gjrv3m/hdf5-1.14.6/src/H5A.c line 2193 in H5Aclose(): not an attribute ID\n",
|
|
" major: Invalid arguments to routine\n",
|
|
" minor: Inappropriate type\n"
|
|
]
|
|
},
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End sPM step 5/20, time_kick:0.263750, time_drift=0.287500.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 5/20: Density: 0.014 CPU - 0.003 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 5/20: Potential: 0.006 CPU - 0.002 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 5/20: Accelerations (long-range): 0.099 CPU - 0.025 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 5/20: Accelerations (short-range): 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 5/20: Kick: 0.007 CPU - 0.002 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 5/20: Drift: 0.002 CPU - 0.001 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 5/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 5/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 5/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 5/20: Total Evolution: 0.126 CPU - 0.033 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin sPM step 6/20, time_kick:0.263750, time_drift=0.287500.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 6/20 done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End sPM step 6/20, time_kick:0.311250, time_drift=0.335000.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 6/20: Density: 0.012 CPU - 0.003 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 6/20: Potential: 0.005 CPU - 0.002 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 6/20: Accelerations (long-range): 0.098 CPU - 0.081 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 6/20: Accelerations (short-range): 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 6/20: Kick: 0.007 CPU - 0.003 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 6/20: Drift: 0.001 CPU - 0.001 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 6/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 6/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 6/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 6/20: Total Evolution: 0.123 CPU - 0.090 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin sPM step 7/20, time_kick:0.311250, time_drift=0.335000.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 7/20 done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End sPM step 7/20, time_kick:0.358750, time_drift=0.382500.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 7/20: Density: 0.011 CPU - 0.003 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 7/20: Potential: 0.006 CPU - 0.010 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 7/20: Accelerations (long-range): 0.097 CPU - 0.022 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 7/20: Accelerations (short-range): 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 7/20: Kick: 0.006 CPU - 0.001 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 7/20: Drift: 0.001 CPU - 0.001 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 7/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 7/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 7/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 7/20: Total Evolution: 0.122 CPU - 0.038 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin sPM step 8/20, time_kick:0.358750, time_drift=0.382500.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 8/20 done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End sPM step 8/20, time_kick:0.406250, time_drift=0.430000.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 8/20: Density: 0.015 CPU - 0.003 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 8/20: Potential: 0.005 CPU - 0.002 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 8/20: Accelerations (long-range): 0.096 CPU - 0.021 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 8/20: Accelerations (short-range): 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 8/20: Kick: 0.007 CPU - 0.002 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 8/20: Drift: 0.001 CPU - 0.001 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 8/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 8/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 8/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 8/20: Total Evolution: 0.124 CPU - 0.029 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin sPM step 9/20, time_kick:0.406250, time_drift=0.430000.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 9/20 done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End sPM step 9/20, time_kick:0.453750, time_drift=0.477500.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 9/20: Density: 0.009 CPU - 0.005 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 9/20: Potential: 0.007 CPU - 0.003 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 9/20: Accelerations (long-range): 0.094 CPU - 0.021 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 9/20: Accelerations (short-range): 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 9/20: Kick: 0.006 CPU - 0.001 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 9/20: Drift: 0.001 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 9/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 9/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 9/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 9/20: Total Evolution: 0.116 CPU - 0.031 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin sPM step 10/20, time_kick:0.453750, time_drift=0.477500.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 10/20 done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End sPM step 10/20, time_kick:0.501250, time_drift=0.525000.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 10/20: Density: 0.013 CPU - 0.002 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 10/20: Potential: 0.005 CPU - 0.002 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 10/20: Accelerations (long-range): 0.096 CPU - 0.018 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 10/20: Accelerations (short-range): 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 10/20: Kick: 0.006 CPU - 0.001 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 10/20: Drift: 0.002 CPU - 0.001 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 10/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 10/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 10/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 10/20: Total Evolution: 0.121 CPU - 0.024 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin sPM step 11/20, time_kick:0.501250, time_drift=0.525000.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 11/20 done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End sPM step 11/20, time_kick:0.548750, time_drift=0.572500.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 11/20: Density: 0.012 CPU - 0.003 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 11/20: Potential: 0.005 CPU - 0.002 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 11/20: Accelerations (long-range): 0.096 CPU - 0.019 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 11/20: Accelerations (short-range): 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 11/20: Kick: 0.005 CPU - 0.005 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 11/20: Drift: 0.001 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 11/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 11/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 11/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 11/20: Total Evolution: 0.120 CPU - 0.029 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin sPM step 12/20, time_kick:0.548750, time_drift=0.572500.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 12/20 done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End sPM step 12/20, time_kick:0.596250, time_drift=0.620000.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 12/20: Density: 0.009 CPU - 0.002 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 12/20: Potential: 0.004 CPU - 0.002 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 12/20: Accelerations (long-range): 0.089 CPU - 0.020 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 12/20: Accelerations (short-range): 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 12/20: Kick: 0.006 CPU - 0.001 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 12/20: Drift: 0.002 CPU - 0.001 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 12/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 12/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 12/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 12/20: Total Evolution: 0.110 CPU - 0.026 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin sPM step 13/20, time_kick:0.596250, time_drift=0.620000.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 13/20 done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End sPM step 13/20, time_kick:0.643750, time_drift=0.667500.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 13/20: Density: 0.015 CPU - 0.003 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 13/20: Potential: 0.005 CPU - 0.002 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 13/20: Accelerations (long-range): 0.092 CPU - 0.019 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 13/20: Accelerations (short-range): 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 13/20: Kick: 0.006 CPU - 0.001 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 13/20: Drift: 0.001 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 13/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 13/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 13/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 13/20: Total Evolution: 0.119 CPU - 0.026 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin sPM step 14/20, time_kick:0.643750, time_drift=0.667500.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 14/20 done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End sPM step 14/20, time_kick:0.691250, time_drift=0.715000.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 14/20: Density: 0.015 CPU - 0.003 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 14/20: Potential: 0.005 CPU - 0.002 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 14/20: Accelerations (long-range): 0.092 CPU - 0.018 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 14/20: Accelerations (short-range): 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 14/20: Kick: 0.006 CPU - 0.001 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 14/20: Drift: 0.001 CPU - 0.001 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 14/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 14/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 14/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 14/20: Total Evolution: 0.119 CPU - 0.024 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin sPM step 15/20, time_kick:0.691250, time_drift=0.715000.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 15/20 done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End sPM step 15/20, time_kick:0.738750, time_drift=0.762500.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 15/20: Density: 0.016 CPU - 0.003 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 15/20: Potential: 0.005 CPU - 0.002 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 15/20: Accelerations (long-range): 0.093 CPU - 0.018 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 15/20: Accelerations (short-range): 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 15/20: Kick: 0.006 CPU - 0.001 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 15/20: Drift: 0.001 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 15/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 15/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 15/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 15/20: Total Evolution: 0.122 CPU - 0.024 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin sPM step 16/20, time_kick:0.738750, time_drift=0.762500.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 16/20 done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End sPM step 16/20, time_kick:0.786250, time_drift=0.810000.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 16/20: Density: 0.015 CPU - 0.003 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 16/20: Potential: 0.004 CPU - 0.002 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 16/20: Accelerations (long-range): 0.091 CPU - 0.019 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 16/20: Accelerations (short-range): 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 16/20: Kick: 0.006 CPU - 0.001 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 16/20: Drift: 0.001 CPU - 0.001 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 16/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 16/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 16/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 16/20: Total Evolution: 0.118 CPU - 0.026 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin sPM step 17/20, time_kick:0.786250, time_drift=0.810000.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 17/20 done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End sPM step 17/20, time_kick:0.833750, time_drift=0.857500.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 17/20: Density: 0.014 CPU - 0.003 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 17/20: Potential: 0.005 CPU - 0.002 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 17/20: Accelerations (long-range): 0.086 CPU - 0.020 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 17/20: Accelerations (short-range): 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 17/20: Kick: 0.006 CPU - 0.001 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 17/20: Drift: 0.001 CPU - 0.001 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 17/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 17/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 17/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 17/20: Total Evolution: 0.112 CPU - 0.027 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin sPM step 18/20, time_kick:0.833750, time_drift=0.857500.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 18/20 done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End sPM step 18/20, time_kick:0.881250, time_drift=0.905000.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 18/20: Density: 0.009 CPU - 0.002 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 18/20: Potential: 0.005 CPU - 0.002 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 18/20: Accelerations (long-range): 0.100 CPU - 0.020 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 18/20: Accelerations (short-range): 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 18/20: Kick: 0.006 CPU - 0.002 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 18/20: Drift: 0.002 CPU - 0.001 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 18/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 18/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 18/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 18/20: Total Evolution: 0.121 CPU - 0.026 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin sPM step 19/20, time_kick:0.881250, time_drift=0.905000.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 19/20 done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End sPM step 19/20, time_kick:0.928750, time_drift=0.952500.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 19/20: Density: 0.015 CPU - 0.003 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 19/20: Potential: 0.005 CPU - 0.002 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 19/20: Accelerations (long-range): 0.094 CPU - 0.032 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 19/20: Accelerations (short-range): 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 19/20: Kick: 0.005 CPU - 0.002 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 19/20: Drift: 0.001 CPU - 0.001 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 19/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 19/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 19/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 19/20: Total Evolution: 0.121 CPU - 0.040 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin sPM step 20/20, time_kick:0.928750, time_drift=0.952500.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 20/20 done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End sPM step 20/20, time_kick:1.000000, time_drift=1.000000.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 20/20: Density: 0.017 CPU - 0.005 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 20/20: Potential: 0.011 CPU - 0.009 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 20/20: Accelerations (long-range): 0.176 CPU - 0.060 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 20/20: Accelerations (short-range): 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 20/20: Kick: 0.012 CPU - 0.004 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 20/20: Drift: 0.001 CPU - 0.001 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 20/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 20/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 20/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 20/20: Total Evolution: 0.218 CPU - 0.079 wallclock seconds used.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Running force diagnostic for 3 random particle pairs per distance bin...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing total force on each particle (before removing any)...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing total force on each particle (before removing any) done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 18: [11.341, 19.050]. Total: 1 / max 60 pairs...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 18: [11.341, 19.050] done. Total: 1 / max 60 pairs. Trials 0 / max 100000000.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 19: [19.050, 32.000]. Total: 2 / max 60 pairs...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 19: [19.050, 32.000] done. Total: 2 / max 60 pairs. Trials 2 / max 100000000.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 18: [11.341, 19.050]. Total: 3 / max 60 pairs...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 18: [11.341, 19.050] done. Total: 3 / max 60 pairs. Trials 3 / max 100000000.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 19: [19.050, 32.000]. Total: 4 / max 60 pairs...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 19: [19.050, 32.000] done. Total: 4 / max 60 pairs. Trials 4 / max 100000000.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 18: [11.341, 19.050]. Total: 5 / max 60 pairs...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 18: [11.341, 19.050] done. Total: 5 / max 60 pairs. Trials 5 / max 100000000.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 19: [19.050, 32.000]. Total: 6 / max 60 pairs...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 19: [19.050, 32.000] done. Total: 6 / max 60 pairs. Trials 6 / max 100000000.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 15: [2.393, 4.019]. Total: 7 / max 60 pairs...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[01:48:11\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 15: [2.393, 4.019] done. Total: 7 / max 60 pairs. Trials 25 / max 100000000.\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 17: [6.751, 11.341]. Total: 8 / max 60 pairs...\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 17: [6.751, 11.341] done. Total: 8 / max 60 pairs. Trials 39 / max 100000000.\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 17: [6.751, 11.341]. Total: 9 / max 60 pairs...\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 17: [6.751, 11.341] done. Total: 9 / max 60 pairs. Trials 100 / max 100000000.\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 17: [6.751, 11.341]. Total: 10 / max 60 pairs...\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 17: [6.751, 11.341] done. Total: 10 / max 60 pairs. Trials 138 / max 100000000.\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 16: [4.019, 6.751]. Total: 11 / max 60 pairs...\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 16: [4.019, 6.751] done. Total: 11 / max 60 pairs. Trials 149 / max 100000000.\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 16: [4.019, 6.751]. Total: 12 / max 60 pairs...\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 16: [4.019, 6.751] done. Total: 12 / max 60 pairs. Trials 189 / max 100000000.\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 16: [4.019, 6.751]. Total: 13 / max 60 pairs...\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 16: [4.019, 6.751] done. Total: 13 / max 60 pairs. Trials 237 / max 100000000.\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 14: [1.424, 2.393]. Total: 14 / max 60 pairs...\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 14: [1.424, 2.393] done. Total: 14 / max 60 pairs. Trials 258 / max 100000000.\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 15: [2.393, 4.019]. Total: 15 / max 60 pairs...\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 15: [2.393, 4.019] done. Total: 15 / max 60 pairs. Trials 755 / max 100000000.\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 13: [0.848, 1.424]. Total: 16 / max 60 pairs...\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 13: [0.848, 1.424] done. Total: 16 / max 60 pairs. Trials 997 / max 100000000.\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 14: [1.424, 2.393]. Total: 17 / max 60 pairs...\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 14: [1.424, 2.393] done. Total: 17 / max 60 pairs. Trials 1323 / max 100000000.\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 15: [2.393, 4.019]. Total: 18 / max 60 pairs...\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 15: [2.393, 4.019] done. Total: 18 / max 60 pairs. Trials 1403 / max 100000000.\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 14: [1.424, 2.393]. Total: 19 / max 60 pairs...\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 14: [1.424, 2.393] done. Total: 19 / max 60 pairs. Trials 2719 / max 100000000.\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 12: [0.505, 0.848]. Total: 20 / max 60 pairs...\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 12: [0.505, 0.848] done. Total: 20 / max 60 pairs. Trials 3386 / max 100000000.\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 13: [0.848, 1.424]. Total: 21 / max 60 pairs...\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 13: [0.848, 1.424] done. Total: 21 / max 60 pairs. Trials 7223 / max 100000000.\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 13: [0.848, 1.424]. Total: 22 / max 60 pairs...\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 13: [0.848, 1.424] done. Total: 22 / max 60 pairs. Trials 11516 / max 100000000.\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 12: [0.505, 0.848]. Total: 23 / max 60 pairs...\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 12: [0.505, 0.848] done. Total: 23 / max 60 pairs. Trials 11684 / max 100000000.\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 12: [0.505, 0.848]. Total: 24 / max 60 pairs...\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 12: [0.505, 0.848] done. Total: 24 / max 60 pairs. Trials 14546 / max 100000000.\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 9: [0.106, 0.179]. Total: 25 / max 60 pairs...\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 9: [0.106, 0.179] done. Total: 25 / max 60 pairs. Trials 75794 / max 100000000.\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 10: [0.179, 0.300]. Total: 26 / max 60 pairs...\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 10: [0.179, 0.300] done. Total: 26 / max 60 pairs. Trials 96044 / max 100000000.\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 11: [0.300, 0.505]. Total: 27 / max 60 pairs...\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 11: [0.300, 0.505] done. Total: 27 / max 60 pairs. Trials 147659 / max 100000000.\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 11: [0.300, 0.505]. Total: 28 / max 60 pairs...\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 11: [0.300, 0.505] done. Total: 28 / max 60 pairs. Trials 157009 / max 100000000.\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 11: [0.300, 0.505]. Total: 29 / max 60 pairs...\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 11: [0.300, 0.505] done. Total: 29 / max 60 pairs. Trials 260936 / max 100000000.\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 10: [0.179, 0.300]. Total: 30 / max 60 pairs...\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 10: [0.179, 0.300] done. Total: 30 / max 60 pairs. Trials 376024 / max 100000000.\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 9: [0.106, 0.179]. Total: 31 / max 60 pairs...\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 9: [0.106, 0.179] done. Total: 31 / max 60 pairs. Trials 445798 / max 100000000.\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 9: [0.106, 0.179]. Total: 32 / max 60 pairs...\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 9: [0.106, 0.179] done. Total: 32 / max 60 pairs. Trials 446516 / max 100000000.\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 10: [0.179, 0.300]. Total: 33 / max 60 pairs...\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 10: [0.179, 0.300] done. Total: 33 / max 60 pairs. Trials 496837 / max 100000000.\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 8: [0.063, 0.106]. Total: 34 / max 60 pairs...\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 8: [0.063, 0.106] done. Total: 34 / max 60 pairs. Trials 3841544 / max 100000000.\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 8: [0.063, 0.106]. Total: 35 / max 60 pairs...\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[01:48:12\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 8: [0.063, 0.106] done. Total: 35 / max 60 pairs. Trials 4274706 / max 100000000.\n",
|
|
"[01:48:13\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 8: [0.063, 0.106]. Total: 36 / max 60 pairs...\n",
|
|
"[01:48:13\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[01:48:13\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[01:48:13\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[01:48:13\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[01:48:13\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 8: [0.063, 0.106] done. Total: 36 / max 60 pairs. Trials 9114543 / max 100000000.\n",
|
|
"[01:48:14\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 7: [0.038, 0.063]. Total: 37 / max 60 pairs...\n",
|
|
"[01:48:14\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[01:48:14\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[01:48:14\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[01:48:14\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[01:48:14\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 7: [0.038, 0.063] done. Total: 37 / max 60 pairs. Trials 46420423 / max 100000000.\n",
|
|
"[01:48:15\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 7: [0.038, 0.063]. Total: 38 / max 60 pairs...\n",
|
|
"[01:48:15\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[01:48:15\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[01:48:15\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[01:48:15\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[01:48:15\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 7: [0.038, 0.063] done. Total: 38 / max 60 pairs. Trials 54284633 / max 100000000.\n",
|
|
"[01:48:16\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 7: [0.038, 0.063]. Total: 39 / max 60 pairs...\n",
|
|
"[01:48:16\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[01:48:16\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[01:48:16\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[01:48:16\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[01:48:16\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 7: [0.038, 0.063] done. Total: 39 / max 60 pairs. Trials 76404409 / max 100000000.\n",
|
|
"[01:48:16\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 6: [0.022, 0.038]. Total: 40 / max 60 pairs...\n",
|
|
"[01:48:16\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[01:48:16\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[01:48:16\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[01:48:16\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[01:48:16\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 6: [0.022, 0.038] done. Total: 40 / max 60 pairs. Trials 84122810 / max 100000000.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Running force diagnostic done.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Box: Density: 0.250 CPU - 0.061 wallclock seconds used.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Box: Potential: 0.107 CPU - 0.055 wallclock seconds used.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Box: Accelerations (long-range): 1.952 CPU - 0.531 wallclock seconds used.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Box: Accelerations (short-range): 0.003 CPU - 0.002 wallclock seconds used.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Box: Kick: 0.124 CPU - 0.040 wallclock seconds used.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Box: Drift: 0.029 CPU - 0.012 wallclock seconds used.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Box: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Box: Diagnostic: 8.974 CPU - 5.486 wallclock seconds used.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Box: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Box: Total Evolution: 11.440 CPU - 6.186 wallclock seconds used.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleP3M: Evolving with P3M done.\u001b[00m\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModulePMCOLA: Computing outputs...\u001b[00m\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Writing field to '/Users/hoellinger/WIP3M/notebook1/nsteps20_final_density_spm.h5'...\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Writing field to '/Users/hoellinger/WIP3M/notebook1/nsteps20_final_density_spm.h5' done.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Writing header in '/Users/hoellinger/WIP3M/notebook1/nsteps20_spm_snapshot.gadget3'...\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Writing header in '/Users/hoellinger/WIP3M/notebook1/nsteps20_spm_snapshot.gadget3' done.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Writing snapshot in '/Users/hoellinger/WIP3M/notebook1/nsteps20_spm_snapshot.gadget3' (32768 particles)...\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing block: 'POS '...\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing block: 'POS ' done.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing block: 'VEL '...\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing block: 'VEL ' done.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing block: 'ID '...\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing block: 'ID ' done.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Writing snapshot in '/Users/hoellinger/WIP3M/notebook1/nsteps20_spm_snapshot.gadget3' done.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModulePMCOLA: Computing outputs done.\u001b[00m\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]|PMCOLA output: 0.012 CPU - 0.004 wallclock seconds used.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]|ModulePMCOLA: 11.461 CPU - 6.196 wallclock seconds used.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]|Simbelmynë: 11.515 CPU - 6.213 wallclock seconds used.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]|Everything done successfully, exiting.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;227mCOMMAND \u001b[00m]|\u001b[38;5;227msimbelmyne /Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/nsteps20_example_p3m.sbmy /Users/hoellinger/WIP3M/notebook1/logs/nsteps20_p3m.txt\u001b[00m\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]|\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| .-~~-.--.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| : )\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| .~ ~ -.\\ /.- ~~ .\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| > `. .' <\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| ( .- -. )\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| `- -.-~ `- -' ~-.- -'\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| ( : ) _ _ .-: ___________________________________\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| ~--. : .--~ .-~ .-~ } \u001b[1;38;5;157mSIMBELMYNË\u001b[00m\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| ~-.-^-.-~ \\_ .~ .-~ .~ (c) Florent Leclercq 2012 - SBMY_YEAR \n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| \\ ' \\ '_ _ -~ ___________________________________\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| `.`. //\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| . - ~ ~-.__`.`-.//\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| .-~ . - ~ }~ ~ ~-.~-.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| .' .-~ .-~ :/~-.~-./:\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| /_~_ _ . - ~ ~-.~-._\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| ~-.<\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]|\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]|2025-06-16 01:48:17: Starting SIMBELMYNË, commit hash bcdce9c1b02682972d65f1d3d414b5774015c141\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]|Reading parameter file in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/nsteps20_example_p3m.sbmy'...\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]|Reading parameter file in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/nsteps20_example_p3m.sbmy' done.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleLPT: Initializing snapshot...\u001b[00m\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleLPT: Initializing snapshot done.\u001b[00m\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]|LPT snapshot initialization: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleLPT: Returning initial conditions...\u001b[00m\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Reading field in '/Users/hoellinger/WIP3M/notebook1/initial_density.h5'...\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Reading field in '/Users/hoellinger/WIP3M/notebook1/initial_density.h5' done.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleLPT: Returning initial conditions done.\u001b[00m\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]|LPT initial conditions: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleLPT: Evolving with Lagrangian perturbation theory (using 8 cores)...\u001b[00m\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Computing Lagrangian potentials, periodic boundary conditions (using 8 cores)...\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Computing Lagrangian potentials, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Computing Lagrangian displacement field (using 8 cores)...\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Computing Lagrangian displacement field (using 8 cores) done.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Changing velocities of particles...\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Changing velocities of particles done.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Displacing particles...\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Displacing particles done.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleLPT: Evolving with Lagrangian perturbation theory (using 8 cores) done.\u001b[00m\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]|LPT evolution: 0.056 CPU - 0.017 wallclock seconds used.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]|ModuleLPT: 0.057 CPU - 0.017 wallclock seconds used.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleP3M: Evolving with P3M...\u001b[00m\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Read timestepping configuration in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/nsteps20_ts_p3m.h5'...\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Read timestepping configuration in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/nsteps20_ts_p3m.h5' done.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|OutputForceDiagnostic: /Users/hoellinger/WIP3M/notebook1/force_diagnostic_p3m.txt\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|OutputSnapshotsBase: particles_\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin P3M step 1/20, time_kick:0.050000, time_drift=0.050000.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 1/20 done.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End P3M step 1/20, time_kick:0.073750, time_drift=0.097500.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 1/20: Density: 0.011 CPU - 0.002 wallclock seconds used.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 1/20: Potential: 0.005 CPU - 0.002 wallclock seconds used.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 1/20: Accelerations (long-range): 0.092 CPU - 0.019 wallclock seconds used.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 1/20: Accelerations (short-range): 0.246 CPU - 0.036 wallclock seconds used.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 1/20: Kick: 0.006 CPU - 0.001 wallclock seconds used.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 1/20: Drift: 0.001 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 1/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 1/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 1/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 1/20: Total Evolution: 0.361 CPU - 0.061 wallclock seconds used.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin P3M step 2/20, time_kick:0.073750, time_drift=0.097500.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 2/20 done.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End P3M step 2/20, time_kick:0.121250, time_drift=0.145000.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 2/20: Density: 0.010 CPU - 0.002 wallclock seconds used.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 2/20: Potential: 0.004 CPU - 0.002 wallclock seconds used.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 2/20: Accelerations (long-range): 0.089 CPU - 0.019 wallclock seconds used.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 2/20: Accelerations (short-range): 0.255 CPU - 0.038 wallclock seconds used.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 2/20: Kick: 0.006 CPU - 0.001 wallclock seconds used.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 2/20: Drift: 0.002 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 2/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 2/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 2/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 2/20: Total Evolution: 0.366 CPU - 0.064 wallclock seconds used.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin P3M step 3/20, time_kick:0.121250, time_drift=0.145000.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 3/20 done.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End P3M step 3/20, time_kick:0.168750, time_drift=0.192500.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 3/20: Density: 0.013 CPU - 0.002 wallclock seconds used.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 3/20: Potential: 0.004 CPU - 0.002 wallclock seconds used.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 3/20: Accelerations (long-range): 0.090 CPU - 0.021 wallclock seconds used.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 3/20: Accelerations (short-range): 0.253 CPU - 0.040 wallclock seconds used.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 3/20: Kick: 0.006 CPU - 0.001 wallclock seconds used.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 3/20: Drift: 0.002 CPU - 0.001 wallclock seconds used.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 3/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 3/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 3/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 3/20: Total Evolution: 0.368 CPU - 0.067 wallclock seconds used.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin P3M step 4/20, time_kick:0.168750, time_drift=0.192500.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 4/20 done.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End P3M step 4/20, time_kick:0.216250, time_drift=0.240000.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 4/20: Density: 0.010 CPU - 0.002 wallclock seconds used.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 4/20: Potential: 0.005 CPU - 0.002 wallclock seconds used.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 4/20: Accelerations (long-range): 0.091 CPU - 0.019 wallclock seconds used.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 4/20: Accelerations (short-range): 0.257 CPU - 0.038 wallclock seconds used.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 4/20: Kick: 0.006 CPU - 0.001 wallclock seconds used.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 4/20: Drift: 0.001 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 4/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 4/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 4/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 4/20: Total Evolution: 0.368 CPU - 0.063 wallclock seconds used.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin P3M step 5/20, time_kick:0.216250, time_drift=0.240000.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 5/20 done.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End P3M step 5/20, time_kick:0.263750, time_drift=0.287500.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 5/20: Density: 0.013 CPU - 0.002 wallclock seconds used.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 5/20: Potential: 0.004 CPU - 0.002 wallclock seconds used.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 5/20: Accelerations (long-range): 0.091 CPU - 0.019 wallclock seconds used.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 5/20: Accelerations (short-range): 0.254 CPU - 0.039 wallclock seconds used.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 5/20: Kick: 0.006 CPU - 0.001 wallclock seconds used.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 5/20: Drift: 0.001 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 5/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 5/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 5/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 5/20: Total Evolution: 0.369 CPU - 0.064 wallclock seconds used.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin P3M step 6/20, time_kick:0.263750, time_drift=0.287500.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 6/20 done.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End P3M step 6/20, time_kick:0.311250, time_drift=0.335000.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 6/20: Density: 0.012 CPU - 0.003 wallclock seconds used.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 6/20: Potential: 0.004 CPU - 0.002 wallclock seconds used.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 6/20: Accelerations (long-range): 0.094 CPU - 0.019 wallclock seconds used.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 6/20: Accelerations (short-range): 0.277 CPU - 0.037 wallclock seconds used.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 6/20: Kick: 0.006 CPU - 0.001 wallclock seconds used.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 6/20: Drift: 0.001 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 6/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 6/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 6/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 6/20: Total Evolution: 0.394 CPU - 0.062 wallclock seconds used.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin P3M step 7/20, time_kick:0.311250, time_drift=0.335000.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 7/20 done.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End P3M step 7/20, time_kick:0.358750, time_drift=0.382500.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 7/20: Density: 0.011 CPU - 0.002 wallclock seconds used.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 7/20: Potential: 0.005 CPU - 0.002 wallclock seconds used.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 7/20: Accelerations (long-range): 0.096 CPU - 0.018 wallclock seconds used.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 7/20: Accelerations (short-range): 0.287 CPU - 0.039 wallclock seconds used.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 7/20: Kick: 0.006 CPU - 0.001 wallclock seconds used.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 7/20: Drift: 0.001 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 7/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 7/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 7/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 7/20: Total Evolution: 0.405 CPU - 0.063 wallclock seconds used.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin P3M step 8/20, time_kick:0.358750, time_drift=0.382500.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 8/20 done.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End P3M step 8/20, time_kick:0.406250, time_drift=0.430000.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 8/20: Density: 0.012 CPU - 0.002 wallclock seconds used.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 8/20: Potential: 0.005 CPU - 0.002 wallclock seconds used.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 8/20: Accelerations (long-range): 0.093 CPU - 0.020 wallclock seconds used.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 8/20: Accelerations (short-range): 0.292 CPU - 0.043 wallclock seconds used.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 8/20: Kick: 0.006 CPU - 0.001 wallclock seconds used.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 8/20: Drift: 0.001 CPU - 0.001 wallclock seconds used.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 8/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 8/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 8/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 8/20: Total Evolution: 0.408 CPU - 0.070 wallclock seconds used.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin P3M step 9/20, time_kick:0.406250, time_drift=0.430000.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 9/20 done.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End P3M step 9/20, time_kick:0.453750, time_drift=0.477500.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 9/20: Density: 0.014 CPU - 0.003 wallclock seconds used.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 9/20: Potential: 0.004 CPU - 0.002 wallclock seconds used.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 9/20: Accelerations (long-range): 0.090 CPU - 0.020 wallclock seconds used.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 9/20: Accelerations (short-range): 0.297 CPU - 0.042 wallclock seconds used.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 9/20: Kick: 0.005 CPU - 0.002 wallclock seconds used.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 9/20: Drift: 0.001 CPU - 0.001 wallclock seconds used.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 9/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 9/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 9/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 9/20: Total Evolution: 0.413 CPU - 0.068 wallclock seconds used.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin P3M step 10/20, time_kick:0.453750, time_drift=0.477500.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 10/20 done.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End P3M step 10/20, time_kick:0.501250, time_drift=0.525000.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 10/20: Density: 0.008 CPU - 0.002 wallclock seconds used.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 10/20: Potential: 0.005 CPU - 0.002 wallclock seconds used.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 10/20: Accelerations (long-range): 0.094 CPU - 0.019 wallclock seconds used.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 10/20: Accelerations (short-range): 0.295 CPU - 0.044 wallclock seconds used.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 10/20: Kick: 0.006 CPU - 0.001 wallclock seconds used.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 10/20: Drift: 0.002 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 10/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 10/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 10/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 10/20: Total Evolution: 0.409 CPU - 0.069 wallclock seconds used.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin P3M step 11/20, time_kick:0.501250, time_drift=0.525000.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 11/20 done.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[01:48:17\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End P3M step 11/20, time_kick:0.548750, time_drift=0.572500.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 11/20: Density: 0.013 CPU - 0.003 wallclock seconds used.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 11/20: Potential: 0.005 CPU - 0.002 wallclock seconds used.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 11/20: Accelerations (long-range): 0.093 CPU - 0.019 wallclock seconds used.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 11/20: Accelerations (short-range): 0.309 CPU - 0.045 wallclock seconds used.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 11/20: Kick: 0.006 CPU - 0.001 wallclock seconds used.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 11/20: Drift: 0.001 CPU - 0.001 wallclock seconds used.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 11/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 11/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 11/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 11/20: Total Evolution: 0.427 CPU - 0.070 wallclock seconds used.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin P3M step 12/20, time_kick:0.548750, time_drift=0.572500.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 12/20 done.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End P3M step 12/20, time_kick:0.596250, time_drift=0.620000.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 12/20: Density: 0.014 CPU - 0.003 wallclock seconds used.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 12/20: Potential: 0.005 CPU - 0.002 wallclock seconds used.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 12/20: Accelerations (long-range): 0.094 CPU - 0.019 wallclock seconds used.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 12/20: Accelerations (short-range): 0.313 CPU - 0.049 wallclock seconds used.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 12/20: Kick: 0.006 CPU - 0.001 wallclock seconds used.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 12/20: Drift: 0.001 CPU - 0.001 wallclock seconds used.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 12/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 12/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 12/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 12/20: Total Evolution: 0.434 CPU - 0.074 wallclock seconds used.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin P3M step 13/20, time_kick:0.596250, time_drift=0.620000.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 13/20 done.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End P3M step 13/20, time_kick:0.643750, time_drift=0.667500.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 13/20: Density: 0.016 CPU - 0.003 wallclock seconds used.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 13/20: Potential: 0.005 CPU - 0.002 wallclock seconds used.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 13/20: Accelerations (long-range): 0.094 CPU - 0.020 wallclock seconds used.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 13/20: Accelerations (short-range): 0.322 CPU - 0.051 wallclock seconds used.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 13/20: Kick: 0.006 CPU - 0.002 wallclock seconds used.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 13/20: Drift: 0.002 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 13/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 13/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 13/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 13/20: Total Evolution: 0.445 CPU - 0.078 wallclock seconds used.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin P3M step 14/20, time_kick:0.643750, time_drift=0.667500.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 14/20 done.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End P3M step 14/20, time_kick:0.691250, time_drift=0.715000.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 14/20: Density: 0.013 CPU - 0.003 wallclock seconds used.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 14/20: Potential: 0.004 CPU - 0.002 wallclock seconds used.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 14/20: Accelerations (long-range): 0.091 CPU - 0.019 wallclock seconds used.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 14/20: Accelerations (short-range): 0.314 CPU - 0.048 wallclock seconds used.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 14/20: Kick: 0.006 CPU - 0.005 wallclock seconds used.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 14/20: Drift: 0.001 CPU - 0.001 wallclock seconds used.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 14/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 14/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 14/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 14/20: Total Evolution: 0.429 CPU - 0.077 wallclock seconds used.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin P3M step 15/20, time_kick:0.691250, time_drift=0.715000.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 15/20 done.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End P3M step 15/20, time_kick:0.738750, time_drift=0.762500.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 15/20: Density: 0.010 CPU - 0.003 wallclock seconds used.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 15/20: Potential: 0.005 CPU - 0.002 wallclock seconds used.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 15/20: Accelerations (long-range): 0.094 CPU - 0.018 wallclock seconds used.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 15/20: Accelerations (short-range): 0.327 CPU - 0.051 wallclock seconds used.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 15/20: Kick: 0.006 CPU - 0.001 wallclock seconds used.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 15/20: Drift: 0.001 CPU - 0.001 wallclock seconds used.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 15/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 15/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 15/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 15/20: Total Evolution: 0.443 CPU - 0.076 wallclock seconds used.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin P3M step 16/20, time_kick:0.738750, time_drift=0.762500.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 16/20 done.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End P3M step 16/20, time_kick:0.786250, time_drift=0.810000.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 16/20: Density: 0.014 CPU - 0.003 wallclock seconds used.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 16/20: Potential: 0.005 CPU - 0.002 wallclock seconds used.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 16/20: Accelerations (long-range): 0.096 CPU - 0.018 wallclock seconds used.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 16/20: Accelerations (short-range): 0.337 CPU - 0.058 wallclock seconds used.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 16/20: Kick: 0.006 CPU - 0.001 wallclock seconds used.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 16/20: Drift: 0.001 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 16/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 16/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 16/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 16/20: Total Evolution: 0.458 CPU - 0.082 wallclock seconds used.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin P3M step 17/20, time_kick:0.786250, time_drift=0.810000.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 17/20 done.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End P3M step 17/20, time_kick:0.833750, time_drift=0.857500.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 17/20: Density: 0.013 CPU - 0.003 wallclock seconds used.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 17/20: Potential: 0.005 CPU - 0.002 wallclock seconds used.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 17/20: Accelerations (long-range): 0.093 CPU - 0.019 wallclock seconds used.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 17/20: Accelerations (short-range): 0.345 CPU - 0.056 wallclock seconds used.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 17/20: Kick: 0.005 CPU - 0.001 wallclock seconds used.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 17/20: Drift: 0.001 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 17/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 17/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 17/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 17/20: Total Evolution: 0.462 CPU - 0.081 wallclock seconds used.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin P3M step 18/20, time_kick:0.833750, time_drift=0.857500.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 18/20 done.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End P3M step 18/20, time_kick:0.881250, time_drift=0.905000.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 18/20: Density: 0.014 CPU - 0.003 wallclock seconds used.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 18/20: Potential: 0.005 CPU - 0.002 wallclock seconds used.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 18/20: Accelerations (long-range): 0.090 CPU - 0.021 wallclock seconds used.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 18/20: Accelerations (short-range): 0.329 CPU - 0.060 wallclock seconds used.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 18/20: Kick: 0.006 CPU - 0.001 wallclock seconds used.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 18/20: Drift: 0.001 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 18/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 18/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 18/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 18/20: Total Evolution: 0.445 CPU - 0.087 wallclock seconds used.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin P3M step 19/20, time_kick:0.881250, time_drift=0.905000.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 19/20 done.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End P3M step 19/20, time_kick:0.928750, time_drift=0.952500.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 19/20: Density: 0.014 CPU - 0.003 wallclock seconds used.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 19/20: Potential: 0.005 CPU - 0.002 wallclock seconds used.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 19/20: Accelerations (long-range): 0.095 CPU - 0.018 wallclock seconds used.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 19/20: Accelerations (short-range): 0.328 CPU - 0.059 wallclock seconds used.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 19/20: Kick: 0.006 CPU - 0.001 wallclock seconds used.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 19/20: Drift: 0.002 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 19/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 19/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 19/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 19/20: Total Evolution: 0.449 CPU - 0.084 wallclock seconds used.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin P3M step 20/20, time_kick:0.928750, time_drift=0.952500.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 20/20 done.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End P3M step 20/20, time_kick:1.000000, time_drift=1.000000.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 20/20: Density: 0.029 CPU - 0.006 wallclock seconds used.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 20/20: Potential: 0.009 CPU - 0.003 wallclock seconds used.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 20/20: Accelerations (long-range): 0.190 CPU - 0.037 wallclock seconds used.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 20/20: Accelerations (short-range): 0.727 CPU - 0.132 wallclock seconds used.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 20/20: Kick: 0.012 CPU - 0.003 wallclock seconds used.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 20/20: Drift: 0.001 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 20/20: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 20/20: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 20/20: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 20/20: Total Evolution: 0.969 CPU - 0.181 wallclock seconds used.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Running force diagnostic for 3 random particle pairs per distance bin...\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing total force on each particle (before removing any)...\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing total force on each particle (before removing any) done.\n",
|
|
"[01:48:18\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 19: [19.050, 32.000]. Total: 1 / max 60 pairs...\n",
|
|
"[01:48:19\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[01:48:19\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[01:48:19\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[01:48:19\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[01:48:19\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 19: [19.050, 32.000] done. Total: 1 / max 60 pairs. Trials 2 / max 100000000.\n",
|
|
"[01:48:19\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 19: [19.050, 32.000]. Total: 2 / max 60 pairs...\n",
|
|
"[01:48:19\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[01:48:19\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[01:48:19\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[01:48:19\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[01:48:19\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 19: [19.050, 32.000] done. Total: 2 / max 60 pairs. Trials 3 / max 100000000.\n",
|
|
"[01:48:19\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 19: [19.050, 32.000]. Total: 3 / max 60 pairs...\n",
|
|
"[01:48:19\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[01:48:19\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[01:48:19\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[01:48:19\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[01:48:19\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 19: [19.050, 32.000] done. Total: 3 / max 60 pairs. Trials 5 / max 100000000.\n",
|
|
"[01:48:19\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 18: [11.341, 19.050]. Total: 4 / max 60 pairs...\n",
|
|
"[01:48:19\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[01:48:19\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[01:48:19\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[01:48:19\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[01:48:19\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 18: [11.341, 19.050] done. Total: 4 / max 60 pairs. Trials 13 / max 100000000.\n",
|
|
"[01:48:19\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 17: [6.751, 11.341]. Total: 5 / max 60 pairs...\n",
|
|
"[01:48:19\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[01:48:19\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[01:48:19\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[01:48:19\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[01:48:19\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 17: [6.751, 11.341] done. Total: 5 / max 60 pairs. Trials 19 / max 100000000.\n",
|
|
"[01:48:19\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 18: [11.341, 19.050]. Total: 6 / max 60 pairs...\n",
|
|
"[01:48:19\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[01:48:19\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[01:48:19\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[01:48:19\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[01:48:19\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 18: [11.341, 19.050] done. Total: 6 / max 60 pairs. Trials 24 / max 100000000.\n",
|
|
"[01:48:19\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 18: [11.341, 19.050]. Total: 7 / max 60 pairs...\n",
|
|
"[01:48:19\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[01:48:19\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[01:48:19\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[01:48:19\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[01:48:19\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 18: [11.341, 19.050] done. Total: 7 / max 60 pairs. Trials 31 / max 100000000.\n",
|
|
"[01:48:19\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 17: [6.751, 11.341]. Total: 8 / max 60 pairs...\n",
|
|
"[01:48:19\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[01:48:19\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[01:48:19\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[01:48:19\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[01:48:19\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 17: [6.751, 11.341] done. Total: 8 / max 60 pairs. Trials 39 / max 100000000.\n",
|
|
"[01:48:19\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 17: [6.751, 11.341]. Total: 9 / max 60 pairs...\n",
|
|
"[01:48:19\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[01:48:19\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[01:48:19\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[01:48:19\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[01:48:19\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 17: [6.751, 11.341] done. Total: 9 / max 60 pairs. Trials 47 / max 100000000.\n",
|
|
"[01:48:19\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 15: [2.393, 4.019]. Total: 10 / max 60 pairs...\n",
|
|
"[01:48:19\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[01:48:19\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[01:48:19\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[01:48:19\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[01:48:19\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 15: [2.393, 4.019] done. Total: 10 / max 60 pairs. Trials 266 / max 100000000.\n",
|
|
"[01:48:19\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 15: [2.393, 4.019]. Total: 11 / max 60 pairs...\n",
|
|
"[01:48:19\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[01:48:19\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[01:48:19\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[01:48:19\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[01:48:19\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 15: [2.393, 4.019] done. Total: 11 / max 60 pairs. Trials 337 / max 100000000.\n",
|
|
"[01:48:19\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 16: [4.019, 6.751]. Total: 12 / max 60 pairs...\n",
|
|
"[01:48:20\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[01:48:20\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[01:48:20\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[01:48:20\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[01:48:20\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 16: [4.019, 6.751] done. Total: 12 / max 60 pairs. Trials 374 / max 100000000.\n",
|
|
"[01:48:20\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 16: [4.019, 6.751]. Total: 13 / max 60 pairs...\n",
|
|
"[01:48:20\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[01:48:20\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[01:48:20\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[01:48:20\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[01:48:20\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 16: [4.019, 6.751] done. Total: 13 / max 60 pairs. Trials 429 / max 100000000.\n",
|
|
"[01:48:20\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 16: [4.019, 6.751]. Total: 14 / max 60 pairs...\n",
|
|
"[01:48:20\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[01:48:20\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[01:48:20\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[01:48:20\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[01:48:20\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 16: [4.019, 6.751] done. Total: 14 / max 60 pairs. Trials 490 / max 100000000.\n",
|
|
"[01:48:20\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 15: [2.393, 4.019]. Total: 15 / max 60 pairs...\n",
|
|
"[01:48:20\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[01:48:20\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[01:48:20\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[01:48:20\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[01:48:20\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 15: [2.393, 4.019] done. Total: 15 / max 60 pairs. Trials 578 / max 100000000.\n",
|
|
"[01:48:20\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 14: [1.424, 2.393]. Total: 16 / max 60 pairs...\n",
|
|
"[01:48:20\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[01:48:20\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[01:48:20\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[01:48:20\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[01:48:20\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 14: [1.424, 2.393] done. Total: 16 / max 60 pairs. Trials 883 / max 100000000.\n",
|
|
"[01:48:20\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 14: [1.424, 2.393]. Total: 17 / max 60 pairs...\n",
|
|
"[01:48:20\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[01:48:20\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[01:48:20\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[01:48:20\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[01:48:20\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 14: [1.424, 2.393] done. Total: 17 / max 60 pairs. Trials 1015 / max 100000000.\n",
|
|
"[01:48:20\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 13: [0.848, 1.424]. Total: 18 / max 60 pairs...\n",
|
|
"[01:48:20\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[01:48:20\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[01:48:20\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[01:48:20\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[01:48:20\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 13: [0.848, 1.424] done. Total: 18 / max 60 pairs. Trials 2224 / max 100000000.\n",
|
|
"[01:48:20\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 13: [0.848, 1.424]. Total: 19 / max 60 pairs...\n",
|
|
"[01:48:20\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[01:48:20\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[01:48:20\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[01:48:20\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[01:48:20\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 13: [0.848, 1.424] done. Total: 19 / max 60 pairs. Trials 2297 / max 100000000.\n",
|
|
"[01:48:20\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 14: [1.424, 2.393]. Total: 20 / max 60 pairs...\n",
|
|
"[01:48:20\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[01:48:20\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[01:48:20\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[01:48:20\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[01:48:20\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 14: [1.424, 2.393] done. Total: 20 / max 60 pairs. Trials 2696 / max 100000000.\n",
|
|
"[01:48:20\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 12: [0.505, 0.848]. Total: 21 / max 60 pairs...\n",
|
|
"[01:48:20\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[01:48:20\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[01:48:20\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[01:48:20\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[01:48:20\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 12: [0.505, 0.848] done. Total: 21 / max 60 pairs. Trials 4095 / max 100000000.\n",
|
|
"[01:48:20\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 13: [0.848, 1.424]. Total: 22 / max 60 pairs...\n",
|
|
"[01:48:20\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[01:48:20\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[01:48:20\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[01:48:20\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[01:48:20\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 13: [0.848, 1.424] done. Total: 22 / max 60 pairs. Trials 6556 / max 100000000.\n",
|
|
"[01:48:20\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 12: [0.505, 0.848]. Total: 23 / max 60 pairs...\n",
|
|
"[01:48:20\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[01:48:20\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[01:48:20\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[01:48:20\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[01:48:20\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 12: [0.505, 0.848] done. Total: 23 / max 60 pairs. Trials 28202 / max 100000000.\n",
|
|
"[01:48:20\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 11: [0.300, 0.505]. Total: 24 / max 60 pairs...\n",
|
|
"[01:48:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[01:48:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[01:48:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[01:48:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[01:48:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 11: [0.300, 0.505] done. Total: 24 / max 60 pairs. Trials 46788 / max 100000000.\n",
|
|
"[01:48:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 12: [0.505, 0.848]. Total: 25 / max 60 pairs...\n",
|
|
"[01:48:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[01:48:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[01:48:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[01:48:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[01:48:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 12: [0.505, 0.848] done. Total: 25 / max 60 pairs. Trials 49060 / max 100000000.\n",
|
|
"[01:48:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 11: [0.300, 0.505]. Total: 26 / max 60 pairs...\n",
|
|
"[01:48:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[01:48:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[01:48:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[01:48:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[01:48:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 11: [0.300, 0.505] done. Total: 26 / max 60 pairs. Trials 87409 / max 100000000.\n",
|
|
"[01:48:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 11: [0.300, 0.505]. Total: 27 / max 60 pairs...\n",
|
|
"[01:48:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[01:48:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[01:48:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[01:48:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[01:48:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 11: [0.300, 0.505] done. Total: 27 / max 60 pairs. Trials 87464 / max 100000000.\n",
|
|
"[01:48:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 10: [0.179, 0.300]. Total: 28 / max 60 pairs...\n",
|
|
"[01:48:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[01:48:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[01:48:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[01:48:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[01:48:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 10: [0.179, 0.300] done. Total: 28 / max 60 pairs. Trials 105240 / max 100000000.\n",
|
|
"[01:48:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 10: [0.179, 0.300]. Total: 29 / max 60 pairs...\n",
|
|
"[01:48:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[01:48:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[01:48:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[01:48:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[01:48:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 10: [0.179, 0.300] done. Total: 29 / max 60 pairs. Trials 264818 / max 100000000.\n",
|
|
"[01:48:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 9: [0.106, 0.179]. Total: 30 / max 60 pairs...\n",
|
|
"[01:48:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[01:48:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[01:48:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[01:48:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[01:48:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 9: [0.106, 0.179] done. Total: 30 / max 60 pairs. Trials 474774 / max 100000000.\n",
|
|
"[01:48:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 10: [0.179, 0.300]. Total: 31 / max 60 pairs...\n",
|
|
"[01:48:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[01:48:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[01:48:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[01:48:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[01:48:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 10: [0.179, 0.300] done. Total: 31 / max 60 pairs. Trials 528042 / max 100000000.\n",
|
|
"[01:48:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 6: [0.022, 0.038]. Total: 32 / max 60 pairs...\n",
|
|
"[01:48:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[01:48:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[01:48:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[01:48:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[01:48:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 6: [0.022, 0.038] done. Total: 32 / max 60 pairs. Trials 783532 / max 100000000.\n",
|
|
"[01:48:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 9: [0.106, 0.179]. Total: 33 / max 60 pairs...\n",
|
|
"[01:48:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[01:48:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[01:48:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[01:48:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[01:48:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 9: [0.106, 0.179] done. Total: 33 / max 60 pairs. Trials 832390 / max 100000000.\n",
|
|
"[01:48:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 9: [0.106, 0.179]. Total: 34 / max 60 pairs...\n",
|
|
"[01:48:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[01:48:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[01:48:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[01:48:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[01:48:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 9: [0.106, 0.179] done. Total: 34 / max 60 pairs. Trials 902216 / max 100000000.\n",
|
|
"[01:48:21\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 7: [0.038, 0.063]. Total: 35 / max 60 pairs...\n",
|
|
"[01:48:22\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[01:48:22\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[01:48:22\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[01:48:22\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[01:48:22\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 7: [0.038, 0.063] done. Total: 35 / max 60 pairs. Trials 931864 / max 100000000.\n",
|
|
"[01:48:22\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 8: [0.063, 0.106]. Total: 36 / max 60 pairs...\n",
|
|
"[01:48:22\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[01:48:22\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[01:48:22\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[01:48:22\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[01:48:22\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 1, bin 8: [0.063, 0.106] done. Total: 36 / max 60 pairs. Trials 2839777 / max 100000000.\n",
|
|
"[01:48:22\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 8: [0.063, 0.106]. Total: 37 / max 60 pairs...\n",
|
|
"[01:48:22\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[01:48:22\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[01:48:22\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[01:48:22\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[01:48:22\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 8: [0.063, 0.106] done. Total: 37 / max 60 pairs. Trials 4283080 / max 100000000.\n",
|
|
"[01:48:22\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 8: [0.063, 0.106]. Total: 38 / max 60 pairs...\n",
|
|
"[01:48:22\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[01:48:22\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[01:48:22\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[01:48:22\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[01:48:22\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 8: [0.063, 0.106] done. Total: 38 / max 60 pairs. Trials 6002634 / max 100000000.\n",
|
|
"[01:48:22\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 6: [0.022, 0.038]. Total: 39 / max 60 pairs...\n",
|
|
"[01:48:22\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[01:48:22\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[01:48:22\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[01:48:22\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[01:48:22\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 6: [0.022, 0.038] done. Total: 39 / max 60 pairs. Trials 11673218 / max 100000000.\n",
|
|
"[01:48:22\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 7: [0.038, 0.063]. Total: 40 / max 60 pairs...\n",
|
|
"[01:48:23\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[01:48:23\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[01:48:23\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[01:48:23\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[01:48:23\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 2, bin 7: [0.038, 0.063] done. Total: 40 / max 60 pairs. Trials 14293404 / max 100000000.\n",
|
|
"[01:48:23\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 7: [0.038, 0.063]. Total: 41 / max 60 pairs...\n",
|
|
"[01:48:23\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[01:48:23\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[01:48:23\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[01:48:23\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[01:48:23\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 7: [0.038, 0.063] done. Total: 41 / max 60 pairs. Trials 15881296 / max 100000000.\n",
|
|
"[01:48:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 6: [0.022, 0.038]. Total: 42 / max 60 pairs...\n",
|
|
"[01:48:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[01:48:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[01:48:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
|
|
"[01:48:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
|
|
"[01:48:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Computing force for particle pair 3, bin 6: [0.022, 0.038] done. Total: 42 / max 60 pairs. Trials 97454838 / max 100000000.\n",
|
|
"[01:48:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Running force diagnostic done.\n",
|
|
"[01:48:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Box: Density: 0.264 CPU - 0.055 wallclock seconds used.\n",
|
|
"[01:48:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Box: Potential: 0.097 CPU - 0.037 wallclock seconds used.\n",
|
|
"[01:48:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Box: Accelerations (long-range): 1.949 CPU - 0.401 wallclock seconds used.\n",
|
|
"[01:48:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Box: Accelerations (short-range): 6.364 CPU - 1.004 wallclock seconds used.\n",
|
|
"[01:48:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Box: Kick: 0.121 CPU - 0.032 wallclock seconds used.\n",
|
|
"[01:48:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Box: Drift: 0.027 CPU - 0.010 wallclock seconds used.\n",
|
|
"[01:48:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Box: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Box: Diagnostic: 24.598 CPU - 8.124 wallclock seconds used.\n",
|
|
"[01:48:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Box: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
|
|
"[01:48:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Box: Total Evolution: 33.421 CPU - 9.664 wallclock seconds used.\n",
|
|
"[01:48:26\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleP3M: Evolving with P3M done.\u001b[00m\n",
|
|
"[01:48:26\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModulePMCOLA: Computing outputs...\u001b[00m\n",
|
|
"[01:48:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
|
|
"[01:48:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
|
|
"[01:48:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Writing field to '/Users/hoellinger/WIP3M/notebook1/nsteps20_final_density_p3m.h5'...\n",
|
|
"[01:48:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Writing field to '/Users/hoellinger/WIP3M/notebook1/nsteps20_final_density_p3m.h5' done.\n",
|
|
"[01:48:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Writing header in '/Users/hoellinger/WIP3M/notebook1/nsteps20_p3m_snapshot.gadget3'...\n",
|
|
"[01:48:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Writing header in '/Users/hoellinger/WIP3M/notebook1/nsteps20_p3m_snapshot.gadget3' done.\n",
|
|
"[01:48:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Writing snapshot in '/Users/hoellinger/WIP3M/notebook1/nsteps20_p3m_snapshot.gadget3' (32768 particles)...\n",
|
|
"[01:48:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing block: 'POS '...\n",
|
|
"[01:48:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing block: 'POS ' done.\n",
|
|
"[01:48:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing block: 'VEL '...\n",
|
|
"[01:48:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing block: 'VEL ' done.\n",
|
|
"[01:48:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing block: 'ID '...\n",
|
|
"[01:48:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing block: 'ID ' done.\n",
|
|
"[01:48:26\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Writing snapshot in '/Users/hoellinger/WIP3M/notebook1/nsteps20_p3m_snapshot.gadget3' done.\n",
|
|
"[01:48:26\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModulePMCOLA: Computing outputs done.\u001b[00m\n",
|
|
"[01:48:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]|PMCOLA output: 0.013 CPU - 0.004 wallclock seconds used.\n",
|
|
"[01:48:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]|ModulePMCOLA: 33.442 CPU - 9.673 wallclock seconds used.\n",
|
|
"[01:48:26\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]|Simbelmynë: 33.500 CPU - 9.691 wallclock seconds used.\n",
|
|
"[01:48:26\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]|Everything done successfully, exiting.\n"
|
|
]
|
|
},
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"0"
|
|
]
|
|
},
|
|
"execution_count": 9,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"pySbmy(f\"{wd}example_lpt.sbmy\", f\"{logdir}lpt.txt\")\n",
|
|
"pySbmy(f\"{wd}{file_ext}_example_spm.sbmy\", f\"{logdir}{file_ext}_spm.txt\")\n",
|
|
"pySbmy(f\"{wd}{file_ext}_example_p3m.sbmy\", f\"{logdir}{file_ext}_p3m.txt\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "acd604ca",
|
|
"metadata": {},
|
|
"source": [
|
|
"The logs can be monitored in the corresponding files in the `logdir` directory."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "3060305c",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Plot results"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "fafb43e2",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Plot the evolved dark matter density fields"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 10,
|
|
"id": "73d9e5cd",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"thickness = 1\n",
|
|
"[01:48:26|\u001b[38;5;113mSTATUS \u001b[00m]|Read field in data file '/Users/hoellinger/WIP3M/notebook1/nsteps20_final_density_spm.h5'...\n",
|
|
"[01:48:26|\u001b[38;5;246mDIAGNOSTIC\u001b[00m]==|\u001b[38;5;246mranges=[np.float64(0.0), np.float64(64.0), np.float64(0.0), np.float64(64.0), np.float64(0.0), np.float64(64.0), np.int32(32), np.int32(32), np.int32(32)]\u001b[00m\n",
|
|
"[01:48:26|\u001b[38;5;113mSTATUS \u001b[00m]|Read field in data file '/Users/hoellinger/WIP3M/notebook1/nsteps20_final_density_spm.h5' done.\n",
|
|
"[01:48:26|\u001b[38;5;113mSTATUS \u001b[00m]|Read field in data file '/Users/hoellinger/WIP3M/notebook1/nsteps20_final_density_p3m.h5'...\n",
|
|
"[01:48:26|\u001b[38;5;246mDIAGNOSTIC\u001b[00m]==|\u001b[38;5;246mranges=[np.float64(0.0), np.float64(64.0), np.float64(0.0), np.float64(64.0), np.float64(0.0), np.float64(64.0), np.int32(32), np.int32(32), np.int32(32)]\u001b[00m\n",
|
|
"[01:48:26|\u001b[38;5;113mSTATUS \u001b[00m]|Read field in data file '/Users/hoellinger/WIP3M/notebook1/nsteps20_final_density_p3m.h5' done.\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"# thickness = N // Np # \"1 particle per voxel on average\"\n",
|
|
"thickness = 1\n",
|
|
"print(f\"thickness = {thickness}\")\n",
|
|
"DELTA_SPM = np.zeros((N, N), dtype=np.float32)\n",
|
|
"DELTA_P3M = np.zeros((N, N), dtype=np.float32)\n",
|
|
"for i in range(thickness):\n",
|
|
" slice_ijk = (N // 2 + i, slice(None), slice(None))\n",
|
|
" DELTA_SPM += read_field(simdir + f\"nsteps{nsteps_spm}_final_density_spm.h5\").data[slice_ijk]\n",
|
|
" DELTA_P3M += read_field(simdir + f\"nsteps{nsteps_p3m}_final_density_p3m.h5\").data[slice_ijk]\n",
|
|
"DELTA_SPM /= thickness\n",
|
|
"DELTA_P3M /= thickness\n",
|
|
"diff_p3m_spm = DELTA_P3M - DELTA_SPM"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 11,
|
|
"id": "cd6e5652",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"max(DELTA_P3M) = 14.16714859008789, min(DELTA_P3M) = -1.0\n",
|
|
"max(diff) = 10.011054992675781, min(diff) = -9.321619033813477\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"print(f\"max(DELTA_P3M) = {np.max(DELTA_P3M)}, min(DELTA_P3M) = {np.min(DELTA_P3M)}\")\n",
|
|
"print(f\"max(diff) = {np.max(diff_p3m_spm)}, min(diff) = {np.min(diff_p3m_spm)}\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 12,
|
|
"id": "c9da7aa9",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAACUcAAARrCAYAAACq3IXEAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAuIwAALiMBeKU/dgABAABJREFUeJzs/QmYXOd5GOieXrDvADdRCwlA1GbHErHIsWPHlgBYtB3HtgSQnMwkN9c2wJiTuXMzDgFDNzezZUyCspKZe2diAbQynntzExOAJHuyjEcAqEkcLwkBkLIta2MDpLgv6AZA7EB3z/OV7oEKher9q67q0+/7PMVGF7u+OnXqnP985/zf+f+u4eHh4QIAAAAAAAAAAKBiutu9AAAAAAAAAAAAAK2gOAoAAAAAAAAAAKgkxVEAAAAAAAAAAEAlKY4CAAAAAAAAAAAqSXEUAAAAAAAAAABQSYqjAAAAAAAAAACASlIcBQAAAAAAAAAAVJLiKAAAAAAAAAAAoJIURwEAAAAAAAAAAJWkOAoAAAAAAAAAAKgkxVEAAAAAAAAAAEAlKY4CAAAAAAAAAAAqSXEUAAAAAAAAAABQSYqjAAAAAAAAAACASlIcBQAAAAAAAAAAVJLiKAAAAAAAAAAAoJIURwEAAAAAAAAAAJWkOAoAAAAAAAAAAKgkxVEAAAAAAAAAAEAlKY4CAAAAAAAAAAAqSXEUAAAAAAAAAABQSYqjAAAAAAAAAACASlIcBQAAAAAAAAAAVJLiKAAAAAAAAAAAoJIURwEAAAAAAAAAAJWkOAoAAAAAAAAAAKik3nYvAAAAAAAAADAznThxoti7d29x/Pjx4ujRo8Xp06ev/7/ly5cXGzZsKNasWVOsX7++9u9169a1dXmB1tAWAJ2sa3h4eLjdCwEAAAAAAADMHFH4sH379uLgwYMTfu3mzZuLbdu2FTt27GjJsgHTR1sAzASKowAAAAAAAIAJjRATo79EUUSMBBMjwMTP+D3+3+HDh8cVJwoiYqQZYGbSFgAzRXe7FwCg3pYtW4qurq6WP1asWFGsXbu2lrBFRfq+fftqSVq2hx56aELLFcvTaWLdTHT9AgAw+3LfTiUnBwCA1pzPRPFDFDP09fUVBw4cKPbs2VP7/dChQ0WMzRC/x1Rao4mpt4CZS1sAzBSKo4BZqaxYj3mPY5jP6DCJDqPoOIp/18+DPJ3K5ekku3btavciAABQwdy3U8nJAQBgdOUNF1H8MNpUWDt37iwGBgZqP0ebUguYmbQFwExiWj2go0THTH9//w3/jirzSLCaiUrzqDjfsGHDmFXn9THLn1G1HkN6NusQ2rp1ay12DP+Z+XniPR9//PHry9/43pEAxt90glg3UfUfw6BGJ1GjWNboUIt1VL/+p7LOAKqivDAQ7Wf8uzz+RHsZ7WQ8oo2NtnS6281YpieffPL6ssWjfrk2btxYOw5qz6G1qpb7jke8dyxDLEvcFRrtT7k8ZTsUny9Gb7r//vvH9TnH855ycoDZS14OkC9utoj2NIodxiva3ij6rz/fiRz32LFjLVpKoNW0BcBMojgKmBEiUSo7L+qNVY0+XnHxKTqDmnVEZb1Hvfgs8ZniAld5AaxeJJIZHUFTFdOu1Hdi1ZOsAjQXo41EGz+RKauisyNek328aRRtebxP2bkebXlZhBCiXY9ihfr/H8dHd27B9Kpa7lu2P/GejTnlWKL9ifXRinZITg5QbfJygNaIvDRGoZ1sLlrmtZFra9dg5tIWADON4ihgRogLWVGB3iju5s5MmuJ9ovOh8Y7s7DvHy6SxvPuvsfMrLniNNrzodCiXMT53s46sVnWcAcxUjceQOHaUI32sXLny+t/Eoxy9pVFcDNi9e3dLjgGxbOU0UbFs0Y6PdAd6LGOMQlIuY7T38ffA9KhS7tvYnkS7U7aP8bO++KhsI6O9aZzWbqx2azLk5ADVJC8HaK1oX6OYM9rKiYwWA1SLtgCYcaI4CqDTDQwMRCHnTY9jx4615P22bt1603utW7cu9T0iZrxPX1/fTe+1Zs2a4Xbbu3fv8PLly2v/3rx5803LeODAgXYvIkDHOHTo0PX2sWzbx3Ns27lzZ9PjW7S78f8zRJw4rpSxo30frz179txwHMxaJmB25L6RL9a3jRNZ/vjb+rarfER7m0lODlAt8nKA6W1rx9POAtWkLQBmmu52F2cBjMd0T2dx4MCBm+7Kjyr4uNMwW9wdGHcvNt4Z2HgH/3SLOxHvv//+ti4DwEwQd3HH8SGOVXHneRxDxjOySfx9jALS19d3099HzNWrV09oCpCRRhyJO7jKOBMdYSTulI9lrL8bDGi9KuS+MWVfjIxR3zY25ryjKYflb2wfY5kaR5XKICcHmPnk5QDToxyFL7QiNwdmBm0BMNMojgIYQVxEa+yYiotiu3btSn+vGCK9UTuHSS87gpotFwA3tpdlB8yRI0cmNd1VdMBEAUBjp3x0oETs+DlZUZhQdsDEtFGTmXopOmLKz1V+XqB6MnPfMo+M9u3kyZOTngqw7NwerW3LJCcHmLnk5QDTp76Q9NFHH23rsgDtoy0AZhrFUQAjiAtqu3fvvun5xx9/PP0O8mZ3g+/fv79ol6jyb3b3PAA3d3KEiY6I0qjsxGksTIhOj02bNk161JYobCg98cQTk16++uKAiBmxgWrJzH3LtjE6mKc6ClbkpM06kFvRISwnB5i55OUA06e+jYzCUW0RzE7aAmCmURwFMIqR7uTbvn17ehIZdw7Wi2Sy/uLZdIqLbe5QBxhdWTBQfwf3VI8F0ZnTKN5johcX4hhSP9pLLONUChSic77+OBWxp3LnPFDd3DcKeqIDOfLJrOkByw7vevEe2bmynBxgZpKXy8uB6Vff3mqLYPbSFgAzieIogFHEBatmF9biglj2VB6dMo1H+dkmM8Q7wGwSw0XHcWLPnj1pMeOY0+y4M9GLC7Fs9X+f0bleP6JMxDZcNlRPRu5b5q/Rbq1YsSJlCryROrpbkSvLyQFmHnm5vByYfvU3MDQWggKzh7YAmEkURwGMYaTh2LM7SeKiW+Pdg3Hn/XRX2sfnarYsAHxP3DEe7XOzKaimqtlFhHiviUztFHfP199dHo+M42H9scFQ2VBNU819jx49er3dikfksxlT4DXLTbOnug5ycoCZRV4uLwfao3FK6sYpRIHZQVsAzCSKowDGsHHjxqbPRydJqxPJMJGLbhni/ZpNXQLAzUUCrRjRY6TO8PEWJjR2jjROETXVZavvGNIRA9Uz1dy3WRFRjIA01UKmZp3J2SO5luTkADOHvFxeDrRHtI+NN1bIX2H20RYAM4niKIAxjHRXXys6Y9o9jUd5V7zpOwBGFu1kdPI33rGdaaRprcYzcknjcWOkQofJaIx14MCBtNhAtXPf/v7+YqaQkwPMDPLy75GXA+3QOGpftI2KImD20RYAM4XiKIAxjHaBLXt6jbig19ghFRfdWnVXfLMLd5l3MgJUUf3Q0HGiH53o2VM7jTQFVTld1VgdRPUypu4oNd4JFutiuqeaAjo79x2pzdmwYUORrVUd4XJygJlBXv498nKgHSJnbTYldStmXAA6l7YAmCkURwHMgDvVpyOJjItocTGt2fsD8D1l53h0dkT7HFNYrF+/PrWtnuzILfUdRCN1nExFs+KGZu8JzF7NRq7Ys2fPlAuZmrV/mZ3MjeTkAJ1PXj72ewK0WrPRTqNgdbpuLAA6g7YAmAkURwGMYbQ771pxt3qzJHI6pvHYv39/7fM0GzIegO85depU0+d37dqV9h4rV65s+vxYd4MfOnSopcepZvGefvrp1PcAZnbuGx2/AwMDtfw1Hn19fcXOnTtbslytGI2qJCcH6Hzy8hvJy4FOmE5rrJH3gGrSFgAzgeIogDH09/c3fb5Vd6o36wyJ6vrsoeGbdfY06wQCYHwy74QaqfNkpA6gkab3aMWxqnHZWn18AmZe7hvtROSV8choh0ZqZ+Iu1FaRkwPMXPJygOkTbVGzmyGiLW5lvg50Fm0BMBMojgIYw0gXlzKHQ2/ULFls5Z3qZUeP6TsAxrZ27dqmz2feDT7SneirVq2a0DFrpDvdp6KxY6ex4weY2dqR+47lySefvOm56RhdSU4O0Nnk5fJyoLNHjCmnPAVmB20B0OkURwGMYaRhyVvZadHsbvGYYqNVopMnLqq1ajQsgCq5//77m3a4ZI70MdLd7qO1080KGlox/Wtjx050GI01rQgwc7Qj9x1Ls4uoe/bsafn7yskBOpu8XF4OdIZo47Zu3TrieUTmiH5A59IWAJ1OcRQwLnFxJaq7I4FZv3597e68FStWFF1dXbVH/B53Vo9U/R2ve/zxx4uZ6PDhw00vgrX6TvXGJLL8DlohvrfZcId6bIOx/Y5nmx1rm9i1a9f1faF+P4g5tON9XJCEap/oHzly5PpxIH6PTvrMjvrJdMI0e00r7lBv1rHjLnWojnblvqMtT2NeFcszXVPPycnzycmBLPJyeTnQXtHeRc4V+ddoObIptaDatAXATKE4ChgzqYkL9FEIFYlL/P7AAw/ULjQdOHCgOHbsWHHo0KHaRem40BM/44J0fSFU/Dsudvf19RUzTSRyzS6oT8ed6s06RloxjUfZ4TRdHUztEJ8vEvPYPmMbjgun/f391wv+4v+NNIVMvdiWY18oO1siVjmlS1wYjd/LTpr4u/gJVFNMLxXHv+Hh4WJgYKDYuXPntIzcMtq0VtGuTccd6s248wuqoZ2570ia5VNxHjJd5OR55ORAK8jLbyQvB6arrYlcrDG3G2nEmMjxWnWDAdA+2gJgplEcBYwoCpoiqYmpI6JDJC40xQWnuNAUyU0kOXExKH7GRfzoJIgLUfEzEqFIiiLRmckXox999NGbnovPPlJylynWa+PFs2Z3zk9VdC41e68qibvJIzGP7Ti20diO42f5Pcb/K/9mpKS9TPBDxIliv4hRFgiWv9dfII3OmtgPADJGbhlr1JbpKkJudte7kTmgGtqZ+450PtJYLBPnGqN1SGeTk+eRkwMzkbwc4MY2pixqL9vH6Bcoc7vIaUfKZ2dyHwFwI20BMFMpjgJGTFAiuYk7b+NC80TuvIskKF4TQ3nP5GEy4yJ6Y2dMrI8nnnhi2pah2Z3jUayWqerTd5R3LETnSeN23DgKQrNOk1g/jR05EafZEPqR8Me2X///4uSgyusXyBfHnmadGmO1Jc1es2rVqmI6nDp1alreB6h27lsvcq/Gi6ZRGNWOkZXk5FMnJwdmInk5QHFDPrV69err0yFHzhXFoJGj1xdB7N69u+nrI4+bzFTKQGfRFgAzmeIo4CYx2lM5LV5UeTe74DyWuFP3yJEjxUxVTsNQrywUm867uVs9jUc5hGm7RgOYrrmu47trVuDXuG2Xf99YJFh2sIy3SLBx24lk39D2wHg1a+ejHRqrrZ6udqbZcVAbBzNbp+S+jUPz13cux52n7ZpyTk4+NXJyYKaSlwN8L4+qz8/j2v/Jkyeb9huMlrO3YnpqYPpoC4CZTnEUcJPt27dfT14mUxhVisRoIiNOdVqC1/hZ2tE5FOu/8TuIOxezLna16+776VIm2aMN1dr4nT755JPXt4OyEycS/IlM33L//fff9FzjHfEAI2k2GslId1vV6+/vL9rF9B0wc3VS7lsuT/3UajF1Uf3Ua+0gJ58aOTkwU8nLAb57o0D9zQKRl492rhDPj9QnkJlDA9NLWwBUgeIo4Ka7lssLKRlT4o3nolGniIQsOoYa7wyPBK5dnUOtvFM9vucYJWAmT304lnJ41tE6mxovHMZ2EI/y7vQYPW2i332zvy/n3gYYq91qbJdGGmmjk7SzAwiY2blvXBAtR65au3ZtbXmiHYwimMjDJpOLtYKcfPLk5MBMJC8H+G5xe/30V5Gjx4iuYxlt+tFy1FRg5tAWAFXR2+4FADpLeYdu2LBhw5TjxQXpuNu7Uy9CxwX3WLa42N64jLHccWfxRO5OboXoRGg2JcRU73qOGOX3U+VCv4l0wpQ2bdpU+xkdg5MdPS3WbX18d0LQCaItibYuts2ZetF85cqVtf0yPksV269mo2oYahqoSu5bFkFFXjRSHlbmvlMZwbYV5OSTIyeH5uTlnU9eDsx25Qie9XnVkSNHxvXaOD6M1CcQ/Q+dXmgKfI+2AKgSxVHATR0m2eIu6FYVR8UUgHFBbrziomN58bHZRfhI7GL6hU7qkGlWYFbeYT6VC5BVn76jLPQb7S78o0ePNn0+1m+sn6lsA822r3iuE0Y+YHaK7a/+RHYmf476qZaqJI49jW1HXCQY7+c0hQZU30zPfcsLo82WJdr2eMSF13hEkVbcZRrL1wn5k5x8cuTkcDN5eeeTlwOzXeS4jSO+xCgxE8mh4vXN+gRa0f8AtIa2AKgaxVHADervWIyL1BkXuDJGoBrJZBOoSN7iInv5c+PGjbXP2u5RoiaSQEYSOtnvp+x8Gm1Y05muXF+jraORtp94TSs6qXTC0AmdutG2z/SL9fFZqtZ+RZvc2ElWjuICUJXcN957rHYtjlFRHPXoo4/W2vp4bN26tXjiiSfankvJySdOTg43k5d3Nnk5MNvFsamxsD3y8YnmvPGa0draZgXwUZyaXUBcngdFH0VMKx6fYybkg7Eemo1i2Cg+y8mTJ6flM8U06OMZiTWOmUYEmvna2Ra0Sie3MfZ5mB6Ko4AbxJ3o5cW5uEs3oziqlZ0uVb/TerQEMjqNJjuke7wuvpdOGR0rW3SwxHY81vb79NNPN31+qkPlu+uBThXTKNGZGi82RPvs+wJmY+4bF/jiolp8znIE2piaLR7tvuAmJ58YOTmMTJ7XueTlwGwXo9U2Fu9OtkA0ct1mOdlIBRHREV/mjnET92jTcZfFCOW/69WPnlt27MdyRO7eiqm84z0id433qC9+Lm9Oic/0wAMPTKifJP52POsinosbS1pdxBvrbqQiifJzlqMcV/X8ZrZpZ1vQKp3cxtjnYZoMA9TZvHnzcDQN5ePAgQMpcSPWjh07phyj8bF3797hmSqWf+vWreP++1h/jZ9/st/P8uXLJ7TuGreLzG2jFfbs2TOu7SPWQ+Pn2rlz55TfP963Me6aNWumHBeopsY2I9qmvr6+CceJdqax7Yn2MFu0k43vs27duvT3gdmuarnvZDXmofF7Jjl568jJgZlGXg7MdocOHbqpXZnKNf1m7dREc9iMtu7YsWO1OI1551RzzjhGxLlEecyIfD1ixvEk2v3y/9Wfy8SyTDW/js/feLxqtTi2NX6eVh3faL9ObAtapZPbGPs85OueriIsYGaIYR8b75grq52nepd1Y2ymdvfiZO+mjrvvo7r8/vvvL6qqvKtztLvUYx00q7zfvXv3lN//2LFjNz3XqVM2Au3VbDqlmKLJHTcA38vr6tvEyGXjbs92TUUlJx8/OTkwk8jLAb47jXSjqYxOEtN5T1WzvLAczWW8IgeMzxFTUdXnpjGN1fr16yd1bhGvLaeciuPFwMBALf+N94lRY2LE2/L5cvTfOAeI92t2TjEe5Si6MQpV/Ug2sfyN039nihFxYiSbeN+Rlolq6cS2oFU6tY0J9nnIZ1o94AblcI+NiVBc8I8kYbT5gUcTJwJMTTlXcX0iVXaqTGR+4XK6xJkwt/pkxTY81hQlzZLHcn7oqWoWW3Eg0Exj2xAX0jKmtJ1u5TDKAK0Q5xJxQbEUHRCbNm1qWvzSanLy8ZOTAzOJvByY7WIa68YplKaar4702onEbPa3k12meF2079Hml7liFAHEuUacW4w3buS5UfQwnmnPI2Z5M0V5E3qs6/I9JyveN5ah8fyiFWba9O6xHY80HdhMOI5nnQ9VrS1olU5sY5qxz0MOxVHADeLgHJW/9QfZ8gBe3tEQB8U4uFf9Yn4nakyAypOqiVRrR3Jb9WK12DbHSgzLO9kbXzdV9fNMZ8dupSiCjOVutl6A1ohjaX17MdUOGMdkoKqiwCbax/pilzg/KW/imG5y8vGRk0+cnBzaQ14OUBSPPvrouEaPySjYbHchZ+ThK1asuP57HAO2b98+rvw8zkPiXCD+diI3kseoMvUzdEScKLKa6Gg85TEmvpv6c5I4v2iV/fv31wo7Ypk7XTma10zXziLt2dQWdGIb08g+D7lMqwfcJBLy0RL7SOKjUCoO7pFsxkE5DsTtmtpiNmmWhE6kQyi+u0imJjsCWJW06k7yZnFjnXf6UPxVOGmEmSROZuvbi4yLHs0uKJw6darI1ux4rwMIaLXG0W3L3LYdF+vk5Hnk5DeSk8P0k5cDfLdQpzGvzshXO3W0mHj/xlFRon9jPMUGZeFI9I/EaDDjPR+J92w8vjTecDERkdc2ThldX3yVJdZJvFen59FVy6fbVZQy29qCTmxjRmKfhxyKo4CmooJ5PMMmRrLZrFiqlfPdzmbNEqCJDBMb3+v9999fzHatvJP8ySefbEncVos5pIHpESeZ9Z38WXeDtfOCQlXv9AI6x0ij1sbdl9NNTp5DTn4zOTlML3k5QHtyp05oq8pZMsYaMadR42i2Md33eDWeQzTGm+pNG60YVTdiTnXUoOkUo/nO5KKOyCFiO2nXjTSzsS3otDZmNPZ5mDrFUcCoB8G4cD+RZLIsloq7fSdy5wStv1M9Oh/iZEti0/ykM2su72axH3jggaLTVeWuGuh09dPUhhiiOOsiQ7MLCtM1qmMURwO0WrP2stmdrdNBTj51cvKbyclh+sjLAVqfO400wl0njBYz0rnFWPlY42caqeC/mVWrVqXmf403t49n+SeiPHeZSTd2xKwofX19xfDw8Ix8DAwM1HKSdhV4zca2oNPamNHY52HqFEcBo4oK9Ugmo0hqoheJ4sAcBVKtGNpxNmuWmIxnHcffNLvLfTaKu0EbZVwEjW2+WaLf6XepxzKbFhNaL05W6+8ojIsdmW1yswsKrRiBolnMKl/MADrHxo0bx313a6vJyadOTn4jOTlMH3k5wPdE/tHsZoOM3KlZO7Vhw4aik41140WzopV2jn7TOMJQ5kgyce4S8R1bZgdtwfSY6s1d9nmYGsVRwLjEATEuXkflejnl3ngvHMVd0VOZP5ux5ycvK7pHYzjM79m/f/9Nz8VoZ1PVrGMu9pNOTyYVMELrRTsd7UzZ6ZndATNS0UArOlmbxazyMNhA5xip3YxpkaabnHzq5OQ3kpPD9JCXA0zfaJ7NRjTJyPeyNPuMY43C0liIECMVjXddxU3ojaY6QlDjuUVmTuncZXaZzW1BJ7UxY7HPw9QojgImfDCPQqk4SMYFpBjqM37GScBoFeS7du1ysbeN03iUw2u2a67qThLroVV3kjfrmJsJyWQr5qYGbhR3ppcnv63ogAnTNeR2s7u9jIACTIeROnzbNRWZnHzy5OQ3k5PD9JCXA4ydS2e1JdHOtip2q4xVCBL5atxAXt5IvnPnzimt66nmv/H6+uPOeG7YGI84d4njTKePvkoebcH0mGqxmX0epkZxFDBlkcTESUCcEESxVIws1SyxiQvS7eq4qJpmQ1uOdsd8XGiP76Rdc1XPhjsgRprfudPnZ45ltl9Ca23btu36kMmt6oAJzeK2YvqOZp3Zji9AeUPEihUriq6urtr02lMdLr7RaPlaO6Yjk5NPnpz8RnJymB7ycoCbnTp1qmVtydGjR296rpM63ifbjpajyE40d23MgbNummi8ESCj6D5ixOwhzB6zuS1olVblavZ5mLzeKbwWqKAY3Snm+p3KBaJI6uMRnSON0+nFCFPuiM0RF/gbR+OKzphmJ1UxZUWse4paEV+jjAuiM3X6jrg4zOwRJ05xMjqTO99i1JDYr8YasbCT1nnZUd7KDpj6E+z677cV33VjzNl6pxdwc3tXn5tG53MUSMXUEVkXVEebKijapna0R3LyyZGT30hOPvvIy6efvByguWbtU7PpQSej8WaJThpBdaSbK1p1TGt248ju3btTYkdBQ/TFlOJ4F59vKjlwnOM0mwaQ6pqtbcFMbGPs8zB5iqOAG8QBNQ7OMfrTVMUFslWrVt1wkI4DrOKo1nRAhVi3jYll3JESiZGq75FPRDPmt242SsADDzxQdLLYN7NHdKBzRTtQhelNyxPLmdAJEwXC5Tqfjg6YZp0w2SOpNIsXRdUAIx1jMm+OGG3UjXYVv8jJJ0dO/j1y8tlHXj795OUAE5Nxc0OzkUI7aarjZsvXyly9vo+kfK+s41E5klX9Z4obMyb7eSKnNuItndQWRIy4wSZ+llO0x3YfyxePOOcrz8Fj+439rd2FPq1sY+zzMHmm1QNukjE/bSmm22vWMcDUNUtWyk6XsTpnZqtYN62Y232k6TvGSkbjdY2jq40kvttI6mMEhnK6mvgZv8ed5vUdQfHvtWvXjroe4jXjfe+pinUz0rKPtzMoYsTF7Pj7OHmK5Y8OtPicEavZ3fbx+eJvGt8zXp/RAZX5nUyHOGlqNv3PTBRtXyddUGumPBHP7ICJ7Wus/bbZvpB5l3qzYbAzOrOBmW2042pmGzRax3K7LuLJySdOTv5dcvLZmZMHefn0kpcDTHx01oxjVONIoWVnfqdodgNHYwFTlsh56vtEYj1k30DeeDyeyoi1jz76aNqoVswcndgWlCNSR44TeVRsl5HPDQwMFCdPniyeeOKJ2uhW5flAnKtEDtYJo7O2uo2xz8MkDQPUWb58+XA0DceOHUuL2dfXV4tZPvbu3TupOPUxphqrE8Tyb926dUox9uzZc9M6iedKAwMDtecOHTo0pffZvHnzTe9z4MCB4Zkmlrnxc8Q2P1U7duy4KW6ss7GsWbOm9rejiX1x3bp117eX+AyxT8V3G4/4//GdR6z4u9gnymVotHPnzqbf5UQeExHLF8tcvjbWU2yLsczxOerXWyxX/P1EvruR1nesg/he4xGfOX6P15frqXxNrK/JtHWZ3wnVFNtA+Z1nHU/LY+lYbW/Z7reqva7fnm3X0FozKfdtzPfrH3G8zxJ5RLP3mEo+JyeffnJyObmcnOkiLweYXC4bbd1U1R/v4xH5wGQ1Lt9UYjUeH1qdV8fxoH5dTPXcI3Kr+nONeo2faTLHvvI4N95ckOrotLagPP+P149nORrPB6vSxtjnIZetGGhaHDXSwXay6i/+TjaxmEkdROORcTLUrCMqksXGC9JTVZWOmGYdJlP9Dur3m4lsm+V3N1qHTfYJQHzW+kfj9xqfo/FvGh+T6byMzoiRlj8S9nL9xc+R/i6ej3UabVN9505jR068V8QZbftsvIg8kfZuOk/KmJliu2hFoXF5Mjqe7a7sKMw6oR9tm85oQ4Fq5L7NljfrYupoF2un2hbJyaefnFxOHuTktJq8HGB8mnV+T7XdbFYYMFoB9lgaY02lPa0/PrT6PCvWQ31hSMaNI6MVSjQeGybzfrFuR3qdQolq66S2oL7IfCLLUH+OUpU2xj4PuWzFwA3Kg/Z47rCd6AF2qonFTOsgGkvWxavGi231CWP8v4yLb1XpiGm8SyFjGxppBIPxdu6N9P7TdQLQ2JmRoT5pru8YHM9J0midMaOt99jWy7vCx3OC1fj68Zw4TPdJGTNP/d2AUx0dZKQ2YyJ/O5H9cLLt6Ew8FsBMMdNy3/rCinhEXpHZGR2aFWNMtS2Sk08/OfnN5ORycnLJywHGr9lId1NtOxs77KeaCzcu32TjRVtZX7QwVjH3RETuFOutLCSvz90jD8k6NxqtUKKxEGUyN2jEa0ZaVoUS1dZJbUHZnzjRc6P6G5eq0sbY5yFX92Sn4wOqrX4O7Axr1669/u9Vq1alxp7tGucWLuczjnmVY07mBx54oC3L1WlOnz7ddK7pqc5132zu6K1bt475uieffLL28/777x9xnudy+datWzfu5ZnK3NIZYpuLeb1HmlO8mfh8O3fuvP49Ndumx/re4n37+/uLI0eOjGsu9Hh9/bqK+cgff/zxUV8zU78Tps+mTZtq7Uxs91NtWxpFzPFs22HHjh03/B7LFPtWK9rR8bR3wOxQtj1x3BsYGKi1WxM5Xk7lHKUT2iI5+fjIyaeHnLzzvhOml7wcYPyiTWs8pjbL1ybSRsUxvd7u3bsnHW8qyxGfI84hdu3aVaxYsaKWH5XtcLSbJ0+eTGk/4/NG/8eWLVtqOVS8X3nuEut248aN4z52TEW815o1a67/Hp/14MGD4359LPPKlSvTz+OYGTqpLSj3n/rteTzi76dr+53ONmYk9nmYOMVRwIgaE5ep6Ovru/5vB9rvybgo1uxC/v79+2sdBNOZDHa6Zp1pkfBPNMFuFB0AjcbqSIjXxCMu0o50YjwTTgCaqe+EicR/vMtff2IUn30yBZoHDhyY0IWG6PypX744iWn2fdYv10z8TpgecQEstp/YDrM7YMLRo0eLDRs2jOtvYz9o7IiJ48JUNcYoO1AB6vOfVhUgxHG4We6c8X5y8ukjJ58ecvLO+06YPvJygIlrzJuiDZ2sOJbXi3w4uzAoiqm7urpGfUShQlmwFH8fOX/kA9Fmxs0cE81ZRhNt/f9/pp7rj/KGkXjPWCflsoyW57Tiu2x2E8FI4m/HUyBPdXVKW1DuJ3HjxURl3JjUaW3MaOzzMEHJI1EBM1z9kI8xFH6W+mFkZ8vUIuMZojRrHY80xchIw23Oxik8GodwzZqyYjLTd5Tf12jDKdcPu9zKYf4z10fjlAETHS66fjqa8XzujOkJGoeGHW2fnK7vhJmnbF9a1S6WU85MZN74xqGwM4439VN3TGaYZqD6uW/ZHmZMITeefHSq0xPJyaefnHz095GTy8mZGnk5QE6/QDzGM0XuaFNaTfZ43UxjnhdtaZwbjecRx4TIhybzebI0TiU8lfOD0abYGmlqtPF89vJ1o/2tKbZmh3a3BY3b8ETfv9xOq9LG2Ochl60YGDXxybqgVMad7IXeZgf4mdBBNJ4Toux4U01cq9oRU3/xMLOjqlniPJ4Tg9H+bjpPADI7Yhrn055qZ9lYsi4wN7Z7zTqQ2nFSxsxQdrK16ngUbUbZSTnR94jihKl0jo52nJmpx1+YKWZy7lseVzOXdaRcdyrtWmPcVi6nnPx75ORjL7+cXE7O5MjLAaamsRN8Mjc81BdZT/VGhtFyvayiq+nU2H5HzjeZ84SxCiWanTeMJ9+O48lYeahCidmhE9qC+nODeH3kYRPN2arSxtjnIZdp9YBRbd++fcoxYo7bcqqKyU57MdLwmRlTYLRD/ZCiMeTmVDWbCmK06SEy1v9khjRtl3L+50YZQ+w3ruOxpncohyl94oknRo1ZH3f9+vUTmt87pouY7ikj6vfzya7bGIK23mSm8ciYBufRRx+txHfC9Gz3ZXsewxDHdjHVRwzHHI9yiOb4dzmU9ESnj4ljbv12N5VjeuP0PI3TgwC5ZnLue+TIkdoxM3KejDw3PnN9G1SKIeqnemyVk08vOXnryclHJyevLnk5wNQ1timRH09kCrjIr8q/j+N1TClHcUNeVn8siByr2XlOu6bZMr0WndQW1J8bRL4feVjkeuPJ/SNPO3bsWDGb2OdhApKLrYAZrrEie6p3rsbdD2XMiQw7PtZddq24A2W6NJtuI+NOv8Y7fLPuIm8cAjXjruDp1uwu/qyh5xur8ke7k6K8k3U8d1s0m3IkXjeRuySm8y71xu16MiMANG5rY8XI2h4b74AYaduYru+EmSHu9m7WNrbyMZk7CuuPw5O926t+24/jbjuHoofZYqbnvtFG1o8cO9ljZbQ3rRppSE4+/eTkI5OTy8mZPHk5QK76vCrarfGMdtfYPrUyV+q0UV0motkoLBM9HoxnFJny7+rfZ7TvMb6v8eTlRpGZXdrZFox0/lvGjTYg9oOpjiY9E9oY+zzkshUDIx5A4+BZHvwmkwzEAXaiBVZxYSdeF494/7iAPlLnUP3F43Je3/K1nXJhND5PuR4jMWxMUBovJEeSE595Mkld4wXByahffxEvOohGW+ZOXvf1mm1DU52uYqROnpH2lXJfGm+HwXSdAGStk6wpOSdycaBx/5msZuu62Xqd7pMyOld5AtmqzpaRHpPVWFwwkY5SHTDQWlXLfUeafige0Z5M5BgZ66KxrY3f4/mJkpN3Bjn5yOTkcnImR14OMD15W/zerN2J4219uxa5QCvap04uXJioZsetiayz8RZKNH6Ho924Hn87nhvbFUrMPu1sC0aatn60c+IqtjH2echlKwZu0GyUp/IAGMnNeDsjyrtxx3MxdbQ7fttxsSpTs7tax/uYTMdPmYBOJnlrlujM5HU/1naVMTJAszu0Yx+qT/zj3+V2MNHOguk4AWiMMRnxGRuXJ5Ylnp/oY7wJfOOyT3XUhGbL3+6TMjrXVNr2yT6muo3H/lXfVsX2OdpFisaihk66KABVUrXcd6zzgnhEvhrtaH0xTyn+HTlafftT3w5NtuBHTt4Z5OQja4wxGXJyOflsJC8HaJ3I1Rvzt8hz47l41BdCRO6Vmdc1anZuMFM1y4knUiw73kKJZgXlo8UcT2G5QonZqZ1tQbObpsbK0yZz3aCT2xj7POTqncgUfMDsEPMA79mz54Y5hvv6+mrzz27ZsqX2/2PO35jnN+bvDf39/bW/ibmyy/mEYx7tiFM/l/ZEliGsXLly3K+JZSidPn266CTj/TzlZ5js8sf6jrmX67+/yS7rRNZ/J6/7xs9U/l4/b/VUHThwoLZ/7Nu3r/b5V69eXdv+Yw7scn+Iebon+r1EjJiTO+afH2u9xr4Xj9jfYnnKfXM61H//pVjm7O9tOjX7TDPpO6F6prr9xP4U2+HBgweLRx99tLZtrlixorZNx7E94jc7lsf2G21X/B3QOlXLfevt3Lmz9nj88ceLvXv31vKjyJniMR5TOadoJCdvLzl5a8nJm5OTk01eDswW0e7E8TZyqWiznnzyydpxN9qmEO1V9Bs88MADtZ9M/jgS6zbOmbLfJ77D8jgS4nts/K7i+yz/FjqtLYi8Z2BgoHaOF9cT6rfnZuL/R7/lsWPHZt02bZ+HcUoutgJmuLHuqoy72aJKuVlFeDmEfVSGd+I0Dsxe5Z2WsZ3Gttuq7TPuZIj45d0M8TP2iYwpHUYaRWGkx3jfM+Mu9cbpY+IxHW1A5t27jXegjOdujFZ9JzAdYnuMkR3LtrHxzq/4f7ZZoBXK0aEiR2rWBsVz5chSVIucfGRy8u+SkzMbycsBZs6oLpFbRbtc9oFkjKxb5qvZo8iEWMax8syJfBajyNAJ4nyvzJ1GyvkbRxKeKW1MM/Z5yNUV/xlvIRUA0H5R3R93a9TfRdrsbtSTJ0+Oead3V1fXTXdgT1Qsw/r16294Lu5ybfVd2fXLHnc6xB0hGbFC3IkSIwu04zsBAKDzycm/S04OALRaY44QI6HEKHzTqRyZtH7UyshTIl+ZiBgBJ0Y7bTTertoYbXD37t3jGmkqljX+fqT8sPz/MTLPeHKjGIWmcWRSXcy0W+T+sR/G9llvIvtnJ7QxI7HPQ67u5HgAQIuV08tEx0Mko9EB0Dg8aiS6MZ1LpojZrJOhWYdLDLM7k01kWqN2ficAALSHnLz15OQAQKcop25ufG6imk0J3Kqi7YjbmAvVF4vE8sf/VzROpxnP9Nn15wBRyBTnAPXbcrN9turs8zA2xVEA0IE68QQg7sLYtGnTTc83S6Zn0olHs06jZnNud+J3AgBA63Ri/icn77zvBACovhh9JcOpU6emXBA+EY2jVNUXdEXRRLNRrKCdIk+PEYvivGci4tyhcbSnmX6zyGTY52F0iqMAoMPMxBOA6Hio19/fX8wUjes5Ok4a77yfid8JAACTNxPzPzl5c3JyAGCq1q5dO65C7rE0y0Eac7hMEbu+SDzyqXIK4sgVW/neMBWTmWo8tuf6abmPHj1azDb2eRid4igA6FAz6QSgce7pySx7uzQu6/333z/uvx0PJ2UAADPXTMr/5OQjk5MDAFPRWAgVucWRI0cmHKfZ9MgTGcllMqNf1udA5egx8Wh8HjrJRG+IGOmcaKazz0MuxVEA0KGm+wRgrDvLR/v/0XlRf0fCZJe9/jPs2rVr3H8/lWkx4u7zeqO9r5MyAIDZRU4uJwcAKEdjiZEth4eHa8XazaY1HitXahw5KoquJjMC1UQ0Fl9F3rV//37Ta9HRYl9pVkw4lvppKhtHop0t7PMwMsVRADCLTwAmchLf19c3YryIs3v37puGa52McrqMZsNVj2SyU4bUz7kdtm7dOuo6c1IGADC7yMnl5AAAIfKsyEMmW2Dw6KOP3vTcE088MeFC9KeffnpC7xt5T2MBVjwnH6LTNdtnxlJfgLhhw4ZiJrPPQz7FUQAwi08A6hPisToYIhkfLYHeuXPnDf9/IneZN37m6NiZyDCvsWyT6SCpX8Z4z/FckJjtJ2UAALONnHx85OQAQLZmI1NOZbTKqYg8KwoOorC7sbh7PHnI448/fsNze/bsmdCoUWX+EwXsE10HjQVdkynwmmwhPExWbOsTPb8op+AuR3ubSW1MI/s85FMcBQCz+ATggQceuOH3xqGd68XQq1u2bBnXe4dY7oleKIjXxIWCuDjQ6mky4oSg/qTiwIED4zphmo6TMgAAOoecfPzk5ABApmYF0TEy5mj5UisdOXKkVtAUOUzkPeMpWIi/acyRogA9iq3GI14fxeT1xVXr16+f0AihjQXvEymAL+3du/em5xoLviDbePezEO1Cee7TbHudCW1MsM9D63QNx+S4AEDHiOR3xYoV13+PO7+PHTs2rgv4kbSXU1+MNuXGSO8VSXKzpDcS7+iEGU/aEH9bf9ISnRDRATGeZY8kP/42OkXG0tXVdf3f5eeMixPjeW2cJNXfLRGviek7OuE7AQCg/eTkcnIAYHpFbhA5S5m/HD16dNSiiHKaqDIXiNEnp6MAOpZp+/bttWLtcqTNyGma5RdRzB05WX2hReR5YxUqRC4XherxurGKNCL3iumD6wvkm4lljHUc+dZYuVr8bYwaE581fo5WlB7rIEblLNd9FP6PltPBaOpz/nLbjn0gtu+xpt6Oc6X4OdJ5RSe3MfZ5mCZRHAUAdI6BgYHo7ag91q1bN7x58+bhNWvWDPf19Y36uvj/8XfxugMHDoz7/fbs2XP9/eJx7Nixm5Yn4u7cuXPcMeuXJR5jvbZchq1bt477PeqXOdZTvOfy5ctr62u0dbVjx47rr4u/b/y8nfCdAADQXnLy8ZGTAwBZIlcpc4OJPMr8YKycIFvkFZGTlO8f+UbkJ5HnRD5Vn4eVOdZ4l7HMyyby+ccS+Vb8/XiWoVz2yXwXsewwWWXOH9tT/Lv+3CH2odi+Dh06VNuOY5veu3dv7flyHxztvKKT2xj7PEwPI0cBQIfeHRGV9ydPnqz9rK/y37hxY+3ugLhrIf427nCIuwTibqV4Lu4CmMh89eVwqDFUaymGdY73ibsU4m6m8d79PVrc+Bz3339/7Q6O+HfEjju943PF73FnxESGd62/Sz2WL2KVw1THnRYRK/4d6yTeK+52iGFyy7tB4jOOd6qQdnwnAAC0j5x8fOTkAMBsF/nNk08+eX0qrjLPKUedibwrchUjV8L4RM5fTmFZin0rzhvqp7yL84EYQSlGvY1zjvGMlAvMboqjSBEHo7jg1Jj8xYEpEr4YXq9MAFu5DHGhKy5+lctQHhjjABrvHwdGCSgwE7TjBKDsdKlvy6PNjA6H6LSYiuiQiIsEcbGgHJ61vEAQ8SdzfGjWEVOK94nPUn9MKN8v1lN0CE10CFwnZQAAs4ucfGxycgAAAGAmUBzFlMTdh/V3/JUXueJRzklaPzdqOf/y7t270+ZljYt7Mb/zaPPC1osLYnHHpAtjADPbaB0xAABA68nJAQAAgJmgu90LwMwUBU9r166tFRlFIVTcCTgwMFD09fXVRpCK32MUp/g9ni+HZI8CpiioWr16da2oaapiNKi4AzDixnvERbio9ysf8f5x92D9aFFxJ2H96wAAAAAAAAAAqCYjRzFhMRrUpk2bav9+4oknxj3sehRFRTFVvShcmsyw8FHUFMsQyxIjQEUx1ljT5cV7xzLUi9dEMZep9gBmHnepAwBAe8nJAQAAgJlAcRQTLkqKUZ9Wrlw5qaKiGLEpRm6qFyNMjbfAqrR+/fpaYVSMFhWFUeO1b9++4qGHHrrhuZje7+TJk2nT/AEwPXTEAABAe8nJAQAAgJnAtHpMyPbt22sFUlHQNJnRlmKkqJFijleMAFU/YtRERDFV40hV8d5RbAUAAAAAAAAAQLUojmLcoojo4MGDtX9HMdHatWtvGgVqLHEXYeMITRE3RnQajxMnTtSmxiunw5uMKNBqLOwq4wIwM02kyBYAAMgnJwcAAAA6leIoxq2xECoKimKavPg5Ec1GnBpvoVM58lSMHjUVzV7/6KOPupAHMEP19/e3exEAAGBWk5MDAAAAnUpxFOM2UhFUOZrUVIqjjh49Oq7XliNMxfR4U9Hs9VEYtX///inFBWB6NB57og2PKVcBAIDpIScHAAAAZgrFUUypqKkdI1dt3rw55WJbTPHX6MCBA1OOC0BrjgHbtm2rjVgY07rGvxvFlK/xiL+J/z/RkQ0BAICRyckBAACAmaq33QvAzBFFSc1s3bp1QnGaTV23cuXKMV9XTr0XF+PiQlvYu3fvpEeRalZk1Th1IACdIY4dcWf68uXLa7+XPxtF50s84u937949zUsJAADVJScHAAAAZirFUYxbXPQ6duxYsX379lpRUYy8tGfPngmPKNXsrsFmoziN53UPPfRQrchpMqNaxV2OAMwMUYg7PDzc7sUAAIBZS04OAAAAzFSKo5iQKGKKAqmpaFbk9MADD0xqxKlytKfJjB410mhVsXytnELwp37wt9Ji/fG1Z9Ji/dzSD6XFWtA7mBZrfmKseT1DabEW9ObFOn05pyn+8MpzRZa7F76dFuvdi99Mi/XGhRVpsb5xbuwR68brD19blhbrmdNz0mK91vV6Wqzzw6fSYr19fmrHkXqLFv1AWqxz56Y+ZWupd96dabGuXX4tLVbvvDvSYv2jD21MiXPXwgtFlu9cWJgW688H8mI9f2ZRWqzXr+V1SM5NnGF75Zy84+KRS3+QFuvtZz6fFouZ7y9vyMvD+4u8tuuv3nE1LdbixH1x/Yrm51+T8b98+91psZbMzVtff3ymKyXO377nTJHlk2vy8qS58y+mxXrz1DvSYh188QNpsb5+Ku8Y++qFeWmxjg99PS1WTzE3LdZbZ4+kxVqx9EfTYg28/YdpsRYv/kharAuXX0iL1d2zIC3W76zP2YdOXsjbfz60JO+Y0Xd+aVqsf/5c3vnPwsRrSpcG8/LwvKUqit+/9K/SYl38kwNpsaiGVwbyrlvePpB3nB0+fzYt1uCbL6fF+p9+9h+kxfrI8bxz7MHEIumBizl5/d0r8o6xb/3lj6XF2vKlx9JiDb/nw2mx/rfXcs6Bwr13LEmLdcdwXi5xdm5eH8Li7mtpsa515+X1vcN5y1V055UK9Jx9NS3WcOJyDS6+NS3W8O99LiXOb93x80WWn/5f/6u0WKefy+uLuP2JL6TFuuVs3nTt1259b1qs/kt5fdgL5uSdI6xYnNe3UTV5axnGodm0dTEi1Xim5htpuPbxTMkHAAAAAAAAAMDsoziKaXXgwM13De3evXtcr40p9JoVTMW0epPR39/f9HnFVgAAAAAAAAAA1aA4imkT0+Lt27fvpmn6du7cOa7XRxFUFFeVU97F70eOHBlxRKmx9PX1NX1+svEAAAAAAAAAAOgseRN2whh27dp1UxFSs5GkRhPT741nCr7xOH78+E3PTXYUKgAAAAAAAAAAOo+Ro5gWBw8evGHUqCiMOnbs2PVRoNrh8OHDNz23ZcuWtiwLAAAAAAAAAAD5FEcxLYVR27Ztu2EqvZMnT7a1MKpxer/SeKf4AwAAAAAAAACg85lWj5Y4ffp0bWSmvXv3Xh+hKUaLeuKJJ9KmxZuKPXv2tK0w6tsv/U7x3Cu/O6nXvvfOny3uedfPpS8TAABU3Quv/E7xnVcnl4e/5x0/W9x1pzwcAAAm47OP/VrxDx9/dFKv/S927i5+5Vc/nb5MAADMLoqjSBHT0Z04caLo7++vFUbV66SiqHD8+PHastaLUayaFUwBAAAAAAAAADBzKY4iRUyV1zhNXhQglY+YVi/+5qGHHip27NhRtNP27dtveu7AgQNtWRYAAAAAAAAAAFpHcRQpRht1KUZq2rVrV216vSiOikf8/XRNY1dv3759teVpLIyKwi0AAAAAAAAAAKqlu90LQPVF4dGhQ4duKKCKYqm1a9feNL1dK8V0f1GYVS+WqVOm+wMAAAAAAAAAIJeRo5g2MVLUqVOniscff7z2exRGRYFUFE5t3ry55e8fU/vVa9foVfe86+dqDwAAYPrcdefP1R4AAMD0+pVf/XTtAQAA7WLkKKZVFCQtX778hue2bNnS8hGkymn92l0YBQAAAAAAAADA9FEcxbTbvXv3Tc9FgVSr7Nu37/poVUFhFAAAAAAAAADA7KA4imm3Y8eOm56LkaPqC5iyHD9+vHjooYeu/753716FUQAAAAAAAAAAs4TiqAqI6eK6urqm/JguMa1e49R64dFHH019nyi42rRp0/XfDxw40LQwCwAAAAAAAACAalIcRVusWbPmpudOnz5dK/TKELHWr19f+xkOHTpUbN26NSU2AAAAAAAAAAAzg+IoOqY4qixiyiyMihGqjh07VmzevHnKcQEAAAAAAAAAmFl6270A5BQatXq6uCg02rVrV7F///7a7/fff3+xZ8+eptPjTaU4KqbCm6qYSi/ilIVRI71Xu/R0DafFGhq+mhbr2lDe1IrfPL0wLdaG286mxVo8Zygt1vlrebWl83tzluuVi/OKLKeuzEmL9fKlxWmxjr61JC3W4HDeNv/SuQVpsfqKP0mL9fb5r6bFKoq8/afonpsW6sLlF9JiFcOJ7fPQ5bRYxfBgWqgfmvfTabEW976aEud3v3N7kWXx3GtpsV47n7dfX01sb4YSt4d3LMjb5l+91JMWa1XPe9NiQb01i6+kxTp2+g/SYn174ONpsV69nJej/sErK9Ji/effN/XzvNJ3Li5Ki/WuJTk5yQ+uyDkmhs9/4y925Dnec4nneB9ceS4t1qqFefv1b/fnjGQdrl18MS3W8HBeftPVk5ffnL/2Ulqsrp75abHmdC3syHOg9XPuS4u1fM7XU+L84avvLDrxOtALZ/NirZiblzufu5qX7264/UxarIFLeddvXh/alBYLGt16+bW0WGdu/b60WOeX57X18+/Ky73W/vGWtFjdD/5MWqyP/p2fTIt19eceSYnz/1jyoSLL334171rqb33nu7OaZPihK3nnQPed+tdpsa4c/UZarP6f3ZkWa0F33r54ucg7zuZlEkXRdeVCXqzEa+Ld595MizW4JO+a8fmreW391a8/lxLnEz+yqsjS9Xf/x7RYd/Tm7T/Li0tpsYbn5p3LXvntX0uLtXROXqnN3J96KC1WUWSeF1eL4qgKiOKfvXv3tvQ9tm3bdsOUd/v27asVIE12pKdVq5o3+uU0eJO1ZcuW4vjx47V1EoVRky3eAgAAAAAAAABg5jOtHmOKgqX6wqhSPDfZkZ5OnTrV9PmpFDOVBVyTLYw6ePBg0dXVlTJ6FQAAAAAAAAAA7ac4ijGNViw02ZGeRnrdZKfAe+ihh2rFTevWrZv0iFFPP/30lJYBAAAAAAAAAIDOojiKMY1WaBTFSJkFVzEt3kQ9/vjjtWn+YlmOHDky6dGnyun4AAAAAAAAAACoBsVRjGmkgqG9e/dOOubRo0dvei6KmjZv3jyhOFEUtWvXrimNGFW/TJMt9gIAAAAAAAAAoPMojmJctm7dWvsZxUt79uwp+vr6ih07dkx61Khm0+pNNN7hw4dr0+nFMkVh1FSUy2TkKAAAAAAAAACA6lAcxbjs3r279rO/v7/YuXPnlIqImo04FSM+RdHVRKbAiyn4omjr0KFDxVSV771x48YpxwIAAAAAAAAAoDP0tnsBmBliurkY2SmmsYvRmiY7pV6MzvT444/f9PwTTzwxoVGeNm3adD1eFElNRhR6xesjXsnIUQAAAAAAAAAA1aE4inGLgqijR4/WCqSisCgKmmLEp4nYtm1b01Gbymn7xhLFTOvXr78+LV9MrZddBAYAAAAAAAAAQDWYVo8JOXbsWK2A6ODBg8Xq1atrhVITKYxqLGaKwqiYpm8yhVHZjBoFAAAAAAAAAFAtiqOYVIFUFDRFkVJMsbdixYraz5FGcYpCqrVr19Z+lmLEqUOHDo27MCps3779hinwsimOAgAAAAAAAACoFsVRTEqM+NTX11fs2LGjViQVI0ht2bKl6OrqqhVLRTFUPOL3GDGqLGqKoqh47cDAQLF58+YJvWerRowqmVIPAAAAAAAAAKBaetu9AMxcMdLS3r17a8VOMWpUjAR19OjRWiFUWQwVfxMFUVEIFcVTEy2IqhfxAQAAAAAAAABgvBRHMWVR/LR169baAwAAAAAAAAAAOoVp9QAAAAAAAAAAgEpSHAUAAAAAAAAAAFSS4igAAAAAAAAAAKCSFEcBAAAAAAAAAACV1DU8PDzc7oWA2eSnf/C30mKdH0wLVdy54FparIVz8mLN6xlKi3V5MK8etLc7r+l89dz8lDhXh7uKLO9ZcjEt1ruWXEqLdfS1ZWmxrgzlbQ+vDl5Ji/Va8WJarEvDp9Ninb/w52mxFi54f1qsq0Nn8mJdfi0t1rKF69Ji3dP1wbRYf23NqbRYXz21JCXON8/ktIHh9nl5B8bz13rSYv3Z4MtpsQaLvPZmXe/dabH+9Fre/rO4yGvr/+zow2mxmPl+4WN702JduJrYRlzK268ffPfltFj/8sW8fXF5d17etbA37/zgPUsvpMR56eyCIsvZxOPPlnfnHfefO70wLda/OvNm0YmuFnnnLW9fPZkW69rlV9Ji3bZ4U1qsweJqWqzzg3l5xC0996TF+mDPbWmxtq7N+4xf7V+cEuf5M3n79R9e/WZarB/s/UBarCMXv5wW6/t78/afdSvy9p8/P513DLpS5B1j//joL6TFohoGTzydF6y7Ny3Un/SuTov1vj/KO9/4ww//X9Ni3bF4XlqsrrzLz8Xa4/8sJU7Xj/21Isuf9OddV1qzPG+9r3gr77rsNxe+Ly3W8nl55y6L5+bFujKYdzxb0Jt3LjvnQt75WffFvGviXYl9G4OLb02LVQzl9TNeWnR7Wqy5Rc5y9ZzLOy/+Dxfyrt98/615ueWZy3n74p3n+tJiFWffyou19Ja0UNduWZMWa/6inL6bKjJyFAAAAAAAAAAAUEmKowAAAAAAAAAAgEpSHAUAAAAAAAAAAFSS4igAAAAAAAAAAKCSFEcBAAAAAAAAAACVpDgKAAAAAAAAAACoJMVRAAAAAAAAAABAJSmOAgAAAAAAAAAAKklxFAAAAAAAAAAAUEmKowAAAAAAAAAAgEpSHAUAAAAAAAAAAFSS4igAAAAAAAAAAKCSFEcBAAAAAAAAAACVpDgKAAAAAAAAAACoJMVRAAAAAAAAAABAJSmOAgAAAAAAAAAAKklxFAAAAAAAAAAAUEmKowAAAAAAAAAAgErqbfcCwGzz1cHvpMX6yWW3pcV67fy8tFi3LryUFuv81bxmqqsrLVTx1oW5abH+6No3UuLcUry7yPK+xKPDxWt5dbivXBlKi/VC13NpsbqLnrRYy4pb02KduvCHabHmzs/bvuZ2L0mLdfHy82mxunvzluvH538gLdbf+sDJtFgHX3hHWqzfP3MlJc6i4Z6OrPs/NvittFiXhvrTYi3uvj0t1sC1tFBF/+CJtFiruj+aFgvq/fnbc9Ji3ffOs2mx3nhleVqsnq68PPwDi/MaiXctuZgW65Vz89Ni/c9v/FlKnLu7P1JkeeQDb6TF+tFb8/Ld/+iFv5QW663Lx9Ni3THvB9NiDVzLW1/XLr+SFqurd1larPPDb6bFunjlxbRYg1dOpcX6q6s/nBbrx2/P+4z/vO/OtFj/4u3DKXHumfNjRZb/+Ja888Wn3rqcFutdc/Lyytt7885bnj2dd97yreFn0mJdG7qQFqsofiExFlUw3JuXww2e+GparNs+fE9arHnvuzct1oduXZgW6/aX/n1arKHb16bFOvujfyMlzoLuvDZ16Bd+Mi3W3zuSd83y189/PS3WkkuDabFWzh1Oi/Xqxbzzz1sX5nVuXLyW1x9xZf7KtFgL5uddx74wnHetZMk3cvLU8LvzN6TF+tCtOdexw9zunI7GlQvvKLJs/Pa/TIvVNfcH0mItupaX11/75tNpsS780F9Li7Ww62parO+cz2tT37coLVTlGDkKAAAAAAAAAACoJMVRAAAAAAAAAABAJSmOAgAAAAAAAAAAKklxFAAAAAAAAAAAUEmKowAAAAAAAAAAgEpSHAUAAAAAAAAAAFSS4igAAAAAAAAAAKCSFEcBAAAAAAAAAACVpDgKAAAAAAAAAACoJMVRAAAAAAAAAABAJSmOAgAAAAAAAAAAKklxFAAAAAAAAAAAUEmKowAAAAAAAAAAgEpSHAUAAAAAAAAAAFSS4igAAAAAAAAAAKCSFEcBAAAAAAAAAACVpDgKAAAAAAAAAACoJMVRAAAAAAAAAABAJfW2ewFgtrk4fDot1tnL70yLdXGwKy3W0HBnxrp6La8e9OJgT1qspcVtKXEWD88vspy5NJgWa2FvXqz5XXmHrUtD/Wmx5nevTIt1R7E0LdaL8+5Ii7Wo5860WNeGL6XFKhK3iR+Y+1fSYv3C+19Mi3VxKO8zfv30wrRYrw8fS4nTXcwpsrx0Oa8dnFcsSou1qHt5Wqw7ilvSYg0Vw4mxrqbFuth1OS0W1Lu9Ny+v/ONX8/brl4YH0mL15H3EYuPtZ9Jifev0grRYy+bltTerutcUnebNy3nHxX/9ygfSYi3tzjuXGrz0Wlqs17uOp8W6d+5PpsX66vwjabGW9743LdaCxHONl4q8fLe7d0larL9469m0WGev5eXhPV15edc9c34sJc6JwaeLLCve+tG0WO9IvJX3z4beSIs1cC3v2P9i8UJarJ5iblqsu3q+Ly0WNLr8B7+bFuvUT/zf02INDua1z9de/05arDf+68+mxbrjHz6WFuvqkX+aFmvuX/2VlDgXrw0VWVa9P+c6ffhHf+eBtFhdied5g8N52/ypK3kLtmRuXqzE1VUsmpOXmPSeeTkt1uCyvL7BF07lXYd7fsHGtFhF4rb6gXNfT4s1PJjT33Vmwb1Flq4Fedexi9f60kK9/f6PpcXq+UvvS4t19tK1tFiLh99Oi/XOxavSYjEyI0cBAAAAAAAAAACVpDgKAAAAAAAAAACoJMVRAAAAAAAAAABAJSmOAgAAAAAAAAAAKklxFAAAAAAAAAAAUEmKowAAAAAAAAAAgEpSHAUAAAAAAAAAAFSS4igAAAAAAAAAAKCSFEcBAAAAAAAAAACVpDgKAAAAAAAAAACoJMVRAAAAAAAAAABAJSmOAgAAAAAAAAAAKklxFAAAAAAAAAAAUEmKowAAAAAAAAAAgEpSHAUAAAAAAAAAAFSS4igAAAAAAAAAAKCSFEcBAAAAAAAAAACVpDgKAAAAAAAAAACopN52LwDMNj1dc9JiPXPpbFqsRcWitFj9l+amxTp9OW99XRxKC1W8Mpy37oeKwZQ4r3W9XmS5fG5VWqy/2JO3PaxdfDkt1rNnctZ7OH3pz9JiLV/y3rRYtxcfTovVW+Ttiy8PPpMWa+X8vM/4sdsvpMV64cLCtFhffWtxWqzvFG+kxTp/6VspcebMuaXIcntv3vZwuTifFmuwuJIW67niVFqsniKvfe4qetJinSpeSYsF9f7o2jfSYn18/j1psU5fei0t1okzd6fF+vPTC9Ji9Rd5x9hzxZm0WJeTluvNwW8WWR4/eWdarB135uX0P/yOgbRYR/rzTsyuXXwxLdblOXnnBwt78r7HM4MvpMV662p/0YneseBH02JdHupKi3XuWl5+c/jit9Ninbn4pylxhpOuRYS3FuS189++8HtpsYYH83L6Cwu/Py3WcJHXDi7sWpkW6zvDebkSNBr+2V9Ji3Xrkc+nxXrzh/9mWqzuDX8lLdbtn38wLdYrw2mhigU//Xfygg3mtIWXB/M+4MJ/8E/SYvWe+Ddpsa78r/99Wqzuzf9ZWqx5PXl51+lLeXnJ4Ly0UMXFa3nH7KWL8s4Rzl64lhbrmVfz+rp+5v1556Bn/t4vpsU69Q/yjhtL5uSMOzN0NW/bGnz/j6TFeu1y3rg61xK301sX5pW0LJ2bd57Xdf5SWqxrQ4kHbEZk5CgAAAAAAAAAAKCSFEcBAAAAAAAAAACVpDgKAAAAAAAAAACoJMVRAAAAAAAAAABAJSmOAgAAAAAAAAAAKklxFAAAAAAAAAAAUEmKowAAAAAAAAAAgEpSHAUAAAAAAAAAAFSS4igAAAAAAAAAAKCSFEcBAAAAAAAAAACVpDgKAAAAAAAAAACoJMVRAAAAAAAAAABAJSmOAgAAAAAAAAAAKklxFAAAAAAAAAAAUEmKowAAAAAAAAAAgEpSHAUAAAAAAAAAAFSS4igAAAAAAAAAAKCSFEcBAAAAAAAAAACV1NvuBQAm7+VrR9Nivbf3R9Ni/f6FU2mx7i7emRarv7iQFqs7sba0t5iTEudi8XaRpXe4Jy1WV9e1tFiL5+bFuq3nA2mx3uzKW19zuofTYm1atjQt1oWreZ/xlgs/nhbrh249nxbrnYsup8V65s0labFevzAvLdYdxfy0WFcW/KWUOBeG844ZtxW3pMUaGl6ZFuu1rtfTYp2+9lxarN7uvO20uyvnWBauDOcdz6DeLcW702L97tuH0mJ9YM6mtFiXr+XlEXctvJoW640LeTnc3MRjWVass8MniiwLiry2uTcxr/y+ZefSYvUsuLPoRH3Dz6TF+k/f+f60WOev3pUW65+8/tW0WP/xqnvTYq1akNfefPnFhWmxPrgqb7tfmXhtY+GC5SlxXr30B0WW5y4fTovV25uYo865NS3WuQt/lharGM47LvYu+mharEuDeect0Gje6RfTYl38+C+mxcppUb+r/3/879Ji3Xbfz6TFOrvmR4pONLenKyXOlcHBIkt3V84yhcGBN9Ji/ev/7P+bFuveP/tP02ItmJN3vfilt6+kxfrRgW+mxSp687rRv7korz+itztvW333srxz7LOXh9JiXTt/KS3W1cG8c+PhpEugVxKX6Vt5py1Fb3fed7h8Xl4bcWUob31dSrx2tnBx3vnG1cTPyMiMHAUAAAAAAAAAAFSS4igAAAAAAAAAAKCSFEcBAAAAAAAAAACVpDgKAAAAAAAAAACoJMVRAAAAAAAAAABAJSmOAgAAAAAAAAAAKklxFAAAAAAAAAAAUEmKowAAAAAAAAAAgEpSHAUAAAAAAAAAAFSS4igAAAAAAAAAAKCSFEcBAAAAAAAAAACVpDgKAAAAAAAAAACoJMVRAAAAAAAAAABAJSmOAgAAAAAAAAAAKklxFAAAAAAAAAAAUEmKowAAAAAAAAAAgEpSHAUAAAAAAAAAAFSS4igAAAAAAAAAAKCSetu9ADDbLC/uSIt1dvDbabFe6vlWWqwrQ2fSYi3sWZIW60LxdlqsweJKWqwFxdKUOPOKhUWWJV1z0mK9caEnLdaqBXnr/X09q9Ji3d2VF+vCtbRQxbplefvi9y89lxbr1nnn02JdGsxLZQ688M60WG9enJcWa073cFqsuUXe/njqyp+mxLl2+ZUiyzcWXU2Ltbg773i9vLglLdZ7ejenxXqjOF10otPFa+1eBCpqoHg9LdbglbfSYr08py8t1smzefnuD3R/NC3WteJsWqz+4e+kxeop5had5gfm5B0zvn5qKC3Wa+fzcpv3zPuxtFgri2Vpsc4Vl9JirVvRnxZry9qn02J95va884Pha3lt18NfvD8t1ssX8s5l71nRlRbrPd055/3h35z/vZQ4Q1fyttO7lm1LizW3yGtvzhRvpsW6Z9GPpsX6dnEyLdacYn5arItdeesLGp1enHfNpXc47zrJ/J68tn753/61tFjD5/L2xwW9eZ/x/NW8/PLclZzv8VreIhV3FHm50tUffjAt1k+ceCAt1uuJF5+vDubti+9akndu9tb/Z39arP/ykd8tqu5X38q5xhsSm+di2dq848aSeXnXxK8kbffLEpfptvMvpsUaXJh3TWIgsc9yQW/meD95B44Lw3nnn8NF4g7EiIwcBQAAAAAAAAAAVJLiKAAAAAAAAAAAoJIURwEAAAAAAAAAAJWkOAoAAAAAAAAAAKgkxVEAAAAAAAAAAEAlKY4CAAAAAAAAAAAqSXEUAAAAAAAAAABQSYqjAAAAAAAAAACASlIcBQAAAAAAAAAAVJLiKAAAAAAAAAAAoJIURwEAAAAAAAAAAJWkOAoAAAAAAAAAAKgkxVEAAAAAAAAAAEAlKY4CAAAAAAAAAAAqSXEUAAAAAAAAAABQSYqjAAAAAAAAAACASlIcBQAAAAAAAAAAVFJvuxcAZpt75y9Ni3Xy7dfTYn14/l9Ni/UHl7+YFutKz6W0WKcHn0+LNa97eVqsZV23psR5f8+qIktv13BarEuDeXW4Zy/PSYv1vhXn0mL1nV6UFuvyUFdarMHhvFjL5uTti7fMP5MW649P3ZUW69Xz89Ninb2at93fNv9aWqyXilNpsTbO/emUOHPnFWnODQ+lxZqfeA/BlSJvua4MD6bFWlIsTou1oCvvtOJKkdfeQL1PLH53Wqx/di6vbf6pxWvTYv2z159Mi/W1hXnHxXOXvpEWq6s7b7l6e3POzX5y4ceLPHl5eP/lzrzk83O35R3LXno77xj7tYt5x/5vvp13fvDTSy6kxRpOzFGf/tMfTIv1v519NS1WV9GTFuvuM3ekxXppKO/8864FW1LivGfhiiLLieE30mLdkpijXiry9p+nrz2VFmtV7/vzYg3fkhbrBxfdlhYLGi3szTsG9Qzn5eK93/qjtFjn1/5IWqxL829Pi1VcycuXBofyctWL13Ji3bk4L+e9NJR3bLw2mLeuuvIu8Ra3LsxbXwuvnU+Lda1nQV6sX/zv0mIVj/xuWqgPL8u7CPo39v7NtFjfuJDXpi6Zl5eLr/rPfz0tVuIuVJxNalMXzck7Lp5e9O6OPF5fTTz+vHj2alqspfPyPuPcvE2+WHToN/KCferv5sWqGCNHAQAAAAAAAAAAlaQ4CgAAAAAAAAAAqCTFUQAAAAAAAAAAQCUpjgIAAAAAAAAAACpJcRQAAAAAAAAAAFBJiqMAAAAAAAAAAIBKUhwFAAAAAAAAAABUkuIoAAAAAAAAAACgkhRHAQAAAAAAAAAAlaQ4CgAAAAAAAAAAqCTFUQAAAAAAAAAAQCUpjgIAAAAAAAAAACpJcRQAAAAAAAAAAFBJiqMAAAAAAAAAAIBKUhwFAAAAAAAAAABUkuIoAAAAAAAAAACgkhRHAQAAAAAAAAAAlaQ4CgAAAAAAAAAAqKTedi8AzDYvXOpKi9Xduywt1neGT6XFGh6+nBZrqBhMizWne0larBVdd6bF+sDchSlx3rn4fJHl4rWetFivX5iXFmvt8nNpsX5gRd76On8173A6rydvm186Jy/WK5cWp8X6zsW8ffGNS3PTYp2+mlcz3pvX1Bf/+vzxtFg/POejabGuDefE+dbQqzmBiqI4O/xaWqzv77o3Lda75yetrKIoziW2N2cG85brdHExLVb/4Im0WFDv1KU5abG656xKi/XH5y6lxYrsOcuyrjvSYl3ofTkt1k8u+kRarJ6unHZw7fK8vPLM5bx2/sjA19Ni/cN3vzMt1g+uzNsedh9dlxbr3sV5+887FuSdEx/+0x9Ji7V6Ud55/5mreed5F4cH0mLd2fX+tFj//M3fSYv1wC0/lxbrX53LyZVeuPSVIs3wtbRQ5xd8JC3Wf3LrO9Ji9Z3+8bRYL1zNW18LuvKOG//i7S+nxSqKX0yMRRXMPf1iWqyhJbemxbp8z4+mxcq7mloUi7rzLiydu5KX49zytX+dFuviR/5K0WmGh/Oukzw3kHee955//l+mxXrx3/x5WqxF/+SLabF6u/O203cuyDv3/69Pfy0t1rfu+4m0WKf+9NtpsRb8WN418fk9ebHOXcnr27jtfN4x6HR3Tt/g5Wt52/yCOXnr/c0LeXnqXd/4V2mxlq3PO5+6mLjulw5dSIt14RMPp8XK6XWuJiNHAQAAAAAAAAAAlaQ4CgAAAAAAAAAAqCTFUQAAAAAAAAAAQCUpjgIAAAAAAAAAACpJcRQAAAAAAAAAAFBJiqMAAAAAAAAAAIBKUhwFAAAAAAAAAABUkuIoAAAAAAAAAACgkhRHAQAAAAAAAAAAlaQ4CgAAAAAAAAAAqCTFUQAAAAAAAAAAQCUpjgIAAAAAAAAAACpJcRQAAAAAAAAAAFBJiqMAAAAAAAAAAIBKUhwFAAAAAAAAAABUkuIoAAAAAAAAAACgkhRHAQAAAAAAAAAAlaQ4CgAAAAAAAAAAqKTedi8AzDZvFQNpsbq656bFulZcSYvV3b0gLdaZ4VfSYq3oendarDuLFWmxblt4seg0vd3DabHeufhSWqx7V76dFuvuhWfSYvW8cygt1pyuvHX/52cXp8V64e0labHm9eStr4vXetJiLenJW/cvXb2WFusD3RvSYi2fm7dc62/P2Yc+mLht/dO33kyL1VecTIt1y9BdabFuX3g5LVZxYV5aqJcG89rUweELabGg3h9cfTYtVlf3nLRYA8VrabGKxPODU0Mn0mLN770tLVZPYq60dvn5lDhL5w4WWS4P5t3D9jdueX9arE/ecyQt1oJb844Znxx4Z1qsuxbknWv8cf+qtFgDV/Lam5cv5p2rXx7K21bndOVdjzibeM1l8fwPpMVa0JvXTvz1W9ekxDl35X1FlicHnk6LNaeY35Hnnn/l7rxzjS+euD0t1vOD59JiDQ7mtYPQ6NTCvGP28u7M60p5seb2dOZYBEPDeflz991/IS3WwrMv5QR6+RtFmu/fkhbqA6vy8q6dv/ovik704PmrabHW3bEoLdaZy3l516qv/k5arHX/t59MizV4Ke/64KlreW3EsrxLjcWFq3nt89DCvP68F17L6c/7wC0LiyzzerrSYi2fl3f+eeHrf5IW66t/539Ii/UD/8dTabGGu/KuwyUerhlFZ2ZrAAAAAAAAAAAAU6Q4CgAAAAAAAAAAqCTFUQAAAAAAAAAAQCUpjgIAAAAAAAAAACpJcRQAAAAAAAAAAFBJiqMAAAAAAAAAAIBKUhwFAAAAAAAAAABUkuIoAAAAAAAAAACgkhRHAQAAAAAAAAAAlaQ4CgAAAAAAAAAAqCTFUQAAAAAAAAAAQCUpjgIAAAAAAAAAACpJcRQAAAAAAAAAAFBJiqMAAAAAAAAAAIBKUhwFAAAAAAAAAABUkuIoAAAAAAAAAACgkhRHAQAAAAAAAAAAlaQ4CgAAAAAAAAAAqKTedi8AzDZzi3lpsRbOvSst1p3F7WmxLs/7C2mxBosrabHmFwvTYg2lRSqK5fOupsR5+0pek37pWk9arDk9eWvryy/fkhbrtfPvTIu1Iuk7DO9eejEt1vmred/js28tTos1P7E0e9X8vHV/cagrLdbtvXPSYvV0DafF+uCqt9NiZa2t9y3P2+Z/6uIH02K9nbj/XLiWt9Ev6s2LdX4wLVRxfrg/L1iRt+6hXm/X/LRYS+esTYt11/CatFiLFixPi3WxyDtmXBu+lBbra5fzjhv3JB1j//2ryzvyPGP97WfSYv1Pf/KX02L99y++lhbrQ8UdabE2vzvvXP3lt/NiZfra6bxz4nctuJYW64fmrEyLdfJq3jWEd3W9Iy3WulvfSou1dE7Oun/Pgrx2fujbH02L9R/ezktS//StBWmxls7NW67+wbzW/qXBr6bFGr6Wt01Ao8HhvGsbmbq78q4FzR3OOwYN98zNi5UWqSheX/TutFg9Sev+5TtuLbIsPpt3nfHur/1OWqzP7v/ltFjf+qGH0mLN6cnbfzJdGcrb6gcH3kyLde6n/k5arO7EVf/BxP6bly/krfu5PXnXQHve7EuLdd9gzvWNZ/7mrxVZbjvwL9NifSexHXz3X//7abHWvPh6R+YkF4q8fqCriW0XIzNyFAAAAAAAAAAAUEmKowAAAAAAAAAAgEpSHAUAAAAAAAAAAFSS4igAAAAAAAAAAKCSFEc18Zu/+ZvFV77ylXYvBgAAAAAAAAAAMAWKo5p47LHHik2bNhU9PT3Fgw8+WHz1q19t9yIBAAAAAAAAAAATpDiqieeee644evRo8Uu/9EvFl7/85WLdunXFRz/6UUVSAAAAAAAAAAAwgyiOGkEURO3du7fo7+8v/vf//X8vBgcHa889/PDD7V40AAAAAAAAAABgHBRHjcPmzZuLY8eOFU8++WTx27/927VRpAAAAAAAAAAAgM7WW1TQU089VRw/frzo6+srTpw4USxfvrzYuHFjbeSnDRs2FEuXLp1U3K1bt9YKpdavX1/cd999xe/93u+lLzsAAAAAAAAAAJCjUsVRzz77bLF9+/ZaYVSjgwcPXv93FElFkdOWLVuKj3/84xN6jyi0OnToUPHe9763+NKXvlT8/M//fMqyAwAAAAAAAAAAuSozrd4zzzxTG9EpCqOGh4dv+v/xXPmIKfIef/zxWnFUT09P8cADDxRf/OIXx/1ea9asqRVhfe5zn0v+FAAAAAAAAAAAQJbKFEdt27btevFTYzFU+VxXV9f1R/3/i1Gl4vUTKZT6iZ/4ieLo0aMt/1wAAAAAAAAAAMAsnlbvM5/5THHixInav2O6vCh0WrlyZW0KvNOnT9f+39NPP10cPny49nspiqRKZQFVFEqVU/A99NBDxdatW5tOvVe+HwAAAAAAAAAA0JkqURz15JNP1gqdDh061LSQqd7JkydrRVLxt/XFUs0Kpfbu3Vt7hHXr1tWm04tHFEZFAVUUYgEAAAAAAAAAAJ2pEsVRUaw00ghPjVavXl1s37699gjPPPNMrbgqip3K0aDKQqmySCocO3asOH78+A2xYmQpAAAAAAAAAACgM3UXFRCjP23ZsmVSr7333nuLxx57rHjuuedqBVCPPPJIsWzZsuuFUVEoVT5CPB+PHTt2FJ/85CdTPwcAAAAAAAAAAJCnEsVRy5cvT4kThVJ79uwp+vv7a4VSMbpUWShVPmJavQMHDhS/8Ru/kfKeAAAAAAAAAABAa1RiWr0oWOrr60uNGYVSe/furT3OnDlTK5iKKflgqhYPz0+L9b6uD6fFujY8lBZrSdfKtFivDv5ZWqxTPT1psX5w8V1psZbNu5YS5/zVvM+XGevlc3mHmotFzroKLw3/eVqswatX0mK9+/wH02ItKuamxcqLVBT9g3nfY/flOWmxFvfmtYP9V/Lqz9+z6GrRib59ekFKnNcv5B0X37P0Qlqsd3R/b3rlTmpTnz+7MC1W3hZfFPO6lqTFWtCbc+MDNLqtyMvfNt+Stwe9/PZ3RynO8MblwbRY/ZeeSYvV3Z1zzAi3zs37Hj9++1spca4N5R33v3Yqrz39zZfPpsVaXtySFuvy0Jm0WC91n0qL9Zsv5uX0H048lj1/7XJarIHi5bRYd3ffmhbr9oV5+e7vn/52Wqz1PT+QFuvSYF478Uev5eyPA5feUWS59/a8/XrJ3LxrCN8cyDvG/tuX8651DQ3nnRPf2fMX0mINLf5QWixoNK8nb3/s/0ePpMW6fdt/khbrzJ33psUavJp5xp7nxMCltFhDD/5MSpwN/8dTRZb+S3nnU69++OfTYi2dm3ddKe9sqiiWnH8lLVb/tby85J2XX02L9caPb0+LVQzlXWu87cJLabG6r15Mi3Vl/tq8WIN56+vqu/Ly+peTLj/f/dv/a9611DMvpsWa03tHWqw/eyNv23rvzv93Wqy8LasoFg2eT4s1PG9xWiwqPnLUhg0bisOHD7csfowepTAKAAAAAAAAAABmlkoUR+3YsaM4fvx48cILL7R7UQAAAAAAAAAAgA7REcVRn/jEJ4oHHnig+PVf//Xi+eefn/Dr161bV9x9993Ftm3bWrJ8AAAAAAAAAADAzNMRxVGHDh0qDh48WOzatatYu3ZtsWrVqlqx1G/+5m+Ou1hq7969xdGjR4svfelLLV9eAAAAAAAAAACg83VEcdSaNWuK4eHh64+BgYFasdRDDz10Q7HUF7/4xeLs2bNNY2zevLl45JFHiq1btxZf+cpXpv0zAAAAAAAAAAAAnaUjiqOWL19e+9nV1XX9ERqLpWLavBUrVhT33HNP8cu//Ms3FUvt2bOn+PjHP14rlFIgBQAAAAAAAAAAs1vHjBxVqh9BaqRiqb6+vmLfvn03FEvt3r27VhD1hS98odi+fXutQOqzn/1sGz8VAAAAAAAAAABQzPbiqJUrV17/9969e2uPHTt2FKtXrx6xWKr++SiWevzxx2sFUVEsdezYsdrzO3fuLD760Y8WX/3qV9v6+QAAAAAAAAAAgOnXW3TQtHoxglSM+hTKn2fOnCkOHz5cHDp0qPbzxIkT119XjigVohiqdPz48esFVEePHi3WrVtXG2Xq/vvvrxVQLV26dBo/HQAAAAAAAAAAMGuLo9auXXvT9HqlZcuWFZ/61Kdqj4kUS5W/l6NLHThwoPYIUSwVRVIbN25ULAUAAAAAAAAAABXV20nT6pUjSI1mosVSzUaXimn3YnSpUhRlRZHUli1baoVTd999d+rnAwAAAAAAAAAAZmlxVBQmjTRy1FgmO7JU/TR8fX19tb/bt2/f9SKtslgqfiqWAgAAAAAAAACAmacjiqOiwGloaCgt1lSLpQYGBoqDBw/WHmWx1IYNG64XS33kIx9JWVYAAAAAAAAAAKDixVGtNNliqfqCqSiWir+NR2nbtm3Fb//2b0/b5wAAAAAAAAAAACam8sVREymWOnr0aHH8+PEb/n6k0aUOHDhQnD59uvi93/u9aVx6AAAAAAAAAABgvGZdcdR4iqWiSKocWWqkYqkolIq/AQAAAAAAAAAAOtOsL45qViy1adOm2mOsYqnybwAAAAAAAAAAgM6jOGqCxVLhyJEjtZ+KowAAAAAAAAAAoHMpjpoERVFMxdyunrRYV4YH02Kd7bqQFutacTUt1q0970+LtWJ4RVqsuT3X0mJdvNadEmde71CR5dSVvO10/ndnI03x1vD5tFjnr72UFqurK+c7DKd630iLtaR4d1qst4fz9utl3XPSYs3tztvuM717Yd76WjovL9aJ0wvTYn353CspcT7cs7rIcvrS3LRYH1h5Li3WhlvOpsX6ztsL0mKtnDOcFuvbV/O20+XFLWmxoF5PkXe8/tZAXnv6ncG8PPzMcE7bHLq68i4XzOlZnhZry6q0UMXapa+lxHnX28uKLM++tSQt1oe635MW6+nBY2mxLl74elqsF3u+kxaruzdv3b9efCIt1sXiYlqsv9DzzrRYZ6/k5eHXhvLa5y0LPpQW6/tuGUiL9a3EPHz/wFdS4twz58eKLHPezNt/7l6ed1z8sXf1p8U69OLKtFh3JV4o+frlvOP1XT1L02JBo8G808/ilh270mJdXHx7WqwricfG81fzYg0O5638dXcsSov1K0+/mhJn46F9RZYVW3YUnejM5bx+oLk9ecegMwvfkRbr8tW87fTtJe9Ki9U7lLdcy+bm5bxv9+ad681L3CZWJLaDt7zwB2mxri770bRYc3ty9sezl/PW1bm5efviq2cvp8X6xlt5/Xl3L5+XFmtx4r7YdS7vM/aeOpEWq1j7g3mxKibv2wcAAAAAAAAAAOggiqMAAAAAAAAAAIBKUhwFAAAAAAAAAABUkuIoAAAAAAAAAACgkhRHAQAAAAAAAAAAlaQ4CgAAAAAAAAAAqKS2FEf9+q//erFx48bi05/+dPH888+3YxEAAAAAAAAAAICKa0tx1Oc+97ni2LFjxZ49e4q1a9fWCqU++9nPFmfPnm3H4gAAAAAAAAAAABXUluKo/fv3F5s2bSqGh4drjyiU2rlzZ7FixYrivvvuK770pS+1Y7EAAAAAAAAAAIAKaUtx1Lp164pDhw4VAwMDtVGk4veyUCqe37p1a9HT01M8+OCDxVNPPdWORQQAAAAAAAAAAGa4thRHlZYtW1bs2LGjOHr0aNHX11c88sgjxerVq68XSh04cKDYsmVLsWrVquLhhx8unn322XYuLgAAAAAAAAAAMIO0tTiqXhRF7dmzp3juuedq0+xt3769VjwVRVIxwtTevXuL9evXF/fcc0/x6U9/unj++efbvcgAAAAAAAAAAEAH65jiqHr33ntvrRiqv7+/Ns3epz71qeujScUIU1FEtXbt2mLjxo3F5z//+eLs2bPtXmQAAAAAAAAAAKDDdGRxVL1NmzbVptcbGhoq9u/fX2zevPl6oVSMMBXT8q1YsaK47777ii996UvtXlwAAAAAAAAAAKBDdHxxVL2tW7cWX/7yl2vT7D322GPFunXrrhdKxQhT8f97enqKBx98sHjqqafavbgAAAAAAAAAAEAbzajiqNKyZcuKnTt3FkePHq1Ns/fII48Uq1evvl4oFSNNbdmypVi1alXx8MMPF88++2y7FxkAAAAAAAAAAJhmM7I4ql4URe3Zs6d47rnnatPsbd++vVY8FUVSMcLU3r17i/Xr1xf33HNP8elPf7p4/vnn273IAAAAAAAAAADANJjxxVH17r333loxVH9/f22avU996lPXR5OKEaaiiGrt2rXFxo0bi89//vPF2bNn273IAAAAAAAAAABAi/QWFbVp06baI+zbt684ePBgcfjw4drvMcLUjh07ao+Yfu+hhx4qfv7nf77NS8xsMberKy3W6eJKWqzbiqVpsV4prqbFel/PqrRYc7qG02JdHRpKi3Xmck5TfP5qXpN+avhSWqwXh7+eFqur6EmLNVzkfYfdXfPSYg0m7j/fKr6RFusHuj+YFuvOhXlt16I514pOdFviZ/yDV5enxTo1nLdcb118OiXOiQV57fz8K4vTYv3Asrwi+vctfS0t1pt3zU2L9cqFvFhvvLo6LVZe6ww3WlHMT4v17678QVqsd/V8OC1Wb+Jn/OTyv5IW62sX847Xf/n2t9Ji/ds31qbE+fbpBUWW54cG0mK9MvjVtFjXruUdF7t6l6XF6u3Ny5OGh/Py8G8MHU2LtWXB+rRYc3vyPmNP4vn1N87l3bt5+5y8c8bPvXQ6LVb/1bxzs6vn+1LiLFq+pcjy/lVvp8X6hTV/nhbrXWueS4t1+7//ibRY567lbafdr6xIi/WtS3nni9BoTnfeNfEXuxKvI1weTIvVk3jd/93Dp9JiPV+sTIu19/a8c5df3vqBlDhdP7GjyHLpaub14q6O3LbmJu6LvYmxLg/m7YuZVlzJ2xf7h/ParnNX8tbXydN5fUEDF/PONz58x19MizV0Jm+5bl2Yk8fdXpwrspx78h+lxRr+1otpsZ77X46nxeo6eSwt1vxv/35arK75i9Jinbnz3rRYeUf+6qnUyFEjiSKoL3/5y7Vp9h577LFi3bp110eUihGmtm7dWvT09BQPPvhg8dRTT7V7cQEAAAAAAAAAgASzojiqtGzZsmLnzp3F0aNHa9PsPfLII7XnykKpAwcO1EaSWrVqVfHwww8Xzz77bLsXGQAAAAAAAAAAmKRZVRxVb/Xq1cWePXuK/v7+2jR727dvv14oFSNM7d27t1i/fn1xzz33FJ/97GeL559/vt2LDAAAAAAAAAAATMCsLY6qd++999aKoaJQKkaPimn2ytGkYoSpGG1q7dq1xcaNG4vPf/7zxdmzZ9u9yAAAAAAAAAAAwBgURzX41Kc+Vezfv782etTnPve5Yt26ddcLpY4fP17s2LGjWLFiRXHfffcVX/rSl9q9uAAAAAAAAAAAwAgUR40gptiLQqijR4/WCqUee+yx2lR8ZaHUoUOHaiNM9fT0FA8++GDx1FNPtXuRAQAAAAAAAACAOoqjxlkoFVPrPffcc7Vp9h555JHac2WhVEzFt2XLlmLVqlXFww8/XDz77LPtXmQAAAAAAAAAAJj1FEdNUIwetWfPnqK/v782etT27duvF0nFCFN79+4t1q9fX9xzzz3FZz/72eL5559v9yIDAAAAAAAAAMCspDhqCjZt2lQrhhoaGir2799fbN68+XqhVIwwFaNNrV27tti4cWPx+c9/vjh79my7FxkAAAAAAAAAAGYNxVFJtm7dWnz5y1+ujR71uc99rli3bt31Qqnjx48XO3bsKFasWFHcd999xZe+9KV2Ly4AAAAAAAAAAFSe4qhky5YtqxVCHT16tDZ61GOPPVabiq8slIqp+KKQ6pZbbjGSFAAAAAAAAAAAtJDiqBaKoqiYWu+5554rjh07VjzyyCO14qkokurv768VUAEAAAAAAAAAAK3R26K4NLj33ntrjz179hRHjhypPffxj3+83YsFAAAAAAAAAACVpTiqDTZt2tTuRQAAAAAAAAAAgMozrR4AAAAAAAAAAFBJiqMAAAAAAAAAAIBKUhwFAAAAAAAAAABUkuIoAAAAAAAAAACgknqLCnv++eeLEydOFGvWrCnuvvvuCb32C1/4QvGrv/qrxZYtW4pdu3YVd911V8uWk9nlnqUX84KdXZgW6l0Lr6TFeun8YFqsVwfzlutDC7vSYl0ezKstXdkznBKn51pOnLCgmJcWq7drflqsK0Nvp8UaGjyfFmt46HJarKLn3Wmh5hR5634oLVJRLJ13NS3We5bkrftzV/P266685qZ4bvjVtFjXirx1PzyUczzrL14usgwNvz8t1qq5F9Jinb2yKC3Wy+fnpsUauDQnLdb3Lcs7Xvd2ZbY48D0fXnUuLdZbp+5Ni3WqyGvn7+xamxbrzJW8ywV39/akxfr2ubxzoP6kdvCNC3k5V3eRdy41t3tZWqzBrszc+VJarKHhvFxw6Zy1HZmHdyfmlR+9/UxarHk9ecfrV/puS4u1ZlleW/8fTuXlzoPXThed5uiFf54Wa9Wbfy0t1q0bXkuL9eKJe9JiPf3GkrRYtyVeg7tjUd51xg+svJYWCxrN7enqyFh//mbeuf9ffkfeOXb35bzca+7CVWmxfn7HR9Nizft7n0uJ8+LbecfrpXPzzlsWJPa+9iYOc9GbmFz2DOUdz5bMnduR+XPXlbw2ovef/Q9psd654x+kxfr3L59Ni/WBW/Kuga5akLc/nr6Ud549J2kDe3kob10t/o//flqsf3P3+rRYm587mhbr9fN5eeotcxP7LN+zLi3W0hN/nBar+L6P5cWqmEqOHPWbv/mbxT333FOsXbu2VtwUPx9++OEJxdi8eXPxyU9+svjt3/7tWnHVgw8+WLz9dl6nPAAAAAAAAAAA0FqVK476xCc+UezYsaPo6+srhoeHrz/27t1bPPXUU+OOs2zZsmLPnj1Ff39/8eSTTxZf/vKXi+XLlxdf+cpXWrr8AAAAAAAAAABAjkoVR91///3F4cOHa4VQoaurq/YoxRR7k7F169ZakdTHP/7x2ohSCqQAAAAAAAAAAKDzVaY46plnnikOHjxYK4zavn17ce+99970Nxs2bJjSexw6dKhWIBXFUqbYAwAAAAAAAACAzlaZ4qhdu3YV69evL37pl36p9vuBAweKpUuX1qbUCzt37iw+8pGPTPl9okBqxYoVxbZt26YcCwAAAAAAAAAAaJ3eoiKjRh05cqRWuFRas2ZNMTAwUJw8ebJYuXJlsWzZsrT3i0KrX/7lXy6ef/754u67706LCwAAAAAAAAAA5KnEyFExlV6IKe8arV69OrUwKuzYsaMWc9++falxmZzDhw/XRvKKkcNiVK+urq5i7dq1xZYtW4rHH3+8OH36dLsXEQAAAAAAAACANqhEcdTRo0eLzZs3T+t7btiwoTh27Ni0vic3isKnsggqCqRitLDdu3fXiuW2bt1a9Pf316ZbjIKp+JsTJ060e5EBAAAAAAAAAJhGlZhWL4peNm7cOK3vuW7duuILX/jCtL4n3/u+64udYprDKIpavnz5TX8bRVMPPfRQ7WcUUu3Zs6f29wAAAAAAAAAAVF8lRo6KadOi8GU6rVq1ykhEbXD8+PHa9Hnluj9w4ECt4KlZYVSIEcX6+vqujywWI0lFsRQAAAAAAAAAANVXieKoKIw5derUtL5nFNyMVJBD64rgNm3aVPsZyunzxuPQoUO1affCvn37alPyAQAAAAAAAABQbZUojoqil5g2bTrt37//erEN02Pbtm3XC6NiWsMdO3ZM6PVRTFWKEaSM/AUAAAAAAAAAUG2VKI5avXp1bbq1t99+e1re78iRI7UiHcVR0yeK3+oL4Hbv3j3hGDG1XhRV1RdbAQAAAAAAAABQXZUojnrggQeK4eHhYvv27dPyfg899FDR1dVVe1+mR4z0VIrpDMc7nV6j+u8sCuriAQAAAAAAAABANVWiOKoslDlw4EDx+c9/vqXvFcU15XRsn/zkJ1v6XjQvYooRoCarsaiqfqo9AAAAAAAAAACqpRLFUSFGjYrRo3bs2NGSAqmzZ8/WCqOiACtGjYr3YXo0FjBt3Lhx0rEap0Lct2/fpGMBAAAAAAAAANDZKlMc9fjjj9emWwtRuHTfffcVL7zwQkrsL37xi8Xq1auLgwcP1n6P99mzZ09KbMa2f//+G35ft27dlOI1FkiV3ysAAAAAAAAAANVSmeKoZcuWFY899lht9Khw6NChWhFMFEk99dRTtZGfJuL5558vfv3Xf7245557im3bthUDAwO12DFq1BNPPFEsXbq0RZ+EejGF4enTp0ctbpqoxuKq2FYAAAAAAAAAAKie3qJCYsSovr6+4jOf+UytiCmKmaLwpSx+iaKaKIyJn6tWrbo+0lSIApx4bRTjHD169HpBTllsVcbbuXNn8clPfrJNn3D2OXz48E3PTbU4auXKlWO+RytdHerMmsQrg3nL9ebgN9Nirej+i2mxzl/tKTrR6+fmp8Q5fy3v881PrJ29pXh3Wqxr3VfTYr01b05arCtDZ9JiDRZXEmPl+erQn6TFeqX/7rRYGy8tSYu1dsX5tFhzu7+bP2S4bfjWtFiDRd5yvdW7IiXO5gX3FFn+4jv602LN68lrb752Nu87fOPCvLRYZy7P6cg8YuX8vHYQ6n1zYHFarB9adiktVt/ZtWmxfv/059JivbL0R9Ni/aW5H0yL9fK5vHbw/NWcSyIvXOoqslwp8ratnmJuWqzenrwbxAa78i5FDRdDabGGhvOO/aeHXkmL9btnnk2L9S/P5bWDf2nux9NiLerJy1GXzM07C/pw9/vSYvUuzot16Oq+lDh3Lsz7Du+76620WOfP5bU3B17MW++vnp/fkbHmJe4//Rfz2lRo9PyZvPO8e77+u2mxLn//z6XFeuNq3nnxtQXvSYu1fF7eNeOFP/vTabGuJi3Xhat5bdfFa3mxBofzzhGuDuW19XmR4vpn3nWlvLWV+z2eW5TXt3H+r/1XabFOnc07d+npylv783rz2sElQxfSYi27NpAW68zQO1PivH4u7zvsXZp37v83jv3/0mL9s+fz1vtH37ksLdZbd65Pi5W3VEXx+p0b02LlbKXVVKniqBDT3UVhU4zuFAVN9QVOZfHTWMq/D/Uxdu3aVTz66KMtW3Zu1opRneqL4sJ4tgkAAAAAAAAAAGaezhzCZor27t1b7N+/v1bQVE6FVz7K50Z7NPv7AwcOKIxqg8bCpcbCpsmIUcMaHT9+fMpxAQAAAAAAAADoLJUsjgpbt24tnnvuueJTn/rU9QKnUF/4NNIjlK+JODHiVMSh/cVRjVPiTUazAiujRwEAAAAAAAAAVE9li6PCmjVraiM+RXHT9u3bi2XLlo1r5Kj4ux07dtReFyNQrV69ut0fZdaKKRKng+IoAAAAAAAAAIDq6S1mgShuiqn24nHy5Mni8OHDtcKnKLzp7++vjUYUowmtXbu22Lx5s2KoDi6MyphWr9noU6dOnZpyXAAAAAAAAAAAOsusKI6qF4VPMYoUnS8K16aLkaMAAAAAAAAAAKpn1hVHMXNM15R60+2Zk/+iePaFfzWp137krp8u7l39M+nLBAAAVffcy79T9L3yu5N67do7f7Z47zt/Ln2ZAABgNvjHv/5o8Rv/cM+kXvvL/8Wu4uG/uzt9mQAAmF26270A0AkjR1W1EAsAAAAAAAAAYDZTHMWss3z58nYvAgAAAAAAAAAA00BxFAAAAAAAAAAAUEmKo5h1TKEHAAAAAAAAADA79BazzLPPPlscPny4OHXqVHHixIlaoUxMs7ZmzZpi1apVxebNm4uPfOQj7V5MiqJYuXJlUUX3rv6Z2gMAAJg+733nz9UeAADA9Hr47+6uPQAAoF16Z0tB1KOPPlocPHhwXH8fxVIPPPBAsXPnzuLuu+9u+fIBAAAAAAAAAAD5uqteFPWJT3yiWL9+fa0wanh4eFyPgYGBYu/evcXatWuLhx9+uDh79my7PwotnhIvCuIAAAAAAAAAAKiWyhZHfeYzn6kVRcUUemXRU1dX17gf5WuiSCqm3PvKV77S7o8067SqYKm/v/+m5+I7BgAAAAAAAACgWipZHBWjRf3qr/7qTUVRYTwjR4X6Iqkoptm8eXPx2c9+ts2fbHaZzoKlVatWTdt7AQAAAAAAAAAwPXqLinnggQeKQ4cO1f5dXxBVjkS0YcOGYt26dbVimPh95cqVteKnmK7t1KlTxfHjx2ujTZXqY+zcubP2ml/8xV9sy2ebjWJ910+l12zUp4yp+UyrBwAAAAAAAABQPZUqjtq9e3dx4MCBGwqaouhlx44dtaKpe++9d9yxnnnmmeJzn/tc8cQTT9R+L0eRilgxotHHPvaxln0OvieK1+qLmZoVNk1UFME1iqI5AAAAAAAAAACqpWu4HFZphjt58mSxdu3a60VMURQVxVKPPPLIlGPv2rWr+MxnPnM99nvf+97iW9/6VspyM7pt27YVBw8evOG5qW6yDz30ULFv374bnhsYGJi20aNu3/DptFibFuRNPbhwzrW0WH94Ni/We7oXp8Va3DuYFmvVgitpsTbcdjYlztmrefWuL52blxbr6/153+EzQ3lt79Dw1bRYZy9/My3WnDkr02INDV1OizU4+HZarOHBi2mxViz6wbRYH+5+X1qs2+fnbV9XhvJmQb50LS/WmWvfLUafqh+7c+qFz6VP3PFaWqz5PXnf4f/cl3e8fv7swrRY83uG0mK9eDlnewgre/K203/97/9mWixmvnnf91NpsX5m2afSYt2yMC+v/Pene9JifWhh3n596tKctFh3L83LI/6bDf82Jc6/e/VDRZb/8NaytFj/9PW8Y+ypq19LizU0eL7oRF1dvR35GYcHLyTGyjs/mL/k+9Ni/fCcH0+LdW4oL7/5TvFSWqxbizvSYj0//KcpcR69591Flr/2wT9Ii7Xww1MfNb706X33p8U6/uaStFgDQ3nnGt8p8q6TzOvK+4wvHf37abGohu+cOpcWqzfvlLFYMCcv2NzuvPx5Xv/zabFeX5TX3s/tyfuM/89l35cS5zO/9X8psgx9aldarFfO5fWRLJ2Xt50OJfYIr5yfd/55eTBvwYYSu717EvfrTFcS11fmfv3S2bwc5/yVvP68WxbmnetdSlr373vhqSLLb/xEXtv19bfzrlE9fu7rabHOJW4PZy7nnTMmphHFlcQG+kN35F1bqprEr6y9ouClLJyJafOiWCqjMCrs2bOneO6554q777679ntfX1/x2c9+NiU2o9u4ceNNz0119KjGqfliJDDT6gEAAAAAAAAAVE8liqOiEOrw4cO1kZ1ipKGjR48Wy5blVsRFAc2xY8dqU/NFAdav/dqvpcanuc2bN9/03IkTJ6YUs/H18d0CAAAAAAAAAFA9lSiOKqddixGjnnzyyZa9T4wudOTIkVrhVYxe9NRTeUPe0Vx8p42i+C2zOCoK6gAAAAAAAAAAqJ5KFEcdOnSoNmrUE0880fL3igKpAwcO1EaPip+03tatW2/4PaY1nKwoamuclu/++++fdDwAAAAAAAAAADpXJYqjYiSgGGHoIx/5yLRN9RZTsU11BCPGZ/fu3Tf8HlMoTlbja6PwKgreAAAAAAAAAAConsoUR23YsGFa3/NTn/rUTdOz0RpR+FY/vd7x48enNMpYvYceemhKywYAAAAAAAAAQOeqRHFUjPwz3aP/vPe9771pejamb/Soffv2TSpO/eui4CpGAQMAAAAAAAAAoJoqURy1cuXKthQqxdR6TI+Y/q5+9Kg9e/ZMOMbjjz9+w+8HDhxIWTYAAAAAAAAAADpTJYqjomjm8OHD0/qefX19iqOmWRQzlSOExZSGjcVOo4niuV27dt1QXOX7AwAAAAAAAACotkoUR91///21YpkXXnhh2t7z4MGDN4xkNJZnn322eOqpp1q6TFUXxUxHjhy5/nsUO8X3MJ7CqE2bNt1QGLVz586WLScAAAAAAAAAAJ2huypTri1btuyGkYFa6Qtf+EJx8uTJYvfu3eN+zcc//vHiJ37iJ1q6XLNBFKQdO3bs+qhP27ZtG3UEqePHjxfr16+v/QwKowAAAAAAAAAAZo9KFEeFxx57rDbt2le+8pWWvs+ZM2eK7du31wqyli5dOqHXRgEXOQVSMa1hFDnFNHtRFLdixYrioYceKvbt21d7xHNRFBWPGFUsvq/yNQAAAAAAAAAAzA6VKY7asWNH8ZGPfKRWBNPK6fVieraVK1cWTzzxxIReF1O7kStGgRoYGKgVxW3evLk4evRorSiqLJIKUQwVI03F35SjTQEAAAAAAAAAMDv0FhVy5MiR2khBUQRz+PDh4mMf+1ha7Oeff77YsmVL0d/fXyu2mcioUc8880zacnCzKIiLBwAAAAAAAAAAVK446uzZs7Wf3d3dxcGDB4tt27bVRhKKEYSiaCZGepqsmJLtySefrMUNMQJRjAL17LPPjvnaKKSKv43RjAAAAAAAAAAAgOlVieKo5cuXF11dXTc8Nzw8XOzdu7f2yBDx4j2i8GoyrwUAAAAAAAAAAKZXd1EBMY1eFCDVP6KQqfG5qTzK4qupvBYAAAAAAAAAAJg+lR05KrSiKEmhEwAAAAAAAAAAzAyVKI5auXLlDaNFQSfrf/vf5MXqfl9arJULLqfF+pnbh9Ji3TL/VFqshb15y/WeBRfTYq1Z/FZKnG++fWuR5f1LzqXF+tCK82mxbnvl7rRYv3e+Ly3WsvkfTIt1/tpLRSfq6pqbFmvo6htpsQYuPJ0W69/NOZkW6/1DH0uL9ZdWXkqL1dOVlye9dXFeSpxTl+YUWb5xbkVarMuDeQOsfm1gUVqs5XPyjmXPXR5Mi/Wta/8uLdbtxfenxYJ6g5fzjj/PXjmdFmvHO/JuwPnke/KWq//q/LRYP3L7t9JiXbiyIC3W0H+b09Z//6+8UmT5qR/4/bRYOweWpsXa/Ueb0mL91mv/Ii1Wd++StFhDg3nnLV1deflN0Z23Lw4P5p33Xz73jbRYX+nKayNWLv3xtFg/uTjv/PMDK/POsX/nO/emxPnOubeLLH/wQs4yhTnfyctRv3Yqr424fcHVtFgLruRdkv/TM8fTYi1eKA+ndVYu6EmL9dq5vP1x+b/9fFqsf/I3/nFarF868EharP/2E/8gLdavPPzRotN8+0t/lBZr39/8UNGJPnv+62mxTl3MO86eSbyuNL837zpcd4cOcjG/p6sjp4W6eC3vevHy+Xlt/bzevPX1nue+nBbrm3dvSYkz/P4fLrI8/JV/lBbrzL97Ki3WnMQNdUXitnX76W+mxXpr5QfSYilxmR6VGTmqtG7dumLPnj21qfaiaKqd+vv7i4GBgWLHjh3F8eN5J6oAAAAAAAAAAMAsKY6KQqjSU089VSxdmnd35FQsW7asWL16dbF///7ive99b7sXBwAAAAAAAAAAZpXMkffaZtWqVdeLpDqlMGqk4i0AAAAAAAAAAGB6dFdpWr366fU6TScvGwAAAAAAAAAAVFElptVbuXLlDT870fDwcHHmzJl2LwYAAAAAAAAAAMwalSiO+tSnPlX09fV1dHHU8ePH270IAAAAAAAAAAAwq1SiOCqsXr266GSdvnwAAAAAAAAAAFA13e1eAAAAAAAAAAAAgFZQHAUAAAAAAAAAAFSS4igAAAAAAAAAAKCSOqY46pd/+ZeLT3/608VMsHv37uLhhx9u92IAAAAAAAAAAAAzoThq7969xZ49e4qZIJY1HgAAAAAAAAAAQOfqmOKomWb58uXtXgQAAAAAAAAAAGAUiqMm4fTp0+1eBAAAAAAAAAAAYKYVR509e7boZGfOnGn3IgAAAAAAAAAAADOxOOrIkSPtXoRRHT58uN2LAAAAAAAAAAAAjENv0WF+6Zd+qThx4kRx7733Fp3m+PHjxaOPPtruxQAAAAAAAAAAAGZicdTAwECxc+fOolMNDw+3exEAAAAAAAAAAICZWBzV1dXV0QVInb58zC4vDV1Ii9V9ZlFarO9f9XZarIW9Q2mxls+5mhYrb6mK4l+8cndKnG8N5H2HK+ZfSYt1x8K8WH/lrjfTYi14OWe9h3955rW0WIt770qLdXX4fFqst8/8UVqsoitvVt9lCz6SFmuoGEyLdarI21YvD65Ki7V66cW0WOev5qSR56/kpaN/0p/XDp5LXK7MeayfvfJWWqy3Br+dFuvKxZNpsd5aOC8tFrTK28WptFhPPr86Ldaye66lxXrj0py0WO9fvDIt1vzevNzyd//6h1Pi/J2vP5MSJ9y/YmtarF+45/m8WO/Na+fn9vx0Wqx/8sYfpsV65/yPdWQb0X/mqbRYXV15+c3SpT+cFqu3a35arIuDeXn4O5fcnhZryZy8c43eoislzlffXFZkOf5GXqzFvXnral5P3tWb/+38n6XFOn+5Ly3W0NUzabEuXHkhLRa00oI5eWfZb/zIL6TFevC/+U5arD9c/bNpsX7l4S+nxZqzKO+Y/f9689+lxPmdl3OOi+Hhf7w4LdYbWzalxer+ym+lxVr5sb+ZFuvM5bxj9uKrZ9NiDc1f0pHXsTP1dOdt98vn5cXqv5S3Tawd+NO0WNf+Qt7+eHEg5zOeuLygyPL68h9Mi3Xnf/SjabGWXD6XFmugWJgWq2fVB9JiLejJayOuDGb2PDNjiqPKAiQAAAAAAAAAAIBKFUd18qhMirYAAAAAAAAAAGDm6LjiqC1bthTLluUNxZzl9OnTxYkTJ2oPAAAAAAAAAACg83VMcdT+/fuLXbt2FYcOHSq2bdtWPPTQQ8XHP/7xotPEMn7mM59p92IAAAAAAAAAAABj6C46xNatW4u+vr7i2LFjxYoVK4rNmzcXq1atKj796U8XL7zwQtEp/tbf+lvtXgQAAAAAgP+TvT8Bkis7D0PNm1WFtRcUADY3cWuA1EKRFlkAJD9bXqQuWA49y+OwCt2eiZk3fiMDCE3MTMzEhAFDdthy2DIMjDUxL96LsIC2xi/ehMOvAQQZXsaWWGjKkuyx7EYVST3RWshCkxJFit3E0ivWqpw42chCZtatQlbmn9vJ74sooOrmzf+em3Xvyf9k/fdcAAAAYJSKo+o+/elPF7/wC79QrKysFKdPny4+97nPFfv27St+7Md+rPjsZz876OYVTz/99KCbAAAAAAAAAAAAjGJxVKNjx44VV65cKb7yla8Un/rUp4qf+qmfqs0m9dM//dPFl770pUE3DwAAAAAAAAAAGGJDXRxVl2aOOnPmTHH9+vXi3LlztdvvpRmmDh06VPziL/5i8frrr/e1PdPT08XNmzf7uk0AAAAAAAAAACDD4qhGc3NztVvt3bhxozhy5Ejt1nu7d+8unnvuueJXfuVX+tKGarVaK5ACAAAAAAAAAACG18gVR9Xt2rWrOHHiRPHVr361+OVf/uVawdIzzzxTfOxjHyt+/ud/vqezSaXCrGvXrvUsPgAAAAAAAAAAMMbFUY1mZ2eLCxcu1IqW/vpf/+vFP//n/7w2m9SP/diPFZ/97GcH3TwAAAAAAAAAAGAAsiiOapxN6tixY8WVK1eKr3zlK8VHPvKR4qd+6qeKvXv3Fj/zMz9TfP3rXx90EwEAAAAAAAAAgD7Jqjiq0b59+4pz584V169fr/2fCqaefvrp4tChQ8Uv/uIvDrp5AAAAAAAAAABAj2VbHNVobm6u+NznPlcrlPrRH/3R2q33Jicni5/+6Z8uvvSlLw26eQAAAAAAAAAAQA+MRXFU3fT0dHHmzJlakdQv//IvF9euXSs+/elPFx/72MeKn//5ny9ef/31QTcRAAAAAAAAAAAIMlbFUY1mZ2eLCxcuFDdu3KjNJPWP//E/Lnbv3l0899xzxa/8yq8MunkAAAAAAAAAAECXxrY4qm7Xrl3FsWPHiq9+9avFSy+9VCuQeuaZZ4q9e/cWP/MzP1N87WtfG3QTAQAAAAAAAACADox9cVSjmZmZ4hd+4ReKlZWV4ty5c8XnPve5Yv/+/cUP/uAPFp/97GcH3TwAAAAAAAAAAGATKtVqtbqZJ4yTL3zhC8XRo0eLxcXFolKp1JYdP368NtPUpz71qUE3jxG17RN/MSzW49s+GhZrf/HxsFhvV+6Gxfrolu1hsR7bshwWa8tEXNd5b+Wd/qVbC2/fKqJ8Y3kxLNauyQ+Hxfpfv/tdYbE+ufutsFi/8od7wmJdvPnvw2JVq/fCYt196yvFMKpMbI2LteWJsFgTEzvCYn3fth8Pi/Vn3xXXP9+8vSUkzmt3Y+JE982PbbkfFuvectz1CP8lrusqrlW+ExbrD9/4N2Gxnnz8UFisawv/z7BYjL6t3/dMWKzt2/eFxXp68kBYrPdNxOXOX1pZCou1XMS9/+wpviss1kcmngyJ8ytvf6aIUl1+IyzWlm0fDIt18sOfDov1v/nI74bF+tuLB8NiXXzln4bFmtz6VFis+7e+UeRucvt7w2Kt3LsRFus9T/xYWKz/elfcMfHUzpg+9Ss3Hi+iVIq4PPy9j98OixX5qff/5ztxY+LJIm4ce/O1Xw2LtfPJmbBYry3+Qlgs8vD6W3GfW95fGc4/aT15Pa6f+NLEh8JivXY77vONLZMxn2Mn73s8pi9cDjwcdm2bDIu1EvgmtCfw7xr/9AM/GBbrL1xdCIsVeGgVj22J+xxua2TDAkUe91PFSlist5fjXq9b9+Pa9da9uFgf+b1fColz+9M/UURZDuxvHrt9PSzWxK3XwmL9wY6498Untsb1Edun4mLdC8xvdj++MyxWbswc1eL1118v/tE/+kfFxz72seLgwYO1Aqkk1ZClrzSj1IEDB4q/8lf+yqCbCgAAAAAAAAAAbGBqowfHyWc+85la4dPly5drPzdOqFWfNapxuQm3AAAAAAAAAABguI11cdTXvva1WkHU+fPni5s3bzYVPZUVRCXplnrp1nqf/nTclPIAAAAAAAAAAEC8sSyO+if/5J/UiqIWFxfbmiVqdna2VhD1kz/5kwNoLQAAAAAAAAAA0ImxKY764he/uDpLVDsFUdPT06uzRD399NMDaDEAAAAAAAAAANCNrIujXn/99VoxVCqKunr1altFUXNzc7WCqGeeeWYALQYAAAAAAAAAAKJkWRz1+c9/vlYQdenSpbYKovbt21criEozRe3atWsALQYAAAAAAAAAAKJlUxz1ta99bfW2eTdv3mwqfioriErqt8379Kc/PYAWAwAAAAAAAAAAvTTyxVGf+cxnitOnTxeLi4ttzRI1MzNTK4g6evToAFoLAAAAAAAAAAD0y0gWR33xi19cnSWqnYKo6enp1Vminn766QG0GAAAAAAAAAAA6LeRKY56/fXXa8VQqSjq6tWrbRVFzc7OFidPniyeeeaZAbQYAAAAAAAAAAAYpKEvjvr85z9fK4i6dOlSWwVR+/btq80QlWaK2rVrV88KtZInn3yyJ/EBAAAAAAAAAIBMi6O+9rWvrd427+bNm03FT2UFUUn9tnmf/vSne96+dJu+iYmJ4v79+z3fFgAAAAAAAAAAkEFx1Gc+85laUdTly5fbmiVqZmamVhB19OjRvre1V7NSAQAAAAAAAAAAmRVHHTp0qFhcXHzkLFFp1qb6LFFPP/1039v58ssv932bAAAAAAAAAADACBdHLSws1IqhUhFUWVHU7OxsrSDqJ3/yJwfYyqK4dOnSQLcPAAAAAAAAAACMWHFUXb1AKtm3b1+tICrNFDUst7E7ffr0oJsAAAAAAAAAAACMYnFUcuTIkeLUqVPFpz71qWJYfPGLXyyOHj1a3Lx5c9BNAQAAAAAAAAAARrE4anp6urh69WqtEGkYpGKo69evrxZFNc5sBZ3YvvX9xTD6WuUrYbG2F0+Gxfqte9vDYn3o/t6wWG9XV8Ji3Snuh8R5o7hWRLl373pYrG2THw+L9UuvTIbFmt62LSzWRCXyfWE5LNK7tnwiLNa3iqWwWJUtT4TFenxn3D6+fffrYbFW7r8RFuu3i18Ki/Xqd+IKz58s9oTEuVF8o4jyweqHw2J9YktYqGK5+vCW0d1aqi6GxZoo4nZycmvce+xy9XZYLGi0Zdt7w2Jtn4zpA5OXlxcCY4WFKvZM7guLtbv4YFisJ4qtYbF+f+XNoEhxY4PK5GNhsR6bel9YrH9w9dfDYr17xx8Pi/WdO3Efa01siXsve3Lb94TFunHrm2GxispEWKgP7vrLYbG+ff9LYbHuLb8VFuvbr8fl4f/07bhz+707/2xInFfv/vsiylNb48YZ/83ux8Ni3V2OO+bvLH8nLFY18DOlyrbdYbFWqvfCYkGr5cC/qeyYihtjv3Uv7nx85cn9YbE+uiWu/3rrXtzYf9e2uM9m7yzHHBOv3YkbBD2xNe51f/t+3LH18ptxx/zRL10Ii/Xbt+Ne+w88GXec3luJ62+2Tca99nfjDoli+1vfDotV3RqXp27b+vhQfp56KzDFee2P/dchcW4H9l2RHvvqS2GxVlbi9nHXJ58eypwksLsp4t6BGKnX+caNG8XS0lLt/1SENOivdDu/xp8BAAAAAAAAAIDRMDWMt9R74YUXimGzuLhYm83qC1/4wqCbAgAAAAAAAAAAjOLMUWfOnCmG0czMTLGwsFC77R8AAAAAAAAAADD8hq446iMf+UgxzP7G3/gbg24CAAAAAAAAAAAwisVRwy7d9g8AAAAAAAAAABh+iqM26emnnx50EwAAAAAAAAAAgFErjpqeni5Gxc2bNwfdBAAAAAAAAAAAYANTxZC4ceNGMSpGqa0AAAAAAAAAADCuhqY4ateuXcWoGKW2AgAAAAAAAADAuBqq2+oBAAAAAAAAAABEURwFAAAAAAAAAABkSXEUAAAAAAAAAACQJcVRAAAAAAAAAABAlhRHAQAAAAAAAAAAWVIcBQAAAAAAAAAAZElxFAAAAAAAAAAAkCXFUQAAAAAAAAAAQJYURwEAAAAAAAAAAFmaGnQDYNx8ZOJTYbG+vvKbYbEmismwWNsrO8Ni3S/uhcW6W62GxXq8Eldbem+lEhLnXZX3FVHe3PrtsFhPFE+GxXql+MOwWF965SNhse4uxx0PT019IizWt+8uhsUqJrcUw+it218Ji7Vl67vDYi1X4l6viYkdYbFuVW+GxXp/8f6QOG8Hvme8XbkbFuu3Xt8aFmtrJe49NtL9lbfDYk1OPhYW697Ka2GxoNHTU38yLNYfBObh75/8ZFis14pXw2LdK26HxdpbietT366uhMWaLmLeg35k51wR5dfu/HJYrHcVHwyLVWyLC/Wfv70rLNbtuMOh2LH1A2Gxbt76YlisYiLuo7vKlifCYr2y/F/CYm2ZiDsm7k18JyzWRGB+s3L3elis11b+YOjyt2v3446H/+lbHw+L9YEi7nOSauD7TyXwMyUYFZFH/XLcR7zFrre/FRbr5s73Dec+bov7TOLt+3F94c6pmKPiA3fiPi9+Y9uHwmJNVmI+80/e/3hcPriy5amwWLsC/6Z0617csfXYlomhPBe3VgJzicC8ZGUqbrx+f6U6lOfQ5ERcrBu3l0Pi7AjqA5NbgX3zq99zOCxW5D6uBP59d2vg8XB3Oe61D+zq2YCRGAAAAAAAAAAAkCXFUQAAAAAAAAAAQJYURwEAAAAAAAAAAFlSHAUAAAAAAAAAAGRJcRQAAAAAAAAAAJAlxVEAAAAAAAAAAECWFEcBAAAAAAAAAABZUhwFAAAAAAAAAABkSXEUAAAAAAAAAACQJcVRAAAAAAAAAABAlhRHAQAAAAAAAAAAWVIcBQAAAAAAAAAAZElxFAAAAAAAAAAAkCXFUQAAAAAAAAAAQJYURwEAAAAAAAAAAFlSHAUAAAAAAAAAAGRJcRQAAAAAAAAAAJAlxVEAAAAAAAAAAECWpgbdABg3v3P7X4fFenLb94XFeuPuUlis92x7OizWW8XNsFh/VEyGxbpVfT0s1v3KvZA41WK5iPKeie8Ji7Wr2B4Wa7l4XzGMtk+thMWaur81LNaOLe8Pi/XmvethsYqJuPSjunInLNadt+P6weryrWIY3a3EvfZfmPhPMYGq1bhz8bG498WPTv5QWKynt1fCYr1x+4+FxbpRXAuLda+4HRbrsWI6LBY0+t03/llYrO964i+ExfrG8mJYrB/e8mfDYm2fjMtv7sWFKr65/HZYrLeLN0LiLK3ExEl2bfloWKwf2R13Pdy33/rusFiffNeNsFiv34nLbZZvxeWVW7fGjVvu3H8zLFYlcEx8L3B8cOfO74TFqlbvF7l76/UrIXEmt727iLJj20fCYr1yZyEs1id3/sWwWDuqcef1W3e/Fhbrozt+IizW49W4z2+gVWA6WGy/G/feuLJ9V1is3TevhsW6+4XPh8Xa8qG4PG7LBz8ZFmtl4omQOPf3fLiIshw4cNn+2bNxsT5+ICzWlRM/Hxbro//i34TFeivytY/7qLGoBMaanJgYyr5reSLu7xHb4j4CLQJf+mLbZOC4Mahh22/FfS678sTesFhXX7sbFmsl8JcY+CeEYiUwK3l/9bWwWMW9wDmNdj4WFyszZo4CAAAAAAAAAACypDgKAAAAAAAAAADIkuIoAAAAAAAAAAAgS4qjAAAAAAAAAACALCmOAgAAAAAAAAAAsqQ4CgAAAAAAAAAAyJLiKAAAAAAAAAAAIEuKowAAAAAAAAAAgCwpjgIAAAAAAAAAALKkOAoAAAAAAAAAAMiS4igAAAAAAAAAACBLiqMAAAAAAAAAAIAsKY4CAAAAAAAAAACypDgKAAAAAAAAAADIkuIoAAAAAAAAAAAgS4qjAAAAAAAAAACALCmOAgAAAAAAAAAAslSpVqvVQTcCxsmW7/4TYbGefvJIWKyX37gUFmv68bh9vF/cDou1vBIXa8fkU2GxHiumQ+I8UTxZRHmtuBEW663q9bBYE5UtYbG+p/jusFgf3nkvLNart+P28UsrS2Gxbtz5cjGMJid3hMV6bOoDYbHeuv+tsFjLy2+Gxdq+5b1hsf7stoMhcV6JO32KrxdfD4v1ndtfCIv1Xdt/OCzW3cD3xfdU3xcW61blTlisa8U3w2J9+8o/CIvF6Jv6aEy/lTyx678Ki/XWW78ZFqsytSssVrUad15X774WFmtq54fDYu2c+q6QOJ+s/LEiyitF3Pv+1+//x7BYWybijq2ZyR8Mi/Wn338zLNbn/zBmXJb8p9ufCYtVXX4jLNb27R8NizU1sTMs1rsqHwmL9a3l3wqLde/+tWIY/ejOvxQS56X7cWO8rZW44+HVt/59WKzJre8Ki7V3y/eHxfr4xIfCYl1bjhtQvVzEnT/XF/67sFjk4c23b4XFunF7OSzWU9srYbGu3Yn7U1tcq4ri/kpcrMnA6RamJmL2cnolLn+ubtkeFuu15amwWFuCXqtk62RcrOrFfxgW6+2/dCIs1p37cefi41vjDvrH78T9naSoBp7Ylbh9XH5sb1islcDqhTfvxb1eUVUVb96Ney9792Nxf1OKdO3W/bBYT+2M61O33or7++fKzt1hsW4txx30ux+PG5/lxsxRAAAAAAAAAABAlhRHAQAAAAAAAAAAWVIcBQAAAAAAAAAAZElxFAAAAAAAAAAAkCXFUQAAAAAAAAAAQJYURwEAAAAAAAAAAFlSHAUAAAAAAAAAAGRJcRQAAAAAAAAAAJAlxVEAAAAAAAAAAECWFEcBAAAAAAAAAABZUhwFAAAAAAAAAABkSXEUAAAAAAAAAACQJcVRAAAAAAAAAABAlhRHAQAAAAAAAAAAWVIcBQAAAAAAAAAAZElxFAAAAAAAAAAAkCXFUQAAAAAAAAAAQJYURwEAAAAAAAAAAFmaGnQDYNxUV+6Gxbp685+FxapM7giL9drbi2Gxduz4WFis23e+FhbrzsS3wmLdDKpT3brlqSLKzsn3hMXaVnkiLNbWYntYrPdtXw6LtXPL/bBYTyzH1S3vvfO+sFi3t94Mi/X2na+Hxbp76/fjYhVxsYqVe2GhqtW44+vWyu2wWP+/iZhz+7XbXy7ixJ0/H9v+58NivX9iZ1isLZWwUMUbcd1g8V/uXQ6LVV25ExYLeuWN1/5jWKzK5La4WMVKWKyndvzxsFivrvxaWKyV5Vthsd6u/kFInC9vmSyiTFUC892pmbBYK0Xcm8b7dsTlSY9NxbXr8bhfY/Hktu8Ji3XztV8Ni/X2vS8Uw+j14j+ExapUAj/qrMb1qZF+Y2vM7/HNt3+ziFK991ZYrN3TPxIW66NF3Ln43Y/Hjctu3ok7tn799ufCYt2//YdhsaDVZOBY9l074t60l6thoYp3TcV95lK59VpYrHuPx33OOxH4e6ysxPSrldtx+eD9ia1hsXYF5pZ3A1OSlcBjfvl23N+67gaejJXA4/S1O3HH1/LW3WGxtk0O59wnWwJjTQZ+vrElsPOKej/buSXu1bqzvDKU5+K2wDf/7deuhsWqbo37e/j9yD41soNmXcPZewIAAAAAAAAAAHRJcRQAAAAAAAAAAJAlxVEAAAAAAAAAAECWFEcBAAAAAAAAAABZUhwFAAAAAAAAAABkSXEUAAAAAAAAAACQJcVRAAAAAAAAAABAlhRHAQAAAAAAAAAAWVIcBQAAAAAAAAAAZElxFAAAAAAAAAAAkCXFUQAAAAAAAAAAQJYURwEAAAAAAAAAAFlSHAUAAAAAAAAAAGRJcRQAAAAAAAAAAJAlxVEAAAAAAAAAAECWFEcBAAAAAAAAAABZUhwFAAAAAAAAAABkSXEUAAAAAAAAAACQpalBNwDGzeT294bFemzb/rBYb779W2GxKpOPhcW6c++PwmIV1ZWwUBMTO8Ji7djy/pA4j1feXUTZXuwMizVdfSIs1vZK3NvWneW44+GNu1vCYt1bqYTFmgysgf6ByoGwWNt3xsV6fSXu93g/sI/4ZuWbYbHeWImLVQk8Jg7v/GhInB1PPl1E+fev3y2G0XftvBMW6zu3t4bFSkdElMenPhQW6/bK9bBY0Ghi6+6wWLt3HgqLdf2NXx/KHPXanS+Fxaoux/WDk1vjct7l+zdD4tyejOu33jP58bBY+yb2hsV6cmo5LNbduFDFf/6j6bBYv7d8LSzWW/e/ERZr9/SPhMWaLuI+j3iriDl/kl3FU2GxvrEc13fdvf9qWKyVlVthsf5P3xWTP79x92NFlPN/9B/DYt186z+HxTryibhj63dvxH3W9e9e/2JYrKe3/pmwWF+999mwWNDqXtxHLsXWatzYvzoRN8auVuI+c1l54j1hsQI/Ai0m4j5GKK7dDQo28WTcZxsr1bBYW+7E5Uo7br8eFuvW9IfDYt157m+FxXrt1v2wWFsiD9RAr92OGwhNTsSd2Du3xPVdb8edQsVk4PQu9wI7wl2f++9D4myZ/d8XUV5Zfjws1tv3436JO37uaFis6l/7b8NifeV9fyIs1sdufD0s1puPfTAsFuszcxQAAAAAAAAAAJAlxVEAAAAAAAAAAECWFEcBAAAAAAAAAABZUhwFAAAAAAAAAABkSXEUAAAAAAAAAACQJcVRAAAAAAAAAABAlhRHAQAAAAAAAAAAWVIcBQAAAAAAAAAAZElxFAAAAAAAAAAAkCXFUQAAAAAAAAAAQJYURwEAAAAAAAAAAFlSHAUAAAAAAAAAAGRJcRQAAAAAAAAAAJAlxVEAAAAAAAAAAECWFEcBAAAAAAAAAABZUhwFAAAAAAAAAABkSXEUAAAAAAAAAACQJcVRAAAAAAAAAABAlirVarU66EbAONny0R8shtG2Jz4eFuvOW78XFuu7nvyJsFjffOtyWKz3PvajYbEmgupUb678QRFluXonLNZ3Tf5AWKyPb308LNaurffCYm2bWgmLtWUiLtbURNxb/EpgtvDex+4Wufvta48P5e/xN96IO+4P7NwWEufT7369iPL7b8a0KdrSzcfCYn3l/hthsf5o5XfCYr31xmJYrGJiS1ioe7/762GxGH1THz0YFqsyGdffTG59T1is5dvfDIv1Pbv+m7BYv3Pz/x0W66PTce16u4jpU28sXy2i3L33alis2cf+clisQ++9GRZr+2RcvvuNwPf+e8tx1w/+0Vvbw2I9vvV+WKwf/1Dc8TVZCQtVfO4be8Nivfex22GxrgbmcJ+79b+ExfrfvetjIXEOPRWXV35hSMc/v/7tuHZ9tfjdsFg33/rPYbFW7sX9HiPd/+qVQTeBIXPr1q2wWJXluM+VbhVx48/tgW+OE3feDIv19lTc+9mOynJYrLvFVDFs7i7H5am7v/XFsFjf/Gf/NCzW9t1PhMWaOvpzYbFu3o47tr7xetzfNqa3x/UR+1/6H8NirbwRNz77pR84GhbrJ278alisb33/XwiLNVHE9c/vf/vrIXEm7sTlcNff/cmwWFsn48bF12/HjWW3B7brXuAfu/ZsnwyLtRz4N7gnH9sRFywzZo4CAAAAAAAAAACypDgKAAAAAAAAAADIkuIoAAAAAAAAAAAgS4qjAAAAAAAAAACALCmOAgAAAAAAAAAAsqQ4CgAAAAAAAAAAyJLiKAAAAAAAAAAAIEuKowAAAAAAAAAAgCwpjgIAAAAAAAAAALKkOAoAAAAAAAAAAMiS4igAAAAAAAAAACBLiqMAAAAAAAAAAIAsKY4CAAAAAAAAAACypDgKAAAAAAAAAADIkuIoAAAAAAAAAAAgS4qjAAAAAAAAAACALCmOAgAAAAAAAAAAsqQ4CgAAAAAAAAAAyNLUoBsA42b7E58Mi1UtlsNiPTb5/rBYdypfCYv16v3fCotVXb4VFuvN6ithse6uvBYSZ9vEniLK1oknwmK9t3gyLNbjW+6GxZrefi8s1pv34t5On5xaCYu1ZTIu1rff2hYW66U/2hkW65txh0Rxq4gL9kZxMyzWRyfeHRbr29XfDYtVqXxvSJz/8//xXxZRqr8dV/f/f/nss8Uw+sTWx8JiTd39RFis3388rk+dqGwJiwWNJrbuDos1uSUu73pyy/6wWNdvfzMs1lfvXC6G0RvFtbBYlWIyJM7jgWOpN8MiFcX7H78dFmuyUg2L9ZHH4tr1wu8/Hhbrh/fEvZd97943wmJ9440dYbH+3u/EvV6vFa+GxVopvh4W6wOvPx0Wa0clpo+ItiNozPjnPvCbRZSf2B93Xp/8D38uLNZ7t4aFKr57a9z79ZXiw2GxXr7/G2Gxlpcj34Wg2et34z6j2j4ZN2bcOlEJi7USly4Vd6fixv5bAvexsnw/LNbOm78fEuf+ng8VUe4Ezidx7+Uvh8V64kPvCYv1W//jr4bFuv8X3w6L9YEn4t60P7gr7nPsSF/7ob8aFmvHVNyx+kORfcT7/0xYrO2Tcfu4c0tcrJWv/F5InHf/7P9SRPmBPx/3d40L/4cDYbHetSPu72Zb7sblqbcDP1+/H/jmfzcykWBdZo4CAAAAAAAAAACypDgKAAAAAAAAAADIkuIoAAAAAAAAAAAgS4qjAAAAAAAAAACALCmOAgAAAAAAAAAAsqQ4CgAAAAAAAAAAyJLiKAAAAAAAAAAAIEuKowAAAAAAAAAAgCwpjgIAAAAAAAAAALKkOAoAAAAAAAAAAMiS4igAAAAAAAAAACBLiqMAAAAAAAAAAIAsKY4CAAAAAAAAAACypDgKAAAAAAAAAADIkuIoAAAAAAAAAAAgS4qjAAAAAAAAAACALCmOAgAAAAAAAAAAsqQ4CgAAAAAAAAAAyNLUoBsA4+ajkz8UFuta8WpYrI8U3xUW6z8WvxoW6+mpPxkW63dXvhIW63srPxAW6/7ESkic7ZW4Ln17YOnsh5+4HRbr43veDIv15WuPh8VaXqmExfrOra1hsb799rawWG8sh4UqFu5/PixWtXovLNbkxM6wWFOBsX71rX8XFqtaxP0ivzHxx0LiXPtTHyiiPPEbN8Ji3V2O6wh3b4s7Tnduifsd/rHJuP7mu5f/q7BY9wL7VGj0/TuPhMXaW4k7f16txuVKN6Z2hMX60zv+Ylisz9/6H8JiPVHsDYt1v4jpn791f7GIUqlsCYu1eHMyLNaBp+Ley/7dt3aHxXrPRNy5eO1W3Hv/SvXuUF7V+NWb/1MxjKZ2xOWDr1fixv3373wzLFZlKm78+eVrnwqJs+svv1JEqbwU87lGcuN23Hn9jTtx7fpTu+6ExfrhqbjPb9792o+GxboxFdd3Qavtk3HjvMe+/p/CYr3y/kNhsfZOxeVL227GvQfde9e+sFg3luP66JXHPxwS5zuvxX1Ocm/5flisNz72l8NifeJPxI3zvv+v/M2wWN96M+6Y3zoZl/W+58v/KizW5K648ee3PvgnwmJNBH50ti2wf36t2BUWa1vgTm4JHFStfHI2JM6b3447Tv/75+L+Xvnm3bj8+fdfi8stv3/P9rBYO97+Tlisb07Efb6xHPfSF0/FhcqOmaMAAAAAAAAAAIAsKY4CAAAAAAAAAACypDgKAAAAAAAAAADIkuIoAAAAAAAAAAAgS4qjAAAAAAAAAACALCmOAgAAAAAAAAAAsqQ4CgAAAAAAAAAAyJLiKAAAAAAAAAAAIEuKowAAAAAAAAAAgCwpjgIAAAAAAAAAALKkOAoAAAAAAAAAAMiS4igAAAAAAAAAACBLiqMAAAAAAAAAAIAsKY4CAAAAAAAAAACypDgKAAAAAAAAAADIkuIoAAAAAAAAAAAgS4qjAAAAAAAAAACALCmOAgAAAAAAAAAAsjQ16AbAuPnkY3GxdkztCYv16q2VsFjbd35vWKw9xc6wWEUlrh70reJuWKxvVV4OifNntn13EeU9j90Oi/XhJ+JiTW+5HxbrA4Ht+tab28Ji3V2OO063TMSd12/dXw6Lde/218Nivf/xPx8W6w9f/1dhsbbs+HBYrJW718NiFRNbwkI9MVkNifOu+T8oovzhqx8LizX3kW+Fxbr6Vtyb/5v3J8Ni/cvfj+u7Pv5k3Pvi1Te2h8WCRgd3xb0v7t8V1zf/7vW4PuKV4ofDYr26EndeVypxHz2sFHE5ySvLvxMS568+9SeLKFsm447TrRNx+e6Nu3G/w8cic/rH4/Zx365bYbGe2h53/vzffue3w2JNbN0dFusjO388LNbVm/8sLNb2Jz4RFuve8p2hvD71qR0xx1flP8fk88nErrjz+hd+5N+Exfrs0g+GxboZ2A/+pz+K+6zrw4/FHae/9+a3w2JBq6mJSlis21/4tbBY73pP3OcIlbtx7//feeIjYbF2hf4eA4MVMcfE99+KyemT1979ybBYv/nK22Gxfv33Xw+L9dE9ce9Be3fEfUa148LPhcX67N/6F2GxZr78G2GxPrQ1bixbndwaFmslLiUsJgM/R1ieiNvHSFPfuRoS56M/8peKKP/D+3+gGEZ//7Uvh8V6LW64UbzretzfI7a/Z29YrDeX4/oI1mfmKAAAAAAAAAAAIEuKowAAAAAAAAAAgCwpjgIAAAAAAAAAALKkOAoAAAAAAAAAAMiS4igAAAAAAAAAACBLiqMAAAAAAAAAAIAsKY4CAAAAAAAAAACypDgKAAAAAAAAAADIkuIoAAAAAAAAAAAgS4qjAAAAAAAAAACALCmOAgAAAAAAAAAAsqQ4CgAAAAAAAAAAyJLiKAAAAAAAAAAAIEuKowAAAAAAAAAAgCwpjgIAAAAAAAAAALKkOAoAAAAAAAAAAMiS4igAAAAAAAAAACBLiqMAAAAAAAAAAIAsTQ26AUDnfve1HWGxPrjzXlisuV0/GBbrtbsrYbHes+vHw2J97/YtYbF23f6+kDgH3nO9iHJw942wWB/f8/WwWDt3vBkW68WvzYTFur9SCYv1pVefDIv17XvLYbF+b+U3imH06v3fKnJXrd4Pi1UpJsNifeKp10Pi3Psv24soN+7EnT87JuNe9xt341LuL70St4+/ufxrYbHef/tPhcX6jbu/HBarKP5qYCxG3bVbW8Ni/YfX4vqIH3tXXB7+3z7+rrBY33qzGhbrt++8NyzWJ7buCov1xt2Ydu3bdauI8te+/9+HxdryXFy7Kitxx8MfPv90WKwXv70vLNbv3NwZFus3X30iLNa9u6+ExSqqcePrP7g3nOODnZPvCYt1b1vca79y72ZYrMmJmPPx3y3+cBHlh7/7pbBYTxyIe93vfiVurP5rf7g7LNa/ff1SWKwf2vFsWKxXbw3neU0eXr0Vlz9P/vj/PSzW+298OSxW9c3XwmLteX/c5wjfXI7rv7ZPxs238ObdmM8t7+/9RBHl53Z9PCzWvbj0OdS7/vh3hcX62N/7a2GxVt797rBYP/m5nw+LdXP75FBOV7IceHzFZUtFMfnat+JiTcb1g/d3xR33i5UPhsRZuf+1IsoP7Y77fP0/3bgdFmv3d/5LWKzr74rrn2+871Nhsd66EzfG3rtT2U4/mDkKAAAAAAAAAADIkuIoAAAAAAAAAAAgS4qjAAAAAAAAAACALCmOAgAAAAAAAAAAsqQ4CgAAAAAAAAAAyJLiKAAAAAAAAAAAIEtTg24Ao+3y5cvF/Px87f+rV68WN2/erC2fnp4u9u3bVxw8eLA4fPhwMTc319M2XLx4sbhy5cpqG9L29+zZU8zMzNS2Pzs7W2sPAAAAAAAAAADjQ3EUHTl79mxx+vTp1WKoeiFU+v/69evF4uLi6tf58+drxUrHjh0rTp06Vfs+wqVLl4qjR4+utqFRWpa+UrFUWi9JBVInT56s/Q8AAAAAAAAAQP7cVo9NScVG+/fvrxUZpUKoc+fOFTdu3CiWlpZqM0iln9MsTunntDwVRCWpUCkVVD399NOrxUrdSLNBHTlypBY3bWNhYaGoVqurX2n7Z86caZotKs0w1fg8AAAAAAAAAADypjiKtqVZoA4cOFCbGSoVQKWCpFSYtN5MUGl5KpZKRUp1qSgpFSelQqlOpOenNqRCpzQDVCqCSttIt89rlIqiTpw4UXs8/d8oFWelGKnQCwAAAAAAAACAfCmOou2ipGeeeabYs2dPrShqbm6u7eem4qTWW9mlmac6mUEqtSEVaaWirDRTVePMUOtJxVmpgKpRKoxKBVJmkAIAAAAAAAAAyJfiKNpy9OjRWiFRmjGqnYKkVo2zR7XGbFcqqEqFUanQqrXY6VFSMVXrDFL1WagAAAAAAAAAAMjT1KAbwPBLRUT1WZ5SMVEqjkrFSa2zQW0k3fYu3WavsRgqfX/+/Pk1RUtl0kxP6VZ8adtpxqhOpAKttB+Nt9Orx22nDf3wpa/9qzXLfuAjPzGQtgC06863Ftcs2/a+5tudAgybn/3Zn21rGePjt//gX6xZ9n0f/F8NpC0A7br/ylfWLJt698cG0haAdsnFafT/OvMP1iz7v578mYG0BaBdZ0//3JplJ079zYG0BaBdPzvmebjiKB7p8uXLTT+ngqLDhw8XS0tLm5pFKq2bZn5qlAqd2ilMqs88lWaP6kZ6/vHjx5uWnT59ujazVCreGrTf/P1/vWaZ4ihg2N379hfXLFMcBQy7v/t3/+5YDwRZ63e+8S/XLFMcBQy7le98de1CxVHAkJOL0+i/+3/8wzXLFEcBw+4f/cPTa5YpjgKG3d8d8zzcbfV4pMaZlhrVZ5NqV1kh1ZUrV9p6bpphKklFTN0oe36awerChQtdxQUAAAAAAAAAYPgojuKRNjM7VC9nrkq38WudeaoT6RZ/rS5evNh1XAAAAAAAAAAAhoviKB4pFSWVmZub21ScNENTqz179jzyeenWe/UiqQMHDhSVSmV1Jqmo/Wm9dSAAAAAAAAAAAKNPcRSPND09XSwsLKzOuJT+TwVLm51Rquz2fGWzOLXzvOPHj697u79H2b9/f0fPAwAAAAAAAABgtFSq1Wp10I1gPKQZn8puZ/eoGagOHz5cOrPTuXPnimPHjm26HZcuXSqOHDmyZvnS0tLAbyFY9ho5RYFhp+8CRpG+i1aOCWAU6buAUaTvopHjARhF+i5gFFXGvO8ycxR9UVbclGakaufWfGm9Mu3ckg8AAAAAAAAAgPGlOIq+SDNEtTp16lRbz0230CsrmJqdne2oLdevXy9drtgKAAAAAAAAACAviqPouZs3bxbnz59vWjYzM1OcOHGireenIqhUXFW/5V36+cUXX1x3RqlHSbfPK9NpPAAAAAAAAAAAhtPUoBtA/k6ePLmmCKlsJqmNpNvvtXMLvnYsLi6uWdbpLFQAAAAAAAAAAAwvM0fRU5cuXWqaNSoVRi0sLKzOAjUIly9fXrPs8OHDA2kLAAAAAAAAAAC9oziKnhZGHTlypOlWei+//PJAC6Nab+9X1+4t/gAAAAAAAAAAGB2Kowh18+bNWlFUmompXhhVv41emjEqfT9IZ86cGXhh1M/+7M8WlUql9KtM4+PpuQAAQGwe/qhcXB4OAACd85k4AACDNjXoBjDaUhHU1atXi+vXr9cKoxqlQqjnn3++mJubK4bB4uJira2N0ixWZQVTAAAAAAAAAACMPsVRdCXdKq/1NnmpAKn+lWaPSuscP368OHbsWDFIR48eXbMszWgFQHf+zt/5O4NuAsCm6bsAyIH3M2AU6bsAGHXey4BR9HfGvO9SHEVXNpp1Kc3UdPLkyeLy5cu14qj0ldbv923skvPnz9fa01oYlQq3AOiO6c2BUaTvAiAH3s+AUaTvAmDUeS8DRtHPjnnfNTHoBpCvVHg0Pz/fVECViqX279+/5vZ2vZRu95cKsxqlNg3L7f4AAAAAAAAAAOiNSrVarfYoNjQVRZ09e7ZpWSqcmp2d7fm2Dx8+XJu9qm5Qs1cBAAAAAAAAANBfiqPom927d9dmcWq0tLRU7Nu3r29FWQqjAAAAAAAAAADGh9vq0TenTp0qndWpV86fP68wCgAAAAAAAABgjJk5ir5Js0al2aNa9aJoaXFxsThw4MDqz+fOnSuOHTsWug0AAAAAAAAAAIab4igGfmu96enp4saNG2HbuHr1aq0wqr6dixcvFnNzc2HxAQAAAAAAAAAYDW6rR1/t27dvzbJUxHT58uWQ+ClWY2HU/Py8wigAAAAAAAAAgDGlOIqBF0fVi5giC6PSbFQLCwvF7Oxs13EBAAAAAAAAABhNiqPYUCo0On78eO12eOkrfd96W7yI4qh0K7xuPfPMM7U49cKomZmZrmMCAAAAAAAAADC6pgbdAIbbkSNHmm55d/78+VoBUqczPe3du7d0eTcFV8nhw4eLxcXFWvFVKoxKBVIAAAAAAAAAAIw3M0exrlSw1FgYVZeWdTrT07Vr10qXd1PMVC/g6rQw6tKlS0WlUgmZvQoAAAAAAAAAgOGhOIp1bVQs1OlMT+s9b73b7T1Kus1fKm5Kt9DrdMaol156qas2AAAAAAAAAAAwnBRHsa6NCo1SMVJkwVW6Ld5mnT17tnabv9SWF198sePZp+q34wMAAAAAAAAAIC+Ko1jXegVD586d6zjmlStX1ixLRU2zs7ObipOKok6ePNnVjFGNbeq02AsAAAAAAAAAgOGlOIoNzc3N1f5PxUtnzpwplpaWimPHjnU8a1TZbfU2G+/y5cu12+mlNqXCqG7U22TmKAAAAAAAAACA/CiOYkOnTp2q/X/9+vXixIkTXRURlc04lWZ8SkVXm7kFXroFXyramp+fL7pV3/ahQ4e6jgUAAAAAAAAAwHCpVKvV6qAbwXBLszSl29ilGZ46vaVemp1p9+7da5ZfvHhxdXaqdmZ5OnDgQC3WZm/D1ygVeqUYKV5dmoHKrfUAAAAAAAAAAPKiOIq2pKKkNGtTKmR6/vnnazM+bUaa7SndDq911qY0G1U7UjHT008/XXpbvghOAwAAAAAAAACA/LitHm2pz6x06dKlWpFSmkmqXUeOHOm6MKo+Y1QvdHOrQAAAAAAAAAAAhpfiKDZVIJUKmlKRUrrVXrpNXvq/tfCpLhVS7d+/v/Z/XZpxan5+vu3CqOTo0aNNt8CLpjgKAAAAAAAAACBPiqPYlDTj09LSUnHs2LFakVSaQSrdMq9SqdSKpVIxVPpKP6cZo+pFTakoKj33xo0bxezs7Ka22asZo+rSjFgAAAAAAAAAAOSnUq1Wq4NuBKMpFS2lWaPSTFBXrlypFULVC5nSbEypICoVQqXiqc0WROWq/nql/xtfr/Rapdfs4MGDtddrbm6up224ePFi0+8sbX/Pnj21QrH678uMWsBG/ci5c+dqfUi9H0l9RvpKfUgqoE39CkAUORTdcgwBOZCHA/0mhyKC4wjIgVwc6Dc5VDzFUdAHZ8+eLU6fPt1UPFb/un79erG4uNh068DUqaRE6tSpU2HJVLq9YbpFYbszcaWO7OTJkwrbgKa+rD4ArBfAHjp0qPZ9mlUwJUmpP0vSY2ndUUmIgOEkh6JbjiEgB/JwoN/kUERwHAE5kIsD/SaH6qFUHAX0xtLSUnXfvn2pALE6MzNTPXfuXPXGjRul66blx44dq61b/5qenq5evHix63bMzs6uxkzbWFhYWNPOM2fOrLa18Wtubm7dNgPj15elrxMnTqzbL8zPzzetm/oWgM2SQ9EtxxCQA3k40G9yKCI4joAcyMWBfpND9Z7iKOiR1FGkTmizHVHqTFo7kk4TqdT5pM4zxUgdWeqsHiUleK3bT51bO88F8u3L6v1Bu/1Za/IE0C45FN1yDAE5kIcD/SaHIoLjCMiBXBzoNzlUfyiOgh5InUfqvDo9+RsTqM0mX43qHdhmk7BUidq6/bQ/w1zpCfSuL6v3A6lv2AxXywCbJYeiW44hIAfycKDf5FBEcBwBOZCLA/0mh+ofxVHQA2nKuHTit04z1670vG47kXqlZuoQO7FepScwPhoTqpQUbVaaTrixDxnWSnFgeMih6JZjCMiBPBzoNzkUERxHQA7k4kC/yaH6R3EUBEsdTeuJn5KhzWqsTN9slXlKtiI6nbJ7hap0h/HQOojr9D7F9UrzTgeTwPiQQ9EtxxCQA3k40G9yKCI4joAcyMWBfpND9ddEAYS6fPly089Xr14tDh8+XPt/M/bt27dm2fz8fFvPPXPmTO3/kydPFt0oe/7p06eLmzdvdhUXGH6N5//09HQxNzfXUZznnntu9fvFxcXaF0AZORTdcgwBOZCHA/0mhyKC4wjIgVwc6Dc5VH8pjoJg63VWly5d6roTu3LlSlvPPX/+fO3/Y8eOFd0oe37qwC5cuNBVXGC4tQ7YZmdnO47VOoA8d+5cV20D8iWHoluOIWDUycOBQZBDEcFxBIw6uTgwCHKo/lIcBcHKOp9BVJimxC2iGn1mZmbNsosXL3YdFxherYO1Q4cOhfWJ9SQLoJUcim45hoBRJw8HBkEORQTHETDq5OLAIMih+ktxFARbr5p8s9Nvlk0xt2fPnkc+rz5FXurMDhw4UFQqla4Sr7L9aZ3iD8hLaxV3WTLTTXK32Yp3YDzIoeiWYwgYdfJwYBDkUERwHAGjTi4ODIIcqr8UR0GwdB/ihYWF1cQp/Z86ls1WfpZNo9dOMlb2vOPHj2/63qR1+/fv7+h5wGhKfUVrEtVt5Xpr39XufY6B8SKHoluOIWCUycOBQZFDEcFxBIwyuTgwKHKo/lIcBT2QOpvUkVWr1dr/ndybuKzTee655zqqDO2mKnO9qtJOO0VguJX1Fd0OBFv7kWGqEgeGixyKbjmGgFElDwcGSQ5FBMcRMKrk4sAgyaH6R3EUDKGyDidVjrYzhV5ar0w7U+cB9OIKltZ+aViSICA/cii65RgCBkUeDowyORQRHEfAoMjFgVEmh2qf4igYQhcvXlyz7NSpU209N011V9axdVJlmly/fn2sOkUYd62DtPUSo83Yu3fvmmWLi4tdxwVoJYeiW44hYFDk4cAok0MRwXEEDIpcHBhlcqj2KY6CIZOmrzt//vya6fROnDjR1vNTZ5U6wfqUn+nnF198seNkbmlpqXR5RHIIDP9AMCJhKesvXCkDRJND0S3HEDBI8nBgVMmhiOA4AgZJLg6MKjnU5kxtcn2gx06ePLmmsyir+NxImiavnany2lFWyd5ptSgw/Na7v3A0A0EgmhyKbjmGgEGShwOjSg5FBMcRMEhycWBUyaE2x8xRMEQuXbrUVN2ZOrCFhYXVas1huU/p4cOHB9IWoP+DwIhq7rIrba5du9Z1XIA6ORTdcgwBgyQPB0aVHIoIjiNgkOTiwKiSQ22e4igYog7syJEjTVPevfzyywPtwFqn4atrdyo+YLSsdy/gXnCVDBBFDkW3HEPAoMnDgVEkhyKC4wgYNLk4MIrkUJ1RHAUDrkhPnVeqmKx3YPXp7lJl56Dvv3nmzJmh7sCA0Zw+GKBbcii65RgChok8HBgVcigiOI6AYSIXB0aFHKp7UwExgDalzipVhqdK9NaEK3VYzz//fNg9PSPuCdpaxZ6qTcs6NiAP/bxKxqAT2Aw5FN1yDAHDTB4ODCs5FBEcR8Awk4sDw0oOFU9xFPRRmtKudTq71FHUv1KVZ1rn+PHjxbFjx4pBOnr06JplqfIUYLMGXa0OjD45FN1yDAHjSB4OdEsORQTHETCO5OJAt+RQPVAFhsLCwkJ1dna2mk7L+teZM2cG0pZz5841tSN9Xbx4cSBtAfpnfn5+zbk/MzPTk7ipvwOIIIeiW44hYNDk4cAokkMRwXEEDJpcHBhFcqjOTPSi4ArYvFTZOT8/3zS93MmTJ4v9+/evmYaul9K0fKnCtFFq07BMyweMHtMFA70kh6JbjiEgV/JwoJfkUERwHAG5kosDvSSH6oziKBgyJ06cqH3VpQ4sdWSXL1/uy/bTFHytHVhje4B87dmzZ9BNAOiYHIpuOYaAQZGHA6NMDkUExxEwKHJxYJTJoTZHcRQModRxtN6P+PDhwz2v9EwVpY2d5bB3YAAAjeRQdMsxBACweXIoIjiOAAA2Tw7VPsVRMKROnTq1ZlnqyHrl/PnzxdmzZ0eqAwNGd/rf1kQNIIocim45hoBhIA8HRo0cigiOI2AYyMWBUSOHao/iKBhSx44dW7MsVXg2djRRFhcXm+4Heu7cuZHowIDRGJxdv359zbJ9+/b1ZFsAcii65RgC+k0eDuRADkUExxHQb3JxIAdyqPYojmJspGndKpVK11/9TMjKkrLTp0+Hbid1jM8888zqzxcvXiztQIH89XNwtnfv3r5tCxgvcqjhIw8v5xgC6uThQA7kUMNJLl7OcQTUycWBHMih2qM4CkYsKUvTeTbev7MbKdaBAwdWpwidn58v5ubmQmIDo6k1eSq7wiViGmJTCAO9JIeiW44hoN/k4UAO5FBEcBwB/SYXB3Igh3o0xVEwghXrqbOJ7MBSQrawsFDMzs52HRcYbXv27Am/v/q1a9fWLDt48GDXcQHWI4eiW44hoN/k4UAO5FBEcBwB/SYXB3Igh3q0qTbWgWw6hF5P65Y6hJMnTxYXLlyo/fzss88WZ86c6bgafL1OLE1Z16005V2KU+/A3OsYSGZmZkL6mEcNJvU5QCM5VN7k4c0cQ0AZeTgwCHKo/MnFmzmOgDJycWAQ5FD9pziKsZFO0nPnzvV0G0eOHGmamu78+fO1jqLTisz17j/cbdX64cOHi8XFxdprkjowU3kCdYcOHSouXbrUtKxeCd6p1mmIU9+j3wEayaHyJg9/yDEErEceDgyCHCp/cvGHHEfAeuTiwCDIofrPbfUgyHr37EzLOq3ILJt2M+mm06l3tJ12YClBrFQq4VX0wHAomwaz2/O99fmjWlEO9IYcim45hoAcyMOBfpNDEcFxBORALg70mxxqMBRHQZCNTupOKzLXe16nSdTx48drnVCaIrTTys6XXnqpqzYAwy31D62uXLkS2j+mZAqgTg5FtxxDQA7k4UC/yaGI4DgCciAXB/pNDjUYiqMgyEYdQlli1U3HmKav26yzZ8/WpuNLbXnxxRc7rhKtT5sH5Gtubq7p56WlpY5jpWSsNSFL900GqJND0S3HEJALeTjQT3IoIjiOgFzIxYF+kkMNhuIoCLLeid3NPd3LKtNT51M2xedGUud18uTJrio7G9vUaacMjIZTp041/Vw2tWe7Wp+bBpmjfD9iIJ4cim45hoBcyMOBfpJDEcFxBORCLg70kxxqMBRHQQ8qy1Mnc+bMmVpl+bFjxzqu7iyb/m6z8VISlqa9S21KHVg36m0apgpPIF5KVBqTlVTZ3an5+fmmn1N/BNBKDkW3HENADuThQL/JoYjgOAJyIBcH+k0ONQBVIMzCwkI1nVYzMzNdxzpx4kQtVuPX9PR0R+2Zm5urRjh27Fgt3sWLF0PiAcMrneeN/c+5c+c6itMYI6JvBPIkh6JbjiEgF/JwoJ/kUERwHAG5kIsD/SSH6r9K+mcQRVmQq1RNmaabS5WYnU59l6ood+/evWb5xYsX19z3eKNqzAMHDtRibXa6vEbXr1+vxWi8T2mqFB2mKfCA3kh9SP0KmVTZvdn7rKd7EqepN+vS84eqQhwYKnIouuUYAnIhDwf6SQ5FBMcRkAu5ONBPcqg+G0BBFmQvVXjWKytv3Lix6efPzs6uqe48c+ZM289P20zVoK0xor6A8bC0tNTUl2y2H+q0DwPGlxyKbjmGgBzIw4F+k0MRwXEE5EAuDvSbHKp/hqs1kGFHljqTzUy9mTq+bjuwffv29awDS7GB8VGfRrP+1c70l6kfqveBBoHAZsmh6JZjCMiBPBzoNzkUERxHQA7k4kC/yaH6Q3EU9FDj/T1TZ5burTk/P1+6bkquWjuf9Jz11t9MJxj5lapPgfEbDDb2TxslVptZF2A9cii65RgCciAPB/pNDkUExxGQA7k40G9yqN6rpH/6fSs/GCfpnppnzpyp3S+00fT0dLFnz57VdVofO3XqVHHixIlNb+/w4cPF5cuXi15JbUr7A4yfdK/01Jel+wWnfurZZ5+t3YO4fu/01PfU78ee7mOc+gr3Uwc6JYeiW44hIBfycKCf5FBEcBwBuZCLA/0kh+otxVHQJylxSp3L/Px8ceXKlVrHlZYlKVFKHdfs7GytE0r/AwyrS5cuFS+88EKtH6v3ZakPS31Z6r+ee+65YmZmZtDNBDIhh6JbjiEgF/JwoJ/kUERwHAG5kIsD/SSH6g3FUQAAAAAAAAAAQJYmBt0AAAAAAAAAAACAXlAcBQAAAAAAAAAAZElxFAAAAAAAAAAAkCXFUQAAAAAAAAAAQJYURwEAAAAAAAAAAFlSHAUAAAAAAAAAAGRJcRQAAAAAAAAAAJAlxVEAAAAAAAAAAECWFEcBAAAAAAAAAABZUhwFAAAAAAAAAABkSXEUAAAAAAAAAACQJcVRAAAAAAAAAABAlhRHAQAAAAAAAAAAWVIcBQAAAAAAAAAAZElxFAAAAAAAAAAAkCXFUQAAAAAAAAAAQJYURwEAAAAAAAAAAFlSHAUAAAAAAAAAAGRJcRQAAAAAAAAAAJAlxVEAAAAAAAAAAECWFEcBAAAAAAAAAABZUhwFAAAAAAAAAABkSXEUAAAAAAAAAACQJcVRAAAAAAAAAABAlhRHAQAAAAAAAAAAWVIcBQAAAAAAAAAAZElxFAAAAAAAAAAAkCXFUQAAAAAAAAAAQJYURwEAFEWxuLhY7N+/vzh79uygmwIAAGNFLg4AAP0nDwfGSaVarVYH3QgAgEE7fPhwcfny5WJmZqZYWFgYdHMAAGBsyMUBAKD/5OHAODFzFAAw9m7evFkbBCazs7ODbg4AAIwNuTgAAPSfPBwYN4qjAICxd+HChdXvjx8/PtC2AADAOJGLAwBA/8nDgXEzNegGAAAM2rlz52r/p+mD9+3b19WVNtevXy+WlpZqP6fvr169Wvs+/Z+uwJmfnw9uPQAAjC65OAAA9J88HBg3iqMAGCkpod69e3fb6w/qXtmXLl0qjhw50vb6x44dWx2M0F9pgLa4uFj7/rnnnus4TjvH5fT0dMfxAQAGTS5ONLk4AMCjycOJJg8HxpHb6gEwcjaTTKcEPw3K+u3kyZObWt8AYXAaB+BpQN6pEydOFHNzc7UrYda70ubQoUMdxwcAGAZycSLJxQEA2iMPJ5I8HBhHlWq1Wh10IwCg26sc0sArDfjSgCpdSdOo39O2psHngQMHattNU8o2Su17/vnna48Z/A2H/fv392R63/Pnz6+5V3uaWrjTKYoBAIaRXJxuyMUBADojD6cb8nBgHJk5CoCRlxLrixcv1gZW6ft0pUKjNBhLiX4/r7pIbSgb6J06dWrdx+i/NGivHxutg7Zo9eMTACAncnE6JRcHAOicPJxOycOBcaU4CoBs7NmzZ3Ww1aqf9y4vuzqi8X7vDI/G46L1A4RuLSwsNP2crsIBAMiVXJzNkosDAHRPHs5mycOBcaU4CoBs1K88SYOt1qsR0uCsH9J2Ujsk/aPhwoULPRkEJq3TRx8+fDh8GwAAw0IuzmbJxQEAuicPZ7Pk4cC4UhwFQJZar1JJ91xvTcx7ddXFsWPHer4dupeOh3Rc9GL64BS3ddpqHw4AAONCLs6jyMUBAOLJw3kUeTgwzhRHAZClssFYr6cRTol/ul93r+/TTYz68dCLq5paP3Rwb3UAYJzIxXkUuTgAQDx5OI8iDwfGmeIoALJUltxfunRp9aqIXg0s0jYl/KMhHQ/Js88+Gx57fn6+6WdXyAAA40QuzqPIxQEA4snDeRR5ODDOFEcBkK2yq1V6eZ/1FNsVMqM1CEx68TtrvUrmueeeC98GAMAwk4uzHrk4AEDvyMNZjzwcGHeKowDI1tzcXO1qmX5MI1wfWKRtMvzqx0G6omlmZiY0tnurAwDIxVmfXBwAoHfk4axHHg6MO8VRAIzVfdbr90DvxcCiF1PREi8N1OpXsfRi4N56hUwabLZ+IAEAMA7k4rSSiwMA9J48nFbycADFUQBkrmx62OgrZeoDC9MHj4bGaaR78Ttzb3UAgHfIxWklFwcA6D15OK3k4QCKowDIXNkUsdH3WE/x0jaip6KlN1544YXa/+n3lY6PXl8lc/jw4fBtAACMArk4reTiAAC9Jw+nlTwcQHEUAGOg7EqI+v3QI6SrblwhMxoap5Duxe/MvdUBAJrJxamTiwMA9I88nDp5OMA7ph78DwBZ32O9Nek/ffp0yL210xURKfHv1b3V04D1+vXrtQHGtWvXattK39eXpZ9v3Lix5v7d6XnpapA06Kmvm64ISV/pqo207724QqSs/akdqZ31tqe2pm0fPHiw9nvp59VFjdNH9+J31s691dPvJLXjypUra16T5557rjhx4kR4uwAABkUuLhevk4sDAPSPPFweXicPB3iH4igAxmYw2Dh1cErGUxLe7WAoJfRpUNWa7EdI7Tty5MimnpP28eTJk6sDv3SFRmpb+jkNPNJAJX2lddJjqf3RA8K0rRS/8fVOg730O9i7d2+xtLRU27f0ePpK7Thz5kxfBoT1q6Pqr0uv763e+GFDet3TwDfte9rX1Ib9+/evPi+1rT5IvHjxoimpAYBsyMXl4olcHACgv+Th8vBEHg7wQBUAMjEzM1P7KrOwsFBNb3uNXydOnOhqezdu3KjFmZ+fL318bm5uzTbXW3e9+LOzs7V92rdv35pY9a+0XvpK66Wf03aXlpbWfR3q60W9Do3OnTtXnZ6eXo2d2pLatp70ejS2u5caj4GLFy/2ZButv6f67zu9xunntK/r/W7Suo3PTe0FABgVcnG5+Ebk4gAAvSEPl4dvRB4O8JDiKADGYiBYlqSnAUu3g54Ucz3dDgRbNQ72WgcMqR1pf9qN39q2iEFYfbBT/0qvT7vSuuk5aeDbK8eOHVttWy/UPxhoHaSnfWp38Flftz5oBAAYFXJxufhG5OIAAL0hD5eHb0QeDvDQRH0GKQDIXes91tNUt633w96MNNVra8xeSlPepql2W6VphtO0tAsLC7VpadvROkVtmr423Xe9U+l1OHv2bNNrk6YMbldaNz0n/T4apx6OdOHChTXT+kZqPZbS65umUk7L0xTB7Wy3ccroNJ1wN8cnAMAwkYs/JBePJxcHACgnD39IHh5PHg6MEsVRAIyNsoFJGnx0Ig28UqK+mcFOhLJ7oae2pIHGZu+T/uKLLzbdYzwNOhoHc+1Kg8jGwVsajG7mdUntP3DgwOqgumyw2620b2ngn/Rq8N56b/V0fKTXJS1vd4C+Z8+eNTEAAHIgF28mF48lFwcAKCcPbyYPjyUPB0aJ4igAxkYa9LQm5GkQUx8gbEYarKRYjQOpfmgdKCRp0NXuQKNRavupU6ealqWrOjYz+EiDuMYrOzoZXKdBYOM2U8z0FaneprJjIErZFS3146RdrcfT0tJSSNsAAAZNLt5MLh5LLg4AUE4e3kweHkseDowSxVEAjJU00GnVyZS1aTrafk4fvJHWgdhmnDhxYs3go+w1Wk/rumnQs5mrddKAr2wgHj0QTAP+5Nlnny16Ie1Da5vTFMLp9d1snF6+DgAAgyQXbyYXjyEXBwDYmDy8mTw8hjwcGDWKowAYK2VXtmz2qo76oKJX9+mOuHJmM1qn+01Xe7RzpUwapNRfi04GkRu1fbPTIW+kcaDfq8F72RUyzz///KbjtA78+n0VFgBAL8nF15KLd08uDgCwMXn4WvLw7snDgVGjOAqAsdM68KnfK71daeDY7/uq99Jzzz23Ztnp06cf+byy+6AfPHhwU9tOA53WK0nSaxs5ELx48WLt/xQzXbnSj3urpw8JOtnWSy+91PTzoUOHum4bAMAwkYs3k4t3Ty4OAPBo8vBm8vDuycOBUaM4CoCxU3alRLtXyqQpXtMVEcMyfXCENGBpvRqj9eqX9aZRbpQGWp1c1ZEGlAsLC7XfQRpQbfaqpXZ+X72+qqn1KpmywXUncXo1cAUAGBS5eDO5ePfk4gAAjyYPbyYP7548HBg1iqMAGDtlV0u0e4/1dPVIem7kVRzDoOzqlo2uHCq7L3o3g5b03HR1TJriOVI/pg8uu7d6J/tR9ppu9qojAIBhJxdfSy7eObk4AEB75OFrycM7Jw8HRpHiKADGUtmgoJ3BYFonpytkNhrEld0zfKPHhnFw/MILL9T+7+XgvezKlk6uFoqKAwAw7OTizeTinZOLAwC0Tx7eTB7eOXk4MIoURwEwlsruj/6oqWtTop6uYsjp3up1e/fuXbPs2rVr666/tLTUVoxBSled1K/06eXgvfXe6p1e6RMVBwBg2MnFm8nFOycXBwBonzy8mTy8c/JwYBQpjgJgbLUO6NKgoXUq2NaBYo6DwKTsaoyNXovWqW7XizFIjQP7Z599tmfbab265dChQyFxDh8+3FW7AACGmVz8Ibl45+TiAACbIw9/SB7eOXk4MIoURwEwtsqunFjvSpk08Ll06VKW0wcne/bsaWuwV3f9+vVi2NWnhE5Xm/RqkBp1b/X0IUTr6+0qGQAgZ3Lxh+TinZGLAwBsnjz8IXl4Z+ThwKhSHAXA2Cq75/Z691i/cOFCbd2y+5DnoGxgt9HgqWzgOEwaB1a9HLy3XtmSjpFOBp31+8DXzc3Ndd02AIBhJhd/SC7eGbk4AMDmycMfkod3Rh4OjCrFUQCMtdZBQv1qmFZnzpzJ9gqZ9a6IaR0kNyob7Gx0VU2/NV7t1MtBVdQ90VuPueeee66rdgEAjAK5+Dvk4p2RiwMAdEYe/g55eGfk4cCoUhwFwFgru1966zTC9fuu53pv9eTatWtrlu3du3fd9ffv379m2dLSUjEs0lVN/bja5MqVK13fE71+fDVylQwAMA7k4u+Qi3dGLg4A0Bl5+Dvk4Z2RhwOjSnEUAGMtXe3RmnSnaWEbr/hIA8O0Tq/u0T0M0mCk1UZXfJQ91jqYGZR0xUk/pg9O22h93TqZYtr0wQDAuJKLv0MuvnlycQCAzsnD3yEP3zx5ODDKFEcBMPbKBguN91lP3+c8fXDZfcLToHejQU3ZfcRbrxgZlPrAKrWv0yl929G6v2l7G027vJ7GY+1R0wenq5Na1wcAGGVycbl4J+TiAADdkYfLwzshDwdGmeIoAMZeGiy0Dmrq0winKy56PaAYxitknn322Uc+r3WddNVIxJUy693jfrPPbWcfBn1v9fTat96Xfr2rZOpTDXcy2AQAGFZycbl4J+TiAADdkYfLwzshDwdGmeIoACi5z3pKuFPiffr06azvq152P/nk5MmTj3xe2TqdDuAapde8ne1vdF/1pNdXNrVeWdTJvdVbX/uNjrX6ujl/KAEAjCe5eDO5+KPJxQEAuicPbyYPfzR5ODDKFEcBkJXWKw7aVTZoOHr0aG0wOOzTB3d7ZUrrlLRpMNLOlRhpndYrOsoGlZ20p9PBTn37qW2d3Ou8m3urd9LmxoFrcuTIkQ3Xde91AGCYycU3Ty6+eXJxAIBm8vDNk4dvnjwcGHWKowDIRhoQXb9+vaPnpoFDayKfEv00mBj2KVvr9xPvROvVKGm65DNnzrT9/NZ10++gmytl0nPTIKuTq2QaB2e9HrxH3Fs9tbf1g4v1BpPpipy07qlTpzpoLQBA78nFN08u3hm5OADAQ/LwzZOHd0YeDow6xVEAZKF+n+qyqxfaVTZ46Cbx7vSKnU4GT51cKZOec/bs2aZlFy9eXHOv+Y2kwU96TuvVRZ3ue3puuhKkk8F349U+vb6apPXe6gcPHtx0jNYPLTa6qicNjNPjvbzyBwCgU3JxubhcHACg/+Th8nB5OED7FEcBkIU0gCj7fjPKBg/dDCjKBmedDlIfZbP39k4DtdbnpCteOpkGN71GJ06caIrdye8gtSc99/nnny+6mT64H1c2RdxbvbWN67U5DfTTcdPp6wIA0Gtycbm4XBwAoP/k4fJweThA+xRHATCy6ld57N69u2mAlb5Py9Jjm716JN1bvOz7zbYrXdVQtu3Tp0+vTpMbJV2lkq64OHDgQFtx0zrPPPNMU/vSIKpxMLdZaRDZ+Py0jxvdK7xVGkilwVW6+mQzV+nUpX2p70+vpw9OIu6t3jr4KxsI1gfV6Vh0hQwAMEzk4u+Qi8vFAQD6SR7+Dnm4PBxg06oAMEJu3LhRTW9fnXyl5z7KwsLC6vrp+3ZMT0/XvjppU/25J06c6Hj/UzuXlpaq+/btq8W6ePHius+fn59vamt6TloWJW17M/HPnTu32u5u2pFev838nruR2tn6O+jm9arHmJuba3qs/judmZkJaDUAQPfk4nLxMnJxAIDekofLw8vIwwE2Z2rz5VQAMHibvZKi3atS0pUI9WmDN3NVQorfydUd9ed2e9VMusJiYWGhdkVFujol/Zz2Y//+/bXHl5aWmu7Dntqa7h3fzZUxZdI20xUj6SqhdL/ztL10BUza3rPPPltrz7Vr12pXmVy5cqW232n91PZOX7/Ge6unWN3E6UQ300yn56YrYFL70+8nXdmVfnfpaqG0LO1P673cAQAGTS7eTC4uFwcA6Ad5eDN5uDwcYDMqqUJqU88AAAYmDZzS9MiN0iCqcdCa1klTFafBVn1q3TQ4SgOMgwcP1gaKnU55u1lpcPPCCy+stiO1LbUjfaU2p+l+u70Xepp6uH5/8zSdcjcDs81OeRw1UEuvU5rGOQ2Ok/R7Sq9NP/YFAID2yMXXkosDANBr8vC15OEAm6c4CgAyGwiOmzRgql8lI60BAKBX5OJrycUBAOg1efha8nCAzZsYdAMAALpRHwS6ogQAAPpLLg4AAP0nDwfYPMVRAMDISlPvNl4tAwAA9IdcHAAA+k8eDtAZxVEAwMhK9yRP0v3j+3XPeAAAQC4OAACDIA8H6IziKABgZO81f/ny5dr3zz777KCbAwAAY0MuDgAA/ScPB+ic4igAYCRduHBh9XvTBwMAQP/IxQEAoP/k4QCdUxwFAIz09MH79u0rZmZmBt0cAAAYG3JxAADoP3k4QOcURwHACLl+/Xpby3J39erVYnFxsfa9K2QAAOgHufg75OIAAPSTPPwd8nCA7iiOAoARu6d4O8tyd+nSpdXv5+bmBtoWAADGg1z8HXJxAAD6SR7+Dnk4QHcURwHACF0ZcvTo0TXLT548uXrFyLhNH5ymDk5TCAMAQC/JxR+SiwMA0C/y8Ifk4QDdmery+QBADwd+Bw4ceOSVMI3rTU9P1/5/8cUXs73neBr0pn1OTB8MAEAvyMXLycUBAOgleXg5eThA9xRHAcAQSwPANLirD/DafU7O91x/4YUXVr9/9tlnB9oWAADyJRdfSy4OAECvycPXkocDdK9SrVarAXEAAPpi9+7dtcHu7OxsMT8/P+jmAADA2JCLAwBA/8nDAbo3ERADAKAvLl++vDqdsumDAQCgf+TiAADQf/JwgBiKowCAkZOmVJ6bmxt0MwAAYOzIxQEAoP/k4QDdcVs9AGDkrpQ5ePDgpu45DwAAdE8uDgAA/ScPB+ie4igAAAAAAAAAACBLbqsHAAAAAAAAAABkSXEUAAAAAAAAAACQJcVRAAAAAAAAAABAlhRHAQAAAAAAAAAAWVIcBQAAAAAAAAAAZElxFAAAAAAAAAAAkCXFUQAAAAAAAAAAQJYURwEAAAAAAAAAAFlSHAUAAAAAAAAAAGRJcRQAAAAAAAAAAJAlxVEAAAAAAAAAAECWFEcBAAAAAAAAAABZmhp0A2AcrKysFNeuXRt0MwAAWMfevXuLiQnXjuRGHg4AMPzk4nmSiwMADLe9Y5aHK46CPkiDwHe/+92DbgYAAOt45ZVXiqeeemrQzSCYPBwAYPjJxfMkFwcAGG6vjFkePj5lYAAAAAAAAAAAwFhRHAUAAAAAAAAAAGRJcRQAAAAAAAAAAJClqUE3AMbV5Ic+URSTUy01iu98X6k0LKtUmh4rmh57sH5jjPrjD55X+lgx2RC+OW6lqG8v/TC5JkZ9/UpDjPRTY9zm9dcum1jdz7LHSmK0rF9fpylWSYyHj61df7JaWbOs9f/mZY3rv/P9w1ezsubX1fxbfbB+yWP19StF9eH6LetVKus/1rTN1WasXb8p/gZx6+utHnYN6zUsKibqyzZof1P81m02BCtrz8OjvqQ9LdtpCrf6WqyN1RijNW5zrPW3Wf5abPAabLBvTTFatln6Wj9im62/i7J9KnvNSmOVtLv199R8DNaXrd+e0mOw6TVrXu/Rv5P6eiXx21jW/DtZu2ztMdLe+vXzr1JZ2bA9q8dS6WtX0sbVc+dh3NXnlq1frKw5blYfnyiLv7LBNlv+r71lrN2n+uMP37Y2iNUQY/V5TSX7Zes3b6c5/tptrjnZGmKVvaU2dDzNP6+3rI31G95qHq5XdmlCaef+IMbGJ+6qaukbUKX9x0riNz02sX57Vpc1rL+6743rt6zXFKtkm60xGtd/uE8Ny1Zf97L2N8e4/p07xZ/61P+34QVhnEx+8ONFMbV13ZPzYX5cchK35M61b0vz9JZcvKnDeZDvlub19fOkIV8vGSM8zG+b8/Dm9dcum9jwsZIYJeu35trrxWjNxRvXr+fi5Xl3WU5eKcnJ63v+4LUuyS+b1l+TYz9cvyz/WJP7lD7WsKwlFy/NxR4uWhO3NK8ry49b32/Xy59acrbGWKs5c0l72s9R1y5rzcWb85DmmE3LNsxt129ju/lu2b61jjfKtlk2ptgoRy0fD6w/RiiNVbK/peO30mXrt6f0GGzJp5uXlcSotJPDl8VaP48uy4/Lj5H21m/NxR+Vw7fGKHus+dxpzpmb4q+2sSFfb3msLD9uHDes2WbTtus589p9asqZW/LiyiNirM3FN3qsYVur8RseW83vG9dvfV7DQ+3k3WX5epvrP8wlS9Zf/bmsc2+IsfGJ+2A7ZW9A6+fTTfnr2o5n7WON+1Q2DmjNscs66+Y3iObnlWyzLEZ9/fIcu6E9rbl4U77+zvfXrt0t/vQP/OuGjTBOtnzfTxbF1PaiMtGQez74vmnZ5IOcsCEPLVrWqzQcX6Ux6p89P4hVts2JpmX13L0k1mr8hhx4sqU9jTn2g/UmmtpYz1sf/N/4WMmyiZZlTY+tLnv48tTHEg+HLGu3XY9ZFrfpsUpJ/Jb16+s0taehi5isx21oR31Z6/+17ysly1bXW/t6Pvi1rj6v8fv6eo2xpkqWra63wbZLt9nyvLJYtWX1uPUuseT32/i6r65X8tjDbntte1q30/j7adrf1tepqf0l8VvWazj8Hx6fTW91D5YV634U1DRGezh+WLNozfMa29907FU2GuNU1o+/Uaxi/f2sVBtyperKustWc6rVn9N6K2uWrX5fj7HyqPWb4zZ9NrtB/NVYK2Wxqm22cfnBjw3bXFlu/r+22oPvS7ZZXV1/g2UN216N1RC//v1qOxofW21jQ/vr39efV4/Z1MaG9j9YfzXGcmN7HjzW1MZq02MrDfHr61XLYjxof9Nj9W1vsKzx9V8pW3957Wuw+pzVNpbEX1m7Tyul22zej3fi1tdfu08rD46vesymuPX1Gw+3sm2urtf8vLLHmpfV21fyWGOMB+fR8oO2Njy02v7GZa3r1ddpXFa2/uqvodh4/dX16s8r1o+1XrvXbPPBz7eKleJ/Lr5ZjDPFUTAok1NFZXJLy6dMZcVREx0WR010WBw10UFx1PrFThsWQG1YHFXyh5UNi6PW/4NN2fqT1fb+EDO5YXHUgwHGBn90aVq/NEGvL9tscVR7f1Roq1Cp5LnNn3XFF0eVD2rK/viwdv3WxxqXlReyFCXbbI77qEKcNe1vei02eA1K9q30j2kBxVETHRdHrf1DQzt/gCn9417ZcVlaSFTW/mob7a/2pDhqoo1ljyyOWhN/s8VRG/xRpGnZJoujyoqdNlkctVFhU+kfWzb440/bxVGl63dYHNX6vEcWR9W33fDYRn+42eCx8j+GlG2z7A3iQYyNPiGaCC6OauOPOc3t2egPKy1tLfvDTVlx1EQ3xVHN621UHMWYq+fhZbl2SX7cWXHURIfFUc1/kHl0cVRznty8/voFUI8ujmq52OCRxVHr5+ll69dz8Y2Ko+p5eFn+XZaLT3RRHDWx6eKospy5WD+X2Sh/KsnrNsppI4qjyt4W2rsgouSxphjxxVETgcVRjxqHdVoc1U5u3rysLP5GOXbzz+svaxnjlBYStZtjFx3l2JstjipvY8myjYqjSuNvtjiqjVy4JGd+ZHFUG/nxRsVRjypsKs2xN8j52yqOKl2/i+KoNTl8Q6jSPLolRmnuXBZ/7WPlOXDr+mUdf5vFURvm/I/OtUvb2HZxVEmOvbrNYuMceKMcvo0Yj8qx16y30WOMp1QYtWVHG8VRGxUolRQqlcWoL9sg1sSG8TfXxvL4D4/31qKi0se6KY5qibvp4qjSYq2H8SfaKY7aoBCqbNmjipdai6M2ilX7vtJp/Ec/1vb6bRZHlRUota63UeFU4zbLiqNWlzUdUxtsu43iqPo6jyyOqrRXHFX+2fxG8evPW7tP5eOHygbxN4i16eKoDYqd2i6OWumsOGqjWG0XR7XZxpWywqMNiqNaipIeXRxV8tiGxVFr47fTxqbiqA3aWFqotFq4U7KsrDiqjRhNhUotscpiNBUetVsctaaNjyjI2qg4qqQA6uH6ax9bWS0C26A4qvGxiZJtPhgjrO5Hw5hlpVJSHFVfVo/fMEarF0JVG8aWDwug6v+vPtTWsvrPzcvaXH/1//WXNRVH1Qu5NrlsNX61YaUx1fg+AQAAAAAAAAAAkA3FUQAAAAAAAAAAQJYURwEAAAAAAAAAAFlSHAUAAAAAAAAAAGRJcRQAAAAAAAAAAJAlxVEAAAAAAAAAAECWFEcBAAAAAAAAAABZUhwFAAAAAAAAAABkSXEUAAAAAAAAAACQJcVRAAAAAAAAAABAlhRHAQAAAAAAAAAAWVIcBQAAAAAAAAAAZGlq0A2AcbV8/VvF1FMfGnQzgKIoPv/bv9TwU7X27+zH//zA2gM0+3v/5uWiqDSfo3/7L35kkE0CRtjyjT8qpp768KCbAfTYL335l9/5pvLwvx///j830DYBvfV3//nXG3565+T/2/9b7/lA+9748r8pKpV68vDO3AJPfvInBtsoYOD+/t//+7X/K9V3PpdM/tbf/JkBtgiATiiOgkF57dtFoTgKhsKv/O6DP5w0UBwFw+Pv/9uvrVmmOAro2GuvFIXiKMjeL//2/JpliqMgb3/vf/6DNcsURwGb8dZv/9s1yxRHAf/g535uzTLFUQCjx231AAAAAAAAAACALCmOAgAAAAAAAAAAsqQ4CgAAAAAAAAAAyJLiKAAAAAAAAAAAIEuKowAAAAAAAAAAgCwpjgIAAAAAAAAAALKkOAoAAAAAAAAAAMiS4igAAAAAAAAAACBLiqMAAAAAAAAAAIAsKY4CAAAAAAAAAACyNDXoBsA4qy7fa6lRfPB9pWFZpbLBY/XvS5a1Pq9p/cmS9euP1Z+Xvp1sL8aD51QfLKs0rF+prF1Wj1f+2Npl1Zb169tpeqxp/fp67yxbaVh/4sGyarWyZlnr/+88t76scf13vq+vtdLwWP1lb97bB+uXPFZfv1JUH67fsl6lsv5jTdtcbcba9ZvibxC3vt7q4dOwXsOiYqK+bIP2N8Vv3WZDsLL2PDx6S9rTsp2mcKuvxdpYjTHK4rZ6686bJTHKXov6OmWv5/r71hSjpT2lr/Ujttn6u2h+fcqWbRCrpN2tv6fmY7C+bP32lB6DTa9Z9ZHtbz4O6uuVxG9jWfPvZO2y1t/JRJvr18+/SmVlw/asHkulr11JG1fPnYdxV59btn6xsua4WX18oiz+ygbbbPm/9lawdp/qjz98+9kgVkOM1ec1leyvXb/Vq2/cbYi/dptrTrbGWCVvqQ0dT/PP6y1rY/2Gt5qH65VdmlDauT+IsfGJu6pa+gZUaf+xkvhNj02s357VZQ3rr+574/ot6zXFKtlma4zG9R/uU8Oy1de9rP3NMa5/507Di8H45uFJO/l0w+NrcueSx5qeW7b+5AZ5ff08acy1N4jRkoe/s6Q5d25cVmz42NplrXl447bqjzWvvzZPr+fijTl2PRdvXNaai9fz8HeWVUpy8uZcvKTLal5/TY79cP2y/GNN7lP6WMOylly8NBd7uGhN3NK8riw/bn2/XS9/asnZGmOt5swl7Wk/R127rDUXb85DmmM2Ldswt12/jY/Kd8u88SDHbx1vlG2zbEyxUY5aPh5Yf4xQGqtkf0vHb6XL1m9P6THYkk83LyuJUWknhy+LtX4eXZYflx8j7a3fmos/KodvjVH2WPO505wzN8VfbWNDvt7yWFl+3DhuWLPNpm3Xc+a1+9SUY7fkxZVHxFibi2/0WMO2VuM3PLaa3zeu3/q8hofaybvL8vVH5ektXn3t4bhhTS5e2rk/XPQwzy1Zv54Ll74BrZ9PN+WvazuetY9NbNCekly8eQyyNmdek4uXbLMsRn398hy7oT2tuXhTvv4gF7/W8Dth/Ny//U5PM9GQ79a/b1y28iC/bMxDHzxeWf3/4fH1cFlDTlv/7HlyYu1jJdusTJTPJbB8+42G+A058GRLexpz7AfrNY5j6+2tPDg/Vhofe7CscZ8mWpY1Pba67GE7K/W8eHX4sHbb9ZhlcZseq5TEb1m/vk5Texq6iMl63IZ21Je1/p/cr6xd9nC9B2OFpsce/N+w0fr39fUaY02VLFtdb4Ntl26z5XllsWrL6nHrXWLJ77fxdV9dr+Sxh9322va0bqfx99O0v62vU1P7S+K3rNd4iqwen01vdQ+WFet+FNQ0Rns4flizaM3zGtvfdOxVNhrjVNaPv1Gspvavn2S8+uqr78SoNuRP1XpuV235Oa23smbZ6vf1GCuPWr85btNnsxvEX421Uhar2mYblx/82LDNleXm/2urPfi+ZJvV1fU3WNaw7dVYDfHr36+2o/Gx1TY2tL/+ff159ZhNbWxo/4P1V2MsN7bnwWNNbaw2PbbSEL++XrUsxoP2Nz1W3/YGyxpf/5Wy9ZfXvgarz1ltY0n8lbX7tFK6zeb9eCduff21+7Ty4Piqx2yKW1+/8XAr2+bqes3PK3useVm9fSWPNcZ4cB4tP2hrw0Or7W9c1rpefZ3GZWXrr/4aio3XX12v/rxi/VjrtXvNNh/8fKsp2niqVKuNvTbQCylJeve73z3oZgAAsI5XXnmleOqppwbdDILJwwEAhp9cPE9ycQCA4fbKmOXhbqsHAAAAAAAAAABkSXEUAAAAAAAAAACQJcVRAAAAAAAAAABAlirVarU66EZA7lZWVopr164NuhkAAKxj7969xcSEa0dyIw8HABh+cvE8ycUBAIbb3jHLwxVHAQAAAAAAAAAAWRqfMjAAAAAAAAAAAGCsKI4CAAAAAAAAAACypDgKAAAAAAAAAADIkuIoAAAAAAAAAAAgS4qjAAAAAAAAAACALCmOAgAAAAAAAAAAsqQ4CgAAAAAAAAAAyJLiKAAAAAAAAAAAIEuKowAAAAAAAAAAgCwpjgIAAAAAAAAAALKkOAoAAAAAAAAAAMiS4igAAAAAAAAAACBLiqMAAAAAAAAAAIAsKY4CAAAAAAAAAACypDgKAAAAAAAAAADIkuIoAAAAAAAAAAAgS4qjAAAAAAAAAACALCmOAgAAAAAAAAAAsqQ4CgAAAAAAAAAAyJLiKMbO5cuXiyNHjhQHDhwodu/eXVQqlWL//v3F4cOHi7NnzxY3b94sRkVO+wKjfFxfvXq11taTJ0/Wvu9E2q+0f2m/jx8/Ht5GiJLOxXS8j5pR7FsgRzmdizntC/TSKJ4r8nuIYewAAIwiuQBAnirVarU66EZAP6SE5dy5c7UPNqenp4vZ2dni0KFDte+XlpZqyc7i4mJt3fRYWnffvn3FMMppXyCH4zq1LQ2M6lK7UhvT4OngwYO1n9N+NEr7mfbnpZdeatq3ZGFhoZiZmenrPsCjpGP06NGjq8fqjRs31hzXw2iU+xbISU7nYk77Ar00yueK/B66Y+wAjLvUX1y8eLG4cuVKrU9JhRSpL9mzZ08tJ0h5RupH9CEwXOQCAJlLxVGQs6Wlpeq+fftSEWDt68SJE9UbN26Urjs/P9+07pkzZ6rDJKd9gZyO69Suepu6/bp48eKgdwfWnKNzc3NrjtX1ztNhkUPfAjnI6VzMaV+gl3I4V+T30BljB2Dcpff96enptvOE2dnZWr8CDJZcAGA8KI4iawsLC02DkXY/lEyDkvpzjh07Vh0GOe0L5HZcR/zxJL0OPgxhWD4MSOdi+hBgZmZm3WN2mP/AkUvfAqMup3Mxp32BXsrlXJHfQ3uMHYan3wIGr7VfSP1La5+ZiigaiyrqX6mwdJj7SsiZXABgfCiOIltpMNGY0Jw7d25Tzx+myu+c9gVyPK67/eOJD0AYtI2uakzH5yhd/Z1T3wKjLKdzMad9gV7K6VyR38P6jB2Gs98CBtuX1AtEU7FEKoJ6lFRU2tpXpj6lnecCceQCAOOlkv4Z9K39oBfSfbvT/X+TdB/vhYWFTT0/PTfFqEv3Ex7UvYNz2hfI8bhubUu70n3Jz5w5U9t/GKRKpVL7f3p6unYeHTx4sHZMp2M0LTt79mxx8uTJpufcuHGj9tiwyalvgVGW07mY075AL+V0rsjvYX3GDsPZbwGDc+DAgWJxcbE4duxYce7cubafd/78+eL48eNNy1Jf+fLLLw9lnwk5kgsAjJeJQTcAeiElJPWEJjl16tSmY6QPdRo/0Dxy5EgxCDntC+R+XJ84caKYn5+v/V//YLiu/sHx3Nxc7YOS9OFwWtcfThgGD2YTrR2X6UOAdIymY3XUPozLtW+BUZPTuZjTvkAv5XquyO9hLWOH4e63gP5KxaCpMCr1B5spjEpSMVXKMRrdvHmzVmwF9J5cAGD8KI4iS41XqKUPZ9KHNJ147rnnVr9Pg5z01W857Qvkflzv3bt39Wrx9IeR9GFx4wfH6cqRixcv1j78GLUPjmEU5Nq3wKjJ6VzMaV+gl3I9V+T3kK9c+y2gf65evVqbLS8VS6c8oRMpx2idZaYeF+gtuQDA+FEcRXZak4/0QWanWpOhzV790a2c9gXqHNdAL+hbYDjkdC7mtC/QS84VYNTot4AIqbApab2V6GaVPf/06dO1WaSA3pALAIwnxVFkpzXxOHToUMexWq/aSPcB76ec9gXqHNdAL+hbYDjkdC7mtC/QS84VYNTot4AI9fM9zSDZjbLnp8KoCxcudBUXWJ9cAGA8KY4iO62Dhsb7/UYkNpcuXSr6Jad9gTrHNdAL+hYYDjmdizntC/SScwUYNfotoFuXL19enW0m4hZaZf1QunUv0BtyAYDxpDiKrKT7cbdON9ualGxWa1LU6f3Dx3lfoM5xDfSCvgWGQ07nYk77Ar3kXAFGjX4LiFA/z1OR1IEDB4pKpdLVbDFlt/SqF2ABseQCAONLcRRZKRswdJvU7Nmz55Hb6IWc9gXqHNdAL+hbYDjkdC7mtC/QS84VYNTot4Co4opWx48fL13ejv379we0CmiHXABgfCmOIiu9qMaenp5u+rnTAc447wvUOa6BXtC3wHDI6VzMaV+gl5wrwKjRbwERWmed6bYgorWwok5/AvHkAgDjS3EUWWlNOFoTkk7s3bt3zbKI+4iP075AneMa6AV9CwyHnM7FnPYFesm5Aowa/RYQYb2+Y70iJ2B4yAUAxpfiKLJOaiIGI2WJUT+qvnPaF6hzXAO9oG+B4ZDTuZjTvkAvOVeAUaPfAiKkW+iV9QWzs7Mdxbt+/XrpcsVWEE8uADC+FEcxFtPZRutHUpPTvsC4Htdpf8+ePVscPny42L9/f1GpVIrdu3cXBw4cKI4cOeLe4xBk3PoWGFY5nYs57Qv00ridK/J7GH3j1m8BvZGKoC5evFjs27dv9ecXX3yx4xlolpaWSpdHzGgDNJMLAIwvxVFkndBEDB7KqsavXbtW9FJO+wLjeFyngU/640j6Q8nJkydr+5muKEsfmpw5c6Y4ePBgcenSpdofVdI658+fH2h7YZSNU98CwyynczGnfYFeGqdzRX4PeRinfgvovbm5uVpRU7VaLebn54uZmZmOY5XdfqvTWaiA9ckFAMbb1KAbAFHWm3p2FCu+c9oXGLfjOv1RJP3hJA2q0h9L0gclZdIfVdJ66cOP+h9W0pcrwmBzxqVvgWGX07mY075AL43LuSK/h3yMS78FjJ6y2SdT0TUQSy4AMN7MHEU2+jUVZj/ktC8wTsf1uXPnan8QOXbsWHHjxo11/3CSpGm3FxYWVq8qSx+CPPPMM2PxOkEk5wwMh5zOxZz2BXppHM4V+T3kxfkIDKP1Zpw8ceJE39sCuZMLAIw3xVFko58V371OoHLaFxin4zpdDZL+cJL+iNKudDV5XbrKPP0BBWjfOPQtMApyOhdz2hfopXE4V+T3kJdx6LeA0ZNu0dtKYRT0hlwAYLwpjoJHyGkK/Jz2BYbxuJ6dnd3UH07qV5g3fgiS/oCSbskBDNYw9S0wznI6F3PaFxiXc0V+D4xavwWMlpQntN56qzWXAIafXABgNCiOAoCgP5rMz8939Px0NXqjs2fPuic5AAAMiPweAOiHo0ePbjgLJQAAcRRHwRhNfZnTvsCwHdetfwDZ7JUlMzMzTctcXQ6DNSx9C4y7nM7FnPYFxuFckd8Do9ZvAaPl/PnztZmjWgujWnMIYPjJBQBGg+IosrFnz54iFzntC9Q5rjd28ODBpp8vXbpkUAVt0LfAcMjpXMxpX6CXnCsbk9/D8NFvAcMi5QTHjx9vWpZupTc3NzewNsE4kAsAjDfFUQAwBA4cOLBm2YULFwbSFgAAoDvyewBgPUeOHFlTGHXixImBtQcAYBwojiJrvboqM02R32857QvUOa43vmplfn5+IG2BUadvgeGQ07mY075ALzlXHpLfw2jQbwH9lm61e/ny5dWfFUbBYMkFAMaH4iiy0atE4/r162uW7du3r+ilnPYF6hzXm399Gj8oAcrpW2A45HQu5rQv0EvOlY3J72H46Ldg8BYXF4v9+/cXlUpl6L5279695lZ30c6fP1+cPXt29WeFUdBfcgGA8aY4imz0M9HYu3dvT+PntC9Q57je/JXlvbpqBXKib4HhkNO5mNO+QC85VzYmv4fho9+Cwbty5Upx9erVYhil9+lUvNTLwrDG4qtz584pjII+kwsAjLepQTcAoqu+Gz9sLKvW3qyyDy/7MR1mTvsCdY7rzUsfGLnKBDamb4HhkNO5mNO+QC85VzZPfg+Dpd+CwXr22WeLpaWl2nkTcf5FFzYfPny4Z+//zzzzzOrPFy9eLObm5nqyLWBjcgGA8aU4iqykAUxjEhJxVea1a9fWLDt48GDRazntC+R6XKdpsE+fPl3bj/SBxvPPP9/xoGe957m6HMavb4FRldO5mNO+QC/ldq7I7yF/ufVbMGrS+2O6ldw4Sf3MgQMHVvub+fn5YnZ2dtDNgrElFwAYX26rR1ZmZmbCY5YlRv24yjOnfYEcj+tLly4VJ0+eXN1++vnIkSMdx1tvEOYchfHqW2CU5XQu5rQv0Es5nSvyexgPOfVbwGgVRqXCsIWFBYVRMGByAYDxpTiKrBw6dGjNsm6rvlun1EwJTT+mw8xpXyDH4/qFF15Ys+zy5cvh23GOwnj1LTDKcjoXc9oX6KWczhX5PYyHnPotYPilW+mlW+rVC6N6UZQBbI5cAGB8KY4iK2VXXaTBRzdan9+vau+c9gVyPK6jb4dR9joYQMH49S0wynI6F3PaF+ilnM4V+T2Mh5z6LWC4HT58uFhcXKz1CS+//LK+AYaEXABgfCmOIitlV15cuXIlNKnpZlr9cd0XyPG4LhvgHDt2LOzqkuTZZ5/tOB6Mk5z6FhhlOZ2LOe0L9FJO54r8HsZDTv0WMLxSP5BmoEz5RZoxarMF0un2vpVKpeuCDWAtuQDA+FIcRXbm5uaafl5aWurqytHWq0f7+WFmTvsCuR3X+/fvXx1Mpa8TJ04U586d6zhe+qCk7AozYLz6Fhh1OZ2LOe0L9FIu54r8HsZHLv0WMJyOHz9eK25K+UQnhVHJSy+9VPvf7DPQG3IBgPGkOIrsnDp1qunndIVGp1qfmxKmfk6Dn9O+QG7HdX363fSBR/qg48yZM13Fa92XtB+tgzQg/74FRl1O52JO+wK9lMu5Ir+H8ZFLvwUMn7Nnzxbnz5+vFUa9+OKLHfcH9dvxAb0hFwAYT4qjyE79Ks/GgUSn5ufnm35OH5JuVqoYT1eKpK/W6vFR2xeIkMs5mvYhfUjRzdXkjdPutk692+0fY2AUec+E0Tds56J+BXpv2M4V+T2MB+/xwLBJRVEnT57sasaoxlt8ld36C4ghFwAYU1XI0MWLF6vp8K5/nTt3rqM4jTFmZmY2/fyFhYXq9PT0aoz0fRK+WgwAACp9SURBVFo2ivsCkXI5R+v7kf7vxtzcXNO+7Nu3r6t4EO3MmTNNx2j6WlpaCt2G90zIx7Cci/oV6J9hOVfk9zB4xg7AOJqfn6/1A7Ozs13HSn1minXixImQtgHl5AIA40dxFNlKSUg3H0S2fpjTyQc5jR/UNH5gM4r7AtFyOUfr+7HZD2Lr0vN6/cExdCt9INfr49R7JuRlGM5F/Qr01zCcK/J7GDxjB2Dc1N/7U3F0hGPHjoUUawOPJhcAGC9uq0e2Ll68uDp1bZrOPt3vu11pOu40BW7j9Pebvcd32mbZtN5pWev0+sO+L9ALuZyjaT+SAwcObHr63bStZ555Zk085yjDpuzY7ma66VbeMyE/gz4X9SvQf4M+V+T3MByMHYBxkvqO+nt/6hcOHz7c0VfKO/bv319UKpXa7fkSfQr0nlwAYMwMujoLeqn1is12rra4ceNGU7V4qvzuRIrTehVb/Ss9Nkr7Ar2Syzlanzp7M+1pvQ1A+kpxYJik47R+xWLZldlpuumIK6K8Z0KecnmfH/S+wCjJ5byX38PmGTsA4yb1BWUz2UV9Af0hFwAYHzIsxiKxSdNhtpOkbGbddqSpdFsHNd1MrzvIfYFeyeUcbfxjSPo/ta3sg9m0Xut20z6ZcpdB3/oiHbf1r04/uGuMsdlb0XjPhDzl8j6/2fbpVxhnuZz38nsoZ+zgPR54pzCisS+I/urk9l5A5+QCAOOhkv4Z9OxV0A9pess0JW2a6jJNk/nss8/WpqtNlpaWisuXL69O8z03Nxc2Bebx48eLCxcu1L4/duxYLe6o7gv0Ui7naNqPxul3077s2bOn9n3rFP/psbS9tF0YpPpxW59Guhv1W1wsLCwUMzMzm3qu90zIVy7v84l+BcbrvJffQzNjB+/xQFEcOXKkuHTpUs/iz87OFvPz8z2LD5STCwDkTXEUYycNWl544YXah5jpq57kpAQmDTqee+65TX8gMyg57QvkdFynNqcPadM9y9M+XL9+vbYs7UPal1HZD8hJDn0L5CCnczGnfYFeyuFckd/DeMmh3wJ66/Dhw7UiiV45ceJESNEn0Bm5AECeFEcBAAAAAAAAAABZmhh0AwAAAAAAAAAAAHpBcRQAAAAAAAAAAJAlxVEAAAAAAAAAAECWFEcBAAAAAAAAAABZUhwFAAAAAAAAAABkSXEUAAAAAAAAAACQJcVRAAAAAAAAAABAlhRHAQAAAAAAAAAAWVIcBQAAAAAAAAAAZElxFAAAAAAAAAAAkCXFUQAAAAAAAAAAQJYURwEAAAAAAAAAAFlSHAUAAAAAAAAAAGRJcRQAAAAAAAAAAJAlxVEAAAAAAAAAAECWFEcBAAAAAAAAAABZUhwFAAAAAAAAAABkSXEUAAAAAAAAAACQJcVRAAAAAAAAAABAlhRHAQAAAAAAAAAAWVIcBQAAAAAAAAAAZElxFAAAAAAAAAAAkCXFUQAAAAAAAAAAQJYURwEAAAAAAAAAAFlSHAUAAAAAAAAAAGRJcRQAAAAAAAAAAJAlxVEAAAAAAAAAAECWFEcBAAAAAAAAAABZUhwFAGPu6tWrxYEDB4qzZ88OuilkanFxsdi/f39x+fLlQTcFAGBoyMPpNXk4APKNwfAeTO70LePryJEjxe7du2v9HHn8fhbH6D1LcRQAjLGU9KRBzM2bN4tjx44NujlkamZmpti3b19x+PDh4vz584NuDgDAwMnD6Qd5OMB4k28MjvdgcqZvGW+XLl2q/e7HoZBmXH4/M2P0nqU4CgDGfBCTLCwsFNPT04NuEhmbn5+vJdnHjx93RREAMNbk4fSTPBxgPA1LvpFmlxnX2UW8B5OjYelbGIxUdFN37dq1YhiM8/tM5O9nfkzesxRHAcCYD2JefPFFgxjWTabTlQLpioE0FWulUql9pe/T8ZOmaE2JcruDj3SspSsQTp48mf0VCAAAZeThtEMeDkAO+UaatSLdpie1ZVTef7wHw/D3LVDnfSbWi2PwnlWpVqvVQTcCgPakN8NUBZ2+UtVvehO9fv167ef692fOnDGVKW3dDzwdM6kafHZ2dtBNYkinXz169GjT1QaPMjc3Vzz//PMbDowdfwCMInk4EeRBtEMeDkA3hqm/T+2o/3E3vUfduHGjGGY5vwcbz9CtYTiOGbz0+09FPMmJEydq/cYgeZ+J//1czfxcN3MUwAhJb5qpajhV7abK4VS5m95M64ObzbyhMr5SRXr9fuC5JTbEXXGR+pp0fKTpkVMtfRpYpO9TUr2e1B9duHBhw9jpyoOUzCdpG6nvAuD/3969GEdxrWsAFadOADwygAyMicCQAXAiAGeAiwgoyECHCLCcgewIQM5A1xEAzoBb39za3FZ7Ruru6XevVTUFAs1MS92z9/fP7McJMyeH0wc5nJvI4QCsJW+kT6uuelFWypirtffB6hnW0rZAoZ8Zxv0Z9FlDMjgKYEHSaWaUcPZ9tWQpXWS/4ISZBJzT09Neg10eOyPKy1Kg+TNLmiZAJZSuLUStWc5ZCt2zs7NdexNpc/L3zDZIaD8U2HNt3STtWG4pWPJcADB3cjjHksNpQg4HYI55o4sMwmnyb3Ox9j5YPcOS2pay3RhcRz8znKdrrhuzrR4Ay/Tq1atsjXrldnp6OvVhMVPn5+ffr5P8vQ9nZ2ffbt++/Y/r8NDt8ePHvT03w8g5zbn6+vXrjd+b73n58uX3ayBtUlO5b5f7AcAcyOG0IYfThBwOwNzyRh/HsoTMvMU+WD3DHNuWi4uLbz/88MP352vymmRcOSfl/EzZjulnhj8/X2fUZ/XJylEACzb1fr4sb4ZHZMR3H0vfZgZHRo2X5XTLUqDldnl5ubtGq6PaM7O9ej/mp6ws0GQWWb4ns4UyqyHnvE2blPuW789y3tUlcAFg7uRw2pDDaUIOB2BOeeMY163cMcdVPbbYB6tnmFPbktdg6pSshiub0oR+Zni3Z9Rn9cngKICFG3s5RZYp4aUEsGPDVD5MSaGSD1hSEOXDl4S1shRo9drMMqD5//pyoNknOY9hi4/5yfmKMcJuPswrBcGLFy8Gfz4A6JMcThNyOE3J4QDMIW8cKzklfVkGUqS/2Zdnsu3vnGy1D1bPMFXbksdMXZJBLKlNsiV4voYm9DPjeTmjPqsvBkcBLJw9wmlSbJTR8gmMxxa+P/300y7EJRidn583erwUT/X9yHNcKX7MXJ+nDx8+jPI8pbDONaUIBmBJ5HBuIofThRwOwJR541jlWF6/fn1w9Y6pB3AdsrU+WD3DmG3LnTt3Tm7durW7ZTBUVooqq9Hk8XODJvQz43o7kz6rLwZHAcDKVQPisaEwj5UQlJnq9Q9ZbpIPceoz18vs96XJcS9tlH9TKU4jxekYH5itcfYBAEDI4f2Tw/sjhwOsQ595o8/VPLKyZQZT7BvwkEEXc1rVQx8Mw7ct5bWVaz/tQ14HZ2dnu63D8uejR49OtmDN9cwY9DPje7myPsvgKABYsQStMpo7H6QcM8MjgTLhLY+RmepdpJCqH0N53CXJrP2ypcnaVLdlefPmzSjPWZa/neOStwAAXcjhw5DD+yWHAyxbn3mj79U8bhpUMfVArip9MAzftnz79m13y2Coi4uL3YSPDGrZ2gpma65nxqCfmcbLFfVZBkcBwIpVg9bPP/981GOVMHloqdKm9t0/x7mkEfNlr/U1zvJIwbtvX/khVa/NORUtAABdyeHDkMP7JYcDLFufeaOv1TzSn1U/BL5uVY+5bM+jD4b5ti1rs+Z6Zmj6men8vKI+y+AoAFix6ijuY/ftLo9VRol3te/++UDm119/PVmKJX2AdGxYH6MATgFTCpoUBmbOAABLJ4cPQw7vlxwOsGx95o1jlUHY+z40PfRB6rEDv/ukD4Z5ti1rs/Z6Zkj6mencX1GfZXAUAKy4iClh+9gPUkrYSYDrY1ZDdWR/kb3FmYdqOM+5H2Op1DXNPgAAtk0Opys5HIAp8sZQq3ksaVUPfTDMr22BQj8zvZ9X0mcZHAUAK5V9u4snT54c9Vjn5+ffQ1v2xL5169ZR4a06Sr5Y8mjztanv957gO/RSr9VrIteCWTQAwFLJ4XQlhwMwRd4YcjWPpazqoQ+G+bUtUOhnpvd4JX2WwVEAsEIJJtWZ5fs+BGljX0g7Jrw9ePDgqONhePWZQUMXw5ndkVuxpO1dAAAKOZxjyeEAjJ03jpHjuG41jyWt6qEPZuvm1LZAoZ+Zh/sr6bMMjgKAFaoGkwTG6oj0Lg6NAu86y/zu3bt7/31JI+XX7vXr1/84N0PvhV0tuG3vAgAskRzOseRwAMbOG0Ov5rGUVT30wWzdnNoWKPQz8/F4BX2WwVEArE5Gkb97924XKp49e7b7+9aU7Tf6muFxqBA69OEKy5dzXp/JkC1chtwLuzpT4tOnT4M9DwAwDDlcDud4cjhAM1vOHX3njWPOQQZs37Sax1JW9dAHs+V2ZU5tCxT6mXl5soI+y+AoAA5KWEgR8PDhw5M7d+6c3Lp1a7cNQzrAjLSuLrHatzx2nqP63PkzX+ff981sTkjK/+eWvbG/fPmy+/fyOFtSDXqPHj06+vH2jV5PkOtaJJVzU+dDnnnZN9NiyL2wqwVOVkmwggEAWyWHL5ccTh/kcGAKee1nIEDyRnJHyQElhySb1FcuzL/lNufcke/Ph4752fI9aU/zM+Z783PlOfc9T9rD3K/8PsrvIseXn3nKDzL7zhtdlZU42qzIMfdVPfTB/VDPLNNc2hYo9DPz8sMK+iyDowC4Ih1aOuIUDSlgyl6+6bCzTGJ5cz5vKJQ3Ebpu6bBPnq+8QZHnyPFkJHWe//nz57uv8++lmCqdb3ljIyPDLy4uTi4vL3fHW97kz+POYWT4GOrFZZMR9TfJNZDfZ9lTOF//8ccfnZfWzfnZx1K985HX1ps3b/b+3zFvfF4n11f1GuizbQGAuZPDl08Opw9yODC2kgHSx6f9SZtQ8kf69vyZDxSTBUpWSFuVNil9fJcPxsbMHblPbvkZ8pgZ1JR2Lt976NjzfRlMkfvkufJnnufVq1e758pz5DHzPWMPkhoib3Q9jvwe8/xtBm3PeVUPffBx1DPLNpe2BQr9zPzcX0Of9Q2ARfvhhx++pTkvt9PT086PlfuWx7l///638/Pzg9/79evXby9fvvz+/Y8fP9792zGqz5/b2dlZo+8rv4N9x5ufo3zf27dvv21Bfs7q72eOcr1Uj7FcQ0ux5msqr6Nqu7LvXB3b1lyn+nxPnz4d5DkAoA9yuBxeJ4cPb83XlBwOTCF9fpv25fLy8h8ZKF/POXckN6WNqx939Zafq0gbePv27Wt/H/U2esx+aS55o/wOrsuth1xcXOw9DzmPU9hqH6yeUc/MqW2pP39ux14Xc7T0ayrnpPwMr169GvS59DPzPD+PF143zvOdGgBGL2KqBUmbDi2derlf3jiovpnQRr0wuSnw1L//0M9dDdVdj21pquey7RtUY9kX/JZUECzxmG+S10c12OY6Kq+ZBOn6+crrfejrd6piBQCakMPl8Do5fHhLPOabyOHAVKpZIh8itlFtt9r0eXPIHclb9ba13Cf/lzawSXapDpzo+uHtUvNG+dD5mOc/9MHwoUEtQ9h6H6yeUc/MqW0xOGoZxhocpZ+Z7/l5ufC60eAogIXro4ipvinQJWzUC5m2b6jUR3Gnc237s+d5D4XlLRQvh34vcxy5XS9Ay21Jll7EXDdTdN9ruBqqh/4gbepZSgDQlBwuh9fJ4cOTw+VwoD9pd9r0//X2qdy/aYaZS+7Y17bmvmkHr3v8m9rNsQYTzCFvHLOax1xW9dAHq2fUM/NqWwyOWoaxBkfpZ+Z7ft4uvG7819Tb+gEwreyzXd1n948//mj9GNnv99WrV7u/Z+/u7I2bP5t68eLFla9/+eWXRvcr+5SX560/TnUf3C0p+6XP9WfPPu915fphfHm9lf2ss3/3X3/99Y895bOP9MuXL/9x3w8fPvR+PPVrtno9A8CayOHrI4fThhwOTCkZpGSGJ0+etL7/ofZpCbkjx76vzcvxnJ2d7f6/iadPn175+s8//2yVw5aaN/Jz/v7777s+K1m0q0P3z89XzchD0Af3Qz2zLlO3LVDoZ/rvZ/p0f6F9VmFwFMDGQ0a1YEgh0vQNgLrXr19f6QwPFRR1CTk5juveoDikHmwSaJbWEfctxVy1gHzw4MHJnORc189Rzve+D2oYXl7/eSOjnIeLi4uDbcC+Nxf2nc+th2sAaEIOXx85nDbkcGBq5+fnR38IXh1csPTckf6w7Yew+47/06dPJ2vPG6Vf6iNDHHqMN2/enAxFH9wP9cy6zKFtgUI/038/s/U+q8rgKIANKyOX9xUibdVHOaegSIFyk8zIqmrzhsy+7x16xPfc1YPI3bt3T+ZkX3FbvwYYx3//+9/vIb3+xuih11t9dkM0eZ1vKVwDQBNy+PrI4TQlhwNzUB3E0/X1nnaj6WCIueeOtKld8tjYbefUeaOv1TyKQ49Tnqdv+uD+qGfWZeq2BQr9zP8Z4ti23GdVGRwFsFH12RAJCF1ndxwqiposY1ufUdV2tlo9OHz8+PFky758+XLl6zktgZtgWJ3NU4rYfeGPYSVcV2d4np6eNrpW9r3RcXl52eux1duhvh8fAKYmh6+THE4TcjgwR2mLumra3y0hd9S3yevSdg69rd7UeaPP1TyKQ4/VdHu0pvTB/VHPrM/UbQsU+pn59wO3F9Zn1RkcBbBR9WUj+3hjvD4Cu8no675HFS9tlHLfhn4T5pjjqi+3nlDa5Y0njld9wyEBfd/e1vsc2qN7i9c0AHQlh6/TXDOLHD4vcjgwF9UP6+of5rV9nCYrjMw9d/Q1YPjz588na22bS77MOe9jNY+xV/XQB/dHPbM+c7/m2Ab9zDLbo78X1n4YHAWwQelY6zOHnzx50stj10dC26phWsfO2ulLffZPPpDJXvSML294VgNrm1kYuZ7GXja1PnMJAJZMDt8OOZw6ORyYk3r+yCqD+bd6TrlJ8sZNW8YswVJXSRkzbwyxmsdYq3rog/ujntmGudQybIt+ZpmDo77MuM/ax+AogA3aNxq6r32k6534TSOvf/zxx16e99Dzb80cg0gCZvU68IHMdBKq84Zn9fXSdtWA+mywIWYGKMABWCs5fL3kcK4jhwNzk9UM6q/59BkPHz7c3d69e9d6oNSSc8dScsxUeaO6mscQq08OuaqHPrhf6pl1mmMtw7boZ4bvZ7bYZ+1jcBTABu2b0dVX+K93igkG141yrj9v2zde6o/96NGjky2rh6a+itOuEgrzhtqUH8jkGnnw4MHJrVu3ertVP3Dq6zHv3LnTeRn7puozFro8X/2aGjoIz70QAIA25PD1ksP/SQ7/f3I4MEfv37/f++/JBGlnM0gq7WT+TLv122+/dW4b5p477t27d7IEU+WNso3aEKt5DL2qhz64X+qZdZpbLTMX6pnx6GfG7We20mftY3AUwAbtKyr66mz3Befriph6UGi7XGS94x1iVDndpCCtnt/T09NJZqrnOJawDGmu5T73uN73+NUZDNF03+vr2oohimUFOABrJYczBjm8HTl82McE5it9d5MPIdOepx3LVq35ALbL9ntyx3LlXGVg3FCreQy5qoc+uH/qGbZEPTMO/cw4/Uyf7s78+K7z76kPAIDxjR3orhs5nECS0FM9pgSRfSGlrh5YEpy2vPztoSVxpxhlnvP5008/XdkjfqoCM8+b5+/zui+zCXKd5k3BPuQ8Nbnuu/r111+vfJ3n6uPaGOL6qi7lvKRZEgBwEzl8O+RwObyQw4E5y+DZ9OEvXrxoPPO/bL+XD/8yALcJuWO5eaP0vUOu5lHkOXJt7TuGi4uL1o+nD+6femYbpqpl5kY9Mw79zD/N/fX3ZSF91j4GRwFs0NjLHN60Z3UCZjWQ5I2VJmGuHpaGCE8JvgmpTWfT3SQj4PPzlWWBExyyP3pm3z1//vzoIDGHIJLrK+ezXGdZbnnqcN73B0IlsOfamGIWfh/LXnctvurtx9BLTi95FgIA1Mnhzcnh7cnh8ySHA3OXtjq3bMda+somslLCp0+fGn+YOOfcsRRj542xVvOoDnbJrb4yWVnVo22u0Qf3Tz2zznpmDrXMXKlnhqWfmaaf2UqftY9t9QCYXMJINQgmDN20PHe+pzrDIyGk79kdeZMne0rftL95EznWLD2eYiU/b47369evuzeQ8nWWAc7/15fgPDaIjF2wVj+QSVGVn2/qD2TYPyOq63mpvymR67dv1etWcQ4Aw5HD5XCGJ4cDS5FMcHl5ubvlA/isDHVTH1/fynWJuWNJxs4bY67mURx6rnIsbeiD12+u7crS6pmpaxm2Sz8zXj/Tp78X3GcZHAWwQfvCfl+Bd99sjibFRX1EdbaCOLTPb4J+ioGirxnRZZR6Copbt241fnPnJjne8vPlDaaEr/xOEhryZ75OQZO/5zn7et4p5LyVmSulQGN6eX3XX+Ndz039DYbMUAIAmpHD95PDjyeHz5McDixR+sWyZV76z2/fvu36/AxA2PcBWPrbQ9lhjrmDea7mUeQc7+sry6oeTemDh6Ge2U89A+3pZ64+d9WW+5mhGRwFsEH73si4aYnapvYVQ02WVUxwzxsvKUgSIPI4Cf6Z/ZwR2ykE8mdmXJSQnxCTouDYAiaPmaIlf6Y4yj7BecOnjxkjCVPleLPM76HHzDkpS3DmZ+0606P++H2d1yZyvhLicgx//fXXpmfyzU19htIx56b6WKUY71O9Dbl3716vjw8AU5LDr5LD+yGHz5ccDsxV29VM0ueXD+H3rbjQdMWHKXPHGoyZN8oKGl1W0pjDqh764GGoZ9ZZz0xZy7Bd+pnx+pmt9ln7GBwFsEH7Qv+QMzxuGi2doJ/OP8Ejx5aZzrmlqMlxvXv3blcIJNgnFKTAyP/3teRtnjez4cqStOWNnj4CSJmJkt/BTcVWmZkX+Xm7nJP67+PYZXvb/Jw5j3n+nJu2v7vMEEghOdbxbk1fy7LWZzAMMRupfqw+3ANgTeTwq+Tw48nh8yaHA3OV/qPrh5HJA/mgvqrJSgtT5441GCtvVFfzKBlpTH2s6qEPHoZ6Zp31zFS1DNuln7n6nFVzXwHuy4L6rH3+PfUBADC+zJxIYVD16dOnXrZeqAfnJrMvUkDUO9EcS/n3oQ0VvvI7LoVI00BTirVqcdVGvfDKDJih5ZgTZHPO/vjjj07F38ePHxcZpJaqyayrfeqFwRDL3fY54wIA5kYOv0oOP44cvjxyODAnbbaOqUs7lEEG1VyTD/euyzRT5441GCtvTLmaR5EBJvXt0sq/d1ntRx/cD/XMOuuZKWoZtk0/M24/s9U+ax8rRwFs0L6OPTMm+ugU67MSqnt4H5I3T+a8TGRX1QKkaZiqFpJ9bOnR18yd6wq1HOcxH8hE2QaEYdSDedfz9OHDh+9/zzkf4pz1tU83AMyRHD4OObw5OXxYcjgwZ3ndH7M6SH1Lmpsea625Y2xD542ymkfO1RSredy0qkc+RK6vsrGPPngY6pn11jNj1jJsm35m/H5mq33WPgZHAWxUZnf1NVusqAeGpuEmyzCmQ11T6M7vor5PcFPV701IbKt6/yGXwC37tSf8dNnCY4gZRuzXR6DOtVR9jR/al7uP5ynmXggAQBdy+LDk8Hbk8GHJ4cDcdenvqqof2t/UH60xd0xh6LxRVvEYqr9p49AxNFlpRB88HPXMOuuZsWoZ0M+M389suc+qMzgKYKNev359bSfcRX2p1vpz3DTC+tdffz1Zi2pR2PbDimqgyH7lbVU/3MiHHUP9fFmqt+zl3sfMoCUGqaXINXhsgVt9fTfZ676rsrVLuCYAWCM5fFhyeHNy+PDkcGDuqqsVdFHta2/aTmaNuWMKQ+aNuazm0ceqHvrg4ahn1lnPjFHLgH5mmn5my31WncFRABuVjrs+CvmYvbjzpno1uKdTrM8iOaR0oBmNvZZZHtWA0Hav4WrR02XmTXWf5CFmziQU5jmy93GXD43qynX46NGjHo6OQ6p7VXd5w6K6HPP79+9PhlI9NqsYALBGcviw5PDm5PBxyOHAnOW1f8yghuoHgTe1HWvMHVMYMm+UbDCnlSuOWdVDHzwM9cw665mha5kusjIY66Kfmaaf2XKfVffvf/wLAIvWJrSmyEjYLkuspiPOLOQuHdqLFy+ufN3mzfo8X8J6jv3hw4e7MJIR0kveL7waENqOnq4WPV1Gm9dHl2emR18jznM8P/300+7vOV/VoqmNsuTx0pfgXJLMuHr37t2VVQKavsaqbzCk3Rgy9Favia7XFwBMQQ6fBzn8enL4+ORwYO6SJbquRlj63eqHg0vMHZ8/fz5ZiqHyRvqB8iFtrodk0zkrq3pc1zfqg9tRz2y7nhmylllbO0w3+pnp+pk19lmdfQNg0W7fvv0tzXm5vXr1qvVj/PDDD9/vn8f7+vVrq/u/ffv2yjGcnZ21un+er3r/Jrcc5/3793fH/vTp090xnJ+ff+tT9feS52ijeqyPHz9udd+cw+r9256P+rHnd9OHHEf9euvztiR9/27HUr22Xr582eg+FxcX3++T62pI1eda2jUBwPbI4XL4PnL4sOTwYcjhsD3V/iq309PT1o+R3FHuf3l5uajcUX+etnmjqPfPXR9nDnkj/dNQWWOoW5Ospw8+TD2jnrnuuMfO2/lZ6+eq7fWwBEutZ/a95tq2GfqZ4fuZY87PVurGZR41ALtOrh52jwmN1fCZzrhpcK4XMF0LifrjdL2luMnvpcsHGUMVMW3vWz+vTd5guu4x+nhjJr/PFI1Dhcw89pIsuYipXtc3vV6rH8TlHPXxumraDrQt/gFgLHK4HN70MeTw/snhw5DDYXvqg6PaZon0kaWdavPh29S5I8d96MPZ5Limj5fvO/Q4GWg2dLvdd97I72WorDH0LR/U3kQffJV6Rj3T5P5jDfbMa/hQe5pzkja1S102V0uuZ44ZfKOfGaefGXpw1NsV1I0GRwEsSDqbtjOGS4BsG35vul8CQbXwSSfeJCQ0ff4+bl1mvc2xiOnye00Aqz7GsfIzDBkwlxakllzEJCBXr+1Db3rkuisfxLV5Y+MY1Tbl2NcvAPRJDpfDm5LDhyWHD0MOh+2ptkdpd0p/0+SDtLRfJRc1XSFhytyRn7VLjqv3NV3z4BAfTvadN5a4mkebLKMPVs/03a6stZ7pu22pH1uujXLrem6qj3HsdTOFJdczxwy+0c+M088MPTjq8Qrqxn9335APgLF9+fKl1Z61ke9vul949uTOPr/Z6zb7hefvuT19+nS3v/W9e/dOLi8vd3vtln1lcyy538uXLzv/XHmsPEbZbzjPldu+n7P6s+R+1+2dnWPP92e/3rnuz970vLdV9lYvx3LT3shj/0x1S9lPeQ1yXWRP77zOsx/2s2fPdr//XDMPHjzYnevz8/Pd6zzy+snrcwzlOWPMPe0B4CZyuBzelBzOIXI4MEenp6e7tujs7GzXNpU2Khnk0aNHu1wQ6fc/fvy4ay/SXuXf379/v/u+ueeOksna5rjPnz+PmgenzBvVfmBpPn36dOP36IPVM+Xnqd5PPTN821JXvQbbXIv7Hodl0c9M18/06fc11I1Tj84CYJ4ywjgjfzMSOCOZq8s8ZkRzRh33MTI/z1FGGudxuyyRmvtkJPah0eddl13tOsOjvkTosTM8uu6tXX2cIUaJb9nSZ3hUX+f5Gaqzx/Iaz9f59zFmyO2bmdTnPtsAsDRyuBzOYXJ4/+Rw2Kb0kYf6qHr7VFbqKDmky9ZXc84dSyVvdKMPHp56Ztn1jLZlWEuvZ4ZemWgNpuxnhjw/5yvpswyOAmAy1aDd53YO9a0nunbUXYuYFHdTFzH1Yirhi/4svYiZo+qbEF2veQCgGTl8Pzl8/uTw/snhwNZzx1LJG8unD15vu7LkekbbMqyl1zMGR233/LxcSZ/1r6lXrgJgm7Ika5aXLEtOZknJvmQp8OpyvHmu65bJ7dsxS8L2+XhZQrgse5ufP78HmKuy/HWu9zbL8gMA7cjhwz+eHM6SyOHAkNacO6YmbyyfPribNbcrc6hntC3Amvssg6MAmMSLFy++//3169e9P/7p6emVr7PX+VLdvXu3832rv9v674Tu+tgbnf2vzyHaAwDg/8nhzcnh8yOH90sOB4YmdwxL3lgufXB32pXh6xlty3DUMyzRbyvqswyOAmB0f//995UZB0ONMi4zHOLy8vJkqqIjP+8xjgnK+d2W+5eR3Rzv+fPnu9/r48ePpz6UVXjz5s33v1dnZwEA/ZLD25HD50cO75ccDgxp7bljDuSN5dIHd7P2dmUu9Yy2ZTjqGZbozYr6LIOjABjdly9fepuRfZ0ff/zx4HMO6dhR//Wi59jfz/v377//XTHTj8yY+fr1626ZYY6TNzTKmxoJ1mbNAMBw5PDryeHzJ4f3Rw4Hhrb23DEX8sby6IO7W3u7Mqd6RtsyDPUMS/Pnyvosg6MAGF09lA+1b3f1cR89enQypmpAaFtA1b//2LCRmR4lbP/yyy9HPRb0rVyTuc7fvn079eEAwKrJ4deTw9kSORwY2hZyxxzIG8ujD+5uC+3KXOoZbQuwxj7L4CgARpdOtLo07YcPH3p/jsyS+P33379/PfYypdXZJW2Xv60WX33NIDg7O/t+LO/evevlMeFYmXFQXqeZjbT0WQcAMHdy+PXkcLZCDgfGsIXcMRfyxnLog4+zhXZlTvWMtgW27c8V9lkGRwEwieoI4wTrvmd5vHjx4koBUy2axvDkyZPOMzyqRU9fx53HKXsBV/cHhimV12leo5mNBAAMTw4/TA5nK+RwYCxrzx1zIW8shz74eGtvV+ZUz2hbYNterLDPMjgKgEmkM3316tX3rx8+fNhbIZNlHn/77bfvMyTKDIcxVWeUHDPDo1oM9bGfdX4fOZ6ff/65t8eFLrJXfdmrOtcmADAOOfwwOZwtkMOBMa09d8yJvDF/+uB+rL1dmVs9o22BbfrvSvssg6MAmHSWR5npkXD94MGDXYfbVcJ/Qn9Z4jUzG87PzydZ6jHPXV26toSIm9QLnufPn/d6XKWgy++5ujwwjCmv1VJMlwIbABiPHP5PcjhbIIcDU1hz7pgbeWO+9MH9WnO7Msd6RtsC2/I/K+6zDI4CYFKZ5XFxcfF9mdd0uKWYaTozIoH82bNnu/uVcF4ed8pOuzqTomnRUP2+LFPZdwGW33MZ5Z3fWdvZJ9CHXHuRZZnL0swAwLjk8KvkcLZADgemsubcMSfyxnzpg/u35nZlbvWMtgW25dmK+6xb3759+zb1QQBACfCZ8VEN8ilCspRsCpQS6BO+P3/+vJs18enTp+9hPN+bwiGddR/hP89ZlqJNQdFlGd07d+7sji/Hdnl52Sh0lKV78/1DFWFZIjgzYVLYpNiDseQ1mjcp8rrODCwAYHpyuBzO+snhwFzMLXeskbwxL/rg7bUra61ntC3kmsy1WQYSlhXcWM/5+XnlfZbBUQDMUoL8x48fd4VKCokvX758L1ZSoNy9e3f3548//rjbVzwddZ+BvxoiomkRUpfjz/FFZldcN8o6xVvZCzyhpbp3+hBKyOlaoEFbKZ5TRCugAWC+5HA5nPWRw4G5mjp3rJm8MQ/64O21K2uvZ7Qt22Zw1LrPz7sN9FkGRwGweSkeUiiVIinFSvm3qgSCFEv37t3bfV2KqLJ0702BIqpL/VbluVLs5BhS6JRlaodWihlBljHemMgMpjUHawCgHTlcDmd4cjjAdskb09IHr99W6xlty7bdunVrtIlFjHd+fttIn2VwFACbV8J82yVzU3A0DRhl//JSpOQ5EzJSvCR0lCLnplkgQyhF1hTPzTbkOs9y0mYUAQBVcrgczrDkcADkjWnog7dhy/WMtmW7ypaPadvSxrH88/M/G+qzDI4CgBGlWEq4KHuap3DK0rr/+c9/etvTvIsym8XS5Awh13qu+cyQAgCYghzOFsnhAIS8MT59MFuoZ7Qt25Tznm0fDYxaz/n5e0N9lsFRAAAAAAAAAADAKv1r6gMAAAAAAAAAAAAYgsFRAAAAAAAAAADAKhkcBQAAAAAAAAAArJLBUQAAAAAAAAAAwCoZHAUAAAAAAAAAAKySwVEAAAAAAAAAAMAqGRwFAAAAAAAAAACsksFRAAAAAAAAAADAKhkcBQAAAAAAAAAArJLBUQAAAAAAAAAAwCoZHAUAAAAAAAAAAKySwVEAAAAAAAAAAMAqGRwFAAAAAAAAAACsksFRAAAAAAAAAADAKhkcBQAAAAAAAAAArJLBUQAAAAAAAAAAwCoZHAUAAAAAAAAAAKySwVEAAAAAAAAAAMAqGRwFAAAAAAAAAACsksFRAAAAAAAAAADAKhkcBQAAAAAAAAAArJLBUQAAAAAAAAAAwCoZHAUAAAAAAAAAAKySwVEAAAAAAAAAAMAqGRwFAAAAAAAAAACsksFRAAAAAAAAAADAKhkcBQAAAAAAAAAArJLBUQAAAAAAAAAAwMka/S+2z3hZW2YZkAAAAABJRU5ErkJggg==",
|
|
"text/plain": [
|
|
"<Figure size 2700x1200 with 6 Axes>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"from matplotlib.colors import TwoSlopeNorm\n",
|
|
"\n",
|
|
"fields = [\"spm\", \"p3m\", \"diff_p3m_spm\"] # fields to plot\n",
|
|
"\n",
|
|
"slices_dict = {\n",
|
|
" \"spm\": DELTA_SPM,\n",
|
|
" \"p3m\": DELTA_P3M,\n",
|
|
" \"diff_p3m_spm\": diff_p3m_spm,\n",
|
|
"}\n",
|
|
"titles_dict = {\n",
|
|
" \"spm\": f\"sPM $n_\\\\mathrm{{steps}}={nsteps_spm}$\",\n",
|
|
" \"p3m\": f\"P3M $n_\\\\mathrm{{steps}}={nsteps_p3m}$\",\n",
|
|
" \"diff_p3m_spm\": r\"$\\delta_{\\rm P3M}-\\delta_{\\rm sPM}$\",\n",
|
|
"}\n",
|
|
"\n",
|
|
"npanels = len(fields)\n",
|
|
"fig, axs = plt.subplots(1, npanels, figsize=(3 * npanels, 4), sharey=True)\n",
|
|
"\n",
|
|
"ims = []\n",
|
|
"for i, key in enumerate(fields):\n",
|
|
" ax = axs[i]\n",
|
|
" data = slices_dict[key]\n",
|
|
" title = titles_dict[key]\n",
|
|
"\n",
|
|
" if key.startswith(\"diff\"):\n",
|
|
" vmin = -np.log(1 + np.abs(np.min(data)))\n",
|
|
" vmax = np.log10(1 + np.abs(np.max(data)))\n",
|
|
" if vmin < 0 < vmax:\n",
|
|
" norm = TwoSlopeNorm(vmin=vmin, vcenter=0, vmax=vmax)\n",
|
|
" else:\n",
|
|
" norm = plt.Normalize(vmin=vmin, vmax=vmax)\n",
|
|
" im = ax.imshow(\n",
|
|
" np.sign(data) * np.log(1 + np.abs(data)), cmap=\"RdBu_r\", norm=norm\n",
|
|
" )\n",
|
|
" else:\n",
|
|
" im = ax.imshow(np.log10(2 + data), cmap=cmap)\n",
|
|
"\n",
|
|
" ims.append((im, key))\n",
|
|
" ax.set_title(title, fontsize=fs_titles)\n",
|
|
" for spine in ax.spines.values():\n",
|
|
" spine.set_visible(False)\n",
|
|
"\n",
|
|
"axs[0].set_yticks([0, N // 2, N])\n",
|
|
"axs[0].set_yticklabels([f\"{-L/2:.0f}\", \"0\", f\"{L/2:.0f}\"], fontsize=fs)\n",
|
|
"axs[0].set_ylabel(r\"Mpc/$h$\", size=GLOBAL_FS_SMALL)\n",
|
|
"\n",
|
|
"for i, ax in enumerate(axs):\n",
|
|
" ax.set_xticks([0, N // 2, N])\n",
|
|
" ax.set_xticklabels([f\"{-L/2:.0f}\", \"0\", f\"{L/2:.0f}\"], fontsize=fs)\n",
|
|
" ax.set_xlabel(r\"Mpc/$h$\", size=GLOBAL_FS_SMALL)\n",
|
|
"\n",
|
|
"for ax, (im, key) in zip(axs, ims):\n",
|
|
" divider = make_axes_locatable(ax)\n",
|
|
" cax = divider.append_axes(\"bottom\", size=\"5%\", pad=0.6)\n",
|
|
" cb = fig.colorbar(im, cax=cax, orientation=\"horizontal\")\n",
|
|
" if key.startswith(\"diff\"):\n",
|
|
" cb.set_label(r\"$\\textrm{sgn}\\left(\\Delta\\delta\\right)\\log_{10}(1 + |\\Delta\\delta|)$\", fontsize=fs)\n",
|
|
" else:\n",
|
|
" cb.set_label(r\"$\\log_{10}(2 + \\delta)$\", fontsize=fs)\n",
|
|
" cb.ax.tick_params(labelsize=fs)\n",
|
|
" cax.xaxis.set_ticks_position(\"bottom\")\n",
|
|
" cax.xaxis.set_label_position(\"bottom\")\n",
|
|
"figname = f\"fields\"\n",
|
|
"fig.savefig(\n",
|
|
" simdir + f\"{figname}.png\",\n",
|
|
" bbox_inches=\"tight\",\n",
|
|
" dpi=300,\n",
|
|
" transparent=True,\n",
|
|
")\n",
|
|
"fig.savefig(\n",
|
|
" simdir + f\"{figname}.pdf\",\n",
|
|
" bbox_inches=\"tight\",\n",
|
|
" dpi=300,\n",
|
|
")\n",
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 13,
|
|
"id": "228340be",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# full_field_p3m = np.log10(2+read_field(simdir + f\"nsteps{nsteps_p3m}_final_density_p3m.h5\").data)\n",
|
|
"\n",
|
|
"# if N <= 128:\n",
|
|
"# fig = plotly_3d(full_field_p3m, size=N, L=L, colormap=thermal_plotly, limits=\"default\")\n",
|
|
"# else:\n",
|
|
"# # Downsample the grid for visualisation\n",
|
|
"# downsample_factor = N // 128\n",
|
|
"# downsampled_field = full_field_p3m[\n",
|
|
"# ::downsample_factor, ::downsample_factor, ::downsample_factor\n",
|
|
"# ]\n",
|
|
"# fig = plotly_3d(downsampled_field, size=N, L=L, colormap=thermal_plotly, limits=\"default\")\n",
|
|
"\n",
|
|
"# fig.show()\n",
|
|
"# # clear_large_plot(fig) # Uncomment to clear the Plotly figure to avoid memory issues"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "7d0df151",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Force exerted by particles on other particles"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 14,
|
|
"id": "684477ec",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"Newton prefactor = 6.37e-01\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"r1, fmag1, _ = load_force_diagnostic(OutputForceDiagnostic_spm)\n",
|
|
"r2, fmag2, _ = load_force_diagnostic(OutputForceDiagnostic_p3m)\n",
|
|
"Newton_prefactor = (L / Np)**3 / (4*np.pi)\n",
|
|
"print(f\"Newton prefactor = {Newton_prefactor:.2e}\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 15,
|
|
"id": "6a6b4e9c",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"Nyquist: 2.00 Mpc/h\n",
|
|
"Particle length: 0.12 Mpc/h\n",
|
|
"Split scale: 1.25 Mpc/h\n",
|
|
"Short-range reach: 5.62 Mpc/h\n"
|
|
]
|
|
},
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAB0YAAAVmCAYAAAANgd2WAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAuIwAALiMBeKU/dgABAABJREFUeJzsnQecVcX1x88uSxPpgjExSlEE1CjNXhIFrIlGQdTI30rTqLEExN4RLImNaiyxhaLGxNgAo9HYKGosKFXBSi/iLsvC/j+/eczz7tv33r573y1z5/6+n8/lvb3cN3Nm7rkzc+fMOVNSXV1dLYQQQgghhBBCCCGEEEIIIYQQYjGlUQtACCGEEEIIIYQQQgghhBBCCCFBQ8MoIYQQQgghhBBCCCGEEEIIIcR6aBglhBBCCCGEEEIIIYQQQgghhFgPDaOEEEIIIYQQQgghhBBCCCGEEOuhYZQQQgghhBBCCCGEEEIIIYQQYj00jBJCCCGEEEIIIYQQQgghhBBCrIeGUUIIIYQQQgghhBBCCCGEEEKI9dAwSgghhBBCCCGEEEIIIYQQQgixHhpGCSGEEEIIIYQQQgghhBBCCCHWQ8MoIYQQQgghhBBCCCGEEEIIIcR6aBglhBBCCCGEEEIIIYQQQgghhFgPDaOEEEIIIYQQQgghhBBCCCGEEOuhYZQQQgghhBBCCCGEEEIIIYQQYj00jBJCCCGEEEIIIYQQQgghhBBCrIeGUUIIIYQQQgghhBBCCCGEEEKI9dAwSgghhBBCCCGEEEIIIYQQQgixHhpGCSGEEEIIIYQQQgghhBBCCCHWQ8MoIYQQQgghhBBCCCGEEEIIIcR6aBglhBBCCCGEEEIIIYQQQgghhFgPDaOEEEIIIYQQQgghhBBCCCGEEOuhYZQQQgghhBBCCCGEEEIIIYQQYj00jBJCCCGEEEIIIYQQQgghhBBCrIeGUUIIIYQQQgghhBBCCCGEEEKI9dAwSgghhBBCCCGEEEIIIYQQQgixHhpGCSGEEEIIIYQQQgghhBBCCCHWQ8MoIYQQQgghhBBCCCGEEEIIIcR6aBglhBBCCCGEEEIIIYQQQgghhFgPDaOEEEIIIYQQQgghhBBCiAWsXbtWJk6cKH369JGWLVtKSUmJdOzYUf2N84QQknRKqqurq6MWghBCCCHErxfAxYsXy+rVq9Un/l60aFGNv/F9zZo1YitjxoyRCRMmqPJ2795dRo4cKf369YtaLEJIQtBtrW6L0QZnts29e/eWqVOnRi0qIYQQQiwlqe+FKNeIESPSxs8WLVqocVeHDh1UuWfMmKGuwXmMxfB/hBCSRGgYJYSQAMGgEyvywgQD3FatWqlPDH579eqlBrswkBBiM1gJi5e8QrB1+DNkyJCsK4BHjx4tw4cPj0QmQkgywGQbPBEKAYs1aBglhBBCSBAk9b0Q80/9+/dPlx3vf3gPzASGUyymBXPmzOFcESEkkdAwSgghlhlG8wEDKQwn9B4jNpLUF2ANyo46yAVWSGOxBCGEBAENo4QQQggxgSS+F2JxLOZ6NIggNHjw4FrXwSAKw6gGC+pt85olhJBCoGGUEEICBIPxKVOm1Ph71apVMm3aNDWBmAsMTjGI1ROM8ADNB0LA6PR1eJi5c+fmzAPGEQyGsw2Uid3ghQmrRnWYVXy3JXwOnivovn4OsDAh1zNg4/CnroUYeN7xgkwIIUH0Dc4xD77PmjUrHa4tExpG7cfm8QYhhBCzSdp7IcoLT1FNLk/RXO+LGJNx8TwhJGnQMEoIIYaFvPQznAleBDD4nTx5shosZzOQYhDM0CnJwBkyx8n06dOtnazMVWYbhz9YDNGjR4+c/4/nHG0LIYSE2TdgkVfmZCQNo3aTxPEGIYQQs7H1vTAzYgfmeGAMdlMHuQyphBBiMzSMEkKIgSHngmiaYTTBQBiG0ky4/6D95Auzmu/lyQZKSkpqnbN1+JPNAJGEchNCzO0bsnkn0DBqL0kebxBCCDEbG98LMcZyzvHk8/7MZRjNFXaXEEJspjRqAQghJKnk2usPYXSDAN5iWKmfbSUgBsgm7YVK/Gf27Nk5/w+GtEL3YIkjSfKIxotwZhuiPcP1AglCCAmzb+jZs2fRaZD4kOTxBiGEELOx7b0QBlGnURTvgflC4g4YMCDreUZzIIQkERpGCSHEMOraT7RY4BmazUsDA2rnvhQkHGCQRljlqPUqKIN8Ep4p017216xZo55xrPzFYgh45+hJAL0fMSHEjLY5asLoG2zuX+IExxuEFE5S+oC4wftSGKyn5LwX4n3PySmnnJL3erwT4j1RL9LXi+dzLdonhBCboWGUEEISCFYRZgudi31I+RIVLjBI5/Ou8Au89OR64cm3qpTEE9xThEPKXP1LTx1CzGqbo4Z9Q3LgeIOQwklKHxA3eF8Kg/WUHDB/46SQhe7oi7FwFiGE58yZQ29RQkhioWGUEEISCkLqZpu4mjhxYtZ9SEn8ybYaFC9CkyZNikwmEg7aIEpPHUJIJuwbiN9QpwghhJBgyTZnw+0LCCGkcMpcXEsIIcRC42i2VYU4h3CcJFjC9t7DJCVWh+IlCvt84W+uEE0GOoQuwyQRUjdJ86xm32A/HG8QUjhJ6wPiAu9LYbCeksPcuXNr/I0FsFwESwghhUPDKCGEJBiEUcHgOfMFCn+PGDFCGU5JcGCyMAo4OZlcXbNtXx1CbGqbo4Z9g71wvEFI4SS1DzAd3pfCYD0lh1WrVtX4m+95hBDiDobSJYSQhHPKKadkPY+QuiRYuPcLCQt47gCuIiakbtg2E9ugThNSOHxezIT3pTBYT8k1gvM9jxBC3EHDKCGEJJwePXpkPQ+vUe41Go6xipCgwbPcvXv3qMUgJBawbSa2QZ0mpHD4vJgJ70thsJ6SA8MmE0JIcdAwSgghCSdfmLOpU6eGKkvSoOGZhPXSjD1oGNKQkMJg20xsgzpNSOHweTET3pfCYD0RQgghhUHDKCGEJJwOHTrk/D+G4gneWEVIWBMkffr0iVoUQoyHbTOxDeo0IYXD58VMeF8Kg/VECCGEFA4No4QQQnLC8CzBwdW8JCwmT56s9pyhxyghdcO2mdgGdZqQwuHzYia8L4XBeiKEEEIKh4ZRQgghOVm8eHHUIljLhAkTohaBJOQZnjZtmgwePDhqUQiJBWybiW1QpwkpHD4vZsL7UhisJ0IIIaRwaBglhBCSE3iZkWCMVVzRS8JgxIgR6nPkyJFRi0KI8bBtJrZBnSakcPi8mAnvS2GwngghhBB30DBKCCHE0/6jpHhjFSFBgj2G4C06fPhwLnIgpADYNhPboE4TUjh8XsyE96UwWE+EEEKIO2gYJYSQhJNvH1EaRv0HK3lhrCIkaAYNGqQMovQWJaRu2DYT26BOE1I4fF7MhPelMFhPhBBCiHvKPPyGEEKIRcyePTvn/w0YMCBUWZJghO7fv3/UYpAEMGTIEOUxOnXqVHqLElIHbJuJbVCnCSkcPi9mwvtSGKwnQgghxBv0GCWEkIQzffr0nP/Xr1+/UGWxfd+XHj165PXQJcQPJk6cqA48v3yGCckP22ZiG9RpQgqHz4uZ8L4UBuuJEEII8Q49RgkhJOEg9E42Bg8e7Fv68FqDZype3vDiBg+2Vq1aqVC9ffr0kd69e0v37t0lCHSe+Fy9erUsWrQo/bc+N3r06JzlxTUTJkxQ5dBpQW7IixClhcgNIxX2fYnipRV5oozOekAdOM/h+5o1awKXReuCrnscAPUZhi6ESbayOvUeB1Z3o7x+Ai9ReIuiDpF/UGXDggrkpZ8hrdsoI8rWs2fPnOXDb/B/M2fOjL03q4k6jVBquD+5dA+yIBqA3zI521ndtqCtcZ6DXuRbjIPfTJkyJV2nWrcgt9Yt1Okpp5zii+5E2TZH3TeZ1DdkA+3L5MmT1SfGD/oe6WcLh27rwtDjzLqqrq72/b4721Kc9wLHGynYDvqHzX1+lM9LXHQ6Cnhf7KmnqOcBiJ36H/UYOu7vi1HNUxBiJNWEEEIiA81w5tGhQ4fQ8p8zZ05WGXCsWbOmqLRHjx5d3aJFC5UWPnv37l09ePBgdR6f3bt3r1XuCRMm+Fa2RYsW5Sxb5pEtX5S/X79+6Wu0/MOHD1ff9Xlcky3vqVOn1qgDvw/IURe4ptD0ggL1iHrLrAfcb9QjDnwPUhec9yvI8qKsqHNnWVEWrTf4hCzO/8d3nC/2edNA75CH30CnIWdmuaDjuFfIV+u88/lG+XBOg3Lq+40044gJOp2tLXe2VzhwD7Tu6XbLKRfkx3k/dK/QdgYy5avTbO2tfm4y08I5tzpkQtscZd8UZd+QmW4u+XB/nOMDlAny4p5lljEqPfZSL27uu5txoAk6bcp4g+2gf9ja55vyvMRFp8OC98W+eop6HsCE90K/COI+44Auxa1dMmEMHdf3RRPmKQgxEbN7AEIIsZyoDaOZg9p8A0k3A1Y9yMPgKt+gO3MSSJcfA+5iKWbgjN/qQWG2QXzmCxXKEMYLTNwmKvHym22wn2twjfvu1Ae8ZPkxkRbGCzDK5Uwfz1Y+2fFcZL54eH1BDRqnHuH+FHpPnC/OuJe4786JEBMmSeOq07na0EImHjInvHE4J7K9UIxBYPr06UpuHPnqEucz699tf2VC2xxl32SyYRRl0+0D/g96kQ/UTeakW7FtqJv7bIph1ASdjnq8wXawuHF7kvp8U56XuOh0WPC+2FNPpswD5IOG0dThdswUtf7r9KIeQ8fxfdHmeQpCiqUE/0TttUoIIUmlpKSk1jmErvAaQs1tCA2E7cgEITPyhfgqJE2E4kB4jkLDb2TbH2X48OEqBIpXdCgy/X3WrFlKvmzhhhBKRYda0bKAOXPmqPvhBCGLxowZUysN3DN9LcLK5AKhXRD+zwl+57asOtxLPpwhCFetWqXk0qFbMvFzOIA8oAfOvNzeT2c9Q5eK2SsTsmSGjParvKhbhJrR6bvR/czfAugh9NEUdN2hXNmeh0JDfWXqfOYzYzqm6TTA8zxo0KB0m+ZWd/C7I488UrUTAPcCbb/Xe6zTxH1F25utrUWbBT3K1A3UxaRJkwoKs5it7yq0Pk1om6Psm6LsGzLHO7hfOty31mWE8MI5N6HEMstdzBjGqcf57ouXenFz392MA03Q6SjHG2wHf8SPfsX2Pt+U5yUuOh0WvC+Fy2ByPZk0DxDVe2EQ5LvvGANl9rWFbqWC+1yo/pmg/6aMoeP0vmj7PAUhvlC0aZUQQohnovIYxWq1bCF4ignBqcPyQn4v4TayyeRHGJNMMkP3ZK4ohPyQI1cZsv3e7arLQsOqBUE2TwM/hwPO1ZheV6Q6dUqnVZf3UBQrg50h4vRqSi+rO/1coeon2vMj3/NQKLh/mffABO+RuOp05srfYryFMj29/Fqpny0igbOtQx3qVdvFyuyXPkXZNkfdNwXdN2Smq/t3rcvF9PeZ7Yv2VisWpJGt//CzXrLdNz/HgTaPN9gO+tsOss+P9nmJi05HAe+L+fUUl3mAOHqMmhYVyUT9j3oMbeL7ou3zFIT4RXx7AEIIsYAoDKPOEDfOo9h9CfXgrZiJj2x7nvq5J0yuyRo9cNaD9XyD9FyTpG4G9lG/4Ac1UekcxBf7QpDtJcOrbgXx0pj5slHMy122tPzWe7foyVo/7qEmM5RSHCZJTdTpTGODH/cn894UY7R16nWutk6Hwirm5TozbT9e1KNsm03sm/ycYMtMFxOeup3xY/IzW9gyv4yjQdZLtvtui2E0W/5+1R3bQX/bQfb50T8vcdHpKOB9Mb+e4jIPAGgYtU//ox5Dm/a+aPs8BSF+Et8egBBCLCBsw2jmfgF+DW70oNmPPY6yrYD3czVttkkqvedDIXXhnDzyes+inqjMtiqyWLKt9PVr0Kxfdrwa74N4acysw2L3ccqmV1FOIuoXINxTPzGlfHHV6cxV236+mGY+J360u5n1p9s6fBbb12XzxCqWKNtmE/qmIPoGTTbZ/B7zZOqEX/cv22KyIO+7TYbRIHSK7aD/7SD7/Gifl7jpdNjwvphdT3GaBwA0jNqn/1GOoU18X7R9noIQP4lvD0AIIRaQOcDwe0LMOZjJFa7NrxcxvyZTsg1s/Q6lk23grFcvFuJhgvrUIVnq2rzexInKMAyFfuuxnvzzoq9+lzfzpd0v3c+sw7D1ItuK7WI9yfOtEjb9hco0nc5cSe+3PJltrx8ed5kGJdSpfskvtu/JnLDxY9V51G1z1H1TkBNs2cY7frcDQU1OBWkwBkGOA6PWab91iu2g/+0g+/xon5c46nTY8L6Y3d7HbR6AhtFk6H9YY2jT3hdtn6cgxG9K/dmplBBCiAlgk3Rs9o5N0rFpOzZ/LykpURun683uATaRx8bp2FC+e/fuReWpN2Tv2bOn2ix+2rRpRaWHTeEzN4RHmihbUCDtiRMnyvDhw1X+ddGvXz9Vd2vWrFEb2KM+kwx0zalfAPrlB9Bn3JtWrVr5mq5XUE6U18no0aN9SXvkyJG18tLPV5g48/Rbt4cMGSJxwESdRjsehN5p0PYNHjy4hpyDBg0qOs1M0E+gjS+270Gfk8n06dPFJmzvm6DDfsqIOspsR7M9yyS+sB30vx1knx8tcdTpJMD7kpx5AGKn/ocxhjbtfTEJ8xSE+I7vplZCCCFFe1AEcejVb37vL5O5T4QfK+WyrYD3IzxPvhW1Ya5mt8mDQ++RFcTKRL90y8/yZq6WDDLsXBCrpN3WexD5m+49YqJOB7X6t5CyF7NHTjZPuyD37itWX6Num6Pum8L2GA3Caynfno5eoceoGTrFdjCYdjDpfX6Uz0tcdTpseF/Mbe/jOA9Aj9Hk6H+QfY+J74tJmKcgxG/oMUoIIQaCVW1eD6xuwwp0rLbESjztGapXv2WuwvRjNVu2c1g16ucKeJQhKLDiDfVmuneNiWRbhZi5otALWIGIVZKF6FtYQKbMVaF+P08mrJJ21nEQnlbFesgkTadx/zNX/zpXWfsJ2sBMHRw1apSveWTzBvCaTia2eRTY3DfpMUsQ6WbqF1e1xx+2g7nTKbYdTHqfHxW26bQt8L4kbx6A2Kn/QY+hTXtfTMo8BSF+Q8MoIYQYCIyYXg+8OMyZM0eF0oJRFIPZICdVV69enfV8MZMr2eQN2iCG8CnEW4iaTPx4gcp3v6MagGd7ARowYICveSD8dSZhT+g7nz/ch2LDYhUy4WEKJup0tkkCv/Uunw76bVTy+yW9kP4oztjaN+nQYGGEgAsiDBwJF7aDwbWDSe7zo8Q2nbYF3pdkzgMQO/U/qDG0ie+LSZmnIMRvaBglhBBSFLmMrsUYY7OtgA/6hSjbQI+4f3nCfffDCyif/gThZVQXeu/eoCc3s3lWzJo1S8KkY8eONf7Gni9+Pn9R3L8463Tmyu2gPXCy6XQxK//DbGttXLXMvskfHUb7zYnV+MJ2MLh2MMl9fpTYptO2wPuSzHkAYqf+B9XXmva+mKR5CkL8hoZRQgghRTFkyBBX503FxlCFQZPNq8CvlycM5LPdk6DC+Xgpq18vQHV5VoS9EjPzJQqTrD169PBNDrykQk+C9BizRaeDlCcX2dLHCm6/jI5sa93B+nJPrraZq9rjCdvBYElynx8VNuq0DfC+JHcegNip/0H1tXF4X7R1noIQv6FhlBBCSNGDN+xdqgdwGBQijK/fA+mgXxBNmqSKA7gf2Vbv+rkyE3qkQ+BgYD98+HAVHjoKIEsmQe2PF/UqaTy7mc8v7jfuLUJUFvsChDYD4b5N8yIxUaez6V0YYQmztYd+vfiyrXUH68sb2Z4TjFVI/GA7GCxJ7fOjxEadtgHel+TOAxA79T+IvjYu74u2zlMQ4jc0jBJCCCkaDNywt2l1dbWa/Ahy76QgMGmCKi7kemHx8wUK9wUv29Ar7J8b5R5x2coblN5kvnREMRmQq66xIhUvfi1btlShjorZQ8g0TNTpbDKFMbmcTbcnT57sS9r0Gioc9k3JnGgmNWE7GDxJ7POjxEadtgHel2TOAxA79T+oMXRc3hdtnqcgxE9oGCWEEJJ4uIrdPdlWJto6kZ9rIjCospowYYpJjXwvYXgJwj40CLdXUlKiJk4xaRpnw4NpOo0VuNlW4WbuBxcEQYYhZXtbOKwr7+Tbh4nEB7aD4ZDEPj8qbNXpuMP7QpKMjfofVD9r2vtiEucpCPGTMomI3XffPaqsrQKrN999992oxSCEENdg8I2BHD6xynT16tVq4kV/hgkHeO7JNbls2mSfH0Anc9VBtj09gsgPz0TYdYuwPQCTn3WBF1gcmDgFCKGFiVZMnsZl5bhpOp1LnjDaq2x5cEVw+LBv8k6uyTw8VzYu4LEVtoPhkbQ+Pyqo02bC+5LceQBip/4HJbtp74tJnacgJPaGUXR+WG0I13B8Eneg3rRhlBBC4gAmULDCDp/ZVrZhohITK3qjeD3ZQswk1yDcRnK9AOFlI4gXjmxE9bKBiVJMcmKfMTeeVnjGceA5huwjR45MT7qaimk6HeXEUC5944sviTuccI0XbAfDJUl9flRQp82E9yVYOA9gNtT/+L4vJnmeghBrQunCyMfD3UFjMiEkDuDlB6vHddgtvOTgZQiDp8GDB6u9E7BvAto1LJjB39hYPuy9JDmY82cQbms95npZxAt+WP1+lGCiAs8nnk0vnlaoP3igYDGXyfuTmabTuV68o5SJYUjDxdY2NQxyeQpQh+MF28HwSUqfHxXUaTPhfUnuPACxU/+Dkt2098Wkz1MQEnvDKAbMW7du5eHyoHGUEGIyePFBGDu8BDn3iOjXr5/MmTNHvQThxQd/c+I3nmQbhNsa9nHVqlVZzyfN8wiTGJi4wDMMTxC3E6aoL+xPNnHiRDER03QadW0apq2SJsSv9pyYCdvB6LC9z48K6rSZ8L74B+cB4gf1P77vi5ynICSmoXQJIYTYB15+hgwZUmslHSZXsHqc+3rZA15kMwfcpr7AFEvr1q2jFsE4bxIcWNENHZg9e7ZaAY6Vqfhe14sY2gjdLpiEaTqdS+/4okuI/3uPEjNhOxg9tvb5UUGdNhPel+LhPEB8of7b975ICImJxyghhBA7wAsPVoY6X4YwcMTEiddwXMRcsq2MtPXlibqbGzzj2I8M3iR41rEKXIfgw0rwXGDixLmK3ARM02kTwzLxWSBxIdckla2RDWyF7aBZ2NTnRwV12kx4X4qD8wDxhvof3/dFU+uJkLhAwyghhJCi6d+/vwqbkzlIW7JkiZpAIf6DF88o925KUuijXGW11UO2WPDsO/cOyrVXENoNkzBNp3O96IahdzQqxbdtJvGcaDOZKHWa7aD5xLXPj+p5oU5HA+9LcO095wHiD/U/vu+LnKcgpDhoGCWEEFIUWAU+bdq0WgM07CFi2sDRJrAyF3s3mfYCZaPXaK6ymrgfix9gPzC/JjDRBsCzBHWV2R5AV0zae8w0nc41IRCG3uUqM9t089tmkn/PJepwvHSa7WDwJLXPj+p5oU5HA+9LMO095wHsgPof3/fFpM1TEOI3NIwSQgjxDF6Esk1yzJw509jBLPGHXr16ZT2fua+MDZj2AhQ08PrAs+1n+VCH2SZJEF7LFEzTaezpFpXeZStzLnkIMZFsOoz2hx6j8YLtYPAktc+PCuq0mfC+uIfzAPZA/Y/v+2LS5ikI8RsaRgkhhHhm0KBBtc5hjyGTB7PEH3KFRpo9e7bYSLa9s2wtq8bv/cDw4oYJWCcmhRw1UaezyRTGi3e2PAYMGBB4voT4Rba2xcSQfpy4qhu2g+GQtD4/SqjTZsL74g7OA9gF9T++74tJnKcgJPaG0fbt26cP4h7WHyEkarBCNNuE3siRIyORp0+fPtKxY8dI8k4ieOnNthp4+vTpYiPQr0xsn+CbPHlyIC+TmS+UpngZm6jT2cIbBv2im+t+mGhUIiTuE23cA6pu2A6GQ9L6/CihTpsJ70vhcB7APqj/8X1fTOI8BSGxN4wi3vXChQu5isEjrD9CSNRkC4eF1eF+rBL14kHBycXwyfbSYusg/JRTTsl63tbyBuE94ty/yNRJUtN0Ops8aB+DrLNs9x0TAPQAIHEh1zNr4kSbSe2fqbAdDIck9vlRQZ02E96XwuE8gH1Q/+P7vpjEeQpC/IKhdAkhhHgi20ArWxgPL/DlJh7h94YMGVLrHF6egnyBGjNmjLRs2VLCBi9p2fQ7qIlE54RiFOUN8mW4Z8+etfIxBdN0GpNMYb98Y184UzwA4ohJ+pxUsnm+of32uudZq1atJCjiMGkVtU6zHQyHJPb5QVBI+ajT4cP7UhiFPp+cB7AP6n983xeTOE9BiF/QMEoIIcQ1uQZ9uTaj9yt9W/G6MtbrJK9f4OUp24rO0aNHB5bnqFGjAp2kzke2cmVbMe13qKqoygumTZvme5qZeosXcVMwUafD1rspU6bUul/Dhw+XJBLXtjkOBDnxma3dKuYZznY//TLuhB16La46zXYwHJLW50f5vFCnvcP7Em09cR7AXmzS/yDh+6IZ8xSE+AENo0XwyiuvyAMPPKBWtOC444471DlCCLGdXC8sfk2cTZ06VWwms568TBDjHpgwEM02CMcgOQiw6hEv+X6tSHYLJvMy88Z9CGIiESBdlDfbqtQ47zmWSdQT7qbrNF68M1dw698FpXNxW7ntFza1zaYDPQtCh/FsZI5RBg8eXJQxJqj7ifIHvZrfFp1mOxgOSezzo3peqNOFw/tiVj1xHsBe4qz/SX9fTOI8BSF+QMOoSz7//HMZNmyY1KtXT21wjEYALu044EaOc/i/o48+Wj744IOoxSWEkFiSbaLQprA6foQVw29M2H8DL0/Zwu4E8WKgX0CifGmaNGlSrRd/rOAMAp0uJvWjAuGT/A6h5NR3vMSZ5j1iok5nW/EbhN5lpol7E4eV235hU9scB4LQ4cyJKrTXxa7g79ixYyBjEu0pEaShyCadZjsYPEns86N8XqjThcH7kqz23vZ5ANOJq/6HjYnvi0mbpyDED6w2jMKDE0bMQo+nn366zkYGL8Zo6Kqrq9UB9HfngbBIGFCcf/75IZWWEGITpu+/k2tSw4/QN1h9hnQyV7zVVSf4f6+Ti2HXd7YXTjcTUfpav0IW+bGyN7PusXDIz1BIeEnGgcF3lN4GyDtzJTPuh9+rMTHWQLp4EYrau8LvFyrnhEe2F0oTME2n0eZm6h10xM+2K9uEeNhhPqPGtLbZ9LFAsWBhaRDPVF3PsluytVN+yI32HWOdIA1Fpul0MbAdDIck9vlRPS/U6cLgfTGrnmybByB26H8UY2jT3heTOE9BSNFUW8yQIUOqS0pKqktLS7Me+D/nccopp+RMa8yYMTV+4/zep0+f6hEjRlRPnDhRfeLvli1bpq876qijQi03ISQ+oBnOdqxZs6badFq0aFFL7t69exedbocOHaqHDx9ePXXq1FrpL1q0KOfv8P/9+vUrKI8g5HYDypEpw+jRowv+Pa6tqz7ygfJm5l8sc+bMCbReoRfQOS/PRhDlhY660U83IB2UtXv37tVRkK2+pk+fHkj6ftVZEJio04MHD64hj186Ahky2/QJEyb4Uka/nz0nmWmjDHFum6Pum4JoKzWZ6erny68yQocz9c3NvauLYvSiLl3Bc+ynHpuk00HoFNtBf9tB9vnRPy9x0+mw4X0xr57iPA8Q5FgnbIIsS9z0P6oxtInvizbPUxDiN/HtAVx07k7jqNOYCUPm3Llz60wD1zkNojqd/v37Vy9evDjn79CZo8HA9SNHjvS5ZISQuJPt5cU5YWg6GMBmk72YQRcG4HpCJ1v95Jqo0dcWMqjGoDIzXQw4wyZzItSNDLi2GJmDmqTLphO4p3699HmdqMtWXj8WH+AFPPMeFpuuc3I/qgnEbC/ZfpQt8+XRD90IGhN1OvP+4OXX7/bIL4NStokzv/Q6W1vuR1sWVdtsQt8UpAEn2zOkJz6D0OFCJ0i9ThAWM+mlxyy63Jmy+9VH2TzeYDvoXzvIPt+M5yVOOh0FvC9m1VNc5wGCfC+Mgmxl8fP9MS76H/UY2sT3RVvnKQjxG+sNo2DatGlpwyY8OteuXVvwb2E4zTSI4hMepG4aDvzm/fffL6IUhBDbyJxkC3JCLyiyTeZ5XT2mV6k6B36Zg/Fc9aJXxRUy2MtV75igDZNsqwsLkUEPvL3Ki/rNVn6/XsqzrfAt5sVAD+q9riTNVV4/XuyyrchEn+91YQNeMPTLRpSLI7K9BBfzbGdbIRynVaam6XS2dsxrn4F7knm//fImyTVp5lf/lqstL7Yti6ptjrpvCrpvcKbpbN90uYvRu0wdDmLyP5uHg5d2WqfjbAOzjaX86qNsHm+wHfSnHWSfb8bzEhedjgreF/PqKY7zAEG/F4ZJrrL4vQglDvof9Rja1PdFG+cpCPGbEvwjltO3b1+ZPXu2zJw5U7p16+Z6A3PEzi4pKVF7h+ITG0K72XsD8cV32203JceLL77ooQSEkLiCvQ303jqrV69Wn4sWLVLn6trzA/s7YH8N7G0MWrVqld4/JMj9qNyWr0ePHrX2UcAeQm729cJeDNirAHtLOPcfQrq6/JrMa1CXffr0UW2z3pheg/0U3NQ70kX9ZtY5zgexf4IutwZ5zJkzJ+/eLZANMuK6utD7SaAOcK9mzZqVd48JlBN1CTlQdq+6hjo+8sgja+ztgbSgE4Wmh7L2798/vX8F7m8Q5c2835l72hQC7iHupZMJEyaovUDcpoG6x3gl2z5BYQEd0O0WyoCyaPnc3sdsOoHfQn/jtCdJVDpd1/6MI0aM8CwP7jHk0WXS+9J42QMus61FGTP3enQCWZGP89nL184W05brdtzNsx1G2xxl3xRF34B3KJCtjqDH0Ods/Xg+UGfQYecYBDrspR0vBNQR8tOgPpYsWVLwPdDyAmcbiHFUtvuPcgwYMEDVta57r+2mreMNtoPFt4Ps88N/XuKi06bB+2JWPcVhHiCK98IgcFsWPY/UunXrdD+rz3t5xzRJ/6MeQ8ftfdG2eQpCfKfacuDZCS/P9957z/VvZ8yYUWs/0Z49e3peAYV0lixZ4un3hJB4kmslXzFH2J6NQa5Yxwo4rCbHkWvlmV5BmrlSEef1Srpsq1PzhSo2qc4z6w51kS0/HZ7dzR4T2cK3uTmKXT2bbX8LlDffKkM8M/q+ul3VWGx5iwkLg3uSGbIG8kBPc90vnMczoFdfYhWtCaGc9GrezH3KtA5q3SikrnD/nPUSl1B6puh0XeAeZK6+xt/58sB9zPwNylCM7vnRzuaS2a+23G35gmqbTeibougb9G9zrXzXK+3xjOCafHUJXcnmwRBG+4nn2Vl/+F7Xan7cc912ZGvns3nd+KXHSRhvsB0srh1knx/+8xIXnTYR3hfz6snEeYCo3wv9xo+yFNsmm6D/Joyh4/i+aNM8BSF+Y73HaGlpqVrdcN5557n+7dChQ9Vvnd6iWOlx0kkneZZl0qRJcu6553r6PSEkfuhVjM7VaHqVWqHoFXEAq8+C9IYoBqxuw6o25wpVgLJjRR5WyWHVIlb24VrUDf5v5MiRasVavhV7uh6zoVe3Z5MHKwN1ul7rPYw6R52h7rKtuAWIegA5sDoPq/QKXd3YsmXL9Hc35derUd1672QDZcIK08xVrSgDdAIH8sJ1uvz4P9xXt3kXU14AOaCfxXhkQ1ehj27Ki/uK58CU51p7j2SuygaQHfdTP+d65bF+vletWpUun9NTBmVDGW1YYRqmThcK6hppZ3onaXm03M42BjKdcsopqizFRiHAGNlLW+t89uClkE0/imnLnemvWbPG9crwINpmE/qmKPoG7TGa79Uzcxyhxw6oL7Qt+H+soHfejyjalsx2UKPlxb3V4x3oCGTGOZQt2wr9XB6j2fCix0kZb7AdrDv9bPrDPj/85yUuOm0qvC/m1ZNp8wCmvBf6hdeyZJYnX33FQf9NGEPH/X0x7vMUhPiN1YZRGCGvuOIKNWD3AsLfIjwS0IbRLVu2eJYHYXnRiE+ePNlzGoQQEgf0BIseVOHQIUX0pApecNyE8MDvp0yZkg7xg4lEDLDjFJqrLjBIzaw3lA/9B8KXxH1ACr3AS0hm+fBSowfjCB1jQ7gvfT/R5ztfMJwvHjhwX0144XaClzjIXNeLsw575XzGneEeobd4zoMKRW0CJup0Lr2z9TkLA9vb5rCeFR0ytS6gu7p90RO3wNl2om2Jut71dglaTudYx9nWQ0fyPW86FKFuOzM/naHw/Cqz7TrNdrBw2OfH43mhTteG98XMeuI8QHKIg/6bQJzeF02fpyDEb6w2jKKjxIvkuHHjXP923bp1alWO01sUjdRLL73kWR4YaZ966ilZsGCB5zQIIYQQQgghhBBCCCGEEEIIIe4pFYtBSCKsJPJCZlgAkCt8Q6HAW9QZEpMQQgghhBBCCCGEEEIIIYQQEg5WG0bhCu7V7RuhHzIp1q0dbvI6hAQhhBBCCCGEEEIIIYQQQgghJDysNox62YzZ6TGK8LlO9t13X5+kIoQQQgghhBBCCCGEEEIIIYSEidWGUWwc7CV0LfYXhbcp0FuwYoPwKD1YCSGEEEIIIYQQQgghhBBCCCHesdow6jV0beb+ovAc7dmzZ9HyLFq0iIZRQgghhBBCCCGEEEIIIYQQQiLAeo9R7flZ7P6iffr0KVqeKVOm+JIOIYQQQgghhBBCCCGEEEIIIcQdJdU6VqyFDB06VJYsWSIvvfSSq9+Vlpam9xdF9eD7mjVrpFmzZp5lmTlzpvTt27fodAghhBBCCCGEEEIIIYQQQggh7rHaY7R37961wuLWxVNPPZX+ro2iSKdYY+aQIUN8SYcQQgghhBBCCCGEEEIIIYQQ4h6rDaMIWwvj5p133lnwb0aNGpXVqFkMp5xyivJcnTBhQlHpEEIIIYQQQgghhBBCCCGEEEK8YbVhtHnz5jJo0CC59dZb5Ysvvqjz+kmTJsncuXPTYXRBhw4d5KSTTvIsA8Lnwgt16tSp0q5dO8/pEEIIIYQQQgghhBBCCCGEEEK8Y7VhFFxxxRVqX094j+YzjsJ4Cc/QzL1FR48e7Snfp59+Wlq3bq32Fp0yZUpRxlVCCCGEEEIIIYQQQgghhBBCSHFYbxht3769jB8/XhYuXKi8P88//3x55ZVXZP369erA9wEDBqhwt05gFB08eLBrg+YDDzwgvXr1kv79+yuDLPLcbbfdfC4VIYQQQgghhBBCCCGEEEIIIcQNJdVwjUwAI0aMkNtvv71GmFwn2kNUf4dhc/LkyXWm+/7778uMGTNk+vTp6lP/HjjzgjfqbbfdJs2aNfOpRIQQQgghhBBCCCGEEEIIIYSQQkmMYRRMmzZN7Tm6bt26Oo2oo0aNyvn/7733njJywhC6du3a9PlsBlF9Hudatmyp9jH97W9/W3RZCCGEEEIIIYQQQgghhBBCCCGFkyjDqHM/UXiDzp07V1avXi2tWrVSIW+xDynC5zZv3jzv72HchPHUCwiz+9JLL3mUnBBCCCGEEEIIIYQQQgghhBDihUQaRgkhhBBCCCGEEEIIIYQQQgghyaI0agEIIYQQQgghhBBCCCGEEEIIISRoaBglhBBCCCGEEEIIIYQQQgghhFgPDaOEEEIIIYQQQgghhBBCCCGEEOuhYZQQQgghhBBCCCGEEEIIIYQQYj1lUQsQRx544IGs51u1aiUdOnSQfffdN3SZCCGEEEIIIYQQQgghhBBCCCG5Kamurq4Wi1m/fr36bNasmW9plpbmdrQtKSlRnzCQDh06VAYNGuRr3oSYRFVVlSxYsKDWAoF8zwghhBBCCCGEEEIIIYQQYjtbt26V1atX1zi3++67S1kZfRajxHrDKAw0OBYuXCjt2rULLJ9169bJ4sWL1QFFf/nll+Wpp55ShtIRI0bIrbfeGljehETFvHnzpGvXrlGLQQghhBBCCCGEEEIIIYQYzyeffCJdunSJWoxEkwizdBi23+bNm0u3bt3UAeApCsaMGSNXXHGFzJgxQx30HiWEEEIIIYQQQgghhBBCCCEkfBjvMmCGDx+uvFXhRXrKKadELQ4hhBBCCCGEEEIIIYQQQgghiYSG0RDAfqMIrYvjmWeeiVocQgghhBBCCCGEEEIIIYQQQhJHIvYYxT6fixYtCnSP0ULo27evkuWll16KVA5C/OK7776Tn/zkJ7VipO+www6RyUQIIYQQQghJHitWrJCHH3447zVnnXWWtGnTJjSZbGXlypXStWvXGuf4HkgIIYQQUti46dtvv5Udd9wxMplIQvYYNYXu3bvLpEmTohaDEF8XHmSCl2FONhBCCCGEEELCBGu+mzRpkvcavqsEB+uWEEIIIcT7nDoJFxpGQ2Tx4sWydu3aqMUgJPZs3bpVvvnmG/V9p512YmeS4DqLS7lMkTMKOcLKM6h8/E7XFF0g0UI9cI+tdRaXcpkkp619GfsxQuzG1mcnLuUySU72Y9Gma5IukGihLrjD5vqyuWwkN7zLITJ37ly13yghpDiqqqrkgQceUAe+k+TWWVzKZYqcUcgRVp5B5eN3uqboAokW6oF7bK2zuJTLJDlt7cvYjxFiN7Y+O3Epl0lysh+LNl2TdIFEC3XBHTbXl81lI7mhx2hIPPXUU8pjtE+fPlGLQkjswV69zZs3T38nya2zuJTLFDmjkCOsPIPKx+90TdEFEi3UA/fYWmdxKZdJctral7EfI8RubH124lIuk+RkPxZtuibpAokW6oI7bK4vm8tGclNSjY04LAauz1DoRYsWSbt27SKR4emnn5Z+/fopOYYPHy6jRo2KRA5C/GbFihXStm3bGueWL1/OvWUIIYQQQgghoYL3kHHjxuW9ZtiwYbXeX4h7+B5ICCGEEFIYHDeZCUPpBmwQPeqoo6R///7pc0OGDIlUJkIIIYQQQgghhBBCCCGEEEKSSFkcjIuzZs0qOp3Ro0dLixYtJEjWrl0rq1evViFzsZ+oBk658BaF12hUXquEEEIISTYYo/ztb3/Le82pp54qrVq1Ck0mQgghhBBC4kZ5ebl8+OGHea/Ze++9pXHjxqHJRAghhBCLDKOYwJs2bVqt827iPcMwOXHiRJ8ly59fppwdOnSQSZMmhSYDITaDjbB1u4AFB2VlxjdlkWNrncWlXKbIGYUcYeUZVD5+pxulLiBvhHCp6xqSnDYhTthaZ3Epl0ly2tqXsR8jxG5sfXbiUi6/5dywYYO88MILea+BY0Q2wyj7sWjTjYvOkuChLrjD5vqyuWwkN8bf5SlTpqjPdevWKU8HeGLCIxNepDNmzFBemk4DZK4tU8PcStVptEW+3bt3l5kzZ0qzZs1Ck4EQm9m6dat89tln6e8kuXUWl3KZImcUcoSVZ1D5+J2uKbpAooV64B5b6ywu5TJJTlv7MvZjhNiNrc9OXMplkpzsx6JN1yRdINFCXXCHzfVlc9lIjA2jmubNm6ujffv2Nc4vWbJEpk6dKrfddpsykmZ6kmqDqBsP02JAfjpPhO5FCN9BgwaFkjchSaFevXpy/PHHp7+T5NZZXMplipxRyBFWnkHl43e6pugCiRbqgXtsrbO4lMskOW3ty9iPEWI3tj47cSmXSXKyH4s2XZN0gUQLdcEdNteXzWUjuSmpDtOVMmDg8jx48OAaBlK9vyeMqkGDPbkQMhceon369JEjjzwy8DwJiRKEZGzbtm2Nc8uXL5c2bdpEJhMhhJDsoH0eN25c3muGDRtWq10nhBBC4gD7ufDgeyBJOmxvCCGEFArHTWYSG4/RQkAMaBxDhgxR+3k6vUQRghfx/QkhhBBCCCGEEEIIIYQQQgghycMqw6hmwoQJKozt7bffHrUohJAAgCc4VtsArK4JK1R2nLG1zuJSLlPkjEKOsPIMKh+/0zVFF0i0UA/cY2udxaVcJslpa1/GfowQu7H12YlLuUySk/1YtOmapAskWqgL7rC5vmwuG8lNqVgK9vY8+eSToxaDEBIAmzdvVmFrcOA7SW6dxaVcpsgZhRxh5RlUPn6na4oukGihHrjH1jqLS7lMktPWvoz9GCF2Y+uzE5dymSQn+7Fo0zVJF0i0UBfcYXN92Vw2kjCPUc2YMWPkqaeeiloMQkgAbLfddlGLEDtsrbO4lMsUOaOQI6w8g8rH73RN0QUSLdQD99haZ3Epl0ly2tqXsR8jxG5sfXbiUi4/5SwtLa0zPVwThiyFwn4suPRIfKEuuMPm+rK5bCQ7JdXwFbaY/v37y9NPPy2LFi3iHqOE+Aw3jyaEkPiA9hkrIPMxbNiwWu06IYQQEgfYz4UH3wMJIYQQQgqD4yYzsTaUrqZv375Ri0AIIYQQQgghhBBCCCGEEEIIiRjrDaM9e/ZUG+gSQgghhBBCCCGEEEIIIYQQQpKL1XuMgm7dusmaNWukefPmUYtCCPGJqqoq+cc//qG+/+Y3v5GyMuubsqKxtc7iUi5T5IxCjrDyDCofv9M1RRdItFAP3GNrncWlXCbJaWtfxn6MELux9dmJS7lMkpP9WLTpmqQLJFqoC+6wub5sLhtJsMcooFGUELvYunWrfPjhh+rAd5LcOotLuUyRMwo5wsozqHz8TtcUXSDRQj1wj611FpdymSSnrX0Z+zFC7MbWZycu5TJJTvZj0aZrki6QaKEuuMPm+rK5bCQ3NH8TQmJHvXr15Kijjkp/J8mts7iUyxQ5o5AjrDyDysfvdE3RBRIt1AP32FpncSmXSXLa2pexHyPEbmx9duJSLpPkZD8Wbbom6QKJFuqCO2yuL5vLRnJTUs0NOAkhHlmxYoW0bdu2xrnly5dLmzZtIpOJEEJIdtA+jxs3Lu81w4YNq9WuE0IIIXGA/Vx48D2QEEIIIaQwOG4yk0SE0o2adevWqVUHRx99dNSiEEIIIYQQQgghhBBCCCGEEJJIGEo3BFavXi3Tp0+Xli1bRi0KIVYAR3csONB7CJeUlEQtkvHYWmdxKZcpckYhR1h5BpWP3+maogskWqgH7rG1zuJSLpPktLUvYz9GvIB9sKqqqkLfDwt57rTTTrXOVVRUhCpHnMCzs2HDBvW9adOm1jw7cSmXSXJGIUsYeQaVh9/pmqQLJFqoC/bVV2lpqZSVlalPN3B8m0xoGA2BtWvXRi0CIVaxefNmufvuu9X3kSNHSoMGDaIWyXhsrbO4lMsUOaOQI6w8g8rH73RN0QUSLdQD99haZ3Epl0ly2tqXsR8jhVBeXi4rV65UE5OVlZVqIi8KkO+UKVNqnPvmm2/k22+/jUSeOIA6w/MD6tevb82ka1zKZZKcUcgSRp5B5eF3uibpAokW6oK99QXZYCDdbrvtpEWLFurIZyzl+DaZ0DAaAosXL1afrVq1iloUQqwBnTBxh611FpdymSJnFHKElWdQ+fidrim6QKKFeuAeW+ssLuUySU5b+zL2YyQXa9aska+++io9IUkIIYQQQvIbceEFimPp0qWy/fbbyy677JLT6MnxbfIoqY5qiWGC6Nu3r8yYMUM6duwoCxYsiFocQnyDm0cTQkh8QPs8bty4vNcMGzasVrtOCCGExAEb+zmEyMVCax26TntBwOtBez6Y7LFBCCGEEBIm2tSFT4yjnNsNYMz0k5/8RB1hwvlzMzHWY/T999+XUaNGqZeAXr16yW233SbNmjVzlcaAAQMk6hC6s2fPZihdQgghhBBCCCGEuMJpFIUhtF69ejSEEkIIIYTkQI+T9EIy557sMJYi9D/+/ulPfxqxpCRqjDSMvvfee9KzZ8/033PnzlX7V+ClwI1xdPr06emNc6OCDrmEEEIIIYQQQghxw9dff502imKfLD25h88mTZqokHCNGjVSxtJ8+2YFNc9RUVFR4xxkodGWJAU8A3XN9+F54DNBCCHhAYPnli1blBF048aN6ti0aZMaJyGELs7jmu+++06dC9tzlJiFkYbRQYMGpQcYGETgO/bUuOKKK2Ts2LEFp9OhQwdlVM0kzIGJzosGUkL8Ax3Z888/r74fe+yxaqLABOAhjo29u3btKqZhap0lpVymyBmFHGHlGVQ+fqdrii6QaKEeuMfWOotLuUyS09a+jP0YcYIF3pi0A07D5w477KAOnIsSTCpmyuA03pLaYE4Ik7XAJs/fuJTLbzm191E+cj0TUdRZGHkGlYff6cZFZ0nwUBfsri/tXIeFXN9++60ykqJd1sZRnGvVqlXaYMrxbfIwctQKY6ZzZZX+nDVrlqt0oNz698709MquMA5CiP+gA4NnOQ5nrPgogRxY1LH33nvLeeedJ19++aWYhIl1lqRymSJnFHKElWdQ+fidrim6QKKFeuAeW+ssLuUySU5b+zL2YyRz3ymAOQxtgIRXw4477hi5UZR4J3OvM1uIS7lMkjMKWcLIM6g8/E7XJF0g0UJdsL++ENFil112SduJtNETdpulS5eq7xzfJhMjzd/dunVTe4xqoKh4IXCG1y3UY9SZBujdu7c636JFCwkS7Cu6evVqmTFjBvcYJcRnMBnwq1/9Kv3dBCZPnpxut/7yl7/I448/LhdeeKHydNedb5SYWGdJKpcpckYhR1h5BpWP3+maogskWqgH7rG1zuJSLpPktLUvYz9GNJiQ++GHH2rUcfPmzaV169YRS0aKxdZnJi7lMknOKGQJI88g+0iT0yPxhbqQjPqC9z4Wl8F7FGMs7Tn6/fffp6NgcHybPEqqDXRrhDGxb9++NTw88X3RokXSrl27gtO5/fbbZcSIEeq3MIa+/PLL0r59ewmbPn36yMyZM6Vjx46yYMGC0PMnJChWrFghbdu2rbW6uU2bNpIkKisrpUuXLmof5EywCGPkyJHKSNq4ceNI5COEEN0+jxs3Lu81w4YNq9WuE0IIIXHAln4OYXT1ewXCuwHMZ5j0LoFJxPLy8hrnIB9D6ZKkUEwoXUIIIdEAwyjsS3ouF+y6666BO7Rw/txMjOyh4dUJI+a+++6rVkbib+zd58YoCpxeoaNHj47EKAqGDh0aSb6EkHCYOHFiVqMogMc4Fmjsvvvu8sADD9T58kQIIYQQQghJLog8BbRBpX79+tKwYcOIpSKEEEIIiTcIq6sXnelxFhakkWRipGEUwBg6Z84c9VIAIynC67rFGUq3e/fuPkvoXg79gkMIKQ54kWPTbBxRO71v2LBBbrrppjqv++qrr9J7kD7zzDOhy21SnSWxXKbIGYUcYeUZVD5+p2uKLpBooR64x9Y6i0u5TJLT1r6M/RjRIKybc8Ju++23p9eZBeB5cR62EJdymSRnFLKEkWdQefidrkm6QKKFupDM+sK4CuixlR7TcnybPKweXTvdoKPc4y/o/UwJSRqbN2+WO+64Qx34HiV33XWXCn9QKJ9++qmcdNJJctBBB8l//vMfSWKdJbFcpsgZhRxh5RlUPn6na4oukGihHrjH1jqLS7lMktPWvoz9GNFs2bJFfeqthfQEHok/eGZsfG7iUi6T5IxCljDyDCoPv9M1SRdItFAXkldfTZo0qTHOQmQ/jm+TidWGUXhqInxuVCF0s4XUJITYA1YS/elPf/L027ffflsOP/xwOf744+XDDz/0XTZCCCGEEEJI/PYtzPRUQChdQgghhBBSPNj/2QnGXRh/keRRUk3/4FBYsmSJ+jTFSEuIH3DzaJH//e9/cuWVV8q//vUvz2lgldLAgQPlxhtvVJt+E0IIIYQQQpJHZWWlfPzxx+q73gNrt912M26PUUwglpeX1zjXuHFjhvwlhBBCiNFs2rRJFi5cmB53gT333DM97goCzp+bCUetIWGS5yohxD9+8YtfyHPPPSevvfaaHHDAAZ7SwPqUv/71r9KpUye59NJLZeXKlb7LSQghhBBCCDGbbB4LNDYSQgghhPhDtnEVPUaTCUfYhBDiA4cddpi8+eab8swzz0jnzp09pYGVSgjN27FjR7nllltUqF5CCCGEEEIIIYQQQgghhPgDDaOEkNiBjbFffPFFdeC7KSAk7oknnqj2DJ00aZL87Gc/85TO+vXr5eqrr1Zhs8aPH+/Lxt+m1llSymWKnFHIEVaeQeXjd7qm6AKJFuqBe2yts7iUyyQ5be3L2I8RYjeIEoRnBodNO1rFpVwmyRmFLGHkGVQefqdrki6QaKEuuMPm+tqyZQvHtwmEhlFCSOxAiIN33nlHHSaGO8BG3uedd54sWLBARo8eLS1atPCUzrfffivDhg1Tse6nTJlS1MDD9DqzvVymyBmFHGHlGVQ+fqdrii6QaKEeuMfWOotLuUyS09a+jP0YIfaDZ8bG5yYu5TJJzihkCSPPoPLwO12TdIFEC3XBHbbWF+ZbOb5NHmVRC5AElixZokJjIoY1Vx0QUjz16tWTQw45JP3dVBo3bizDhw+XQYMGyW233Sb33HOPVFRUuE4HBtYBAwbI7bffrgytRxxxhLV1Zmu5TJEzCjnCyjOofPxO1xRdINFCPXCPrXUWl3KZJKetfRn7MULsx9ZnJi7lMknOKGQJI88g+0iT0yPxhbrgDlvrCzYbjm+TR0m1bb7PBhtGW7ZsKatWrYpaHEJ8Y8WKFdK2bdsa55YvXy5t2rSJTCaT+fLLL+X666+Xhx56qKgVSH379lWG1m7duvkqHyGEEEIIISQ6sIhy3rx56nuDBg3UZ6dOnaR+/fpiEniXKS8vr7UoFBOLhBBCCCGmgu3K5s+fr75XVlaqzy5dukijRo0Cy5Pz52bCUWsIrF27NmoRCCEGsPPOO8sDDzyg9iDFXqReefnll6V79+5y+umny6JFi3yVkRBCCCGEEEIIIYQQQgixFRpGQ2Dx4sXqs1WrVlGLQogVwNEdq3pwxNHpvWvXrvLMM8/If//7Xzn00EM9p/Pkk09K586d5cILL5TvvvvO6jqLe7lMkTMKOcLKM6h8/E7XFF0g0UI9cI+tdRaXcpkkp619GfsxQuwGz4vzsIW4lMskOaOQJYw8g8rD73RN0gUSLdQFd9hcXxzfJhMaRkNg8uTJUYtAiHVhD0aNGqUOfI8rBx10kLz22mvy3HPPyV577eUpDexbfN9996lw3QjTu2HDBqvrLK7lMkXOKOQIK8+g8vE7XVN0gUQL9cA9ttZZXMplkpy29mXsxwixHzwzNj43cSmXSXJGIUsYeQaVh9/pmqQLJFqoC+6wtb62bNnC8W0CKZME8/nnn6swt/DoXL16te/pI+3p06fLjBkzfE+bEGIHJSUlctxxx8nRRx8tjz32mFx77bWydOlS1+ls3LhRbrjhBhk7dqxcc801MmTIkPS+RIQQQgghhBBCCCGEEEIIESmpTph/8B133KE8OOfOnRtanrqK4dG1YMGC0PIlJGii2jwaz5RewVO/fn1lXLSFiooKZdy85ZZbilqw0b59e7n55pvl1FNPldLSUmvrLC7lMkXOKOQIK8+g8vE7XVN0gUQL9cA9ttZZXMplkpy29mXsx4h+F5g3b576rhc5durUSdW1SWzdulXKy8trnGvcuLF67yDZyZx6s+XZiUu5TJIzClnCyDOoPPxO1yRdINFCXUhmfWEcO3/+fPUdoXMBtimrV69eYOPbqObPSX4SM2p95ZVXpHXr1jJixAiZM2dOrbjYQR5xbSgIMRU8U5gowGHb89WoUSO59NJLlSf7VVddpSYYvLBkyRL53e9+Jz169JCXXnpJnbOxzuKiC6bIGYUcYeUZVD5+p2uKLpBooR64x9Y6i0u5TJLT1r6M/RghdoPnxXnYQlzKZZKcUcgSRp5u8li5cmUg6UaRHokv1AV/68vNc20aHN8mk0SE0p00aZIMHTo0vbKBCk4IMZ3mzZsrj88LLrhAbrzxRtWOIea9W95//30VpvdXv/qVjB49Wnr16hWIvIQQ81m3bp28/PLLea/p27evan8IIYSQuMF+jhASFtoRIh80tmTnmGOOkfXr18t///vfqEUhhPjIwIED1bP97LPPyg477BC1OITUifWG0ffee0/ttQf0gCTs6MEcCBHiLzAQvvrqq+r7L3/5y3S4AxvZaaedZNy4cXLJJZfI1VdfLVOnTvWUzr///W/Zb7/95LDDDpPx48dLly5dxAbiogumyBmFHGHlGVQ+fqcbpS5s2rRJPvnkk7zXHH744aHJk2RMaRPihK11FpdymSSnrX0Z+7HiYT9HTAbzUAhBDBBy2JZ5oriUy285kV5VVVXea8rKyrLmE0WdhZFnXXnAm6xbt27puVq/0vVbTpIcqAv+1tejjz6qnnEceMbjZBxFuWbOnGnk+JYEh/WG0f79+6tPPKx4gDt06CD9+vWTPn36qO+tWrUKbMUoVqxOnz5dBg8eLGvXrg0kD0KSCCZk3njjDfX90EMPTUSHhb2FpkyZIrNmzVIhwWHo9MJ//vMf2XvvveW8886T6667Thle40xcdMEUOaOQI6w8g8rH73RN0QUSLdQD99haZ3Epl0ly2tqXsR8jxH50BCDb9mKNS7lMkjMKWcLIM1ce2iiKedJ33nnHtcHEb9lN0gUSPHfeeaeal1+0aJGsWbNGeTXi72XLlqX1M8m6AO/tF198UVatWqXqBXW0dOlSVU94Zi+++GK56aab6nx28FzDIAp7Cw5sERYX4ygMoxzfJg+rDaN4GPEQwijavn175WmlVyeFAQyuMMJChiuuuCK0fAmxHXTA+++/f/p7kkAoXKxiQpgwtCsIlesWDGQmTJggf/3rX5Un6vDhw2MbUiwuumCKnFHIEVaeQeXjd7qm6AKJFuqBe2yts7iUyyQ5be3L2I8RYj+2PjPFlOv8889XEZL8ZOedd5ZmzZrJPvvso8JnH3/88dK6dWvXcl5zzTVqe5u6aNq0qXz22Wcqj6Dr7Oc//7l8+eWXdV6HaFPakFFsnm7IlQe89SE3DA9eolf5LbutzyKpzbx58+Tyyy/P+/wmXR/uv/9+efLJJwu6tq66giH0hRdekEMOOSRWnqOwHXF8mzxKqsOOKxsiMBqMGTNGevToobysogJGDHiotmzZUq2+IMQWVqxYIW3btq1xbvny5dKmTZvIZEoSWNH0t7/9Tb30LFmyxHM68Jy/6qqr1Etpo0aNfJWREGIOaJ/rmngaNmxYrXadEEIIiQM29HMVFRVqEhc0aNAgHTmmfv36Ytp7SHl5eY1zjRs35mQi8eTJ9fTTT6vv2oNrw4YNOQ0YiH4EYPh0oj3A8JnNcHjaaacpQ6cboxz2ycOcYiGyYQuve+65p1YoXT+fCdRVLgMP6gZG0xYtWqi/Bw0aJGeddZaYwOmnn66MLtmMtYSEwcMPP6zm4+Ex+thjj9V4jvHsoN1IMvAYXbBggaojtMdvvvlmjf/38uzq9uqggw4ybj/hzZs3y/z589X3yspK9Ym+Icj5UM6fm4nVhlGsDINREg1fu3btIpMDqyNgnKVhlNgGG3YzQEcOD1AMVHBPvLLLLrvIjTfeKGeccQbDRhBiITZMGBNCCCE293M0jBKS3Yu0a9eu8vHHHxecBibiH3/88VpGELQBY8eO9Syb9iKFPM49jWFcQTjOIA2jMHzutddeKuSlE5MNjto44vb+ERIU6GOhjxoaRutug722MQcffLAysprWRtEwSjRWj1oRwrZ3796RGkWBXrHFfUYJIUGASZMLL7xQLQLBvqHbb7+9p3SwhwBWle67777y3HPPqX2ZCSGEEEIIIYSQsMBi3UwQFtfthDwMoJgXhMeSBpP9e+65Zy0jZqHoyf3f/va3yqCigfEV79BBAUMv9vobMGBATplMDmE6bdq0qMUhJG0AQ7htkpvf/e53vqQDr3uAxSSmeY0SYr1hdPXq1SqEbdQgTOXJJ5+sDkJI8WBFzw033KAOvbqHpFa6XX/99cpACkOp15XlH330kfz617+Www47rFYIDdOIiy6YImcUcoSVZ1D5+J2uKbpAooV64B5b6ywu5TJJTlv7MvZjhNgNFp3imcFh0wLUIMqVbT867XDgJS1MyDuNo/D0xN53Xo2jzhCxTiZNmhRYnWEPQER2Mln/MvM477zz0l66XvYVzZWu33IS88GzhsUOfpEZipu6UNuO4cezg/YX3qLg1FNPFZOpqqri+DaBWG0YhYdmhw4dohZDmjdvLlOnTpUpU6ZELQohJAEgPAP2N8EKTeyl4pU33nhDDT5PPPHEGmGCCCGEEEIIMY2GDRuq8Hj5DlxDCEke2nNJg31IBw4c6Ckt7Sl6wQUX1DifGeLWT+CNisXPceGRRx5JL7LO5gFMiBu++OILX9PzutCCuAce7Wgz0eYiFDkhJmH1HqO77babXHHFFelVSoQQO2Kko9n64Ycf1PfttttOSkpKAs0v7mCf45EjR8pLL73kOQ3sjYIwu1g9ZVLYkbjogilyRiFHWHkGlY/f6UapCzbsvWYLprQJccLWOotLuUyS09a+jP0YAdxj1F4yp95seXaCKldmOsXuDQo5ER7yySefrHH+oYceUu+5br3NLrroIjXhjz0/nYuIb7/9drnssstylkPL4qbOHn74YZUu9ujE97PPPjtvelHpnzMPOIggvHCx9y0zXeBHP+ZneiR4EP4axky/wrHqvS8BjHYIUw2oC9n3YdV7hHp9dvTezHoeOVtUgKj3GO3cubMa2wQ1vuUeo2Zi9agV3qIIKUkIsQt0UE2aNFEHBy51gzBBWL06c+ZM6dmzp6c0MEB48MEHZffdd5fhw4erUOUmEBddMEXOKOQIK8+g8vE7XVN0gUQL9cA9ttZZXMplkpy29mXsxwixGzwvzsMW4lIuyJZtf04YHL2mh+Occ86pZWitqz7c1hlC9GbmY+J90mnfddddyijql7eo37LHRWfJjyxbtizQ9KkLwT47F198cfr7tddeKybC8W0ysdow2rt3b27wTQgh2zjiiCPk3XffVWG94VHvdRU7Xh47duwoo0ePrrVSnBBCCCGEEEIIMY0TTjih1jl4e2ovbS84vUP9SC8T7IMKz7YzzzxT4sKf//xn9Yl9XaP2DCPxB8+ANrSTeIJ24Oijj1bfH3vssajFISQZhtF+/fopj9EPPvggalEIIT6yZcsW+c9//qMOfCeF19nrr78uJ510knphQ0jNn/zkJ573cEaocniQPvDAA2qj8iiIiy6YImcUcoSVZ1D5+J2uKbpAooV64B5b6ywu5TJJTlv7MvZjhNgNQhDimcFh045WcSmXljMb77zzTlFp6wl/zb333utbnd19990q/WINjGHcJ6T797//Xe0lCBBpyq90/ZQ9LjpLfnwGgoa6EPyzg3C8AEZuhAQ3DUTJ4/g2eVgfSvfkk0+WQYMGRS2KMhzgIIQUDzqpf//73+pgh+WtzrBP0dChQ2XhwoUq1j/2SfHCV199pdrYvffeW5555pnQB5Nx0QVT5IxCjrDyDCofv9M1RRdItFAP3GNrncWlXCbJaWtfxn6MEPvRE8q2EZdyQUbsJ5hJsVtw4b3aSSEeUYXWGQwImembfJ/GjBmT10PXFNnjorMk9QwEDXUh+GcH+7rq9hfhwU00jHJ8mzzKxHLwsMFAeuWVV8qtt94aiQxLliyRwYMHS2lpqZx33nmRyECITeBZwr6Z+jvxXmeIn3/VVVfJkCFDVBt5//33pzcfd8Onn36qPFEPOOAAFWL3sMMOkzCIiy6YImcUcoSVZ1D5+J2uKbpAooV64B5b6ywu5TJJTlv7MvZjhNiPrc9MXMqVS84WLVoUlS4MgDvvvHPaUxIeUc8++2xew2Ahdfbf//5X1q1b55uBMej7tGrVKnnrrbeyetGaJntcdDbpICy1fq6ChPoQTl3BOPriiy+q8OC4t126dBFTwL6iHN8mD+sNoxjgYD+9vn37SuvWrWvF/w+T5s2bR5Y3ITZRVlYmv/nNb6IWw6o6Q2ieu+66S22Kjs3QH330UU/en2+//bYcfvjhcuyxx8qoUaPkF7/4hQRJXHTBFDmjkCOsPIPKx+90TdEFEi3UA/fYWmdxKZdJctral7EfI8RuMOmK58c24lIuLWe2vQp32223otM/66yzVCQmzfjx43MaNAutMyxaPuOMM4qWzU2exfDcc8+lv/fu3du3dP2WPS46S1Jb5IUB9SGcZ2fAgAHKMKpDjo8dO1ZMoV69ehzfJpBEmMDRIc+ePVtuueUWOfXUU0PftBl78RFCSBzYdddd5ZFHHlF7Mx933HGe03n++edl3333lTPPPFO++OILX2UkhBBCCCGEEELcsHLlyqzn/fDIxAJjJ5j8z5VfoTz55JNy4YUXSlyYPHly+jvmAQgphvPPP18++eSTqMUgPnL88cenv7/22muRykJIYgyjoHv37rJ48WJZsGCBtGvXTv7yl7+EljeMsqBVq1ah5UkIIcWAPUOx4hODFYTH9QI8Tv/6179Kp06d5NJLLy36xZAQQgghhBBCcrFyQ4U8/ObncuGTc+XMB9+RARPeUp/4G+dXfb8pahFJhDg9GjWnnXaaL2kjAtNBBx1U4xwWHBezr2LXrl2NCjVZF9oTDPsIoj78ACGJYSDbc889pVmzZspjDZ/4+5hjjqmx/yS+//znP8+azp133inXXHONnH766ep3COmJa5EWvmeCMJ/IV1+DfPEd1yKtQuRGPvgNfqvlLvT3btB5OetIy4oyBzkPE0Te+A3SHDdunEQF7j90xXn/9f3zu061rmXTcZxHSG0/QDqZ+TjvVRigXdD7jNLoTUwgMYZRHVZ3zpw5KrzjH//4R+UmjUbh6aeflvXr1weS5+eff6722yOE+Af2wMR+mDi87IeZRLzWGfYKRfz/Z555Rjp37uw57z/96U/SsWNHFV5o48aNntKJsy6YImcUcoSVZ1D5+J2uKbpAooV64B5b6ywu5TJJTlv7MvZjhHjno6/WyQ3/+FgGPviuPP72F/LpNxvk67UVsnpjpfrE3zh/xl/eUdfh+rDBolE8Mzi8bFliKnEpF2SbOHFirfN+GgQGDRpU4+8///nPnuvs9ttvV/OWcblPTuPNXnvtVXQeSA8GnBNPPFGWLFmitkXDuRUrViinF9zLnj17qvuH62BsPPvss7PuRwnD0+WXX67mIuCFq/c4xLXZIgrCIAajNKL/3XTTTfLCCy/I3//+dzn00EPV75AWjEowCuYy6g0cOFDat28v9913n7zxxhvq9zBA6d/DMFWswQtlRjqoo6VLl8o555yjtkRCfpAb0cDuvvtuadOmjZLJT2NeEHljfh51hN9oI7sT1J02Muc6vOJ8LiDH/vvvr7477z+8HSED9AgyOo3yXtC6Al2DEXifffZJ1+E999yj/sb5Qw45RNWL1/unnyWko/O57rrrVD7QzyOOOELZRVB/dRnt/WhH4IThlM0UqqqqOL5NIFYH0R45cmTO/xs8eLDqSCdMmKAOTYcOHYreeF2DThQdNiHEfzZv3hy1CImpMwyQMODFQBCrXjGI+uqrr1yngwUoeHHBXinYx/S8886T+vXrS1J0wRQ5o5AjrDyDysfvdE3RBRIt1AP32FpncSmXSXLa2pexHyPEHVu3bpW/vLFEpsz+0RiyqWqrfL+pSqq2bJWt1SKlJSJl9Upl+4aY/iqVNxauVMcpPXeWcw9pL6WlifIXSCwwaLz11ls1zj300EO+emRin1EY5zQwvGHiP5tHYj5gyIM3FdKLC2+//Xb6+y9+8Yui0oLBEfMPO++8s6oHLNDW/Q7mDzA/Ac8z1CsMVzBkwtiYC9xj3OtVq1YpZxl4DufaYg0GJMwJwwCb6fWKkMs9evRI5wUZYTDToZhhuMKcMvaFhTEtE1wHWWGcRf4wVME45VY/kM/hhx+u6gbed04ZNEhT64/OE8Y81EMxehVk3jCAw9h69NFHp+eP8NxqkJ/bunKLvv+Yy6/r/utn3Ut9ah0HMIxOmzatRluk6/CCCy5QxlPUA3TrnXfecdVm6foH8GhHvtnKhecIht6LLrpIZsyYIXfddZcEBQyx+r7CAB70PXUDx7fJo6Ta5CVdRYLQtevW5V8JGGbx4S2FUL6E2AIGi23btq1xbvny5WrQEyR4bvWz3bx586JWhiUFP+usvLxcbZQO7/ti9lDebbfd1N7P/fv39yxPXHTBFDmjkCOsPIPKx+90o9QFtM91hSQaNmxYrXad2NsmxAlb6ywu5TJJTlv7MvZjBFRUVCijCGjQoIH6xLYUfiwm9NsgiXcCJ40bNw7VyAgZbn9pvsyY9536e+OmKllfUSWbt2zN+Zv69UqlWaMyaaKMpCK9u+wofzyqUyhyZ8492fLsBFWuzHQwRh07dqyntPBMwQPMaQy74447lBeiF2C8wZ6iMCbkM0ToUL1PPPGEqzqDxxreszN/B2C8cBpfs6UXhf45yw0DGPYY9ZIHDG96PkkbDQuRHcYj7WVYV31AH2CM0sBgBAM20mjZsmXWes+VF4x1OgIhwpLCmJVNL5zgOu3ZCjk+/vjjvNdnyt63b1/1exiO33vvvYLCFmOBOjwdi9H9KPJ23mt9n/xAe+/qe4hxzbHHHlvU/S8U5zOMely2bFne61FmGNF1foUaR51lzNYO5Wsr4dXpNEpfffXVSq/9aEec5YcRPNsigjAMoPPnz1fftXcoFmBs2rQpsPFtVPPnJD9WL43Dago8tLkOUJcbvl8HIcQ/8ExhFRcOPl/h1xkmPYYPH65W0eGzUaNGntJZuHChDBgwQPbbbz+ZOXOm1bpgipxRyBFWnkHl43e6pugCiRbqgXtsrbO4lMskOW3ty9iPEeIOeIpqoyhC5q7aWKmMotDKJg3qSesmDaRN04bqE3/jPP4f1+F6gN8jnTCwdY7I9HJhEt5pFIVhAYY7r0bRuoCHV137mtZVZ4899litdEy/T1988UX6O4xLXvNAZCltBNOeZIXI7sbDDUYlGKQy9QQhYQsxHmEOQwO9wm9hGEYI4bqMouDXv/51+js8L/VimEKMxtBlbVR9+eWXC97LFXJpT0x4PLoNAxtl3mEA/Snm/hcKjJzOhQ2ox7rAc4CFITo/RF4r5DfasIlnqZBy6WcDhkqnUdTvdmT33XdPf//oo4/EFDi+TSZWG0bhMZrvwc1nNPXrIIQQW8ELD/ZQhif8ueee63ml9ezZs6V3795y1FFHqVWHhBBCCCGEuAUr72+44Ya8B64h8Qd7hOrwuTByInQuaNaovvy0RWNpvX1D5RXauH499Ym/cR7/D3C9No4inSj2HCX+A+MNjEwIFwmvS3h2wgihjaIwzmBxrx8hajHfB6/lzOPAAw+sYXRzaziB7PBWMim8ZCF8+OGH6e/wcvfKa6+9pj6xR6UbYNBxeoHWBXRDA+9chBDNtgdtNrDFUOZ+sDCAY3/IQsC8h5Pnn3++oN8h5KnWZRjK3IaBdsqH56JQg2zUeQcNyoXxgdf7X4hxU3Pqqaemv6M9KrQeb7zxxvR3GC2z7W/r9NB1GjbzXZsNtD3wMA2KPfbYI/09257AhIRJme0eo5kDF5zr3r17KPmjc8WEfzGhJgkhtdmyZYvMmjVLfe/Vq5fUq1cvapESXWd48XvggQfUqtsrr7xS7TPhBQwocWAQhlWFCD9uiy6YImcUcoSVZ1D5+J2uKbpAooV64B5b6ywu5TJJTlv7MvZjhBTOU3O+TIfP1UbRHbZvINs1yD3FVa+0RFpsV18alJXIyu9TxtSGZaXKcPr03C9lr581D1RmbUgDWFBqi0dKWOXCdhB1bQmR610VHnowLGBhr5bZDzmrqlK6l8n//d//ya233pr+e9KkSTWMsfnqbPz48YHsLRr0fXKGKYZh1Gsdw4MSrFmzxrXsJ510Uvr3+UB68Apz5gmjaqHG6ExPSfwecxiFelBmXrdo0aI6fwPjutPY5TSUFQryhTFOh4GF52EhoWmjzDssEN4YnpVe7p/TWzofMFg6DYEIT1soyBM6qvUb7UTm3q56cYgOWwzc6KUThEx2hgT3sx3JlAcye5HRb1AuvVcyx7fJwWrDqO7o8OBiADRlyhQ58sgjQ5UBRlF4Qs2dOzfUfAmxGUzIvPTSS+o7FjqwwzKjzrDa7ZlnnpG33npLRowYIa+//rqndDAAmzp1qgwdOlQNFnfcccfY64IpckYhR1h5BpWP3+maogskWqgH7rG1zuJSLpPktLUvYz9GSGGs3FAhby9Zpb5jT1EAT9B8RlEnuK5Zo2pZX7FZ/R6G0bcWr5JV329SnqVBgucHhLkXaxiEUS4YBc4555yCrm3durUK1wjPJD3hjnlB7CsXtJzg97//fQ3DKIxKmZP/2eoM18BwVKjnoSn3CXJn5uMlD2c6qAdnnRUieyELqzWZEf5gVC0GZ3jVQqMbagpxpoFRTQMDnldDEuTUxknoJYyTdRmEo8w7LE488UTPvy3UGeruu+9Of0dIb7dl32effdKGUV2PmcDz2YnXkNx6EUlQ7QjKrxdTYO9NUwyjHN8mD6sNo7pTxAqGkSNHhm4U1cbZIUOGqIMQ4g/ogLEZuP5OzKozhA9CCByEhLniiis87RuA1bf33Xdfev8X7EWBwVNcdcEUOaOQI6w8g8rH73RN0QUSLdQD99haZ3Epl0ly2tqXsR8jpDCe+/BbqdpSLZuqtqb3FG3ayN3UFq7fULFZ/R7pYJep5/73jZx5UDsJElufmTDKtcsuuxS9L2hY9Q/DLN6JsWDYaRRx7j+ZTZZHHnmkKMNTVOWHYUODd3av+aDcToNJt27dVESpzp07F5Qm9sAsNJxupqeb3gOzUJxygmzee7lo06ZNjb+d3rHZQChUp6chDGReyQwDC+9C7ClpYt5hUsz9X79+fUFet0598WIQzvTixL1x6h0WEjj/34vxNax2BOHCdX3Mnz/fdWjmIECbwPFt8rDaMOpchQOvzajo2bOn+ly9enVkMhBiE2VlZUWv6EsaYdcZBhXHHXecGmA+/vjjapUhNrN3y8aNG1WoFoRNgvcoFpk0bNgwdrpgipxRyBFWnkHl43e6pugCiRbqgXtsrbO4lMskOW3ty9iPEVIYc75IzavoELrbNainwuS6Adfjdxsrt6hwvA3LGsjsL1YHahjF+xGeH9uIS7nClhOhQp2GURhGtGE0lywPPvig/PGPf4xd+TPnOovJB8YzbdyBQQ6GTuxpeeGFF9ZpPMH/f/zxx3XmkS38Z6YXpxuyLeD2k8mTJ9f4e7/99vOcVqbRPZfnoQl5hwlkCzK8eWY9ajuBG2D4d4Kt+5yGUexzmxkeOKntvRfgIcrxbfIoTcoeo8748WETZd6EEBL14AJ7rHz22Wdy1113eX7hwCrUiy++WL3sPPHEE+l9DQghhBBCCCHJYX15Khxq1ZbU+0Cj+t7C3enfwWs0lW72/SIJ8cIZZ5xRw2AGI1++PRXnzZsny5YtC2R/0aBxhsCFJ1gxOMO2arBIGgZSGHqOOeYYdY3f+1NmenG6odgy10XmFkX5wpwWuu+uE3gemph3mBRz/wshU1/dhH3WZC4MWLUqFVI+l/G1GO/eoGnWrFnBHtOEBInVhlHTDJKFxh0nhBDbaNSokVxyySWyePFiueqqq6Rx48ae0lmyZIn87ne/kx49eqgVhpl7gxBCCCGEEELspWJzypC5ddtrQKlLb1FN6TbvIP06UbE5tW8aIX6B91Yn999/f85r77333lqhRpMIjD9///vfs/4fjMuYA0AI1kMOOUR5ryFUKLxxi8WEPQ5z4QxlCzp16uSbUUp7HpqYd5gEef+xcMAZRtd53u2Rz8aQGaHNNJsIISZip//zNtq3by/Tp09X39u1a2eEHISQ4qmsrExvXA4vwgYNGkQtkvGYUmdYTYkXGWwCjxC5kyZNSm/e7ob3339frRb95S9/KXvttZfac8ZkXTCl/qOQI6w8g8rH73RN0QUSLdQD99haZ3Epl0ly2tqXsR8jpDAa1U+t79f20K3aQuqSrdssojp6olfP00LBgs6qqpRXKkIRBhm2MUziUq4o5Lzoootk/Pjx6b8RIhbRj7LJ8thjjwW632KY5d+8eXNReSA8KIyjAwcOzGpQcvLmm2+q4/bbb5dp06YVtFch6iIuC6zhSRw0mZ6HJuQdNsXqbKF78GrOPvvsotPNNHxm7nWKvY6T2t57AeVCOwI4vk0OVnuMgiOPPFIdUWOKHITYwg8//KAOEs8622mnnVRInE8++UT69+/vOZ1XX31V7rvvPrVKFJu2m4wp9R+FHGHlGVQ+fqdrii6QaKEeuMfWOotLuUyS09a+jP0YIXXTrHF99VlWr7QoT0/9u/rb0mnWOHi/gTgZZGwsV9hy7rHHHioErBPt3eiUBeFEESYW3o9xLL/T227dunW+5AHjKAw9d9xxR606zAbmFXCd3yF2oyZz/9YgQFQu0/IOmyDbhWz1CH3Vz6PXY+zYsXm9e01uR5xG3GLDM/sJx7fJw2qPUUKIndSvX1+GDRuW/k7iW2cIxTJlyhSZNWuWjBgxQv797397SgcDy3333VfOO+88ue6665Th1SRMqf8o5Agrz6Dy8TvdKHUBe/zqvPNdQ5LTJsQJW+ssLuUySU5b+zL2Y4QURo9dW8mn32yQ7RuWycZNVfJD5RZpsbVa6rkIqbtla7X6HWjSMDUt1nPX4MdA8LCxkbiUy28560oP3lTnnHOOXH755elziJh05pln1vgtvEpxnS33yc98LrvsMrn00kuVIeaf//ynvPTSS/Laa6+p9/9sIKoUtu+pKzSqTZ5uxRKlYcoUo1hc2rB8YE/jujysTawrU8JY16tXj+PbBGK9xyghxD4wiG3btq06OKC1o8569eolM2fOVHuGwMDpBYTknTBhgtrIHvuYYrWqKZhS/1HIEVaeQeXjd7pR6gJeYnTeuQ4bXgrjgCltQpywtc7iUi6T5LS1L2M/RkhhHL/3T6SsXok0LCtV3p7wW9lQkQrtVyi4Hr9rUK9UpYP0jv9FsAsr8byUlpaqw6ZnJy7l8ltOZ3q5DlwDI6gThH399NNP09cglCjegTOvi9N9ci6shGHG7zy07PAihZfcxx9/rAylCLd79NFH17gW+SOEcV3pxQV4HfvtyZkZchXzJ6bl7QXswenVYzjI9itbPQYR7Qxe504WLVpkbDvinKszZWE2x7fJhIZRQgghRoDBx1FHHSVz5sxRe69gf2YvlJeXy6233iodOnSQu+66SyoqKnyXlRBCCCGEEBI+OzRtJAe0T+2d1qxRakHX+orN8kNlYcZRXIfrQdNtvz+wQ2tpvX3DwGQmyQXeUJnGu3vvvTf9HXs24/9N8ZryQiH7ehYKPD5h4CoEGEqxL+sbb7yhvOWce7kWmobpZNOLYsuWuYA8l3Eyyry98Nxzzyn9MY1s9bhmzRrf89lll10Cz8MvnJ6tbdq0iVQWkmxoGA2J3XbbTbllP/DAA1GLQkjsgWcgjGc48J3YVWdYfXbaaaeplbR4afQ6UMJqRoTewQq9Rx55JNJym1L/UcgRVp5B5eN3uqboAokW6oF7bK2zuJTLJDlt7cvYjxFSOCf32DkdBhchdcHK7ytl7Q+bVZjcbOA8/h/XAfxOh9E9qXsqvSCBhxueGRxx2I/TtnJFKefQoUNr/P3YY4+lZcGeo5n/H8fyOw2Tev9Et8DoBu9ZGLjcyI69WR999NEa5z777LOc+Zisp9k46KCDavy9cOHCotLLDLd6/PHHG5l3mATdLmTWIzzF/aZ37955vXNNaUcyjeumLArZunUrx7cJhIbRkNDhBtauXRu1KITEHnRSGCzjYIdlb501aNBAfv/736sQINg3dPvtt/eUztKlS+Wss85SIXpR/ihehEyp/yjkCCvPoPLxO11TdIFEC/XAPbbWWVzKZZKctvZl7McIKZy9ftZcTumZMma2atIgbRyFJ+jXa8tl1feb1P6j5ZVb1Cf+xnntKYrr8TuAdJBeGOgJZduIS7mikhOejU7DIYxDzz77rPJ0hAcd/j/u5XeG8cQC52J4+eWXXcuOOsTias3bb7+dN484GUdPOumkGn/DcOOVzFCzXbt2zWuYijLvMAm6XcisxxkzZvieR7aw3Sa2I85FC9ABU4BhlOPb5EHDaEhog2gQq0IISRrwKIQXIA58J3bXGV4ir7/+emUgvfDCCz1vhP7RRx/Jr3/9aznssMMCGySaXv9RyBFWnkHl43e6pugCiRbqgXtsrbO4lMskOW3ty9iPEeKOcw9pL7277Ki+w8jZukmD9J6jGyu3yKqNlbLi+03qE3/jPP4f12mjKH6PdMJC781mG3Epl19yZnq9FcIZZ5xR4+9JkybJhAkTap2P631yhvFcvHhxUWm9/vrrnmQfMGBAwXnEaQ/BTINXtvoplEyD8TnnnGNs3pnU5WhUzHx70O0X6tG5OMLrXqgahAw+//zza5yDkTnTM7XYfIJoR5weo5nhf6MEbQLHt8kjtayOBMqSJUvS3+kxSkjxlJWVyamnnhq1GLHChjrDJuj33HOP/OEPf5BrrrlG7UPqBazMRbgdrCrFXqRhrFIzpf6jkCOsPIPKx+90TdEFEi3UA/fYWmdxKZdJctral7EfI8QdmLj841GdpFWT+jJl9pcqLC6OTVVblZfo5i1bBU5hsH/AIIr/a1j242QnPEVhFA1rAhSTrnh+bCMu5YpaTizwHTduXPpvhIyFoeSdd96xovw9e/ZUZdKG0WIMj19++aUy6OCd3Y3sTu9DbGdmg1FUl+vqq6+Wm2++OV0/8+bN87S364MPPpj+vvPOO6uth0zNG+AZKXQhAhbSOz2X3RB024B6vPjii9P1qL3GvXiL65DTd9xxR63/GzNmjBxyyCHpv3Gdfo7ckCtksh/tyOzZs2u0G6aA7Q85vk0eNIGHwOjRo2uF1CWEEOKNDh06yOOPPy5z586Vo446ynM6GIjuvffecu6558qyZct8lZEQQgghhBASLDBqDjqso/xpwL5y6O47SFm9EmX8hEfojs0ayU+aN1Kf+Bvn8f+4Dtfjd/QKIV69nZyT+4UAQ1LmglwYcbwYmEzk6KOPTn//4IMPik5PG5DcsGDBgvR3L8agsFixYoXr39x0003KmOj82y0waGL/V819991nfN5OQ6fz99mAI5JJHoh11eOVV17pKZ1rr71WGYyzGZah986Q0nfffbenPJxGbL+jX5pqGCXJxPxlXUXwwAMPRJo/VqtMmzatRhgJeowSQog/dOvWTa2Ae+WVV2TEiBGuX071PgIY9MHQetFFF8kVV1whrVq1CkReQgghhBBCiP9gj1Ac2Ev0uf99I7O/WC3ry6ukYvMWaVS/njRrXCY9d20lx/9iJ2m9fcOoxSUuQi1q1q9fLyYAowTAeyjkdLNHIkKHXn755TX+doup23M5DZEffvhh0emhfp1eo272JkU40bruy9KlS2v87dYL0unFiH1i3eDVYQbl08b1J598UoUOduNx2K9fv/T3YcOGufptVHljb06nQTTffcLekNddd11B6fp5/93grEeU68477yzIc1aDZwKe59m8RTWIrIaQx/DuhZyItubGmI0QvZlGaD9tGdjiShPW/sqE5KKkOk47TrsEk9tuOyi/yazeHj16yKxZsyKThxC/V7ohvKmT5cuXS5s2bQLNd/PmzXL//fer7xdccIHnPSeThK11psuFtvYnP/mJGgg7V4q6pUWLFso4CiNp48aNfZcz6vqPQo6w8gwqH7/TNUUXSLRQD9xja53FpVwmyWlrX8Z+rHjwHuIMVZkNTMhmvr+YREVFhZqgBQ0apPbB7NSpk1H1rBcXlpeX1ziHsTM9MHOD95Wqqir1HaEI4xbOM8xyYWI+27OMyXqvHpbFygkjKIyiTrng/QXPNzeT+858KysrXcuy55571jJaINRpXYaPMPQPRsw333zT871CHTvnklC/7733nrRu3bpO2dFuOg1O+fJ2XuumDjUPP/ywnH322TXO/f3vfy9YDzL1G95/cKgpxMiOqFcnnnhi+ncIxVxIPWNPSh3qGB6FXrYliiLvTJ3I9XstWyEmjmz3H96b8FIu5LnIdv/1dk2FAFkHDhyYNq4WqjuQe//991f5vPDCC3Ve27dvX2UcdZMHDLVYvIGxUmZbhyhrfrQj+jdYwBDEHqiFjmXnz5+fbofB7rvvnnawC2J8G9X8OcmP1aNWGEbx0EZ54IHXB6DHKCHFg2cLix5wWLy2w1dsrTNdLqwgPvnkk+Xjjz+W8ePHKyOpF9BGwzCqB0V60GdL/UchR1h5BpWP3+maogskWqgH7rG1zuJSLpPktLUvYz9GiP3oeSLbKKZcmIiH4QST/TiaNWuWc4EDjBkIrYnr8Bsc2bxL/ZITBgzkhTwxeZ0pF4wOMMZgvg8Gy0IMIzrMJULP1iXL6aefnq4bpI98soUThUEH9easFxhvwta/X/3qV+nv//rXv4pKC/caYVERJerTTz/NK7s2AoGHHnqolrEOOqLrBfWYaRTTdejULdx7DYw3+j7gmkyjGIAeOH+vF7gA3Avn7zP1CAYy6JfWIVybCxi3oAMwVOF3KEu2e+2sG6SrDZMwAHsxikaVt97jVANv1UxjGu7v73//e2XMy0Yh9//WW29V+ub1/mNfz1z3P1s9wqisw+pCd2Aszwe8PiF3IUZRgGcAiwp0WZEH2tq62hsYRWFEzdyyCm0d6g5yPProo/LPf/5TvODUlyOOOEJMg+Pb5GG1xyg6xhkzZoS+Ek9XaWa+ON+yZUtjQ18QEpcVL1ih/M0336jvO+20E1cmJ7jOcpVr48aN8uc//1ltPl9M2KXOnTurQbJ+4fVbzrCJQo6w8gwqH7/TNUUXSLRQD9xja53FpVwmyWlrX8Z+rHjoMRoe9Bh1j9Ow41w8n/Ryae85eKC5QXtbFeqZ6EVOGAFgMCtENi1PXVOs2sjy9ttvq3fNfLLA0AKDhJe6yfSADEP/nJ54MPwWYsDJ5h3o9KCEsQbGMKSHCHy9evVSbSLC0aIOMecLwxuMTH/729+yGqe1XIXWY2b9aQ9BN793eui51XH8vpCpeq2fAOX/9a9/Lfvtt5+ad164cKE8/fTTaQ9eeOdh4bdfe9qGnbczP92XIz9sYYf7s9dee+XUt6jvf6HlQvrHH3+8smXoepwzZ47Sf/wfoqO5CbubLQ/UA0J4H3DAAepvRFt79913lX4675PTOzgbkAcGRLftiH6ei40AEITHKNpjHeY6iPEtPUbNxGrD6CmnnKL2+NQPahhFRV4dOnTImRfCNHrZB48QE2HDTkwHL1ejRo1SIY70gMcLGDjedtttcvjhh/sqHyGEEEII8QcaRsODhlFCSF3hdL3MwcLzFQYup4ETbSKMVHrfRG2Yad68uRx66KGu97u0DRjuJk+erPZuhLEKhjkYK+EBCa88GKOCMkCFmTf04N5775XXXntNhXXVeZ111lmu9tA0kXz1OGjQIFVGP/KYNGmS2l9VL7jA4ot99tlHhY51PnPaMAoZ8EzCloFPGGzxvWPHjp6MtHqxBwy0iPYWFdkMo9DTRo0aBZYn58/NxGrDKMIhwlsIxkoUc/DgwTJixAhp3769L+mjscJqAqxkmj59usydO1etVkJDMXLkyBqbqhNiI2zYSVz44osv1Aq7v/71r0Utkjn22GOVofUXv/iFr/IREgbwpK5rn3Oswm7SpEloMhFCCCF+QcNoeNAwSpJOoe+UtngGF4pz/0U3+24SQuwG3vIIOaxDXvth7PUKDaNEUyYWgw26NUOGDKnzJcktWJ2EA4bWI488Mm0snTBhggq9OHHiRPXdGWefEOLPizhWUgGEzOALeHLrrNBy7brrruolDavarrzySnnuuec85ff888+rFaxnnHGG3HjjjdKuXTtf5QyaKOQIK8+g8vE73Sh1AYZRrLDNB1Zv0jAaPKa0CXHC1jqLS7lMktPWvoz9GCH2G9Lw/AA8N7YYzOJSLr/lRHpVVVV5rykrK8uaTxR1FkaeyGPgwIFy0UUXKY+38ePH+2IYDeLexUFnSfBQF8Krr/vvv199wlM1SqNovrL973//U985vk0OVhtGEdJW079//1DyhKF0+PDh6oB3au/evZWB9Nxzzw0lf0KSAF5AnnnmmXQceL2amiSvztyWa++991YbxSMMD9rot956y9OACRvOI9QJ9gu56qqr1P4nfsoZFFHIEVaeQeXjd7qm6AKJFuqBe2yts7iUyyQ5be3L2I8RYj9btmxRn7ZNuMalXCbJGYUsYeSJPBA+FU4i2PsTW9vU9a5caLp+ym6SLpBooS6EU196b9GLL75YTC0Xx7fJw2rDKOJeZzOShsXo0aNVSDrsdQpoHCXE37189XeS3DrzWi7sRYJQHtg7AR6kOmSZGxBy489//rP85S9/UYthLrnkkpyedqbUfxRyhJVnUPn4na4pukCihXrgHlvrLC7lMklOW/sy9mOE2I+tE+9xKZdJckYhSxh5Io8bbrhBnnjiCeU1evfdd/uy/6PfspukCyRaqAvB19edd96Z/m6qYRRwfJs8rN5jdMmSJWpDYCj0mjVr1EbBUTBt2jS1GTj2IMWmxoTYAmOkExuA58Mjjzyi9iD96quvPKfzk5/8RK699lo577zzjNsHihBb9l4jhBBCbO7nuMcoIfEAz0AhoXST+kxcc801cvPNN6uwmevXr49aHEJIhMAeg4USV199tS8LJYqFe4wSjdU9dKtWreTkk09WR1RGUdCvXz81UY6DEEKIWeCFFR79CxYsUJ7+zmgDbvj2229VaF3s0ThlypT03guEEEIIIYQQQkhSgPFj5513VsYQvCMTQiSxiyTQDmCezASjKCGJMYxiv8+pU6eqCeqowWT7nDlz5IMPPohaFEIIIVnAKneExF28eLH69LpabOHChSpKwH777SczZ870XU5CCCGEEEIIIcRk/va3v6lPePJjr1FCSLLAc49w2mDixIlRi0NIsgyjJgEPJHiOjh8/PmpRCIk9CHswduxYdeA7SW6dBVGuli1bqsUs8CCFp7/X8EdYDNO7d2/p27evvPvuu0bUfxR6EFaeQeXjd7q2PovEHdQD99haZ3Epl0ly2tqXsR8jxG6wixWeGRw27WgVl3KZJGcUsoSRZ2YeBx98sAqdCU444QTf0vVbTpJcqAvB1tfAgQOVtyi2MUB7YDIIjc7xbfIoi1qAJNGrVy8jvFcJiTvogBGfXX8nya2zIMuF0D+TJk2SSy+9VK666ip55plnPKUzffp0dey1115yxBFHRFr/UehBWHkGlY/f6dr6LBJ3UA/cY2udxaVcJslpa1/GfowQ+7H1mYlLuUySMwpZwsgzMw+EznzllVfkzTfflDvvvFMuu+wyX9K1SRdItFAXgqmvhx9+WF588UU56KCDlLExDnB8mzxKqnm3Q+Opp56SwYMHy6pVq6IWhZBYbx6NvRuXLl2qvu+yyy6ePfqShK11Fma53nrrLRkxYoS8/vrrRe1nin7g2muvlR133FGSoAdh5RlUPn6nG+WziPYZoazygdWcme068R9b2+QgsbXO4lIuk+S0tS9jP1Y8NvRzFRUVMm/ePPW9QYMG6rNTp05Sv359MQnoQXl5ea1tKUzSB9PA1JuefispKVGHDcSlXH7L6UwvF7nyiaLOwsgzVx4Ip9mtWzf58ssv5Y033nDtORbkvTNZZ0nwUBeCqS+MY/bff3+1xeGyZcvENOAROn/+fPW9srJSfXbu3Fm+++67wMa3Uc2fk/zQYzRk1q5dG7UIhMQedFDt2rWLWoxYYWudhVmuAw88UF577TV5/vnnZeTIkfLhhx96Ds/xyCOPqNWyl19+uTRt2lRs1oOw8gwqH7/TtfVZJO6gHrjH1jqLS7lMktPWvoz9GCF2Y+uke1zK5becxaQXRZ2FkWeuPHbYYQd57733pEOHDnLMMcfI4sWL1bli0/VbTpI8qAv+1xcWQmA7KfDyyy9LXEC5OL5NHlzOFyLo/AkhhMQXDJaOO+449WIH4yZWknlh48aNcuONN0rHjh3lnnvukU2bNvkuKyGEEEIIIYQQEjUwhL7zzjvKgwzeozCeEELs4/DDD5d169ap571Lly5Ri0NIXmgYDZFFixZJixYtohaDkNiD0E2ffvqpOvCdJLfOoipXvXr15P/+7//ks88+k7vuuktat27tOZzGxRdfrAaMjz/+eOBliKK+wsozqHz8TtfWZ5G4g3rgHlvrLC7lMklOW/sy9mOE2A3CD+KZwWHTjlZxKZdJckYhSxh51pUH3nmxwBiLi0844QTf0vVbTpIcqAv+1hc8wrVjWNyMoigPx7fJg4bREJkyZYr07NkzajEIiT0IRzp58mR14DtJbp1FXa5GjRrJJZdcoha+XHXVVbLddtt5SmfJkiVyxhlnSPfu3dUG9UENyqOor7DyDCofv9ONWmeJGVAP3GNrncWlXCbJaWtfxn6MEPvBM2PjcxOXcpkkZxSyhJFnXXnAc/S///2vPPvss76mG2ddINFCXfCvvh599FH5+OOPXYXKNoUtW7ZwfJtAuMdoSEyaNEntL4pJb0JI8eFMf/7zn6e/k+TWmSnlQkigm2++WS644AIVIhdtPgZWbvnggw/UKrtf/epXctttt8l+++0X+/oKK8+g8vE7XVN0lkQL9cA9ttZZXMplkpy29mXsxwixH1ufmbiUyyQ5o5AljDwLzcOt4cRv2U3SBRIt1AX/6iuOBlEnHN8mj5Jq+ooHziuvvCK9e/dWD9b06dPliCOOiFokQnwBYUDbtm1b49zy5culTZs2kclEiAnMnz9frr76apk6dWpR6fTr109uueUW6dSpk2+ykeSC9nncuHF5rxk2bFitdp0QQgiJAzb0cxUVFTJv3jz1vUGDBuoT48D69euLSSDMXHl5eY1zjRs3ltJSBiUjhBBCiLls3rxZzdmByspK9YnQv4gIFxScPzcTjloDNogOGDBA+vTpo/7u0KEDjaKEEJIAMIGF8OnvvvtuUe3+tGnTpGvXrjJkyBD5+uuvfZWREEIIIYQQQgghhBBCkobVoXSPOuooWb16dah5Ilwu8sSnBk658BadMGFCqLIQQgiJll69esmMGTNUtIARI0bI+++/7zoNhOSdOHGi2q8B+5kOHz5che4lhBBCCCGEEEIIIYQQ4g6rDaOzZs2SdevWKcNkVMAgimPw4MH0FiXEx7AHDz/8sPp+1llnGRdaykRsrbM4lAt9APYMHTp0qMyePVtmzpwpS5YscZ0OwpXdeuutMn78eLnyyivVfqZuQ31EUV9h5RlUPn6nGwedJcFDPXCPrXUWl3KZJKetfRn7MULsBvNSVVVV6ntZWZk1e5jFpVwmyRmFLGHkGVQefqdrki6QaKEuuMPm+kK5Jk2apL5zfJscrDaMInTt3Llz1YOqjaNhPrTIEwdCINa11wkhpHDwXOmwotwmOdl1FpdyQbZvv/1Wdt55Z/nf//6nJhRvvPFGtc+AWxCV4PLLL5e7775bpTFw4ECpV6+esfUVVp5B5eN3unHRWRIs1AP32FpncSmXSXLa2pexHyPEfmx9ZuJSLpPkjEKWMPIMso80OT0SX6gL7rC5vji+TR5WG0ZbtWqV/q4NomEqd/fu3dVqg27duoWWJyFJACuTTjvttPR3ktw6i0u5nHJut9128vvf/17OPPNMueuuu+SOO+6Q77//3nWay5Ytk7PPPlv9/rbbbpPjjjuuzsU/UdRXWHkGlY/f6cZFZ0mwUA/cY2udxaVcJslpa1/GfowQ+7H1mYlLuUySMwpZwsgzyD7S5PRIfKEuuMPW+oKzAce3yaOk2mIzOMIWYl82p1EUxkp4kgZhfO3YsaO0aNFCpX/kkUf6lgchpgJvt7Zt29Y4t3z5cmnTpk1kMhESN/DM3HzzzSpELsLTeeWQQw6R0aNHy0EHHeSrfMQuXasrgsWwYcNqteuEEEJIHLChn6uoqJB58+ap7w0aNFCfnTp1Mi6k29atW9U2D04aN24spaWlkclECCGEEFIXmHebP3+++l5ZWak+u3Tp4nqrKjdw/txMrDaBw0ipDaIwjs6ZM4fem4QQQowCg6N77rlH/vCHP8g111wjTzzxhKd03njjDTn44IPlhBNOUHuRdu3a1XdZCSGEEEIIIYQQQgghJM5YvZwPHpwARlF40dAoSogdYIXyokWL1IHvJLl1FpdyFSInog08/vjjam/so446ynNezz77rOy9995yzjnnqHC7buXwm7DyDCofv9ONi86SYKEeuMfWOotLuUyS09a+jP0YIXaDBft4ZnDYFLgtLuXyW06kA0+jfEeuNjKKOgsjz6Dy8DvduOgsCR7qgjtsri+Uh+Pb5GG1YdQZ5rZ3796RykII8Y+qqip57LHH1IHvJLl1FpdyuZETi3hefPFFmTlzpvTq1ctTfhjIPfTQQ7L77rvL8OHDZfXq1a7l8Iuw8gwqH7/TjYvOkmChHrjH1jqLS7lMktPWvoz9GCH2g2fGxucmLuUySc4oZAkjz6Dy8Dtdk3SBRAt1wR221teWLVs4vk0gVofSde4l6ue+ooSQaIEX+I477pj+TpJbZ3Eplxc5jzjiCHnnnXfkqaeekiuvvFIWLFjgOt9NmzbJ7bffLpMmTZIrrrhC7b0ddn2FdY+CysfvdOOisyRYqAfusbXO4lIuk+SMQpYw8mQ/Roj92PrMxKVcJskZhSxh5BlkH2lyeiS+UBfcYXN9cXybPEqqbfN9drBkyRIVThcKvWbNGmnWrFnUIhFiFdw8mpDwNod/8MEH5frrr5dvv/3Wczo//elPVRpnn322lJVZvTaKZAHt87hx4/JeM2zYsFrtOiGEEBIHbOjnKioqZN68eep7gwYN1GenTp2kfv36YhKITlJeXl7jXOPGjaW01OqgZITUeAbq8irC+xafCUIIMW9+bf78+eo7wp6DLl26SKNGjQLLk/PnZmJ1D92+fXuZPn26vPzyyzSKEkIIiS2YDBsyZIgsXLhQbrnlFs992tdffy2DBw+WvfbaS5555hnr9oUghBBCCCGEEEIIIYSQxBpGwZFHHqkOQuLKjBkzlEFEez/jwPc+ffrImDFjZO3atVGLSAgJiSZNmqiwuosXL5ZLL7007Ungls8++0xOOukkOeigg+S1117zXU5CCCGEEEIIIYQQQggxEesNo4TEFRg+YPzEMXv2bOndu7eMHj1aeXtpg+mIESOkZcuWynCatLAHDz/8sDrwnSS3zuJSLr/lbN26tdx5550q/MeZZ57peQ+Et99+W375y1/KcccdJ//73/8kzvcoqHz8TjcuOkuChXrgHlvrLC7lMknOKGQJI0/2Y4TYDSK14JnBYVPUlriUyyQ5o5AljDyDysPvdE3SBRIt1AV32FxfCI3O8W3y4AZjhBjI3Llzladzhw4dZM6cOdK9e/da10ycODFtEMV3GEpxbYsWLcR20AF/8cUX6e8kuXUWl3IFJeeuu+6qBm6XXXaZ8iR97rnnPKXz/PPPywsvvCBnnHGG3HjjjdKuXbvY3aOg8vE73bjoLAkW6oF7bK2zuJTLJDmjkCWMPNmPEWI/tj4zcSmXSXJGIUsYeQbZR5qcHokv1AV32FxfHN8mj5Jq3m1CjAKhcbE/rjaK5gPGUHiUavRvwjKORrV59NatW2XevHnpDbJLS+n8ntQ6i0u5wpLz9ddfV57kb731luc0EJ73/PPPl6uuukp22GGH2JQ9qHz8TjdKna2oqJBFixblvQah2hs1ahSaTEklLm2XSdhaZ3Epl0lyRiFLGHmyHyseG/o5lEHXr94yoVOnTmq/eZOAHpSXl9c417hxY6P0wTQw9aan3/QWOTYQl3L5LaczvVzkyieKOgsjz6DyCPLemayzJHioC8msL3iEIvoaqKysVJ+dO3dWkRuDGt9GNX9O8kPDKCGGAS/QKVOmyJIlSwoycOJ6eIxqEGp3woQJEgZs2AkxD3Tr//jHP2TkyJHpiTUvNG3aVIYPHy6XXHKJ2tuUEEIIIYQECw2jhBBCCCHhGkZhDA1y4Rznz82Eo1ZCDPMWhZETBo1CvT6x76gT/F6vciGEJA+s2jvhhBPUnqEPPPCA/OxnP/OUzoYNG+Saa65RnhXjxo3jPguEEEIIIYQQQgghhJDYQ8MoIQYBT1EwatQoFSK3EAMnDKi9e/eucW7atGliM1ihvHTpUnXgO0luncWlXFHIWVZWJueee64sWLBAxowZ4znE9nfffadC63bt2lW1UW7lD6vsQeXjd7px0VkSLNQD99haZ3Epl0lyRiFLGHmyHyPE/qgueGZw2BS4LS7lMknOKGQJI8+g8vA7XZN0gUQLdcEdNtcXysPxbfKgYZQQg9B7isJzFPuH9ujRo6DfYW9RJ9OnTxebqaqqkoceekgd+E6SW2dxKVeUciKs2R//+Ee10OLyyy9XBlMvLFy4UAYMGCD77befzJw507iyB5WP3+nGRWdJsFAP3GNrncWlXCbJGYUsYeTJfowQ+8EzY+NzE5dymSRnFLKEkWdQefidrkm6QKKFuuAOW+try5YtHN8mEG+zo4SQQFi9enWNv2EghTEj0/CZCUJd5kvHxlChrVq1Sn8nya2zuJTLBDlbtmwpt956q9o79MUXX5R33nnH00o4LOCAlzq82m+77Tbp3r27EWUPKh+/0zVBF0j0UA/cY2udxaVcJskZhSxh5Ml+jBD7sfWZiUu5TJIzClnCyDPIPtLk9Eh8oS64w+b64vg2eZRU2+b7TEiMwf6gQ4YMSf+N0Jdr1qyp83cIkzlixIj03zBUaO/TIOHm0YTEl3nz5slVV10lzzzzTFHpnHrqqXLzzTfXWqBBCCGEEELcUVFRocZooEGDBuqzU6dOUr9+fTEJLK4rLy+vFaWktJRByQghhBBiLps3b5b58+er75WVleqzS5cu0qhRo8Dy5Py5mXDUSohBDB48WB0AXqJTp04t6HeLFi3KusqFEEJygYHf008/LW+++aYcdthhntP529/+Jp07d5bf//73aj9SQgghhBBCCCGEEEIIMRUaRknsQThHhIgMC+z92b9/f7X/J/KFiz08pSAHPDcR/rYYJkyYoDZ9hrET4SoLAeF2nUAWQggphAMPPFBeffVV+de//iV77723pzSwB8P999+v2sLrrrtO1q9f77uchBBCCCGEEEIIIYQQUiw0jJLYMnfuXGWchKESxshiDZJ1AaOnNoAiT3h0jhw5Uhky+/Xrp/b1RDhbGEtxTaaxMihQbsjjBPLYDIwwTzzxhDq4KXay6ywu5TJFzlxyYIHHscceK++995488sgjsssuu3hKf+PGjXLjjTeqtvKee+6RTZs2hVb2oPLxO11TdIFEC/XAPbbWWVzKZZKcUcgSRp7sxwixGyx+xjODw6YdreJSLpPkjEKWMPIMKg+/0zVJF0i0UBfcYXN9bdmyhePbBFIWtQCEuAUGRxggp02bFlp+TkPn8OHDlUEU+39mAgMl9gjFJwwDo0ePVtcHvS9pplEURlubwZ42CxYsSH8nya2zuJTLFDnrkqNevXryf//3f3LKKafIuHHj5JZbbpFVq1a5zmflypVy8cUXy5/+9Ce5/vrrVfuJPaeCLHtQdex3uqboAokW6oF7bK2zuJTLJDmjkCWMPNmPEWI/+pnBmNsm4lIuk+SMQpYw8gwqD7/TNUkXSLRQF9xha33B0MvxbfKgYZQYDybU4R06a9YsZXDE97BAXkceeWTaGxV7fubzxkToW4TA1V6lMODib3iVBoUzbRhrJ02aJLaDDviEE05IfyfJrbO4lMsUOQuVA5vOX3LJJXLOOefIHXfcIXfddZf88MMPrvP7/PPP5ayzzpJOnTrJRRddpIyjcatjv9M1RRdItFAP3GNrncWlXCbJGYUsYeTJfowQ+7H1mYlLuUySMwpZwsgzyD7S5PRIfKEuuMPW+sJcFce3yaOk2jbfZ2IFCEebKzSuNkxmeoyuWbMmqxenV5B/+/bt03LAADl48OCCfw+PUe1lGpTnKML7wviqmT59esH7kvrBihUrpG3btjXOLV++XNq0aROaDISQ4Pnmm29UiFwsvECIEa/88pe/VO3hfvvt56t8hBBCCCE2UFFRIfPmzVPfGzRooD6xwKx+/fpiEvCmKC8vr3GucePGgS6CI3Zy/vnnq0g1frLzzjtLs2bNZJ999pG+ffvK8ccfLzvssIOYzjXXXCM333xzndc1bdpUzTWFUaaf//zn8uWXX9Z53dVXXy033XRT4PIQQkixbN68WebPn6++V1ZWqs8uXbooB4Gg4Py5mdBjlBiJNkbC0ImwsD179lRemDD64RwMgkGH0u3fv39aju7du7syimpDKmQGMF76HeJWhxTWwJs1TKMoISQ57LTTTmrC4tJLL1UvvVOmTPGUzquvvir777+/nHzyySpM7x577OG7rCT/ZCuiGNS1qCfIFwJCCCEkKNjPERI/8EwedNBB6jvmX5YtWyYbNmzIaRDce++91XcYPp2sX79e/R6f2pD3ySefyJNPPqm+n3baacrwiMlvP8AChnvvvVc++OAD+fDDD9MyQ0YYEw8//HD53e9+JwcffHDBaWLeq5C6wLlrr71Wxo4dK0Fy55135jSK6nJq5wTcR0IIISRO0GOUxJJMT0m/PUYRBlcbNQsJoZuLHj16pEP/wrg6Z84cX+TLTNutN2vcV7xghTLyAcifK5OTW2dxKZcpcvolx+zZs1Ub/Morr3iWBeFJzj33XLnuuuvkpz/9qZhax36nG6UuIN+6VuQPGzasVrtO7G0T4oStdRaXcpkkZxSyhJEn+7HisaGfo8eovWDqTU+/lZSUqMMGgihXNi/Srl27yscff1xwGv/973/l8ccfl8cee6yGcXHo0KHKoOhVTjyfWCz64osvKuPgXnvtpTxTsQgexkzM0eD/NDB0Yv7KaSB1U2faixTlh6FXg7xhBA7yPsHwifI5y5PPOzQoHfc7XVufReIe6kIy6yubx2jnzp1l3bp1gY1v6TFqJhy1EpIFp9EVxlYvRlEwYMCA9HcMkP3aH3XIkCGRG0WjpKqqSpUbB76T5NZZXMplipx+yYHVzFhA8tJLL0m3bt08pYGQvBMnTpTddttNrrzyypzh06OuY7/TNUUXSLRQD9xja53FpVwmyRmFLGHkyX6MEPvBM2Pjc+N3ubCFRyYwProBhkgYQBFpS3thgvHjxytj38qVK13LBSMlDJRLly6Vhx56SKWBiDh33323XHzxxWrB57PPPitff/21nHrqqeo3b775phxyyCFyzDHHeKozbYA86aSTlDFUA2Mv8grqPsGwDCOBc04rU6Zi83CD3+na+iwS91AX3GFrfWF+iuPb5EHDKCEZZBowiwlPm2lQRQNbLDAk4NCerEkzigKsSsJLAY64rlAKG1vrLC7lMkVOP+XA77FnD7xHn3jiCc+hwuFtMGrUKBV+CeGa4ClhUh37na4pukCihXrgHlvrLC7lMknOKGQJI0/2Y4TYT5w9bMIsV7a9M71GB0NaMPI5jaPwvMTiTjfGUXixwnPzjjvuUJ6r//d//5fz2tatW8sjjzyiwvdq4HW55557FlVnZ5xxRo2/YeR1g5s877///lr5+Z1HlOna+iwS91AX3GFzfXF8mzwYSpfEkiBD6cIbUxsewejRo2X48OGe08tsUIt55LCvKvY+BdOnT498T1GGAiCEaBCCBG0nVhDrEHteQMgmrBIfOHCgCrdL/MOGEIOEEEKIzf0cQ+kSkn0eBc9uMXtqwgiaOU9x9NFHywsvvFDnb2FYhdcnvETPOuus9DNQl1cRPC4z2xsv5cB+qvBIPf3005XHqpOgpnSR5zvvvKOOs88+O5Q8CSEkqlC62H86yD3oOX9uJhy1EpLBlClTavyNvUGLIdOLCsZNL8CLFUZRGH8XLVoUuVGUEEKcYPLu97//vSxcuFCuv/562X777T2ls2zZMvXyjXBZ//znP/niTQghhBBCCCkKeI46PTi1F+fDDz9c52/hKQrwjgKvTxhKCwGeo05PVVDX4o18YOI+0zCKiDt+gzrBYlXkRwghhNgKDaOEOMD+E5n73HkND5nLsApPTy9yHXnkkUqWJUuW1ClTsXv1EUKIVxB6BPvrYAHHhRde6NnDASGqfvOb38ihhx5a8OQDIYQQQgghhGQj236Zt99+e52/c76LIAxv5n6h+ci2N6rbvUGdnHPOOTX+fvDBB8VvJk2aVCsfQgghxDZoGCXEwYwZM2qdK9Yw2qpVqzrzqMvI2aNHD5XOnDlz6gwXjFCWOtyurSBkDfZXxcFNsZNdZ3EplylyhikHwoTcc8898tFHH6nQU17RoatOOOEENRERdtn8TtcUXSDRQj1wj611FpdymSRnFLKEkSf7MULsBlFQ8MzgsCkiSlzKBdmOO+64WufxfqHDV+diw4YNtf7+7LPPCvYazQQRdrzW2WWXXeZafjf3CSGH33zzTTnzzDNdyeUmj6jTjYvOkuChLrjD5vrasmULx7cJhIZRQor05qyLTEMmvD/d4MYoCnBdscZc08F+HngBwIHvJLl1FpdymSJnFHK0a9dOhf7G/s19+/b1nM4//vEP2XvvvdXqZYTbDatsfqdrii6QaKEeuMfWOotLuUySMwpZwsiT/Rgh9oNnxsbnJi7lyiUj9tHMx84775w1NK9XYFAops6wN6qTe++9t6DfFZLn3XffrdL3Wr6gdMHvdOOisyR4qAvusLW+0C5zfJs8yqIWgBCTyDRaFmKI9LJCEPuFFrJ3KYyikGHmzJkFyzJ79mxlgLCZevXqpcPX4DtJbp3FpVymyBmFHM480ab95z//kREjRsisWbNcp4UB6kMPPSRPPPGECtM7cuTItFd+UGXzO11TdIFEC/XAPbbWWVzKZZKcUfdlQeXJfsyfaBUI50+IqZj2zCStXJAT235keoBiC5B83HfffXLiiSem/7766quV4bCuyfOSkpKsae++++5F1dnQoUPV/qiaxx57TMaOHVvn7wrJE/uLorxeCbKPNDk9El+oC+6wtb5KS0uNHd+S4KBhlJA8htHMMLheyGbQRD51GUZ1OFw3RlGE3YXR1XaPUXRS++23X9RixApb6ywu5TJFzijkyMzzV7/6lVqV/dRTT8lVV10l8+fPd53mpk2b5I477lD731xxxRVy0UUXyXbbbRdI2fyuM1N0gUQL9cA9ttZZXMplkpwm9GVxyoP9GCFmACOZjZOtcSlXPjnrmm/Blh4rVqxQW3wcfPDBaW/KQsr9xRdfZE2vGPB7eLF++eWX6m8YerFvab50C7lPKN+6des8yxeULvidblx0lgQPdcEdNtcXDKMc3yYPGkYJyTAshkFd4XTh8Tlt2jQZPHiwjBo1qiCZV69end6/tGfPnj5KSwgh/g+o+/Xrp166H3zwQbnhhhvkm2++cZ0OXtzhNYrwUddff72cffbZUlbGoQ0hhBBCCCGkNpneomC33Xar83cwhnoxGGK/znxhcL1y1llnyc0335z+e/z48UUbXO+//34544wzfJCOEEIIMR/OHhKSxyjqRyjdbF6nq1atynn9mDFjZOLEieq7/nSLH3KbHvsdhmBdvzCykGTWWVzKZYqcUciRL8/69eurhSB4Acd+NqNHj5b169e7zuPrr79WC0nQfiK01cCBA9WKv6DlNyE9Ek+oB+6xtc7iUi6T5DStLzM9D/ZjhJgBnh0ntjw7cSkX5Fy5cmXW/yvWoJjPAzMTvKv4UWcXX3xxDcMoQuuifLn2Bi0kzyeffFLtr2eaLvidblx0lgQPdcEdNtcXyqbn6jm+TQ7+zBrGnPfff18eeOABGTZsmBx11FHSq1cvtS9kp06d5PPPP6/z9++99576zZVXXlnQ9cRM9At+lB6j8BLF3nvFUMjepXFn8+bNat8LHPhOkltncSmXKXJGIUcheTZp0kT1oWgbL730UmnQoIGnvBYuXKhWTx944IHy2muviYl1ZooukGihHrjH1jqLS7lMktPUvszUPNiPkUTx/QqRdyaITDtH5NGTRB46NvWJv3F+Y3bDWFjgmbHxuYlLuf75z3/WOnfaaacFlt/w4cNr5YVQvH7UGQygBx10UI1zjzzySN7f5MsTe4t27dpVunTp4lmmuvIwKd246CwJHuqCO2ytry1btnB8m0ASaxiFARPh92AA7dGjh/JYgXceQpFij8Y1a9aoTdILCa0K7zwct912m3Ts2FFOPfXUrPsIELMJK4xuPiZPnlx0GrbvL6pp2LChOkjh2FpncSmXKXJGIUeheaJPvvPOO9W+o2eeeabnVXrvvvuu/PKXv5TjjjtO/ve//4lpdWaKLpBooR64x9Y6i0u5TJLT5L7MxDzYjxHr+fp9kRdGiDx6osjsB0W++1hk/VciP6xKfeJvnP/rCanrcD1JHHCIyOSaa64JzFvUGUYXRswnnnjC1zwGDRpU4+8///nPntO6/fbb5Y9//KMPUhFCSDzh+DZ5lFRn+kEnAHiG6hCludzAcR7f58yZI/vuu2/Be53deuutakCB3yKPc889N4ASEIRLzPSshDG7mBCyMIr36dOnlvcldKAY4AXav3//Gud69+4t06dPl7izYsUKadu2bdHpXHfddeqFBCt0EP7SuUdgZWVlOuSmfj5xXbZrsaoHzy7O6TCaW7dulaqqKvVbpGHStTiH/8Pm5XoDczfXIh+9ksnpYefntdnq3c21xdzPYu+9zXoSxr0vVk/8uPeffvqpXHXVVfLcc8+JV5AXQvXeeOON8rOf/SzRbcTy5ctl3LhxeevrvPPOU/VUaLpsI6K/NsltRBh6Erd7b5qesI2I/lq2EfFqIyDPvHnz1N96cg6RrPT1zvkL59xF5rmgr8VRXl4uTho3bqyuc5NuXfnVeS3mbd6+X+S9x1J/4p+qTSKbNkjJ1s0i1VuluqRUpLS+SMOmUlL244RndbczRA64AIlGWpe8Nvv5zAWSmMcbO3as5/xgpDzkkENqpPnQQw+paDN+lwPhGLt16yZffvllel/R559/3nO6zZo1k4suukhuuummWtdmbh/yxhtvpD1JC5UX71zwFtXPtvNaeJKeffbZNfLQ14ShJ3Wl4eZav2XjteZca7JsvDbYa+tKI9u1GHdhMT7YtGmTOgdv+UaNGgU2hsT2T855FoD5mTZt2tQ4R8KlNGkhc+GNAoOl7vD1wN35wGQ+NIXSvHlztT8aDHSYWMTqrfPPP9/nUpC4Yft+n34xa9YsGTVqlPzjH/+ocR77DuI8jLDOZxnnYHR2cv/996vz33zzTfrcRx99pM797W9/q3HtpEmT1PmlS5emz6FjxLlHH320xrV4GcB5hOnULFmyRJ37y1/+UuPaxx9/XJ3HhIYGL0Q4N378+BrXTpkyRZ3/8MMPa3SMOHfvvffWuPaZZ55R552GeoR/xrm77rqrxrUwIuH822+/nT63YcMGdQ5tlJOXXnpJnX/99dfT5zAwwDkcmMDRzJw5U53Dpwb/r6/F7zRID+eQvhPkj/OQRwM5cS7T+IVy4bwzzDXKj3OoDyeoL5xH/WlQrziHenaC+4Dz+kUV4H7hHO6fE9xfnMf91kAPcA564QR6g/N6gAWgXzgHfXMCfcR56KcGeotz0GMn0HOch95r8DzgHJ4PJ3h+cB7Pk3PRDs7dcccdNa7FyznOO/e++eGHH9L3M3PhCM69+uqr6XMYTOprnaFGcA3O4TdO9LXIQ4O8cQ6yOIGsOL/LLruokFf/+c9/ZK+99hIvoE/Hvdljjz3UohTs65P0NiIfmfKyjUjBNsLMNgKyaziOSMFxxI+wjUjBNiKebUSuOQkYVrUh1XktzuH/nGBiDuedz6Gba3OFzMO1mb93ylZMujiHz7quRXqbKyuleuYNaaOobPo+5R264WuRyg0iVRUiWypTn/gb5/H/uA6895hUz7geidVMN4sM2erdzbW56j2oa4u9937pSbHXZiNXvefUk82b1b6ZxxxzTK3F9ohQ4/e9x3uL0yiK8LnPPvtsUXqi/y/btZmhgNFOudWTe+65J51OPhmyEdS996WNCPFathG5r81Vl0FdG7d7b7OemNxGOH8TxrtGtogFJHp+NF1bDl7A+/btW8MYmjmwgHcgNtiFIQufmS+gbgykEyZMUCF6hw4dqs5hZRshhBBC3HPooYeqRU14accqaOdkdKFgNR8mKvREPzzVsbcpIYQQQgiJH/VmjZeS+S+m/sDeoTB+KkpEGjQRKWsMd7qU4XNzucjmjSlD6Q8rUsbSJjtIyYKXRLZvI3LQhVEWhQTIY489Jn/4wx/Sk9xNmzZVIWcRUaZY4GmJLbiwqAFbM2He8a233kp7iWJB5gEHHFBr4t1PMOf45JNPpv/2EmkHi3peeOEFnyUjhBBCzCYRoXTfe+89ZaQE2iAK4DmCEKf4bN++fa3fwe0Z+40WGko3G1hlesoppygjK8Pq+gdD6SY7lC48CjDgx9+/+c1v0teHEd4qriHwcJ1eIX/CCSek6yzuIfAgP3QBZcDLJ0JfmBgCD3Jor5fjjz8+vTAn7BB4yEu/LKO+8HfQIfD0PcI5rNTWYda83nvIgf150G54MZBqdtxxR5XGOeeck14wle1+Au2Jcuyxx6rPYvQEYeeQHq779a9/rX7DULrJC5OJa/Bc4O+jjjpKXccwmfnvJ9DtFxY74rdxDJMZdP+QhHEE8kSd4VrUGT6DbiOc+odnFvL7rSdu+gc36VZUVMi//vWvGukW89xnjr0Q7tWENoKhdGueC/rayEPpYo/QZ4akzqWNoiVS3aiZSMPmIqX1YB5NXat/vHWLlGxaJ1KxXp2tbtBUGUdVGr+dIPLTfQOvS20gw3PgnJsqNt2or80slx/pOv+/0FC6CGGLOQp4Z6OfgFHU6fWDNgse2s45DK9lvvPOO3PuyYmwtCeddJKcfvrp0rlz56LqrK5QugBRdpzvRQgRDG/YQvQPffvvf/97WbZsWVYZ3ITSzSxXMfWbSSHpuskvMz0vsvFac641rf2y9dpc9RWlvHWlke3abKF0MdbCPL1f81YMpRsPEhFK12mUwgMxfPhwZUR7+eWXVbjbbEZRv+jXr58aLA0ePFi++OKLwPIhxQMvYRId6FQxgeLsOADO4XB2jPiOsFUIceYMp4DOCNc699nAd5xzTj6Yci3KivPOwbiba1EPun7quhZtH+oMh7PO6krXWe/6Hrm5tpD7Wcy1KMsHH3ygdME58ZQv3SjuPWSBnDggc7F64ubeO6/V9YXDKVux6RZyj6B7OFfsvYfxG8ZMDGSxSMbrgpjvvvtOhbtHiF6EOcl8Kdb3COg607IVoyfIB3Xxv//9L/0sht1G5MNtuqa3EfnuUZRthH4uoAfawOc1XT/biKCu9eN+OtsvnV8YehK3/iEJ4wicw7Oj6yyMNsKpf/q833ripn9wky7OZ6ZbzHOfOfYypY0I49ow24hMo5DzvD7ynQv62ly4Tbeu/HJe+8GTyvBZgrC424yi0qSNlDRuJSUOo6i6Vh+l9UQat1LX4UxJ5Qb1e3XtB5MDr0v9/DjbUFPuZzHXZiuXX+k6weI+/D+eE304f4e/McEMo+SJJ56orodRdOedd1ZGVRhMEdK2ZcuWNfL0Wj+XX355epGAPpDH3//+d2WovPnmm5Us2NcU+5t6rbPM/8t2rd4nVQPHjEL1D+Hhnb8v5F7ku9aZhx/6l012r+1Jrrow4TnitcVda1r7ZfO12eorSnnrSiPXtc7/B2jD/Zy3yjaGJOZhfSjd22+/XRYvXpz2/kNoC4S6DRPEp4bX4JAhQ+TFF7eFeiHEUsJY8YKOBl63+jtJbp3FpVymyBmFHEHliRV8WHgED0f0s9gjDF4xbkHoq1NPPVWNF2677ba0rEHJb4oukGihHrjH1jqLS7lMktOmviyMPNiPEev4foXI52+kvsMDFMBTFOFzCwHXbdkkUrEu9fuG24t8/p9UON5tHqRBYeszE0a5YGTE4shCaN26tey+++6yxx57yA477JCe9C5kD9NiQF6IqoADRlgYaGEUhXEUYXXh8RlEnV188cXKEKtBnitXrkyXPVeeuAZzlJn7HhdDkH2kyemR+EJdcIet9YXFNRzfJg/rDaPY8BaWe3huTp6cWgUYBZi0HTBggKxfv16FwSDxAPtEBEExIX9JqpM6+OCDoxYjVthaZ3EplylyRiFH0Hli1TcMmggBdcMNN8iDDz7oadIDYdMRTh0H0sNiqiDkN0UXSLRQD9xja53FpVwmyWljXxZkHuzHiHV8/LTI1iqRqk2pPUPh84nwuW7A9Qipi98jnbJt6e43OCip1byUjZOtYZULXpiXXXZZbOofxlF4j8I4CmC4fOWVV5TBFAZLP2VBegcddJAyiGqwaNRpiM1W/kceeUT9LtOAalod+52urc8icQ91wR021xcMoxzfJg+rQ+nCOxSGrQ4dOkRqFAUwzGKFGkJaEDMJyli5evXqWuegk4QQQvwDYbLQxyL0yW9/+1vP6WBfCexLftppp8miRYt8lZEQQgghwbFu3TqZOnVq3gPXkJiz7J3U56YNP3qAIkyuG3C99jDV6Sx9208pCVHGUXi6amC4xLkgwDZhTrA3aF1gQWnm7wghhJCkYLVhFC8+WM2ATxOASzb2NSVmEqaxEqFdiHewyADe1zgyN9ImyaqzuJTLFDmjkCOsPHU+2ND+qaeekrfeeksOO+wwz+n97W9/k86dO8sFF1ygwu36Jb8pukCihXrgHlvrLC7lMklOW/uyoPLwO12TdCGTTZs2ySeffJL3wDUk5pRvi+q0dXPqs6yxt3T073Q6CK0bIJn7UdpCXMrlt5xIY/PmzXkPXIOtP5zAOHr++ef7XmfYJ7Rp06bpv7/88kv573//W0Ne5zFv3jxZtmxZrf1JTdSFIO5dHHSWBA91wR0215fJ41sSHFYbRrG3KELh7bvvvmKK4S2b9yAx12vUj/uVLRwvQ+kWB14y/vSnP6kD30ly6ywu5TJFzijkCCvPzHwOOOAAefXVV+Vf//qX7L333p7SrKqqkrFjx6qV3r/5zW9k1apVvstJkgn1wD221llcymWSnLb2ZUHl4Xe6JukCSShV2/aUr962dUKpx2kt/Ts9Abq5XIJGG8xsIy7l8lPOTANBriPTYAnGjRsn3377re91dsYZZ9T4+/77789Z/nvvvVeOP/54X/PPzMPkdOOisyR4qAvusLW+tmzZwvFtArHeMKo3zjUBGMMgEzGXVq1a+b7HaLaJ9J49exadbtJB/HccpHBsrbO4lMsUOaOQI6w8M/NB1Ihjjz1W3nvvPfnrX/8qu+66q6d0MTB+7bXXpEuXLnLPPfcU7W1iii6QaKEeuMfWOotLuUyS09a+LKg8/E7XJF0gCaSsUeqzZJsOethbvsbvSkpSn/U9ep4SUgfZFmned999vudz4YUX1vj7ySefzHntY489piLjEEIIScHxbfIoqbbYPxjKPHHiRDnvvPM8/37u3Lm+eZwOHTpU7X+GVQikOMaMGSMjRoyocW7NmjVFe2L2799fpk2bVuNcsY/IkCFDlB76LasJrFixQtq2bVvj3PLly6VNmzaRyUQIIbmAQRMrtG+++eaivD/btWsnN910k5x++umxGjijfUb58zFs2LBa7TohhBASB2zo5yoqKlSIS9CgQQP12alTJ6lfv76YxNatW6W8vKaHZePGjcMZF007R+S7j0U2rhSp3CDSYHuRJh7ePzeuEKn8XqRBU5EmO4jsuKdIvweDkJh4AAscnRx99NHywgsviEnPAKLL5KOsrEw9E3hnyDRSIiLNxx9/XFBezZo1k4svvli9f9TFnnvuqcKGax566KFa4XKfffZZufLKKwvKH3uVnn322TXOWTyNTAhJAFj4Pn/+fPW9srJSfWIRfKNG2xZeBQDnz80kPrN5PnkARsns2bND3ceSuKdXr161zhXrNZoZjhc6YINRlBBC4kbDhg3lD3/4gyxatEiuvvpq2W677Tyl8/nnn8vAgQNVuH5M0HBygBBCCCEkJH6+f+qz4bbwpJUbRba6XHyO6/E7Zzq7HOCnlMQSsFABe4Iec8wxcuedd3pKo2PHjrXOYX/PIDjnnHNq/A3njEzGjx9f6zpCCCEkaVhtGIUBatasWWIK8D6lYdRssoVeLjb8cebvqQOEEBItzZs3VyuuFy5cqDxHsJrbCx988IEK1XvEEUfIu+++67uchBBCCCEkgz1PEiktEylrKFIPXrXVIpvWuUtDXV8tUq9hKh2kh3QJcbBy5UrZf//9lSf6iy++KJdffrny/nRLtoXxGzZskCA488wza/z95ptvpr3QdZlQlszrCCGEkKRhvWF0xowZYgK33367+oR3CTGXbPcHnr5+GkYRrpcUB0LW/Otf/1JHXeFriN11FpdymSJnFHKElaeXfHbaaScZO3asCjd1yimneM771VdfVZMm/fr1k88++8x3OYl9UA/cY2udxaVcJslpa18WVB5+p2uSLpCEsn0bkXaHpL43bJ76rFj/owdoXeA6XK9+3yz12e6wVDjdAEGEETwzOGyKNhKXcnmR8+67765lwMy3b2cuskUha9q0aSB1tsMOO6iww07uvffedPn//Oc/q//HdXHRBb/TjYvOkuChLrjD5vrCtocc3yYPqw2j3bp1U16a8OiImlGjRqk9EgYMGBC1KKQOMLHtBCEXvYIBcOYguJjJd/Ljfh4wWOPAd5LcOotLuUyRMwo5wsqzmHx23313mTx5sooyAe9Przz11FNqXx/sLf3111/7LiexB+qBe2yts7iUyyQ5be3LgsrD73RN0gWSYPY5LfXZcPvUHqHw/sSeoeWrc4fVxXn8P67D9fgdfq/SC2eeBs+Mjc9NXMrlVs5i5oKcrFq1KmsEm6DqbOjQoTX+fuyxx9Qn8nvkkUdq/X8cdMHvdOOisyR4qAvusLW+YOjl+DZ5eIsdFxPQ2cNTc8SIESpURFQgTB+MY9hXYN99941MDlIYI0eOlGnTpqX/LsbrOPO3MLpyf9HiqVevnhx++OHp7yS5dRaXcpkiZxRyhJWnH/n07NlTtdvTp0+XK664Qt577z1PKw0nTpwojz76qNrPdPjw4TXa/Sh1oUmTJum8811DktMmxAlb6ywu5TJJTlv7sqDy8Dtdk3SBJJif7ivS7QyR9x770dOzcoNIxbqUN2iDJiJljUVKSzGLK1JVvs2jdJuHC4yi+ndIB+mFgK3PTFzK5VbObHuDdu3aVX3C8aGu9HANWLJkSa3/O/TQQwOrtxNOOEF5pGpvV3z+4x//kFatWsm6devkN7/5jQRFkH2kyemR+EJdcIet9VVaWsrxbQKx2jDavn175TWKCc4rr7xSbr311tBleOCBB2TChAlqQAQPEhKPcLo44G0M9KcXoHtOqAP+gE7ql7/8ZdRixApb6ywu5TJFzijkyJnnD6tFPntBZNk7IuVrRDaXi9RvLNK4pcjP9xfpfGzqe7H5uAT9dd++fdWe01OmTJGrrrrK017T5eXlKloExgAYg1xwwQXSqFGjSHUBRk8T9JCY0ybECVvrLC7lMklOo/qyGOThd7om6QJJOAdcIPLDqtR4EkbOskapvUO3VIpUfp86MsGepAi/qz1F9zgmlU4IFGJIiyNxKZcXObFo0slBBx0kzz77rOv0Pvroo1rn8G5Q6O+97Ed6xhlnqL1RNePHj5eWLVuq89pgGxdd8DvduOgsCR7qgjtsri8YRjm+TR5Wh9LV3n9whx49erTceeedoeZ9xx13KEMYGg7sd4qN2klwrF692le9cQLvHy84fwdjKybaCSHESGCofO9xkX9cJDJ5oMhj/VKf+BvnYbz0g+Wfirxys8gTp4i8O1Hkmw9E1i5NhTXDJ/7G+cf7p67D9RENjE899VSZN2+e3HfffdK2bVvPfRP6/06dOsnDDz+sPEoJIYQQQkiRwBv0iGtTHp8Axs5mPxNp+tOURygMpfUapj7xN87j/7VRFL/D75EOIXk8L3feeWc1r/jf//7X9d6cK1eulC+//LKW1+nBBx8sQXLhhRfW+BtR9J577rla5wkhhJCkYrXHqA5devLJJ6t9vxDODh58U6dOVYOboFi/fr30799fhePD4AmGUXiMEP/ItkeD33rj9BqFYX3w4MGu0hgzZkyNv6F3xB/wXG3atEl9b9iwYWArHm3C1jqLS7mKklN7Vi75j8iKz0Q2Lhep3ipSUirSpI1Im84i7Q8ryMMyqxwwPH40TWTxqyJbNtf+kTZWznlIpMMvRfbqJ9K2s/uyV1dLw4+elJK5j/z4n1UVIhVrU/nqMtWrL9JoW+jZBdNTR4+zUkeeeiu4jl16qtavX1/OPfdctT/02LFj1aKn77/P4oFQB8uWLZOzzz5b/f7666+X4447TnmQmqqzJFji0naZhK11FpdymSRnFLKEkWdQefidrkm6QIgyah50oUi7Q0U+mCzy+X9Ss1xlDXNcXybS7rDUnqIhhc91PjtObHl24lIur3JefPHFcvPNN8vpp58uTzzxhOt8r7322qwL6J3y5JMFhlWAfe/c0KVLF2WA/eSTT9Lnfv7zn0vnzp3T85Rx0QW/042LzpLgoS64w+b6QtkqKirUd45vk4P1hlEdzhZGShgsX375ZbXXF/Ydxf5hzZo18y2fzz//XBnQtJegHmzAoHbEEUf4lg/JHt4W5+CZ6xcwZPbo0UPtD4swijB0wrheCPgNdEwDvfBTtqSzefNmVafau7dBgwZRi2Q8ttZZXMrlSU5tsIQRD96UmxBCqeZAVMpXi6ycL7L43yJvj02FA8tjuKwhxxVXSIMPnxCZ83AghsqsebZ9VRpgUf6m9SmjJPKr9QNJ7Q+F1f0wUDZslpIRodIOvSxnnnXWsUcDcGa62Df8lltuUaGp8H9u+fjjj9XiKUxM/PWvf2W4loQSl7bLJGyts7iUyyQ5o5AljDyDysPvdE3SBULSwMiJY+NKkY+fFln6dmo8qRfANWousssBInue9OPeohGgx45YeGcTfpdLGwOdYD4vCjlvuukmefrpp+XJJ59U80OXXXZZwb9F5BlnOFtw9dVXq5C8hcqiDavw+ES9uPFYPeecc2pErjvrrLNUvm7K79YpISgd9ztdW59F4h7qgjtsrS9E9tKRRjm+TQ6JiBnSvHlzmTlzZtpQqUPrIr5+r169lPfG+++/7ylt/A6G16OOOkptzO5c+YW84HmYORAi3oHxE+GJYejOZNCgQar+vewFlw0YMqE3Ghg6p02bVpBR9Mgjj0z/DV0r1KBKCCHwrJTZD4k8M0Tkg7+JrF60zVhZKVJVKbK54scDf+M8Jn5w3QdPijw9OPX7jNV8tXjznh+NojBUrv0idahJpB9SRkt84m/9f7gO4Hev31l3Htn4/juRDd9sM4qWpAyf2+8k0mzn1Cf+xnn8P67D9WDeP2sacb3UJ4y6MIoi7e+/FVm3LFUufOJvnMf/4zpcn6UeEVL37rvvlk8//VR+97vfiVfgQfqrX/1KheiCsZQQQgghhBQJjJ77DRbp96DIGU+JnP186hN/43yERlFSnJflm2++qQyNUfDaa68p70sYGY855pishttMcA3mA52cdtppytBaCPj9+eefX2M+sVu3buk9Tgsh04gL71e3PPjgg7XOXXPNNa7TIYQQQkyjpDrTD9pyoxo2T9fGUY3TPRrepDCI4YDHILw6tKcfDF7YK0x7EGYa4JwGUXzv06ePvPTSS6GVzyZghHTuz4k69wLupwZGToTH9aI30AN9v/MZOt1cawMrVqyote/e8uXLpU2bNoHmi+dr69at6X0AGeIguXUWl3IVLCf6ERgcYQSEQRBeklu3pLw3M71Fa1CS8u4srSeyXWuRJm1Fuv6mlodlWo45j0jp3EdS/4V8YHjV6TRsKlK/SSot5L15Y01vVXiPbr9j6ju8Rnuenb/s382Trc8MS5X9+2+lZBPyKhFp3CrlEYp8MkG+8CiFRyzydeb52wlZPWKz1rGzPqUOT1WN01MV6XY+XrYefImqx2z3DguksKIQq7i9gnTPPPNMueGGG5QnKbGfuLRdJmFrncWlXCbJGYUsYeQZVB5+p2uSLmSC95C6FiUj8oPXfcPDAGHctPFHeytgn3LTPDOgA+Xl5TXONW7cWOkESVYIwmLLBQ8dHeENfPjhh7JhA949soP9PnfZZZd09LdHH320IC/KYuWEoXLgwIFqzI+tuc444wy1XydC1maCvUhPPfXUGnuLwiFDGypzyQKjJyKVLV26tNa+pJnAUIv5LuSVD4QAhrfr0UcfLc8//3ytPDOvXbNmjboXmINzhuHNBHWw9957p+/DgAED1PtMtnIVC0PpkqCgLiSzvuD1On/+fPW9srJSfSLMuB53BTG+jWr+nOQnEaF0NTCKIS4/DFdLlixJK7nzwcYgYM6cOelQrbk8BLPZk53pwSD2xz/+MaCSJAMMxLRh02ng9JJOsXqzaNGitLEWn6NGjVL7zSGUCsD/YzCv9QYrAxk+NzjwrNWrl8WYQhJXZ3EpV8FywiMSRrwfVqbC51bDKIr/qK5pANVGv7TBFN+3iGzZmgohBmMj0oGR1GG4VHKsWiDy3iMqqR+NonkMlY2apQyt2lCpjagwVELeXQ7Mu+doycdPSb2S6pRRUhtFm8IzNM9e35ABK/qxPxS8RpEnwqDBWPnRUyJHXFVYHev6FBcGYO2pitBr2+8oJZ8+J/UgSw4D8L777isvvPCC/Pvf/1b9w6xZs8TL5OJDDz2k9i3CBAsMra1atXKdDokPcWm7TMLWOotLuUySMwpZwsgzqDz8TtckXSAkTsR1AjnocmEuRRsbNc7vmaxbt66G8RSTzYUYRouVE3lgzP/www/L7bffrhZh4NCG2l133VXNJ3700Uc1jJowSN511101DKi5ZMF8JTxjUf58dQDyGS2dXHDBBfLcc88pGeqqg9dff13JrvOuSwbcB4B7oZ1QgsDvdG19Fol7qAvusLm+OL5NJonyGHWCcKyTJk3K+mAXUiXZGgP8DgY8eCYixAWxExjLJ0+enPYa1gZcGEF79+6tVsp58UyNI1zxQoiPYA9MhG+FYW7VwgyjaIlIaVnqcHY/6K9g1Nta9eM5/H9JmUirjiL1G9X2sHzl5lSoWBgqYQAsxFCpgeFQ/aZ622+aiezeN6uhUvHDapEnTkmFp0XIWpStcWt3Ycxg6C1flfLkbLFras/T301NGXELqU8p0ADs0VM1cxzw1FNPyVVXXZVegeh1CwDsg37RRRfJdttt5zkdQgghJEnQYzQ86DFKkg48NR9//HEVZhdbZGhDrTaUHnHEEcoDM5tHKSGEELM8RtFWN2rUKLA8OX9uJokdtU6YMEF5hp588slqIjMztG5dh0b/tn379ipNhNqlUdRu4A2KMMvQH6wIxP3XnsbwEk2KUTTqTbFffvlldeA7SW6dxaVcBcn50bYIBRu+rWkUhYdovQYi9TKMogD9Ec7DWKj/TzmQVqX2zFTpPvWjHBtWyMvvfSEvr+8oW35YlzoJQ2EhRlGA63A9gAERLP73j98z+ewF2VJVJS+vaycvb+omW6rr1W3QzKRxix/3HNV7gH72Qt11rOsTBmBtFIUxF0bZbEZRp6cqrsP1FWtlS8UGVV8v/2NKnTqm9xbHSnGMCXbaCem4Byvh4TW6++67q0VcVVUOwzexgri0XSZha53FpVwmyRmFLGHkGVQefqdrki4QEicwb4AxHQ6b/BPiUi6/5Tz44INl7Nix8vHHH6vQs3puEEZSGE2xl2guo2gUdRZGnkHl4Xe6cdFZEjzUBXfYXF9Y8MXxbfJIrGEUwIAJAxdCdyDsLYybejBTyAGPDm0kW7hwoQwaNCjqIhGSCNBJvfXWW+pgh5XsOotLueqUE56Vi19NeSyq/Twdhs+SetjkIH8GMOjBS1R5i26zkCIdeJI6DJdbPn1R3vp+Z3nrh11lS1XlNg/KYAyVimXvyJbqEnmrvIO8Vb2vbIGHaS6jZM6ylf1ouK3YZsxd+nb+Ot6wMlWfQBttPRqAt5SvV/X11lfVsuX7VQX9HF4dgwcPlgULFsgtt9yS3nvHLV9//bVKZ6+99pKnn37aupePJBOXtsskbK2zuJTLJDmjkCWMPIPKw+90TdIFQuI48ar36LWJuJTLJDmjkCWMPIPKw+90TdIFEi3UBXfYWl8oE8e3ySNRe4zmAgZRePrhgJcG9orEHmEIkQoPUL1HJUKlImRqx44dVfx8eoYSEg2I+37ggQemv5Pk1llcylWnnDAswsD4wwoMyRwhdEtThsFCgMERAzhtPCvZKvLDqlQoWKS/7+lS76tZcuB236v9NOthMAsDoFdDpfLEXCeyfaOUoXLf02tfW75G7S96YNlHIluqpB72CfUC9gJFfltSYU5+3Cs0Rx0vmp6qT2289WoALl8t9ap+kAMbL1YGapVu998VnESTJk3kyiuvVOH7sTf1vffemw7V4obPPvtMRbjYf//91Vjl8MMPd50GMYu4tF0mYWudxaVcJskZhSxh5BlUHn6na5IuEBI3bA01HJdymSRnFLKEkWdQefidrkm6QKKFuuAOW+sL5eL4Nnkkdo9RQkjxMEY6IT7xj4tEvvlAZOVnKUPetm1FlbcowuQWCoyBCMOrflyd2pdzhz1EdtpH5Df3iEweKLJ2qci6ZSKbfxDZfieRRh68GSvWi3z/jUj97USa/1yk5a4ip/y19nWP9RPZuOLH/UWb7SzSoIn7/Cq/F1n/1Y/7jDZpI3LGtlC5+eoT4YRhvIWnqgqP6xLspwqDrN5rVNejR5YuXSrXXXedPPLII0V5fx7Tt7eMGnOH7LPPPp7TIIQQQmyDe4yGB/cYJYQQQkgc4R6jRMNRKyGEEBI1OtwrQumKIxwu9hd1Q+b1Oj3tYbl52wRW9bbQJ269RTV60kunU/lD9uu0h6iWS8vjFh2qRafTYLvC6hOGYiWHB2Os83d5PFXdsMsuu8hDDz0kH3zwgRx//PGe03nh5RkqasXA/r+Rzz//vODfYS8QDL7zHdzPlBBCCCGEEEIIIYTYDEPpEkJiBzytdEx7rEou0UYkEr86w96aCPO67J2UMQuGOxjTEPb05/uLdD42bwhUY8vlVs5Mg6X2GE39U0TGNQ2X1WWNZWs10qwnpdWIthuwobJxS6les1S2ljYQqa6Q0sqNUuLFQ3XzxtRnvZTnhPLgzFfHleWpmvPBAAzHzq1bq0WqS6R00w/F3hElZ9euXeXvf/+7vPnmm3LFFVeoTy/pPDbtnzLl2Rdk2LDz5aqrr65ztSG2B4i7J40txKXtMglb6ywu5TJJzihkCSPPoPLwO12TdIGQOJEZLcSWZycu5fJbTqRX14LCsrKyrPlEUWdh5BlUHkHcOz/TI/GFuuAOm+sLZdN7i3J8mxxoGCWExDLsAfbrAyNHjkyHmSIxqrOl74i88SeRr2anvPFgwIKRraQsZWRr1DwVCnXOQyIdfimyVz+Rtp3NL1cO6pTT6VmJULjpMViR0e4zDJebG7aUUd/tlpKj3iRpAINjQIZKxc/3l81ffSijNp6WynPTA9IAxlg3hsqtVSKbNmzLp3nqc5cD8tdxp+2kgU+eqpulTEZtOkvkO5GReyxOpeujLrzx+uvyj9vOkSvvmyqffJPD8zYPlZur5O577pEHH3pI/vjHP8oll1wi22+/fZFSkqCJS9tlErbWWVzKZZKcUcgSRp5B5eF3uibpAiFxA88PMC00clLK5aecmESva2sM/H+uyfUo6iyMPIPKw+9046KzJHioC+6wtb5gFL355pvVd45vkwND6YYEPDCOOuooeeWVV6IWhRBComP5PJHH+4s8eqLIkldTe0dWbUp5TOI7QpVu+FpkxWepfTArNogsmC7yzBCR2Q/h7VKsRHvFaoOhLqf2eCyUzOt1etpwuXOvmv8Pg6Nbo2GBhkrFHsdk7JFa/WOY20IpX/vjfqk4kB7SzYcur85bG3Ldkvm7htvK6yMlcx+RE1ovkQ+u7iF/OeUnsnMzb0OzDRs2yLXXXiu77babjB07Nv3CQgghhBBCCCGEEEII+ZGS6rqWOBFfaNWqlaxbt04mTJgg5513XtTiEBLrzaPRbG3atEl9b9iwIUMcxKHO0NXMeVjktdE/7tO4pSplZKvlFVni8JgsTRkNm/0ste9ml1+LHHpZeg/OyMtVIHXK+d7jIu9OFPn+W5Hvv9tWJYh1WypSr2FhEXVRx8r7dlt94jfb/0Rk+x1F9h8isu/pUr1xlWx6/HRV9w3XLZKSLRUijVuLNNmh8MJsXClSviplpGyxa8r4+LupOUMeV8+8STbNf1UZUxt+vzRV9qY7iTRsWndeMMBu+CZVF+o3zUR27ytyxFX56/iTaVIya5JIVYXI2i9SldGqo3tP1dWLU+k276jK2/CAc6Sk2++kGGrIuW6JlPx9aOo/cN8r1kr5ZpH75lTLqFdWy5ofvO/3CQPpzddcIf33bCClX81SBunlG7fKuGWd8v6OoXTDIS5tl0nYWmdxKZdJckYhSxh5BpWH3+mapAuZ4D0k7iHjKyoqZN68eeq79lbo1KmTcZ4ZCKdcXr5tK4htNG7cWIWfI8kKQRiXcvktJ56BQkLpZnsmGEo32nTjorMkeKgLyawvLCKfP3+++l5ZWak+O3funC5PEOPbqObPSX44ag2ZtWu3GQQIIZ5BB9WoUSN1xLUjTlSdYfD0+p2pA0ZReChurhDZCo8258AKcm2TrVr/19aUEW714lQ68/6ZMrCaUC4X1Cmn9qzcrs22kMLqV6lKUMbjAlCenzCmasNyqch2rWt4WJY0aS2NdjtUGpVWScl22wyZ5at/9ACtC1yH64E2hHb4Vd59YEv27q/ya9S4sZQ0hidndcrYCQNrrrLhPP5fG0XhAQqjKNjr5LrrGHvTotzay7QIT9WS+o2kUYMyaVS/JJVukdSQ8+OnUic3rd+2YKBEGrf6qfzx+M6y6KZeMuKon0uj+t6GagsXLpRTzzxP9jvpfJnxyqsia5eK/OCyDkhgxKXtMglb6ywu5TJJzihkCSPPoPLwO12TdIGQOIHnxXnYQlzKZZKcUcgSRp5B5eF3uibpAokW6oI7bK4vjm+TCQ2jIQBPUW0QXbVqVdTiEEJIuMCQ+eHUlKFry+bUkTaIloqUNkjtVQlDFjz60oY9UJK6dPP3Ims+/zG95Z+KVWzXKrWXKsrfwOFJCWMw9hzdurVuo2h11TaD8ra6hUdmaVltwyX2a1X/32xbyNlgDJVpsDdsj7NS3+G9qvPUBm+kWbF+Wyjl9am/cR7/r/PC7wDSybLXbM76BI3DMQC75ofVIotf3SbbNoNl41ZpT9qWTerLbb9tLwtv7CXnHfwTKfU4Np+z9Hvpc/eH0vfOd2Xeom3PECGEEEIIIYQQQgghCYWG0RCYMmVK+js9RgnxZ1PsV199VR34TgyuMxgwYciE4QceotqrEQZPGETrNxSpVy9lEMQB4yiMpCVl24yj28LJ4o/K9SI/rEyl+9FTsdKFguTUBsumPxEpgYFYG4a3pkLkIvRwZvR7FT63KmVsrnY63palwuhmGC6VHJ98K682PVG2VJeEYqhUeW5oJ682OurHPBEWV3tywlvy+29E1n+V+sTfek9RXKfzQhhlbWAtpI59MgBvadBcXt3QXl4t38MXHUvL+exjsgXhtxDuFwduXBbD689aNpRJAzvJR9f2lN/u29pzvtMXVEj/x7c9P/ngDguhEJe2yyRsrbO4lMskOaOQJYw8g8rD73RN0gVC4haCEM8MDpt2tIpLuUySMwpZwsgzqDz8TtckXSDRQl1wh831hfDoHN8mDxpGA2D9+vXq+Pzzz2XkyJEydOjQtBv26tXbPFAIIZ5BJ/Xaa6+pgx2W4XX20bSUMRRhSeH5qK138GSEQTQbaC/rlYmU6r2U4C25zV0ORiuw+N/K2BoXXShITu1ZqQyCGcZRFVJ3s0jVJpEqGEnxvTL1dzoksd5btEyk6Y4i9RvVMlym5ViwXrbscVzqZECGyhp5/uc/8trnm2XLvgN/NFZif1IcMFrW3y6VPj7xt/4/7ZWKfBx7yxZUxz55qsKY+9rG9vLa7I99m1BWcs5fkzIU6z13lYdv7j1Qu+y0nTw9dE95a/i+ctjuzSUwPvl7cGmTNHFpu0zC1jqLS7lMkjMKWcLIM6g8/E7XJF0gJG7oCWXbiEu5TJIzClnCyDOoPPxO1yRdINFCXXCHrfUFwyjHt8mjTAwBG5LbGsPZuYpi8eLFkcpCiA2gvejZs2f6OzG0znSo0Ip1KU+8tEcjwucW0P3ASKRCyWrvvhKRLZtEKjeKNGgi8tkLUrrXKbHQhYLrH4a8H1al9lKFQRnfVZjcrT8aP2FgrrU4r2RbvdZL7SvauHVWw2UNOQ7pK9J0h5RHLwyQOOC5iPsFD1XkiTThwduo+TbDqUNOHAX02zXy7HmUSIeDUx6/MG6D7R3pOoH3MMLXwuO1gPC5WevYWZ8wjtZvnPJeRjlh8FVG3wxQTnhubjPKlnY5Vnru0rVmukWQlnPhDCktgccvDNsiUr9JQb8/oEMzefXSX8gLH62RK/6+RD78aqP4ysfPiux5eGEhi4ln2I+5x9Y6i0u5TJIzClnCyDOoPPxO1yRdICRu2PrMxKVcfsqJ+cu60ss3xxlFnYWRZ5B9pMnpkfhCXXCHrfWF9prj2+RRUm2I7/Nuu+1mrdFQD4ZQ1R07dpQFCxZELRIhvrBixQpp27ZtjXPLly+XNm3aRCYTMYj3Hhd5d6LImiUpA1S101tUe4PWgQoVW7nNKIjBydaUwaple5Gd9hH5zT1iHSgzjJU4YNRD+GAYKZWBFIZRx36jMFxqgyj6Gm0U7Xl2wYZLFe5YGyq1kc4HQ2WdwED52QsiS99OeU1W/iDSYJvH6C4HiOxxjD97ejrrUxOAAdg1j/UT2bhCZO0XKXma7Zwy+Ltgy9ZqeeLNpXLNc8vki7V17EMrotrmCy64IO81w1q/I227HixyxFWuZCGEEEKiBu8h48aNy3vNsGHDar2/mERFRYXMmzdPfW/QoIH67NSpk9SvX+DYOUTPivLy8hrnGjduzMlEQgghhBjN5s2bZf78+ep7ZSXmG0W6dOkijRrlWLTvA5w/NxNjPEZbtGhhrceoE4bSJYQkhmXvpD7V/onaq3GbMa9Q0C/gehWGdxubt6WnQ5DaBsoMw+YuB6YMlp89nzKgbdrwY7jcmj9IhWFt0kZkj2PdGy5xLYxgB54fjqFSg7T2PT11hFmfPnuqegbeq+J4HtT+u+6oV1oiA3s0k1PaNZVxsyvl5tcqZFV5cevdnvtwpZzV4BUphT74eb8JIYQQQgghhBBCCDEAYwyjHTp0kLlz59bwrgyKoPPIl/7atZZO5BNCSDaPQLBVe7Jt2ytT7xdaKGnD6LY2VXtMwnBnM5kGyyX/EVnxmcj336W8INHXbN9WZIc9RDocXrzhMixDZVREZQDOBfJYuzRliIWj7uaNIo227anqhvI10rBM5A8HNpaz960vd7xZKXe9XSk/VNbtQZqNK575XO55/gcZVTlKjr5gdCIWrRFCCCGEEEIIIYSQ5GCMYbRVq1bp7zAo9u7dW0aMGKHOw5vUL4YMGSIzZsxQaQ4ePFh69erlmyfookWLVNrawAv5dXxqQoh/INTB6NGj1Xc8ZzrMFDGszjbXDK/1oz3Up0UpDbaLjS4UJaePBsso6iusPAvOx2V9+i1/Or3q1jKiTak0gEEWYX3hEdykbSoscqFg797NeoFAtTRvVCI3Hb2DXHDcznLjv76QSW98K1Vb3T9vH3y5UY698Hb55VOz5LbbbpP999/fdRokP3Fpu0zC1jqLS7lMktPWviyoPALrxwzQBULiBOa5EL4PIDSyLYvP4lIuk+SMQpYw8gwqD7/TNUkXSLRQF9xhc31VVVXJTTfdpL5zfJscjDGMYu9NTf/+/WXy5Mm+53HUUUcpwyUUfNSoURIUMIyiDGPGjJFp06bJb3/728DyIiSpYF8bYnidOUOFOm0zyuPThfEn/Tt4SWKr0W2/hUEpRrpgipxRyBFWnkHl43e66fTgLVraKLWvKUJOw8u6yQ6FJ1S+dtvevY7w1I1ayk+2ayBjT99dLjlyZ7n6H5/LlDkrPMn56quvygEHHCAnnXSS3HrrrbLHHnt4SoeY3SbECVvrLC7lMklOW/uy2PVjhBBCCCGEWADHt8mjpDrImLUumDRpkvLmxGqD6dOnyxFHHOG7UXTWrFkydepUOfLIIyUMUJ4HHniAxlFiLVFtHo1ma8MG7Lco0rRpU6tWKVlVZ/+4SOSbD0TWLBHZtH6b8QYDjRKReg0Lj6i7ZfOP+y/iNw2bibRsL7L/EKne57RY6IIpOhuFHGHlGVQ+fqdbI71Zd0vJwhmp52PDNykFb7pTas/YuoCHKX4Dg2ppWeoZgWx4Nho0qXHp7C82yBXPLJH/raovF1xwQd5k77//ftW2Z1KvXj0599xz5brrrpOf/vSnbotNDG0T4oStdRaXcpkkp619WSz7McN0Fu8h48aNy3vNsGHDar2/mERFRYXMmzdPfdfeCp06dVKeGaZNHpaX14wO07hxYyktdSzWIjXInHoz6dlJQrlMkjMKWcLIM6g8/E7XJF0g0UJdSGZ9wet1/vz56UgooHPnzmlv2CDGt1HNn5MY7TGa7bsfDB06VHmKItRtu3btJCwmTJigPvv166e8SPfZZ5/Q8ibEZtBBNWvmYS++BBNJnf18/5RhFOFBYcSB22h1CZbkpEKA1iugC8LAS+8pqigVadg85Wm3xzGx0QVT5IxCjrDyDCofv9Otkd7e/eX/2TsPMCmqpQ1/mwNpCYKJHEQxkcQcSIZrQgmKVwUUAXMCRMWAAVAxcZWkF71GBMV0RSWov+GiJAOKZAEFSbssYXP4n+qmh9ll08x2OH36e5+nmd5h5pyqM9V9urtOVUEco+Lsl9TTUvPUcHbmAilppsOzNHLsSKRodrp5TMUlmg5RqcMr0dTWIoIwOjWthXm3H48PVhbgxyjlLiwsxNSpU/Haa6/h9ttvx4gRI2wtdRA0VDkn+Aldx8wveqkkp65zmS/nMUJIlfHrA2Rd9FJJTi9kcaNPp/qwu12VbIF4C20hMnQeL17fBpNYFWuMhu9Xl/nz5xsP8iRS1E2naLhzVKJfJbUuIYQEiqPONx2YEr0mzhtx4lgXUuLEqUqaCnHyGKvSrDS68UBybaDFOWatSEL8TMO2QMcB5n7NRvvTQxcD2TuB9HWmkzRnN5C313yVv+V9+X/5nHw+YX90qLxK2ur8feV2d0qLOtUWWaJDpByBLGJ76qmnjMgWQgghhBBCCCGEEEL8glIRo+3bt7d99YHUExWnpNTH8gpxyop+EyZMwF133eWZHITogkQuLVy40NiX+neS4tFTstKBlXOATd+bNQIl8kvqa4rjTqIm217guRPPkzFLrQe0OBtYPRdIbQDs+Wt/Kt39KXWL8oHiODPKraxzf2GBGR1nFCiVSNP4A1F0x17unV5RoIqcXsjhVp9O9WN3uwe1J47RrJ3Aio9M56icO+Q8IilyJcWukYa6FFKTVM4pEmkq55/4RHM/c6MZnS1R2lYtXofIyMjA8OHD8fzzz2PMmDG4+uqrlT3+VESVc4Kf0HXM/KKXSnLqOpf5dh5T1GYJUTEFoVW/TFIO6xJ54xe9VJLTC1nc6NOpPuxuVyVbIN5CW4gMncdL9Pr222+NfV7fBgdlHKN16tTBkiVLbG1z2bJlxiY1Pr1EUs3dc889ePzxx+kYJcQG5IGMpMcWOnfu7N2Ete13YPksYN2XZh3M0uzaaKaSXTLddBAe29uMEAvSmInO4hit0cB08OTtOVBn1EiRWyzCmZFuslnvS0RpeApdcYZK6t3kumaE3f5xVMYWKkEVOb2Qw60+nerH7nbLbO+Mu4DU+sCSV0wHp2ziGM3JBArzzGNBjg+JvE6uYzpGLboMAX6dbS4ikPfle+JYlWPOBTZt2oSBAwca0aNynXPRRRdpdYOk+znBT+g6Zn7RSyU5dZ3LfD2PEUKqfPwIutVi9YteKsnphSxu9OlUH3a3q5ItEG+hLUSGruMljlFe3wYPZRyjTjBjxgx06NDBkxS6pZFaXOIcnT17Nnr16uW1OIT4GpmArZq9nkzGktpVHBiyWRhOjF2mgzTkxEjYnxoTpnNQNnHqyeay48CzMbNShcpY1WsB7FyzP9Xn/ihQo3a7OELLS6sbY46jRL+J4+j4PgdSj6pgC1VEFTm9kMOtPp3qx+52y2xPzgedBgJNTgGWvwus+8J8v2aYAzQcOSYknbRETssxJuceOb9IFKmk25X6o/FJQFKtiOWLj4vu3PTrr7/ikksuwWmnnYbx48cbr0T9c4Kf0HXM/KKXSnLqOpf5eh4jhFQJXY8Zv+ilkpxeyOJGn07OkSq3R/wLbSEydB0vWdzN69vgEVMscdCa0qlTJ8PLP2nSJKhA3759jQNNHLaE6MD27dvRsGHDEu9t27YNhxxyCLRFTplfTzDTXgoSBWmlvSyP8LSXwtEXmRFiQYmqKj1mmX+aY2ZEju73kZbcMR2iVpSoIA7mM0eYzqOgjBsJLnJ8SHrujQtNp2deFpCYah4HTU426/eGp+eW6PXZQ8z9vVvN78gxlFLvQPpp+Vh+DUza2aXCri+K/QpP/1QTb773sZEqJ1ouvvhiI4K0Xbt2UbdBCCGERILch1R27z9s2LCD7l9UQmp3r1ixwthPTEw0Xtu0aYOEhASoFlkhdcfDSUlJ4cNEQgghhChNfn4+Vq1aZezn5eUZr0cffTSSk8tZmG4DgXx+7gO0vmpdt24dOnbsCFUQJ+3SpUu9FoMQUh0k8tFy8IkDQqKzDKdojOn4rHkYUPtI89VwhMaY/y+fk88L8v3waFPdEUemOIKtSM86RwINWptOG6kbKg9QJMJWokLFgSORbgnJ+52iMUCzM4B/zgY6D6JTlAQDcXqe2B+4+Hmg73+Af84yX+Vveb90zWIrMluQOqVGpHoxkL0TSF9nnn9ydgP5WZV2feTp/fD6rA+N65XzzjsvahU+/PBDHH/88Rg0aJCRbpcQQgghhBBCCCGEEBXQ2jG6a9cu1KtXD6rQokULpKeney0GISRaJCrLcmiWiMqqD9RrCdQ6DEiuDSTWMF/lb3lf/l8+J5+3nKPSjrQXFKxUob2mAK17mik+6zQ2HTq1jzCj2hJrAgkpZoSt7Euq0Gs+AK6aCTQ62msNCFEbcYxKNLrlHJXzj1GLtNiMbN+7Bdi3//xTEcdcaryceOKJmDNnDhYsWICTTjop6miS6dOno3Xr1hg+fDivgQghhBBCiBZIZpWCgoIKN40T9BFCCCG+R+sao2lpaUbUqGrOWkJI9ZBUB08//bSxf+edd4bSTDnO8lnmqzgZLKeoOB8qquMnUZA1GphRkEbU1i7T+SfRpFJLsOt9eo9ZacQRKjqfcmNkqUJV18sncnohh1t9OtWP3e06Nh5WZLbU4pWFF3KOkc2of5wJFOYBhUlAYRXaCeOcc87BwoUL8d577+Hee+8NpZyJhNzcXDz11FOYNm2aUW/91ltvRWpqKoKMKucEP6HrmPlFL5Xk1HUuC/w8RojmiJNM0vcJkhpZyizpgF/0sltOaU8WAVaEpJYuqx8vxsyNPp3qw4nfzg82S5yHthAZOo+XLGYZN26csc/r2+CgtWNUIjQXLVoEVRAnrThrCSHVRx60u0pWOrDuS3PfqI8p6S7rVewUDUc+V5BrpraU74vDYt0XpoOwCg5AX45ZVVKFyqaTXj6Q0ws53OrTqX7sbtex8bAis5ucYi68kHOMUHN/rYz8GsDOaJqNweWXX27UDZUI0IceeghbtmyJuJ3MzEyMGjUKEydONNoYOHAg4uO1vhT1xTnBT+g6Zn7RSyU5dZ3LAj+PEUIIIYQQ4gG8vg0eMcUa53bo27cv3n33XRQWVhYe4Q49e/ZERkaGUs5aQvxYPFpOW1ZKRkmX7coqpWVvAD9MNaOvdm0wo0UlTa5EhFaVogKz3p+ktkxraqa57DLEFuegkmPmAn7RSxU5vZDDrT6d6sfudl39DWQRRlhk9ra9hZi0qU2FXxk2bNhB5/XSZGVl4bnnnsP48eMNZ2e0HHXUUXj88cfRq1cvZY9d3c8JfkLXMfOLXirJqetcxnms+sh9yKRJk6o9z3lJTk4OVqxYYexb0Qpt2rQxIjNUQiLlsrOzS7yXkpJiRMiRsin96E2lYycIetktpxwDEmFUEbIAsKxjwosxc6NPp/qwu12/2CxxHtpCMMdLol6tTFiSCUVo27at8ZzDqetbr56fk4rR+qq1e/fuxkH78ssvey0K1q9fj3nz5qFTp05ei0KI75EJqn79+sbm2kS86Xvz1Uihuz8CNBKnqBAbfyDCVFJbCuKw0HXMXMAveqkipxdyuNWnU/3Y3a6rv4EVmX3x80Df/wAXPmNLs5IGVyI/165di7vuuivqNDMrV640IlFPOeUUfPnl/oj8gKDKOcFP6DpmftFLJTl1ncs4jxGiN3K8hG+64Be9VJLTC1nc6NOpPuxuVyVbIN5CW4gMnceL17fBRGvHaL9+/YzXkSNHYvfu3Z7KIlEVcmD16dPHUzkIIVFipc8tNPPpI6FGdO1Y35N6f+GOVkII8Rly0yC1Q1evXo0BAwZEfQPx/fffG7VML7jgAvz000+2y0kIIYQQQgghhBBCSCAco3Xq1EG3bt2M9LU33HCDZ3K89957mDp1qlFftGvXrp7JQYguSHrsH374wdhcS5Wdvz9VVHGR+RpptKiFlUrHaifPTNWg5Zi5gF/0UkVOL+Rwq0+n+rG7XVVswU6aNGli1B79+eefcdFFF0Xdzpw5c9C+fXtcffXV+OOPP6AzOtqB0+g6Zn7RSyU5dZ3LOI8RojeSzUyOGdl0qmjlF71UktMLWdzo06k+7G5XJVsg3kJbiAydx0vSo/P6NnjEQ3MkUlPS186cOdPIEf3iiy+62v+yZcvQu3dvI4pC0s4RQqqPTFLyAF048cQTERcXpZMyEhJSzNeY/Y7NoignyqKiku0kpkLbMXMBv+ilipxeyOFWn071Y3e7qtiCExx77LH48MMP8c033xjZOr777ruI25AbrNdffx3vvPOOUQfuvvvu07Luhs524BS6jplf9FJJTl3nMs5jhOiP9bBVt1qsftFLJTm9kMWNPp3qw+52VbIF4i20hcjQdbzEMcrr2+ChvWO0Q4cOGDx4MKZNm4YpU6Zg3bp1+PTTT13pW/ocOnSosd+iRQvcfffdrvRLiO7IBHzMMceE9l1BavXt2gjEJQCSTTd/H5BcO/J25HtC3P6afMlp0HbMXMAveqkipxdyuNWnU/3Y3a6XtpCUlBTqu6LPVJfTTz/dcI5+9NFHxqKw3377LeI28vLy8Nxzz+Hf//43hg8fjjvuuAM1a9Ys+8NZ6cDKOWYtaEl7LhH+sphFztuNuwBtLzD3FUKVc4Kf0HXM/KKXSnLqOpdxHvPPPEdItKh2zARNLzvllOCHytqrqMyEF2PmRp9OzpEqt0f8C20hMnQdLzlfq3p9S5wjpli32OcyyMzMRLNmzUJ1RiWl7RNPPIHrrrvOkf4k/duQIUMwb948I/JBDq65c+cyjS7Rju3bt6Nhw4Yl3tu2bZuW0T1Y9gbww1SgIAfYtUFOn0C9lpGl1C0qANLXSUwUkNYUiE8GugwBTuzvpOSEEOLpitL//Oc/eOCBB/Dnn39G3U6jRo2MNmSxW0JCgvnmtt+B5bOAdV8eqP9cFrKgpcXZwLG9gYZto5aBEEIIcZqcnBysWLHC2E9MNBdStmnT5sDcp1BkRXb2/lIj+0lJSeHDREIIIYQoTX5+PlatWhVakC0cffTRSE5OdqzPQD0/9xGBuGqVWqPz588P5b+2ao7Wr18fEyZMsKWOlThdpZboueeei5YtW5Zwio4bN45OUUL8zlHnmw/XxZkpmzg3JTIpErJ3md+z2pD2pF1CCNEUSUEzcOBA48bjySefRN260UVubt26FTfddJNxwzLj7bdR9MPLwOwhwOq5plNUFq3s/RvI3GQuXpFX+Vvel/+Xz8nnF0+XfL2260kIIYQQQgghhBBC/EEgIkYtxFnZs2dPw1lpqW2ltpAo0u7du6Nz585G2ltrE2rXNtNlWhGn6enpRkpe2ZYsWYLFixdj6dKloX4sh6gwYsQIjB071nVdCXGDwK14WfCo+XA9dzewZ4sZNVrrMCCpVuXfzd2z/zvF+79TG2jdE+h6nxuSE0KIEuzatcuo//7ss88aUTHR0qFJTYzv1RzdW8SZi1TEAVoeshBFUunKeVc4+iLgjLvkIjDq/gkhhBAnYMQoIYQQQohzMGKUBNIxajlH+/bta6TXFcLVryj/f0WU1Ya8N3LkSDpFidZ4dWKXSWzixInG/i233OLegwJJ2ygRR8LerUCORIDGACn1gJQ0IDa+7PS5EimanW46RaWmaM1G5v/1muJaWkfPxsxh/KKXKnJ6IYdbfTrVj93tqmILXvPXX3/h4Ycfxssvv2w8XI2W7i0TMa5nTXQ8ItFcpJJQw0xxXlRo1nTO2Q0UF8gTXDNKX7aYWKDhMUD7qz2rP0o7iBxdx8wveqkkp65zGecxItAxqi/yjKigoMDYj4+Pj/r5k2r4RS+V5PRCFjf6dKoPu9tVyRaIt/jBFr799lu88MIL+Prrr0OlaY488kicccYZ6NevHy655BLXZPHDeEXrGG3dujWmTp3q2PUtHaNqErirVokKlUjPE088MRTZaW3ydzSbEN6GpO6VmqJ0ihLiDHKc7dmzx9hcXdshTsyOA8x9cW6Kk9NIqbvTrB0qEaHyED5vr/kqf8v78v+lnaLSjou17jwbM4fxi16qyOmFHG716VQ/drerii14zRFHHGHcePz666+47LLLom5n3to8dJqUjitmF2BNdhqQXBtIrAHEmQ+TZe2KnH6NfwpzgXxJrZsHbPkR+O554I0+ZjYAWfjiIrSDyNF1zPyil0py6jqXcR4jRH/CnyHphF/0UklOL2Rxo0+n+rC7XZVsgXiLyrYwevRonH766UZJwNtvvx3vv/8+nnrqKTRp0gRvvfUWLr30UjRu3NhwnrqFyuNVXXh9GzwCFzEazhNPPGHU/5S0bnasOBKkdqmkiBPnKCG649WKF1mhLP0I0r+rK5PlWP96ArDiI/NvSavrgzSOno6Zg/hFL1Xk9EIOt/p0qh+721XFFlRj4cKFRqaN//u//4u6jfjYGNxw+qEY3bUWDo03M4MYFBcBhQVAcaH5t0SMypZcB6jT+MDnZMGKbC6cm2kHkaPrmPlFL5Xk1HUu4zxGBEaM6ktZC+t1wC96qSSnF7K40adTfdjdrkq2QLxFZVs47bTTsHHjRnz++edGmteynKaPPvpo6O/p06djwID9gRwBHK/qRoy2bds2lF3UietbRoyqSaAdo2U5SC0qO7hLD5vUEh01ahQdoiRQBPbELsf/klfMzUIcozmZZiSSPISXh+4SsSQP3sUx6sGDd0II8RNybTVnzhzcc889+OWXX6Jup0ZiDO48NRV3n5qE2olyvbY/Va8VOSoY5+AYc8FKaj3WHyWEEKIEdIwSQgghwUacnq+88gqWLVuGBg0aVPi5cOfoN998YzhUScWwxiixoGM0DDnhSA3SGTNmYOnSpRV+tkOHDkZa3h49eqBbt26uyUiISgT+xC6pF5e/C6z7AijML/9zUtOuxTnAsZe7mj6XEEL8SGFhId58803jRm/Dhg1Rt9MgNQb3n5mEoZ2SkJQQZzpCpe6zOEdj5O9isza01CQtneq800D7FCKEEEKqCB2jhBBCSHCRa4BjjjmmyhGgtWvXNtK/CvI9KVVDKoaOUWJBx2glrF+/PhRJmpaWhubNm3stEiHK4NWJXR6aW9FExx13HOLi5AG3h0gq3ZVzgI0LgZxdQF4WkJhqPmhvcjJw1PlmKl0PUW7MAqaXKnJ6IYdbfTrVj93tqmILfiA3NxeTJ0/GI488gp07pVZzdDRLi8Uj3Wui//HJiC3en1I3Zr9D1HKQlq4D3WuKowtZaAeRo+uY+UUvleTUdS7jPEYEOkb1RR69ybgJMk5+TUHoV71UktMLWdzo06k+7G5XJVsg3mLZwplnnonvvvvOeMZZUYSmG9x44414/fXX8f3335eZQresz0+aNMmVqFFdjp2yHKNHHXVU6D0nrm/pGFWTeK8FUB06QglRD3kg88EHH4RWRHn+QEacnif2NzdFUW7MAqaXKnJ6IYdbfTrVj93tqmILfiApKQm33XYbBg4ciKcGno4JH/+KrLz9aXEj4I9dRbh61m48+U0WxnVPxXktJVOupDyPB+LigdQGwJ4t5sKWhBQzra5kA+h6H5yCdhA5uo6ZX/RSSU5d5zLOY4Tojxw/gm4OZL/opZKcXsjiRp9O9WF3uyrZAvEWcSSKU1QVvvrqKyMCVK6xTj31VHz77bcVfv6qq64q4Rj99NNPHU2nq+uxIw5fXt8GDzpGCSG+Qybg1q1bh/ZJcMfML3qpIqcXcrjVp1P92N2uKrbgJyQ90JhebXBjlxoYM3s5pv2wFwWR+0fx898FuOD13TiraRzG90hFl2aJZk3opFpAQS6QvdPMACCOUUmRfsqNjkX70w4iR9cx84teKsmp61zGeYwQ/dH1mFFVrwkTJhgZ4NauXYuMjAzs3r3b+HvTpk3G/8vfQRozN/p0co5UuT3iX6ZMmWK8ihPS62hRwTo/CeKwFcdoRY5OiXQMZ/HixY7Kp+uxI9GvvL4NHkylSwiJGqYCIIQQ4gozrgZ2bQQyN2HN37tx/5eFmLHMLHUQLZcdk4THz6uLo9q0MWuPpq8zU+qmNQXik4EuQ5TOBEAIIUQ/mEqXEHvr9JVHrVq1PHWMEkLUwKrRWdWank7Trl07/Pbbb6G/Zb+ylLrhKW2rEmUadFhjlFjwqpUQQgghhKiNFbkZl4BW9ePxdv9DsHhUe3RrmxZ1k+/9lot2z/6NG15fhb8yC83IUSEn03yVutGEEEIIIcR3yENucXQ89dRTGDZsmOEIJYR4z44dO9C4cWP07+/9AlRJnSpOUUEFp6gwdepUHHnkkcY56/7776/UKWotprJo2rSpwxISog9MpUsIIYQQEgBkRWJ4/ZGykAdHpVcyKkHjLsCWn4DkNNNxmbsHHRs3xLzbj8fcH1bgnk8zsHRzQcTNFhYB0775G69/vw23ndkAI08uRlqCuWrUqDlKCCHEN/h6niOE2E64o+OWW26pMII0UiT5nlVrrzykRl14JBchQUciGa+44gr8+eef2LBhg9fiYPLkycbreeedB1WQtLnh6XQr4/vvvy/xd8eOHR2QihA9YcQoIcSXaQ8mTpxobLJPgjtmftFLFTm9kMOtPp3qx+52VbEF33HU+Ua0qJHiVjZJeSv1QAH0aJWIRUPr4a3La6Bl3egubbPzizBu/ja0eHoHnvoqAzn5RUBeFpyCdhA5uo6ZX/RSSU5d5zLOY4TojTjS5JiRTaeKVn7Rq23btkYUll2IrpJSuqKtvPHwYszc6NOpPuxu1y82qxMS1SgRoqeffrrhFFWFTz/91HgdPHiwb21h2rRpJf6+9tprHetL52OnoKCA17cBhBGjZfDHH39g6dKlWLduHXbu3Gm8SoH2Fi1aIC0tDS1btjT2u3bt6rWohAQSmYDT09ND+yS4Y+YXvVSR0ws53OrTqX7sblcVW/AdqfWAFmcDq+eaaXX3bAGy04H4JCAmFrGxMbjiuERcdnQcpi0rxJgvs7FtX1HE3WRkF2P4J7vw/P8W4eF+HXDNlYXGan+7oR1Ejq5j5he9VJJT17mM8xgh+qPrMeOUXuJIkagyu+rlSS3BINuCG306OUeq3B452BEqNRwXL16MV155RSlnqIXIJUjK2gsvvBB+RM6N3333XehvSb3boEEDR/vU+djh9W3woGN0PwsWLMDMmTMxb948wxFaVbp3746+ffviuuuuc1Q+QsgB4uPjMXDgwNA+Ce6Y+UUvVeT0Qg63+nSqH7vbVcUWfMmxvU3HaFJtID/bTHUrDlLEyN0LEBODxPgY3HRSEq7tkIqnv83Ck99kYW9e5Dc2mzJyMWjy/zDh6xPw+OOP46KLLrI1FRrtIHJ0HTO/6KWSnLrOZZzHCNEfXY8Zp/SyO9WmBDoE2Rbc6NPJOVLl9siBNLDhjjoLSVXbvHnzStPdexFpKU5Rv9rDiBEjQvunnnoqHnnkEcf79OtYVYYshub1bfAI/C/93nvvYezYsUaEaDSrAsSRKpucjO69917cddddDklKCLGIjY1FkyZNvBbDV+g6Zn7RSxU5vZDDrT6d6sfudlWxBV/SsC3QcQCw5BWgZiPzPXGOFuUDRYX7HaRyMVeImvExeOCsJAztEIfHvs7BpEV5kOy4kfLrr7/ikksuMW7yx48fb7zaAe0gcnQdM7/opZKcus5lnMcI0RtZYKVjvUkn9ZLMbXY5M1Uaey9swY0+nerD7nZ1PRZVQDIrSmR23bp1jWyL4hC17p8++OADZRyjO3bsCDlwb7rpJuPaxm9MmDAhpIPUT7Yrsj6ox47oxevb4BEf5HS5PXr0CEWHWg7RSA9w63sZGRmGc1ScrLLqpFevXg5ITQghhBASYMQxmrUTWPGR6RxNSDH/zt1t1h01NpjO0pgYNKwZg+fOr4HbT62BBxZk442fc4zg0kiRG02piXPxxRcbEaTt2rWzXTVCCCGEEHKATZs2KRXlSQipGDciFu3gueeeM16l7rBdC1/dTlV89913h5yispiXEBI5/lsSYQPiuJSVK+IUDXeIWk5Rea+yzcL6nmxWvZXevXvjxhtv9Ew/QnSnqKjImPhlk30S3DHzi16qyOmFHG716VQ/drerii34FrlWO+Mu00EqSFrdus2BlHpATLxRb/QAsUBcEhCfiOb1E/FanzpYemcLnNeubtTdf/jhhzj++OONNDsbN26Muh3aQeToOmZ+0UslOXWdyziPEaI38rxIjhnZdKpf5pReEtG1Z88e29pTacy9sAU3+nSqD7vb1fVYJJFljxSuvfZa39mCnBu7dOkSSp/rplNU52NH9OH1bfAInGN02LBhGDp0aIkDONzhKTnPO3ToYDg3b7jhhoM2eV/+Xz5X2lka7iCdMmUKTjrpJE91JURXCgoKMGvWLGOTfRLcMfOLXqrI6YUcbvXpVD92t6uKLfjeOdppINBrCtC6JxCXAKQeAsTFA/FJQKw4SGWxW5GZYrd4vwM1rSlObH0k5txyHBbccTxOalYzqu7lRumVV15BmzZtMHz4cGNRXKTQDiJH1zHzi14qyanrXMZ5jBD9kWNGx+PGCb2siC47UelBvhe24EafTvVhd7u6HoukatGWv/32m7F/1VVX+coWxCnavn17Y9HIlVde6Ur63NL4abwiobCwkNe3ASQ+aE7RqVOnlrgo6t69u5FSV17l5BIp69evN2qMLlmyBO+8845RA8GKPJX3JJ/6p59+aqsehAQdOcaaNm0a2ifBHTO/6KWKnF7I4VafTvVjd7uq2II2NUe73gecciOwcg6w9D/Att9Mx2hhfiidrukklbu4PKCoQDybOOfwbCy8rgbe+y0O987di1U7pEZpZOTm5uKpp54yMpHcc889uPXWW5Gamlql79IOIkfXMfOLXirJqetcxnms+khdM1nIXNlnCPEK1Y4ZlfWSRWh243adyor+3wtbcKNPJ+dIldsj/mHixImhFLRt27b1lRPsrLPOwp9//on777/fs7TFOh87ql7fEueIKVZpyZSDjBo1CuPHjw/9LTdM8l40ztCKkJUF48aNw9KlS0MHUp8+ffD222/b2g8hKrB9+3Y0bNiwxHvbtm3DIYcc4plMhBBCykbOz5MmTap0EVnp87pvkEvaryeY9UcFqTuanQEU5JT/nfhkFCSm4d9LsvDQxxuwJTMv6u4PP/xwPPjggxg0aBDi4wO19pAQQohN5OTkGNEsQmJiovEqGQoSEhKgEpI9ITs7u8R7KSkpiI0NXFIy4gByDIjTwkoVaVdUlNQS/O6774z9WrVqYfduqVFPCHGDDz74AJdeemnobzuP7UiQBVIScSkLXO+66y74Bev89f777+OSSy7xWhxfk5+fj1WrVhn7eXnm/f/RRx+N5ORkx/rk83M1CcRV67Jly0JO0RYtWmDt2rVGdKfdTlHL4bp48WKjfSvF7syZMzF79mzb+yKEEEIIIRXUH01ram7JaUBCquEINV7l7/3/F59aBzeccRjWfPwcHn/sMdSpUyeq7jdv3owhQ4bg2GOPxbvvvqtUujZCCCGEEL9QWeQ3IYREgzhirdrFUl/UT07RX375Bd98802FTtEbb7wR559/vquyEeJnAuEYlYhNid6UdLmS3lbqg7pxIbdmzZpQLdLBgwc73ichhBBCSKApq/6oOENrNgLqNDadofIqf8v78v/yuV5TkHr6UIy6915jAZ2sHk5KSopKhJUrVxrXgSeffDK+/PJL21UkhBBCCNEVebBv1f8jhBA7eeGFF4xXKXvXoEED+AFxdIpT9PvvvzccpBXx008/oVOnTq7JRojf0d4xKnWf1q1bZ0SKfv7551FHAUSD9CmOWOkzIyMDEyZMcK1vQnRPezB58mRjk30S3DHzi16qyOmFHG716VQ/drerii0Epv7oVTOBLkOAw04A6jYFahxivsrf8r78v3xOPr+f+vXrG6mVJL3OgAEDok4L+MMPP+Ccc87BBRdcYNykhkM7iBxdx8wveqkkp65zGecxQvRGFszLMSObTlkl7NJrx44dhgOgsrIP0WJldKsshW///v3RuHFjI92mBFjIqzgjRo8ebcholyzLly83Sli0a9euRF/ytziH7UoxKulLZVzD+xH9otFJxkeea4p8Mk5Wu9Z4yfVzuC2IDvIZ+X+rX+nT62PH62NRxlF+F6mjK6922VVppF35DaQf2bxIW6sab731lvHar1+/qGxBxlFs3rJnORbK+/3kfbF369izju9IjgE5zuRcIX4NSfVaGeJAddIx6vWx4yRSa5bXt8FD+wJIkkJXTlhz5871pP+0tDQjlW7Pnj3x+OOP+yp/OSGqIhPw1q1bQ/skuGPmF71UkdMLOdzq06l+7G5XFVsIDCl1gRP7m1uENGnSBNOnTzeu3e6991589NH+2qURMmfOHHz66ae46qqrMGbMmFA2EdpBZOg6Zn7RSyU5dZ3LOI8Rp8jKygrVLbUL+e2tulwWUhNVnr2Q8sessLDQ2I+Li3N8rOQhempqKtygOucCcSzIAjKr9mdp5P3KxsqOc5HI8frrr+PCCy/EI488gtatWxuOjRkzZhjOFJHj0UcfNa4NZeFctEibV199tXFtKFx55ZXGs0KJXlu9erUR0CHOYdmkBqM4zqKJbBMH5sMPP2ykDZV6rQMHDjSCN2QB4Pr1641+nnvuOUMniZ577bXXKu1HItbuvvvuKv0Wr776qtGntC3juXPnTuO70t+CBQtKOOms31fqvlpYQS2ZmZkl2heHrlxbV1SbNrwdq63wdmTfi/lLfpNnn30Wf/7550H/JzLfdtttxlbdSEbp59///vdBkddBr6srTk1rHMKP4aragjg05Zh58MEHjcxAYstynMp5Q46NcMel/AZi72KPgwYNMj4vLFy40LCB9957D7/++mulTtGPP/7YODYlI5Fs5Z1TJBhLjmk53qUuuZPofO3H69vgEVOs8a8tk33Lli0xcuRIjB071vN0vnLikwjSE0880VNZCPF78eiioiLj+BbkAXO00TxBQtcx84teqsjphRxu9elUP3a366UtyPm5slX4snK99HmdmEhNF7mmLO/BXVVISEgwHryNGjUKe/fuVf7cpRKqnEeDqpdKcuo6l3EeI0JOTk7IiSmORkEecsr8ES3yDIKp9YLH4sWL0bFjR8f7CY/EFAdXpA7f0vXwxHETfq0lTozK0keW5ygrLefpp58eajvcSSRRXBLUUJ4T0nJyWETrHJX2L730UmNfHCYSRCHOlNJjZkVaipND5CztdKkIcZKcddZZhlNMvitOFalJWN7vJM4XK4quMr3k3CSyiJNz3rx5IeeuhUSM3nHHHXj66aeNxYDyu1i/nUTLWbUdhffffz9UK1F0ld9i48aNZToNBdFFIvR69eplOKTK0719+/bltnHkkUfi2GOPxSeffFItm40UGTcps1HVFNH333+/4UyOxvF36623hsZZbExsQZ6Li0Ncfjcvg3XC7V8Qx7+bUaxii3L8y2KEN998M6Lzl8gp549wu7W+Y9nWpk2bDnJohn+29KKIin5nuV+MNnre6cXobh47TiERoZIdSrAWebVt2xabN2927PrWq+fnpBKKNWbkyJHFsbGxxZmZmV6LUrxkyZLimJiY4lGjRnktCiG2sW3bNpkRS2zyHiGEEPXYunVr8UMPPVThJp8h5VNUVFT8wQcfFB9zzDEHzX+RbLVq1SoeM2ZM8Z49e7xWiRBCiEJkZ2cXL1261NiWL19ubHl5edVqc/HixdWas7j5c5Pf3a+E63Hqqafa1q60FX4tJpx33nnFV155ZaXflc+V/m4kTJ8+PfT9I488stLPf/PNNyX6++233yr9jnxG2rb62L59e5Vku//++0N9PfXUU8XR6GR9V2SQ/dLylrZP6bMs3n///YM+K9fdkRA+dtZYyHteIOMgv5+lhzVGgvw+om+4bYXrXNXfTxAbtr4r7VXFXtym9G9r57FdGTKWVr/R2IL8HmWdJ6zjzWpX7Lq847X0/WN5+ouNRHver8q5hRQb11XWNZZ1zSXXX07C5+dqovXyzqVLl6J79+7GyiSv6dChQ6jmKCGEEEII8R+yKvbiiy/Gzz//bKSoktXB0SAruR944AG0atUKL7zwwkHpCAkhhBBCiLNIJKhEKVrRYxVh1SS0ruOstJxVQaLNJK2shaS8rEp0m2Rysfq7/vrrK/y8RKN16dIlFC0pfVQ1JatErUnKW0EiY6uqW1nRpXfeeacRCVc6wlWiF8Ox+iuNRNhZeltI1GMkyNhJVKDVr0TyVRZ17BRSVk1+PxkTSZ0qEZvW2MjvI/pKZK1EIoanAJboUnmGXJWIStFNon7l+9KOtFfVCOOgIKmdqxqBXlbEr/weN91000H/F56i+YYbbjCimcsafzk+S0cMn3DCCWX2Jymwo0UiogkhVUdrx6gUJxaHpCqILCITIQTVTuElaQ9kk30S3DHzi16qyOmFHG716VQ/drerii2Q6iG1weQBl/yOTz75JOrWrRt1HZObb77ZeGjz9ttv0yYCeOz4RS+V5NR1LuM8RgjxIxIMKOcC2VSu1FVaNnFWiQNi6tSpVfq+1B4NpyrOTYsrrriihENQUjZWZcwkHa2FpACVVKTlIQ42K4WqOBZLO2Yq+50k7aeFXONGU5dYAkEkTaikcy3dx1dffWXoLulTJWVvRc6pcL2Fjz76KGIbk9TIwqxZszyzWUmHKo5qSTFcWWpc+f3keXG4A1l+T0nfWpFz1EoPa6VcDk/dSg4gC1qFf/7znxHbgiyckN+lLJsNTw8tjk859sr6XOlFCvJ7lbZzC0krbaWsjXSrSlrxIJzvo0H04fVt8NDaMZqenm7kUlcFWe1Dxygh1aegoMBYESeb7JPgjplf9FJFTi/kcKtPp/qxu11VbIHYQ0pKirGyXq7v7rnnHuPvaFi7dq2xsr1z585GzSYSnGPHL3qpJKeucxnnMUKIX5FzgR/OB6Uf5EvNyqpGj5V2bGzYsKFK3xs9enSJmpcSOVjVMZM+wx1lkydPLvNzEuEZXpe1PIdLRX1KX+FRnJVFqJaF1FU85ZRTUKdOnTLbF6eNOPkqq88qnxUHqoWM39dffx2RjVmO2PIiJ522WXEsS41Iub6val1P0VuiSktnpJEarBJxWJbjNdwpyijRiiM+hVtuuSViW3jvvffKjFou7bCW3+3FF18stx3LcSqb3DtWNaJbNfxyvo+UwsJCXt8GEK0do7t27fJaBEKIQ6kMDz/8cGPza7Fvt9F1zPyilypyeiGHW3061Y/d7apiC8ReZFX62LFjsXr1agwePNiIKI22DESPHj2MjeUXgnHs+EUvleTUdS7jPEYI8StyLvDj+eCyyy5z/Hnjc889F9oPT+NZ1TELT7cp0ZjlOV8txKFYnsOlsj7D0wWLw60qaVzDsVL+2mELI0aMKPH3uHHjqtyu5QiznNBe2OzEiRON1+effz7i7y5btqxEWl0Z19KRoBI9LI5XgalzK8ZKlS2LDMoap4pswUqBe9VVVx30fwsXLizxd2VRwdK3OE5l86tT1M/n+6rA69vgESOFRqEpUrepT58+xoMqFZDc8uvXrzcemhGiA9u3b0fDhg1LvLdt2zYccsghnslECCGkbOT8bN1Al4esYC19XieR8/vvv+O+++4zVhhXB3lAJbVq5JqWEEKI/uTk5IRSWCYmJhqvbdq0QUJCQtRtykKbTp062SYj8QeLFy9Gx44d4UfCH0qLoy9SB11laUctvvnmm4jqDdauXTuUOlOiw6R2ZUVIJGd4bVGJYIw01WXpNqSGZLiTTBxkl156aYlr+Yqi1ipCnEDhz3KqIm9pB4I8I7LL6RM+3pG03b9/f/z0009G9KVXiOyStjXa30JsXtLohiOOXsv5Zo1N+HuqU9pW7Ty2K0Iiw62UxlWN3i19/JXlOpFI3vDFChq7V7QjPz/fSJkr5OXlhRzXycnJjvXJ5+dqonXEqKSulZX3qiCh8iITIYQQQgjRF6kd9e677+J///tfmamXqsqMGTOMm7SbbroJf//9t60yEkKIjk5FeRBe0SafIYQQoV69eo62L9dx4USzQKFLly4HObwr6uOkk05CtJR2OpYXoRpJG9XhtttuKzf6trKUvoMGDYJXiLNPnJZlpW2tKuKwFyd3OLJYUhbOSApdaV8iIP3iFPXyt7BSWV977bVRHX9SE7csli9fHtoPT3lNCPEP8dCY9u3bGytCpHCxrKbxEkmFII5RSY1GCCGEEEL05+STT8YXX3xhPFiSGqQ///xzxG1IjRNZbf7qq6/izjvvNGqaen1dSwghKiL3/bNmzarwM/Kg2cmIABWRBTalnSnVRSJjrCgLC4lwZfo5dWBqzcqpbqSO1KSriNLRcC1btqz277hz584Sf0vtzXDq1q2L6iCRsOE1USXKr3Qa1/IIT/9ql2NUnIHh0XuVOQLlM+I0jDQy0E4kxaqMRXWPQbn+l1qpVn1MoXfv3qG/H3/88WrLqjsvvPBCpSmmK0J+w7J+R4muDj9OqrMQlhDiHVo7RiX92JNPPmnkovd6whg5cqRxkzBkyBBP5SBEl7QHr732mrF/9dVXVyu1VFDQdcz8opcqcnohh1t9OtWP3e2qYgvEPeT6T1ItnXvuuUaNG0l5tWHDhojb2bdvn/EwSNIhSxtDhw5FUlISgoKux45f9FJJTl3nMs5jxClSU1NtT6laVFSE7OzsEu+lpKQgNlbrpGTVdibLYichPj5eGyeyX/QqK81ldaMbK3KMigMzPA1suENFCB+z6tQ2DXfOWKm3q/M7lV58J4sqquoYlZSlMkdU1kdVkd9H0vlakauia2WOWnkGfOWVV3pqs5K+/LjjjrOlralTp5ZIqWs5RcXRV9XfJchI9LAwePBgW23BateOSG0/4ZfzfTSIXv/+97+NfV7fBgetHaMdOnRA8+bNMX78eIwaNcr21UuRRIvOmzfPWLl14okneiIDIbpNxlY9D+bxD/aY+UUvVeT0Qg63+nSqH7vbVcUWiPvIw2KpNdSnTx/861//wujRow96qFwV5IHa7bffjmeffRZjxq65+3AAAQAASURBVIwx6ijFxcVBd3Q9dvyil0py6jqXcR4jRH90PWb8opebcloO0HDCa4VGS1paWmjfqkfspP6lI1Qrk83uMZaFgOEpfSdPnlyuQ1DGQxyH4kz00hYyMjLQtGlTW9qSlLri6H3rrbdKvD9ixAhb2tcZcaJbixMGDBhgqy18/vnnJf6+8MILERT8cr6PBl7fBg+tHaOCRGhK6rJu3brhhx9+cL3/9evXG33LKoobbrjB9f4J0RFZmSQR4dY+Ce6Y+UUvVeT0Qg63+nSqH7vbVcUWiHdIlOcdd9xhpFySVamSIjcrKyvidv744w9cc801RtkIyY4iK+p1WrUblGPHL3qpJKeucxnnMUL0R9djxi96uXmdlJ6eftB74rSTtJzy0N168C4yRStXWX3Y/TvJM02n+6gIcYKGp/cVJ6k4ncuK9p04caJR61GciW7LWTqtuwTp2IVknJEIxfAI5IocxOTAGAlyj2S3LYSnsBb7tLO2rur45XwfKbLQmNe3wUP7X1pW0UyZMsVIZRCegsEN5IFVz549jVQXEi06duxY1/omRPeom7Zt23othq/Qdcz8opcqcnohh1t9OtWP3e2qYgvEW8QOOnXqZGwPPPCAkSJXVrdbqYkiQeqWXnDBBYajVbKkdOnS5eAPZaUDK+cAm74HsjOA/GwgIQVIqQs07gK0vcDcVxhdjx2/6KWSnLrOZZzHCNGb6jjAVMYveqkkoxdjFm2fkdYsdSKdtkT7hdcafe6558qsNfr666/jwQcf1MZmw5EU9pdeemnob3m2LfVUK4qEDDrW83+JOrbTFkrXFz3jjDMQFPx47FQV0YvXt8EjEAUgxDEqq7Hmzp1r5NuPpq5TpLz77rtGYfW1a9caB9e0adMc75MQQgghhPiLQw89FC+88IKR/stapRoNX331FU4++WRcfvnl+P333803t/0OLHgUeLMv8MNUYMtPwK6NwL7t5qv8Le+/0cf8nHyeEEIIIcQniJPi22+/hWqUVetz1apVtvZx1FFHVTuKtKxox3DkuabX3HbbbSX+FodgaeQ9iai866674DVSp7V0LdjqUlZE4q233lpmymZywEakpJ7dkbWl64tKQBQhxJ8EwjHavXt3DB8+3HCOrlmzBi1atMCNN95oRHTazYIFC3Duueeib9++Rn/iFO3duzcuu+wy2/siJKgUFRUZx69ssk+CO2Z+0UsVOb2Qw60+nerH7nZVsQXiLWXZQatWrfD2229j8eLFxrVrtLz33ns49thjcUOvs/DXvwcAq+cChflAQQ6w928gcxOwa4P5Kn/L+/L/8rnZQ4DF06WwClRD12PHL3qpJKeucxnnMUL0Rp4PyTEjm071y7zWS5wU559/fqWfc1u2+vXrl1l70s4xK8tZVp6jrKp9ZmZmVssx6oQtyFiGp0OVaD2pHxnOk08+adTiVMFmJY3uTz/9ZGubZdUUFUewOEfJwVjBSf/85z9tt4Wg1xfVcR4TRB9e3waPQDhGBUktNnjw4JCxSxSpTPDixHzppZeidpLKaip5ADVq1Ci0bt0aPXr0wLx580JO0Q4dOmDGjBk2a0NIsJFUg1KTTbZo0g4GEV3HzC96qSKnF3K41adT/djdriq2QLylIjvo2LGjkeVEbrrlOjIaCgsLMe39/0PrBxZh1KzfsWvLetMZmpMJ5GeZzlB5lb/lfdly90cILHkF+HqCcs5RXY8dv+ilkpy6zmWcxwjRHzlmdDxu/KKX2w/yTz311BJ/79y50/YxK92HBIOUR1X6DK9jGY3TxylbsJ7nlq4fKUjWFanfOnr0aCVs9qSTTjLksQtxAn/33XfG/v3331/i/956662DnMRBRxYHWON11VVX2W4L4U5viUgNUn1RP53vo7l/5vVt8NC+xmg44gyVtBKS5ta6KBInpmwWEk1qbUJaWlro/6xUCOvWrTPakdfw9AjhxdOtVULz5893STtCgoMcY4ccckhonwR3zPyilypyeiGHW3061Y/d7XppC/Hx8aG+K/oMcZ6q2IEstuvWrRtmzpyJ++67zyjPECnZ+UUYN28bpnwbg3vPqombz2yI5NRaQGwcUFQI5O8DcveYjtI9W8zaozUbASs+AlLrA50GQhVUOY8GVS+V5NR1LuM8Roj+6HrM6KpXdfXu1atXyEEjyLNHK9WrXWMm2enC+1iyZEnU8pZOSXzMMcdE7PRxyhYuuugiHHnkkaHajlI/UhxgIt/EiRMNWY8++mjP5Qx3Jst4nnbaadVu7+abbw45RaW2qmQqDP/Nr7766oNSIAcZqUEriL1UZfwjtYVwp7cdv6/f0Pl8z+vb4BFTrFvscxV44okncM8994QMvfQQVOUAKGvYwtvr06cPI0WJ9mzfvh0NGzYs8d62bdsqffBOCCGEkKqTl5dnZDh5+OGHjXk2Wo6sm4gxFzXDNSc3Qlzs/utdcZBmZwDZUpOqGEhOM52jQq8pQMO2NmlBCCHOIufHSZMmVfiZYcOGHXT/ohI5OTlG9JOQmJgYqlWYkJAAlZA0c9nZ2SXeS0lJQWxsYJKSEQcJfyYnDq9ff/213M9OmDDBuD6qimNInBjhDqVIH4dK7UgrolKcLps2barw8+K4k6AL6zsSXVYdB5akDJYAjBdffLFEH+HPX6oiV0Vjeffdd4f+fuqppyqt2Rn+W0n0qpP1XiUi9NFHHw39bTkK5Xd58MEHlagvatGuXTucddZZJX6raOjfv78RFRr+u5a2K0FSDc+ZMwcqI5Gtl156qeP20rhxY8OBbtmHkzpU5Rgh6pGfnx+q+Sz32YIsrEhOTnasTz4/V5NAXrVKbnap39SsWbNQytvwTd6rbBPK+55EptIpSgghhBBC7EAejt94441G1OiYMWNQs2bNqNr5MyMPg/6zCic8ugQf/rTTvKaV6NEaDYBah8nVLZCz60Ba3eVmlhVCCCGEELcQB2JVkWsjcYSoiEQz3nbbbaG/xZEVbdpTcYZJlGTpmp/SR3h6VXEIWYsrIuXf//53aF8ccao5fMLH0ooMfOWVV4x91WQdNGiQsVCnvJqvVUF0E6eo8Pbbb5f4zZ9//vkSnxXbiCSVsK6I7VtRxaXtxQ4+++yzEn9fcMEFtvdBCHGPQDpGBanZJBdQkpdeVlxV5PAsbxPCnaXicJVi6qVz3xNCCCGEEFJdxCEqDz2knIPc7EcbQfTr5ixcMulXnPHUT/hmTab5ZlItIKWeuS8RpMK6Lw7sE0IIIYS4QLijs7JajVLeqkmTJlAViVgTJ6PFvffeG1U7DzzwgOEwLssBWLqPaKLkrDqdFv/617+gGuIQlMjIcEfzrbfeGnEdVDeQ30l+L/ndokEc6AMHDgxFJZZO2TpgwAAjA0I4Ek1rOYqDiqRVtqJRnaj9+dVXX4X25feNJH0zIUQ9AusYtbjhhhuM4uTvvPMOevfujTp16lQpYtTaxME6fvx4wyE6btw44/uEEOfTHrz22mvGJvskuGPmF71UkdMLOdzq06l+7G5XFVsg3lJdO5CUO88++yxWrlyJf/7zn1HXQfl27W7DOXrxi8ux/K99QEqaGTUqNUdlK8wHVqqRlkvXY8cveqkkp65zGecxQvRGnh8VFBQYm04VrZzQS+pmhlNRBOTHH3+M7t27V0nOjRs3VrndsghPXRoJn3/+eWhfnI/i6IpkzCTdqEQfSrrYqvQhUYalI1Mr+53keaiFONwuueQSRIo4qZ2w8XDZhw4detBvEmmkpFvHokR1yu8WaZRweLpW+S3Ki4aVNL3hjmJBnKmSZUZF5Ll5OKWPRzt4/fXXyzyH2GULQa8vqus8JohOvL4NHoF3jIZfBIhzND093ShWLulwJQJUHKdykSWbfEb+FkfozJkzjboakpJ3+PDhdIgS4iIyAUu0jGy6TcZOoeuY+UUvVeT0Qg63+nSqH7vbVcUWiLfYZQeS9URu3pYtW4bzOzaNup2Pfk430usOfG0tNmbtr62Ssz+SdONCqICux45f9FJJTl3nMs5jhOiPPEOSTTfs1qt0CszyIiDFgSSOsaqkUf39999DKTYt3nzzzSrLVDoST9qqan1EiSp7//33QymC5Rnihx9+WKUxE+et1BYVB1hFelp9WFx99dUHOX7L+52kfcvhc+WVV1a5LqbUJA1H2pAxccLGLdkvvvjiEtGxUoM2mqg9N45FieqU301+i6o6R8WpGe4Urey3kLqipSNHxRkrNU6jTansBJJSuLQDW44hOyNcrfNBpKmVq2oLpY/3Tp06IYjoOo8JvL4NHjHF/LUJIT4rHi2T8PLly439Y489FrGxXOMR1DHzi16qyOmFHG716VQ/drerii0Qb3HEDmZcjS+//xkjZ63ED5tyo24mKT4GN3dJwahuDVD/8GZA3aZA3//Aa3Q9dvyil0py6jqXcR6rPnIfIg+EK0IeIJe+f1GJnJyc0MNsqS8ttGnTJurU6U4hdpCdnV3ivZSUFKXsQTXk0Zv1MFnGKdpsD0HRS5wokhrU4ptvvikRoSWOlvbt2+Oiiy4q03kk/y8OKSsyrbyUvOJkk1S8tWvXNqIRrUhJcYJI/7t37za+X9qpWtb3n3766QqddHJs9+zZM9SW9Ceylzdm1hiIc00cYFWhdB/Tp083HHRl/U7yWQkAscZGapVWlIZXHE9SjiySMREqG5fKKC27pKe1bMPST+VjUez2u+++M+afMWPGHJTiVWzVqpda+nerKvLbiL2XjmqWlLInnHBCqDat07VYLRsRxE6EimxFkAUDkj47LS0tZDOy+LOqDnqL/v37G9HSkRwvkdhCZeekIKDLPCYRoatWrTL28/LyjNe2bdti9erVjl3fevX8nFQMHaOEkKjhiZ0QQghRhNd7A/u2ozjjD8z+OROj5udg1bboHaR1kmMw8rymuO3CE5B63YEIBEIIURU6Rt2DjlHiBqUdEXL8nnTSSVi7dq3hRJKH1+U5QOQ4kmhCK0qzMsShFO4YlPYlLWkk35eIzaqkoA3XS9qXGpnizKxbt65R6kuy2ImDR/5P0udG48wK70McleJAlrGz+njvvfcMZ53lPHvppZcqdV5GOibWuNjtQBJHojxzEjks55vqSCSoNT9ZjmNJPbxp06YSzkxx6kk2mGjqY8q4SM1VsZ2ycGO8LBux+osGGQ85dn/99deIvmc56ap6HEaK5XgV/GR7pGqOUTn/JSfvz5zkAHx+riZ0jBJCooYndkIIIUQRZlwN7NoIZG4C8rNQkHIopi/NwoMfb8CWTPOGLxoOq5uCh8Y9i0GDBiE+Pt5WkQkhxE7oGHUPOkaJW8jxMHHiRHz11VchJ5I4liSarqLoRj8gTqQZM2YYUfiZmZkh3cRpNnjw4IgjISPto2vXroazpzrRnF4hEYblRQurijguJdq1tC1bv4WkkI7GIVpWPxKBumDBAvzyyy8hx2s0zka/EO60d8phKVHkV1xxhRHVOnXq1MBFi+oEHaPEgo5RQogvU+lu2bLF2D/ssMN4Ax7gMfOLXqrI6YUcbvXpVD92t6uKLRBvccQOPrwV2PITsPdvsz5oUm2g1mHIyivEcwv+wvjPNiEzuzDq5o866ig89thjuOyyyzxJm6TrseMXvVSSU9e5jPNY9aFj1D3oGI0cefRmPX6TedSvKQj9qpdKcnohixt9OtVH6XYl0vX00083UgBH49RVyRaIvemKpUZuJLWDaQuRoct4lZdKNz093bHrWzpG1YRXrTbRuXNnIzXCTz/95LUohGhPQUGBkepFNtknwR0zv+ilipxeyOFWn071Y3e7qtgC8RZH7KBxF/M1Oc18zd0DFBUiNTEOo85rgrWPnIS7exxp1BCNhpUrVxp1qE4++WR8+eWXcBtdjx2/6KWSnLrOZZzHCNEfOWZ0PG78opdKcnohixt9OtVHeLsvvPCCEf1YnUhXlWyBVD9C1koLfdNNN0X8fdpCZOg6XoWFhby+DSCBdYxKPv1zzz0XrVu3RlxcnPE6YcKEqNtr1qyZUWC6Q4cORt7+L774wlZ5CSEHkFVJderUMTa/rlByG13HzC96qSKnF3K41adT/djdriq2QLzFETs46nwgLgGITzY3FAPZGaH/rl8zAU9e3gKrxnTGwFMbITbKbn/44Qecc845OP/8811dEKjrseMXvVSSU9e5jPMYIfrj5wgbHfRSSU4vZHGjT6f6sNrduXOnUedx+PDhtrRH/M+rr75qvEpa4mjS29IWIkPn8eL1bfAIXCpd8fyPHDnSKHIthKsvhv/EE09EVdjcQvKMSxvr16/HkCFDfJXvnpBIYSoAQgghRCEWPAqsngvk7gb2SKrLGCOdLpJqHfTRXzfvw73v/4EPf94ZdXdy7Sy1qaTGV/Pmzcv+UFY6sHIOsOl701Gbnw0kpAApdc0o17YXmPuEEFJNmErXPZhKlxDiBRLQ8vDDDztWR5L4j3bt2hlple+//37f1x0m7sAao8QiUFet/fr1ww033IC6devinXfeMZyi1koH2eRvifqsDtL+mjVrMHbsWKMtiR7lhE0IIYQQQhzn2N7mq9QXNVLqFpsO0n07gKKSKYHaHV4DH9zYDl/feSxOa5YSVXdy7fzGG28Y9Udvu+0244YvxLbfTUftm32BH6aa9U93bQT2bTdf5W95/40+5ufk84QQQgghJHB8++23eOWVV4y0qBXx7LPP4p///KdrchG1kYVE4hQVZLEmIYREQjwCQs+ePTF//nyMGDEC48aNM95LS0tDZmZm6DN2hkpLP1KHqWPHjujUqVNoJQIhhBBCiBekp6fj7bffrvAzV1xxBerVq+eaTMRmGrYFOg4AlrwC1GxkvpezC8jeCWSnm5GjCTUAiegpKgLy9+H0envw9XW18NHviRg1Lxu/bTVXzUa66vb555/H9OnTcfddd+HOcxqi5oowWyvIMeUozAeKi4CYWDPtr1UPVaJcZRPZZWP6IkIIIYQojCwOk8jpipAIaqZkrJzRo0fj0UcfNfZr1aqFdevWoUGDBmU6T//880+MGTPGAymJikycONF4rW7NWUJIMAmEY/See+7BvHnzjBS6Eslp0adPH0ybNi0ULSpI+lu7aNGihZFSV17lQWNlDyMJIVVDCmHPmjXL2JcFCPHxgTiVVQtdx8wveqkipxdyuNWnU/3Y3a6XtiB9l4joK+czxHkctQNxLGbtBFZ8ZDpHJW2tpLAV56Sk2JWtFDEJKbj4pMPxj9Nq4T8Lt+KBOVvx5/YDiweryp49e/DgQw/hhQkJeOAfTTG4cyoS8zPNvkuTL07bTLMeqqTSlShXceiK7GfcdZBzVJXzqN34RS+V5NR1LuM8RojeyDOnwsJCYz8uLk4bh5lf9LJbzvD2Iq3F58WYudFntH1IpGj4taTUjAwvcWa1Kxn6JB16WU5TN+Qk6vHRRx8Zr4MGDYrq+7SFyNB5vEQvy2/D69vgoP2vvGzZMqPmZ48ePUo4RYUpU6YY0RMSSSrREeIUvfvuu23tX6JSxSkrUaOSyrdXr162tk9IEJGVmStXrgztk+COmV/0UkVOL+Rwq0+n+rG7XVVsgXiLo3YgN6jiWEytbzoaxeEomxG1mQkU5oVFbSYCyXVM56Tc4AIYeMs9uGJSP7zw4ot4/PHHkZGREbEI2/bk4+a31+CZz+PwaPea6HtsMmJTau+PVo0DigqNaFXk7jHlknS/UntUHLni0BXZOw0MxLHjF71UklPXuYzzGCH6Yx0z8kBZJ/yil0pyeiGLG31G00ft2rVL/N2qVauDPvPggw9i06ZNtkWLqmQLJDqsCGLh2muvjbod2kJk6Dpe4vTl9W3w0N4xKlGiUlN05syZZf5/ee/bSYcOHXD55ZcbD5foGCWk+sgEfOGFF4b2SXDHzC96qSKnF3K41adT/djdriq2QLzFcTsQ56g4FpucAix/F1j3hfl+zeRyBEoAWpwDHHu5kY5XKo7KYsHrr78e48ePx3PPPYfs7OyIxVibXogr38nEk/8rwLheDdHjmLAHX8m1gRoNzWhWiRKVTdLtirN27mjgtw+AtCZA4y5A2wsQl1hby2PHL+cEleTUdS7jPEaI/uh6zPhFL5Xk9EIWN/qMpg+J9rOCVCQi9JJLLinx/08//bTxPPXrr79G/fr1PZOTqMULL7xgvJ566qnViiKmLUSGruMlqc95fRs8YoqtHLIaImlsW7ZseVAKXS+QHPmtW7c2Xps2beqpLITYhaRkbNiwYYn3tm3bhkMOOcQzmQghhJSNnJ8nTZpU4WfkYUTp8zrRAHE+rpwDbFxoOh/zsoDEVLPGZ5OTgaPON9PZlsPmzZvx8MMP4+WXX640bVxFdGubhnG9mqNT01rmGxItKrJl7wKK9tc2jU0wo0olyrXWYWGO27OBY3ubdVQJIUTTeS4nJwcrVqww9hMTE43XNm3aICEhASoh0RSlF8ykpKQYDxYJCQJyDFRWgkJSMfKYqBr9+/fHxx9/jNtuuw3nnXee8d7ChQvx3nvv4ZdffsFrr712kMOUBBuJNJbUy9OnT8eAAQO8Fof4iPz8fKxatcrYz8sz70GlRm1ycjmLiG2Az8/VROuIUal9Ivmu7awbGi1SZ7R58+aYPHmy505aQgghhBASIMTpeWJ/c4uCww8/3ChBcccdd+C+++4zHlJFw/zfd6Hz2GXo1+kQPNqjDlrV2GP+hzw0LJYUuwVAYb6ZardwpyQ1AlLqmZ9ZPdfcpIaqbBrVtCGEEEIICTJvvvkmPvjgA6MUmtQclRSpxxxzDM466ywjZSoh4YitiFNUoFOUEBItWjtG586dazgkmzVrBhUQWZYuXeq1GIT4Hgl0l9U2gqyu0angt1PoOmZ+0UsVOb2Qw60+nerH7nZVsQXiLX61g7Zt2+Ldd9/F999/b2Rk+eqrr6JqZ8bi7Xh36Xbc0DkFo89MwaE1ioFiKxJV9vfXdZFoUqlDGp+M4uS62B53GLBwJg7ZtwMxZ96thXPUL7agkpy6zmWcxwjRGzl2rIRtctzocuz4RS+V5PRCFjf6rG4fEhFaVlSo3bKrZAskOiToSLjyyiur1Q5tITJ0Hi/RSyI4BV7fBgetczpI2lqp76kK4hgVmQgh1U97IGmyZJN9Etwx84teqsjphRxu9elUP3a3q4otEG/xux106dIFX3zxBT755BMcf/zxUbVRUAS8+H02Wj6bjtELsrA7V24+928xsWZK3RhZwxljpNzN37Mdk3Z2Mbb83z4BlrwCHfCLLagkp65zGecxQvRHUq9Wln7Vj/hFL5Xk9EIWN/p0qg+721XJFkjk7N6923i96aabqt0WbSEydB0vKRfD69vgob1jVJyRqpCWlkbHKCE2kZqaamyk6ug6Zn7RSxU5vZDDrT6d6sfudlWxBeItfrcDWUV7/vnnY9myZXjtplPRtF5SVO1k5QOP/l8uWj6/G8/9UIDcwmLTPyp1RuMTgXotgZT6hoM0FdlIRY75RXGMbvsdOuAXW1BJTl3nMs5jhOiNbhE2ftPLbjmt9srb3JSlKrjRp1N9OPXbEX8i6ZUle8Vpp51W7bZoC5Gh83jx+jZ4xBRbMdAaIkXOpb6oePtVYOjQoZg2bZqxCoEQHWDxaEII8Q9yfq7smmjYsGEHndcJqZTXeyN311ZM/uxXPLpgF3ZkRX970SwtBmPOSUH/9jURF59gOkYFSam7Z4uZarfWYUBSbaB1T6DrffbpQQjxNTrMczk5OVixYoWxn5iYaLy2adMGCQkJUImioiJkZ2eXeC8lJcV4BkMIIYQQoioSEbpq1SpjPy8vz3g9+uijkZyc7FiffH6uJlpftaqWunbx4sVKRbASQgghhBBSbRJSkJQQi9vOSMPaOxtgdM9GqJEU3W3GH7uKcc3sLHR4MR2frMwN1bFBUi0gpd6B2qPCui8O7BNCCCGEEEIIIYRUAe0do/PmzYMKrF+/HkuXLqVjlBBCCCGE6EVKXfM1LgG1k2MxpkdtrBlzEm486zDEx0aXaunnvwvwj1d34Jynf8bCdWYdIaSkhWqOGlthPrByjo2KEEIIIYQQQgghRHe0doy2b9/eeH355Ze9FgXjx483cnB36NDBa1EI8T1S6Pu9994zNh2LfjuBrmPmF71UkdMLOdzq06l+7G5XFVsg3qKdHTTuYr4mp4XS3h5aKw4vXNkaKx7qhH6dok8R9NXqTJzyxI+4bPJveH5NY7xXfC4KiuOAnEzzAxsXws/4xRZUklPXuYzzGCF6IxkQ5JiRTaeKVn7RSyU5vZDFjT6d6sPudlWyBeIttIXI0Hm8pOwhr2+Dh9aOUanpKQfqyJEjsXv3/pXmHrBs2TJMnTrV2O/Xr59nchCiC1LT5pdffjE22SfBHTO/6KWKnF7I4VafTvVjd7uq2ALxFu3s4KjzjWhRxCebm9QB3Z/itlXDFLx9/dFYfHMjdG9p1suLhtk/7sDtz7yDx2b/gk27i4BCsx4McnbBz/jFFlSSU9e5jPMYIfojx4yOx41f9FJJTi9kcaNPp/qwu12VbIF4C20hMnQdL/Ef8fo2eMRDY5o3b25Ejf7444+44YYb8Pbbb7suQ2ZmJvr06WPsSxrdE0880XUZCNGNuLg4nHvuuaF9Etwx84teqsjphRxu9elUP3a3q4otEG/Rzg5S6wEtzgZWzzXT6u7ZAmSnA/FJZm1QAB0Pj8fcgXUxd+U+3DMvC0u3FEV1wyqlKY75GbjttNoYefGhqFsjC37GL7agkpy6zmWcxwjRH12PGb/opZKcXsjiRp9OzpEqt0f8C20hMnQdr9jYWF7fBpCYYt1in0sxa9Ys9O3b10hjKw5KN52j4hTt1KkT1q5da/Q/ZcoUXH/99a71T4jTbN++HQ0bNizx3rZt23DIIdGnzCOEEOIMcn6eNGlShZ8ZNmzYQed1QqrEtt+B2UPM/b1b90dyxgAp9czaoJmbzCjPwjwUFRZi5opi3Dc/C2vTC6Pusm5qPO697HjcPO1bJCdLpCohJMjoMM/l5ORgxYoVxn5iohll36ZNGyQkJEAlJJoiOzu7xHspKSnGg0VCCCGEEFXJz8/HqlWrjP28PDML0dFHH+3o/SSfn6uJ9letvXv3Rrdu3YwV5jNnzsR5552HDRs2ON7vggULSjhFJVqUTlFCCCGEEKIlDdsCHQeY+zUb7a83Kil1dwLp64CCPKCo0HgrNgbod0wsfruxJl64IBmNasRE1WVGVgGGv74UrVu3xvTp043aMIQQQgghhBBCCCGBdowKEqlp8fnnnxtOygkTJjjSl9QylVWoPXr0wLp160Lvi1OWEGIPstBh165dxqZ50Ltt6DpmftFLFTm9kMOtPp3qx+52VbEF4i3a2oE4Ro++6IBztNZhB2qOFhcCRflAsZVCtxiJccCNJ6Vgze31MKZbDdRKis5B+ueff2LQoEE4/vjj8cEHH5Q9plnpwLI3gA9vBWZcDbze23yVv+X9/TVR3cYvtqCSnLrOZZzHCNEbOV7CN13wi14qyemFLG706VQfdrerki0Qb6EtRIbO48Xr22ASCMeoOELFISqGLdGb8jpixAgjZ/QVV1xh1CC1I0K0X79+qFu3LqZOnRo6SUh/48aNY21RQmxOe/Dcc88Zm+yT4I6ZX/RSRU4v5HCrT6f6sbtdVWyBeIu2dhATA5xx14HI0aTaQFpTc5PaozFxQIzcfux3gMbGAfGJqJkSj9Hn1MTa+1rjtnMOR0JcdA7S3377DZdeeilOP/10fPPNNwdS/C54FHizL/DDVGDLT8CujcC+7ear/C3vv9HH/Jx83kX8YgsqyanrXMZ5jBD9kWNGx+PGL3qpJKcXsrjRp1N92N2uSrZAvIW2EBm6jpdkHuL1bfCIR0Do3r073nnnnVC9Ucv7L5GcVjSnfKZDhw7o3Lmz4UxNS5MUYEC9evVQu3ZtIxo0PT3dWD0g0aCLFi3CvHnzsHTp0lA/VrvhDtjhw4d7ojMhOqNanR0/oOuY+UUvVeT0Qg63+nSqH7vbVcUWiLdoawfiHO00EGhyCrD8XWDdF+b7Ej0q5O42U+pa0aNFRWYN0uS6OCQhGc/2A27rdgQe+GgD3vhhG6JZsPvdd9/hjDPOwEVnnIjHz47DsUfUMP+jIMesfVq4v29x0sYl7E/7C2D1XHMTx65soosL+MUWVJJT17mM8xghhBBCCCHuw+vb4BFTHLD44FmzZoWco0K4+tZ7kVB6+MLbHTlyJMaOHVttmQlRFRaPJoQQ/yDn50mTJlX4GSkHUPq8Tki1kBS1K+cAGxcCmZuAPxeZDslCqTlaAMTEA6n1TedobMk1mz/9uRejZq/DnF93Rd29XJpf27keHu6agiY1C8r/oKT8lahWiXIVJCWwRL+65BwlhFQfHea5nJwcrFixwthPTEw0Xtu0aaPcw7qioiJkZ2eXeC8lJQWxsYFISkYIIYQQnyIRoatWrTL28/LyjNejjz4ayclSAsYZ+PxcTQJ31dq7d2+sWbPGSG1rpbq1ttK5squyCaXbqFOnDubOnUunKCGEEEIICTbibDyxP3Dx88DVs4EejwB1mwMNjgJSG5hZdbN3AunrgD1bgJzdQN5e4/WEOnvwyZXJ+GJQXZx0ZHSJbuRy/ZUf0tHmqb9w95w92FlQA6h5GFD7SPPVcITGmNGk0v/ereYXV3wELHnF3rEghJBKKMuxKE5IQgghhBBSfcq6ruLCrmASyF9d0uQuWbLEqP0pTsyyHJyRbILlKBXH6/r169GtWzePtSSEEEIIIUQxJEWtRGMKNRuZKXYlWhPFZprdvVuA3X+Zr/I3inF2m9pYeHc7vDvkGLRplBJVt7kFwIRvs9Bi3AaM/XIXspAMJNc2+6/XEkipbzpIJdWu5RwVx6jLNUcJIcEmPv7AIhDrOYXUvSKEqIUcn/JwvaItYAn6CCHEFxQUmFmEws/R4ddfJDgE0jFqIfU/pWbo5MmT0bx584MiQSsj/PM33HAD1q5da9QxFWcrIcTZSezDDz80NmtCI8EcM7/opYqcXsjhVp9O9WN3u6rYAvGWQNuBLCqUFLXiIBUkYjOtqblJrc+EVNNRKq/y9/7/K0xKQ3yL0zHukQeNVJmHHba/ZmmE7M4pxL3v/4FWoxdh6tdbUFBYDMTGATUa7K+Dut85ajhlYdZJdRC/2IJKcuo6l3EeI1bEQukSP5Jel/gfeW4kx4xsOjnM/KKX3XKGt1feVl4/XoyZG3061YeTv53KNkuch7YQzPHKzc0t8bdcd8liFl7fBo9AO0YtxKkp6XXFsTl+/Hh079690hS64kiV70nKXDl4LOcqIcR55JhbtmyZsTG1VLDHzC96qSKnF3K41adT/djdriq2QLwl8HYgD/07DQR6TQFa9wTiEkxnqESQ1mlsOkPlVf6W9+MSUNSyO5ZlH46fN+dg0KBBxrW7lK2IdkHilsw8DHljNdqNWYx3l243b+6TagEp9Q7URhXWfXFgP8C2oJKcus5lnMeIhVVP1BrfPXv2eCwRsQsrklA3/KKXSnJ6IYsbfTrVh93tqmQLxFtoC8Ebr7179xqvlh5S053Xt8GEccJhiGNz+PDhxmaRmZmJdevWGftpaWmoV68eI0IJ8Zi4uDicc845oX0S3DHzi16qyOmFHG716VQ/drerii0Qb6Ed7KdhW6DrfcApNwIr5wAbF5rRmnlZQOL+iNEmJwNHnY+4xNo4J+nb0JjJDew999xjLFQUB+nEiRMPWv1bFVZtzUbvqStwUrNaGN+rOc5unQZkp5s1R2UTRDapkxpgW1BJTl3nMs5jxEKeO2zbts14MCdjvG/fPiOdLsfb/+j6G/pFL5Xk9EIWN/p0co5UuT3iX2gLwRovuZ6S6yrBcoDWrl2b17cBJabYz7HPhBBP2b59Oxo2bFjiPbmJP+SQQzyTiRBCSNnI+VlSkFbEsGHDDjqvE+IHNm7ciIcGnYdXF6xAUTXubs5rVxfjetbCCfVzTcesRK0edgJw8fN2iksIcQBd5rm8vDz8+uuvoehRSfHWqFEjNGjQAKogDxOzs7NLvJeSkmKkAiYkCMgxUFm6RalZx2OCEELUYevWrdixY4eRLSg/P994r23btsY1jJPw+bmacIYmhBBCCCGE+JomTZrg34M74ufRHXHxMalRt/Pprxlo/+xG/HNmJtZvN1cTG1GshBDiEhIRL1t4NIM8yNu1i+ciQgghhJBo2Llzp+EUtSJHrQVoTjtFibrQMUoI8R2yskdSH8jGoPdgj5lf9FJFTi/kcKtPp/qxu11VbIF4C+3AoTHLz0a7w2vgg2sOwTeD6+K0FjWi7At446ccHPXUn7htxhps3+FcjVG/2IJKcuo6l3EeI6XT6VoP7izn6F9//WU80LMe5hF/IcdL+KYLftFLJTm9kMWNPp3qw+52VbIF4i20Bf3Hy8pw8eeff+Lvv/8OvWddWx1xxBHGK69vg4lnNUafeuqp0AX/9ddf75UYvoXjR4KMpDuwjoFRo0aFVlST4I2ZX/RSRU4v5HCrT6f6sbtdVWyBeAvtwKExS9i/2jcmFqc1TcTXtzTBR6sKMOr99fhtS1bkfRYCz3+xGf/+3zYM3zEGd955J2rWrFltXfxoCyrJqetcxnmMhHPYYYeFHtBJuk4rJadEjkrqtRo1aqBWrVpITk42amG5na5THhqWdtCKnJL2l1Q+ZvKb6TJWftHLbjnLOgbKoqx+vBgzN/p0qg8nfzuVbZY4D21Bv/ESh6fIKNcke/fuNTYrZa4g/2fpINdRdevWNfZ5fRtMPHOMjhgxwjiA6NiLDo4fIYQQQgghYaTUBXZtBOISgHwgpiALF59wGP5xXD28tnArHvhoAzZl5Ebc7N6cAjz44IN44YUX8MADD2Dw4MG8WSaEOIo4Olu1aoU1a9aEnKPhDlDrYR8hhBBCCKmaw9SKBhWnaIsWLbwWi3hMTLFH8cHWBb145iXHM4kMjh9RARaPJoQQQogyLHsD+GEqUJAD7NogtzpAvZZAbJzx3zn5RXjhy814bM5GZGQVRN2N3EQ/9thj6Nu3r+tRWoSQ4D3Is5yjFrJAWs491vlHxYgNQgghhBAvsFxd8hqeNteiUaNGOPzww12Vic/P1cRTx6gV8UjHXuRw/IgK8MROCCGEEGXISgfe7AsU5puOUXGQptQHajQo8bFdWQV44vNNeHb+X8jOL3mjHAnt27fH+PHj0aNHDxuEJ4SQspEHelu2bEFmZiZycyOPencCeYyUlVUyRXlqaiqdtIQQQghR0o8i1ynyDLtOnTqu98/n52rCJc6EEEIIIYQQ/5NaD2hx9oG0ukJ2OpC7p8TH0lLj8filzbHmkc644YxDERflHdGyZcvQs2dPdO/eHYsXL66u9IQQUu7DvCOOOALHHHMM2rVrZzxYk3TedEISQgghhByMXCNJfXYJKJNsP8cddxxat27tiVOUqAsjRn0Kx4+ogFcrXqTGzrx584x9eRgpkx0J5pj5RS9V5PRCDrf6dKofu9tVxRaIt9AOHByzbb8Ds4eY+3u3Ajm7zJS6KfWAlDQg9uDvrdyyB/fNXoN3fy7pQI0USa376KOPGjfdutmCSnLqOpdxHiPRRpPKb1I6TZzTZGRkoGPHjiXeW7JkiVHqh5SN1Db79ttvjf3TTjvNqBmrA37RSyU5vZDFjT6d6sPudlWyBeIttAX9xkv8JXJtGmm5E6evbxkxqia8iyGE+A658f/++++N/a5du3otji/Qdcz8opcqcnohh1t9OtWP3e2qYgvEW2gHDo5Zw7ZAxwHAkleAmo3M98Q5mr3TjB5NqgUk1JC7ZmkUyN+HoxL2YFbfVHx/SgJGzs3GV+uyo5LxnXfewXvvvYfBgwfjgQcewKGHHmqfXh6jkpy6zmWcx0g0yIM/iR51G3lgKOl9S7+XnJzsuix+IS8vD//73/+M/bPPPtuT3y3IeqkkpxeyuNGnU33Y3a5KtkC8hbYQGTqPF69vgwkdo4QQ3yGrkk4//fTQPgnumPlFL1Xk9EIOt/p0qh+721XFFoi30A4cHjNxjGbtBFZ8ZDpHE1KA7Ayz5mjubnMrTXwyuhxzGL44sRY+/TUD98zZiZ/XlnzoX9XVxpMmTcKrr76KO++8E8OHD0ft2rXt0ctDVJJT17mM8xgheqPrseMXvVSSk/OYt+2qZAvEW2gLkaHzeOmsG1E4la7Qu3dvL0TwNTNnzjReJVUNU+kSr2AqAEIIIYQoidziSNSobBbiGM3JBArzgOIiICYWiEsEkusYjtEQHQegqP01ePOttzB69Gj88ccfUYvRoEED3HfffRg2bBiSkpKqqRQhhKgB7wMJIYQQQqoGr5vURAnHKIkO+enoGCVewhM7IYQQQpRGao4ufxdY9wVQmF/+5+ISgBbnAMdebqbj3U9ubi6mTJmCRx55BDt27IhajKZNmxpt9O/fn6uQCSG+h/eBhBBCCCFVg9dNauKpY5RUHzpGSRBP7HLays83H24mJCRwkUWAx8wveqkipxdyuNWnU/3Y3a4qtkC8hXbgwZhJKt2Vc4CNC82ao3lZQGIqkJwGNDkZOOp8IKVuuV/fvXs3JkyYYGz79u2LWo/jjz8eY8eOxfnnn2/o4BdbUElOXecyzmPET/ABX+Toeuz4RS+V5OQ85m27KtkC8RbaQmToPF5O68brJjXxzDG6bNkyL7rVkvbt23stAgkoXp3YpeC3PFQURo0apVXBb6fQdcz8opcqcnohh1t9OtWP3e2qYgvEW2gH/h2zrVu3GpGfEkUq9USj5ayzzsK4cePQoUMHJfTyy/h7JYsbfXIeI36CD/giR9djxy96qSQn5zFv21XJFoi30BYiQ+fxclo3XjepSbxXHdOZRwghhBBCCPETjRo1wr/+9S/cfvvtRv3Rt99+O6p2vvrqK5xyyim45JJLcOSRR/KmmBBCCCGEEEII0T1ilBDif5hK1z/oOmZ+0UsVOXVN2+RkP0zdRJyAdqDPmC1ZssRYVTx37txqlRgZMGAAHn74YcNJqiIqjb+ucxnnMeInGPkQOboeO37RSyU5OY95265KtkC8hbYQGTqPF1PpBhM6RgkhUcMTOyGEEEIIMG/ePNxzzz2GozRakpOTcdttt2HkyJGoW7f8eqeEEOI1vA8khBBCCKkavG5SEzpGCSFRwxM7IYT4h8zMTHz++ecVfqZnz56oU6eOazIRohNFRUWYOXMm7rvvPqxduzbqdsQpKlGoN998M1JSUkr+Z1Y6sHIOsOl7IDsDyM8GElKAlLpA4y5A2wvMfUICCOc59+B9IAk6Uo9u8+bNFX7m8MMP16oGHyGEkOjgdZOaeFZjlBBCoqWwsBBffvmlsX/22WcjLi7Oa5GUR9cx84teqsjphRxu9elUP3a366Ut5Obm4rfffqvwM2eddZZr8gQZVc4JfsIPYyYpcfv164fLLrsM06ZNw5gxY7B169aI28nIyMCIESPw/PPPG+l1r7nmGsSnrwGWzwLWfQkUmmmeSrBrI7DlJ2DJdKDF2cCxvYGGbbUcf13nMs5j1YfzHFEZlY+dIOhlt5y7du3Cq6++WuFnhg0bdtCDcCdkqQqcx5yXk/gP2kJk6DxeOutGyie2gv8jhBBlJ6xvvvnG2GSfBHfM/KKXKnJ6IYdbfTrVj93tqmILxFtoB3qPmdSlufHGG7FmzRrDOVqrVq2o2vnzzz9x3XXX4YQ2TfHBg5ejeNXnplO0IAfY+zeQuQnYtcF8lb/lffn/1XOB2UOAxdOlYI5246/rXMZ5jBC90fXY8YteKsnJeczbdlWyBeIttIXI0Hm8dNaNlA8jRgkhvkMiMrp06RLaJ8EdM7/opYqcXsjhVp9O9WN3u6rYAvEW2kEwxqxmzZoYPXo0hg4disceewwvvvgi8vPLiPashN/Wb8alkzfj1OY1MP7cmjj9yDI+JM3mZALxyWYq3aTawJJXgKydwBl3ATEx2oy/rnMZ5zFC9EbXY8cveqkkJ+cxb9tVyRaIt9AWIkPn8dJZN1I+rDFKCIka5kgnhBD/IOfnSZMmRZXyixBSff744w888MADeP3111GdW7CL2ibh8X80wrGN6wGxcUBRIZC/D8jdA2B/u8lpQM1G5n7HAUCngTZpQYi6cJ5zD94HkqDD8w0hhJCqwusmNaELnBBCCCGEEEIcplmzZvjPf/6DH3/8ERdccEHU7Xz0ey6Of3ojBs7Ygo1744Dk2kCtw4B6LYGU+rL2FcjZBezdX99UIke3/W6fIoQQQgghhBBCiI+hY5QQQgghhBBCXOL444/Hf//7X3zxxRc46aSTompDAk5f+d9WtHlgEe6etQ479+ab0aM1GphOUss5mrvb/MLyd+1VghBCCCGEEEII8SmsMUoI8R15eXkYO3assT9q1CgkJiZ6LZLy6DpmftFLFTm9kMOtPp3qx+52VbEF4i20g8jRcczOPvts/N///R+uueYazJ8/Hzt37oy4jdyCYkyY9yemfbMFI89tjNu6HoEaSbWAglwgeyeQnWHWG133BXDKjWb9UZ+Pv65zGecxQvRG12PHL3qpJCfnMW/bVckWiLfQFiJD5/HSWTdSPnSMEkIIIYQQQogHxMTE4JhjjsFRRx2Fww47DI8++ig2b94ccTu7cwpx3wd/4F9fbsaD/2iCQac0QEJ2OlCQY27CL7OAhFRg0/emwzQ/G0hIMZ2ljbsAbS+I2nFKiAokJSUZx1NlnyGEEEIIIYQEm5jiYknERAgh/ikeLaetrKwsYz81NdV4qEiCOWZ+0UsVOb2Qw60+nerH7na9tAU5P0+aNKnCzwwbNuyg8zrR95zgJ3Qds9J6ZWdn4/mh3TFu1g/IzC6Mut02jVLweM86uKxNEWISa5ppdouLgNpHlP+luASgxdnAsb2Bhm2VHX9d5zLOY8RPeHUf6Gd0PXb8opfdchYVFRlzdkWkpKQgNvbgCmacx7xt1y82S5yHthAZOo+X07rxuklN6BglhEQNT+yEEOIf6BglxCfMuBrpf63F2A9+w8TvMpFbEH1TJx0Rj3E9knFOqxpAXKJZf1Rqjxbmm47SmFjTIZqcBsQnH/hixwHmptEDD0KIffA+kBBCCCGkavC6SU0OXrpECCGEEEIIIcQb8rNRr0YCnrwgDatvb4CBXeojNkr/5A9/FaDrK3tx/ivp+HFDJrBrA5CTCeRnmSl25TVn//uy5e42v7jkFeDrCbJ82lbVCCGEEEIIIYQQr2GNUUKI7ygsLMS3335r7J922mmIi4vzWiTl0XXM/KKXKnJ6IYdbfTrVj93tqmILxFtoB5Gj65iVqZfU/RRiYtE4LQ7/vvIw3HVuM9z7/h/48OedUfXz6Zp8Y7vqhDw8csGhaN4ozUyvW1QI5O8DcveYjtI9W8zaozUbASs+AlLrA50GKjX+us5lnMcI0Rtdjx2/6KWSnJzHvG1XJVsg3kJbiAydx0tn3Uj50DFKCPHlhPXFF18Y+yeffDInrACPmV/0UkVOL+Rwq0+n+rG7XVVsgXgL7SBydB2zMvVKqQvs2mimuM2XCNJ9aHf4Yfjgxnb4dk0mRs5ej2/X7o/sjJA3fsrBO8s3YNiZebj/giY4pFYNILk2UKMhkJ0BZKebqXYFcY5K5GiTU1CY1kKZ8dd1LuM8Roje6Hrs+EUvleTkPOZtuyrZAvEW2kJk6DxeOutGyoeOUUKI74iNjUX79u1D+yS4Y+YXvVSR0ws53OrTqX7sblcVWyDeQjuIHF3HrEy9GncBtvxk1v2UNLcSzSmOy9g4nNaqDr6++wR8/Es6Rr2/Hr9uzoq4z/zCYjz/xWb8+7utGN7zSNzZ7UjUTI4DajQA4pPMqFFxjkrkalJtYPm7iD1zpDLjr+tcxnmMEL3R9djxi14qycl5zNt2VbIF4i20hcjQebx01o2UT0xxMQvHEEKig8WjCSHEP8j5edKkSRV+ZtiwYQed1wkhLpOVDrzZFyjMN+t+SorblPqm4zKMwqJivLZwKx74aAM2ZeRG3V3DWgkYfUET3HDGYUiMjwX27QCydwLxyUBaUzNy9aqZZiQrIYTwPpAQQgghpMrwuklN6AInhBBCCCGEEFVIrQe0ONvct5yRkuJWIkfDiIuNwYBTD8WqMZ3x1OUtUDc1umRA2/bk45YZa3H0Q4vx9qJtKEqqI+tnTYesbOKgXTmn2moRQgghhBBCCCEqQMcoIYQQQgghhKjEsb3NV0llKyl1UWymuJVozqKCEh9NTojFXT2OxLoxHTDqzBpIibJYyrodObjy5d/RafwvmLth/22ipPIVNi6sljqEEEIIIYQQQogqsMYoIcR35OXl4amnnjL27777biQmJnotkvLoOmZ+0UsVOb2Qw60+nerH7nZVsQXiLbSDyNF1zMrVq2FboOMAYMkrQM1G5ntS91NS3Er0aFItIKGGFMEBioqA/H1Iy92Dx7sm4uZOsXj4q1y8vDQPhVEUTVm2aS96TtuLbi0SMe4fcejUrhHysjLx1OOPHyynB+g6l3EeI0RvdD12/KKXSnJyHvO2XZVsgXgLbSEydB4vnXUj5UPHKCHEl+Tn53stgu/Qdcz8opcqcnohh1t9OtWP3e2qYgvEW2gHkaPrmJWrlzhGs3YCKz4ynaMJKUB2hpneNne3uZUmJgaHpyVhykXxuPOURNz3ZRHeXZ4VlVzz1+Wh88TN6NsxHw/0TUF+fguogq5zGecxQvRG12PHL3qpJCfnMW/bVckWiLfQFiJD5/HSWTdSNjHFxcVRrCMmhBDvikfLaSsz00ztVqdOHcTExDjanw7oOmZ+0UsVOb2Qw60+nerH7na9tAU5P0+aNKnCzwwbNuyg8zrR95zgJ3Qds0r1kls1iRqVzUIco5LitjAPKC4CYmKBuEQguY6Zblfel03er3Ukvv87BvfMXo8vV+1PixsF8XExuObagRgxYgTatGnj6fjrOpdxHiN+wqv7QD+j67HjF71UkpPzmLftqmQLxFtoC5Gh83g5rRuvm9SEjlFCSNTwxE4IIf6BjlFCfMy234Hl7wLrvgAKK1jNvPsv0yFaVGik1zVqlNY6zLjZ/+y3DMNB+tOf+6IWIzU1FXfeeSeGDx+O2rVrR90OIcTf8D6QEEIIIaRq8LpJTZhKlxBCCCGEEEJURmqOdr0POOVGYOUcYONCs+ZoXhaQmAokpwFNTgZy9wE/vm5Gle7aB+TuAWo0RExsHM5rVw89j66LtxZtw/0f/oE/duZGLEZWVhYeffRRY5HF/fffbyymSEpKckRlQiKFC4AIIW5RUFCA9PT0Cj9Tr149xMfzsSshhBCiIpyhCSG+o7CwEIsWLTL2O3fujLi4OK9FUh5dx8wveqkipxdyuNWnU/3Y3a4qtkC8hXYQObqOWcR6pdQFTuxvbmWRlQ78MsPcj082HaRSl7RGA+Ot2NgYXNWlEXp3OARTvt6CRz7ZiB17I6+ns3PnTtxxxx149tln8cgjj6B///6u/Sa6zmWcxwjRG12PHb/oZbec4hSNdiEG5zFv2/WLzRLnoS1Ehs7jpbNupHzoGCWE+HLC+uyzz4z9Dh06cMIK8Jj5RS9V5PRCDrf6dKofu9tVxRaIt9AOIkfXMbNdr9R6QIuzgdVzTSeq1BzNTgfik4CkWqGPJSXE4tauR2DAKY0wYd6fxrYvtyji7jZs2IBrrrkGTz75JMaNG4fzzz/f8XpDus5lnMcI0Rtdjx2/6KWSnJzHvG1XJVsg3kJbiAydx0tn3Uj50DFKCPEdsbGxOO6440L7JLhj5he9VJHTCznc6tOpfuxuVxVbIN5CO4gcXcfMEb2O7W06RqW+aH62mXJXHKQFuUBKGhB74Bawdko8Hr6oGW48oyEe+WgtpvwvAwWR+0fxyy+/4B//+AfOPPNMjB8/HieffDKcQte5jPMYIXqj67HjF71UkpPzmLftqmQLxFtoC5Gh83jprBspn5ji4uLiCv6fEELKhcWjCSHEP7D2GiEBYvF0YMkr5v7eraZz1CDGjBxNqCF3/UBREZC/vxYpirFmZwFGf5GHt3+Uv6OnV69eePzxx9G2bdvq60JIFeE85x68DyRBh+cbQgghVYXXTWpCFzghhBBCCCGE6ETHAcDRF5n7NRsBtQ4za46iGMjdDezdAuz+y3yVv+X9+GS0atYYbw1tj8Wj2qNHp9ZRdz979my0a9cOgwcPxl9//WWfXoQQQgghhBBCSDWhY5QQQgghhBBCdELqfJ5xl+kgFSStblpTc0tOAxJSTUepvMrf1v/J58Svetkt+PyHlZg7dy46duwYlQhFRUV46aWX0KpVK9xzzz3IyMiwU0NCCCGEEEIIISQqWGOUEOI78vLy8Nxzzxn7t912GxITE70WSXl0HTO/6KWKnF7I4VafTvVjd7uq2ALxFtpB5Og6Zo7qJc7RTgOBJqcAy98F1n1hvl9TIkfLIC4BaHEOcOzlQEMzBW737t3xww8/4O2338att96KnTt3RixGTk6OUXd06tSpGDVqFG6++WakpKRErZaucxnnMUL0Rtdjxy96qSQn5zFv21XJFoi30BYiQ+fx0lk3Uj50jBJCfElWVpbXIvgOXcfML3qpIqcXcrjVp1P92N2uKrZAvIV2EDm6jpnjeomTs+t9wCk3AivnABsXmjVH87KAxP0Ro01OBo46H0ipe9DXY2Nj0bt3b/z+++9YsmSJsW3dujViMSRidMSIEXj++efx8MMP45prrkF8fHS3o7rOZZzHCNEbXY8dv+ilkpycx7xtVyVbIN5CW4gMncdLZ91I2cQUFxcXl/N/hBCiZPFoOW1J34L0FSMRESSQY+YXvVSR0ws53OrTqX7sbtdLWygoKEB6enqFn6lXr17Ujgriv3OCn9B1zPyiV7icEu0pK6qfeOIJ7NmzJ+o2jz76aIwdOxYXX3xxRHrrOpdxHqs+ch8yadKkCj8zbNiwg+5fiH/uA/2MysdOEPSyW87qXFdzHvO2Xb/YLHEe2kJk6DxeTuvG6yY1oWOUEBI1PLETQgghhAT3OvDxxx/Hiy++aKSfipZTTz0V48aNwxlnnFH2B7LSzUjXTd8D2RlAfjaQkGJGtzbuArS9oMxIVxI86Bh1D94HEkIIIYRUDV43qUms1wKowI8//oiXXnrJuEk699xz0blzZ9SvXx9t2rTBH3/8Uen3ly1bZnzn3nvvrdLnCSGEEEIIIcTPyI38M888g5UrV+Lqq6+OemX1d999hzPPPBMXXXQRli9ffuA/tv0OLHgUeLMv8MNUYMtPwK6NwL7t5qv8Le+/0cf8nHyeEEIIIYQQQgiphMDmShMH5pQpUzB16lTs2rXroP+XQFp5v6z/K01aWpqxyUrn8ePHo0+fPsZr06ZNHZKekGBTWFhoLGgQTjzxRMTFxXktkvLoOmZ+0UsVOb2Qw60+nerH7nZVsQXiLbSDyNF1zPyiV0VyNmvWDP/5z39w9913Y9SoUfjkk0+i6uPjjz/Gf//7X6P26Jjex6LJXx8d+M+CHLMuamE+CouK8WNRGyA2DifWTIchyeq55tZxgLnZnP7Kjd+J8xgheqPrseMXvVSSU9d7Ms5jxG/QFiJD5/HSWTdSPoF0jEpkqDhEhdKZhKNZ6dy8eXPMnTsXmZmZRjqpJ598EjNnzjT6uO6662yTmxByYMKSh2fCcccdxwkrwGPmF71UkdMLOdzq06l+7G5XFVsg3kI7iBxdx8wvelVFzuOPP95wbH711VcYOXIkvv/++4j7kXuzV199FW+/EYObzj4c93ati/qxe0zHqCVLcTw+LjzVlKVgGuIS4s1Uukm1gSWvAFk7gTPustU56sbvxHmMEL3R9djxi14qyanrPRnnMeI3aAuRofN46awbKZ9AOUbF89+tWzcjCtRyiIY7QuW96pRcrVOnjhEpKil1R4wYgcGDB2PJkiVG3R1CiH3ExsbiqKOOCu2T4I6ZX/RSRU4v5HCrT6f6sbtdVWyBeAvtIHJ0HTO/6BWJnGeddRb+97//4f333zciSCXVbqTkFhTj6Xl/4aWvN2PkGTVw26mpqFGrDpBQA7ExCThqzxaguMCsCyNOU/lbao/WbASs+AhIrQ90Ggg//U6cxwjRG12PHb/opZKcut6TcR4jfoO2EBk6j5fOupHyiSmujifQR8yfPx89e/Y0HJ+WM7S06h06dEC9evWMtLjyOm3aNMOxKSHU0SARo0OHDjU2OkeJjrB4NCGEEEIIKY+CggJMnz4dDz30EDZv3hx1O4fVScCD/2iKQacdioS4sIcVRYVAdgaQnS53d0BymukcFXpNARq2tUEL4hfkPmTSpEmVZo8qff9CIof3gYQQQgghVYPXTWoSCBf4smXL0KNHj5BT1IoM7d69u1FndO3atSgqKsLixYvx+eef45133sHkyZOrFT0q3HDDDaG2Xn75Zdv0IYQQQgghhBDViY+PN7LorF69GuPGjTMy7ETDlsx8DH1zDY4dswSzlmw/cJ8WGwfUaADUOkzW/Jp1SHN3m/+3/F0bNSGEEEIIIYQQoguBcIz26dMntC830ZLmNiMjw3CCyo261Ah1it69e2P48OGGk3TDhg2O9UMIIYQQQgghKpKammrUHV23bp1xb5SUlBRVO6u2ZqPPtBXoMu5HfLFy14H/SKoFpNQz9yWCVFj3xYF9QgghhBBCCCEkKI7RJ5980rgBt1LlikO0OquVo0HqjjZr1gxDhgxxrU+iF7NmzTKinlu2bGlEPdetW9f4W9I1S83coJGfn49nn33W2GSfBHfM/KKXKnJ6IYdbfTrVj93tqmILxFtoB5Gj65j5RS+75JRyJU888YQRQTpo0KCoa/gs2rAHXZ/5Gec+/wt+3LTXfDMlzYwalZqjshXmAyvnwC+/E+cxQvRG12PHL3qpJKeu92Scx4jfoC1Ehs7jpbNuJMCO0bFjxxqOJIkalVS5bjpESztH586di92796d2IqQKzJs3z3CCiv2KY19sSJz7UvtW/hZnu/y/OEiDhER+Z2ZmGltAyiRXG13HzC96qSKnF3K41adT/djdriq2QLyFdhA5uo6ZX/SyW87GjRsbpUZ+/vlnXHLJJVG38/lvGWj/2FL889+/Y316vhk5KuRkmq8bF8IvvxPnMUL0Rtdjxy96qSSnrvdknMeI36AtRIbO46WzbqR8Yoo1/rXnz58firKTVcmRIiuYly5dihNPPNEWeaQ9iWC96667bGmP6I04O8XxmZaWZjhCW7RocdBnJFq0Y8eORlS0pGuWmrlBKB4tNYG3bNli7B922GFRRxsECV3HzC96qSKnF3K41adT/djdriq2QLyFdhA5uo6ZX/RyWs5vx5yLe15biG/WRL+INCEuBkNPrY/7T4tBw7o1gTqNgbpNgb7/8cXvxHms+sh9yKRJkyr8zLBhww66fyH+uQ/0MyofO0HQSyU5db0n4zxG/AZtITJ0Hi+ndeN1k5po7RgdOnQopk2bZjiVonFu2u0Y7dmzpxG9+tlnn9nSHtE7UlSc+oJEiXbv3r3cz4pTVJz/gjhGxUHqFjyxE0IIIYSQavN6bxTv3YaP//c7Rn2ajl+3FUbdVM3EGNx9Zm3ceWE71Kp/GPDPWbaKStSFjlH34H0gIYQQQkjV4HWTmsRDY8RhJOlG7XJsVheJ+BMnLSGVIalzBbHfipyill2JM9SKMO3bt68RZUoIIYSEs2/fPixatKjCz3Tu3Bk1atRwTSZCCDFISDEWkF7UriYuaBWD11Yk4YFPt2FTRm7ETe3NK8ZD8zLx4veLMLr3ibihbx4SExMdEZsQQkgwkeii7OzsCj+TkpKiVUQVIYQQohPaO0YtB5MKiLNKZCKkIp544gkjRa4gjs6qIJ+z6oyOHDnS9ZS6XtyELF++3Ng/9thjebMR4DHzi16qyOmFHG716VQ/drfrpS2IY/Srr76q8DPHHHMMHaMBOif4CV3HzC96OS5nSl1g10YgLgFxsTEY0CEZV5zaGS98uRmPf7oR6fsKIm5y25583DJ9EZ756mg8+uij6NevX9Ryu/E7cR4jRG90PXb8opfdcu7YsSPqCHVd78k4jxG/QVuIDJ3HS2fdSIAdo1aKURUQZ5fl8CKkPMKdmpVFi1pIZKmFOEh1d4wWFBRg9uzZxn7btm0ZBRDgMfOLXqrI6YUcbvXpVD92t6uKLRBvoR1Ejq5j5he9HJezcRdgy09AchqQkwnk7kFyjYa4q8eRuO60Q/HE55vw7Py/kJ1fFNU9Yf/+/fHkk09i/PjxoXIVqv1OnMcI0Rtdjx2/6KWSnLrek3EeI36DthAZOo+XzrqRgDpGhXr16kEVFi9ebKQ9JaQ8pKZteFRxJPYin7W+O2vWLPTu3Ru6IqnWrLGRfRLcMfOLXqrI6YUcbvXpVD92t6uKLRBvoR1Ejq5j5he9HJfzqPOBJdPN/fhkoCAHyM4AajRAWmo8Hr+0OW4++3A8/N8NePnbv1EYuX8Uy5YtQ8+ePdGtWzeMGzcOnTp1Uup34jxGiN7oeuz4RS+V5NT1nozzGPEbtIXI0Hm8dNaNlE9McXFxMTSlVatWRirdsWPHRvV9CZsWR5VdNUqlPVmh/Nlnn9nSHtEzja6kwrVSL2dkZFT5u2Jb8+bNM/al5qgbUaMsHk0IIf5Bzs/RpvwihBDHWfAosHoukLsb2LNFblWBWocBSbVKfGzl31m474M/8O6yHdXqrm/fvkaK3datWx/8n1npwMo5wKbvTQdtfrZRB9VI+SvRrW0vMPeJUnCecw/eB5Kgw/MNIYSQqsLrJjXROmGyePotR5HXSOqm0ilPCSnNokWLoo52FkeqhSp2TwghhBBCSJU4dn+2k6TaZkpdFJsO0n07gKIDNUaPOjQVs4Ycg+9HnoizW9eOurt33nnHqKssD663bNmy/wnF76aD9s2+wA9TzfS+Uvt033bzVf6W99/oY35OPk8IIYQQQgghxFdo7Rht3769EfH5008/eS2KEbUqodj9+vXzWhSiMGKvFpGmXQ53pIan4yWEEEIIIUR5GrYFOg4w92s2OuAczd4JpK8znaQ5u4G8vcbrSQ32YcE1KZhzTRpOODQ+6npCkydPNjINjb7uIux+8zozarUw30znu/dvIHMTsGuD+Sp/y/vy//K52UOAxdMBfZMwEUIIIYQQQoh2aO0YHTp0KCRTsJWa1CtkFfKuXbsMR5ddaXlJyRSydeu6l8pKojElRXPHjh2NfsXh3bJlS0MOSYUrv3W0VMehGR4xKlRHDtXJz8/Hiy++aGyyT4I7Zn7RSxU5vZDDrT6d6sfudlWxBeIttIPI0XXM/KKXa3KKY/Toiw44RyWVrtQcFQeppNjduwX5mVvx4q4z8eK+81GAeJx3TB0sHdkOrw88Cs3qJ0XVbVZWFh7998docf8PePazNcjd8YfpDM3JBPKzkJ9fgBezL8KLe89F/o71wNZfgR0rgYz1wIJHgHeuMdPvVgPOY4Toja7Hjl/0UklOXe/JOI8Rv0FbiAydx0tn3Uj5RLe01ic0b97ciBqdO3cu7r33Xjz++OOuy/DSSy8ZtR7FeTZkyBDX+9c9unLw4MGhKEtxBJZ2DtqJOD3ltxTnpfTTvXt3IwJY9teuXWs4TMUJL5v8n3w20qjPcKqrS3p6uqPj4SWy4EHys1v7JLhj5he9VJHTCznc6tOpfuxuVxVbIN5CO4gcXcfML3q5JmdMDHDGXUBqfWDJK2ZaXdkkSlOclIV5KC6KxfZCM1NKcVoTICHBWO17VZc66H39nZiyKBuPPPooduyIvAbpzn0FuGP2Zjz7RSzGdKuFq046BHHxiSjOyz3Qpzhpiwsk3NSMHI1NANbMBaaeDRzf10wJLNGvEcJ5jBC90fXY8YteKsmp6z0Z5zHiN2gLkaHzeOmsGymfmGLNf+1Zs2ahb9++hmNSHFt33XVXlb8bGxtrON2ijfJ86qmnQtGq4iBbvXp1VO2QkohjUsZVfttwMjIyHHEESn8SDWpFc44YMQKjRo0qsy9xjooD3Prs+PHjjc9XFbFTi969e2PmzJlV/q6Midi4xZIlSxyvaetV8eiioiJs3LjR2G/SpIlxrJJgjplf9FJFTi/kcKtPp/qxu10vbUHOz5MmTao0y0Xp8zrR95zgJ3QdM7/o5YmcUr9z+bvAui9MB6QlSzGwMc+8Dm+SuAux8QlAi3OAYy8POSR3796NCRMmGNu+ffuiFuG4w5IwrnsKzm2dhE043HCLNinaiFgUHkifGxMLxCWaTt06TYGEZDPyVbawa/vK4DxWfTjPuYdX94F+RuVjJwh62S1nXl4eNm/eXOFnDj/8cCQmJjouS1Vwo0/OY8Rv0BYiQ+fxclo3XjepifaOUUHSnr777ruG00kcXOJsqlWrlmOOUbkRlz7FSSbDK/1K1GrXrl2roUVwESej/A6LFi0yxjS8DqfTjlHpq1u3bqG0tGI74rCsDLEzkVW44YYbjOjRypA+wlMCV9cxKjYnkatOwhM7IYT4Bz4wJoT4kuwMYOUcYONCIGcXkJcFJKaaNUibnAwcdT6QUnZZja1bt+KRRx4xrsWlnmi0nNk0HuO7p+DkxmEPSUrcRseYDtKkWkDdZuZbkhJYol8jcI6S6sF5zj14H0gIIYQQUjV43aQmWqfSDU9nK04qcVh+/vnnhvNMnEj33HMPateubVs/f/zxhxEhOHXqVONvyykqjjE6RSNDHITl1ci0HJOlI0btRvoPd4rKA5WqOEUtp6TUHRWnrtiD7FcWOSqpb+1E5xqjhBBCCCEkIIjT88T+5hYhjRo1wr/+9S/cfvvtGD16NN5+++2oRPi/DQU45eU96NU2AY93T0XbhgmmM7SoACguNGugogjIzQT2bDFro674yEwJ3GlgVH0SQgghhBBCCHEGfWKeK6BOnTqYP39+yFEpr+LAFOdb586djZS3P/74Y1Rty/fE8Xruuecazi9xgllBuNKXONIqW7VKynfqiRNb0sGKc1miJyUqVF7ld3Maifq15LBkiITwKFFxxFvpdcuDjszIUhz8/vvvxib7JLhj5he9VJHTCznc6tOpfuxuVxVbIN5CO4gcXcfML3qpJGc0srRq1QpvvfWWUWqiZ8+eUfc9+/d8tHshE4M/2Ie/9hYDcQlmpKgRMRpnvmanA3u3ml+QOqmSEtghvbxoVyVbIMRP6Hrs+EUvleTU9Z6M8xjxG7SFyNB5vHTWjQTcMWo5thYvXlzCOSqb3ByL06pjx46Ii4tD/fr1Dadbv379jO+NHTvWqCcpm6TdkffFCdq6dWvj8/I9qSlppc0Nb1/SmM6YMcNr1X2JNZbiCJXfyIrWdKKGaFnI72mlwhXk948U+f3Da3yKo7Ui7NbNrbHyAkmFJseWbNVJixYkdB0zv+ilipxeyOFWn071Y3e7qtgC8RbaQeToOmZ+0UslOasji1ybf/bZZ0Z2l44to0unKjVOX1qSjVZP78A9n+9FRo7pDzWITZAnK2bK39zd5ntSJ7UKcB4jRG90PXb8opdKcup6T8Z5jPgN2kJk6DxeOutGAp5Kt7RzVBxU69evNxyYQniZVcsRZ9WxLC9da1mlWcPbk4jU4cOHO6QJcRpxloc7GKuaQrc04ki3bEleZQt3ljpJvXr1oCtyrDVu3Di0T4I7Zn7RSxU5vZDDrT6d6sfudlWxBeIttIPI0XXM/KKXSnLaIYssYPzhkR6YtWAp7pu9Gmt2Rv4AJKcAGP91FqYuzsao05Nwc5dkpCRLBGnigdqoSbWBdV8Ap9xYbh1UO/Vyo12VbIEQP6HrseMXvVSSU9d7Ms5jxG/QFiJD5/HSWTdSPjHFZXn4AoBEeU6bNq1Mg6/KkJR1kMj3xIkmaXvbt29vo7SkNE888UQJ56Xl1LYjSlKclxIJbCFOUUnfGw2SPldSLFtIOt7wFLulU+lKeufwBzaymr2qyHjIuFisXbsWLVq0gJOweDQhhPgHOT9Xlt5fsmOUPq8TQoiWvN4b2Lcd+Tv/wEsLM/Dwl9nYuif6FeJH1o7Bw91q4Zr2NRAfK/eTxUBaUyA+GegyJKoaqSQyOM+5B+8DCSGEEEKqBq+b1CQwqXRLI84piQy9/PLLQ2lbw52elW0W1nebN29utJmenk6nqM8p7bisTj3T0o5JqUFbHtV16pauUapzxCghhBBCCCHVIiHFfImPw7AuqVhz/9F4pGcaaiVFt0r8z93FuG72bhz/r+34YLVZWgU5meZ/blxop+SEEEIIIYQQQqpBYB2jgjgwJRJQIusk7a04Ny1HZ1W2OnXqhKIJ16xZg8GDB3utErGBd955p8Tf1U19W9o5Wl565tLOUXGyR0Lpz+tcY5QQQgghhJBqYaW2jUswXmrG5uD+c2ph7Z0NcPvJSUiMi67ZFdsKcOmrW3D6tAx8vWZ/nVGpOUoIIYQQQgghRAkCVWO0PMQhKjVBZcvMzMS8efOwaNEiIwJPnE1WJJ44uMTZJKlRO3XqxMhQDZHUt6UjL6ubjlYcq9KuhaTHLa9mqdiV2J9QWo7KCO/D6RS6XpOfn49XXnnF2B8wYAASEswHWiR4Y+YXvVSR0ws53OrTqX7sblcVWyDeQjuIHF3HzC96qSSnbbI07gJs+QlITjMjO3P3ADGxOKRGLJ45LxW3dUnEA1/m4fWfcxFN8ZnvNubjzMlbcOFxuRh7ZSKOdUsvh9tVyRYI8RO6Hjt+0UslOXW9J+M8RvwGbSEydB4vnXUj5UPHaCkkClTS68pGgofllAynuk7G0ilty+rDokePHqH/jzRiNNyRWt0oV9WRiO3NmzeH9klwx8wveqkipxdyuNWnU/3Y3a4qtkC8hXYQObqOmV/0UklO22Q56nxgyXRzX+qAFuQARQVSVwWIAZrVjcV/Lq+Fu8+ogZGf78Onq3Kj6ubjX9Lx3+XzcM3KAXj44YfRtGlTZ/VyuF2VbIEQP6HrseMXvVSSU9d7Ms5jxG/QFiJD5/HSWTdSPnSMEhKGRHPaTemUtuGRnaXp3r17aL86EaPiYNWZ+Ph4XHnllaF9Etwx84teqsjphRxu9elUP3a3q4otEG+hHUSOrmPmF71UktM2WVLrAS3OBlbPNdPq7tkCFOUDMZJDd3+d0eIiHH9oAv57dV28ua4Onpr7J376c1/EXcnzlVdffRVvvfUWbr75Ztx7772oX7++M3qVgvMYIWqg67HjF71UklPXezLOY8Rv0BYiQ+fx0lk3Uj4xxXSDEx/yxBNPYOTIkSXey8jIqHZdzY4dO2Lp0qWhv6U9adduWZcsWVJuVKekaracnBV9LhxxotatW9fWsagK27dvR8OGDUu8t23bNhxyyCGO900IISQy5Pw8adKkCj8zbNiwg87rhBCiLdt+B2YPMff3bgWydh5wjhrRo7FAXNIBP2lxMd7/LRej5u7Byh1FUXdbu3Zt4/7gtttuQ40aNWxShnCecw/eBxJCCCGEVA1eN6lJrNcCEKISpaM5S6fBjYayHJQVRY0OGTKkSml3wwn/nNQvdcMpSgghhBBCiK9p2BboOMDcr9nIjBwVL2hxoflecRFQmAcUFRpbTFEBeh0Vg+XDamLaRSk4vNZ+j2mE7N69G/fddx9atWqFKVOmGHWNCCGEEEIIIYS4A2ODXUJWpoozTFYGd+3a1WtxSDlEmr42WipyjI4YMQJjx441ZJEHJfJ3ZcyYMSO0P378eOhOUVER1q9fb+w3b94csbFc4xHUMfOLXqrI6YUcbvXpVD92t6uKLRBvoR1Ejq5j5he9VJLTdlnEMSqRois+AmodBhTkArl7pCfxjBpO0qLCYqyPaWz2iU2Ij4vD9Z0T0b99LUxcmIWx/5eFzJzII0j//vtvDB06FBMmTMCjjz5qZIqJiYnhPEaIhuh67PhFL7vlrE6Euq73ZLwfI36DthAZOo+XzrqR8uGv7BLiuJKovoocYkQ9p6gdkZdlRZ3u3Lmzwu/Mnz/feBV7mTp1aoWfFbuaNWtWyCnaokUL6E5BQQFef/11Y5N9Etwx84teqsjphRxu9elUP3a3q4otEG+hHUSOrmPmF71UktN2WWJigDPuOhA5WutQID7R3CSVrvSJWLyOy42tIDbF/L/YOKQmxmDkeU2wbkwHDD+7PpKiXHa8evVq9OvXD2eddRYeeeQRzmOEaIiux45f9FJJTl3vyXg/RvwGbSEydB4vnXUj5cOIUU0jEknkpKenu9ZXZQ5yWS0uTk6JMJbUup06dSqz1qi006dPH2P/hhtuqFJ0qQ7ISvpGjRqF9klwx8wveqkipxdyuNWnU/3Y3a4qtkC8hXYQObqOmV/0UklOR2SRdjoNBJqcAix/F/h5BrBvGxCfBBQWIKa4GI2wzUizK+l0DRJTgYQaQGE+6uX9iSe6x+OWTg3w0P/l45VFmSgqjlyMzZs349VXX8WWLVuMe4ETTzzRBtU4jxGiAroeO37RSyU5db0n4/0Y8Ru0hcjQebx01o2UT0xxcXEUt2wkEjIzM1G3bl3jwLLSpJLq8cQTTxhOw3AyMjKqFeG5dOlSdOzYscR74oxcsmQJqoNEc1rOy/A6oDNnzqz0uxINKt8Vh7o4PsVJKjKJQ1TatcZAUu7K/7sNi0cTQoh/qE7KL0IICRRZGcBHtwJ/fAsUF5h1RgsLzJqjklorJs50poYTn2zWKE2qjd8278O9C3LwwTe/VkuM/v37GxGkQcgIYwec59yD94Ek6PB8QwghpKrwuklNmErXBd55553QPiNG1cXNiNGq2kH37t0Nh684PsUZ2q1bN8PBLg5cSc8sK8nl/71wipaHnOhFxki2hx56CIWFhcjLyzsoZYG8J1v4Go7yPpufn2+8L7nhLWRf3pP/U+2zIr+8L/pE81kZE2t8nPpsWeMeyWer83tW97fX2U7c+O0j+ayXvz3PEZH/nhURabs8R3j/WZ4j7PusCr+nCucIXkcASK2LwsunI++s+1CQ1hJocBTQqB3QoDXyUxohL6EOiuJSgIRUIDkNRXWaIa92c+Qnmos0j7noJrz/f7/gq6++wmmnnYZoefPNN9G2bVvcfPPNxsOTcuVV8LeP5LN2/54VES5DpO2qcNyrdI4oTaDOEZrbie7nCDs+W3ocy8Nvv71qdsJzhPef5TnCvs+q8HvyHOHdb0/Ug6l0HWD37t0hR5s4tCS60QrDdtP5RtTAjjql4vhUyfnpBIsWLcJnn32G4447Dpdddlno/eeeew5ZWVklVlv++OOP+Pjjj3HUUUfhiiuuCH32hRdeMCK0r7/+ehxxxBHGe8uXL8fs2bONlfZXX3116LPTpk0zVuxce+21aNasmfHeqlWrDIdz48aNMWjQoNBnX3nlFSO12ZVXXok2bdoY70lRbsk9L6kWhg4dGvrsG2+8gQ0bNhhRwe3atTPe+/PPPzF9+nSj3uwtt9xSYtGE1JS65JJLQqnS5KGXnDdq1aqFO++8M/RZ0eG3337D+eefj5NOOil0PvnXv/6FpKQk3HPPPaHPytj89NNPhmPdehi3Z88ePPPMM0YB8dGjR4c+K2O+ePFio6bV2WefbbyXm5trON2F+++/H3FxcaHat//73/9wyimnoGfPnqGLIisKXiKYk5OTjf2vv/7aeBgoaaD/8Y9/hPqTduU7d9xxB2rXrm28t3DhQiM6+oQTTsCll14a+uzTTz9tyCIPA+vXr2+8JxHcc+bMwTHHHFMiEnvixImGjhJVfeihhxrv/fLLL/jggw/QunVrI+LCYvLkycbYDRw4EE2aNDHeW7FihRGF3bRpUwwYsL/GGICXX34ZW7duxT//+U+0bNnSeG/NmjV46623cPjhh2Pw4MGhz7722mvYtGmTUSNMHmIKGzduNFLiySqwG2+8MfTZt99+21js0KtXLxx//PHGe5I276WXXkKdOnVw++23hz4rcq1cuRIXXnhhKKpdbFdWKKempmL48OGhz3744YeG3ueeey5OPvlk4z05JuQ4SkhIwL333hv67CeffIJly5bhnHPOwZlnnmm8J8faU089Zew/+OCDoc/K7/P999/j9NNPNxZoWBd21m8/atQoJCYmGvtffvklvvnmG3Tp0gXnnXdeqA3rs3fffTdq1Khh7H/77bf44osv0L59e1x88cWhz4oM0v5tt90WOofyHGHfOaIixOYfeOCB0N88R/AcwXNE8M4RvI7Yf45YvhwffPYnWje5Ev2bbgfWfWG8PznnbKQXpmJgvSVokphpvLci5xDM2nkcmtYBBvTvBzQ0j3EZcxnHa665Bs8//zx+/TXyCFKxdbFNOVfI8SG/6/vvv89zRAXniIqQz4ef83mOiO4c8d133x00tjKW0m5gzhG8jkDQryOqQlDPEbyO4DmC5wheR/AcceAcIccWUQ9lHKNi+LrmcA5fOVBZbUlCSOVYq3/kIk8uVuQCi1SMtVpJJnidxkx0kQs7uRBVfR6Qi1Xhqquu8ny8BEnx7nafTtu4NcZyEepEu3LRbNc1gdywyU2LLsciie64yMnJ8VoU3+DWuSSo84PfriPkQU18fLw7Y5ZUE/lnDMQbfzQCctJRHLcXkEvR5DSgTpr5GtcOWPw3kNY05BS1kHtceYh33XXXGQ+o5OGdPHyMlL179xpZVuShmjzok4enkcw74siSh5/V/e2sY3Hnzp3VaoeQIPL3338b53w5d3l9HrULKwpG5gkV5gc/XEeILFYWsUgi3u0I4nDS/qwx3rFjhyPtSrY0X15HEGWxoibF+afy+UsVZIzE+S3oVpnROs+ER9IS/VGmxmirVq20dRpaDl8ZalnhIydcol6NUVn90aNHD1dqjMqqmLlz50LHHOnRICvBZEWQODxlkYRcoFpYaRTkAsU6lrKzsw0bKL0yTCYyOc7k+9KOIJOa3GzId8MvclT4rLwn/yerm6wVTpF8VvqxbkStMSjvs7KKady4cQeNWWXtho+7/D6yRfLZqvye1fmsfMZa/XXXXXcZKxatcS+vXS9+e/k/a+WjjL98tzp2EslvH/5ZwRovWdkp/dvRbiS/kazOdMJORB7LxqWet8hpx28v/2+tRpR5x1rIFa2d7Nu3r4QtyDi7dY6oSi2k8NWrOpwjKvqNvDxHyP+HHxeyitbOuSTaY9mpz9rxe4av9pUxk/7dsBO/zQ9BuI6QbcKECSFZpC2nzxHh9ieRBtJmtL+9LOaS1fMyt1Qnm1Dz5s2N+qMSHWDJWJYM0t+TTz5Z4rerznFfel5PSUlR4hwhn63KPCdZeA477LCI2lXp/kGVew2JYDryyCNLjK1EnEhUUnV/e12vI+RYDD93yTipaiduzA9+v44QJ3dlEUASQdagQYODxj38PBoeweTkb1+W/dl9jnBqfgiPDKyoXZWvI3SbS3S51yjv2aKbc4mffvvwYzw88la1317F51YS0Rv+nEVgjVHvUcYxKlEYEkKvMzLUEqHD1bVqOkaXLl0aSgthQceoe45RWQFfVWRSlFQjwtFHHx2azEnwxswveqkipxdyuNWnU/3Y3a6XtiDRiWvXrq3wM7KAy3o4Q/Q/J/gJXcfML3qpJKcuc5lEC4nDUtKGyYO5aJH0b+KUkAWeZWVg0mkeqwzOc97eB/IBn3+PnSDoZbec1Tnf6DKPudVHkOYx4i60hcjQebyc1o3XTWqijGO0b9++hgMpPLrSKZzuo6L25f/CiwCT6KBjVA14YieEEEIIISR6ZAX5mDFjjMij6twndu3a1XCQdu7c2Vb5CCkL3gcSQgghhFQNXjepiTI1RqXAr4U4FMVxJI4veb86zq7SSCFsSZkqbUoaHbtuHCUNkqwWk7bFwSYOUJHfjnpkxDusug92Y6dNE0IIIYQQQvzJ4YcfjsmTJ+OOO+7A/fffbyyqjIYFCxbgpJNOMhZkPvbYY2jdurXtshJCCCGEEEKIDijjGJUUExZyMzdjxgzb+zj33HMNx6U4LK280U4gjlHRQaIa5ca2V69ejvVF1HdWllU7qEWLFo70FRQkxYHUsBGkto1O6RucQtcx84teqsjphRxu9elUP3a3q4otEG+hHUSOrmPmF71UklPXuUwcmVLz7OqrrzbS63755ZdRtTNz5kzMnj3bqBn9wAMPoFGjRpzHCFEAXY8dv+ilkpy6zmO8HyN+g7YQGTqPl866kfKJVdEpJVGdTjhFFy1aZKQvddIpaqVflehRuRnt3bu3cWNK1MdNZ2X9+vVd60tHpPj29OnTjU32SXDHzC96qSKnF3K41adT/djdriq2QLyFdhA5uo6ZX/RSSU5d5zKrj2XLluHTTz/FnDlzcMIJJ0TdlkShtmrVCvfddx8mTZrEeYwQj9H12PGLXirJqfs8xvsx4hdoC5Gh83jprBvxQcRouFPKbgfV0KFDjUhRcVY2a9YMbjFlyhTjVZyjEkUa7Y0tcddBH54+t6xoTzvS8TKVbvWQVNVW+m2rpi8J5pj5RS9V5PRCDrf6dKofu9tVxRaIt9AOIkfXMfOLXirJqetcFt6HrFI/77zz0LNnT7z11lsYPXo01q9fH3GbWVlZRt3RGjVqGG3l5eUhMTFRG1sgxE/oeuz4RS+V5AzCPMb7MeIHaAuRofN46awbKZ+YYinoqQCyMrZjx46G8WVkZKB27dq2tDt//nz06NHDSGl72WWXwQuk/w0bNmDVqlWe9K8jkqZYUiKHI3ZTXYejpHRet25difeqe4iInCJvOEuWLDEii/0Oi0cTQgghhBDiLOLQlEW3Y8aMwY4dO6Jup2nTpkYbV111FeLi4myVkQQL3gcSQgghhFQNXjepiTKpdCVKtH379sZmJ+KUknqfXjlFrTovcgMrNWOI2jjhrCwrYpQ1RgkhhBBCCCFVQaI8b7nlFiMDktQNlQjQaJDFutdee61xz/3f//632gtACSGEEEIIIcSPKOMYrVOnjhFFt3jxYtuiRSUKVbbx48fDSySK8Z577sHjjz/uqRykcjp37lwlx2YklE7HK05RptIlhBBCCCGERILcJz/88MOGg/Tmm29GfHx0lXF++eUXXHjhhTj77LOxcOFC2+UkhBBCCCGEEJVRxjHqBDNmzDAiAN2sK1oeI0aMMFK9zp4922tRSAV07979oPdKp9aNlNLfZ7Ro9ZFC2G+++aaxsSh2sMfML3qpIqcXcrjVp1P92N2uKrZAvIV2EDm6jplf9FJJTl3nskj6aNSoESZOnIjff/8dV155ZdR9/t///R9OOeUUI7uStGW3nIQQ/Y8dv+ilkpycx7xtVyVbIN5CW4gMncdLZ91I+US3xNQnzJs3r8wIQK/o3bs33n77bfTq1ctrUUgEqXQlirk6KXZLO0YltTOpHkVFRVi9enVonwR3zPyilypyeiGHW3061Y/d7apiC8RbaAeRo+uY+UUvleTUdS6Lpo+WLVsaD3DuvvtujBo1Cp9//nlUfcvi3Q8++ACDBg3CQw89hCOOOMJWOQkh+h47ftFLJTk5j3nbrkq2QLyFthAZOo+XzrqRgDpGxSE1dOhQqII4aadOneq1GKQKDuxZs2aF/pZUVdEiaXhLp+Lt27dvteQjQFxcHC655JLQPgnumPlFL1Xk9EIOt/p0qh+721XFFoi30A4iR9cx84teKsmp61xWnT5kEednn32G+fPnY+TIkUaJmkiRh0AvvfQSXn/9ddx6661GKZi6devaKichQUbXY8cveqkkJ+cxb9tVyRaIt9AWIkPn8dJZN1I+McXFxcXQlNjYWMPBJamBVODdd9/FDTfcgJ07d3otiu954oknjJv+cCRVsR21O5cuXYqOHTuWeNAQzcMFQewvPEJUnK4zZ86ELmzfvh0NGzYs8d62bdtwyCGHeCYTIYQQQgghQUUcnHIPct9992HNmjVRtyP3VRKFessttyAlJcVWGYn/4X0gIYQQQkjV4HWTmmgdMSo3c9WtD2k3paMHiXqII1Q2cZAK1ms0zJ07t8TfQ4YMqbZ8hBBCSDTk5ORUmgVB0jImJye7JhMhhBD7FwdLhhop3yIRoA8//DC2bt0a1X2rLER9/vnnjTauvfZaxMer/fiA8xwhhBBCCCGkKqh9Z1NNWrRogUWLFkEVxElrR0QjKZv09HTbxldWR4dHekoKZIn2jZTw1MnibO3evbst8gUdWQkvK2sEWXEjD4BIMMfML3qpIqcXcrjVp1P92N2ul7awe/fuEqniy2LYsGF8YBygc4Kf0HXM/KKXSnLqOpfZ3UdCQoJxTr/qqqvw2GOP4cUXX8TevXsjbuevv/7C9ddfjwkTJuDxxx/HRRddZKx6t0tOO+E8R1RGpfNoEPWyW84dO3Zg+vTpFX5m4MCBaNCggeOy6DqPOdWuX2yWOA9tITJ0Hi+ddSPlE6u7Y7SyGyM3kehBkYlUH6fTEUvKW3FkWowfPz6qdL/h6JRC12sKCgowZcoUY5N9Etwx84teqsjphRxu9elUP3a3q4otEG+hHUSOrmPmF71UklPXucypPsQJmJqaajgEJS1uYmJiVO2sWLHCiEI9/fTTce+99yphC4T4CZXOo0HUy2455SF6VlZWhZt8xg1ZdJ/HeD9GnIK2EBk6j5fOupGAOkYlOk9KqL788stei4L169dj3rx56NSpk9eiaEFZ6W2rk/K2LMSRaUWgSrRvaUdnVVJPhTtW6RS3j5iYGNSqVcvYZJ8Ed8z8opcqcnohh1t9OtWP3e2qYgvEW2gHkaPrmPlFL5Xk1HUuc3oeO/TQQ42oz5UrV+Kaa66Juo+FCxcaUVLvvPMOfv31V9vkJER3VDqPBlEvleTkPOZtuyrZAvEW2kJk6DxeOutGyiemWDyHmpKZmYm6deuiXr16hmOrdu3anskydOhQTJs2zYga7dq1q2dy+B1xfsrqjfAUtRbixBQHpDjE7XJCSn8dO3Ys4SyVaNLKnKLdunULOWpFphEjRkBHWDyaEEL8g5yfJ02aVOFnJKKo9HmdEEKIfvz8889G5Od///vfqNuQB0fiZJUapE2bNoXXcJ5zD94HkqDD8w0hhJCqwusmNdE6YrROnTqGgyojIyOq+pB28d577xmOPHHc0SlaNSTaUpza1iY33bKJk7Isp6jlkBwyZAhatmwZ+nx4G9FElEo63SVLloQcrVJ3tKLIUcuRGgSnKCGEEEIIIcSfHH/88fj444/x1Vdf4eSTT46qDVlj/eqrr6JNmza46667HC93QgghhBBCCCF2oLVj1HJMyQ2bRPrdeOONrve/bNkyI8JQnHSjRo1yvX8/I45OC3EqR7NZ7YS3FY1zdO3atYaDU9q0nLbihBUnrWzynjhEZZPoZPnNre8QQgghhBBCiIqceeaZ+O6774zFvG3bto2qjby8PDz99NPGYtLHHnsM+/bts11OQgghhBBCCLELrVPpWogDS9LYinOyR48e+PTTT13pV/qUFLoyxBLFuHr1alf6Jc4ya9YszJgxw3CAyiZOV3GYyoMASePbr18/w5kaBLxKBSCFsGfPnm3s9+rVC/Hx8Y72pwO6jplf9FJFTi/kcKtPp/qxu10vbYEpv9RBlXOCn9B1zPyil0py6jqXqTCPyWdfeeUVPPjgg9i8eXPUfUo904ceegiDBg1CQkIC3ILznHswJZy/z6NB1MtuOatzvuE85m27frFZ4jy0hcjQebyc1o3XTWqifcSoIKlPJa2uIDU+69evj5dfftmx/v744w+ce+65IaeoOGSlLibRA4kGlQhkSbEraZrlN5ZX+VsilIPiFPWSoqIi/Pbbb8Ym+yS4Y+YXvVSR0ws53OrTqX7sblcVWyDeQjuIHF3HzC96qSSnrnOZCvOYPAS6/vrrjQW948aNC2XgiZS///7buBdu166dcd8UgLXYhPjqPBpEvVSSk/OYt+2qZAvEW2gLkaHzeOmsGykffVz7FSBO0fnz56NTp06Gk9KqOSppTu+9915cfvnlaNasWbX62L17N+bNm2c4QOVVsJyiclPJ2qKE2EdcXBzOP//80D4J7pj5RS9V5PRCDrf6dKofu9tVxRaIt9AOIkfXMfOLXirJqetcptI8lpqaapQKGTx4sHEv+/zzzyM3NzfivsXB2rdvX3Tu3NmVe2JZiS/RroSoiErn0SDqZbectWrVCrVX0WfckKUqBG0ec7M94l9oC5Gh83jprBsJeCpdC3FY9uzZ03BWWmrLviCrYSUNqty0SUpUaxNq164dcn4K6enpoTSqEiW4ePFiLF26NNSP5RAVxPk6duxY13UlxA2YCoAQQvwDUwwSQgiJhk2bNhmpcSXNbnVW0UtWJXGQnnjiibbKR9yH94GEEEIIIVWD101qEijHqOUclVWrmZmZxt/h6lvOzEgpqw15T1bZ0ilKdIYndkII8Q90jBJCCKkOkl5MMi598MEH1Wqnf//+eOSRR0ILkYn/4H0gIYQQQkjV4HWTmgSixmg4EhUqkZ6yStWK7LQ2+TuaTQhvQ1L3Si1TOkUJcQY5znbu3GlsAVvbETW6jplf9FJFTi/kcKtPp/qxu11VbIF4C+0gcnQdM7/opZKcus5lfpjHjjnmGMyePRuffPIJTj755KjbefPNN9G2bVvceuutxkMhQoKASufRIOqlkpycx7xtVyVbIN5CW4gMncdLZ91I+QTOMWqlzZUUuJLGR5yYpZ2b0WyWk1Rql65fvx7dunXzWk1CtCU/Px//+te/jE32SXDHzC96qSKnF3K41adT/djdriq2QLyFdhA5uo6ZX/RSSU5d5zI/zWM//PCDkRb3vffew7HHHht1OxMnTkTLli3x8MMPY8+ePdWWjRCVUek8GkS9VJKT85i37apkC8RbaAuRofN46awbKZ9AOkYtpP6n1AsNd5CGR4FWROmoUWkrIyMDkydPNtoihDhLUlKSsZGqo+uY+UUvVeT0Qg63+nSqH7vbVcUWiLfQDiJH1zHzi14qyanrXOaneSw5ORn/+Mc/8OOPPxq1Rxs3bhxVW3v37jXql4qDVB5G5eXl2SYnIaqh0nk0iHqpJCfnMW/bVckWiLfQFiJD5/HSWTdSNoGrMVoRy5YtM2qQzpgxA0uXLq3wsx06dDDS8vbo0YPRoSSwMEc6IYT4B9YYJYQQ4hQ5OTl48cUX8dhjjxmLj6NF6o4++uij6NevH2JjA72OW2l4H0gIIYQQUjV43aQmdIxWgqTF3bVrVygFb/Pmzb0WiRBl4ImdEEL8Ax2jhBBCnCYzMxNPPPEEnnnmGWRnZ0fdTvv27TF27Fj07NnTKF1Tgqx0YOUcYNP3QHYGkJ8NJKQAKXWBxl2AtheY+8QxeB9ICCGEEFI1eN2kJvFeC6A6dIQSQgghhBBCCCGVI2VlJGr0pptuwpgxY/DSSy+hsLAwqmxO5513Hrp27WqUvuncuTOw7Xdg+Sxg3ZdAYT5QVAjkZAL5+4CiAqC4CPjtfWDeg8ARnYAz7gQan+SInoQQQgghhBD/QscoIcR3FBQU4OOPPzb2L7zwQsTH81QW1DHzi16qyOmFHG716VQ/drerii0Qb6EdRI6uY+YXvVSSU9e5TLd57PDDD8fkyZNxxx134P7778esWbOi6m/BggU46aST0Kd7Jzx2RgxaN0oBCnKAfduBnN2mM9RCIktj44DCPGD9l8D6r4BmpwPdxwCNjo5OYUI0PI8GUS+V5OQ85m27KtkC8RbaQmToPF4660bKh0U7CCG+o6ioCD/99JOxyT4J7pj5RS9V5PRCDrf6dKofu9tVxRaIt9AOIkfXMfOLXirJqetcpus8dtRRR2HmzJn4/vvvcc4550Td78x5i3H0w4sw7JVl2LJ+JZCdDhTvjxItLjQ3iRotyDVT6+bnmPtr5wP/Phf47l8AqwgRD1HpPBpEvVSSk/OYt+2qZAvEW2gLkaHzeOmsGykfur8JIb4jLi4O3bt3D+2T4I6ZX/RSRU4v5HCrT6f6sbtdVWyBeAvtIHJ0HTO/6KWSnLrOZbrPYxL1OX/+fHz++ecYOXKk8eApUgqLgMkL9+A/S4A7Tk7C8FOTUCe5vE8X73eYxgB5u4H5DwOrPgXOf5LRowRBP48GUS+V5OQ85m27KtkC8RbaQmToPF4660bKJ6a4mMsm3aBVq1ZYv349pkyZguuvv95rcQixBRaPJoQQ/yDn50mTJlX4mWHDhh10XieEEELsRFbiv/3220aKXblHjpb6KTG474xE3Ng5EUnxVjKs8h5vxADxiUCNQ4Az7gY6DjBT75Ko4H0gIYQQQkjV4HWTmjBi1CXS09ON1127dnktCiGEEEIIIYQQ4gmxsbHo378/evfubSwcfuSRR4wHRpGyM7sYd36ei2e/z8Mj5yThwuPqYX7s2eV/oRDouW8h6iycDGTtBM64i85RQgghhBBCAggdoy4hDtGYmBjs3LnTa1EI8T0S6L5nzx5jv1atWsaxRYI5Zn7RSxU5vZDDrT6d6sfudlWxBeIttIPI0XXM/KKXSnLqOpcFcR5LTEzELbfcggEDBmDChAl46qmnsG/fvojb2ZhZjGvfz8GpKwrR88o2FX72rMIfgJwMYMVHQGp9oNPAqOUnxK/n0SDqZbecEvwgke8VccUVV6BevXqOy1IVOI85LyfxH7SFyNB5vHTWjZSPlW+GOEh4eiBGjBJSffLz8/HMM88Ym+yT4I6ZX/RSRU4v5HCrT6f6sbtdVWyBeAvtIHJ0HTO/6KWSnLrOZUGex+QB1EMPPYS1a9fi5ptvRnx8dOu3V6cXVf4hqTualQ4UFQBLXgG2/R5VX4T4+TwaRL3slrOgoMCIdK9ok8+4IUtV4DzmXHvEv9AWIkPn8dJZN1I+dIy6wPjx4w9KqUsIqX4KLtlI1dF1zPyilypyeiGHW3061Y/d7apiC8RbaAeRo+uY+UUvleTUdS4L+jzWqFEjTJw4Eb///juuPLPiyM9qUVwA7N1q7i9/17l+CFH4PBpEvVSSk/OYt+2qZAvEW2gLkaHzeOmsGymbmGKJFdaUl156ydP+ZcXrrFmzsG7dOiMkW8Kwu3fvjs8++8xTuQixCxaPJoQQ/yDn50mTJlX4mWHDhh10XieEEEJcZ8bVWPrzrxg1Yzk+X1u1lftyD3LTTTdV+Jlhxa+iYUw6EJsANDwGiEsArpoJpNS1SfBgwPtAEnR4XU0IIaSq8LpJTbSuMTpixAhkZmZ6KkO431n2GTFKCCGEEEIIIYRUQH42OjSphc+uqY35a3Nwz7wcLN5cWO1md+cUo2FKjJlKtyDHfHPlHODE/tWXmRBCCCGEEOILtI4PliLn4oz0cpMoUWsTWGOUEEIIIYQQQgipgISU0G63FvH44fqaeKd3ClrVq94jjHPf2Icnvs1Fdn4xkLN/EfXGhdWVlhBCCCGEEOIjtI4YbdGihZHG1nJKuh0lWla/jBglpPoUFBSEUlKfe+65iI/X+lRmC7qOmV/0UkVOL+Rwq0+n+rG7XVVsgXgL7SBydB0zv+ilkpy6zmWcx0ohqW13bZSCT0Ch3FsDfdol4NK2CXh5WR4e+jIXW/dFXhVoTy4wcm42nl+Yg4d7JuDarg0Rn8PFyyRY59Eg6qWSnJzHvG1XJVsg3kJbiAydx0tn3UhAI0bT0tJK/O1GhKjQsmVLwynbvHnzEpv1HiGkehQVFWHx4sXGJvskuGPmF71UkdMLOdzq06l+7G5XFVsg3kI7iBxdx8wveqkkp65zGeexUjTuYr7GJ+9/w7zXTogDhnZKxNpba+LRc5JQKzG65v/aU4zr392B4x9Zgve/W12iBA4hup9Hg6iXSnJyHvO2XZVsgXgLbSEydB4vnXUj5aO1+1sckRZyo3PDDTdg5MiRtjknpX6pRIBKVOrcuXOxdOlSzJs3z3hv1KhRuPvuu23phxBSkri4OJx11lmhfRLcMfOLXqrI6YUcbvXpVD92t+ulLdSoUSPUd0WfIcE5J/gJXcfML3qpJKeucxnnsVIcdT6wZDqQVAfI3SuPrELOUaFGYgzuOzMZQzol4vGvc/HCoryoulnxdxZ6PbcQp/xwGsaPH48zzjjDRiUIUfM8GkS97JazOtfVnMe8bdcvNkuch7YQGTqPl866kfKJKdZ4aeSTTz5pOEIlpa04RSdNmuR4n+IsnTJlCsaNG4cGDRoY++ecc47j/RLiBdu3b0fDhg1LvLdt2zYccsghnslECCGEEEII0YAFjwIrPwV2rAKK8mS188Gf2V++5o+MIjy6pCYadx9SYZMvvPCCcQ9THv/4xz8wduxYHHfccdWXX2N4H0gIIYQQUjV43aQmsUGJGO3Tp48rfdapUwcjRowwokZ79eqF7t274+WXX3alb0IIIYQQQgghRAuO7Q3ExgEpaUBMOav39/tKm9WNxePdU6rd5X//+1+ccMIJuPbaa7Fhw4Zqt0cIIYQQQghRj8DUGA13krqFpOKZMWMGBg8eTOcoITYige45OTnGpnHQu63oOmZ+0UsVOb2Qw60+nerH7nZVsQXiLbSDyNF1zPyil0py6jqXcR4rg4ZtgY4DgJS6QGwCEFtWJaBiM5LU2mxA9PrPf/6DNm3a4M4778SOHTtsaZcEG5XOo0HUSyU5OY95265KtkC8hbYQGTqPl866kYA6RsOdofXq1fNEht69e+Odd94xUvn+9NNPnshAiG7k5+cbCw9kk30S3DHzi16qyOmFHG716VQ/drerii0Qb6EdRI6uY+YXvVSSU9e5jPNYOYhj9Lg+QI0GQFxC+ZGjDpCXl4dnnnkGLVu2xGOPPYZ9+/a51jfRD5XOo0HUSyU5OY95265KtkC8hbYQGTqPl866kYA6RsUZevnllxtb7dq1PZNDnKPXX3+9sRFCCCGEEEIIIaQKSA3RM+4yt+S0/c5Rs66oW+zevRv3338/WrVqhcmTJ/OBGSGEEEIIIT4nppjxwa6wa9cuw1G7bNkyo2YJITrgVfFoOW0VFRUZ+7GxsYhx+eGIH9F1zPyilypyeiGHW3061Y/d7apiC8RbaAeRo+uY+UUvleTUdS7jPFYFtq0A5j4ArPsSKNrvnAx7nLEN9TEp5toKm0j65U2Mn7MOu7IKohajdevWRgSpLIBW9ZjV9T7Qz6h0Hg2iXirJyXnM23ZVsgXiLbSFyNB5vJzWjddNaqJ1xKhq9U7lxklWmBJCqodMUHFxccam00TsJLqOmV/0UkVOL+Rwq0+n+rG7XVVsgXgL7SBydB0zv+ilkpy6zmWcx6pAw6OBq2YC134M1G9tPs6IkUcaVZdj0Nktse6Rzhhx5dlISkqKSozVq1ejb9++6NKlCxYsWBBVGyR4qHQeDaJeKsnJeczbdlWyBeIttIXI0Hm8dNaNlA8doy7SuXNnLF682GsxCCGEEEIIIYQQf9KkC3DTD0CPR4DaRwIp9YDkOkBCSpW+XvfMwRj/xgLDwTlo0CAjMiAaFi1ahG7duuG8884zMkMRQgghhBBC/AEdoy7SokULrFu3zmsxCPE9hYWF+Pzzz41N9klwx8wveqkipxdyuNWnU/3Y3a4qtkC8hXYQObqOmV/0UklOXecyzmMRIqv5T73JjCDtfB3QoA1Qp2nl3+v+INBpoPH9xo0b4+WXX8Yvv/yCSy+9NGpRPvvsM3To0AH9+/fn/T5R/9gJqF4qycl5zNt2VbIF4i20hcjQebx01o2UDx2jHtQaJYRUD5mk/ve//xkbJ6xgj5lf9FJFTi/kcKtPp/qxu11VbIF4C+0gcnQdM7/opZKcus5lnMeipGFboOt9poP0+D6Vf75e84PeOuaYYzB79mx8++23OOOMM6IW5a233kLbtm1x6623GnWjCFH62AmYXirJyXnM23ZVsgXiLbSFyNB5vHTWjZRPfAX/R2yGq0cJsQfJ+X7KKaeE9klwx8wveqkipxdyuNWnU/3Y3a4qtkC8hXYQObqOmV/0UklOXecyzmPVJKUu0PYfwBeTom7i1FNPxVdffYVPPvkE99xzD5YvXx5xG/n5+Zg4cSKmT5+Ou+++G3feeSdq1ap14ANZ6cDKOcCm74HsDCA/20wBLPI37gK0vcDcJ9qh7LETEL1UkpPzmLftqmQLxFtoC5Gh83jprBspn5ji4uLiCv6f2MjQoUMxc+ZM7Ny502tRCLGF7du3o2HDhiXek9XRhxxyiGcyEUIIIYQQQoKH3IdMmlSxY3TYsGEH3b+UhUQLvP7663jggQewcePGqGWS+6LRo0djSK+zkLjqQ2Ddl0BhfvlfiEsAWpwNHNvbjIZVFN4HEkIIIYRUDV43qQlT6brIO++8g06dOnktBiGEEEICSEFBgXHxXdEmnyGEEEKCjkQLXHvttVi5ciUmTJiAevXqRf0gTFLrHt2+C9568w0U5ecBBTnA3r+BzE3Arg3mq/wt74vTdPVcYPYQYPF0gOvYCSGEEEIIsR2m0nWJadOmGfVFO3To4LUohPgeCXQvKioy9mNjYxETE+O1SMqj65j5RS9V5PRCDrf6dKofu9v10hbS09Nti6QhepwT/ISuY+YXvVSSU9e5jPOYmiQnJxvpcK+77jo88cQTeOaZZ5CdnR1xO+t25KD/y7/jyTnrMLZHKnq2Siw5dhJEmpMJxCebqXSTagNLXgGydgJn3AVoPs5BQNdjxy962S1nRkYGPvjggwo/c8kll6Bu3YNTY3Me87Zdv9gscR7aQmToPF4660bKh45RF1iwYAGGDBliHFQ9evTwWhxCfI/U7hk7dqyxP2rUKCQmJnotkvLoOmZ+0UsVOb2Qw60+nerH7nZVsQXiLbSDyNF1zPyil0py6jqXcR5Tmzp16uCxxx7DTTfdhDFjxuCll14y0u1GyrLNeTjv1Tx0bZWCcRc3RudmtYCiQiB/H5C7x4wa3bPFrD1asxGw4iMgtT7QaaAjehH30PXY8YteTpwLN2zYUOln3JClKnAec15O4j9oC5Gh83jprBspH6bSddgh2q9fv5AztEWLFujatavXYhFCCCGEEEIIISRCDj/8cEyePBm//fYb+vTpE3U7C9Zk46SnV6HvKxuwKjMeqHUYUK8lkFIfQAyQswvYu/X/2TsTOCmq622/vc307AswLMo6qIgQdhDjzmLUxCSKuCRG/BQRjfkbjQIaozEqosbEJIqKRjRxA3FNFGVTMYrsRCIiq+wwzL5Pb9/v3J4eZ2BmmO7p7qq6/T5adHVN9b3n3r5Vt7reOudAIZ6jh76OXiMIIYQQQghJcGwB8RXWlPPOO0+FjYsnEi5X6pTXENLF4i26aNEiCqNEK4xKHi3HVG1trVpPTk5miIME7jOrtMssdhphR7zqjFU90S7XyLEg52eG0jUHZjknWAld+8wq7TKTnbrOZZzHrDnPrVq1CtOmTcOyZcsiLsNhByaf3hW/u7AHumYlBz1HxWsUgaBgKmF1TxgPnHsXEv13oJUx87GTCO2Ktp3tOd9wHjO2XKuMWRJ7OBbCQ+f+inXbeN1kTrQOpSs/UkpLS9XgNgo5kGS5/vrrKYoSEiXkmJJ8P6Tt6NpnVmmXWew0wo541RmreqJdrlnGAjEWjoPw0bXPrNIuM9mp61zGecyajBgxAkuWLMGHH36I6dOnY/369WGX4fMDT32yHy+uOIhfjzkOt4/vjqyUXKC6EKguDgqj25cBo28M5h8llkTXY8cq7TKTnZzHjC3XTGOBGAvHQnjo3F86t40kaChdCV0b8tY8UqiMxyJI/SKKHutJMkIIIYQQQgghhFgL+e0v0arWrFmDl156Cb2Pi+zp/6o6Px54fzfyf7sSj31WhRpJTyg5R2XxeYDN70fddkIIIYQQQhIRrT1Gc3NzG9YbC5XxYujQoZgzZw6GDBkStzoJSQR8Ph+WL1+u1s844ww4HA6jTTI9uvaZVdplFjuNsCNedcaqnmiXa5axQIyF4yB8dO0zq7TLTHbqOpdxHrM+drsdV155JSYk/wdPz/8Af/jXThRU+sIup7DSi9sW7MTjS5z4w5hU/GxUCRyZXYBdK4DBV8bEdhJ7dD12rNIuM9nJeczYcs00FoixcCyEh879pXPbSIIKo+Ix2hgRRUWsPHJ7tMTX/Px8ZGdnq/LHjBkTtToIIUdPWB9//LFaP+200zhhJXCfWaVdZrHTCDviVWes6ol2uWYZC8RYOA7CR9c+s0q7zGSnrnMZ5zF9SPKW4eZzjsOkU7z447LDePQ/1ais84ddzq4SL65eUIZH/lONhy5x4YLsYuiTzSvx0PXYsUq7zGQn5zFjyzXTWCDGwrEQHjr3l85tIwkqjIpIKYTC6UpoG3pvEqLH09jDhw9vWCeJ22dWaZdZ7DTCjnjVGat6ol2uWcYCMRaOg/DRtc+s0i4z2anrXMZ5TCM81eolIwm4d0w6po7Jx/2LD+Pp5fvh8YUfwWrjAQ9++MT/cMbig5jV43OMHj06BkaTWKPrsWOVdkXbzpSUlIbyWtsnHra0Bc5jsSuPWBeOhfDQub90bhtpGVsgnrFl44yEsZ0yZYoSRWfNmoXf/OY3RptEiFYUFBQgLy+vybZDhw6hU6fI8uoQQgiJHXJ+PlbO86lTpx51XieEEEKsgGnmudeuAkp2AaW7AU8VkN4VcGdiW0E17n5nJ15ZVdCu4n/yk5/gwQcfxMknnwyj4O9AQgghhJC2wesmc6K1BN44zO3YsWMNtYUQQgghhBBCCCGak5ITfHW4gq+eSvWS3ykFL197MtbeORTj+9fvEwFvvfUWBgwYgOuuuw579uyJismEEEIIIYQkEloLo41ziUYzryghhBBCCCGEEELIUXQfFXx1B1P7oLYc8Psa/jykRzo++NVALL5lIIb3TI+oCr/fj+eeew4nnHACpk2bhuLi4qY7VBUB614C3vlV0IP1nxOCr/JetlcfsT8hhBBCCCEJRELkGCWE6EVdXZ0Kjy3IjYCkpCSjTTI9uvaZVdplFjuNsCNedcaqnmiXa5axQIyF4yB8dO0zq7TLTHbqOpdxHtOIk84H1jwfXHe6AW9NUIhM69hktzH9crByejZeX3sYd761A1sLasKuqqamBg8//DCeeeYZzJgxAzdfNh4p2/4FbP8I8HmO/oCE+N2/IWhfn7OBAROAvH4RN5W0HV2PHau0y0x2ch4ztlwzjQViLBwL4aFzf+ncNpKgHqO9e/fGokWL8OGHHyIzM9NocwghUUSekpaFtB1d+8wq7TKLnUbYEa86Y1VPtMs1y1ggxsJxED669plV2mUmO3WdyziPaUJqblB0bBxWt7oo6Dl6BDabDZcO64Sv7h2O2Vf2RZfMyG7ElZSUqBt5JwwehefmvghvXV1QkK04EMx1WvJt8FXey3YRTbcsAt6cAqx+HggE2tVkktjHjlXaZSY7OY8ZW66ZxgIxFo6F8NC5v3RuG2keWyDAK2BCiLWSR8tpq7w8eGMhIyND3VAgidlnVmmXWew0wo541RmreqJdrpFjQc7Ps2fPbnWfqVOnHnVeJ/qeE6yErn1mlXaZyU5d5zLOY5rNc4e+DoqOQsVBoKZEbr8AKblASjZgbyZ4l9+LypIi/HnpHsxaXony2shv1Zyc58KDY1Px45OTm/+OxJNVRNvk+gfIT/4RcMZtotSa+neglTHzsZMI7TKTnZzHjC3XTGOBGAvHQnjo3F+xbhuvm8yJ1qF0CSF6IhMUvcDDQ9c+s0q7zGKnEXbEq85Y1RPtcs0yFoixcByEj659ZpV2mclOXecyzmOaIeFph00C1swF0jsHt4k4Wl0Y9B5NzgBcaYDdLi4KgKdSeZSmIYC7zk7DlDM648FPavDEx/tQ5w1fIN10yIOfvlyK0T3deOii43HmCVnBPKf19Siv0fL9gKc6aN+md4HUDsDwa6LfF0TrY8cq7TKTnZzHjC3XTGOBGAvHQnjo3F86t40kaChdQgghhBBCCCGEkLgjwqh4YgoiPmZ0DXpqIgDUlgEV+4GyvcFXeS/b5e8ZXdGx83F47NJ8fPPSDPziF7+I2HPh829rcNZft+KHc3bgy0JH0IbcfCClQ9CDVcRa8WgVRMQVT1dCCCGEEEI0h8IoIcRy+Hw+/Oc//1GLrJPE7TOrtMssdhphR7zqjFU90S7XLGOBGAvHQfjo2mdWaZeZ7NR1LuM8piEiZkp4WhFIBQlbm90zuLizAVdqUAiVV3kf+lsovO2wSeh56f144YUXsGHDBlx44YURm/LvL4sw6P41uHru1/i22AOkdQyKpCFxVAmzADYuiEbLSQIdO1Zpl5ns5DxmbLlmGgvEWDgWwkPn/tK5baRlGEqXEGI5ZJJavHixWh8xYgQcDofRJpkeXfvMKu0yi51G2BGvOmNVT7TLNctYIMbCcRA+uvaZVdplJjt1ncs4j2ksjkp42h6jg6Lj9mXB7eniOdoMDhfQ5xxgwCXBcLz1DBw4EP/617/wySefYNq0aVixYkXYpgQCwIsrDuHV1QW46axuuPP8HugoOU9VeN/ioCC7dRGQ3gk4sDG4TULtulKC+Ui7jwL6XRBcJ2Gj67FjlXaZyU7OY8aWa6axQIyFYyE8dO4vndtGWobCaAQ8++yzzW7Pzc1Fnz59MHjw4LjbREgiYbfbMWjQoIZ1krh9ZpV2mcVOI+yIV52xqifa5ZplLBBj4TgIH137zCrtMpOdus5lnMc0R0TOc+8CRt8IbH4f2LUi6KlZVwUk1XuM9jgVOOn8VoXHM888E5999hnefvttzPj1Tfh6576wTZGcpX9ashfP/ecA7hh3HG4ZEkBaoAoo3R0UQj/7KyCCaWNKdgH7NwBrngf6nA10OTeSXkhodD12rNIuM9nJeczYcs00FoixcCyEh879pXPbSMvYAgF5blBfysqCIWGimUC3tQMklPtDBNIbbrgBkydPZvJeoi0FBQXIy8trsu3QoUPo1KmTYTYRQghpHjk/z549u9V9pk6detR5nRBCCLECiTbPed/8JV5480Pc884O7C31RlxOlww77jkzCdcOS4UryQU4koJeoj4PEPADNnvQk1XEW5UjFSgor0Pe7U29Vvk7kBBCCCHkaHj/3JxoL4FnZ2crT86dO3dGrUy/33/UUlxcjDVr1mDevHl46qmnlNfo7bffjpycHNx5551Rq5sQQgghhBBCCCGJjbOuFNd+vyu23H4cZp2XjuyUyMK+HSj3Y+q/a3DK30owf0MFAjXlQE0p4KkCvDXBV3lf8m1wCeUjJYQQQgghxKIkRCjdeDjFZmVlYciQIWoRxFNUePjhhzF9+nQVp1oWeo8SQgghhBBCCCGkXUjYWwApTuCOM9Iw+Zx8PLS0EH9Ztg81Hn/YxW0p8mPi/EoM7+bArB+l4dyTOwF2B+D3AZ5KoLY8KJSW7we86TFoECHWobS0FB9++GGr+4wfP17dKySEEEKI+UgIYdRI7rjjDkyYMEFdEE2cOBELFy402iRCLE9dXR0ee+wxtX7rrbciKSnJaJNMj659ZpV2mcVOI+yIV52xqifa5ZplLBBj4TgIH137zCrtMpOdus5lnMdI2Ei4W0FC3QLIcdsw6+I+uPmc43Dvv77F858dgD+CZ8RX7/NhzNN7Mb5/FR76SW8M6ZEJuDOBtDyguhioLqLXaAToeuxYpV3RtrO2thZfffVVq/ucddZZcbGlLXAei72dxHpwLISHzv2lc9tIy1AYjQOSb1SeJOvbty/efPNN/PSnPzXaJEIsj/wQIeGha59ZpV1msdMIO+JVZ6zqiXa5ZhkLxFg4DsJH1z6zSrvMZKeucxnnMRIWKTlAya5g/k+PeJBWKgHz+JxkPHvVibht7PG4860deGtDYUTFf/hVsVquGNEJ91/UC306pQBpHQFnMlC5N+rNSQR0PXas0i4z2cl5zNhyzTQWiLFwLISHzv2lc9tI89gC8YgzayB2ux02mw3btm1Dr169DLVFvEbFlg8++MBQOwixevJoOW0VFRWpdckhLMcVScw+s0q7zGKnEXbEq85Y1RPtco0cC3J+nj17dqv7TJ069ajzOtH3nGAldO0zq7TLTHbqOpdxHms/CTfPrXsJWPlMMLyt5P6EDcjND4a/bcRn20ox/c0dWL41ci9Pl8OGKWd0xd0X9EBeZhIKDh5A3j3fNNnn0LffoFOPEyKuQ3fMfOwkQruibWd7zjecx4wt1ypjlsQejoXw0Lm/Yt02o+6fk9ahx2gcGTp0KObMmWO0GYRYHpmgOnToYLQZlkLXPrNKu8xipxF2xKvOWNUT7XLNMhaIsXAchI+ufWaVdpnJTl3nMs5jJGxOOh9Y83xw3ekOCqQS6la8OhtxWn4WPr5tEN7bWKQE0o37qsKuyuML4G8f7cPczw/itrHH4epRTetQbF0CUBhNuGPHKu0yk52cx4wt10xjgRgLx0J46NxfOreNtEwwGQWJC9u3b0dJSYnRZhBCCCGEEEIIIcTKpOYCfc7+LqyuoPJ/ljd7w+/CgR2w/rfD8MKlHdEjK7JbQRW1Pvz+37swYtZ/j/7j3jURlUkIIYQQQki8ocdoHFm7dq3KN0oIaR8+nw9r1gR/eA8bNgwOR9NwUSRx+swq7TKLnUbYEa86Y1VPtMs1y1ggxsJxED669plV2mUmO3WdyziPkYgYMAHYsghIzgQ81UBNCVC+H/DWAinZgL3pLR+H3YZfDHFj4knZmL2yEvcvr0NRdfjZlQorvUdvrC1tT0u0R9djxyrtMpOdnMeMLddMY4EYC8dCeOjcXzq3jbQMhdE4sWDBAuUxOm7cOKNNIUSLCev9999X64MHD+aElcB9ZpV2mcVOI+yIV52xqifa5ZplLBBj4TgIH137zCrtMpOdus5lnMdIROT1A4ZNAtbMBdI7B7eJOFpdGPQeTc4AXGmA3Q74/YCnEqirgNsZwK9HJ+P/DUnGI5978Njn1aj2tM+Upeu/xcRAQKucY9FE12PHKu0yk52cx4wt10xjgRgLx0J46NxfOreNtAyF0Tjwxhtv4NJLL1U/ECTPKCGkfdjtdvTv379hnSRun1mlXWax0wg74lVnrOqJdrlGjoXk5OSGulvbhyTOOcFK6NpnVmmXmezUdS7jPNZ+EnaeE2G0qhDY9G5QHHWlBHONSs7R2rLgchR2wBZAVkoA949Nw01nd8N9H1Vhzqf74fNHZsblT6zEM5vG4qGHHsKIESPa2yrtMPOxkwjtirad7TnfcB4ztlyrjFkSezgWwkPn/tK5baRlbIFAIPy4KRZCBrMIktu2bUOvXr3iLog+/fTTWLx4MaSbjbKDkFhRUFCAvLy8JtsOHTqETp06GWYTIYQQQgghhCQUcltHvEZlCSHCaE0p4KsDAn7AZgccSYCnKrjN5wECPiApA8gNpvz55mAVfvv2Tsxfe7hd5siD4ffffz9OPPHE9raMEEIIIcTS8P65OTG9x6iIi6tWrWp3ObNmzUJ2djZiSUlJCYqKilTIXMknGiIkik6YMIGiKCGEEEIIIYQQQqKHhK8dfg3QYzSwcQGwfVlwe7r76H3Fu1QWdxZQVwn4vYDfB9gdOLFzKuZd3x+rdpZj2pvbsWxzZHlD58+fr+7lXHfddbjnnnvQtWvXdjaQEEIIIYSQBPIYnThxIl5//fWjtrc1b0WoefHMc9G4S6VeeZ+fn6+S+GZmZsbNDkJiDZ94IYQQQgghhBCTIaF0N78P7FoRzDlaVwUkpQLubKDLQGD9S0Ev05Jvg56lKR2AtI5NipD7GB9+VYzpb+3A+t2VEZuSmpqKW265BXfccQeysrKi0DhCCCGEEOvA++fmxPTCaIjS0lLljSmemOKRKV6kEqJWvDQbC59maE5jEVbskbyiS5Ys4Y8Aoh1Gndg9Hg/++te/qvWbb74ZLpcrpvXpgK59ZpV2mcVOI+yIV52xqifa5ZplLBBj4TgIH137zCrtMpOdus5lnMdIXFl6P7BlUTD/aPl+uYsBZHQFkjOO2tXvD+C1NQW46+2d2HG4JuIqc3Nzcdddd+HGG2+E292MJ6vm6HrsWKVdZrKT85ix5ZppLBBj4VgID537K9ZtozBqTkwfSjeEiIqy9O7du8n2HTt2qDAtDz30kBJJj/QMjbfHqNQXqlNC90oI38mTJ8elbkISBTnGysvLG9ZJ4vaZVdplFjuNsCNedcaqnmiXa5axQIyF4yB8dO0zq7TLTHbqOpdxHiNxZcCEoDCanAl4qoNepSKQemuBlGzA/t2tIrvdhitG5OGSQdl4ZtlO3PfhIRRU+sOuUh50v+222/D444/jvvvuw89//nM4HA4kCroeO1Zpl5ns5DxmbLlmGgvEWDgWwkPn/tK5bUQDj9G2ICF3r7/++iYCaSi/Zzy8NeUJyD59+igP0XHjxmHMmDExr5MQIzHqiRe/36/qEaR+u90e0/p0QNc+s0q7zGKnEXbEq85Y1RPtcs0yFoixcByEj659ZpV2mclOXecyzmMk7qx+HlgzN7hecTAojipsQc9RV5qoovKlA55KoFZuGAZQXuvHfZ948ejHxe2qfsCAAZg5cyYuvPDCuKY+Mgpdjx2rtMtMdnIeM7ZcM40FYiwcC+Ghc3/Fum30GDUnWgmjIaZMmYI5c+Y05PeU123btqFXr15Gm0aIVvDETgghhBBCCCEWRG4FLf8jsOnd4HsJqyu5SSXnaEs43UBKDgrq3Mi7fUVUzDjjjDNUpK3Ro0dHpTxCCCGEEDPB++fmRB9pvxFPP/00br/9dro+E0IIIYQQQgghhByJeGmecRswbFLwvYTVze4ZXNzZgCs1KITKq7wP/U32iyLLly/Haaedhp/+9KfYtGlTVMsmhBBCCCEkYYRRQZ44vOSSS4w2gxASA3w+H9avX68WWSeJ22dWaZdZ7DTCjnjVGat6ol2uWcYCMRaOg/DRtc+s0i4z2anrXMZ5jBgmjg6/Bvjp08AJ4wGHKyiGpncGsroHhVB5lfeyXf4u+13wx6OKWrJkCc4777yITXnrrbdUeN3rrrsOe/bsgW7oeuxYpV1mspPzmLHlmmksEGPhWAgPnftL57aRlnFCYx5++GEsWLDAaDMIIVFGJqm3335brffv3x8Oh8Nok0yPrn1mlXaZxU4j7IhXnbGqJ9rlmmUsEGPhOAgfXfvMKu0yk526zmWcx4ih5PUDzr0LGH0jsPl9YNeKYM7Ruiogqd5jtMepwEnnq1C6KCg4qoiBAwdi4cKFWLp0KaZNm4bVq1dHlOPrueeew0svvYSbb74Z06dPR25uLnRA12PHKu0yk52cx4wt10xjgRgLx0J46NxfOreNJKgw2rt3b+U1+sYbbxhtCiEkikgS7BNOOKFhnSRun1mlXWax0wg74lVnrOqJdrlmGQvEWDgOwkfXPrNKu8xkp65zGecxYgpE9Bx8ZXCJkHPPPRcrV67E66+/jrvuugtbtmwJu4yamho88sgjmDNnDmbMmKFE0pSUFFgZXY8dq7TLTHZyHjO2XDONBWIsHAvhoXN/6dw20jK2gOaJOOVC+oYbbsC2bdvQq1cvo80hRCuYPJoQQgghhBBCEou2/g70eDz4+9//jnvvvRcHDhyIuL7jjjtOlTFp0iQ4nVo/308IIYQQzeD9c3OivQQ+fPhwaK79EkIIIYQQQgghhJgKl8uFKVOmYOvWrbj//vuRmZkZUTl79+7F5MmTVbjeN998k/d4CCGEEEJIu9DeY1QoLS1FVlaW0WYQoh184oUQQqyDnJ9nz57d6j5Tp0496rxOCCGEWAHOc+b/HXj48GHMnDkTf/vb31BXVxdx/aeeeipmzZqFM888M+IyCGkP5eXl+OSTT1rdR8ZnRkZG3GwihBBiTnj/3JwkRAwSiqKE6IWEZHrqqafUuoTKlieRSWL2mVXaZRY7jbAjXnXGqp5ol2uWsUCMheMgfHTtM6u0y0x26jqXcR4jiUDHjh3xxz/+Eb/61a9wzz334MUXX4zI+3PFihU466yzcOGFFyqhVTxJzY6ux45V2hVtO6urq7F69epW9xkxYkSzwijnMWPLtcqYJbGHYyE8dO4vndtGElwYJYTohfx4LioqalgnidtnVmmXWew0wo541RmreqJdrlnGAjEWjoPw0bXPrNIuM9mp61zGeYwkEj179sTcuXNx2223YcaMGfj3v/8dUTnyuffeew9XXXUV7rvvPlWuWdH12LFKu8xkJ+cxY8s101ggxsKxEB4695fObSMJHkqXEKJXKAC/3489e/ao9eOPPx52u/bpktuNrn1mlXaZxU4j7IhXnbGqJ9rlGjkWGGLQPJjlnGAldO0zq7TLTHbqOpdxHms/nOes+ztw+fLlmDZtGj7//POIbUpKSsJNN92EO++8U3mmmg0zHzuJ0K5o29me8w3nMWPLtcqYJbGHYyE8dO6vWLeNoXTNCYXROOU4nThxImw2GxYuXGi0OYREDZ7YCSHEOvCGMSGEEJ3hPGft34Fya+rtt99WwuamTZsiLiczMxN33HEHbrnlFqSlpUVcDiGtwfMNIYSQtsL75+ZEH2nfxIgr9qJFi7Bq1SqjTSGEEEIIIYQQQggxFfIg+U9+8hP897//xbPPPovjjjsuonLKysrw29/+Fn379lX5wiRvGCGEEEIIIY2hMBoHSkpKjDaBEK2QEAf/+9//1CLrJHH7zCrtMoudRtgRrzpjVU+0yzXLWCDGwnEQPrr2mVXaZSY7dZ3LOI8REsTpdOLaa6/Fli1bMGvWLGRnZ0dUzoEDB5TH3imnnIJ58+YZnjNM12PHKu0yk52cx4wt10xjgRgLx0J46NxfOreNtAyF0Tiwfft29Zqbm2u0KYRogdfrxeuvv64WWSeJ22dWaZdZ7DTCjnjVGat6ol2uWcYCMRaOg/DRtc+s0i4z2anrXMZ5jJCmpKSkqJC4cj9FXt1ud0TliMB62WWXYeTIkVi6dCmMQtdjxyrtMpOdnMeMLddMY4EYC8dCeOjcXzq3jbSMs5W/kSjx9NNPG20CIdqFWerZs2fDOkncPrNKu8xipxF2xKvOWNUT7XLNMhaIsXAchI+ufWaVdpnJTl3nMs5j7UdyS06YMOGY+xBrkZOTozxHb775Ztx77714/vnnI/LmWL16NcaMGYPx48fjoYcewpAhQxBPzHzsJEK7om2ny+VqKK+1feJhS1vgPBa78oh14VgID537S+e2kZaxBYyOJ9IC69evx8yZM9XTgSNGjFAXruH+iJGnAo0OoSsX3/Iq3Zyfn6+eViREF5g8mhBCrIOcn2fPnt3qPhJy7sjzOiGEEEKIWX4Hbtq0CXfeeSfeeuutdpVzxRVX4A9/+IO6T0MIIYQQEit4/9ycmNJjdN26dRg+fHjD+7Vr16qcECKShiOOLlq0CKWlpTASk+rOhBBCCCGEEEIIIZbi5JNPxptvvonPP/8c06ZNw/LlyyMq55VXXsH8+fNxww034O677+aDYYQQQgghCYQpc4xOnjxZCYohUVFei4uLMX369LDK6dOnT0M5jZd4Iu7XdMEmhBBCCCGEEEIIiQ6jR4/Gxx9/jH/9618YMGBARGVIHrG//e1vymtUwvSWl5dH3U5CCCGEEGI+TCmMiodoY0Ex9Lpq1aqwysnNzW34fOPymhNLY7UQQqKPx+PBU089pRZZJ4nbZ1Zpl1nsNMKOeNUZq3qiXa5ZxgIxFo6D8NG1z6zSLjPZqetcxnmMkPCRezwXXnihSsX0wgsvoEePHhGVU1FRgd///vdKIP3rX/+Kurq6qNuq67FjlXaZyU7OY8aWa6axQIyFYyE8dO4vndtGLBZKd8iQIerCNoQIjHLB2zi8bls9RhuXIYwdO1Ztz87ORiyRvKJFRUVYvHixWieERA85ng8ePNiwThK3z6zSLrPYaYQd8aozVvVEu1yzjAViLBwH4aNrn1mlXWayU9e5jPMYIZHjcDjwi1/8AhMnTlT51B944AEUFhZGlAPsV7/6Ff70pz/h/vvvx+WXXw67PTr+BLoeO1Zpl5ns5DxmbLlmGgvEWDgWwkPn/tK5baRlbAETftsiJo4fP76Jh6esb9u2Db169WpzOY888ojKOSGfFTH0ww8/RO/evRFvxo0bhyVLlqinD7ds2RL3+gnRLXm03+/Hjh071Loc09H6saozuvaZVdplFjuNsCNedcaqnmiXa+RYkPOz3CxsjalTpzLHVgKdE6yErn1mlXaZyU5d5zLOY8RKGPU7sK2Ulpaq+0EicFZVVUVczuDBg/HQQw81uT8VKboeO1Zpl5ns5DxmbLlmGgvEWDgWwkPn/op128x+3ZSomFIYDYmjImrKoBRP0VmzZilP0nCYM2cOpkyZoi5g58+fj4svvhhGsGDBAlx66aUURol28MROCCHWgcIoIYQQQhLpd+D+/ftx3333qXtDPp8v4nLOOeccdU9qxIgRwQ1VRcDm94HdXwDVxYCnGnClACk5QPdRQL8LguuEEEIISXisct2UaJgylG4o5O2aNWvaVUbjULpDhw6NglXts0NC6xJCCCGEEEIIIYSQ2NK1a1f1UNivf/1r/Pa3v1UPzEfCsmXLMHLkSEz40Xl44JJ+ONGzEfA1k4OsZBewfwOw5nmgz9nAgAlAXr/2N4QQQgghhEQVfXyemyE3N7fZ9XgT63ymhCQaEuLgm2++UYusk8TtM6u0yyx2GmFHvOqMVT3RLtcsY4EYC8dB+OjaZ1Zpl5ns1HUu4zxGSOw48cQTMW/ePKxcuRLnnntuxOW8/u4H6P//HscNL36F/YVlQMUBoHQ3UPJt8FXee2uCoumWRcCbU4DVz0t+KG2PHau0y0x2ch4ztlwzjQViLBwL4aFzf+ncNpKgwqh4akpcaCPyijZHSUmJ0SYQogVerxevvPKKWmSdJG6fWaVdZrHTCDviVWes6ol2uWYZC8RYOA7CR9c+s0q7zGSnrnMZ5zFCYo+EwpW0TR988IHKHxoJPj/w9PL96Hvvetz17l6UllcExVBPFVBTGhRJZaktC35gzVxg+R/h9Xi0PHasck4wk52cx4wt10xjgRgLx0J46NxfOreNWDCUbjTIysrCtm3bjDZDCbNmsIMQXZC8wd26dWtYJ4nbZ1Zpl1nsNMKOeNUZq3qiXa5ZxgIxFo6D8NG1z6zSLjPZqetcxnmMkPgg43b8+PEqfdNrr72Gu+66Czt27Ai7nCoP8ODHlXhqVQ3uGtcZN45IhjtQBfjqAG8tUFMGOJOA1I7AV2/Blpyj5bFjlXOCmezkPGZsuWYaC8RYOBbCQ+f+0rltpGVsgUAg0MrfCSGkRZg8mhBCrIOcnyXPVmtMnTr1qPM6IYQQQoiuvwPr6urwzDPP4L777lPtipQeWXbcNyYdPx+UDAf8QKDe48TmABxJQHIG8MM/A/0uiJ7xhBBCCDE9Ol036YTWHqOEEEIIIYQQQgjRn5qammNGasrPz4fb7Y6bTcT8JCUl4Ze//CWuvvpqPPbYY3j00UdRUVERdjm7Sv2Y9EYZHv3UjpljUnDhiU7YEAACPsDmDYbW/dctQMVBYNgkcUmJSXsIIYQQQsixoTBKCCGEEEIIIYQQS1NWVobXX3/9mJERKIyS5sjIyMA999yjxsj999+Pp556Ch6PJ+xyNh7y40evVOL0Hg7MGpuM07o7AV99ObXlwKpngapC4IzbKI5amMrKSqxateqYOW3T0tLiZhMhhBBC2g6FUUKI5ZAfqP/4xz/U+lVXXQWXy2W0SaZH1z6zSrvMYqcRdsSrzljVE+1yzTIWiLFwHISPrn1mlXaZyU5d5zLOY4SYAwl195e//AW3jOuNu/8wEy+viiy87qe7fPj+36vw45OceHBMMk7o5MA//BcBhUm46qt/w5XaARh+DayOVc4J0bZThNGPP/641X369+/frDDKeczYcq0yZkns4VgID537S+e2kZahMBoHduzYoUL22O12eL31eSYIIREjqZF3797dsE4St8+s0i6z2GmEHfGqM1b1RLtcs4wFYiwcB+Gja59ZpV1mslPXuYzzGCHmok9gB1669mT85vQUzPjXAXywpS6ict7e7MW733jxi0Fe5JyThqysLKhDZ81coMdoIK8frIxVzglmspPzmLHlmmksEGPhWAgPnftL57aRlqEwGkfkApgQ0n6cTicuu+yyhnWSuH1mlXaZxU4j7IhXnbGqJ9rlmmUsEGPhOAgfXfvMKu0yk526zmWcxwgxGdXF6mVIFwcWXp2DpfvSMe2dPVi9pzbsovwBYO76WiRv/DN+NjIPZRfmoWOHHGDjAuDcu2BlrHJOMJOdnMeMLddMY4EYC8dCeOjcXzq3jbSMLUAZPOasW7cOw4YNQ05ODgoLC402h5CoUVBQoEINNebQoUPo1KmTYTYRQghpHjk/z549u9V9JK/Wked1QgghxApwnosfCfE78J8TgMoCoORbwFsDpHdFoHw/Xv9fDe76sBxbivwRF53ttmP6+T3xq7E9kXLNG0BKTlRNJ7GH5xtCCCFtJSGumyyI3WgDEoHt27er19zcXKNNIYQQQgghhBBCCCGt4UoJvtrqb5vVlsNmAy49JRn/uykdT/0wBV3SI7ulVlLjx/Q3d+CEuz7DszPvYMolQgghhJA4Q2E0Drz22mtGm0CIVvj9fuzcuVMtsk4St8+s0i6z2GmEHfGqM1b1RLtcs4wFYiwcB+Gja59ZpV1mslPXuYzzGCEmI+TF6XAFX+sqgq9+L1wOG6aMSMHWWzvigbHpyEy2RVTF3pI6TP7Dsxg4cCDefPNNS+Y1s8o5wUx2ch4ztlwzjQViLBwL4aFzf+ncNtIyCR00WQZ7SUmJ8ugsKiqKevlS9qJFi7B48eKol01IIiNP1L7wwgtqfcaMGUhKSjLaJNOja59ZpV1msdMIO+JVZ6zqiXa5ZhkLxFg4DsJH1z6zSrvMZKeucxnnMUJMRvdRwP4NgDsbqCkFfHX1Imm9eGmzIy3JhjvPTsOUkSl48ONK/G1FFep84Vf19ddf4+KLL8app56KWbNm4cwzz4RVsMo5wUx2ch4ztlwzjQViLBwL4aFzf+ncNtIyCSeMPvroo8qDc+3atXGr04pP/RFiZmw2W0McdlknidtnVmmXWew0wo541RmreqJdrpFjwel0HjOHhexDEuecYCV07TOrtMtMduo6l3EeI8RknHQ+sOb54LrTDXhrAb+vQRcFvhv/HVLt+OP5GfjVqam4Z2kFXlxfg0huA61YsQJnnXUWLrjgAsycORPf+973YHasck6Itp3tua7mPGZsuVYZsyT2cCyEh879pXPbSMvYAgmi2i1duhSXXnqp8uKMd5PlgJI68/PzsWXLlrjWTUgsYfJoQgghhBBCiBmQ3yGzZ89udZ+pU6ce9fuFhE/C/A5cej+wZRFQWwYUfyvB9uoF0QBgdwF2R7Mf+/KAB3d+WI5/feNp132kq666Cvfddx969uzZjkYQQgghxEgS5rrJYiREjtE5c+Zg3LhxKC4uVgKlXGDGcyGEEEIIIYQQQgghFmLAhOBrcibgrA+rF/BLWLCg92hzBAIY2MmGd69MxSfXpGF098iicci9qxdffBEnnngibr31Vhw+fDjSVhBCCCGEkEQTRtetW4cpU6Y0EURlPZ4LIYQQQgghhBBCCLEQef2AYZOC66kdAZt4iNY//B7wAV5PUCANLT5PMBdpwKt2OaNXMv4zORdvXpmFkztHlq+srq4Of/rTn1QEsvvvvx+VlZVRax4hhBBCSKKifSIpCZ8rhATRPn36YMKECcqDVNZzc3ORlZUVk7pLS0uxaNEiXH/99SqELyEkOng8Hrz66qtq/fLLL4fL5TLaJNOja59ZpV1msdMIO+JVZ6zqiXa5ZhkLxFg4DsJH1z6zSrvMZKeucxnnMUJMigijVYXA/94Kvtq8QQFUwumKONqs56g9GGbX7lAy6k+GdsF5ozvj5iU2vLF0FYrLqsI2o6ysDHfffTeeeOIJ3HPPPbj22mtNcfxZ5ZxgJjs5jxlbrpnGAjEWjoXw0Lm/dG4bSVBhVLxFt2/frkTR3r17Y/78+RgyZEjc6hfBVURYsWH69Olxq5cQ3ZGHHOS4Cq2TxO0zq7TLLHYaYUe86oxVPdEu1yxjgRgLx0H46NpnVmmXmezUdS7jPEaISZH0SGfcBqR2AD6aGcw3KihxVO0QXJQjqS0oiNoaBWeTz6V0gKO2Ct0H/xA3nnI60r6ci4cXH0RJVdCzNBwOHDigcuU+9thjyoNUnAGMTOFklXOCmezkPGZsuWYaC8RYOBbCQ+f+0rltJEGF0ddee029Dh06FKtWrTLMjmHDhqnXoqIiw2wgRCecTid++tOfNqyTxO0zq7TLLHYaYUe86oxVPdEu1yxjgRgLx0H46NpnVmmXmezUdS7jPEaIiRHhcfg1QHpn4F+3ALXlwTyj9SFzlRCqBNGQQGkDkjMAdw7gcCpPU2dVMX5qXwykp2LA+X1xw1k9MGvHKXj82X+ipqYmbJO2bNmCyy67DI888ggeeughjBkzBkZglXOCmezkPGZsuWYaC8RYOBbCQ+f+0rltpGVsAY1l8PHjx2PJkiXYtm0bevXqZajnqoijOTk5KCwsNMwOQqJNQUEB8vLymmw7dOgQOnXqZJhNhBBCCCGEkMRDfofMnj271X3E0+7I3y8kfBL6d+Dq54FVzwI1ZUBVAeCtrf+DDXAkAUnpQHJ68L2nMiiiSthdwZ0dFFdDIXqHX4M9e/bg97//Pf7+97/D7/e36/6XCKTxjJJGCCGEkGOT0NdNJqZRfA/9EBfosWPHGiqKCtnZ2eqVeUYJIYQQQgghhBBCLIoImqf8FEjNBTqeBOT0AtxZgDMpGE7XUwFUHAAq9teH3Q0ATjeQ0fU7UfTkHwXLAXD88cdjzpw52LhxY4O3SiR8+OGHKlralVdeqZwDCCGEEEJIggqjErp23LhxRpuB3NxcXHLJJWohhLQfeZJ27969amnPU7WJhK59ZpV2mcVOI+yIV52xqifa5ZplLBBj4TgIH137zCrtMpOdus5lnMcIsVjO0XphE8mZQHbP4CIeoa7UoBAqr/K+/m/+pEzs9WRgb/4V8H//143C7gY5+eST8cYbb+Czzz7DGWecEbF5r7zyCvr164ebb74ZBw8eRKyxyjnBTHZyHjO2XDONBWIsHAvhoXN/6dw2kqDCqHho9unTx2gzkJWVhfnz52PevHlGm0KIFni9Xjz77LNqkXWSuH1mlXaZxU4j7IhXnbGqJ9rlmmUsEGPhOAgfXfvMKu0yk526zmWcxwixYM7Rnz4NnDAecLiCYqh4hGZ1D4qh8irvZbvDBW/+ODxbOALP/ucgvD5fi0WPHj0aH3/8Mf71r39h4MCBEZknx+bf/vY35Ofn45577kF5uYTzjQ1WOSeYyU7OY8aWa6axQIyFYyE8dO4vndtGWkbrbLIiiorXKCFEL2w2m3rgILROErfPrNIus9hphB3xqjNW9US7XLOMBWIsHAfho2ufWaVdZrJT17mM8xghFiSvH3DuXcDoG4HN7wO7VgA1JUBdFZBU7zHa41TgpPNhc6Yj639PtOnYkb9feOGF+MEPfoCXXnoJd999N3bt2hW2eZWVlbjvvvtU7l0pY8qUKUhKSoq4uVY+J5jJTs5jxpZrprFAjIVjITx07i+d20ZaxhYIBOqzwOuHJJ8fNmwYZs6cabQphGgJk0cTQgghhBBCzID8DhEBqDWmTp161O8XEj78HRhfampq1Nh+4IEHUFhYGHE5vXv3xv3334/LL78cdrvWAeQIIYQQ08DrJnOi9ZXQ2LFj8frrrxttBiGEEEIIIYQQQgghYeN2u/HrX/8a27Ztw29/+1ukpqZGVM6OHTvws5/9TDkQLFy4EBr7SRBCCCGEJG4o3QkTJmD69OnYsGEDBg0aZLQ5hBBCCCGGIekFXn311Vb3EQ+C3NzcuNlECCGEEELahoT5+8Mf/oAbb7xRhcidM2cOfK3kK22J9evX4/zzz8c555yDhx56CCNHjoyJvTpTXV2NL7/8stV9JEdsSkpK3GwihBBCSNvRPsfoJZdcgsmTJ2PlypWG2iLJe4XrrrvOUDsI0QFJhB3yBpcHIJxOrU9lUUHXPrNKu8xipxF2xKvOWNUT7XKNHAtSt4RwOdY+JHHOCVZC1z6zSrvMZKeucxnnMUL0JprHTteuXVVo3VtvvVV5kM6bNy+icpYtW4ZRo0YpeyRM74knnqjtOSHadpaXl+P9999vdZ9evXo1K4xyHjO2XKuMWRJ7OBbCQ+f+0rltpGW0/5blCToRSO+88048+OCDhtgg4Uquv/56lcOBwigh7cfv92Pz5s0N6yRx+8wq7TKLnUbYEa86Y1VPtMs1y1ggxsJxED669plV2mUmO3WdyziPEaI3sTh2TjjhBLz22mu4/fbbMW3aNCxdujSicuRm8JtvvqnuV91zzz1KeNXtnGAmOzmPGVuumcYCMRaOhfDQub90bhtJYGE0OztbPT03fvx4dOjQAbfddpuhYU8IIe3H4XDghz/8YcM6Sdw+s0q7zGKnEXbEq85Y1RPtcs0yFoixcByEj659ZpV2mclOXecyzmOE6E0sj53hw4dj8eLFWLRokRJIJVRuuEhI3qeffhovvviiymd6xx13tOkellXOCWayk/OYseWaaSwQY+FYCA+d+0vntpGWsQUSJNv62rVrMXbsWCWQihdpRkZG3Opet26dSm6fk5ODwsLCuNVLSKyRkIx5eXlNth06dAidOnUyzCZCCCHNI+dnCbvWGlOnTj3qvE4IIYRYAc5z8YO/A82LeLqIF6mE2N2+fXvE5UjO+bvuukvlM3W73VG1UQd4viGEENJWeN1kTrT3GA0xdOhQdVE4ZswYFef/4YcfxrXXXhuXulevXt1wYUkIIYQQQgghhBBCjk1JVR0WfXUQa3cVo6TKg2qPDykuB7JTXRjaIwfj+3dBAIFj7pOV6kIiICmcrrjiClxyySV45pln8Ic//EHdfA2XoqIiFXHt8ccfx3333Yef//zn9KIhhBBCiDYkjDAaCqu7Zs0adXEoORgk7+eUKVOUJ6ksmZmZUa9z586dmDVrVtTLJSSREUd3edpGkKdrbDab0SaZHl37zCrtMoudRtgRrzpjVU+0yzXLWCDGwnEQPrr2mVXaZSY7dZ3LOI8R0pQtB8vxzoZ9+GjzIRRXelBZ54XPH4A/ANhtgMNuw9JNh/DwB1/DYbMhw+2C29VUuNtTXI2Ne8vw8spdOL1vR1w0qBtO6By/6GFGHjtJSUn45S9/iauvvhqPPfYYHn30UVRUVIRdzq5duzBp0iT1+ZkzZ+LCCy9sYrtVzglmspPzmLHlmmksEGPhWAgPnftL57aRBBVGZ8yY0eLfRBQVgVRyKMgSok+fPkpAjQYlJSXtCl1CCGkej8fTELZGjnP50UcSs8+s0i6z2GmEHfGqM1b1RLtcs4wFYiwcB+Gja59ZpV1mslPXuYzzGCHf3Zx8ZeVuPP+fHSip9qCixgt/IKBEUZUHqv4feVGJoUQktdlQWFmnhFGn3aa2i3jqctiRmeKCGw58tLlALVeM7IErRnaP+01Po44dSSN1zz33qLCu999/P5566illS7hs3LgRP/rRj3D66aerh/9PG9wP2Pw+PDu/wOz/dlD7zDhxG5LSsoHuo4B+FwApOTALZjp3cR4ztlwzjQViLBwL4aFzf+ncNpKgwqgInqWlpa3uc2SK1W3btsXYKkJINEhNTTXaBMuha59ZpV1msdMIO+JVZ6zqiXa5ZhkLxFg4DsJH1z6zSrvMZKeucxnnMWKVULaoLotJXXJ/5ollW5UwWlRZp8TQoJdovSja7IcAb/19HY/PC4cNSHLalWJa7fGjrMaLZKddhdLNdLvwyspdKK6qw41n58dNHJU+/OC/exBwJCnRdso/VsOdnBzXUL+S2+wvf/kLbrnlFtx99914+eWXIyrn008/xfe//338eHBHPHhRT/TtkoFU22nBP5bsBsq+BfZvANY8D/Q5GxgwAcjrBzMQzXOXhCw+VnmyTzxsaSucx2JXHrEuHAvhoXN/6dw20jy2wJHKoEYMHz4ca9eubfHv8XxCULo5Pz8fW7ZsiVudhMQaJo8mhBDrIOfn0FOQLSHeBEee1wkhhBArwHkuNqFsP916GF5f09tGteXFWHTXRU22rdi4HaNO6d2uOl9a8S3+snQLSqs9qs4GL9F65A7OsW5gifdodqpThdatqvOhotYb9CwFkJniRKeMZNhgU56jV47qAaP6sDFOhy3uoX7XrVunvGI++OCDiMsQr9xJIzJx75gsdM+yAzY74HAB7mzA6f5ux2GTggtDExJCCElAeP/cnGjtMZqbm9usABrSguOhCTMmNSGEEEIIIYQQQqwUylY8K0PUeHwoq/bA4/OrHJ++quqjPnf32xsxqcIRcZhaERGf/Ggbyqq9SkT0SkX1YmgoXK4Q2t4SfgSUl2huWjI6Z7rQ0R9QHpvFVR5VtpCX4VbtG9ErJyZCZFv60OhQv0OGDMHChQuxdOlSTJ8+HatWrQq7DGnH31eW4aW1ZfjVqamYfmYaclPtQE1pUBiVULrJmcCauUBVIXDGbRRHCSGEEGIKtBZGJV/okRensm3o0KFxqV9yjK5evVq9EkIIIYQQQgghhJgVuWci4uTCjQfU+7IaD0qrPKj1+pvs5/U0fR+iPWFq5362syF8bmNRVHKGOuw2VZ6IiqrYAFoPresPoLCiFsflpKrPdkhPRrLLgQOlNUocTXF5lEfpuxv24dbxJ8GIPhTMEOr33HPPxRdffIEFCxbgrrvuwjfffBN2GbVe4JFPqzBnTS2mn5ONX41wIgU1QPl+wFMNpHcGNr0LpHYAhl8Tk3YQQgghhISD1sJodnZ2w4VpTk4O5s2bhzFjxsTVBhFFx44d22pIX0JIeHi9Xrzzzjtq/aKLLoLTqfWpLCro2mdWaZdZ7DTCjnjVGat6ol2uWcYCMRaOg/DRtc+s0i4z2anrXMZ5jJgB8XIUQU8C2BaU1SrRThB9Lj3ZidQkB+w2G2rsydh6xGcPV9aiW0ZAfT4nNSmsMLXi0bl400G17vUHBUSRBMWjUoRNQWzyhaJ/1X8u5E3aOBhYoH672N7FH2j4vNifk+pSnqOSK1WE0eVbD+Pa0/tENb9nS33osPlxmnOHsueb5H7wwdYQ6ldE00NltcqrVEL9RtKH7UEE2AkTJuDHP/4x/v73v+P3v/899u/fH3Y5JdU+TH+vEH/9LAn3juuASQP8cNbUOwqIOCqeoz1GG5Jz1EznLs5jxpZrprFAjIVjITx07i+d20ZapuVM4BogOT1DF3mSOyHeomhInJ0yZUrc6yVEZ/x+P7788ku1yDpJ3D6zSrvMYqcRdsSrzljVE+1yzTIWiLFwHISPrn1mlXaZyU5d5zLOY8RoJJRtKPRrY0FPxMReHdLQOdOtxMS0ZKcSGY+kvNqLgvJatS7lSHlt5e31e5Unpz8QUOFZBREQQ6KmIJ6kimZcRY9yrJRwv4FgCN3GZKcmqX1FiBQRUkL2LqoXZGPeh7mpOC5wGF18BUhPdqi+lD6VvpW/C2Xt6MNo4HK51P2rLVu24IEHHkBmZmZE5ewtqcPk+fsx8MkSvPlVLQLVxUBtWfCPGxfACMx07uI8Zmy5ZhoLxFg4FsJD5/7SuW2kZRIix6ggXptGMXz4cPVaVFRkmA2E6ITD4cB5553XsE4St8+s0i6z2GmEHfGqM1b1RLtcs4wFYiwcB+Gja59ZpV1mslPXuYzzGDGadzbsawj9GhL0umS5mxVBWyLSMLXvfXngqPyhEkK3Mc3qoi1Emg15jZZWe1QY3RAitEp7ymu8Kt+n2+XAmm+LMGHY8Yh1H9oCfuxKPaHevu8Mj3eo37aQlpaGO++8E1OumogHrx2Dvy3bjTpv67ldm+Prg7W4+OVanNrdhVnn23Dm0Exg+zJg9I3B/KNxxEznLs5jxpZrprFAjIVjITx07i+d20ZaxhaQOLOasm7dOgwbNkx5jG7btg29evUyxI4dO3Yo71UJ51tYWGiIDYTEgoKCAuTl5TXZdujQIXTq1MkwmwghhDSPnJ9nz57d6j5Tp0496rxOCCGEWAHOc5EjnpXXzF2lPCh3FVWhzutXXoyNRcXG1JYXY9FdFzXZNvzO11FhT1P5MrvnpsLpsGHupJFtClN7xqylOFxRhxqvT4XFFU002dn0xmSt/E2lSmoaRrcxje9uiWeoiKv9ujT1ehTRUsLWprgcOC4nBd1zU/Dkz4Yh3n3YHJIXVUL9RtKHMWHdS6j57Cls2l2IxxZux0sbalvO7doGLjglCzN/mo/vXXIbMPjKKBpKCCGEmBfePzcnWofSDeUYNQuSb5QQQgghhBBCCCHELCz66qAS9CS8rAh6IipK2NlwyGxHmNpqjy+4Uq+6SR7TaNDIAbUBR33ZErZXkDyfZunDWIf6DQfxodi6dgl2F1WhR0o15vwkEx/f0BVnnxhZeF3hvf+VYvADa/GLX9+HnTt3RtVeQgghhJBw0DqUbu/evbFo0SK1bpS36JF2EEKi8yOttLRUrWdlZSmvcJKYfWaVdpnFTiPsiFedsaon2uWaZSwQY+E4CB9d+8wq7TKTnbrOZZzH4od49omItXZXMUqqPEqUE+/B7FQXhvbIwfj+XYzz0DMI6QtBwssKEvq1cX7PtuCwIeIwtbEaRc2VK7lHG4uvqUmO+PRhIIAkf41arbO7m0mMGvtQv+Ec509+tA2DDx6A+Lc4Ah4EEED3vAz89fLOWPNtBf60ZB827KmKoGzgHx9txmsnnYQbb7wRd911Fzp27BiTdpj13MV5zNhyzTQWiLFwLISHzv2lc9tIgnqMCmPGjFGL0ZjFDkJ0wOPx4PHHH1eLrJPE7TOrtMssdhphR7zqjFU90S7XLGOBGAvHQfjo2mdWaZeZ7NR1LuM8Fh/mfrZThTt98fNvsXFvGfYUV6Owok69ynvZPmnuSvzxw83YcrAciYIIxILH52+XWJhS/zmPLyg+So7PtiACoKL+PmTIm7MxR96kbEtI1+bua1bXe4i6RMmVG6Aprrj0oR1+fK/0M7XIerT7MJq8snI3Fm48gORATTDvq3wfAcAHuxJvT+2TgVevOxFPXNEbfTq6I6qjrq4Of/7zn9GnTx/cf//9qKysRCwx07mL85ix5ZppLBBj4VgID537S+e2kQQWRgkheuJyudRC2o6ufWaVdpnFTiPsiFedsaon2uWaZSwQY+E4CB9d+8wq7TKTnbrOZZzHYs+qHUUN4U4PldVgb3GVChUqr/I+FL70o80FuHXeBrz8xS7lRaA7oVC2/naGso00TG237JQm9Sot7gjpM+R82cSyY3w1SY6mt7x8/gAqar1qPbNeEB3WMxfx6kMRFmVpjViF+m0r8kDAKyt3qfUyr0v1mV963WaD2xFQeVulbQ67HeNOzsFbNw7ATy76ITIzMiKqr7y8HHfffTf69u2rcgTH8oa0mc5dnMeMLddMY4EYC8dCeOjcXzq3jTSPLZAAV/nr169HUVERzj33XKNNIUQrmDyaEEKsg5yf5YZTa0ydOvWo8zohhBBihVC4OfZqJG9Z0upnP08aim+rXSoHZONbIeKNKMKbeMO5nQ4VSjfTHbw59oMBXXDj2flah1Wb+s81ymtWBOJqjx+dM5ORUd/+5qgtL8aiuy5qsm3cA++g1pWOQ2W16vs4LicF3XNT8OTPhh2z/hc+24mHFn4Nvz+g8msKTrt4dX7ndSlCaehvoa9OfSP1X0vjO1uh7V0z3eiQntywvbCiFsVVHiQ77eiemwqnw4a5k0ZGJXRyuH3YEmU1noj6MFqIt7Q8GCB23FT+V/S37UAXewnSA5WotKWiyN6h2c/VePz4x4pDeGr5QZTXRC7mikD6wAMPYMKECbDbG4nIVUXA5veB3V8A1cWApxpwpQApOUD3UUC/C4LrhBBCiMng/XNzonWOUeG8887D4sWL1Xp+fj6++eYbmImysjJs375dCbcSQsTIXKiEEEIIIYQQQogZEU+2dzbsw6dbDyuvziM57K3AgGOUcbC8FjUBuxLOxOutsVefeOiJYCpli9gq3qOdMpJVSNGc1CRcOaoHdEXyq4qo53LYlagnXoqRiHqRhqn98eBumP3RVpRWe5VALV6XooHa7YEGD0obbGpdcoTKlkD9YmvuUX8RuW02ZKcmNWwST1ERRUPtFc7o2zFq+WSN7sNoPXQgx1dw3YN1OBED7TtRZU9Huq8SqYFqlAR88NuODrXsdtkx+YwuuHhoB8xZfhAvrSxArTd8P4ytW7fisssuw/Dhw/HQQw9hzMDjgI2vA9s/AnzNeJOW7AL2bwDWPA/0ORsYMAHI6xdZBxBCCCEkYdBaGJ0+fToWLVqknuyUp0G3bdumhMjMzExD7RIbZs6ciWeeeQYlJSVH/X3KlCnqAtBoOwkhhBBCCCGEECOR3/KS8zAU3lMQ0bKs2qPyOYqIJmJajr2uTeWJYCZlimQjYUJVlFDZbrfBCZvaVufzo6gyWF5ehlvVPaJXDk7oHFm4ULMztEeOyrEq4WXLarxKROzoD6g+aSuiVUcaplYEzDEnd8Yba/fCaber/hdEqBaBUOxQwqjdBp9UFFJGm4mmG7I40+0M7u8PKMEvJIpmpjgbBMsfDeoGU/VhDEP9tgXxxA6Fmpa+/8g2HL+wL0UtbKizuZAU8CAjUIFSW1aLZXRIc+HXY7vhipEd8cwnB7FgXWFDeOFwWL16NcaOHYsz+mZi2g+Ox6Dj05Dh8CIDlbD7PUDAD9jsgMMFuLODH9qyKLgMmxRcYujlXVNTo+4xtoY4Z7jdkeVgJYQQQkhs0VoYff311zF06FCsXbtWvZeLKqPFxkceeUQJtkJLUYyffvppJZqKqHvOOefE2UJCzI/X68V7772n1i+44AI4nVqfyqKCrn1mlXaZxU4j7IhXnbGqJ9rlmmUsEGPhOAgfXfvMKu0yk526zmWcx5pHfjM/+dE25bUpSHjP0ipPQ0jVxrjgPeYdDvEu9DUoak2VNRHcxJdUhCyXzQaP34/Cijq4XQ4VVvfdDftw6/iToCPj+nfGyyt3wQ2HCjMr/StiYuMwtMeirKoOAbtLfV76TMLUjju5c5s/P+m0XiqEqwjSzoAN3no1zeMLKLHOEcptKV6jx1DaZJ9klwMHy2qU0Bj6qkUUFS9g4YqRPaIqdB+rD20BP3pUbVbru1JPQkBEvSOQ/cXWSPuwvUh4akEeOhB8ydnY4ByCYXWrUWHLQG6gCJmBMtQFXKi2pQb3CdixOjBQrQ+3fQmHza++qy6ZSXjkRx1x56l+3Lu0Em9/3bYHF45k+dYyLP/bV7hkQAruOycFfXIdqvzgeJABIiplKeB0B0PpJmcCa+YCVYXAGbc1iKPRPneJw4PcczxWiormhFHOY8aWa6ZrGmIsHAvhoXN/6dw20jKtZ323OBKi9s4771RPcYnI+MEHHxhqj1wUiSgaEkRbylEif/f7/UrIffPNN+NsJSHmR46PdevWqUXWSeL2mVXaZRY7jbAjXnXGqp5ol2uWsUCMheMgfHTtM6u0y0x26jqXcR5rHvEUFVFU/DsPldWo3IsiOMlP6Qy3U+Vx7JrlVq9pyce+iRUIeYfabHDZ7SrsqbzKe9nuR0AJohJWNxS2VeoUlm89rERZHRGPzdP7dlTrodCy4mEZ8l5sCyXV7QtTKyLljefkK/FSBEGn8hINIndQRCgVT1J5bU0WVeF1bcFQsOU13gahUcaIeP9KqZI39oqR3RHPPrQhgE61+9Qi60cS61C/bUH6TBBPbCE1yYFPks5S65W2NLUIHf2FyPKXwh6Qxwxs2IaeagkGOQYc8CEXpchDEfp1cmLulcfhszsG48wTWvY0PRYLNlZj0BNF+OV7NfhfRQb2+nNR5uyIgAihUq+3BijfD1QcDH5g07tBgbQezmOcx2JVHrEuHAvhoXN/6dw20jJay9/Z2dkqd2fv3r3VYiQzZsxQnqBCKLSv5BSdNm2ayp0g62LrmjVrVBhd8XKVfSThvAi8PXv2NNR+QsyEw+Fo8KaWdZK4fWaVdpnFTiPsiFedsaon2uWaZSwQY+E4CB9d+8wq7TKTnbrOZZzHms8pGgqfW1BWq8KTCjmpLiVCHRmi1O1MAspaL1M+k2QTv1Bb03yUSqoKKE9EEd5EEJWnyGWvGm8wbK+ENl206SAmDDseOnLRoG7KY1O8Y4Ohir04UFrTYn83R3vD1F45sgeKK+uUIC6eo3Zb8DsRobo1MTRkmQiiIoImOexwKOHbpr438b4MIZ6iIoq29KB6rPowJ8WJvSl91H4hAVGIV6jftiC5dYWQQ6546O529sAH7h/gvJqFKLLnytMDSAtUKs/RjEA5ym1pGIYNqk1pgQqkBaqQGqhqcMWutKWjzJGL0X3S8NFLj+H9gi7KYeDLL78M2z5xFH9uVTle2VCJa07Lw7Xf74zjstPRKTcPtupioLoIqKlPV5XeOSiM9hitco5yHuM8FqvyiHXhWAgPnftL57aRlrEFWornqgEiOI4YMQKzZ8821I4dO3ao3AIhQVReRfy8/fbbW/zMww8/rC4WZd9hw4Zh5cqVcbWZkLZQUFCAvLy8JtsOHTqETp06GWYTIYSQ5pHz87GuiSS6xZHndUIIIcQI/vjhZiUySfjckNdmlyw30lvwDHV7KzCg7ItWy3zPOxBlCIYAbQkRRUMec6FUlqkuB/p0SseA4zIx8+LvQVde/mKXEqNFhiwor1XCniAaovR7SpJDedJWlxdjxX0XN/nskDvno1uXzkp0FvHxylE92pVT9vn/7EBptQfltV74RawOeYoql9DgdyNabUjEE+G2Y3qyEiGPFD3FA1W8L0VojHWe2Lb2oYyz6jpfs6F+29uHkTL1n2uwp7gae4urUO3xKy9bJdIGAri0eh5G132m9hNhND1QrnKONoc0pzbgQpktHbWOdCQ57ej5/csaQtv6fD68/PLL+PUdM1B4YG/E9uamOXHjWV0w9axu6JblBmrLg16jYkFG12BY3RPGA+fehWjD62pCCCFthffPzYnWHqNjxozBG2+8YbQZyitUCImid9xxR6uiqCD7iBfpxIkTlRfpc889h2uvvTZOFhNCCCGEEEIIIcYgHnSfbj1cvx4UX0TwakkUbSut+x0GEdEqYK/PcVkvwtV4/UqYE6FOZ8STsriqToUvlrCzKS6P6n8JXyxhaWURvJVBoboxHdOSoxKmVu6ZiCA4oleOyuuq8o5W1aGq1guvSjsE2O2A02ZDarITualJOLVPB2SmupSgJ99RVZ1PhYHNSnFhWM9claczXiFp29qHjREvVwmfG/IUjUWo37YgNogwKiGmRRiVflQ22WyYnzIRZfZM5TkaCqubhDqk+yvghLfe59oGL5woCaSiGknqWJIjdk3HH6Nno3yf4o1z6vifYGRBN3z76Vv45oMX4a06hrt3MxRVenH/e3sw9/NDuO+iXrh6VGfYU3KB6kJAPEhFGN2+DBh9YzD/KCGEEEJIIgijU6ZMwSOPPIINGzZg0KBBhnmLSkL2xuFzZ86c2abPShhd8SwVz9FZs2ZRGCWkHjmWqqokPA+QmpoakzBIuqFrn1mlXWax0wg74lVnrOqJdrlmGQvEWDgOwkfXPrNKu8xkp65zGeexpiz66iC8voAKR1pXn1NUwrm2F+Vd2AaTxftQhXBVYbaC28RzVYQinZHv88az85GTmqS8HkUUy2gIC+uBxxcMa+tsFJq2MdEMUyuenbeOPwnXnt5HhTBe822R4aJnu/qwzoua6mrVhzVwwG6Lf6jfYzG0Rw427i1TNknoavFm7egPBMMo22z4wH0+vnKegjPrPsZgz3rUBYBCWy5qETw2k1GnjlURgb1wYL1rKD5LORvnDj2zQRQN8c6GfXC4ktFx9MXw5J+NohULUPbF6/B4wn/4YE9xHf7fC9/g8SV78dCPe+C8LoBNco7KImx+H4FBV3Ae4zwWUzuJ9eBYCA+d+0vntpEEFUZFhBSvUfHYXLhw4VF/37lzp8r7Kfk8V69ejZKSEpWXNDc3F0OHDsW4ceOUx2ZmpiRzjwwRRRt7i4a8R9uKeI6Kjdu2bcOyZcsa4l0TksjIj6VHH320IX9vUlL7b5Lojq59ZpV2mcVOI+yIV52xqifa5ZplLBBj4TgIH137zCrtMpOdus5lnMeasnZXsXoVMU4QT9G25LiMljAqno+SX7Eht6UNymNRBDndOdJjc/nWw3DD0US8q3XVYuMRn/vDjwdg1CnRD/0qoqfkdbVSbtfm+jDVZcPpFcEUSWtzzobf5jAk1G9rjOvfGS+v3KW+b/FiFYFTvLc7pCc37CM5R19yXoW3/D/BqLovcKJnE1Z7+qu/ne1chRKfG58HTsB/7COQnZGn2ibidWse4Q53Gk684Fr88vRy/HvJCsxbc1jlEw2XDXsqcf4Tm3BOfgoeGpeCke5SIN0N7FoBT/8JnMc4j8XUTmI9OBbCQ+f+0rltJEGFUUFExb59+zYRFdevX68EysWLFzfsF0q1WlxcrJbt27crUVO8TmVf8dqMRCBdtGhRk/fXXXddRG0YP368eqUwSgghhBBCCCFEZ0Lhc0O5PqMmSIaSObYBEUaDsXSDWqqEcRUvxUShNY9NmzPlqP375KUbYqdV+vCDL/dgU/3z+rlpLqS4k03n9Spe2af37ajCF4s9ktu3uMqDZJfjqDDWlfYMLHWPxUfJ52Bo8Udq231Jv8a+suCx2zktKKaK4Htk21ryCO8Z8OHeH/XAbac68ODSEiz439Ehm9vCsm3VGLWtGhMG1uCBCRnolVmEN9fuafj7lH+shjs5WYUOFi/Z8f27mKL/CSGEEBI/bIGQIqgxImyK6i9i57x585TIKTRu+pEu0kf+LScnB/Pnzw9bmLTb7Q1hdIcNG4ZVq1ZF1Ib8/Hzl0VpYWBjR5wmJBUweTQghhBBCCIk2k55ficKKOuwuqlJea12z3EhrY37RHYcrUev1qZClRyJOp8nOtomsXr+/oQzxnpO8i/dedIqlPBdjBX8H6suWg+W4dd4GtX6ovAZl1d6GHL8iXjbnuS1hp8ULVERUITPFqfKrCo9NHHSUF+yMN/6rQvYeKqtRIXsz3E50znTjnrJ7kOUvQWf/ASQFPFi8Pw0PLCrEih3lEbfHYQd+PKwbyi56Au6sjs3uI16tIghfZLDHLiGEED3hdZM5sSMBkPyc5557rgqtK6JoSPQUwTK0HEnjv8n+RUVFGDt2LN58882w8os2Lk8+HyniuSrCqHi7EkIIIYQQQgghupJSH7Y1pMFISNu2Ip9xRCE3lL8+lKet3nvUaT86JCghuiHCoOQ5FTplJCuRUxDRc2dhJQ4qMdODylqvepX3sr2xKCqfE6Sc5oTGljzCa23BzwXqb1UOOS4ZL0zqi7//oi/6dz3aS7ktSBVvrNqHpfddjjULnsSu/QXqgYu9xVVKmBWvVfFeFS9ZEYRf/mJXE0cJQgghhOhJQgijIY/LxoKorDdesrKyGpYj/9b4MxMmTMCGDcGn546FeKgKoTJGjBgRsf2XXnqpKkdyoRJCCCGEEEIIIboiIS4F8dIUJHxrWxGPNvWQczvqFw84X/3v+JA4e1xOCsNtkoTgipHd8YMBXVSuXfH87JyZrLym5ZAor/GqELv7S2vUq7yX7fJ32U/2l8/J56Wc5qj2+L7L+dsQthootwXDMXvrs365AzXqWD69bybemNIPj13aC91zIsv75vfUYv/Hr2Djn6/Gvk/no7I66K26p7haCaUi8gqvrNyFJz/aRnGUEEII0Rztc4wKCxYswDPPPNMgbmZnZ2PixIkYN24chg4dit69ezf7uXXr1ikhUkLohvKRyufHjBmjRM9j5RwNCaMhpN5IERvl82vWrIkoTykhOuH1ehuOSfHEdjoT4lTWLnTtM6u0yyx2GmFHvOqMVT3RLtcsY4EYC8dB+OjaZ1Zpl5ns1HUu4zzWFMn7J6E2M1NcSryoqPWioz/QbBjPI0lLcqLGU6fCYx4ZTle0Dq/P3yCeHon83hdRVPKJhnDWi7PnD+wajaaRBMVM59FjIcfGjWfnIyc1SQmFGW6XWsS7sqzao44r8eIWQTPZHsBA+y447XbsSe6rsvKKp6iIos0dY615hH/tPBn53m2otKcjzVeJ1EA1SgI++G0O2O02/HBgLsafnI3X1hzGkx8dQGFlMMxvOPiry1Gw+FmUrX4H3c79BZJPPhu1XiiRV9on3q4LNx5Qbb9yVNBzNtpwHjO2XCsdiyS2cCyEh879pXPbSIJ7jE6ePLnhR46E1ZWwuE899RQuueSSFkVRYciQIeqzH374IbZu3ar2F4qLi/HQQw8ds95t27Y1eS+hfNvD8OHD6TFKiApr5ccXX3yhFlknidtnVmmXWew0wo541RmreqJdrlnGAjEWjoPw0bXPrNIuM9mp61zGeawp4/p3VsKm2+Vo8FSTHIZtIaM+9Gez2KBEzzqf5A/1Bz1D6xd5L9uVKFqvizpsQW+2jhlJuGpUzyi1jiQiZjqPtgURNUUYlByh55zUqeF4zMt0K+/p7rmp6jUvMxnHefaic+1unHVCB7W/fK4lUbQ1j/Avkk6Fz+ZELZJQZ3PBhgAyAhVNPpvktOOqUXlYdMsp+OXZXZCaFNltzdqSQ9jxxqPY89zNwK416n6h5FMtKK9VfxdBWPKtxgLOY8aWa7VjkcQOjoXw0Lm/dG4baRlnIniLSm7OnJwcJSq2JoS2hoia4jkqnqc33HCDElglX+mxvEYbk5ubG1HdjW1YsmRJu8ogRAccDgdOP/30hnWSuH1mlXaZxU4j7IhXnbGqJ9rlmmUsEGPhOAgfXfvMKu0yk526zmWcx5qSnZqE0/t2VHn/JHyteHNJDsNklwPpya3fxhDPNRFTa2qaht+VvKPiKSoiqB/BULmhcLmNETlHtoqu47DbVc7EnwzqxjC6RJvzaDhIjtBbx5+Ea0/vg0WbDmLNt0UorfYoMVNyg2YlO9CxwyD07piG88b2a1PbWvIIr7BnYL1rMIbVrUaFLQO5gSJkBspQF3Ch2pbapIz0ZAemnNkFE4Z1wHOfHsKrqw8f5SHeFioO7MDXL/4WWb0HIuvMSUD3/khxeZSH7Lsb9qm2RxvOY8aWa9VjkUQfjoXw0Lm/dG4baRlbQPPA+ePHj1diooSgHTx4cFTKnDZtGh599FElkl577bUt7icCquwjyNNy4mkajpB6JCLEzpkzB4WFhRGXQUg0KSgoQF5eXpNthw4dQqdOnQyziRBCCCGEEGJ9xFvr1nkb1Pqh8hrlzSXkpLqUcNpcWF0RPcWztLCyTnl/ihiqwuMGgoKneL3J5+QuiOyrboYoFTT4d1VG/S0S+WznTLeq70+XDVYCEQnC34GkPcgxes3cVfD6Aiq/Z63Xr46zDunJ6O7dhV9X/FHtl+svQlqgUq2X2TJVDlIJqyt46z295QEGtz2AwsJi/GnZQbz6ZdDjM1LSTxyN48ZegxP6nazOF3MnjeRDEYQQQtoFr5vMifahdCU+9IQJE6ImigriLZqVlaVC7IZDe0RRoUOHDsr7lRBCCCGEEEII0RkRIiVXoSB5/8RzUxDP0Z2FlThYVoOyGg8qa73qVd7Ldvm7hL8Vz1IRNlxOOzLcThWCUzTPOm8whK7sIyKpyjdan+cwJIqmuhzo1TEVuWmSZ7AnRVFCYuARLoRERzluxXN0t7MHPnD/QG0rsuei0pam1sVztJt/P3L9hUjxVyDZX410VKEzitX2QbnVeP7iTCyd0hXfz4/8eK345nNsnn0D1v5zJsoPH1BesoQQQgjRD61D6a5bt069XnbZZVEvWxLxrl27ttV9JJdpNMnOzo5qeYRYFXnq2+PxqHWXy9Vq/hKid59ZpV1msdMIO+JVZ6zqiXa5ZhkLxFg4DsJH1z6zSrvMZKeucxnnsea5YmR3FFfVYeHGA8jLcKsQlyVVHuVhVl7jVcuRSBhdyWEowmhBRdB7LC8jWe0rn63x+IJhdJXH6HcBtEQedTvt6JCepIQb4QcDuigbCNHpPGqGdl00qJsKlZ3pdqljUjzCD5TWKM/R91LOQ6a/DKPrPlPiaG0gGemBciQFPEgNVCG13otU3EVDtXltSSi1paNL11Q89bMAnt3VHXOXbkHprq8jaJQf+1a+hwNrF6Ni7ZU49+9/bHdqrCbFcx4ztFxdj0USPhwL4aFzf+ncNpKgwqgIkzKQJTdntDEi3+e2bdsojhICqMlq5syZan3GjBlISgreuCCJ12dWaZdZ7DTCjnjVGat6ol2uWcYCMRaOg/DRtc+s0i4z2Wn1uUxCSC766iDW7ipWIl21x4cUlwPZbhvc/3s3KnXEyvZYlHcs5Pf8jWfnIyc1Ca+s3KXy/mU0CCkelVNQPD3F+9PlsKmchW7Xd7mhfnXuCSpG7qsrd4f9WfFWFVGUN8eIbudRM7Qr5BEux7V4hAsijornaEm1B39LugiHHGn4kfdDlCEVpUiFM1CLTFTCBS8cNomPbYcXTjjSclDqcShv8IDfj3mBMVh/8gU4fYgL+9d/hM3/noPKQ7vDbpvfW4cv3p6L/Py3VGqrm2++GampjXKdVhUBm98Hdn8BVBcDnmrAlQKk5ADdRwH9LgiuR6nP2kM86uTvMWI1OBbCQ+f+0rltJEGF0RCxEBONCGsr9UXzKTVCCCGEEEIIIbEjJIQu+/oQNh8sR0F50INRwremJTmVGCfr+wI+DK3/zF+WbMGPh/Zg+NZ6RJi8clQPjOiVg3c37MPyrYfhhqOJiNkYCZ97Rt+O+NGgbg19OLJXbsSfJYQY4BFe68NzOBsfoS8usH2G02z/hQ9JOGxLgtNuUw80CFkpLuRmJONwYS3WJA3FvOqR2BQ4Dl3tdnXu6DbkHHT53hnY8/m72P7eM6ioqIjoXpwIo3/5y19w77334poLR8P59VvA9o8An6eZD+wC9m8A1jwP9DkbGDAByOsXjS4jhBBCSJSwBcRXWONQusOGDVN5Rs8999yoln3DDTcoj9EtW7a0uM/EiRPx+uuvq3W5IPP5fO2qc/z48SguLsaqVavaVQ4hVk8ezRAH4aNrn1mlXWaxU9ewTbGsh6GbSCzgOAgfXfvMKu0yk51mn8sahNDNh7D5QFAIrfP5lXei3RYUROUXeDCMqxQO5a2Y5rKjY3rQY9EPuwoRGQ2PRR3nsdIqj8r7t+bbIpRWe1BV50NqkkMJJMN65mLcyZ0b8hZG87PE+N+BVsYMx44Z2yWff2XlbuU5GqI5r+5ceyXGO9fie4GvkR6ogDtQi7wOOejerRtsPU7FbRu64ZsyJ/YWV6Ha40fnzGTlId6oIvhrK7H94wXYuuQVeGvqw/FGwEmdUzDzJ73xk8EdYPPVAjUlQYE04FderHC4AHc24HR/96Fhk4KLzWb6ecxsdeg4jxFzwLEQHjr3V6zbxusmc6K1MFpaWoqcnBw88sgjuO2226Jadt++fZGfn48PPvggbsKoeItKvtTZs2e3qxxCogVP7IQQQgghhABbDpbjHfFI3FKAgvI6FFXWKdVTbuw3iKBHoG65NLrvIl5QqRJWNy1J5d0L5biUULI63Xwi1oe/A0kszqEhr26vr+XblC15dc9447/YuLcMh8pqUFbjRYbbic6ZjYTJRtRVlmLron9i58cL4G/O47ONnNojCQ+NS8NZvVsIuSjCqITSTc4Mvj/5R8AZtylxlBBCSOLA6yZzonUo3aysLAwdOhQPPvggJk+ejMzM+ouRdrJgwQJs375deY3GU+SV8B0ixhJCCCGERHIt8eGHHx4zOoVcPxFCCAnf20nWCypqVShIEUNbEkQbPguIb2hDSEjZv7LOh1pvjfKYkrx7EmJS8mtKKFnSOpznCLEuInLeOv4kXHt6n4i8uof2yFHCqIQnF2G0otaLjv6A8tI/kqS0LPT/yU3ofeYEbH7/OexZuVB5lIaDeBQdsHfDpCXAqB7JmHxaHvI7pQB+P+CrBuqq0c1zEEne/cHco+mdgU3vAqkdgOHXtKuvCCGEENJ+tBZGhTFjxiiP0euvvx6vvvpqu8vbuXOnElnlid0JEyYgXjzzzDOqThF6CUl0xPv6o48+Uutnn302HI7mcwQR/fvMKu0yi51G2BGvOmNVT7TLNXIs1NbW4quvvmp1n7POOitu9iQyZjknWAld+8wq7TKTnWaay0QIffKjbUq8FPaV1qhQrRL6sa232P0BEUgDcNkCGOraBz+AL33dUFYdvJkvefdEdJX8mpHkvNRpHjsWnOeImTHzsWOmdonoOWHY8WoJh3H9O+PllbtUDuFkp13lKZXQ5h3Sk9XfbQE/ulXvUOv7UnojYLMjJbczBv/sTvQ55zJ8/e4zOPS/z9pcX3Z2NiZNmtTw/lNZypvuMzV1IfLqdgZD7Qoijq6ZC99xI/HRVwdMMY9ZoY5EmsdIfOFYCA+d+0vntpGWkQdUtebOO+9Ur/Pnz8cPfvADlJcfcaUSBkuXLlU5S+VJ1LFjx6JXr16t7r927domIY9EVI2U1157Tb1GO1cqIVadsD799FO1tDdEdaKga59ZpV1msdMIO+JVZ6zqiXa5ZhkLxFg4DsJH1z6zSrvMZKeZ5jLxFBVRVITNfcVVKK6qg7/NkmgjRBwN+HGKYz8GOvarXKQirpZVe1FeEwzzKCEmo2m7DmOBECuh67FjlnZlpybh9L4d1XrIo7S4yqM8RwUbAuhas1Mtst6YzG756D/pAfT4xSNIOb5/9IySMLoZXYMx00UcrS1Tm30b3zTNPGaFOjiPkVjBsRAeOveXzm0jCewxKmFybr/9duU1umjRIvVU15QpU5QH6eDBg4/5+bKyMixevBgzZ85UQqc8FSxi56xZs1r93Lp161S43cbCqHz+WGJqcyxZskR99tJLLw37s4ToiN1ux6hRoxrWSeL2mVXaZRY7jbAjXnXGqp5ol2uWsUCMheMgfHTtM6u0y0x2mmUuk3x44skpFJTVorQmePNdwuKKqHkkjYM5Nv6r/FyU3f0BG77y5qnP2212Ff7R54cKy5vhdqm8exJisrkQkuHarstYIMRK6HrsmKldFw3qho82F6gczRKOXB4uOVBag5xUF3JSnDiY3F3tF2h0RpYQ5uJZKiJqao8BGHDDnxHYuRpfv/s0Kg5+2y57nl6+D7d+Px1pKblAdSFQXazyjdp3foxRw34JOJO1+k3G32PEanAshIfO/aVz20jL2AKi9CUAkptTPDZDwmYICU3bp08f5ObmKtFUkFyeImqGFiHUTfJZEVVnz57dYl3iUSqepTt27Gj4rJQ9bty4Bs/PcBg+fLgSWsXr9eKLLw7784TECiaPJoQQ6yDn59auX4SpU6cedV4nhBByNH/8cLO6AV9W48HB0hrU+vxwOezw+QINoXTlV2fox3ajn6BBD9HQ9vp/QvvaYUOSM3RDJljK8TkpcLscuPq0XmGHl0wkOM/FD/4OJGbl5S92BXM+I4CC8loljobOwenJTqQkOeCw2eALBFBd51MepaG7opkpTpXb2QYbJg7tBs/mj3DPnbdjz8Gio+qRsX7TTTe1assTTzwBe20J7rmgO647uRIuicyY3RNwuoFRU4DBV8amEwghhJgKXjeZE+09RkOIt6iIleIB2ljoXLNmjfLGbI7GmrEIovJeFsn3KWLltddee9Rn3njjDUybNq1BFBWefvppFBcXY8aMGdiwYQMGDRrUZrsfffRRZV9OTg5FUUIIIYQQQggxGPEu+nTr4fp1j7rB7rTLrXSoULqhX5EtPoEsQmi9OBoSUCXXqNy4l8+LsCqeo06HHV6fhNT1KGF0zbdFFEYJIaQVrhjZXYU1lzDnkqM5xeVR52nJOVpeI+HJg0JpYyQnaXaqS3nnCz8Y0AU/P603bN/vgysyVuNvry7EzPe/RXG1ZIEOj4NlHtz46nY81tGFB8akYsKwEtgzuwC7VlAYJYQQQgwkYXyDxStURFAJZRvyGg0tIcHzyOXIfSSUrd/vV2F1J0+erBLxnnfeebjsssvUa4cOHdQ+4mUaKuOhhx5S+0r4Xnk/ZswYfPvtt23OaXrHHXe0KXQvIYQQQgghhJDYs+irg0qwlFCNdV6/EjWDoW8bP1j73f6NnUWbpV4UDe0XKif0oK7HF3wtrQ7mGyWEENI8cv/sxrPzccXIHuq9iJ3dc1OV532m24kUl0MJofIq72W7/D0kisrn5POhSHMp/nLcPr47tt1xPKadkQq365hn9GbZetiDy14rxcjHd2LJ18XBnKOEEEIIMYyE8RgNiaPbtm1TIuWcOXPUtpDw2RyhH6ISBlf2v+SSS9R7ESslnK4IpAsWLGgItxtC9p84caLyHO3du3dDrlP5vOwv4Xtff/11nHPOOS3aKvXdcMMNyjax+7rrrotaPxBiderq6tTxJ4gndlJSktEmmR5d+8wq7TKLnUbYEa86Y1VPtMs1y1ggxsJxED669plV2mUmO80wl63dVazWxZNTCHqL2hp8Rdt027xRnF15ccGHn7vXqfcv1w5VzzCHAhiFcpZW1fnabTvnMUKMQddjx4ztkvtoV47qgRG9cvDuhn0qR3NqADjd+x/197U5Z8Nvk7i2QZwOG87o2xE/GtQNJ3TOaFqYp1q95KTY8NB5Gbh5XD7u/aAA724J/3wsrNlbh7F//hJ93qnE2CVT8Ne//lWb32T8PUasBsdCeOjcXzq3jbRMQgmjjUPbTp8+HU899VSzwmYIETDlYAgJokeKn+LFKYvkFA2VIdtDYuiRPPvss1i8eLHKYTp27FiVc1QEVlnPzMxUYX5Xr16tBFUJnxvyWpXcoiRxkTEjY0BeQ+NMxHJZQmMolB+XEEIIIYQQElskLKPg8QXDKtptx4qd2zyNc5A2oX6jhOgVwVXC6gqpSd/dyCdHk5ycjP79+x9zH0JIYiAi563jT8K1p/fBB1/uwaaFwe25aS6kuJORleLCsJ65GHdyZ2SlBj1Gj8KVEny1BQPuHZfpwJyrTsSK/XZ80A7b5N6OpOmS+4MPPvgg8vPzj96pqgjY/D6w+wugujgo0oo9KTlA91FAvwuC64QQQggJG1ugcSLNBCUkbMoiApMITi2Jm+1FBE/JT9qSl2qI0NciIq6E4iWJh4xH8W4WQVREehk3crEsXs+NRVJBxFEZK4mSPFqOj6qqKrWempp6zOOJ6NtnVmmXWew0wo541RmreqJdrpFjQc7Ps2fPbnWfqVOnHnVeJ/qeE6yErn1mlXaZyU4zzGXXzF2Fwoo67C6qUnnrRBiV6Ld1PgmrK2Jmff7QRr+0mzWzPs9o8O8BJAe8Si312FxIcjgaco1KuMe8TDcGHJeJmRd/L2HnMWIejPodaGV0PXas0q6I7XznV8D+DUDFAaCmFEjOBDK6wh+woTrgxJqd5bjvvV34fHvZUR+tqalR6biOhdPpVPd+7r77bnTu3Bk49DWw8XVg+0eAr5UQ6g4X0OdsYMAEIK+f4d8Tf48Rq8GxEB4691es28brJnNCYdQARNSSi54dO3Y05C8N0fi9eAk2561K9EcEdMlHKyK9hFUWYfRI5OlCGUdH5tGNp/coT+yEEGIdKIwSQkh0mPrPNdhTXI29xVWo9vjhsEte0KAHadDLs17wbCJ8NlPQEX+Xn4Hy6rDZVGhHyS2a5LCrHHhulwNXn9YLE4YdH7+GEtIC/B1IEoZ1LwErnwG8NUDJt0Ff/9x8wP6dB7/cw3t/YzGmv7UDX+6tjLiqtLQ03HbFGNx2ymFkptQH+JN6JR+pCKQBf9BzVQRRdzbgdH/34WGTgotGQgUhhOgCr5vMSTAWBIkrEjpXvP7EE/RIXVreT5gwQf2domhiIqFUQqKoCJ3NiaIhL9FFixY1vBcP0mHDhqnPE0IIIYQQQmJDdn3IRZcoovUPtwqO+pi6Dd6ije9PN/M4cuNNjX8WSjk+v3iLAslOuxJFRSiVcI+EEELiyEnnB4VIESGVEBkIhrVthMwBFwzMxbq7huLFSSehZ25kIbsrKytx37PvIP/uVfjLh9tQe3hnUIwVT1VPVVAklVd5L9tlqa33VF0zF1j+x6aTCSGEEEJahMKogUjoUwmrIeKXeIfKq7yfN29ezEL5EvMjOWaFJUuWtElkF4G0sTga+rzO+Hw+fPLJJ2qRdZK4fWaVdpnFTiPsiFedsaon2uWaZSwQY+E4CB9d+8wq7TKTnWaYy4b2COZ0y0wJCqTehlyjNtjr1dBQ3tEm6UebKKHfrco+dvgxyLkPgxz7YYMfXn9AeY6GRNgz+nZsOQdeGLbrNBYIsRK6HjtWaVfEdqbmBsPVCqF8ntVFQG35UbvKQy1XndoZm38/An+6tA86pNV7fYbJ4QoP/u+Nvej36B68tL4GflcGkN4VyDw++CrhfGXmEKG0fD9QcTD4wU3vBgVSg74n/h4jVoNjITx07i+d20ZahsKoCRgyZIjyDpVXktiIt6eEyJ0xY0abQ+LOmjWryXv5fOP8ozoik9SyZcvUwgkrsfvMKu0yi51G2BGvOmNVT7TLNctYIMbCcRA+uvaZVdplJjvNMJeN699ZeXCKJ6d4dMoN6nrn0e+8RgNHe40eJY422m5HAENd+zDEtVfVIaKoCKEZ7qAY+qNB3aJiu05jgRAroeuxY5V2tctOyeEpiCApIWzlrC2CZOVhwO89avdklx23nNMF22bk47dnpyGCZ1oUO0v8+PnrpRj61/1YuM2LgCsVcAdznEo4X587Vz1EU1dRhJJDu7GjsBLfLnoSf3r5bcxfvRulVZ64fk/8PUasBsdCeOjcXzq3jbRMZI8vkQbsdnuzCXlF1Bo+fDgmTpyIa6+91hDbiPUQb2Fh5syZKkyueBVLSN3WkLEmnqOSuzbE66+/jjvuuAM6H3ehBwlknSRun1mlXWax0wg74lVnrOqJdrlmGQvEWDgOwkfXPrNKu8xkpxnmsuxUJ07v2xEfbS5Q4uWhslqVDzRQL4z6Azb4EIAtJI7i2OKoHzZ84+3YsJ6d4kSnjGA4xitG9sAJnTOiYrtOY4EQK6HrsWOVdrXLzrx+wfyd4o2ZXh/SXPJ+VhcGvUeTMwBXmhQM+CXhdKXyKM1CAH8Ym46bzuyC+z6qwpxPDyghM1w27KnE+X/diLNPzMKsn/bG97qno6TKg4raFLgDuegYKITbV4HkQBIqbWnouvs9vFjYAS+v3KXmqosGdUPvDikx/574e4xYDY6F8NC5v3RuG2kZW+DIJJckLB5++OFmhdHCwkKsXbtWiVU5OTl49tln8dOf/tQQG4l1mDJlivL4bCx6FhcXh/05EUob5x+NFUweTQgh1kHOz7Nnz251n6lTpx51XieEEHI0Ww6W49Z5G9T6ofIalFV74ZUb4iKO2mzq5rcvEAgr3ZsKqVsfPrdbdora9oMBXXDj2fnN/uYkxCj4O5AkHHIylxyeEq5WkNyekmtUwtm2hOQklfC7KvQtsCXjVPz27Z0ND8RHynn9s/Hrsd3Qp6NbmZXpL0EWylCLJOxDHnw2J36Xfi+8SVkNn5EHbK4Y2Z1zCSGEGACvm8wJPUbbSVu88iTn44QJE5QXH8VR0hpFRUVHhdaVsLjH8hrNz89vtRxCCCGEEEJI9BAPTrnR/MrKXQ2enRK2UIU19PuVwCkCqR8BHMtByFbvaSqLiKKd0r/zFOWNbEIIMQFyHj7jNiC1Q9BzVMROWUQYrSkFfHVAwA/Y7IAjCXBnBYXREMMm4YRhk/DalTbcfvvtmD59OpYsWRKRKR98VYLFX5fg4sEdcMNZXdAlIw2ZKEcy6uBCnZpzTir9FAsd56ioBplul5qriqvq+KANIYQQUg+F0TggOSBF3LruuusojJJWGTdunBLQG3uMHksUJYQQQgghJNqUVNVh0VcHsXZXsQrZV+3xIcXlUMLd0B45GN+/i7rhmsiIaCk3mhduPIC8DLfqn+LKOlR5fE3CJcot6EArgqjkK5X/ctOS0CkjCWee0EnlFI00fC4hhJAYIILi8GuAHqOBjQuA7cuC29MbCaCNcbiAPucAAy4JhuOtR9JuSXQ5ifI17YafYd32grBN8fmB+WsL8e5/i3DVqXmY9n03jnPXINtWhcNIxlD/ZrztPUuFeq/x+NQDPDJX5aQm4cpRPSLuAkIIIUQXKIzGiRtuuAELFizAc889x5yjpEWuv/56rFmzRoXFFUFUcoy2hW3btjV5n5ubC52pq6vDo48+qtZ/85vfICkpyWiTTI+ufWaVdpnFTiPsiFedsaon2uWaZSwQY+E4CB9d+8yM7ZIQse9s2IdPtx6G1xeU8+wBHwYVf6LWN+SciY17y5rkLoungGemuUy8bsT7Rm40izdOhtulFrkJXVRRi8o6n8o9Cvt3IqjcV/f5g16kLocNLocdnTOTcWKnFHT5djEcpTb88mzOY4Tohq7HjlXaFVU7ReQ89y5g9I3A5veBXSuCOUfrqoCkVMCdDfQ4FTjp/GAo3VZs+ey+8/DWstW4682t2F7kDduUGm8Acz49iPlr7Jh2egquGZkEZ7INXZ01yLG7UFzlUaHeHQEfxnpX4uuFwKbjbsLJx0f/nhF/jxGrwbEQHjr3l85tIy1DYTROiMeosHr1assLo+LVKO1oS+7LaCBP0olAKH0oi4SXFdFQFrFFxETxrNQFaWtbBdEjx1cI6Rfd8Xg8RptgOXTtM6u0yyx2GmFHvOqMVT3RLtcsY4EYC8dB+OjaZ0a0qzlvULfLgcKKWuwvqUFmikuJeCLwlVV74Pd6MBTB/JkFZTVIS3XDDQc+2lyglniHfDXTXCZtFu+bEb1y8O6GfVi+9bDqm245qervIoJKH1bWedW6kJedjBM7Z+Dckztj3Mmdleet3JCZOXMhvL742W6W8ghJFHQ9dqzSrqjbKaLn4CuDS4S22H01uHxEHi7uXYU5K4px38fVOFQevkBaUu3HjEWVeOKLGvxyjBNnD8lCh8xkJLscOFBag7IaLxzO4Dz+3pf7YyKMCvw9RqwGx0J46NxfOreNNI8tEJBU3STW9O3bFzt27FAi3uzZs2FF1q5di8mTJ6tXQYTRWAqSDz/8cIMgKvWMHTsWI0aMUOviISmCacgW+Zvsm4hhZ0Uozslp+hSi9E88+sKo5NFy2iotLVXrWVlZzJGRwH1mlXaZxU4j7IhXnbGqJ9rlGjkW5Px8rGuQqVOnHnVeJ/qeE6yErn0W73Y15w1abwkOldcqrxLBFwgoD0dBcmXK39NQp95XQp6gtiHZaW/IXSb8YECXuOQuM/tcJnlGF206iDXfFqG02oOqOh9SkxzISnFhWM/cBiG0PXXEynYjyiPWxKjfgVZG12PHKu0yk51NbFl4M2ylu4DS3YCnChWuPDz2aRke+XAPKmojf1Kmd146Ov74t8gbcBqKKutU2Pccpwdds1Lgd6Vg7jWjoh4On/MYsRocC+Ghc3/Fum28bjIn9BiNITt37lTiXSjHqBxU+fn5sBpi+7Rp05rkvox1feLxGPKCvOOOOzBjxoxmRVjp3ylTpqhX6Vvpa9k/kZCwu42ZMGGC9gKxHEs6eQnHA137zCrtMoudRtgRrzpjVU+0yzXLWCDGwnEQPrr2WbzaJT/2X1m5W4V7DRHyBvX4/Kj2+FHn8zfkwvTXPzsr79OSnCr3pcOeorbb63yoqPWi1us3JHeZ2ecyudE8YdjxaolVHUaWq+uxSEis0fXYsUq7zGRnE1tScwARRiUfqQdIt9fgdxf2xA1ndMUD7+/C7E/2B0Oyh8mOQxXYMWc6cvoMxEk/vAG2rD4o9iYhzZ8Etx/qAZ5w56mw2mXics00FoixcCyEh879pXPbSMsktDD6xhtvYNWqVQ1TRcp0AAEAAElEQVQhWkPed+2hqKjoqHIaO+WKx6jZkb4QT0zpm8ZemfFA6hozZkxD/82fP18JfS0hnqLiHSlCqtgqAq68DzcUrZVp3FY5ic+ZM8dQewghhBBCiHmQ3yJPfrRNCZdCWY1HeTWKsCmI2CmiaHDf7z4noXQlB6bXH0CN149O6S5100ByaHb0B1Q43lDuMiEvw62EVwkpG8+co4SEYGQEQki88Hq9Dff/WiI3NxdO5zFuu3YfBezfEMxLWlMK1JYDaXnIy0zC45f1xcThHfDwB3vw7n+L1YNL4VK8/Uus+MtNyO43GjlnXY0yd74KnS9RDaItjBJCCCFWIuGE0bKyMsycOVN52bUkXkabkPv1vHnzkJmZCTMioVhbEoVDwmSsPUal/saiqAh+rYmijVm0aJHyGBVRV75bWU8Ez1EJN9w4v6gIyYnwhIvP51PCvSDhlR0Oh9EmmR5d+8wq7TKLnUbYEa86Y1VPtMs1y1ggxsJxED669lk029Vc3tAUlwOHJW9oaQ0y3E4UVdSpPGOC/ERJT3ai1utTgqgIpN5GnqLqvQ9wOoDy6jr08e9HarIDBcnHw2G3o0N6o9xl1V6kuDxKNJU8m7eOPwmxQte5jPMYIXqj67FjlXZF204RRSN9EKOJLaeMh2PN88E/ON2AtwaoLgbSOqpNx+ck49EJvfGL0Z3wp8X78Z9t5RHZW/L15yjZvAL+Qacj8ye/QmluSpuuIbJTXRjaIwfj+3c5ZuhdzmPEanAshIfO/aVz20jLJJQwun79+gbh7UghNJY5z2QRke+SSy6BWQmJkSKqSRjW4cOHKy9M8ciUbSLAxVoYvfTSSxvsGDp0aNjetdLHYrMgnqO6h5QNhThuLIrK95UIyIT1wQcfNIwVTliJ22dWaZdZ7DTCjnjVGat6ol2uWcYCMRaOg/DRtc+i0a6W84YGw+XuKa5W6wfLapQAKp6gHdKSkJ0quUID2FFYpbb5vAElljpsIozalEgquUbhA9yOAPr5tgNVwOHk4xq8VkRYzUl1Kc9RuZEqwujyrYdx7el9op67TPe5jPMYIXqj67FjlXaZyc6mtsyAo8/ZwJZFQEoOUL4fqC4CnMlAckZDaPt+XVLx1M/ysWZXBf64aB++3FsVfsWBAL5dvxy7N67A/rETUXT+X1DocbV4DSHINcTGvWV4eeUunN63Iy4a1K3FqBCcx4jV4FgID537S+e2kZZJGGF03bp1SuwLCaKNhdCQeHkksk84nqRHliminIhzkh9TEveamVh6zLYFCYMrSwjps3ARUVBOXqHQvyK0rlmzBroi7QsRjnetDtjtdgwcOLBhnSRun1mlXWax0wg74lVnrOqJdrlmGQvEWDgOwkfXPmtPu46VN9QfCL6XULjyM0VeVT0Bm/rd4rADxVVelVRUbrz6EVCeok6HXQmjNn8AHr9fiaMSdXenv4MKrXvkrwYRWEuqg6F5pT43HDHJXab7XMZ5jBC90fXYsUq7zGTnUbYMmBAURpMzAU81UFMSFEi9tXAgGV41KwdzgJ/aOwOvX38SPvxfEf68ZB+2FXrCrt/v9eB/C19C957vosc5V6D3WRPgSHI3uYZI95fjHNtqDME3yHVUIdVWh9rVydi2Jh2HTzwdp55/FWySH7W1dkUJzmMkVnAshIfO/aVz20jL2AJGK2JxoLS0FL1791beiEeKnSJehhYhFIZUvPEWLFiAyZMntxqaVMqUEBryunr1avUqYWnFe+/cc8+FLojHaGPvRKG4uDhqYVuHDRvWIGhKmVJ2NOwUYVTE0mMhnqaNQ9LGEhlr7Q15O2XKFBUyOCSKGpW7tqCg4KjQMJLbp1OnTobYQwghpGWYe42QxMkbGtqn9ojcoQ6bDUnO4I/9zBQn6pSY6Vc3QUUAlb+7RDGtx+vzK89RkUpDn+vdMU15mDZGvFHLa7zIdDuRl+nGgOMyMfPi78W+IwhpBOe5+MHfgSTRifr5ZvXzwJq5wfWKg0FxFECtL4CKQAoqA8nwBuxw2vxIs9UiNVCt5ugX19fgDx9V42CFL+K2JGV2QN5ZP0fawHHoa9+PC23/wWjbl3BKyIh6VEQJu01dJwgZqSnoPPg82AZeCuT1i7huQghJBHjdZE4SwmM0FKI1JIqKUCYeieJh2JInZ0gYFaEtnLygO3bswFNPPaXKHj9+vBKtevbsGcXW6IcIoiFRVGhPOFjxmmwsjEr/y3Is5PuOlzAqQnp7EEE0JIqKwJpInqKEEEIIIQTKU1RE0QACKCirPSpvaGqSA5W1XvirvUrwVCFxJUxUIKBEUKfDpvKCyufFDyX02Kj9iPQiKsSuL+hNKl6l8nfxJslJkzC835GS5FDCqKc+DF9pdfgeLIQQQkjCMmwSUFUIbHoXSO8MuFJUrlGHvxpp/iqkoUrN2fJ/0H8UCDiT8NMRHXDG4BS8sOIQZi8/jOraurCrrisrxJ53H0eHz17EjWOycU7/LHX/NCngQVqgAs6AF3aJLOGzwWdzosqRjvIqwLXhPXTYujhouywxSlFGCCGExALtfYNF3JQQrTKpiwgqQpJ4dkq+z9bC23bo0EGJqOGKWOKZOmvWLPU5EUTFO3DZsmVRaIm+HClcSpLjSDkyp2hIQDwW27ZtawipHOulPZ62kudVvEWFRYsWURQlhBBCCEkwJKdoKHxuY1FUcn326pCGzpluletTQueKsCm3KeVepTh5yqsKjVsvYIrHqMpfFlJGj7inKb+hQmKprz4Ub2VdsL7GhDxIQrnQquoi91whhBBCEg6ZR8+4LSgwChJWN7snbNk9UWlPQ60tGbW2JFQjGeVIw0FHZxy0d0GlLQ0pSXb0Hj8JZ9yzAH3OvRx2R2Q5vgsLi/F/83bgyme/xrYdu9A1cAiZCIbRTbZ5kIJapAcqkec7hM7+A6itKEaNRKoQT9flf/wuPAUhhBBiAbT3GJ05c2aDYCaCaFtzfYb2Ey/CXr16hV2vCF8i+EmIWBGvli5dikGDBoVdTiIwb968Ju/bEvq2NeS7buz9KWKiDgKieNWK97OMLQkRfKQInEjU1dXh8ccfV+v/93//h6Skpl4LJHH6zCrtMoudRtgRrzpjVU+0yzXLWCDGwnEQPrr2WSTtemfDvobwuSFRtEuWW3mKNiYkZIZuUzolX44NDWFz7fV/V/uFkpcFjhZHRRi1BbyYkPSler/QP+Qom0IeqSERVTxWY4WucxnnMUL0RtdjxyrtMpOdLdoic+jwa4Aeo4GNC4Dty+BIAjwpeSiq8X73YFMAcAVsCNidWO8ajE+SzsJuZw9IKf1/chN6nzkBm99/DntWLoxIrFy3pwYXzq3BeSck4c4xHZDfNVPVmYJKpARq4Ap4kATxJq2Cr7AYyOgE/O9N1CXl4PHlQecSzmPECnAshIfO/aVz20iCCqPr1q1TYpLk/BTvuraKoo0Rga09uUIl96OE8ZUyJMxuOGF5EwHpX+mfxrRX8BNhtbEwqoNnpbRnzJgxqm9EFD2Wx6n0abTyv5qVqqoqo02wHLr2mVXaZRY7jbAjXnXGqp5ol2uWsUCMheMgfHTts3DaVVJVh0+3Hq5f9zR4ih4pigr1uud3ymi9Z2fAblPepCKIikdoKLdo8DMBOI5URutx24IirP+7NKYNVNd7iLocwc9mpUTmrZLocxnnMUL0RtdjxyrtMpOdrdoiOTvPvQsYfSOw+X2kbF6Ordu+hTtQi9KAC4W+VKz1noR17lPhcOcelfc7JbczBl4xAx1GXYxt7z+Lii1fRGTjB1vq8OHW/bh0YBl+f04yOmQ7ELDZ4Ak44YAPTvjh9NciUL4fNgkDvPxRVFVdjljAeYzECo6F8NC5v3RuG2keW0Bie2rKI488gunTpyvPzeuuuy7sz/ft2xfjxo07ZkL1tiDlnHDCCXjyySdhRSTXauPcnUJ7QsI2DnUbCg0bor1DUsprHEJXxEQJlWtVROSUEM25ubltEkWl7RIyWgRhXZNHyxiRugWpS27qkcTsM6u0yyx2GmFHvOqMVT3RLtfIseD1eo+ZIkDmGqdT6+fmTIFZzglWQtc+C7dd81fvxouff4sajw97iquVc4mEzz3ypqjwbWGlyvlZ5wuGy3XZ7Wo/yVEmIXTlitvRSBiVVyklyWlvyF8miIDq8fuQY6+Fy25DtSMVPTukN/n7zsJK5ZRyfE4K3C4Hrj6tFyYMOx6xQNe5jPNY+5HfIcf67T516tSjfr8Q6/wOtDJmPnYSoV3RtrM919WR2PLyF7tUGH2VW7y8VuUJb5xbXHJ9h+ZyeVipotbb4CxqO/g1Dix+DsU7NkbWWLk2cADXD3fjzjOS0SnV1lC3DX51zWBzuBCwOVCQ1B0YcR06nTUZNolUEQUSaR4j8YVjITx07q9Yt43XTeZE6ztfIgyJiBSJKBoS1CQ/aTSQvKOSO/Ohhx6i12gjYiHeHSkcNvYetSISjrmtoqiQCGF2ZYLiDY3w0LXPrNIus9hphB3xqjNW9US7XCPHgtyYMcM4JOY5J1gJXfss3Hat3VWsXsuqg96icjO0OVFUkO0ijIb+GvIGlf8k5G0o/K0gayKHilwqQqezUZnBvKE2lAVS4IId7iNudIoXq+yS7LQrUdTpsGHcyZ0RK3SdyziPEaI3uh47VmlXtO1sz3V1JLZcMbI7iqvqsHDjAeRluJHi8qjIEbVeP8prvGo5EpmXs1NdyMgbjj4DhuHQxk+x6d1nUHFgZ9g2S2CIv31RgxfW1eD27yfjllHJSEsOXSsEAJ8HNgeQ59kDbP4H4CgP5kyNgrjAeYzECo6F8NC5v3RuG2mZ6Dy+Y1JEEJs4cWK7Q7KWlZW12xYpa8iQIU08GcnRomU0wr926NDhqG0SUtmqomgop2hb+0Zy6crnCCGEEEKIXoTC50qe0GPl8kxLCj4DGxJOReAMHJELNOQ1KttD+6kwu/X7yfagMPpdOaFyBfFIKa63SW6+Cmf07Yis+nVCCCGEROem/Y1n5+OKkT3U+wy3C91zU1Wkhky3EykuhxJC5VXey3b5u+wnXDmqJ4aeMQ5nTZ+LHj+5Fc6MjhHZUV4H/G5ZLU74azmeWOVBra+pOApfHVBdCmx6F1gzN2rtJ4QQQqKNU3fRrT0CUX5+vroZIGFJr7322nbbM3bsWKxatard5egsjIpnZHtpTkCUekScthKXXnqpel2yZEmbRVEJuysisO4eoz6fD+vXr1frgwcPhsPR8k1BonefWaVdZrHTCDviVWes6ol2uWYZC8RYOA7CR9c+C7dd1R5fk/yhIYGzOTJSnCisrFP7NPEGlTygje5jOhw2+H1BYdQfCHqSivAquUhFE1XiKQLoaw+Gl4K7pypHPEVDomhmirPh5uuPBnVDLNF1LuM8Roje6HrsWKVdZrIzUltEHL1yVA+M6JWDdzfsw/Kth+GGQ0VraA6Z7+VhJZmX+3RMxecrV6FTnRe5g8fBfdKZ+P76u/HGJ1+htDp4bREOBysD+NV7VXh8hQP3nZOMy0+R/KMOrA+cDFS4MDglAIcIoz1GB3OmtgPOYyRWcCyEh879pXPbSIIKo+0V2kTIFCRHaTSEURFaReQiTYW8eGC1cLqSJ/X111/H9ddfj5kzZ7apDyW/RSj08/Dhw6EzMmH961//UusDBw7khJXAfWaVdpnFTiPsiFedsaon2uWaZSwQY+E4CB9d+yzcdokniBCKdBvy5mwOp92OdLcTFTXeoOjpD8AreURDqqpgC4qrkldUfUZEUx/qxdHv9nPaAxjp2KHWF1Z0RmmdeJ+iQRTtlJGs1sWT5YTOGYglus5lnMcI0Rtdjx2rtMtMdrbXFplnbx1/Eq49vQ8WbTqINd8WobTag6o6n4okkZXiwrCeuSqsfSiCQ11dHToWbYT4iW7ESNhdybj6+91w41AbXvpkB576ohzNROM9JtuKfPjZgio89pkDfxibhpX54wA/MLD2XTjcacDGBcC5d6E9cB4jsYJjITx07i+d20YSVBgVr7n2CGK9e/duCGO6YcMGDBo0qN0irVVDusZLFI1GKN3mxPDCwkJYhYcffrgh5HKkoZej0Y9mxm6346STTmpYJ4nbZ1Zpl1nsNMKOeNUZq3qiXa5ZxgIxFo6D8NG1z8Jtl4Sr3VNcDZfDjmqPX90EDXlqNrt/ius7YTTkDer3K4dRETZDDqciuIo4WlbthWikARFHla9oEG8A2OXLVvuXeeUv9u9yl9XX/4MBXVQOtFij61zGeYwQvdH12LFKu8xkZ7RsEdFzwrDj1dKWOn2ZXVWOcqffIXHz4fTXICvFid+Py8AvR7rwu499eHVdaUNUinBYs9+HC/5RhoF9nsYVY4fAnlwMiDC6fRkw+kYgJSeyRnIeIzGEYyE8dO4vndtGWsYWCCWa0ZDx48cjJycHr732WsRlSI5S8dyTshYuXNgue+bMmYPp06dbSqRrLNZNmzatybbi4uJ2CXAiWosXbWMk3K0I0e1Bvq9QGNoQEyZMUCGRzU5ztodLNPqwrRQUFByVnPrQoUPo1KlTXOonhBBCCEkk5q/ejRc//xY1Hp8SSEWo7NUhrSH/Z3MUVdapJYAAvL5g/tDQL0BxEHXY7chKdSovk6IKDyrrvA2SqHiTKhEVQJIjmLvM5bAhM8XVJHSfeIqKKCph/ggxCvkdMnv27Fb3mTp16lG/X0j48HcgIda/hviz/TH0cRYiz38IyYFaVNvc2FVQgXuXVuKtTXXtquvygcm4/+KTkN81Gxg1BRh8ZdTaQQghVoPXTeZEawlcQuGK0NQeLrvsMvW6aNEivPnmm+0qS8qIRg5NXYhXGF0r0R4RP4Tu+UUJIYQQQhKVcf07q3C3IkqKx6YInJLrszVyUl0q3K1InOJp2jgvqR9QHqTlNV4cKquD1x9Q+4gI2vi1Y3oS8jul4bicFORlulX9Ysc5J3XCYxMHqZxnFEUJIYQQ61xDlAbS1bzvrQ8mmBKoxkkdnZg/MQ3/uTYNZ/SMPMjgq1/Wot8f/otfvrIVB/+7NIqtIIQQQqKD1sKoeN6JQ+wf//jHiMu45JJLlFeklHPdddfh22+/jaicHTt2KJGWotV3SE7MeGEVEVa8WmWstWcx2jNWnoCRG2PhLPfee6+K5y55L7zepoktZJssjZ3bW9rX4/Go7X6/3OYLIuuyTf5mtn3Fftku7YlkX+mTUP/Eat/m+j2cfdvzfbb3u9d5nMTjuw9nXyO/e54jWt6X54jv4DnC2H15jojevtmpSTi9r2QIA3JSHHDAh5KqWlTU1rclEIA94FNLCLnWyktzolOqA/6AT+UlFQ1THD6TbX6kOgNwOx3KGzTT7UTPHDf65aXihI6p6JCehAHHZWJo9yx0SnOge7ZLvb/6tF6YO2kkfnVuPnrmJPMcYbJxkujniNZobEO45Zrh+zTTdcSR8DpCn3Gi+zkiUa8j0ly2hmsICcO7Diei1m9HKdLVNhe86oGpOjgw7Hg3Fl2dgTevzMSAvMhy7Xn9wBMf70P+9S/gd7/7HQ4fPsxzhAXGCc8RiXuO4P2I2H73xHxonWNUcoROnjwZDz74IK6//npkZGQctc/OnTsbvErFw3Tw4MFH7SPhb2WR0LHjxo1TYUqbK6s1pkyZom5KUBiNPbrn19SVVatW4YMPPlBJri+++OKG7Y8//jiqqqqahL2SY/D999+H0+nEHXfcAZcrmNvqiSeeQGlpqXqI4bjjjlPbNm7cqLy95di76qqrmoS2llAGV199NXr16qW2ffPNN8prt3v37vh//+//New7d+5c7Nu3D1dccQVOPPHEhocd/vnPf6Jz58644YYbGvZ96aWX1AMUEr75lFNOUdv27NmD559/XnmM33zzzQ37zps3D1u2bMGPf/zjhnOPhFJ4+umn1Tnm1ltvbdhX2vDVV1/h/PPPx8iRIxseLvjb3/6G5ORkdY4KIQnDJS+ynNO+//3vq21y/vrrX/+q1u+8886GPpM+X716Nc466yycffbZalttbS1mzZql1n/72982JB1fsmQJPv/8c4wePVqFFw9dFM2cOVOtS7htt9ut1pcvX46PP/4Yw4cPx4UXXthgm5Qrn/n1r3+NzMxMtW3FihVYvHixyuP8k5/8pGHfxx57TNnyy1/+Eh06dGjy3ffv3189/CIXF/K9l5WVqYsROdd26dJF7fvll1/i7bffxgknnIArr/wudM9TTz2l+u6aa65Bjx491LZNmzapuaBnz56YNGlSw77PPfccDh48iJ///OcNob+3bt2KV155Bd26dVNzTIh//OMf2L17t4o00K9fP7Vt165deOGFF9CxY8eGC6GbbroJr776qgon/tOf/hTf+9731Pb9+/fj2WefRVZWFm655ZaGcsWuzZs344c//CGGDRumtsnYlVBxqampuP322xv2feedd1S7zzvvPJx66qlqmxwTchzJdy77Sn+F5sj169fjnHPOwZlnnqm2ybH26KOPqvV77rmnoVz5fr744gucfvrpGDNmjNom7Ql99zNmzEBSUpJa/+ijj/Dpp59i1KhR+MEPftDwHYkdwm9+8xukpaWp9f/85z9YtmwZhgwZgosuuqihPrFBPvd///d/Def0Y50j5LuQY0o47bTT1DiRHBGXX355w76RnCN+9rOfqWNKkGNqwYIF7TpHyDYZF/Ldyfcs34sZzhHl5eX405/+pPJp3H333Q37Wv0cEULOf9JGs5wjZF8Zj/KDqbKyUoXQufHGGxv2NeocIfNDiPfeew/r1q2L+TkiRGjfls4RMrZD5y+xI9xzROPrCDn3yXEQjXNEe68jxCYZx6H5oS3XERcN6oaPNhdgsHcTsp2F+MLXBztK7coztFtSLQZWrEKdLRn/zTm9wYbelV+hg6cAq+w98bVfHmIDsu11+KFzA7xwYH1u8PgWelV8hY4V+5HcYxAuuWAMTuicoY6J5q4j/v3vfxtyjpBzoJyvpM9WrlwZ83OE7Bsaf1KvXFdF+xzx4osvqu+68fwQuo5ozzlCHpqUsZmSkqLOrVJue84RoXk9dBya5RzR+DqiNWT/xud8s58jzPpb47PPPjuqb6UvpVxeR7R8HSFtTU9PV+cuOaai9VvDyOsIEbuefPLJo+YHXke0fI6Quh966CE1VuW3Rt++feNyjpD5KyU1HXbXUGS6XaiqzsPbgR9hmH8tOtiK4IIHRcjBc7YrkRGowE225/GDE5wYl5+EO748ES8t+1/Db7pwqKz14g9/+INyWpHzwBtvvKHOK209R0g/Sd9WV1crwcGK1xFG34/gb43mzxGhcRK6VxI6f0VyPyIRriOkT/7yl7+goqJCzWW33XabNvcjjrxvFe3rCDm2iPnQ2mM0lBtTbpY3l7dRDhiZWOTAkEVO8M2Fy5WJTRBhUyYguZksF1dtRU6ocgAJIqwSQqKD3FDWOE1yVGncTzr1mbRFLlys0Cax02hbQ/0VTztCdcarnmjXFaty5ceTFcYtiQ2hcSWiKDH2WDQD4Z6XRaiUnJ4h3EnBn3TFVR7sK61W65JPVG5EltV4cLCsBlV1wSenJditeIH2zUtHTkrw5o/dblPbuuemKG9Q+ZtwxomdVF1mvI6QmydGzGWxHH+htkR7fgiVJTeUo1FuqC/45Dsh4SOeJEb/Hog2ZpsfrHAdIbaEvLXi2WdSZ2VFGS4ddrx6b3cGhSShJJAejDqhfEYbLFU5xiWN+RmD+ijB5Ffn9UWHlMhC58v8JmKYiHYi2DT2WGvLd3ekJ5mVriOIOQl9/3JNw7FwbKSPRBTVkXjdtyLmwhZIgCNfREl5UkAWedohpPjLUwFr165tsq88qSVPYByJCKePPPKIEkely+RVxFZ54qE5L1NBPJhkH6k/9Bl5ujhUv9UEZumDxkhb2uOdKf1ypFA8dOhQ9XRFe5CnmY4UwuUpFMnxSmKfPDoS5EkweSJIfijK00HiCRoidPErT26FclfJRcvevXvVe3lSSj4T2i7Hmnw+tE0utkVAlX1DT3+ZZV/ZJn+Tp5tCTziFs6/UE7opFXo6rqV9pW/l6UFBnkoM2Xaschv3u5QhSzj7tuX7bM++Yrs82SjtkCfhpB9CbWupXCO+e9kuT1MLXbt2VXa1Z5yE89033lfqk/4SQkneo1FuW74j2VeenpWnBWMxTsSuAwcOqHU5L4l90fjuZT95SleQMSb7t2ecyBOF0h9irzwlKvub4RwRze/eTOeI1r4jI88RgowD2VeORemvaM4l8fjuo3WOaOv3KUvo/CVP5Mr7eIwTs84Pss8TS7/Bov8dQAA2lNVKSF0P6ry+hpuaPnwX+k62uZ02ZKYkIT0l6KVx3imdMfn7wdygVrqOkPqkz2Rf6TMpI9bniMbjT6JASHnRHifhzA/hlCv9IF4Ejcttz3Efmtelb2S+lbrMcI6QfcUbUjxYWkMiScm4idY4SdTfGnJtdPzxQXElhHicyJzG64jmvyOpT/pNtssYlL+ZdZzE43dmIl9HyDbpM9lXjqNQGbH87huPP/lN9tQnO/DBl3txvHc3bi7/E/wBP3oH9iAJXnhhVw9SybVDKP+o1+aAyKYO+FFR48FfPq/Cnz+vQVU7npER76sHHnhA3a8Tu1r67uV9W+YdM19H6DaX6PJbI3RvUfaVYzHUF/GcS6z03cu69Je0TY6dkOe32b57M963kmvxkJdwCLluDd2XI8aQEMJoSCybOHGicgsXd3QJFyDrjZ8GCImXjWNRN0a8SyX0buN9BREHpWz5u6xLPktxsQ+F6A3tK27q4vJuRWIhjIooHQrDEILCaOIKo5JnlBBCCCGEtA35jfHKyt14ZeWuhm01Hh/Kqj3w+AIql6hdbnA4RBB1wS1JResRj9MrRnZv+D1DiA60RRhtHOqORPd3IG/wEWLNa4jzat7HeTULkeEvRYdAkcpfHro6EJE0cMSDVrLI5cPBcj/u+6QOc9bUqnyikSLhMSUsZij8JiGE6Aavm8yJ1jlGGyOipMSkFsFM1kXQO9JFWm4MiDDXEiKsiZepfC7kORoSCJ955pmj9m8snoZinhOiOzyxE0KIOZGwrfLgVmuMGDGiIecKIcTcyO+MK0f1wIheOXh3wz4s33oYbjiaCKCNcTpsOKNvR/xoULeGELmEEEIICR/xLpIQ5a0huZ1DHlmmvoZY3xFf/Lcco6s/QVagTHmGOuFR4qh4iEpI3YbPqc/Kmh1dslx48sepuPV0L367rA6vrS+PyBbJCSn5IC+55BLlQSp5GQkhhJBYkzDCqCCi57Zt25SI+fTTT6skz40RsXT+/Pktfl4SIUv4V/E+DImjIZpzvA39XV7vuOOOFkPuku8Qb9tY0B7PVmLOHyGSoFwYMGCAaX9smAld+8wq7TKLnUbYEa86Y1VPtMs1ciyIMPrxxx+3uk///v0pjCbQOcFK6Npn0WiXiJy3jj8J157eB4s2HcSab4tQWu1ReUVTkxzISnFhWM9cjDu5M7JSXYbZGS10ncs4jxGiN7oeO1ZpV7TtlFCskXqom2keU9cQ5/VD6emPYusHf0Onr/4Gu68CvoALDnhhU3lGbeq+ZkgQhd0RUkcVfbt3was3dMBtWw7h5jcP4Ivtkd3XW7BgAd566y1ce+21KqpYt27dWrU92n1BEg+OhfDQub90bhtpmYQSRhvnFZFFxM3t27erRUTPIUOGtElcDXmeirDaWPxsDhFMJY/mzJkzo94OqxMrsbKoqOiobfL9En2QGPNvvvmmWu/Xr1+T+PMksfrMKu0yi51G2BGvOmNVT7TLNctYIMbCcRA+uvZZNNsloueEYcerRef+13Uu4zxGiN7oeuxYpV1mstOM81hWWhKGXXwr0L8f8K9bgNpywBcAAhJWNwDYHEcIojYgOQNIyQHsTqDyMAZlV+D8X9yCE7dtw8aP3sS63RVh2ympzcSZ5R//+AduueUW5WSSmprKeYzEBI6F8NC5v3RuG2mZhBRGQ2RlZSkxtC2C6JEim+TBlFyWDz30kMqV2RKSl5OiaPPEU6zs0KFD3OoisUceRAiNH+bGSuw+s0q7zGKnEXbEq85Y1RPtcs0yFoixcByEj659ZpV2mclOXecyzmOE6I2ux45V2mUmO009j/W7AKg4CKx+DqguBaoKAG+dEkjh8wOOJCA5PSiKSuC86uKgiKr8Sh3o4ziAPifnYM6pw/BmST/89u+LVeS+cJEwxXIvVaL9yX3V448/XgkVnMdINOFYCA+d+0vntpGWsQWaiwFLwmLHjh0qxK5M9iHv0/z8fEycOFGJrzrw8MMPq4uRxkhu1fZ6febk5DQJnyvlSbnRtlUupsRLmEQXJo8mhBDrIOfnSEN+EUIIIWaH81z84O9Akuhofb6R28TL/whsejf4vrYsKIB6a1r+jNMd9B5Nzgy+P/lHwBm3oc7jwZw5c3DfffepPouU7t27qzKuuuoqOBxNc6mXVNVh0VcHsXZXMUqqPKj2+JDiciA71YWhPXIwvn+XiFMJEEJINOB1kzlJaI/RaNG7d29MnjzZaDMsSW5ubhNhNBo5RgsLC4/aNnz48HaXSwghhBBCCCGEEEKItoi31Bm3AakdgDVzg2KnLCKM1pQCPvEg9QM2e9CD1J0VFEZDDJsUXGw25eV500034eqrr8Zjjz2GRx55BBUV4YfY3b17N6655ho8+uijypP0hz/8IbYeqsA7G/bh062H4ZWwv0ewp7gaG/eW4eWVu3B63464aFA3lVOVEEIIESiMEkORnK3iZRtNmhNXmWOUEEIIIaR98Il8QgghhJAEEUeHXwP0GA1sXABsXxbcnt5IAG2MwwX0OQcYcAmQ1++oP6enp+N3v/sdbrjhBjzwwAPK29bj8YRt1v/+9z9cdNFFOPF7w9Hx3GuQ2+d7anuNx4eyag88Pj/8AcBuA1wOOzJTXHDDgY82F6jlipE9cMXI7gyVSQghhMIoMZYRI0aoXK1HCpvtCdFbVFR0lCja3pC/xFx46sOxCOKt7XLxJmyi9plV2mUWO42wI151xqqeaJdrlrFAjMVq42DLwXLDn8i3Wp/p1i4z2anrXMZ5jBC90fXYsUq7zGSnpeYxETnPvQsYfSOw+X1g1wqgpgSoqwKSUgF3NtDjVOCk8+FxptfXsbTFOiSU5OOPP45bbrlFCaUvvfQSIsnw9s1/V6ulQ//T0PHsq2HL7XHUPtUeP8pqvEh22tWDe5luF15ZuQtF5VWwf7M0/L4g2mGm84IV0Lm/dG4baRkKo8RQxo4de9Q28SAVT9JIOdIDld6i+iEXzhKfPbROErfPrNIus9hphB3xqjNW9US7XLOMBWIsVhgHIe/Qeat3Y/OB8oan70ME121xeyLfCn2mc7vMZKeucxnnMUL0RtdjxyrtMpOdlpzHJH/o4CuDS0t11NW1uQ5JSfaPf/wDt912G2bMmIGFCxdGlkrrq89QuGkFsr43Bj3HTUJOXlfYbTb4AwFU1flQUetFrdePQ2W1yqu0U0ayur4dWmyOsUCMxUznBSugc3/p3DbSMrYAv23SBh5++GFMmzatybbi4uKoeGIeecPs6aefxvXXXx9xeTk5OU3C6ba3PGK+5NF+vx+7du1S6z169IDdbo9pfTqga59ZpV1msdMIO+JVZ6zqiXa5Ro4FOT9L2KrWmDp16lHndaLvOaFV79Ath7GvtBpl1V613ecPqMWP7346OGw2OOwijgav5Ro/kS/8YEAX3Hh2flTEUTP3WSK0y0x26jqXcR5rP5zn9P8daGXMfOwkQruibWddXR327dvX6j7dunVTOTZjbYsO89iyZcswffp0rFy5MuL67c4k9DrzYvQddxWS0jLVNrl2lYf9iquCYXszU5zIS09GhrdEXaOeNrifaccsiT1WOX+ZBZ37K9Zt43WTOaHHaBwoLS1VwpzcFHr11VeNNsd0TJgwoUk43W3btkVclgiiR+YYnThxYrvsI+ZDJqhevXoZbYal0LXPrNIus9hphB3xqjNW9US7XLOMBWIsZhwH8qzkKyt3qxBjQlFlncojqgTRQAChRylF4rTbbUoUlTey3emwwev3H/VE/sKNB5CTmoQrRx0d3kyHPosGVmmXmezUdS7jPEaI3uh67FilXdG2UwTPSMvjPHY055xzDlasWIE33ngDd955J7755puwy/B767B96avY9fm/0Hfsz9D7rAlwJLnRIT0ZyS4HDpTWqAf+UlwOwJ2DlYcdOF0jYYfoe/4yCzr3l85tIy1DYTQOSM7L+fPnUxhtAQmb0VgYXbx4ccRlHflZEV2ZX5QQQgghpHVR9MmPtikhUyisqMXBslrlHdo4tkx99FwVnkwcR8VbVBavP4B0twtOG1BS7W3wMs3LcCuhdUSvnKjnHCWEEEIIIfog90wvueQS/PjHP8bf//533Hvvvdi/f3/Y5XirK/D1u09jxycLcOL516D7qAuQnuxETqpLeY7Kg395zirUrF6Iz7/agWRPGRy+avgcKfAmZwHdR+Gksy5HVi49uQghRGf4aEwcoUDXPJJPtHFO0bVr10Zc1qJFi5q8nzJlSrtsI+YNcfD111+rRdZJ4vaZVdplFjuNsCNedcaqnmiXa5axQIzFbONAPEVFFA0ggENlNThUHhRFG0XNVV6hkktUPEVFIJW/e/x+eHxKPkVFjVc9adsly632F3G0vCYYtuzdDa2HmrNin0ULq7TLTHbqOpdxHiNEb3Q9dqzSLjPZyXmsdZxOp4q6t3XrVjz44IPIysqKqJza0sP48tVH8PHMq7F/w8fISnGhT2A3rvW+jGtKZmNY7VpklX6NjJp9SPUUq9ec0k3I2TgXB578IT5/9tf4dtOaiNtBzI+ZzgtWQOf+0rltpGUojMaB7du3Q1dP2Gh6jTbmmWeeiaicxp8TsXXs2LHtto2YD6/Xi9dee00tsk4St8+s0i6z2GmEHfGqM1b1RLtcs4wFYixmGgeSUzQUPregrBalNR4VOtdZL4BKxFyXiKJ2u/IOFXE0yWFXfxdkX68v0BB+12m3qSfyBXkiX1i+9TBK69d16LNoYpV2mclOXecyzmOE6I2ux45V2mUmOzmPtY3U1FR1r3DTpk0YPXo0HA5HROVUHtqFNc/9Fv/74+WYsHsWvm/7EivtI7DCPgqZ/lJ09B1EJ98B9ZrtK4QrUAt7wIuO+z9B3evX44v5f0SAQomWmOm8YAV07i+d20ZahqF040DIAzI3NxdWpbCwMKblS8hbETJDfTVr1iz1hFg4PPzww03eS/hiom+Ile7duzesk8TtM6u0yyx2GmFHvOqMVT3RLtcsY4EYi5nGwTv13pxlNR6U1XhVTlERQcUsbyCgxFERRBsjNosHqc0f9BoVcdTuD6j9Sqs96JiejJJqj8o5KvlG3XBg0aaDmDDseC36LJpYpV1mslPXuYzzGCF6o+uxY5V2mclOzmPh0bFjR5zz48sx8PvjsGDxZyjcsBQIhC9U7t6zH//vReCsvmk4Y8xG9OjSARmoQFLA12ivWqT7KlFrS0KFLQPV9jTkfv0yvnixEKN+cT9szEmqFWY6L1gBnftL57aRlrEFJKkQiQllZWWYN28e7rjjDpSUlCA/Px9btmyBFRk3btxR+TtFeBRBM5qetcOGDVN9FRJHpe/agnwmJyen4X04nyWRU1BQgLy8vCbbDh06hE6dmIuBEELMhpyfZ8+e3eo+U6dOPeq8TvSlpKoO18xdpTw+dxVVoc7rh00FxrWpELkieEroXPESbQmvz68EVDtsSHIG9+vdMQ2HK2pRXuNFptuJvEw3BhyXiZkXfy+OrSOEJBqc5+IHfwcSQuLJpOdXorCiDruLqlC2bzvKPv0HCr/6LOLyRPa4bGAybj2nA7rmpsMHBxzwITlQi7RAlboeFspt6Sh1BJ1civpdiVGX3ha1NhFCEgdeN5kTZ6KKlZKLUoQ4WUJCXKywsvYsHpxPP/30UaKoMHnyZBVOV8LV9unTp911SRlLlixR4qgwbdo0te1Y4qt8f2PGjGl4T1GUEEIIIeTYLPrqoBJFxatTiaI2KCHU6/8uvaj9GE/MipeozxdQOUf9IpDabCir9iAlyaGEUU99mF3xJCWEEEIIISRcUlzBMLoSxCQ5rxcGTLofnr2bsOmd2SjesTHs8uTq9NUva7Hgq/24ckRHTD2rC3LTUlCNdJQFspHmL0dmoBwZgQrAByWOiufot5vORs+Tg/csCSGEWBtnIgmiIrQ1zkEZL8FSXLDNLo4e2TdtEYtlnylTpjTZlp2d3bAuIqeExw0H2X/NmjW49NJLlWgtr60JnSLchvYVKIoSQgghRBdvThEu1+4qVrk6qz0+dVMoO9WFoT1yML5/F2TV5/KMFClbECFTSE92oqpOwokFvlNGbce+zhUxVLxLJQyv3WFDZZ0XOalJ6u8ilgrBcgkhhBBCCAkPuf7dU1ytophUe/zqurJz/vdw2i1P4uDG/+Drd59GxYGdYZcrD/C9sKIAr68rxHXf74xJo/OQluxAuSMbHr8LHfxFShyt8yersLr7//MShVFCCNGEhBBGd+7cqULBingWEijlJg5jRh8tdIaEzcYCZyTltAcRR7dt29Yg1srrzJkzMXHixAZvUvm7eLGGcpKKV6mIotHwXCXmx+PxYO7cuWp90qRJcLnad2M4EdC1z6zSLrPYaYQd8aozVvVEu1yzjAViLK2Ngy0Hy1Xez0+3HlbenEciN4U27i3Dyyt34fS+HXHRoG44oXNGRHaI4Krs8QXzNKUmOZT3qJIw5TI5UL8c45I5JIyGrBWBVN6H/hYquz3oeuxYpV1mslPXuYzzGCF6o+uxY5V2mclOzmPhl5u9azlOrqhFXcpglNUAFbVedKzPb99l4OnofMpo7Fm5EJvf+ztqSg6FXUdlrR+PL92Pl1YW4Kazu2LisI6AIw1lAQ+yAmVID5SjGmnIOfAflBYVICuX4S91wEznBSugc3/p3DaSwMJoaWmpEtrkVQiJofH04LSCACuioixmtOn111/Ha6+9htWrV6swyCEBV0RQ8Q697LLLwvZMJdZGjt99+/Y1rJPE7TOrtMssdhphR7zqjFU90S7XLGOBGEtz40BeX1m5G6+s3NWwn4iU4s0pwqU/EAwfJk/KZ6a44IYDH20uUMsVI3vgipHdw77mFC9UQcoOiZhOu+QXlSyjaPD4dBxLGW1oWOgzQHW9h6jLEfxsVkr7flzqeuxYpV1mslPXuYzzGCF6o+uxY5V2mclOzmPhl1tTehhpANwuB5KddtR6/Sq6Sof0ZLWPze5A91MvRLehY7Fz+RvYuugf8FSVh13X4Qovfv+v3Zj72SHcMqYrLuyfiUyUIzlQB1egFvJI4TefvIYRP/ll1NpHjMNM5wUroHN/6dw2ksDCqOTBFCGtcThbEdVCeTE7dOig3ufmBpNpRwvJvSn1Si7T5vJzkrYj3qDHyjNKEgun04krrriiYZ0kbp9ZpV1msdMIO+JVZ6zqiXa5ZhkLxFiOHAdyjfrkR9uwcOMBta2sxoPSKo+66XMkEj6srMarbgpJKN1Mt0uJqcVVdbjx7PywxNHG+ZpCImhqshPVnrrvcocqT1ARSttQbv0uYoI8yS+IiCsM69m+a21djx2rtMtMduo6l3EeI0RvdD12rNIuM9nJeSyyct9ctxf+gzZ1/XuorBbFVR4kuxwqFUQIR1Iy8sdcgR6jf4jUd2/B+19sQY03fJHj26Ja/Hr+TjzXLRX3jEnHhb0DSPVXotSRjMCuFQAojOqAmc4LVkDn/tK5baRlbAGNZXDxEs3JyWkQRa+//nqVE3PIkCFxtUNyYC5YsAD5+fnYsmVLXOsmJJYUFBQgLy+vybZDhw6hUyeGFSGEELMh5+fZs2e3us/UqVOPOq+T2PPyF7uUuCkCZEFZrRI+QwKj3OyRMLTizSkipeRUEtExdAWfmeJEp4xkJVyK5+iVo3q0ud4Zb/xXheU9VFaj6sxwO9ExPQk7CquU92ed1w8/AsqL1Gm3t1iOeLRK6FyHzaY8WkNReEW87Z6bCqfDhrmTRrY7JyohhLQG57n4wd+BhJB4I+kmbp23Qa0fKq9BWXXwejkn1YXs1CT1UF9jflV4H+yle/HCJzvx8roqNJOhos2M6ePCb8dm47jju6M8pRuG/ubd9jWGEJJQ8LrJnLR8h0MDJOxqiDVr1uCpp56KuygqXH755XGvkxBCCCGEWOMmTyh8bmNRVG7y9OqQhs6ZbmS4XUhLdqpXeS/b5e+C3BQqKK9V61KOlNdWhvbIaeLVGfTytCGj/sn70A0mb6OcoUciDx+KYBvaX/bz+IOertn1Np7RtyNFUUIIIYQQEjEndM5QDwEK8lCgPBwoiOfozsJKHFQP+nlQWetVry5/LfIyXHj8h1lYNTUb5/VLj7juJds9OOeZAvx6/g7sO1gYtTYRQggxDq19g+fPn6+8ReXVCEE0hITsDYXXJYS0H7/fjx07dqj13r17w96KFwvRu8+s0i6z2GmEHfGqM1b1RLtcs4wFYiyNx8HbW+vUq9zACYmiXbLcTcKCHYkIkJJTScKHHSgNPjGf4vIo4fTdDftw6/iT2mTHuP6d8fLKXSpfaeN8TZIPtLzGq+rxB+rFTp8fAbtNbWscVtfnFz9Xedoy6NEqImqyyoMaFHKFHw3qhvai67FjlXaZyU5d5zLOY4Toja7HjlXaFW072+Ohznks8nIvG95LpY+Q9BN5GW51/VtSn35Crl1lCVGNJARsgB92nNTRidmX5uGzvQH8ecl+rP62IiJb/v1lMRb+bwVuqP4l7r77bnTu3DkqbSTGYJXzl1nQub90bhtpGa2/ZREiRZS8+OKLDbVDcpgSQqKH1+vFP//5T7XIOkncPrNKu8xipxF2xKvOWNUT7XLNMhaIsTQeB59vLVDb5KaOIJ6grYmijZH9Qp6joc8v33pY5SdtCxJ27PS+HdV6yKNTnroXcTM3LUm9lzC4EiJX2e0PqPC6KnSuPyiWyjZxGA2JorKvlCVP8gvyZL884d9edD12rNIuM9mp61zGeYwQvdH12LFKu8xkJ+exyMv1+Xy48ez8Bs9ReQhP0jYcn5OCTLcTKa7gw37yWm5LV6kovPU+Qam2GgzrkY4XrumHn/3sZxGLmnIN/MQTT6h0ab/73e9QVlYWtbaSxD0vWAGd+0vntpEE9Rjdvn27yilqFkr+P3t3AudmVS5+/Ekyma2dtStLS9spsogWugAqKNAF5AoKdAHcQIRS9Kp/lpa6XFyulNblulwpbfXCdQGhRa7gVaAFQdAL3bBaQejeQuk6aztbtv/nOZkM6XRmOskked/35PeFfJKZSc57ztvz5uTN857n1Nc7XQXACjoTPPEhVh8jf/eZV9rllno6UY9cbTNb28l0uW7pC3BWoh/Ut4QkFIlJazhiAo7aJTRYmQp9vpajV8q3hiJm9ufK1/bK9Akn9un1l487Xp57fb+UFwfN63X2qc5CNQHa4oAcao1IMOATv6bTjcbMmqMaAI2vIprcqPis0aFlRWY2q7rkjOFyzdkjJBNsPXa80i431dPWsYxxDLCbrceOV9rlpnoyjvWvXL1de85ImTSqymRK0YsC9fNvcTBwxOs2Nb5bTm/fLo1SKmVyWMqkRQ75otIuAZl08lCZUHONtG/8rfz42bfkrfp4BpdUHD58WL71rW+ZmcNf/epX5eabb5aiovhnYHiDm94XvMDm/WVz29AzX0wXBrKUTnteunSpfPazn3W6KoCVWDwaALyjPym/bKPpYle+ulfW76wzMy1bQhFzZbmuianrbk47fXhO1sSc/5u/yca3GmWfWRMpLGXFBWYN0VTpmkqaOkyvlB9aXixnnFAuC658b59f/+DLO836pJoUV9cr1eCo0nNCnQGqQdeESDQqkaSzh8RzNMXu4IFFnTNN9Up+DYpyYgkgVxjncofzQOQ73m/cQzOl6EWB63bUSkNLSJrbI1JaGJBq/2G5etPtUuSLyJDIHimKtUuDr1yaAkdm9dOLEx9ac0B+8vzbUt8cSbseo0aNMoHSa6+9ljScAI7A5yZ3snrGKClsAQAAkLBpb5M8vmG3vLj5gISTo3sd3qxrMYFKXXdTU8zqbMpMpIHtSSL9raakVfolTjpKCgMmMKqzT5V+KZQKDWD2tF5TOBYzwU+dLaprjSpfx+xQDYbqTemaokPKCuWDJw8xa4pmc78BAAAASi9m1Ewp3WVL+b+ffkCK3v6THPKVSVHsoJTHmiQUDUqrf0DncwoL/PLp9w2Vq84aJD/78175r7/sk5bQOxcF9tX27dvlk5/8pHz3u9+VBQsWyCWXXMIFggDgYlYHRqurq0lfCwAAkOc0QcpDq3eZWZEJ8bSxmso2KpoZVuN7wYBfykuCJh2XppfVWzZnPupMVWUy02q2kzS3kVgDVNf5VHqlfCq0bbpeU1VpodlHul6T3t7ZR7F42T6RaKKy5rFmaBE5ZViZzJw4ImczbQEAAIBjOf4Dn5D2FX+SFv8AaYq1SVnskAyK1kpjLCSH/WUS9b1zUaIuIfHFycfLJyZVy5Ln3pRfrm+UpKQpfbZhwwa59NJL5YILLpB77rlHzjnnnMw2CgCQEVYHRqdMmSIrV66U22+/3emqAMigUCgkv/rVr8zjj3/84xIM8iVsvu4zr7TLLfV0oh652ma2tpPpct3SF/ItKHrvc1vMbEjV2BoyKbeS08Mm6NXhmtK2qMBvAny67qYGCnU2pQYOMxUcTfSDE/Y1SW3Je01QNjmwmarETM5EYDWdmad9Xa8poSDgk/PHDs7Z7FBbjx2vtMtN9bR1LGMcA+xm67HjlXa5qZ6MY7kr96TTJsjLp14r1f98UBoC1SIRkeJYi/xeJotERT4sz0jYVyAxkwslKsWxNjmhtFnuvbRQbju3Sr76xzb57T+a06r3c889J+eee65cddVV8u1vf1tOOeWUtMpBfrwveIHN+8vmtiFPA6PTp0+Xiy++WBobG6W8vNzp6gDI4JfcO3bs6HyM/N1nXmmXW+rpRD1ytc1sbSfT5bqlL+QTnSmqQVGzfmZjmwl8Ko0hDiwqMEFEDShqUFJnWh5qC5ug6b7GNjNjckhZkXm9zqbUwGEmJPqBrsbpK4nPVNWgrG5fZ2qmqqVjhmgwEA+MVpSkfyKnQc5bp50iN5w3ptv1mrTsCSdVy9TThuV0dqitx45X2uWmeto6ljGOAXaz9djxSrvcVE/GsdyWe/ZV/09e/vlBGbTrKRMcPRxtlV1ygvlbabRZCmPxc4Nkbb5CqRxcJt+ZNUA+vbtZFvypVda8uj2t+j/66KPyP//zP3LDDTfIXXfdJccff3xa5cDu9wUvsHl/2dw29MwXs/xfe+zYsTJz5ky5++67na4KYB2nFo+ORqPy2muvmcennXYaC9vn8T7zSrvcUk8n6pGrbWZrO5ku18m+0NraKlu2bOn1OTU1NVJcXCw2rSl66yMbzON9ja2dQdGq0qBUlhZ2ro+ZTNfSrG9ul7qO9T917Uxdd1N9f+a4jMyOTPSDl7YelP/ZJtIajpn1TTVYO2rQgG7r1ROt7/aDh0U/0Z9YVWJmeH76/aO6XWfJy9zyPpqv7XJTPW0dyxjH+i8fx7l8Ow/0MjcfO/nQrkzXsz/vN4xjuS83Fo3K6kf/w8wcjcZ88qYMl0AsLKfG3pAiaRefuYTSJyEJSrN/gIR8RZ2vrT31WhNcXfXMM3LnnXfK+vXr025LSUmJfOlLX5K5c+dKZWVl2uUgv96/3MLm/ZXttvG5yZ2sD4yuWrXKzBrVgWvcuHGO1GHbtm3mA5EeVOHw0VciAV7FGzsAwM2+9/TrZp1QTZ+rM0DV8IpiM1P0WHTm6J6GVvN4WHmRmcl54SlDzGzKTNEA7PUPrJFwJCa7apvNTFUN2g4a+M6XMcdy8FCbCeJq+t8R1aUmxe0D153NWp8AgKzhPBCAF+14bZ28/edfSdWeP4u/m5miCVFfgdQN/4Ac94GPm3S8nb+PRmX58uXyla985ZiB8d5UVVXJl7/8Zfn85z/PxTpAHuBzkztZHxhVs2fPlhUrVsizzz7rSHA0ERjVge/gwYM53z6QLbyxAwAySQOFK1/dK+t31kl9c0haQhEpCQaksjQo40dWybTTh/c54JccdNxZ2yztLg06uj14CwBAV5wHAvCyhtr98safHpbYzpekoL1BAuEWiRSUSLiwQnwjz5V3fXCWVFT3/H7W3t4uy5Ytk29+85vmvS9dI0aMMGV88pOflEAgkHY5ANyNz03uZPUaowlLliwxKQouuugiEyC98MILc7r9+vr6nG4PsJ1epffmm2+axyeeeKJV6RuyxdZ95pV2uaWeTtQjV9vM1nYyXa5b+oIbU94+vmG3vLj5gAlkdqVpZje+1SgPrt4p540dLJePO/6YKW01wKpl6TqhGhTVNLWaPjcV+vz6lpCZyanlFEvArLvZ3zS1yf3gI+8ZbgKj5cVBs43GlniwM9V0v4m1SS8bZ+e6RbYeO15pl5vqaetYxjgG2M3WY8cr7XJTPRnHnC1Xy2s41CLDxl8uJ15+S1rlFRYWyuc+9zn59Kc/Lf/xH/8hixYtkkOHDqVczq5du+T666+X7373u2YJuMsuu0x8etKCvHtf8AKb95fNbUPP8uZfeeHChbJgwQKZPHmy3HLLLdLU1JSzbW/dutXcV1dX52ybgM00JfX9999vbqSnzu995pV2uaWeTtQjV9vM1nYyXa5b+oJbaOKSB1/eadYB1eBgIpCp64G+Vdds0svqvf6sv9e/6/P0+fq63hKf6KxT1dgSDx7qDMxU1u5U+vzEzM1EOet21Eom+8HoQSVyzdkjze+HlBWZIKfSoKeuHbrXrI0aksNtYXOvP+vvk4Oi+jql5WRiDVQ3svXY8Uq73FRPW8cyxjHAbrYeO15pl5vqyTjmbLmZLG/gwIHyta99zXzv+8UvflGCwfSyyvzjH/+Qj370o3L++efLn//856Of0Fwr8sqvRB7/gsjDnxT55fT4vf6sv2+Jn/fAu+8LXmDz/rK5bcjzGaMJN910k0ycONEESHUG6YwZM8zC2WeeeWZWt/vwww9ntXwg3+gVdIkLDbiaLr/3mVfa5ZZ6OlGPXG0zW9vJdLlu6QtuoEHNe5/bIk9u3GN+1qBfQ3N8dmZXLaGoNLaGTUpbTWOrsysfWr1T6prb5ZYLarrdl5qKV4Ui8fJKC9NLT1VSGJCm1rCEOmayNnQESDPZD645e4Rpi+6LoWXFUhIMmfrrvtBt660r3ReaYjgxU/SSM4abcmxl67HjlXa5qZ62jmWMY4DdbD12vNIuN9WTcczZcrNRT02H+YMf/MAER//t3/5NfvWrX/V6AWdPNCh63nnnyeWXX25mkL57SEBk4wqRrc+JRLo5B6nfKfL2BpF194uMuUDkjOkiQ0/NSJvygZveF7zA5v1lc9uQ52uMdueZZ54xgdGGhgbz85QpU2TMmDFmLVANmmYqhe7KlStl1apVZkDUsjdt2pSRsgE3IEc6ACBdOuNTg5sxicn+xjYT+FR6HqKzNDWQ6ff5JBqLSXN7xKynmfjUmpgl6RMNKo6Ua8+Jz7hMdt39q+XgoXYz61QDjMdVFMuAPqzb2ZXO1Hy7obVzndFBAwvlgevPlkzTz4oPrd5l9klCPLVuyARldT/o/ggGfFJeEpTi4DuBXt0HGhTlJA4AkAucBwJAzzZs2CDz58+XP/zhD2mX4ff75NPnDpVvfOQkGVFdLBJuFWmtl2i4XULhiOi1pCEpkMP+gRL2F5lMN3r+VHzODVL6vhviJ1UAXIHPTe6UVzNGGxsbZenSpWbN0UR620RcWIOX2ZKnsWcAAIAe1xRNBACTg6I9raupsyIHJ62rqetwKp1dqeVMGlV1VArZko7AYaIoDSymI9LxOg1K9mfm6bFoUFMDvNqWJzbslhc2HzBrmiYHQJMVBHxy/tjBZk1RW9PnAgAAAF4zbtw4+f3vfy/PPfeczJs3T1avXp1yGdFoTO7/y155cPU++df3l8m8DxRJRbFPItH4uUmg41YcOSTtvqAc8pXJwfYB4nt2sbz9z80y/NIvy8nDy7PQOgCwQ94ERh999FGZOXPmUYHKxJX12Qxe6jYIjgIAAC/Q4OPKV/eaNTo1nWtLKGKCjJq2dfzIKpl2+nCTzrY/Ht+wuzN9biIoOryiuHM9z+5osHTQwCIpCgZkT0OrCY5qylkNmmog8dZppxzxfK3vm3UtEgz4TSpenXWaSDubipb2iLnXmZqqoqR/bT8WDXJqW244b4ysfG2vWdNU0/dq/TUoq9ufcFK1TD1tWL//HQAAAABkxwUXXCAvvfSSPPbYY2YG6RtvvJFyGW3hmHz3T42y7GWffOG8CvnUuUOkMFggEotIibTKAGmRYKxdqmK1Uuhrkzp/tQx/a6U89YuArPngbLLKAEA+B0a/853vmLVEE8HJ7gYEBgnAO3Qh7EceecQ81gseCgry4q2sX2zdZ15pl1vq6UQ9crXNbG0n0+W6pS/0NItTA5Yvbj4g4Y71NJNpkHHjW43y4Oqdct7YwXJ5mjMVNfCq24g/DnXOFO0tKJpMn6fP15mj+noNdursSg0kJgcKNYir9dW0sxp81VS8Ouu062zU3ugV2fo6peUoDUr2V1/6gbZl+oQTzQ3uPnbyoV1uqqetYxnjGGA3W48dr7TLTfVkHHO23Fzvf/2++corrzTrhv7Xf/2XfP3rX5e333475XIa2mLyrWfqZcnqwzLnQ8PlY2dWS4G/VPwSlUppkko5JANih0yWnFp/tVzc+qT8x1/eLXXNZ8stF9TwvbfL3xe8wOb9ZXPb0LOCfFhLVNMW6ACQi9mh3WHwATIrGo12rterj5G/+8wr7XJLPZ2oR662ma3tZLpct/SFvq9tGRXN1qSxRJ15ada2lIA89/p+c0tnbUudjaqBV91Gezhqlr/R9Lmp0OfXt4TM2qFajtZJZ1cmBxGnnj7MBHH1b7o+qD5Xg7I667Sv9Pn6sVFfryltNX2tztS0sR+4na37zCvtclM9bR3LGMcAu9l67HilXW6qJ+OYs+U61Rc00HLTTTfJJz7xCfnhD38oCxculIaGhpTL2dcUkm/8bpf8/P/2yf+bcrxMPa1CmnyVEooWypBYrZTFDktLpEia/QPk/Pbn5cGNI6WqtNAs2QH3vi94gc37y+a2IY8Do7Nnzz7ii78xY8bI9OnTZerUqeZxdXW1VFRUZGXbOsCtXLnSDHz19fVZ2QaQjwKBgHz0ox/tfIz83WdeaZdb6ulEPXK1zWxtJ9PluqUvJH82uve5LfLkxj2dqW0bmuMBx640Ha3OvNQgoc5mLC8OmmBqXXN7Slcha4pes62WUOcM0FRmcSp9vr6uqTVsytGgpaacTQ6MavBUZ7ZqAFfru6+xzcwy1VS8fZmdqjNF9fnxsuKzRXVNz0ykr3VbP/ACW/eZV9rlpnraOpYxjgF2s/XY8Uq73FRPxjFny3W6L5SWlpq0uvpd8T333CM//vGPpa2tLeVyth1sky88vE3GnVgqt089Qc4ZXSaHomEpizVKReyQNEVL5YzW9TKg+GPmnG3SqKq0sv3YzOm+4DU27y+b24ae+WIWL36ps0U1AKpf1I0ePVqWL18uZ511Vs7rsWjRIpPKt6ampvPqA8AG+/fvl6FDhx7xu3379smQIUMcqxMAoO8efHmnOVGOSUz2N7Z1rvepMU4NHuqaln6fz6Rk0jUuNViY+ORYXlIgQ8qKxCc+M3O0r1chz/nlOpOW9626ZhNsHVZelNbanxrE1WCnrn96QlWJjKgukXs/PuGo9MC3PrLBPN7XFF+XVGkqXg2cdheQ1fS5OlM0ERTVdg4tKzaPvz9zHF8oAADyHueBAJAZO3fulLvuukt+/vP/lqim6knTB08ulzumDJfJQ3ViTlR2RYdImxTKr+QS+b3/QhlRXSrXvX+UTDt9eEYu9ATQd3xucierZ4xqIFSNHz9e1qxZ41g9JkyIf0lXW1vrWB0AAEB+a21tlS1btnT+vKehVZ78v+1SpVkumkNSEYpIi1TIwNKSboOGGrwcnBQ0TAQZNWiYylXILaGIuU+c92vgNR2Bjtdp0FZp4LYrrY8GbbV+GsRVWm+zPmlLyAR/SwoDpqxILCYtPQR/lZZDUBQAvDPOdUcvVi4ujl/sAgCA00aOHCn333+/3D6hXb687Cl5/G8H0yrnT5sa5YVNjXLVe0rlWxcWSVVls+yNFcqZsdflt5ELZOuBw3L/n7ebpUY0q87l447n3AZAXrM6MLp161YzWzQRIHWKpusFkDma712vrFF6xY3f73e6Sq5n6z7zSrvcUk8n6pGrbWZrO5ku18m+0NjYKCtWrDjidzXJPwREVpdMFH9Jz2twarBU1+jUdLQaWNUgY0kwZIKmT2zYLbdOO+WY9dAZnioRd00ENlOlgcx4OfGCdHZrd3QNVE33q+mCNYir9a3vSBesqXj11pWmC9b0uYmZrJecMdyUY9t7gpfYus+80i431dPWsYxxLDvjXFdz5swhMApHuPnYyYd2ZbqeBw4cMMGs3lx//fUyePDgrNelLxjHsl/P/nr3EL/89pZ3y4t/3STzfn9A/rIznr0mFXp2tOLvzfL4q81y/cR2ufoDA6Ws9JC0hSPmnOng4TZzPqRLjehNL/zUc5y+LoliG7f2BbeyeX/Z3Db0zG97YHTKlCkyatQoR+tRWVlp7llnFMiMcDgsS5YsMTd9jPzdZ15pl1vq6UQ9crXNbG0n0+W6pS/0pLQjaHksOtNS09EqDTKqFzYfMDNPjyWxXmcw4O9xpmdf6OzOeDnxE/mKku5TQumJvq6Bqif+SoOdmkrqxKoSKS8uMIFaDYTqvf6sv9e/J4Ki+rpU1lC1oR+4ka37zCvtclM9bR3LGMcAu9l67HilXZmup36J3tzc3OtNn5OLuvQF41j2ysuYUIu5O29UoTx7fYX89JoTpWZIehfy6GnSkpcPy0f+8zV59IVNEm5rMReVHjjULrtqm82SJEqz6tz73BaxeJU9b/YFl7J5f9ncNuTpjFFNXXvzzTc7XQ0zY/Sqq67K2ytwgEzTY6msLJ7yg+Mqv/eZV9rllno6UY9cbTNb28l0uW7pC5mg6XY1Ha3OvGwNRaRYArLytb0yfcKJvb5u/Mgq2fhWo5SXBM2appq6VlP0drfeZ090HVB9ndJy1ISTes7Qofta10DVdL86s1WDuFrf4h4CwQUBn5w/drBclqUUUzb1g1yxdZ95pV1uqqetYxnjGGA3W48dr7TLTfVkHHO2XDf1hSMES+L3Pr9WTC45dYCcPXaQ/M+GWrn3uT2ypzH1GaSH26Ny//M7JLD2Rqn6wDVSdubF0hb2y77GNnP+pkuGaFadqtJCc66Ub1zbF1zK5v1lc9vQM1/M4stCdNqzptK58sorna4KYCUWjwYA79D358WLF/f6nI3l50hrwcA+l7m3sdWkotWZlkPLi+WME8plwZXv7fU1ukbp9Q+skXAkZq5Y1sCqzj7VFL19dfBQm1knVGd66uxODWQ+cN3ZUtExG/VYdGarBnHX7aiVhpaQmbWqqXh11qkGWKeeNqzPZQEAvDPOaSrdrucvSB3ngch3vN8g4x7/gsjbG0QO7ZG2Q3VySEplT6xK9Ft7vSj0odUH5L4X9khDS3rZdlSw6jgZdfFnxF/zfvH5/FJeUmBS66rvzxzHmqNAlvC5yZ2snjE6ZswYM2sUAAAAmVdSGDCB0VAkfp2dBhn7MtP0vLGDzbo2GnzUK5ZNkDMYMCl6j0Vniurz42XFg5c6uzOVQKY+V2e2Hmt2KwAAAABk3Yhz4oHR4kqRQ3VSGmuRgFRIWPxSHPTLDecNkxkTBsnSF/fKz1/aJ62h1Oc5herelk2//rYMPOFkqfrQ9SJjzpKSYMgsIaJZdW6ddkpWmgYAbuS3PTC6ZcsWp6sBAABgpUBHmploRwKSvq4Xevm44819eXHQXKms9jS0mpmgekV0d/T3+nd9nnltSUHnOqCa8hYAAAAAPOmUD4sEgiIFxRLxF4pPYlIph8yfEqdHev5z+9QT5OkvvluuGj9IAmlm/Dz01ibZ9eCXZeevviy7N79qfqdLjWhWHQDIF1bPGJ0yZYosW7ZMFixY4HRVAGSQLoT92GOPmcdXXHGFFBRY/VaWEbbuM6+0yy31dKIeudpmtraT6XLd0hcyJdIREPV3BEg1HW1faJqma84eKQ+t3mnWtlGNLfGZoLpuqc4c1dmoGnjVbbS0R8xM0VjSlwKJ12k5Xkv7ZFs/yAVb95lX2uWmeto6ljGOAXaz9djxSrvcVE/GMWfLdVNfOEJptciYC0Q2rZRIUZX4m/dKpTRJiwTlcLRECvzvREGHDAzK1z8yQj517hD50bNvyzP/bEhrk83bXpFNSz8vjWdeKKdfdpOsfO2k/mXUaa4Vef0PIrteFmmpEwm1xNdOLamKz4g99dL4Y5dwbV9wKZv3l81tQ57OGJ0+fbqZMbphwwanqwIgg6LRqLz66qvmpo+Rv/vMK+1ySz2dqEeutpmt7WS6XLf0hUzRgKUKdlyurGt09tU1Z4+QS84YLj7xmbVthpUXmTVDNfip6Xk1xe7bDa3mXn/W3+vf9Xn6fH2dvl7L8Rrb+kEu2LrPvNIuN9XT1rGMcQywm63Hjlfa5aZ6Mo45W66b+sJRzphu7krKquSwf6B5PMxXK9XSINFIuPNpiWw9owcVyQ9mjJDHP3OcnH9S38/Dutr71z/Kc9/+hCz46u2yZ8+e1AvY90+RZ/9d5MGZIquXxlMC1+8UObw/fq8/6+9/NSP+PH2+C7i6L7iQzfvL5rahZwW2p9K96qqr5MYbb5TVq1c7Wpef/vSn5v6zn/2so/UAbBAIBOTDH/5w52Pk7z7zSrvcUk8n6pGrbWZrO5ku1y19IRM0ta3O4lTlHQHRCSdV9/n1Pp9PbrmgRqpKC83MUU2Lq7fWUEQaW0Jm3VI96dfZqBp41W0UB9/ZZzpTVIOiWo7X2NQPcsXWfeaVdrmpnraOZYxj/Td06FC56667nK4G4LljJx/alel6lpWVdZbX23NyUZe+YBzLXnkZNfRUkQnXScG6ByRUMkQON8ekNHZYqqRJKmOHpDlSKm3+YmkTn/glKiW+VhkoLTLmxJhM/lS5/M/mgHzj2UZ5Y2986ZFUxKIRWf/kwzJ27O/k1ltvldtvv13Ky8uP8aKYyLoH4reEcKtIa71IJKSFivj88RTBunaq2rQyfptwXfzm4Lmcq/uCC9m8v2xuG3rmi8USScnsVF9fbwKkN998s9x9992O1GHbtm1SU1Mjfr/fTM0GbLF//37zBUSyffv2yZAhQxyrEwCge/r+vHjx4l6fs7H8HGktiF+dfCy63qemvtVZnCOqS6Ug4JMHrjtbKkpTv1p5094meWLDbrO2TTjS80dT3cb5YwebNUW9lj4XAABbcB4IAFmiX9O/8D1p/ftvZVdtswyIHZYB0SYpjLXH/66BxI6v8hNnTe1SKA0yUJqkVCLRqNzztypZ/txrEmncl3Y1Bg8eLF/96lfN9+lFRUU91lNeeyL+c1tjPH2uBkZ7UlAcT6Vb1BFwPe0ykfNvczQ4CuQCn5vcyeoZo6qyslIeeeQRmTZtmgwaNEhuu+02x+pSUVHh2LYBAACOpTkUEX8fPh3qTFENiqrKjkCoBizTCYoqDXLeOu0UueG8MbLytb2ybketNLSEpLk9YtYt1RS9Oht16mnD0t4GAAAAALiaBgnPv02KSwdJ9Z+WSu1hkcOBARKItJogaTAWFp/EJCo+CUmBNMZKpU0KO14ck4ejk+Wl0y+Sk06JyKENv5eDL/5aIs2NKVfjwIED8qUvfUl+8IMfyLe+9S259tprzYSfTjpLNBEUPbQ3Pks03gCRojKR4AARf0AkGhEJHRZpa4oHTZvejq89OnBY/PWlg0QmXp+BHQcAqbE+MKqmTJkia9euNfdr1qyRZcuW9ZjSIluzVgFkjk50r62tNY+rq6s9mUYx12zdZ15pl1vq6UQ9crXNbG0n0+W6pS/05EBTmwQibVJZWigBv6/b9Ln1ze2dQdHykgKT/lbpLM7+0qDn9AknmpvN3N4P3MjWfeaVdrmpnraOZYxjgN1sPXa80i431ZNxzNly3dQXeqR1mni9VI88V7b+7qdStvtFkUCx1MeKJByNSTQa65wtqsISkBej75Enou+TrbEREvT7JFBQINVnXyEjzrlUGlc/Jlv/+IhE2ltSrsr27dvlk5/8pHznO9+Re+65Ry655BLx7X/9nfS5nUFRn0hJdXxGqAZEkxWXiwwYGp9R2lL7ThBVg6Nazsj3xdMI55gn+oKL2Ly/bG4bepZ0qYfdxo8fL1u3bpVNmzbJqFGj5Gc/+1nOtq1B2cSBBaD/QqGQ/Od//qe56WPk7z7zSrvcUk8n6pGrbWZrO5ku1y19oTca9Nx+8LDsbWyVxtaQHG4Lm3v9WX+fHBQdUlbUud4nqW3t6gduY+s+80q73FRPW8cyxjHAbrYeO15pl5vqyTjmbLlu6gvH4ht6mky8/rvy9wt+Kr8rvky2BcdKXeFx0hSolLdkqPwjNkr+O3yxXNc+V34YmSE7/SOlsMDfeYFr9YBCOW5ItZzyL5+VC//tITnpvCvE1zVo2Ud/+9vf5NJLL5ULL7xQXl7+H++kz00ERcuOExkw+OigaIL+Xv+uz9Pn6+v09Wrjo+IEL/UFN7B5f9ncNuT5jNHktLrr1q2TpUuXyh133CE33XSTzJ4928wk1dsxF5VOg15Zs3DhwoyXC+S7btc4QF7uM6+0yy31dKIeudpmtrbTXbk6a3Llq3tl/c46qW8OSUsoIiXBgEkrO35klUw7fXiPKV/d0he6M2hgobS1+qUtHJWm1rC5daVrimo7EzNFLzljuFxz9ggHauttbu4HbmXrPvNKu9xUT1vHslyOY24qD8gXth47XmmXm+rJOOZsuW7qC8eiM9dmnPce2XTyKHliw255YfMBaQ1FZPuBZvP39lhUor6YFPh84tdZbhqjLCowS5EUB98JUhaXD5L3zLxVxlw4U17/32Wye/2zadXn+eefl3Off16uPGuw3H1RoZxSJfGZopo+ty/0eeE2kZaD8Rmkut7o1j+KvO+W+GzTHPNSX3ADm/eXzW1D93wxnStsqfnz5/f4N222BkgbGhqO+P2YMWNMADVTKXR1lmpiezU1NWbGKmALFo8GkG827W2Sxzfslhc3H5BwpOePUAUBn5w3drBcPu5418yk1PfnxYsX9/qcjeXnSGvBQHOy3dgSklAkJtFYzJxkBwM+Ke9ygq0zRTUoSqoZAADyB+eBAOCMhuaQrHxtr9z/522yq65ZQuGouahVz8eqSoMytKy42yVRkh1qC8v2f/5d9j17vzRveyXtugT8Ip8ZXyJ3XfluOaG6tO8vjIZFavX78phI5UkiBcUi58wWOfPatOsCuBmfm9zJ6sCopq7tGvjsKpfNJzAK2/DGDiBf6OeFh1bvkodW7+z83TvBw6hEYyJ6/hkM+F0bPOxLYLR03IflL7tDxwz6nj92sFlT1C1BXwAAkDucBwKA8xfs3vrIBvN4X1OrNLbEM/1ocLSytLDb4GgkGjOZj5KXRvG99Xf55+P3ScObb6Rdl5KgX7540Qky7+IRUlnax+SUTW/HU+kWV8bXGj1unMjlP0q7DoCb8bnJnaxOpauzP9evX9/j3/ULylx9SWlx/BkAAKvpGH7vc1vkyY17zM+63qZeqatX5nbVEopKY2vYpJvVVLrlxUETTK1rbpdbLqhxPDh6LJ9+/yi5aWCVuQp53Y5aaWgJSXN7REoLAyYd04STqmXqacN6TBMMAAAAAMguvUBVL8DVc80hZfEUoBoc1aBnfUtIBhYVSElhQAI+n0RiMWlpj5iZoomvpzUoqq/znTpJPv+JKyS482X5yle+Ilu2bEm5LnoOfM9Tu2TJC2/Lly8ZIZ+/8AQpDvp7f1FwQDwwGmmP/2zWKgWA3LE6MKozRlXXLyETQcpcBCvd/gUo4EXhcFh+97vfmccf+chHpKDA6reyjLB1n3mlXW6ppxP1yNU2s7UdLfdH9z8s2w4cFhlwiuxrCpnAp9IhXk84NWioqWY15WxzxwmnBk33NbaZWaV6wqlB1arSQpk54XhX9IXeaNBz+oQTzQ12vyd4ia37zCvtclM9bR3LsjmOZbJcN/UFwEtsPXa80i431ZNxzNly3dQX+kuzEukFuHquqSl0S4Ihqe+4gLepNWxuXekFvJWlQSkrjl/oeskZw+Xj554kvveNkiuuuEJ++tOfyje/+U3Zu3dvyvWpaw7LHb/ZJj/64275xmUnyafOHdZzWl9/R+A01nGxcXt8zdRcsqkv5ILN+8vmtqFn1s8YTaaBUP3d+PHjc7J9XWN07dq15h5A5kSjUdmwIZ4y5NJLL3W6Op5g6z7zSrvcUk8n6pGrbWZrO5v2NErT7s0yWETWRU6SxrZYrymK9ARzcFKKokRKIz1R1at5zzphoCv6ApzllvcEL7F1n3mlXW6qp61jWba2kely3dQXAC+x9djxSrvcVE/GMWfLdVNfyMRkHM1KpBfg6rmmnovq7Z0lX2Lm4l29iDcY8B1zyZfCwkK55ZZb5FOf+pT8x3/8hyxatEgOHTqUcr121bXJZ37+hnxv1Zty90dHy2XvrT564lC0IyDq6wiQFqawRmmG2NQXcsHm/WVz25CngdHKysrOgGhVVZU88sgjMnny5JzWQYOiU6ZM6TWlL4DUBAIBc1wlHiN/95lX2uWWejpRj2xtUwOPK1/dK+t31pmrYlvaQzKo+jQpKfTL//x1t1x8xgkZSff6vxv3yK6SsdIWjkhDS0QvbZXhFcVmpmhPNFg6aGCRFAUDsqchvt6LXr2rJ6m/37jHFX0BznLLe4KX2LrPvNIuN9XTprEsF9vIdLlu6guAl9h67HilXW6qJ+OYs+W6qS9kggYcrz1npEwaVSVPbNgtL2w+IMUSOCIAmqwg4JPzxw6Wy8Ydb9LxdmfgwIHyta99TW6++Wb59re/Lffee6+EQvF1SVPxj93N8tHF/5AP1JTLwitGywfGVrzzx9Dh+H2gMH6va43mmG19Idts3l82tw0988UsXvxy2bJlMnv2bDNILFy4UG6//XZH61FTUyObNm1ypA5ANrB4NIBc27S3SR7fsFte3HxAwpGeP8LoCd95YwfL5b2c8PUl+Hr9A2vMdnbWNkt7OGpmimrQs68OHmozM0c1ZdGI6lJTrweuO9uRNTr1/Xnx4sW9PmfOnDlHva8DAAAk4zwQANypoTkkK1/bK+t21EpDS8gs9aJLv1SUBGXCSdUy9bRhKZ+Lbtu2Tf7t3/5NfvWrX/VrWbrL3ztI7v7YKHn38CKR2q06lUmk8iSRgmKRc2aLnHlt2mUDbsbnJnfKizVGVSLq74SJEyea+9raWsfqAACAl+kJ2EOrd5kUQQnvpAiKSjQmolltgwF/PEWQBOS51/ebW9cUQX2lM1I1KKrb0aCovlzT56ZCn1/fEl/nRcvReumJKut3AgCQWQ0NDfL000/3+pxp06ZJRUXSjBUAACyiQU8918zk+ebo0aPlF7/4hZlwNH/u7fKHp1elVc7jfzsov/v7QfnUxAr5xoeCMnLwgHhQNBAUOeXDGasvAEi+B0aT1xhNpNV1gpPbBmwNkDQ1NZnHZWVlKQc78pGt+8wr7XJLPZ2oRya2qWXc+9wWeXLjHvNzY2vIXAmrwcakZ0mJhEQz/LzZGpSigoA5KSwvDppgal1zu1l/JZXta5peicWkrfmQlEhECgpLjlpT9Fj0+Zp2t6k1bIK4xQV+Wbf5LZl2crmr+yzy4z3BS2zdZ15pl5vq6dWxzKltZLpcN/WFrtra2uTVV1/t9Tkf+tCHclYfwCvHTj60K9P11IkPv/71r3t9ztVXX33EhI1s1aUvGMeyX898MG7cOPn9Uyvlue/fIPN+vFxWb4/vx1ToBc0PrGmQh14R+dcP+mT+v4Sk+sxpIiVVkmv0hdTYvL9sbht61rHCsZ3cFpDU9UYB9J+ubaALwestnXUO8pGt+8wr7XJLPZ2oRya2qTNFNSgak5jsa2yVfY1tJiiqn1XLigtkWHmRnFBeKB8teMXcCnxR83d93r6mVvM6fb2Wkwpdu9QvUZkcWWvKHViY3ofjksL4GhWhSMyUV/zPJx3vC3CWW94TvMTWfeaVdrmpnl4dy5zaRqbLdVNfALzE1mPHK+3KdD3D4bBJjdjbTZ+Ti7r0BeNY9srLRxd84g55ad6Z8ujs0+VdQ9JbIqYtLPLdZ/fLmK+ulnuerZXm5mbJNfpCamzeXza3DXk6Y1Sn+q9cudI8HjVqlCvqASAz/H6rr+vIClv3mVfa5ZZ6OlGP/mxT1xRNpM/d39gmja3xLxh0rU9NU5uYwemPRSTaHH98UvUAqW2JmLU9G1vizx9aVmzKmTSqqs9rjraEIuY+Kj6z/Ik/zasGAx2vi3asxxITX8ozT2Eft7wneImt+8wr7XJTPb02ljm9jUyX66a+AHiJrceOV9rlpnoyjjlbrpv6gicNPVV8E6+XK30PmHVD7//jG3LXU/vl7abkjE5909ASkfnf/r58695fyLjLbpD3XPQxqS4rkfEjq2Ta6cNTXg81VfSF1Ni8v2xuG7rni/Vn1WQAeY3FowGkqr653azdqWlqdUamBh9LggGpLA12e/LzvadfN+uEavpcnQGqhlcUm/S0x3KoLSx7GlrNY51VWlYclAtPGSK3TjulT3Wd88t18mZdi7xV1ywtoWhnGalK1F3beUJViYyoLpF7Pz5Bck3fnxcvXtzrc+bMmXPU+zoAAF7AOJc7nAci3/F+g7yn4YQXvify2hPmx+amevnRMzvlnucapKE1/VDDgKEj5dSP3CjDx31IggV+OW/sYLl83PF9vrgZcCM+N7mT1TNGAQCAO+jMz8c37JYXNx+QcOToEyUNQG58q1EeXL2z8+RnSFmReb7SIGpipmhfgqJKn6fP15mj+noNar6w+YDccN6YPl15qsFarVcw4DeB0eb2SFqB0Zb2+MzTYCA+S7SiJLtXvQIAAAAAkDWaFen820RKB4mse0BKyyrlzo9Vyo0XNMk9f9guP/5zvbSFUw+QHt63U9b919ekfORpcvpH58hzkbPMhdLXnD1Srjl7BGs/AsgYAqMAACBrNDGFru2ZSIerWkMRaWwJSSgSlahJUatBQ7+UlwSlWALmxEdv7xpWJuFIVFpDUWnvWFNU0+emQp9f3xIya47qdrX8la/tlekTTjzma3UGqwZrtV6awldnoA6OxlJKgxuJxszrlJajJpxUnVIbAAAAAABwFT1Bn3i9yMj3iWx8VGTrH2VQZZl855r3yL9e3Cpf/90O+e//22vO+VPVuPM1eenHX5CqU86W93xsjjy0WqSuuV1uuaCG4CiAjCAwCsBzwuGwPPXUU+bxxRdfLAUFvJXl6z7zSrvcUs9c10ODoj959g15bc0LMlJE/uEfLfUtEROk7EpnZGrwsajAb2ZzlhcH5dl/7pXCAr/J0pOYAdpTUNIXi8qI5jfM412l75KYL74+hD5fX9fUGjbB2OJgQNbtqO1TYHTq6cPkoZe3y8j2TXJ8QVjWhkeaVMCDBhb1eR/o87X+2i7ddtAfk8Cbr8j/7tng6j6L/HhP8BJb95lX2uWmejpRl1xsM1vbyHS5buoLgJfYeux4pV1uqifjmLPluqkvWGPoqSIXfUXkfbeIvP4HkZ0vyciqevmvOSPktivb5cuPbJTHV29Lq+i611fLnxatkRMmTJXmf7lBqkoL5dpz9NuF/qMvpMbm/WVz29AzVpUF4DnRaFTWrl1rbvoY+bvPvNIut9Qz1/XQmaIr/7FHhra9ZW4HmlpNUFQv8CwrLjBrdh5XUdyxdmeB+b3+Xdfj3NfUamZbNrbEZ2qq0sJAj9vySaxzO/o4WUnH60IdKXwbWuJpefsy2/T9Y6pNmWNkrylX0/Im6nMs+jx9frys+GzRD4yplr/9db3jfQHOcst7gpfYus+80i431dOJuuRim9naRqbLdVNfALzE1mPHK+1yUz0Zx5wt1019wTolVSJnXity+Y9EZv5c5BMr5N23PS7ffXyDvP+LP5GqMe9Jr9xYTN5a+7T88d8/Ll+dd7u8/I/0gqxd0RdSY/P+srlt6BnhbwCeEwgE5EMf+lDnY+TvPvNKu9xSz1zWQ9cU1fS5PvHJJt8IaYtEJSY+s+anBhy7zvzUtTs1Ta3OsNRgogZEI7GYBHw+aQtFpSDgE38vKXO07N3FozsfJ9MyVLRj6qmuFdpXHxl3gvzH3+LlDgwHpaE1KnsaWntsh4oktUOVlxR0rk36L+NOkD0lzvSFAQMGdP779/Yc5M97gpfYus+80i431dOJuuRim9naRqbLdVNfALzE1mPHK+3KdD3787macczZcr3SZ23y+IbdUl3zXjlj9g9k67o/yf5n75f2A+8stdNXsUhYtj2/XD509u/lK3fOk//3//6fDBw4MO160RdSY/P+srlt6JkvpnnuACAN+/fvl6FDhx7xu3379smQIUMcqxMAd/je06+bdUIbW0NmBqgaXlFs0tr2ZaalBh/bwhEp8PtNgFTDjydWlXQGGFORqENJMCAnVJXIiOoSuffjE/r8+gdf3mmCvDGJyf6mNhO0VRpv1fbojFQNvmo9W9ojpv6JT1caFB1SVmQCxNecPTJjaX8AAIAcdR6yePHiXp8zZ86co85fkDrOAwEAfaEXDF//wBoJR2Kys7ZZ2sNRqSz2S8trz8nrv/+ZtNbtS7vsYcOGyde+9jW58cYbpbCwMKP1BjKJz03uRCpdAACQ8ZOfFzcf6HgcnzWpMyz7EhRV+jx9vgYTdfalBkU16NjXFLZdabBSBQPx2Z0VJakFV685e4RccsZwU5+hZfHUv7pmqAY/de1SDbq+3dBq7vXnxJqi+jx9vr5OX6/lAAAAAACQD1a+utcERVtDERMU1YuLqwaWyIhzLpULv/qgnPaxz0mwtCytsvfu3Suf//zn5fTTT5eHH36YFKgAUkJgFIDn6ET31tZWc2PSe37vM6+0yy31zFU9jjz5iUihLyyDin1mbZC+iqepFdEEvIlstSa9brSHMjTtbjRkbsnb0ecnAqrlHQHRCSdV97keup/a2trkM+eeIFdPigc2ddbqiOpSM4O1vLjAzETVQKje68/6e/17YnarzhS95YIa8fl8rukLcBb9IHW27jOvtMtN9XSiLrnYZra2kely3dQXAC+x9djxSrvcVE/GMWfLdVNfyAfrd9aZ+8aWUOdF0InlaALBIqm56Gq56N8elpopHxd/sCitbWzZskWuvvpqmTRpkqxatarPr6MvpMbm/WVz29Az1hgF4DmhUEgWLlxoHs+fP5+UGXm8z7zSLrfUM1f1SD75CUhUrgysE2kUWV91gUSlb+s16MmSBjIPHm4XjYX6dfZoLL5256CBR58w+SUqZ9X/Kb79pO3o8xMzOIuDAbNW6dTThqW9z84eXS1PbNgtL2w+IMUSMGV2R7dz/tjBctm44+XkYWWu6wtwFv0gdbbuM6+0y031dKIuudhmtraR6XLd1BcAL7H12PFKu9xUT8YxZ8t1U1/IB4kMUqFIfDZnaeHR5886Y/S0y2+W0R+aLm/84X7Z9dL/Siwaz/qUivXr18vUqVNlynuGyz3XfUgmXHiZyKmXipRUdft8+kJqbN5fNrcNPSMwCgAAsnryk64BRQWmrFhHoDQcjUpdc0iKgoE+r1Wqz1eVpfHZmxqsrOh4nA4Nct467RS54bwxsvK1vbJuR600tISkuT1iTvI0Ta/OSNXga3+2AwAAAACAl7WE4gHOROInv+bS7UFxxWB579V3yJgLZ8k/f7dU9mx4Pq1trvr7Hpl428Mya+Kz8u9X/ETGnnupyBnTRYaeml4jAFjJF2N+MACPLR6tb1uJtQP8fr9JT4n83GdeaZdb6pmrelx3/2o5eKhddtU2S1s4IseXF5kgp1ktNIVtHm4Ly1v1LSYtb2GB38wYDXS8Xtcgjafb7SgvpqXHP9KEoyL1LaHOoGh5SYFZ61N9f+a4I2Zw5nqfuaUvwFn0g9TZus+80i431dOJuuRim9naRj6NY3oesnjx4l6fM2fOnKPOX+Cd80Avc/Oxkw/tclM9GcecLddNfSEfzPnlOnmzrkXeqmuWllBUhpUXdS45cyx12/8hrz1+n9Ru/mva2y/w++Sm84fL1y49SYZfdJPIhOs6v5OgL6TG5v2V7bbxucmdmDEKwHN0gAoE+paOE3bvM6+0yy31zFU9dK1NFY9Z+iSiIUtf6suaayBUrygtCuranCLFuo5nYcCsNapBTw1+6sxR/Z0GTPX5Le0RM1M0cdmXBkWHlBV1rvWZSlA0G/vMLX0BzqIfpM7WfeaVdrmpnk7UJRfbzNY2GMcAd7D12PFKu9xUT8YxZ8t1U1/IB5q5SQOjwYDfBEY101JfA6NVo94t7/vXH8n+116Wv//PYmnZszXl7YejMbn3+bflv1/aK7c+v1tu//xbUn7JV0xwlL6QGpv3l81tQ89S/5YSAACgF4m0tXryo/TkJx0a5FQDCwMmwKlXe+rMT73KVNcM1eBnU2tY9jW2ydsNreZef06sKarP0+f7xCeXnDFcrjl7RAZbCQAAAAAAejJ+ZHx9z/KS+HcEehFzJJFXt48Bq0GnniMnffbH8tGPflhOqExv7cfDbVH51u93Ss3Mb8oPb/+4tLW1pVUOAHswYxSA50QiEXnmmWfM48mTJ3NVTx7vM6+0yy31zFU99ORn41uN5uTnUGu71LRvlfLDQXm7tKbPM0f1ZElPmlRFaaEJdJ56XLm8vqfJXGGqt9ZQRBpbQhKKxCQWi8i7ZZcEfCJvDxgrRYXvXIWqM0U1KJpOOpRM7zO39AU4i36QOlv3mVfa5aZ6OlGXXGwzW9tgHAPcwdZjxyvtclM9GcecLddNfSEfTD19mDy4eqcUS8Cc07eFo1Lf3C6DBsazOvWFPr9Gdsu3z3xbZNzp8vianfL95+vkQHPqqwMeOBSSL33/IfnB8j/JN/79bpPeVFOn0hfy+9ixuW3oGTNGAXhywPq///s/c9PHyN995pV2uaWeuaqHnvwUBHxSHAxIcYFPTvW/Lce37excA7SvJz+JmZ9aTrDAL1/7l9PNGqEXnjKks/yh5cVyQlWJjKwqkZNlt4yJ7ZaSoN/8XZ+nz7/2nJFprxGR6X3mlr4AZ9EPUmfrPvNKu9xUTyfqkottZmsbjGOAO9h67HilXW6qJ+OYs+W6qS/kg8rSQjlv7GDzuKIjs5Qui5O4CPpY9Hn6/H/x/dlkkKoKtMjt5xbIlluHyNcuHi4DitILbWzf9ZZ8+tOfluuuu05+/vOfSzjct/rkM5uPHZvbhp4xYxSA5+iVO+973/s6HyN/95lX2uWWeuaqHomTn+de3y9lJYXy2uHjzO+b2iIyoDjQ55OfeFnxk6fzxw42J1J6u3XaKXLDeWNk5Wt7Zd2OWmloCUlzW0gOx8aYQOrHzx4lF7/7+M4TLzftM7f0BTiLfpA6W/eZV9rlpno6UZdcbDNb22AcA9zB1mPHK+1yUz0Zx5wt1019IV9cPu54891AeWfWp7DsaWiVqtKg+e4g4Pd1m0FKL5bW7wUq5JCcF9gofp9PyqJNEgj4pLxqkHzzisHyucmj5Fv/u1OWvPC2WU80VXv37pVf/epXsmvXLlm0aJGcc845GWq1fWw+dmxuG3rmi8V0PgYApG7//v0m7USyffv2yZAhQxyrEwB32LS3SW59ZIN5vK+p1Zz8qL6e/ChdV1TXCFU68/PkYWU5bQMAAPAOPQ9ZvHhxr8+ZM2fOUecvSB3ngQCAVDz48k55aPVOiUlM9je1dX4/oImdBhYVSElhQAI+n0RiMWlpj5iLpRMRi2sK/yTXyFNSJO1yfGyfFAT8ItU1Iv53Alib97XI1x7fLr9eu79f9bzyyivl29/+tpx66qn9azCQhM9N7sSMUQAAPEADhitf3Svrd9ZJfXNIWkIRKQkGzIxKXdNz2unDMzJDMlM0iKlre+rJz5Cy+PohevKjQc/6ltAxT340KJp4nZZDULT/ND1QbW1tr8+prq6WggI+HgIAAAAAMuOas0dIXXO7PLlxj7n4uSQYMt9r6JqjTa1hc+tKs0Hp9x1nhzeLhEWqAy0SiPlEisqOCIqqsUNL5KHPnia3Tz1R7nxsm6z6Z31a9fzNb34jv/3tb+Uzn/mM3HXXXXLCCSek3WYA7sY3XwA8Rye6R6NR81gXSU937cB8Yus+80q7+lNPnXn5+Ibd8uLmAxKOHJ3k4c26Ftn4VqM8uHqnSV+raWp6CiLmen/pyU/t4TZ5euPbMmxgoZQU+KW+Jdynk5+y4niQ95IzhptyjiVbbct0uU72WQ2KMpPGHbzy3uUmtu4zr7TLTfV0oi652CbjGGA3W48dr7Qr0/Wsq6szwZPefPSjH5Wqqqqs16UvGMeyX0/0TvfzLRfUSFVpobl4Ws/3yzpT64YkFIlJNBYz6XKDmiq3JCjFwXjws6zpkFQPKJQB4aj4NLlUcECP25lwUpms/NJ7ZdVrdSZAum7noZTrqmtMLlu2TH75y1/KF7/4RZk3b55UVlZKvrP52LG5begZgVEAnhMKhWTBggXm8fz586WwsNDpKrmerfvMK+1Kp576weyh1bvMSUPCOycNUdHlMzQbbTDgj580SMCs26E3nWGpwcSuH+Zyvb90+zd+YKQcfOFB8/P6qgvMmqN9OflRPbWjO9lqW6bL9UqfRXbRD1Jn6z7zSrvcVE8n6pKLbTKOAXaz9djxSruy8V64Y8eOYz4nF3XpC8ax7NcTx6bn9deeM1ImjaqSJzbslhc2HzDfYyR/B5CsIOCT88cOljPfLJQBoUKR+njgquts0e5MOa1KVp9SKcvX75ev/Ha7bNnfmnJ9W1pa5J577pElS5bIl7/8Zfn85z8vxcXxpX7ykc3Hjs1tQ88IjAIA4DIaFL33uS0mzYxqbA1JQ0eama5aQlFpbA2bmZaaSre8OGiCqZqmRq/IdPpKt+Ttf/DkwfLitvo+nfxc1svMVwAAAAAA4D16nn/rtFPkhvPGyMrX9sq6HbXS0BKS5vaIlBYGpKIkKBNOqpappw2LLxf0cJlIfZ2Izx8vIBrp03b8fp/MmjhUrjxrsCx7YY9883+3y96mo7NW9WWG+B133CE//OEP5Zvf/KZ86lOfkkDg2MFZAO7mi+m3rwDgocWj9W2rra3NPC4qKnI88OMFtu4zr7Qr1Xo++PJOE9yMSUz2N7aZwKfSl+nanHqyoJrawnK4NWxmkCYG86KCgEkzoycTnzj3JHNFZrr1yISu29R1Rvt08tPP7WQydVMmy3Wyz+r7M6l03cEr711uYus+80q73FRPN4xl2UpByDjWP4xz9p8Hepmbj518aFem69mf9xvGMWfL9UqfRZLHvyDy9gaRQ3tEWhtEispFyo5LuZhDB96S//jjHvnOiy3S1Hb0Red99e53v1vuvvtuueyyy/Kq/9h87GS7bXxucidmjALwHB2g8jl9RTps3WdeaVcq9dQ1RRPpc5ODolWlQaksLTRBUA0oalBUo6FatqbTjURjEo7FpDUckb2NrVLb3C4/WPWGDC0rlCmnD0+5HpnSdZsa9Jw+4URzy+Z23FquV/ossot+kDpb95lX2uWmerphLPPSNhjHAHew9djxSrvcVE/GMWfLdVNfQB+NOCceGC2ujAdG25pEBgztU0rdTtGwDJTD8rULB8rNU94l3165T+790x4Jhfs2+zTZP/7xD7OG8Ac+8AGTave8886TfGDzsWNz29CzjjnoAADADR7fsLszfW4iKDq8olgGDSw0AdE361qkSX8fE7M+pwZKQ1Fdq1NEr2nTPBAaJI1EYuZ5X35so5mBSoIIAAAAAADgKad8WCQQFCkojt/0y5CWutTKaKmPv66gWIZUlckPrjlVXv/bWvnEJz6R9uzAP//5z3L++efL5ZdfLhs3bkyrDADOYcYoAM+JRCLywgsvmMf6IYTc/vm7z3pqV31zu6x8da+s31kn9c0haQlFpCQYkMrSoIwfWSXTTh+eVrrWTNezK633i5sPdDwOdc4UHVgUkH1NbSYNrSlPA58aDO1MoHsk/a0GTPX6Jw2O/vKlHWbN0dnnj5IXX3zxmPXwYt/L1nYyXa6txyJSQz9Ina37zCvtclM9nahLLrbJOAbYzdZjxyvtclM9GcecLddNfQF9VFotMuYCkU0rRUqqRJreFmmpFSkoEikqO/brdYapPl/p69WYC2Xku94jN9xwg3zoQx+SRx99VJ588sm0qvfEE0/I//7v/5q1R7/xjW/IyJHvLGdkE5uPHZvbhp4RGAXgyQHr+eefN4/f//73M2Dl8T7r2q6tB5rNjEsNLoYjRwcNdbblxrca5cHVO+W8sYPl8nHHy8nDylyz/zWYq/VuDUWkPRw1a4pq+tzawyETFNU1R/XvkY7Zn3pdo9/nM7f4dFENmkZFm54IjkZjPmloaZcnN+6RikKfbMlxP8hV38vWdjJdrq3HIlJDP0idrfvMK+1yUz2dqEsutsk4BtjN1mPHK+1yUz0Zx5wt1019ASk4Y3o8MKrri4ZaRFrr4wHScJtISaWIv5sQRzQcnylqgqKxeCpefb0p76oj+sJvf/tb+ctf/iLz5s2T1atXp1y9aDQqDzzwgPz8lw/Ke6bOlAtm3SgfePfonF+Un002Hzs2tw09IzAKwHP8fr9MnDix8zHyd58lt+uRdW/Jw2vf6vybBhcbW0IdwUENIIpZi7O8JCjFEpDnXt9vbtecPVKuOXtEVheO7+v+1xmuSuutBhYVmPrXHm43PycHRQv8Pgn4faL/dfKJBPwBaY9EJBqNB0f1+fr66gFFZh9d/e5xUlESzFk/yFXfy9Z2Ml2urcciUkM/SJ2t+8wr7XJTPZ2oSy62yTgG2M3WY8cr7cp0PUtKSjrL6+05uahLXzCOZa885MjQU0UmXCey7gGRgcPiv9PgaMvBeOBTZ44GB+g/qkYpRUKH4zNFE1m2NCiaeJ2WM/RU8YfDR/SFCy64QF566SV57LHH5Mtf/rK8/vrrKVczGm6XDX/4pfzjuf+RpyZfKz+fPFMuOP3EnF2Un002Hzs2tw0988VYdAxAmvbv3y9Dhw494nf79u2TIUOGOFYn5B8dxu59bouZEZlYm7OhOSRtYU0l272iAr+5aq+8OH7l3iVnDJdbLqjJanC0L+b8cp2Z1fpWXbO0hKIyrLxImtsjJh2ups4N6Qd8iQd4A73UNfHcjkmk5n5kdamUFQflwlOGyK3TTslhq+AW+v68ePHiXp8zZ86co97XAQDwAsa53OE8EACQcxrCeOF7Iq89Ef+5rTG+1mi4tefX6Jqkmj43MVP0tMtEzr9NTHquXoTDYbn//vvl61//uuzevTvtKheVD5J3ffgzMuLcS+Xj7xuT9Yvy4U58bnInQuAi8te//lV++tOfmpOkiy++WCZNmiSDBg2Sd73rXbJ9+/Zjvv6VV14xr9GrSfryfABA5jy0epcJimqa2X2NrbKvsc0ERfWzZllxgQkuHldRbO71Z/29/l2ft6+p1bxOX6/lOE3XQlU6wzWhqe2ddUU7Z4r28YO0zibV5yevWfrC5gMmcAwAAAAAAOAJ+j2IBjV1xqfSYGflSfGbzggNlsYDoXqvPyf+lgiK6uv6EBRVBQUFcuONN8qmTZtkwYIFUlFRkVaV2xoPyt8f/o48v+DT8v2lP5ef/HGzubgfgPPyNjCqAcz58+ebAOiECRNk9uzZsnTpUlm1apWsX79e6urqZMuWLVJfX3/MsiorK83tnnvukZqaGrn66qtlx44dOWkHAOSzTXub5KHVO83j/Y1t0tgaDyJWlQZl1KABMqy82MySHFBUYO71Z/29/l3pup37m9rMYy1Hy3NSSTC+jkFHLDMeFI1poDQmUYmZmZ+aPrfPTGrdeLJdDQZremFNx7vytb1ZagEAAAAAAEAWaFBz4vUiVywROXmaSCAYD4ZqmtyKEfFAqN7rz/p7/bs+T5+vr0txtmZpaanceeedsnXrVvmXj98k/oLCtKp9eN9OWfdfX5Ovfeaj8rXFj6RVBoDMyss1RnVmqAZBVderNNKZzj569GhZuXKlNDQ0yN133y3f+c53ZPny5WYbN9xwQ8bqDSCuvb1dFi5caB7rwuiFhel9MMkntu6z367fKeNrnzWPHw1P0LChDK8oNmtz9kQDhYMGFklRMCB7GlpNcLQkGDKB0yc27M5Kmtm+7v/K0qBJpaupcjWV7uHWsBmXErNF/b4ua4r2QAOpSp+pzw8WxK+DOtzcKu+PvCwbfydy+XvuzEk/yFXfy9Z2Ml2urcciUkM/SJ2t+8wr7XJTPZ2oSy62yTgG2M3WY8cr7XJTPRnHnC3XTX0B/Vxz9KKviLzvFpHX/yCy86X4mqPtzSKFHTNGR54rcsqH46l0+9kXDoaC4jvnk3Lhu6bJht8ukwOvrBSJ9bx8U0/qd7wm3/7c1fLCoz+TH33/OzJu3DjxCpuPHZvbhp758y1lrs4Q1YClBkT1pl84J24q8ft06LR6PYh0tulnP/tZM+X+lltuyXArAKhoNGpuyN99Vt/cLv+39aD4JWZuSmeC9hYUTabPS8wczUWa2b7s//Ej4x/Yy0vi9QpFovFxqePvGhg9Fn1+IjCamF06oDC+T0KR+L7ydZZoV9/L1nYyXa5txyLSQz9Ina37zCvtclM9nahLLrbJOAbYzdZjxyvtclM9GcecLddNfQH9pEHPM68VufxHIjN/LvKJFfF7/Vl/30NQNNW+8PiG+DqjoZJqGXzpl2T0TffKoNPfn3a1//TsSjnrrLPkk5/8pGzbtk28wuZjx+a2oXu+WJ4ktn7mmWdk2rRpncFQ1bXp48ePl+rqapMWV++XLVsm69atkzPPPDOtbWoA9uabbza3e++9NyPtANzEqcWj9dhtaoqnPC0rK2Ph8jzdZ8vX7pKf/2W7RNtb5O2GVmn1afrcgSmlmtWZmNsPHhYdDk6sKpHiYEA+/f5RMn3CiY7sfw32Xv/AGpPudldtszS2hsx6ojphVFPp6kzSY60vGo5EJRzTAKhPCjtmig4tK5J9TW1SVOCTMZUBqSotlJ9+9vyc9INc9b1sbSfT5Tp5LOr78+LFi4+ZVaPr+zoyz8b35GyzdZ95pV1uqqcTdcnFNhnH+o9xzv7zQC9z87GTD+1yUz0Zx5wt1019Ac5K53uanbXN0h6OmovsNRNZ7da/yWuP3yd1W/+edj2CwaD5fPLVr37V1eOozcdOttvG5yZ3yotUuq+88opMnTrVPNaOnQiITpkyRWbMmGHuNR1uV4l0u+m66aabTIB15syZZh1T0uoCmaHHcXl5x+LpyNt9tn5nnVkf4kCbX1qkUMqKClJbf7NjRqXOHG1qDUtjS8gERtftqM14YLSv+7+ytFDOGztYnnt9v1SUBk1gVIOcna3S4cvXe6BXn68S+6KsuKDzNX6fX0L+YikqLcnZh9hc9b1sbSfT5dp4LCJ19IPU2brPvNIuN9XTibrkYpuMY4DdbD12vNIuN9WTcczZct3UF+CsvvaFla/uNUHR1lDEBEX1qxT97kZVj3mvvP+LP5F9G/8i//zdEml6O/XZn6FQSH70ox/J/fffL7fffrvceuutMnDgQHEbm48dm9uGPE+lq8HPBA2Kzp0716S7ffrpp0262+6Copkyffp0ueOOO0yQdMeOHVnbDgDkm0T6W003q0oLA2mVU9LxOk0zqxpaspNKt68uH3e8uS8vDkpRQbxuOmNU452RHtJ66NimM0VDHX/XWaWJwGhFSVBa2iPmcTDwzu8AAAAAAABwjIvyRczF9Gpgl4vyNag27D0fkA/Ou1/GfXy+FFell5lCZyzeddddUlNTIz/5yU/MupcAssf6wOh3vvMd2bp1a2eqXA2I3nPPPWY90FzRdUdHjRols2fPztk2AZtFIhH585//bG76GPm5z1pCEfHFolITe0tO9e2WQJrrZiZS0ybW5WzuCCI6tf9PHlYm15w90jyuHlBo6pf4yK2x2/ZIxMwMTdw0MNzekT430Z6CjgCovl7T7x5qC5ufK4oDMqxlh5wUfjNn/SBXfS9b28l0uTYei0gd/SB1tu4zr7TLTfV0oi652CbjGGA3W48dr7TLTfVkHHO2XDf1BTirr32hrxfl+/wBGXHOpXLhVx+U0z72OQmWlqVVL02x+vnPf15OP/10+fWvf+2adS9tPnZsbhvyOJXuggULzJUbOnPz4YcfdqweGhydNWuWNDY2MjUb6CcdpFatWmUeT5o0SQKB9GYK5hMb91lJMCA+ickZslMkIPJ8LB5MTFWkI6Do7wiQpjvzNJP7/5qzR0hdc7v87992S22zX/yReABUa6qfiaO+oz8Y65qietVi4srF8pICs+5F7eF2M9u0qMAvJUG/jDi0Wfa+pnWakpN+kKu+l63tZLpcG49FpI5+kDpb95lX2uWmejpRl1xsk3EMsJutx45X2uWmejKOOVuum/oCnNXXvqAX5ScyeSV/d9STQLBIai66Wkae+y+y5ZkHZetzyyUaaku5flu2bJFrrrnGTPrSSV6JZQKdYvOxY3PbkKeB0WeeeUbq6+vNFHQng6JKA7Oa6nDZsmVy2223OVoXwOv8fr+MGzeu8zHyc59VlgblrVqfvOkbaoKGze1RGVCSejm5SDOb6v7XC3puuaBGqkoL5Qer3jBroGroMxEc1RLMPNL4/yYYmvzhXGeKalD0cHtE6jqubtT9pauVFgwZJe8+viJn/SBXfS9b28l0uTYei0gd/SB1tu4zr7TLTfV0oi652CbjGGA3W48dr7TLTfVkHHO2XDf1BTirr31BL8o3z+n4yiWRbexYdMboqZfNllEfvEre+MP9svOl38WvdE/R+vXrZdq0aTJlyhQTIJ0wYYI4weZjx+a2oWe+mEbrLHXzzTebQOS6devkzDPPTPn1eiDom086r+2Ovonpl91PPfVURsoDnLZ//34ZOnToUSkfhgwZ4lidkD+Wr90lP/+/HdIaisibdS2iccFRgwYcsdbDsWgq2u0HD5sZlSdWlUhxMCCffv8omT7hRHGLVa/ukS8/ttEERzUwmpjhWtAxO/SdRLsiZcUFJrCr6XPrm9s7g6I6e3RoWbF5/P2Z40y6XuQffX9evHhxr8+ZM2fOUe/rAAB4AeNc7nAeCADIF/N/8zfZ+Faj7GtslcbWsPneZVh5/PuVVGzfskl2PPUzafrnn/tVH81I+e///u8yduzYfpWD3OFzkztZHQLXtUV1XdFMBTb7a8yYMVJbW+t0NQDAClNPH2bW0tRgpqaJ1XihBgNToc9PpJnVcrS8qacNEzeZcvpw+dKUd8nowQNkWHmRFBdo0tx4UDcU1hmkMZP+d2hZkZQUBqShJWSCvclB0SFlReaxrl1KUBQAAAAAAODYxo+sMvflHdnFDrWFzfcxqdDnR8qPkxOmf1UmfeFeGTT2rLTro1kxTzvtNPnc5z4ne/bsSbscIN8V2B4YnTFjhrhFZWWlqRMAoP8qSwvlvLGD5bnX90tFaVD2NbaZYGBRMCADi449vOmH2eQ0s+r8sYNNWW6TWHP0yY17pHpAkTS1hqS+OSRt4Xgalub2iLkl02CvtqusON6eS84YbsoBAAAAAKSvoaFBnn766WNmjauoqMhZnQBk76L8B1fvlGKJX5Sv38PoRfaDBsYvQE/1ovxhY98jx3/pR/LJE+rlW1//qmzYsCHlOoXDYbn33nvlgQcekFtvvVXuuOMOKS8vT7kcIJ9ZHxjV9UXdQtc71RuA/mlvb5fvf//75rF+ACgsLHS6Sq5n6z679PQhUv/SCvP4meKJUtcakz0NrWZ9TQ2cdpdWV6/U65pmNhE8vGzc8a7c/8lrjj60eqepr940jXBjS0hCkZhZ50LXGdW1UvVKRp0Bm6AzRTUoGgqFct4PctX3srWdTJdr67GI1NAPUmfrPvNKu9xUTyfqkottMo4BdrP12PFKuzJdz7a2Nnn11Vd7fc6HPvShnNSlLxjHsl9PeE9f+0I2Lsr/4MlD5Kpp58kVl18qDz30kHz1q1+V7du3p9yG5uZmk1b3vvvuM2XosoJFRX0P2KbC5mPH5rYhTwOjqrq6Wtxi7dq1Jp0ugP7TExGkxsZ9VjN0oBTEwubx4LIiifjC0tgS/9BZ3xIyH1I1vWzA5zNrc7a0R8yH0sTq2rlMM9vf/a/B0WvPGSmTRlXJExt2ywubD5grFpMDoMk0LbDOgNVgb3K7nOgHudpmtraT6XJtPBaROvpB6mzdZ15pl5vqaetYxjgG2M3WY8cr7XJTPRnHnC3XTX0BzuprX7h83PEmMFreeYF6OCMX5fv9fvn4xz8u06dPlyVLlsi3vvUtOXDgQMrt0Nd86Utfkh/84AfyzW9+U6699loJBLr/rqg/bD52bG4buueLxRJfD9tHFyHWVLoLFixI6/X65rR+/fqMrVGq5U2dOlWeeuqpjJQH5Ovi0fq2lVivVy9+0IAR8nOfabsOHjxo0pqs3HxYo4dHpZntTndpZnVGZrb2Szb2f0NzSFa+tlfW7ag164pqKl1da7SiJCgTTqo2a6V2TQvsRD/I1TaztZ1Ml+vksajvz4sXL+71OXPmzDnqfR2ZZ+t7cjbZus+80i431dPWsYxxrP8Y5+w/D/QyNx87+dCuTNezP+83jGPOluuVPovsS7UvPPjyTpPBKyYx2d/UZoKjSl/W14vyfeIzF+XrRe/daWxslO9973vmdvjw4bTb9t73vtfEQz784Q+79lh0k2y3jc9N7mT1jFGdnblq1aq0A6OZ9J3vfMfcjx8/3umqAJ6nA9SgQYOcroan2LrPtF2DBw+Wf/3wIBm8ele/0sxm80NdNva/Bj2nTzjR3Jysh1u2ma3tZLpcW49FpIZ+kDpb95lX2uWmeto6ljGOAXaz9djxSrvcVE/GMWfLdVNfgLNS7Qv6vVFdc7s8uXGPDC0rlpLgOxflN7WGza0vF+VrOT3RdUK/8Y1vyC233GJmj+osUl1PNFV/+9vf5F/+5V9MSu+FCxfKOeecI/1l87Fjc9vQM79Y7KyzzjIzPtNZxDjTNDirB9msWbOcrgoAWCeRZvb7M8fJhacMMWlkNfg5tLxYTqgqkRHVpeZef9bf69/1efp8fZ1NV7oBAAAAAAAgc/R7I800phfXKw126ndNJ1aVSHlxgZQEAyYQqvf6s/5e/54Iiurr+pqpbNiwYfKf//mf8tprr8nVV1+ddp2ff/55Offcc+Wqq66Sf/7zn2mXA9jI6hmjuuCwztScN2+ePPnkk47VQ9Nn1NfXS01NTcbS8gL5LBKJyLp168zjCRMmZCVvvm1s3Wdd26Vrad467RS54bwxKaeZzYf970Q9crXNbG0n0+W6pS/AWfSD1Nm6z7zSLjfV09axjHEMsJutx45X2uWmejKOOVuum/oCnJVOX0hclD9pVJU8sWG3vLD5gBRL4IisZMn0ovzzxw42a4rq91XpLBP40EMPye233y7z58+XlStXSjp+85vfyG9/+1v5zGc+I3fddZeccMIJKZdh87Fjc9uQp4HR0aNHm1mj+qbx5S9/We6+++6c1+GnP/2pmfaub5yzZ8/O+fYBG+mA9Yc//ME81osNGLDyd5/11K500szmw/53oh652ma2tpPpct3SF+As+kHqbN1nXmmXm+pp61jGOAbYzdZjxyvtclM9GcecLddNfQHO6k9fyPVF+Rqse/rpp82SgXfeeWdnEC/V9i5btkx+8YtfyBe/+EUzkayqqiql19t67NjcNuRpYFTp1RQzZ840+bQ1V/Rtt92Ws21/97vfNW8yGhTV9U716g4A/ef3++X000/vfIz83WdeaZdb6ulEPXK1zWxtJ9PlOtkXioqKOrfd23OQP+8JXmLrPvNKu9xUT1vHMsax/mOcg5u5+djJh3Zlup79eb9hHHO2XK/0WWRfJvpCri/KnzJliqxevVqWL18uX/nKV2TLli0pl9Ha2mriJEuXLjUTyT7/+c9LcXFxXh87NrcNPfPFYrGYWG7GjBny6KOPmgDl1KlTzZtHWdmxp6/rgaBrlKaa/raxsdFsU6/i0N2r29VZqxdddFE/WgG4z/79+2Xo0KFH/G7fvn0yZMgQx+oEAAAAAMgezgMBAHBWKBQyM0C/+c1vyt69e9Mu58QTTzRlfOpTn2KmZJbwucmd8iIErulsKyoqzGOddl5ZWWmuiNAAZiZt377drCeq09CTg6I33XQTQVEAAAAAAAAAANAvwWBQbrnlFtm8ebN861vf6tMksO68+eabZu3R9773vWYd0jyYQwfkz4xRpTM/J06caAKViYClGj9+vMyaNctMRe86M7QvM0b/+te/ytq1a80sVA2GquTyp0+fLg8//HBW2wY4hStejq2+uV1WvrpX1u+sk/rmkLSEIlISDEhlaVDGj6ySaacPz8h6AwAAAACQC5wHAgDgvrH57rvvlp/85CdmNmm63v/+95tUu+edd15G65fP+NzkTnkTGO0uOJqQCGIqnU2q64HqTYOdmhJXH6v6+nqpra0191u3bjW3ZIkyE+Vr2t6nnnoqZ+0D8uWNXQf4H//4x+bxv/7rv5qrpNxm094meXzDbnlx8wEJR3p+my0I+OS8sYPl8nHHm8Xb83mf2dwut9TTiXrkapvZ2k6my3VLX4Cz6Aeps3WfeaVdbqqnrWMZ4xi8hC/4UmfrseOVdrmpnoxjzpbrpr4AZ9naFzSj5b/927/JL3/5y37N/rzssstMoPWMM86wen/lom18bnKnAskjOjtUZ3dqsHPbtm2dAdHkN4m6ujpZt26dCaKqFStWdFtWd28syeXplRV33HFHlloC5Dc9xpqamjofu4nW56HVu+Sh1Ts7f9caikhjS0hCkahEYyJ+n0gw4JfykqAUS0Cee32/uV1z9ki55uwRR1yskQ/7LB/a5ZZ6OlGPXG0zW9vJdLlu6QtwFv0gdbbuM6+0y031tHUsYxwD7GbrseOVdrmpnoxjzpbrpr4AZ9naF0aNGiU///nP5fbbb5f5c2+X3z+1Mq1ynnjiCfnd734nn/70p+Ub3/iGDB8+3Mr9ZXNfQO/yasZostmzZ5sFilXXIERfdkl3gQt9nc44feaZZ+Sss87KYG0Bd3LqipdoNGq2o3T7mvbaDfQ94N7ntsiTG/eYnxtbQ9LQHJK2cLTH1xQV+E0q3fLi+NVIl5wxXG65oCbjwVG37rN8aZdb6ulEPXK1zWxtJ9PluqUvwFn0g9TZus+80i431dPWsYxxDF7CzIfU2XrseKVdbqon45iz5bqpL8BZVveFff8U2bhCZOtz8vxr+2XeY9vk5W3xwF86ioqK5HOf+5zccMMNUl1dbd3+ynZf4HOTO+VtYFS98sorZkr4o48+an5OJxCR2H2abnfevHly4403ZryegFvxxn6kB1/eaWaKxiQm+xvbpLE1bH6vby0DiwqktDAgfp9PorGYNLdH5FBbWBLvwOUlBTKkrEh84jMzR689Z6SzjQEAAACAbnAeCACAC+mXjOseiN8Swq0Sa6mTx/7WIF9+slZe3x//rjIdFRUVJv7xxS9+UUpLSzNT5zzA5yZ3yuvAaIKm1b3vvvtMgLTruqG90dmhU6ZMkVmzZslVV12V1ToCbsQb+5Frit76yAbzeF9ja2dQtKo0KJWlhRLQ/LldRKIxqW9ul7rmUGdwdGhZsXn8/ZnjsrrmKAAAAACkg/NAAABcRkM8L3xP5LUn4j+3NYq01JnAaEI4EpP717fI1589LLubes5udyzHHXecfP3rX5fPfOYzUlCQVys1poXPTe5EYLSLhoYGWbVqlaxZs0bq6+ultrbW3CdmhWowtKamRiZOnEi6XOQ9p97YI5GI/P3vfzeP3/Oe90ggEBCnfe/p1806oZo+d19jm/nd8IpiM1P0WHTm6J6G+AeVYeVFUlYclAtPGSK3TjvF6n2WT+1ySz2dqEeutpmt7WS6XLf0BTiLfpA6W/eZV9rlpnraOpYxjsFL+IIvdbYeO15pl5vqyTjmbLlu6gtwlnV9Ye3978wUPbRXpDUezxDxiRSViQQHiPgDItGINB9ukh8/v1cW/OmwNLSmHxp617veZbJxXnnllRlfEsymvsDnJncipN/NlHCd/ckMUMDdA9Zvf/tb8/j00093/MOLzvp8cfOBjsehzpmifQmKKn2ePl9njurrNTD6wuYDcsN5Y8z6ozbus0zxSrvcUk8n6pGrbWZrO5ku1y19Ac6iH6TO1n3mlXa5qZ62jmWMY4DdbD12vNIuN9WTcczZct3UF+Asq/qCril6VFDUJ1JSLVJSFQ+IJiktLpd5HxsuN55/QO556k350UuHpS2NDLtvvPGGTJ8+Xc4++2xZuHChXHDBBeJFVvUF9BmBUQCeo4tgn3zyyZ2Pnbby1b0mHUVrKCLt4ahZU1TT56ZCn1/fEpK2cNSUUywBWfnaXpk+4UQr91mmeKVdbqmnE/XI1TaztZ1Ml+uWvgBn0Q9SZ+s+80q73FRPW8cyxjHAbrYeO15pl5vqyTjmbLlu6gtwllV9YeOKd9LnJoKiZcfFZ4r2xB+Q6iHDZNGMUvnXc9+Uu55tkv9+pVWiaUwgXb16tVx44YVyySWXyD333CPjxo0TL7GqL6DPSKULIG2kAoib/5u/yca3GjvXFi0rLpBh5fG1QlOxt7FVmlrDUl5cIEPLi+WME8plwZXvzUqdAQAAACAdnAcCAOASzbUiD84UiYRE6nfE1xQtGSQyYHDfyzh8QKTloPzjoF++8my7/HbDwbSroyl1r732WvnWt74lo0ePTrscm/C5yZ0IgQNAPyXS54Yi8YXLSwvTS7lQ0vG6UCR+vUpDS7xcAAAAAAAAADjC63+IB0U1IKo3k0K3KrUySirN6949KCr/c2ONvHj7OPnAme9Kqzo6B+9Xv/qVnHLKKfLFL37RBAUBNyKVboZMmjTJ3GbPnu256eIA+qclFDH3iXQT/jQXHA90vC7aMZG/uT1eLgBkgl6RuHjx4l6fM2fOnKOuZAQAwAsY5wDkSlNTk/zpT3/q9Tkf/OAHpayslzSWAJAJu16O35sUuhJPn9tlTdFj8hfEX2dS8TbIB8YOkxfOO19+5/+uzJ8/X/7xj3+kXK1QKCQ/+tGP5P7775fbb79dbr31Vhk4cGDK5QDZkrczRn/zm9/IxRdfbPJH64K6ev+9730v7fJGjRol9913n4wfP94sOPzHP/4xo/UFcOTg+uMf/9jc9LHTSoLxDxz+jnhoIrCZqkjH6xKB1XRnnnphn+Vbu9xSTyfqkattZms7mS7XLX0BzqIfpM7WfeaVdrmpnraOZYxjgN1sPXa80q5M17OlpUXWrl3b602fk4u69AXjWPbKg3dZ0xda6uL3OmtUBQekV07idZF2c+dra5DLLrtMNmzYYIKbI0aMSPtCkrvuuktqamrkJz/5ibS3x8t3E2v6AlKSdzNGf/rTn8q8efOkvj5+FUViidUtW7bI3LlzzePbbrst5XKXL19u7pcuXSqLFi2SKVOmmNmj9957b0brDyB+3NbW1nY+dlplaVDerGuRYMAvLaGomelZVhxMuZyWjhmiwUA8MFpRknoZXtln+dYut9TTiXrkapvZ2k6my3VLX4Cz6Aeps3WfeaVdbqqnrWMZ4xhgN1uPHa+0y031ZBxztlw39QU4y5q+EOq4CCMWX96rT7NFoxEzM1RCh0Wi4fhr9WaCoj6RWESkvdk8VSeUXXfddXLllVfKjBkz5IUXXujxwo9jZfb4/Oc/L9///vflu9/9rlxxxRXiFtb0BaTEF8ujf+1Zs2aZAOaYMWNk4cKF5mDWBYETdFfo1QubNm3q97Y0OHrnnXfKxIkTZdWqVVJeXt7vMgG3cWrx6Gg0Km+++aZ5fOKJJ4rf7+zk9+Vrd8nP/2+HtIYiJkCqbyujBg2QQGIKaR9EojHZfvCw6DvyiVUlUhwMyKffP0qmTzjRyn2WKV5pl1vq6UQ9crXNbG0n0+U62RdIMegebnlP8BJb95lX2uWmeto6ljGO9R/jnP3ngV7m5mMnH9qV6Xr25/2GcczZcr3SZ5F91vSFhz8pUr9TpGGXSKhZZOBxIsU9xCF0DVKdYdrWpJGQo4Ol0ZCIzy8SKBKpOFFk5i9Ehp56xP5qaGiQBx98UH74wx+mFSBV99xzj5m4li99gc9N7pQ3gdFp06bJM888I3fccYc5+FR1dbU5mJNp0DQTgVG1detWmTBhgunkb7zxRkbKBNyEN/a4+uZ2uf6BNRKOxGRXbbO0haNSVRqUQQOL+lzGwUNtUtcckqICv4yoLpWCgE8euO5sqSjN3KxRAPmNL4wBADZjnMsdzgOR73i/AeAaj39B5O0NIof2xGeBFpWLlB139POaD4o0H3jnZw0J6WxRDZDGEjNOY/H1RgNBkYJSkcoRIhOui9+SJpep3bt3yze+8Q352c9+JpFIPANeX5xwwgkm9lJSUiL5gs9N7uTRSyFSozM3ddampspNBEWVzhhNxIX1Xm+a/jZTNMi6bds2OXDggFx99dUZKxeAu1SWFsp5Ywebx4lApgY5D7XpB4xj0+fp8+NlxV9//tjBBEUBAAAAAAAAdG/EOfH74sr4vc4G1dmfyQ7tfScoqn8Lt4tE2uIpc00aXX1+7Mi/J2ZNrntA5IXvxQOpSY4//nhZsmSJ/OMf/5Crrrqqz9X9+te/nldBUbiX9YHRV155xaS1nTp1qixYsOCIv+nBqwduRUVFZ3rd22+/PaPbr6ysNEHZRx55RB577LGMlg3kK01xoAOv3vSxG1w+7nhzX14clPKS+PLNexpazUxQTZPbHf29/l2fZ15bUtC5NullHeXZvM/yqV1uqacT9cjVNrO1nUyX65a+AGfRD1Jn6z7zSrvcVE9bxzLGMcButh47XmmXm+rJOOZsuW7qC3CWNX3hlA93zPAsjt80wKnpcpNnirbWxx9HwvF0uaLt9Yn4AiL+oIhPv8f0dfxO76PxAKsGVNVrT0h0zf3d7q9TTjlFVqxYIS+99JJccMEFvVb11FNPNeuVuo01fQEpsT4wqvmqq6qqzNqi3dHf6+K6mzdvNml2s2H8+PEmAHv33XdnpXwg34TDYTPo6k0fu8HJw8rkmrNHmsdDyoo6g6M6E1TXDt3b2CqNrSE53BY29/qz/j4xU1Sfr69TWo6WZ/s+y6d2uaWeTtQjV9vM1nYyXa5b+gKcRT9Ina37zCvtclM9bR3LGMcAu9l67HilXW6qJ+OYs+W6qS/AWdb0hdJqkTEdAcmSqvh9S208sKlriiZmimpQNBbuCH5qutyieEA1/sd4XFR/1t8HB8bXGtWAakdwNLzuF73ur3POOUeeffZZ+cMf/iDjxo3rtqoaGykoiH9f6ibW9AWkxH09MYM0ja3O1tTgaHl5D4sO54jORj355JNlx44dctJJJzlaF8DrfD5f53Gkj93imrNHSF1zuzy5cY8MLSuWkmBI6ptDZs3RptawuXWla4pq+tzETNFLzhhuysmXfZYv7XJLPZ2oR662ma3tZLpct/QFOIt+kDpb95lX2uWmeto6ljGO9Z+e80+fPv2YzwGc4OZjJx/alel6BoPBY363p8/JRV36gnEse+XBu6zqC2dMF9m0Mr6+aKglHtBselvEH4inwDXpcjuCojpDVNPk6u91bVDze+mYPRqIPy4/IT6zVMvQsoIl4iuslJMqND3mST3uL/39JZdcItOmTZOHHnpIvvrVr8r27dvN384991z52Mc+Jm5kVV9An/liiUU2LfSd73zHrC+6ZcsWGTVqlNPVkbFjx5p1Tbum9AW8isWjj6ZvqQ+t3iUPrd7Z+bvWUEQaW0ISisQkGouJ3+eTYMAn5SVBKQ52fOjomCmqQVEGYQDZoO/Pixcv7vU5c+bMOep9HQAAIBnngQAAuMza++PrgSqd5dlSH19HVJnwT+yd4KcJlGrK2I6wUGdKXZ2BOkikdHD894cPiLQcjKforTwpPqP048vfmZl6DG1tbWYpw3//9383WTs/9KEPST7ic5M7WT1jdOXKlWbtUDcERZXWZf369U5XA0AWaVDz2nNGyqRRVfLEht3ywuYDUiyBIwKgyQoCPjl/7GCzpmim0+cCAAAAAAAAsNyE6+Lrib72hMjAYSLRsEhz+5EBUH18xBqa/nig1ARL9cdCkfZmkbZtHa/ziURCItGISPthkcIBIq//QeTMa/tUpaKiIvnCF74gn/3sZ6W0tDQ77QbSZHVgdOvWrTJhwgRxCw2MPvPMM05XA0AOaJDz1mmnyA3njZGVr+2VdTtqpaElJM3tESktDEhFSVAmnFQtU08bJhWl3afYAQAAAAAAAIBeafa582+Lz/jUmaMa2CwoFIm0xwObZm1Rf3xWqEmpG4j/bFLqhuKPdYZptJssdppWt257fD3TN57sc2A0gaAo3Mj6wKimrnWLyspKUycA/RMKheRnP/uZeXzDDTf0uHaHG2jQc/qEE83NSV7aZza2yy31dKIeudpmtraT6XLd0hfgLPpB6mzdZ15pl5vqaetYxjgG2M3WY8cr7XJTPRnHnC3XTX0BzrKyL2hwdOL1IiPfJ/LIJ0UaWt75vVlbtEs2Ow2YagC1a5BUp4/qDFKNkZo1SkVC4pOfHb5Y5J8+ueHln0nw7M/Ey7WAlX0B+R0YVfX19eIWbqoL4PV1PPfu3dv5GPm7z7zSLrfU04l65Gqb2dpOpst1S1+As+gHqbN1n3mlXW6qp61jGeMYYDdbjx2vtMtN9WQcc7ZcN/UFOMvqvjD01I41QQtFareKhNvij32JWaMFIrGwSKwtHhTVAKnOLJXkNLsdGXg79o3ZX77B8Zjp+l+KtNXFZ6haEBy1ui+gR76Yxf/aY8eOlZqaGnnqqafEDSZOnCgNDQ2yadMmp6sCeHrx6Gg0Ktu2bTOPR48eLX6/P6vbs4Gt+8wr7XJLPZ2oR662ma3tZLpcJ/uCvj8vXry41+fMmTPnqPd12Pue4CW27jOvtMtN9bR1LGMcg5c4dR7oZbYeO15pl5vqyTjmbLlu6gtwlvV94eFPitTvFGnYJRJqFhl4nEhxefxvuhZp84H444gGSMMdL0oETv2J6aLxtUpjUYmKT7b5RpqZp6OHDBS/r2NdU52h6nHZ7gt8bnInqwOj06ZNM2t6RiKaR9tZenBpkHbq1KmuCdQC/cUbOwB4B4FRAACQCZwHAgDgco9/QeTtDSKH9oi0NogUlYuUHScSbhWp39ElKKoB0YCIv6BjDdIkmlpXZ5R2zgz1iQwcKjJwWPzHK5bEZ6iiR3xucifLLoU40llnnWXuEzminbRw4ULx+Xwyfvx4p6sCAAAAAAAAAABsNOKc+H1xZfy+rSke4GypS1pftCMoquuPBroJipr1RaPx3weC76xT2lov0tYYf87GR3PYKCBzrA6M3nzzzSYv9Lx586SxseNgdcArr7wiS5cuNY9nzZrlWD0AW2iKgzfeeMPc9DHyd595pV1uqacT9cjVNrO1nUyX65a+AGfRD1Jn6z7zSrvcVE9bxzLGMcButh47XmmXm+rJOOZsuW7qC3CW9X3hlA/Hg5kFxfGbpsXVFLoaIE0ERpWZKdpDiMg8R5ON+iUqAXlDRssbhe+RaMz3ToB16x/feexR1vcF5F9gVHNC66zRuro6uemmmxypg64pOmPGDPN4zJgxcuaZZzpSD8Am4XBYHnroIXPTx8jffeaVdrmlnk7UI1fbzNZ2Ml2uW/oCnEU/SJ2t+8wr7XJTPW0dyxjHALvZeux4pV1uqifjmLPluqkvwFnW94XSapExF8Qfl1TF73VdUbNmqAY7ox2zRQu6f33njFKNIAUkLAF5KHqpPNT6IQlLQTwlr9401e7rf+h8WX1zuyxfu0vm/+ZvMueX6+S6+1ebe/1Zf9/QHBK3sb4voFs99Hx7zJ8/X2bOnCnLly83P//617/OaVB04sSJsnXrVpNGV2euAug/PZ6OP/74zsfI333mlXa5pZ5O1CNX28zWdjJdrlv6ApxFP0idrfvMK+1yUz1tHcsYxwC72XrseKVdbqon45iz5bqpL8BZedEXzpgusmllfH3RUIvI4X3x1LgaENXgqKbF7S59bnJQ1MwoDYgvFpPjA/UiPr/4CgeKtNfF1y4dWCyy8yXZdNxl8viG3fLi5gMSjmjg9Uhv1rXIxrca5cHVO+W8sYPl8nHHy8nDysQN8qIv4Ci+mOaatdzUqVPlmWeeMR1bHy9ZskROOumkrG7z2WefldmzZ8uWLVvMdnW26KZNm7K6TSDXWDwaALxD358XL17c63PmzJlz1Ps6AABAMs4DAQDwiLX3i6x7IP54/z9FIm0dM0Y1MuQ/csaoBk1N4DSWFBQNxoOnpYNESgfHf9/aKHLobZFgqcQqRsiu2BD5XOhLncW0hiLS2BKSUCQqUY2/+kSCAb+UlwSlOBjofN41Z4+Ua84eYX0wks9N7mT9jFGlgdCxY8eax08//bQJUi5atEhuu+22jG9L1zLVmaGJNUUTEjNWAQAAAABAZrW2tpoLk3tTU1MjxcW6zhYAAEAemHBdfG3R156IrzmqgU9Nf6vBTzM7tLvUthowjc8UNYorRUoGJf05vjpjLBaV/U1tsq+tTqRcpLE1ZFLltoWPXqezJRSVxtawFBX4paI0KOXFQXlo9U6pa26XWy6osT44CvfJi8CoBkI1IDpt2jRzkOkk2blz55qbrv9555139nvtT50hqgHYFStWmJ8TE3F1e/fccw9riwIAAAAAkCV6kXLifLy3zAgERgH01+HDh2XNmjW9PmfSpEkyYMCAnNUJALqlAcfzb4vP+Fx1VzzYGYuIRKPxGaMaj9QwholL+jrS68YDn4a+ToOiyYFLfa2ItIVFGtpD0hookn2NrSbwmdjkwKICKS0MiN/nk2gsJs3tETnUFjZB032NbWZW6ZCyInly4x6pKi2Ua88Zmes9gzyXF4FRNWXKFHnkkUfMeqOJ4GhiJmdiNqc+Z/z48ebDiwZTKysrze+rq6ulvLzcnGjV1tZKfX29WTdUPwStWrVK1q9f37md5IBoIgB7xx13ONJmwFahUEh+8YtfmMef/OQnJRgMOl0l17N1n3mlXW6ppxP1yNU2s7WdTJfrlr4AZ9EPUmfrPvNKu9xUT1vHMsYxwG62HjteaVem66mB0eeff77X55x++undBkYZx5wt1yt9FtmXV31BI5UTrxfZ8keRXS+JNNeK+DQw6ovPIj36BSJFZSLFVSLB+AVloZhfflEbn/j1yeCTEoiJHI5oIFXkQKhEGsPxoGhVaVAqSwsloPlzk5QVB2VwNCb1ze1S1xySxpb484eWFZuZo5NGVTm25mhe9QXkX2BUTZ8+/YjgqEpeYlWDnHpLRdclWpPL1ZS6CxYsyEjdAbxDj69du3Z1Pkb+7jOvtMst9XSiHrnaZra2k+ly3dIX4Cz6Qeps3WdeaZeb6mnrWMY4BtjN1mPHK+1yUz0Zx5wt1019Ac7Ky77wrotF6neIFJWL1G+Pz/zUNUR1yqiZPVogUjhApLj8yLVHzT4S2RWKTyKLRQ9JJBqTQ/6BEonF5KXIu8zvh1cUm5miPdFg6aCBRVIUDMiehlYTHC0JhkzQ9IkNu+XWaaeIE/KyLyC/AqOJ4OjmzZtNCt1XXnnliPzV6Xb8rmXoTFOdhTp58uSM1BnAkQoKCmTWrFmdj5G/+8wr7XJLPZ2oR662ma3tZLpct/QFOIt+kDpb95lX2uWmeto6ljGOAXaz9djxSrvcVE/GMWfLdVNfgLPysi+c8mGRdffHg5+FA0XCrfEg6YDBx3xpgS8msyr/JtLaKIH2sDTHgtLuK5S2qE/+GJtgZor2FhRNps/T5+vM0frmeGD0hc0H5Ibzxpj1R3MtL/sCxBfL4zD4okWLzPqfmhq3vwv8JnajBl6XLVsmFRUVGaol4F779++XoUOHHvG7ffv2yZAhQxyrEwCge/r+vHjx4mOuvdb1fR0AAC9gnMsdzgOR73i/AeBZz/67yKaVEmlpkFjT22bSaF3BYGn2lZj1QHVWp64NWl4clIIu6XClrUmk6W0JR6OyL1Ylh2SArAqPk/+UmTJq0ICj0uf2Rmecbj942MxEPbGqRIqDAfn0+0fJ9Aknim343OROSSvp5h9d/1PXDL3vvvtk9OjRJriZuPVF8vNvuukm2bJli0nVS1AUAAAAAAAAAAC4xY7jPix7Gltl26GANERLJRqLSUVovwwI1Us4FJKW9ogcPNRugpb6vNZwVCQaFjl8wARFNe3uYd9AOewbYNLo/j72fjMDNJWgqNLnJ2aYNraEzP26HbVZaTPQHeYGi5igpt62bdsmK1askJUrVx5zrdExY8bIlClTTEpeUuYCuRWNRmXnzp3m8ciRI8Xvz+trPPJ6n3mlXW6ppxP1yNU2s7WdTJfrlr4AZ9EPUmfrPvNKu9xUT1vHMsYxwG62HjteaZeb6sk45my5buoLcFa+9QWd2PXQ6l3y0OoWuVimyMWxJ+Wgr0oiMZEyOSRlsQYZGGuUw1Iq7b5iifr8EmmJyuHmVgn4W81s0l2x40wK3likRad8yqMyWbbIiTKsMJBWnUoKA9LUGpaQVkJEGjoCpLmWb30BcfwrJ9FZo3fccYc8/fTT5oDQW11dnaxbt87cdEao/qy/13VKdaYpQVEg98LhsPz3f/+3uelj5O8+80q73FJPJ+qRq21mazuZLtctfQHOoh+kztZ95pV2uameto5ljGOA3Ww9drzSLjfVk3HM2XLd1BfgrHzqCxoUvfe5LfLQ6njwb3lssjwZmSTtkZjsi1XKvli1tMUKdc1FGRg7LNXRgzI4ul+qo7UyINYskUhUDseK5b+jH5X/bp0soZhf/q/w/bIiNsWUp0HTdAQ6XqezVlVze0SckE99Ae9gxugxaFrcs846y+lqAEiiawIn8rD3d33gfGHrPvNKu9xSTyfqkattZms7mS7Xyb5QUFBwzDUs9DnIn/cEL7F1n3mlXW6qp61jGeMYYDdbjx2vtCvT9ezP52rGMWfL9UqfRfblU1/QmaJPbtwjMYnJ/sY2aWwNy73yUTngGyhXB56VVt8AaZUBUhhrlwGxw1IQC4k/FpOo+CTsC0pLYIA0x0ql2t9kUuC+XHGpLI9eJP42nTka6wxspkpT8SYHVnVtUyfkU1/AO3yxvi6oCQBdsHg0AAAAADfQ85DFixf3+pw5c+Ycdf6C1HEeCACAN2za2yS3PrLBPN7X2GqCoqqqNCiVpYUyKrpLPtj+vJwZ+qsEYu/MlgxHYxKJxsNGGgz1BYLy1+CZ8r7Lb5L7XgvKxrcaO8srKy6QYeXFKddtb2OrSaVbXlwgQ8uL5YwTymXBle8V2/C5yZ2YFgAAAAAAAAAAAGCRxzfsNveNraHOoOjwimIZWBQPC+3yj5RfFXxS/if6MTmn/WU5LfyqDIwdkmJ/mxyKFsq+UImsj5wiG0veL76SKtm9a6CMH1lqAqPlJUFT5qG2sAyOxkwAta806KqvU1qOmnBSdRb2AJDHgdHGxkZZtWqVrFmzRiZNmiRXXnml01UCAAAAAAAAAADIuPrmdnlx84GOx6HOmaKJoGiyw/4yebZ4ijwr8XVDEw4eapO65pAUtfhlRInIC5sPyA9nnSkPrt4pxRKQogK/tIWjZluDBhalVDfNY6qvLw4GpCDgk6mnDet3m4G+sj4w+te//lUmT54s9fX1nb+bOnWqPPnkk47WC0D6QqGQ/PrXvzaPr776agkG41cWIf/2mVfa5ZZ6OlGPXG0zW9vJdLlu6QtwFv0gdbbuM6+0y031tHUsYxwD7GbrseOVdrmpnoxjzpbrpr4AZ+VDX1j56l4JR2LSGopIezgqunymps9NhT6/viUk4XBYahrWS8Dnk5e2nCDnjR0sz72+XypKg7KvsSN4Ggx0G3TtSmeK6vPj5cf3+/ljB5uynJAPfQF5FhhtaGiQ8ePHm0Vzk5dSXblypQmYnnnmmY7WD0B69HjeunVr52Pk7z7zSrvcUk8n6pGrbWZrO5ku1y19Ac6iH6TO1n3mlXa5qZ62jmWMY4DdbD12vNIuN9WTcczZct3UF+CsfOgL63fWmfvGlngQUoOWqaS7Vfp8fV1za5tUReLlvbKzVj5z/skmMFpeHDSB18aWsOxpaO1cu7S77Wj6XJ0pmgiKlpcUSFlxPAh52bjjxSn50BeQZ4HRBQsWdD7W4Ghy566trXWsXgD6p6CgQK644orOx8jffeaVdrmlnk7UI1fbzNZ2Ml2uW/oCnEU/SJ2t+8wr7XJTPW0dyxjHALvZeux4pV1uqifjmLPluqkvwFn50BcS6XNDkai5Ly0MpFVOSWFADrX6ZZ2cLFUDCmVAa0ROHlYm15w9Uh5avVOGlMVT6GpwVIOeOsNUg6n6Op1hGonFpKU9YmaKJuKOGhRNvE7L0fKckg99AUfzxSwOg0+cONHcr1+//ojAaFVVlWzbtk3Ky8sdriHgbfv375ehQ4ce8bt9+/bJkCFDHKsTAAAAgPyj5yGLFy/u9Tlz5sw56vwFqeM8EAAA97vu/tVy8FC77KptNuuAHldRLAP6kOq2q8NtYXm7odWsBzqiulQGDSyUB64/28RZ7n1uizy5cY95XlNryARjdVs90TI0fW5ipuglZwyXWy6o6Yzd2IjPTe7kF4tpQPTmm282qXNHjRplDlZNrbtq1SqCogAAAAAAAAAAwDolwfgM0URW22ia8+N0xme8HN8RM081mKlBTZ3xqTTYqYHTE6tKpLy4wGxfA6F6rz/r7/XviaCovs72oCjcy+q5wZWVleZ+8uTJsmXLFqerAyBDotGovP322+bxcccdJ36/1dd4ZISt+8wr7XJLPZ2oR662ma3tZLpct/QFOIt+kDpb95lX2uWmeto6ljGOAXaz9djxSrvcVE/GMWfLdVNfgLPyoS/ozMw361okGPBLSygqze2RzqBkKjQNrk9iMth/SErDIakofiftrQY1rz1npEwaVSVPbNgtL2w+IMUSkOKOoGxXBQGfnD92sFlT1Mn0ufnWF3A0q/+Vx4wZI+vWrXO6GgAyLBwOy09/+lNz08fI333mlXa5pZ5O1CNX28zWdjJdrlv6ApxFP0idrfvMK+1yUz1tHcsYxwC72XrseKVdbqon45iz5bqpL8BZ+dAXxo+sMvflJfFgqK7xGYmmNmtUn6+v80tUPhD5m5zeuEbOOvHoTJwa5Lx12inywHVny6ffP0rOOKFcRlSXmLS7eq8/6+/17/o8twRF86UvIM9mjOpM0d/85jfiBnpgqc9+9rNOVwXwPL0aqaKiovMx8nefeaVdbqmnE/XI1TaztZ1Ml+uWvgBn0Q9SZ+s+80q73FRPW8cyxjHAbrYeO15pl5vqyTjmbLlu6gtwVj70hamnD5MHV+80Mzg1pa2u/Vnf3C6DBhb1uQx9vmbSNa/3F4vuqYtOHdbj8ytKgzJ9wonm5hX50BdwNF9MF9601NatW2Xs2LHy6KOPyhVXXOFYPbZt2yY1NTVmGjZXHcAmLB4NAAAAwA30PGTx4sW9PmfOnDlHnb8gdZwHAgDgDd97+nV57vX90tgakn2NbeZ3wyuKZWDRsefL6UzRPQ2t5vGw8iKThvfCU4aYGZ/oOz43uZP1qXRvvPFGM0tzx44dTlen88oDAAAAAAAAAACAbLl83PHmvrw4KOUl8WCoBjsPHmrrMa2u/l7/ngiK6usSa5Pq2qCADaxOpauWLFkiq1atkqlTp5r1RsvK3JO/GgAAIFdqa2vl17/+da/Pufrqq6W6ujpndQIAAAC8pqWlRf7+97/3+pz3vOc9UlJSkrM6AUB3dC3Pa84eKQ+t3ilDyuIpdBtbwlLXHJL6lpCZOVpSGJCAzyeRWExa2iNmpmgix6gGRROv03LctDYo0B/WB0bV+vXr5aKLLpJRo0aZtT5znVa3vr7e3PNFI5AZmpJ6xYoV5vH06dOloCAv3sr6xdZ95pV2uaWeTtQjV9vM1nYyXa6TfUG3rSlcjvUc5M97gpfYus+80i431dPWsYxxDLCbrceOV9qV6Xo2NTXJH/7wh16fo99BdhcYZRxztlyv9FlkXz71hWvOHiF1ze3y5MY9MrSsWEqCIalvDpk1R5taw+bWla4pWlka7JwpevHpQ8S/7S/y621/sW5/5VNfwDvy4l9ZU9jqbNFFixbJVVddJdOmTZN58+bJhRdemJPtr127NifbAfJFNBqV119/vfMx8nefeaVdbqmnE/XI1TaztZ1Ml+uWvgBn0Q9SZ+s+80q73FRPW8cyxjHAbrYeO15pl5vqyTjmbLlu6gtwVj71BZ/PJ7dcUCNVpYVm5qgGO/XWGopIY0tIQpGYRGMx8ft8Egz4pLwkKMXBQOfrdaboVWcOk3vu+bWV+yuf+gLyLDCaMHfuXBP1nz17tkyePFlqamrMz7NmzZIzzzwzq+l8AWROIBCQj3zkI52Pkb/7zCvtcks9nahHrraZre1kuly39AU4i36QOlv3mVfa5aZ62jqWMY4BdrP12PFKu9xUT8YxZ8t1U1+As/KtL2hw9NpzRsqkUVXyxIbd8sLmA1IsgSMCoMkKAj45f+xgs6aops+NRCLW7q986wuI88ViiYzR9tm+fXuPf9uyZYsJWD766KOdvxszZoyMHz/e3KtBgwZJZWVl2ulzDx48aKZhb926VXQ3ayB206ZNaZUHuJGmZBw6dOgRv9u3b58MGTLEsToBALqn78+LFy/u9Tlz5sw56n0dAAAvYJzLHc4Dke94vwHgdQ3NIVn52l5Zt6NWGlpC0twekdLCgFSUBGXCSdUy9bRhUlEaT6OL/uFzkztZPWNUg5wNDQ29Pic5LqzBUg1iZpLFcWcAAAAAAAAAAOAhGvScPuFEcwPykdWB0erqajNz81jTyLMZyEyUT4AUyBw9nvRqG6VX13Q9jpE/+8wr7XJLPZ2oR662ma3tZLpct/QFOIt+kDpb95lX2uWmeto6ljGOAXaz9djxSrvcVE/GMWfLdVNfgLPoC6mxeX/Z3Db0zC8WS6TE1c7c3S3R8ZNvmZK8DQCZFQqFTNoavelj5O8+80q73FJPJ+qRq21mazuZLtctfQHOoh+kztZ95pV2uameto5ljGOA3Ww9drzSLjfVk3HM2XLd1BfgLPpCamzeXza3DXk6Y7Tr+qCJwKcGTNNdO7SvdKZqbW3tMWesAkhPaWmp01XwHFv3mVfa5ZZ6OlGPXG0zW9vJdLlu6QtwFv0gdbbuM6+0y031tHUsYxwD7GbrseOVdmWynn6//5jl6XNyUZe+YhzLXnnwLvpCamzeXza3Dd3zxSzO8XrnnXfKokWLzGOdvXnffffJjTfemNM66Jql06ZNM/c1NTWyadOmnG4fyCYWjwYA79D3Z70Csjdz5sw56n0dAAAvYJzLHc4DAQAA+obPTe5kdSrdQYMGdQZF586dm/OgaGJ2qm4bAAAAAAAAAAAAgHPyYo1RNXXqVMfqMWnSJHOvqXUBAAAAAAAAAAAA5F7erDGaHCR1sh4A+i8cDsvjjz9uHl9++eVSUGD1W1lG2LrPvNIut9TTiXrkapvZ2k6my3VLX4Cz6Aeps3WfeaVdbqqnrWMZ4xhgN1uPHa+0y031ZBxztlw39QU4i76QGpv3l81tQ8/yZsaoG9TX1ztdBcAK0WhU/v73v5ubPkb+7jOvtMst9XSiHrnaZra2k+ly3dIX4Cz6Qeps3WdeaZeb6mnrWMY4BtjN1mPHK+1yUz0Zx5wt1019Ac6iL6TG5v1lc9vQM6vD36NHj5YlS5aYx6NGjXJFPQD0XyAQkIsvvrjzMfJ3n3mlXW6ppxP1yNU2s7WdTJfrlr4AZ9EPUmfrPvNKu9xUT1vHMsYxwG62HjteaZeb6sk45my5buoLcBZ9ITU27y+b24ae+WKxWKyXvwNAj/bv3y9Dhw494nf79u2TIUOGOFYnAED39P158eLFvT5nzpw5R72vAwDgBYxzucN5IAAAQN/wucmdrJ4xCgAA4CZf//rX+/Q7AADciHEMAOBljGMAAEVgFIDn6ET3hoYG87iiokJ8Pp/TVXI9W/eZV9rllno6UY9cbTNb28l0ud/4xjeO+h0n4vnHLe8JXmLrPvNKu9xUT1vHMsYxwG5ueh/Nx3a5qZ6MY86WyzgGN74veIHN+8vmtqFn/l7+BgCuFAqF5Ic//KG56WPk7z7zSrvcUk8n6pGrbWZrO275t4Nd6Feps3WfeaVdbqqnrWMZ4xhgN1uPRa+0y031ZBxzR7kAfSs1Nu8vm9uGnjFjtBvbt2+X9evXy9atW+XgwYPmvr6+XsaMGSOVlZVSU1NjHl900UVOVxXIW8Fg0OkqeI6t+8wr7XJLPZ2oR662ma3tuOXfDnahX6XO1n3mlXa5qZ62jmWMY4DdbD0WvdIuN9WTccwd5QL0rdTYvL9sbhu654vpXGHIs88+K8uXL5dVq1aZQGhfTZkyRWbOnCk33HBDVusHuBGLRwNAarpLyZKrj2L6/rx48eJenzNnzpyj3tcBAHDDOHYsjHO5w3kgAK9y8zgGwE58bnKnvE+l+5vf/EYmTZokU6dOlaVLl8qWLVvMgNjXmwZSb7rpJhk0aJB873vfc7o5AAAAAAAAAAAAALpRkM/pcjUYmpgdmrg6KNXFdROvq6urk7lz58qCBQtk2bJlcsUVV2Sh1gAAAAAAAACc0traaiZW9EaX4SouLs5ZnQAAQN/l5YxRDVzqBxQNiiYHRBNB0b7MFE1IvE5v+vva2lqZPn263HLLLY61D7A9/UDycac3/R3yb595pV1uqacT9cjVNrO1Hbf828Eu9KvU2brPvNIuN9XT1rGMcQxec+DAgT79DnYfi15pVzbq2djYKCtWrOj1ps/JRV2OhXEMOBp9KzU27y+b24be5d2MUV1TRFPmahAzORCaMGbMGKmsrDT31dXVR71eA58aUK2vrz9qLdLk8pYsWSJr166V1atXZ71NAAAAAAAAAAAAAHpXkI9B0QQNYE6ZMsWk1NX7s846K+Uyt23bZtYZXbdunTzyyCMmYJoIkOrvLrnkEnnyyScz2g4AAAAAAAAAAAAAqcmbVLrz5883szgTqXA13a0GLp9++mm544470gqKqtGjR8uNN94o9913n5lNqsFRLSsxC3XlypVy9dVXZ7g1AAAAAAAAAAAAAFKRF4HRV155RRYuXGgea4pcXSA9EcDMNA24agpdLT8RhF2+fLk89thjGd8WAAAAAAAAAAAAgL7Ji1S6M2bMMOltJ0+ebIKUFRUVWd+mBkg3b95s0vRqul2dVXrFFVdkfbtALkWj0aN+d+DAgaxus7vys71Nr7N1n3mlXW6ppxP1yNU2s7WdXNV///79kgta98OHDx/zOYklAWD3e4KX2LrPvNIuN9XT1rGMcSwzGOdyR7Nldfc7t/QFt3HT+2g+tisb9Uz3/YZxzB3ldsV7V/7xyvuXW9i8v5x6j+zuO3Xkli+WyPlqqWXLlsns2bOlpqZGNm3alPPt65qjmm63sbFRFi1aJLfddlvO6wBky2uvvSann36609UAAAAAAAAAAMD1Xn31VTnttNOcrkZesz6VrqbQ1Su0dK1PJ1RWVppZqhp/vvvuux2pAwAAAAAAAAAAAJDvrA6MagrbrVu3yty5c2XUqFGO1WPKlCly1VVXmdmjf/3rXx2rBwAAAAAAAAAAAJCvrA6MLlmyxMwWnT9/vtNVMXXQWaOPPPKI01UBAAAAAAAAAAAA8o7Va4xOmzbNBEafeuopcYOxY8eatU7dUh+gv8Lh8FFr91ZXV4vfb/U1FwAAAAAAAAAA9CoajUptbe0Rvzv55JOloKDAsTpBxOq9r2l0Z8yYIW4xfvx4eeWVV5yuBpAx+gbOQtEAAAAAAAAAABxt2LBhTlcBXVg9rUsj8TpD0y3GjBljgrUAAAAAAAAAAAAAcsvqwGh9fb3TVQAAAAAAAAAAAADgAlYHRnWG5pYtW8Qt1q9fb+oEAAAAAAAAAAAAILesD4xqMNItNI0ugVEAAAAAAAAAAAAg96wOjJ511lmyatUqaWxsdLoq8sorrxAYBQAAAAAAAAAAABxidWB01qxZEovF5J577nG6KjJv3jzx+Xwye/Zsp6sCAAAAAAAAAAAA5B1fTCOHFqupqZHt27dLfX29lJWVOTZbdMKECVJVVSUHDx50pA4AAAAAAAAAAABAPrN6xqjSGZoa+508ebIj29+2bZvZts4WvemmmxypAwAAAAAAAAAAAJDvrA+Mzp07V0aPHi3r1q2TSy65JKfb1pmq06ZNM7NVKysrZcGCBTndPgAAQCboOumahUOXBgAAINtWrFghU6dONWOPXmSs2Zf056VLl5rzawAAvIJzKQBwH+sDo2rJkiVm1ujKlSvlXe96l+zYsSPr23z00UfNoLdlyxZzIrds2bKsbxMAACDT9Eto/UyjJ/R6AwAgW1atWmWCoDNmzJDx48ebc/i6ujpzobP+rBmh9O86NgEA4HacSwGAO+VFYHTKlClyxx13mODo5s2bZcyYMXLLLbeYGZ2Z9uyzz8rFF18sM2fONNvToOj06dPlyiuvzPi2AAAAMk1P2HWmjn75rJ9j9B4AgFx8eayzQpVeYLxw4UJz7q7Zl/Ref9YgqT7WsYnxCQDgNpxLAYA3+GIavcsTOhglZm7q4JQImurVqHo/atSolMtsbGw0V7WuWbPGDHyJq38SQVG9qlX/BgAA4GaJK5kT9ItoXR89+fONXuy1fPlyB2sJALCRnlMngqI6S1TPz4+VkjCRHUrHKgAAnMS5FAB4S14FRpUGQTXNrQYtE8HLZHr1aeKWGMgSEmuZ6IBWW1tr7pPXN0nsykTZWsb69eulvLw8R60DAABITyItoX5+mThxYudnoAkTJpjPM4qTeQBANmh6XD231guLNW1uXy56ToxbOos0+bwdAIBc41wKALylQPKMDkCLFi2SO++8szMomhwb1pQ9fcn53l08Obk8DcA+/PDDGa07AABAtjDjBgDgBD0/T1xw3NeUg8mB0Xnz5pmZowAAOIVzKQDwlrxYY7SruXPnytq1a03q3MSs0eSb/u5YN9XT6/SkjKAoAAAAAAC9Sw5q9pZCN5nOLE1IBEgBAAAAoC/yMjCaOJHS2aH33XefjB49uteAZ083lRws1YCrpvG58cYbHW4dAAAAAADupukFkzM2JZa06Yvk5+oabgAAAADQF3kbGE1OdbB582Z55JFHTK73ioqKPs0YTdw0wLpw4UITEL3nnnvM6wEAAAAAQO9WrVrV+TjVdUKTA6MrV67MaL0AAAAA2Mtza4w2NjaaK0pra2vNvc761PVI9HHi99XV1bJp06aUytWgqN7UK6+8YlLtJpedOFHTsmtqasxJ2FVXXZWVNgIAAAAAYLs1a9Z0PtZz7VQkB1KTA6wAAAAA4JnAaCLombgdPHiw83FygDIhkfpW6cxNTYk7efJkmTBhQr/qcdZZZ5kbAAAAAADIXirddNLodg2kdv2uAAAAAAA8ERjV4Oa2bdt6/HsiEKonTDq7c9KkSZ0BUQAAYK+pU6eabA6auj4XdObJkiVLjrhASz9/6E3roqn4U035BwBAJtg0JvYnoNl1m1ovxmYAcD+bxjEAgDe5bo3Rrmt4Jv9u7ty5Jr2trgmq63lqKluCogAA2D2TRDNB6MmsnsDqLZsWLVpkUubrCbJuU0+W58+fb06k9aIsTdk/b948qaqqMs9hhgoAIFdsHxP7+6W01gcA4F62j2MAAO9w1YxR5fP5jvhZA6I6WC1btkwqKiocqxcAAMgdPSnVk9QVK1bkbHvJJ8N6MZaeNHf3Ja2eVM+ePdvc64n2woULzfMBAMgGxsS+yfYX7ACA9DCOAQDcxnWB0eSAqAZJdXBavHix09UBAABZpCetegXxmjVrzElp8ppj2abb0jXKE1+oLl++3FyU1ZMpU6aYDBaJK4/1JF9/1iuPAQDor3wZEzMdyGTGKAC4Q76MYwAA7ypwc1BUBy6CogAA2ElTFvX0pWji5DXbVxXr9pNPnBNplfpi5cqV5qpiPfFfunSpeczVxQCAdOTjmJjpQCYzRgHAOfk4jgEAvMt1a4wm0/QFAADATokTVk1pNH78eLnpppvMFb11dXXmftKkSVmvw4wZMzrrkahDKpKvJNari1mXBgCQjnwcEwlkAoA98nEcAwB4V4FbZ4vq4DVq1CinqwMAALI45jtJUyXpLUHXnUmVpl7Sk+5Eeig9GV+3bl1G6wkAsF8+jondrfXWH5kuDwDQd/k4jgEAvMt1gdEEXVsUAAAgW/Qq4OQvU/uaZqmrWbNmdZ48673e9IT6WHQdm1xdhTxmzBhzpTZfGgMA3DgmZkJ1dXVOtgMAcB8bxjEAQO64NjB65plnOl0FAABgqcRJbvLVwenSk+7kE3FNwZSchqknGhTNVWA00+u4AQDs4dSY2DWQ2d/Uulz8AwD5yQ3ndgAAb3HdGqOaRpcrcQAAQDZ1Pbntz5o3Ohsz2dKlS/v0ui1btpiUU7m46do+fGEMAHDTmNjfcalrIJUZowCQn9xwbgcA8BbXBUbVxIkTna4CAACw2COPPHLEz/29KKvrCfSKFSv6VR4AAPkwJiYHR1PNbtD1+VwABAD5iXM7AIAVqXT7e0Jz8cUXS6bpOmC33357xssFAAC5pelru84y6Xrymyo9+U5Oi7ty5cq017UBACBfxkS9KHrVqlVppdJN3kZ/6wwA8CanxzEAgDe5MjA6aNCgfr3+wIEDJiWvDox6FWnyAKm/742mm0sO0Go6Hq48BQDAHokvYDN58tw1fV932wAAwG2cHhP1AuTE31OdMZp8ns9yPACQn5wexwAA3uTKwGh/A5Hr1q076nevvPKK3HfffbJs2TITHE0OgCZvd/78+eYqoNGjR/erDgAAwJ30it9sf3ZJvsIYAAC3cnpMnDJlSufj/swY1QArACD/OD2OAQC8yZVrjHa9MicTzjrrLLMY9+bNm6WiosIERxOzR/V+woQJ5grVO+64g6AoAAAW63pim4nMEN1lu1i/fn2/ywUAwOYxUWd6Js/s6evY2TWIOnPmzJTrCQDwPqfHMQCAN7kyMJpNetKlKRC6zhh95plnHKsTAABw7uQ5ExdkdXcCzpXFAAC3c8OYOHv27JTTFSY/TzM+sfwNAOQnN4xjAADvybvAaOKqVL1pcFRni950001SXl7udLUAAEAOpJqqL122nDznan8BAPJzTJw7d27nl9Ca5akvHn744c7HCxcuzEANAQBe5IZxrDecSwGAO+VlYLTrWiasRwIAQH7o7sQ0E7NMursy+eDBg2LD/kr+EoAUUgBgDzeNiYkMTjrmLF269JizRVesWNEZFE1OxQsAyB9uGse6w7kUALhXgeQpDYYuWrTIPNbZowAAwH66nniueG3GqH7RrHVOfMGwZcuWo1Ia6t91XXa9wCyx9o5++TBx4kQ+TwGAx7hpTNQxRIOc8+bNM6l1expXtJwZM2aYx5r5SWebAgDyk5vGMc6lAMBb8jYwmnz1TybyzwMAAPcjlVHPli9fbmbpdL3KuuvPXWfz6D7VL7M5mQcAb3HbmKhBTh1LNPCpXxxr4FODpPo7HXt0lqgGThMpd/XvAID85aZxjHMpAPCWvA2MJg9M2V5ftKGhQe68806znum9996b1W0BAAB3XFXsphP1vtAvmfu6thsAwPvcOCbqLJq6ujrzpbF+yTx58mTzWj1/15S5+uWxBkQzkSoRAOBtbhrHOJcCAG/J28BorgdqHRwJjAIAYCe+oAUAIHNjogY/mREKAHAC53YAYD+/0xUAAAAAAAAAAAAAgGwjMJpDXHEEAICdvJY2FwCAbGFMBAB4GeMYANiPwGgOMKACAOAO1dXVTlcBAABXYEwEAHgZ4xgAIF0ERnO4GDgDNgAAAAAAAAAAAOAMv5sDibZYv36901UAAAA5zuxACn0AgNcwJgIAvIxxDADg2cCobYHEhx9+2OkqAACALJ7QdndR15gxY7KyLQAAMoExEQDgZYxjAIB0FYjLxGIxWbJkiXk8ZcqUrG0neZB77LHHzHazsQ1tyyuvvJLxsgEAQOpyeUI7aNCgnG0LAIBUMSYCALyMcQwAYE1g1OfzdQZHEwHSbNJtTZ8+PavlAwAAd11ZnJxiKRMp/LtL2US6JQCA2zEmAgC8jHEMAGBNKt1EcDTbt4Rsb0PbAwAA3KG6ujrj69AcPHjwqN9NnDix3+UCAJBNjIkAAC9jHAMAWBMYTQQTs33L1bYAAIB7jB8/PuNldncCzjo0AAC3Y0wEAHgZ4xgAwKrAaC4QuAQAIP9MmjTpqN/198ririmb9MSZdEsAALdjTAQAeBnjGADAqsBoLlLp5uoGAADcY8qUKUf9buvWrf0qs+vruaIYAOAFjIkAAC9jHAMApKNAXEYDiTqLUwe2efPmeXrw0SuU7rvvPlm2bJnTVQEAAL2kW1q7dm2/0jB1PXmeMWNG2mUBAJArjIkAAC9jHAMAWBEY1aCoDl5PP/202GDJkiXmnuAoAADuMX36dFmxYkXnz1u2bOnXhVBd0zXNnDmzX/UDACBXGBMBAF7GOAYAsCKV7qxZs8QmDKAAALjL/Pnzj/h51apVaZfV9bV6Ys4aNAAAr2BMBAB4GeMYAMCKwKhtA051dXW3i3cDAABnaHaK5PRK69evT7uslStXHvHz7Nmz+1U3AAByiTERAOBljGMAACsCo4lAoi1sC/QCAOCUTF5k1PXK4qVLl6ZVTvLr9IRc10kHACDbGBMBAF7GOAYAcIorA6O26pqjHgAA9OzgwYNZLV/TIiVfWbxw4cKUy1i0aNERPy9fvjwjdQMAIBljIgDAyxjHAABu4qrA6FlnnWVuts2w1BmwibYBAIC+6S4FUn/SInVHT3YTnzu2bt161MnwsS54mjdv3hEn32PGjMlo/QAAUIyJAAAvYxwDALiJLxaLxZyuBAAAQPIJ8pIlS7pNf6QnunqSqimNMnWiqtubMGHCESfUesXxsU6cJ0+e3Hkyr3WaO3duRuoDAEACYyIAwMsYxwAAbkRgFAAAOEKvyE0+QU435XxypolnnnnmiBRKfaUnwTNmzDBXFh/rZDiV5wIA0BeMiQAAL2McAwB4SYHTFQAAAPlLT5gTJ7/9SaXf33W89YR7y5YtnSf0er9gwQKZOXNm5xXH+vdVq1Z1XkmsVx6TYgkAkCmMiQAAL2McAwB4BTNGAQAAulixYoU8/PDD5sphvSVO8vVEWVM9zZo1K62rlwEA8BrGRACAlzGOAQC6IjAKAAAAAAAAAAAAwHp+pysAAAAAAAAAAAAAANlGYBQAAAAAAAAAAACA9QiMAgAAAAAAAAAAALAegVEAAAAAAAAAAAAA1iMwCgAAAAAAAAAAAMB6BEYBAAAAAAAAAAAAWI/AKAAAAAAAAAAAAADrERgFAAAAAAAAAAAAYD0CowAAAAAAAAAAAACsR2AUAAAAAAAAAAAAgPUIjAIAAAAAAAAAAACwHoFRAAAAAAAAAAAAANYjMAoAAAAAAAAAAADAegRGAQAAAAAAAAAAAFiPwCgAAAAAAAAAAAAA6xEYBQAAAAAAAAAAAGA9AqMAAAAAAAAAAAAArEdgFAAAAAAAAAAAAID1CIwCAAAAAAAAAAAAsB6BUQAAAAAAAAAAAADWIzAKAAAAAAAAAAAAwHoERgEAAAAAAAAAAABYj8AoAAAAAAAAAAAAAOsRGAUAAAAAAAAAAABgPQKjAAAAAAAAAAAAAKxHYBQAAAAAAAAAAACA9QiMAgAAAAAAAAAAALAegVEAAAAAAAAAAAAA1iMwCgAAAAAAPGH9+vXi8/n6dFu0aJHT1QUybtWqVVJTUyOzZ88W22i7+nJs6/MAAADSRWAUAAAAAAAA8AANiG7dulWWLl0q9fX1TlcHAADAcwqcrgAAAAAAAEA6Kisr0/ob4NUZ0xoUTfRv2/r4sdpEIBgAAGQCgVEAAAAAAOA506dPl+XLlztdDSBnHn744c7HN910k9hm3bp1vf5d0+gCAAD0F4FRAAAAAAAAwOU0fW7CrFmz+l2ezsDUGai1tbXmXn8+ePBg5+PE3/TxkiVLrAzGAgCA/ENgFAAAAJ43depUWbVqVc62p2nexowZIxMnTpQJEybIzJkzrUtnBwA2r9GYHGA6lvHjxx9zJluuaf21HamIxWJZqw9yk0Y3kUpWP4Nov+yPefPmyaJFi/r8fNLYAgAAW/idrgAAAADgNfrloH5BmfhiuqqqygRIU/miHQDgDfp+v2LFCnETDWohv+iMzeQ00pno16mYMmVKv7cJAADgBr4YlwwCAADAgkClpnpLfqzrzvUUqNTZnQsXLjQzPvs60zNRrt6vWbPGzFDt7ktFLW/+/Pkyd+5cyTatg345rvXQmSPLli3r9wwSAHAzfb/TC1H6s8Zod2PGypUrO2fP6ft419lxGhTS57iBvvdrpgR9v+9uHNK66kU7OqsweYzTn+FdehFWol9u2bKl3/+eWtbatWs7jwEts6fPNsoNXx8m1hjVtmt9AQAA0kFgFAAAANbqKU1cJtfJ0uCrBll1Ha5k+oW1fmGfrS+iE1+Md6XpHgmOArBVJgKjPdHxQscNLVe30/V9va6uzhVp02fMmGHuNaDVNY28G9P+IrNjfraDgskBWLddGEBgFAAAZAKpdAEAAGCtntZfy2SwUgOs+uVc1yCofqleU1OT0vpdmUijuGDBgqxsDwBsl3zBTHepSt2QLl0DVprWt6fxLdV1R+ENyRcAOPFv3N2FWAAAAF5FYBQAAADWqq6uTun3/aFfomuAtGsKXQ1gJmb3ZFLXmUzH+r3X6D5z25p+AOyWPBu0u+BT8hqPTnnkkUdMPXta7zEb4xvEFf/umVxftLfAe9fZoor1RQEAgE0IjAIAAMBaTqQ81LS6XVM7aoAv08FRXR81ld97je4zXcsVAJygGQC6piXXC096Wn8xVzQ4O3PmTEfrgNyn0U0EK7VPZnOt2K6pmRNI0Q8AAGxCYBQAAADIMJ3N0XWNt0wHRzUA210guLvfe013s1UAINfcNms0EZglXW5+Se5zs2bNyuq2ultHlNmiAADANgRGAQAAgCzQ2RVdv2DMZHBUy9fUvbomnj7W+23btjkySzbTamtrna4CAHQ7MzM5pWmu6RjS3UxW2C05rXzyOri5mjHK+qIAAMA2BEYBAACALNFZFl3XHNUvOJcuXZqR8vULcp1JorNT9d6GoKhyOlUlACh9T+26nqPOaO8p3Wi26fs8s0XzNyiqAfFsjvPat7tbp5wZowAAwDYERgEAAIAs0tS2XWf36BfbpIvtWXdfzAJAPqfT1QtG9L0x2zMG4S4PP/xw5+NsB8VZXxQAAOQLAqMAAABAli1btuyo32VyvVHbrFmzxukqAEDnbLmus/R0Fl+uL27RYGx3dUH+zBjtLrVzJrG+KAAAyBcERgEAAIAs09kWXb9c1JkZmUqpaxun0lQCgFvXGtXtcUFN/gZFcxEUZ31RAACQLwiMAgAAADlKqdvVvHnzHKmLm2mqSNIMA3ATp9PpJmaokkY3vyT3sWwHxVlfFAAA5BMCowAAAECOZo12XadLv4hk1mjPM2QAwA30vXvMmDHdrvmZqwDZ9OnTc7ItuIN+PkiewZntNLqsLwoAAPIJgVEAAADAwVlH3c0kzWcLFixwugoA0Kf371xcyJEIkHW3fdgrOVVzLtLosr4oAADIJwRGAQAAgBzpbsaHzjhiTc0j00UCgNt0l8Y2F+l0NUCmQTGCVPll+fLlnY9zERRnfVEAAJBPCIwCAAAAOaJfbndNx6iYNRp34403Ol0FAOhWd8FJvbBFU+pmkwZfWVs0v9PoZjuNMuuLAgCAfENgFAAAAMih7r7gZMZofEYMs0UBuNmMGTNyOms0EXgljW7+ptHNxdqyrC8KAADyDYFRAAAAIIcmTZrU7e/zOTg6b948Wbp0qdPVAIBedTdzMzmIlWkadNUsA91lGoC9koPts2bNyvr2WF8UAADkmwKnKwAAAADkk55mYOgXk8f6IjKR7q62ttbc689btmw54ndaRvLaZP1J46d1Wrt2rflZy0/M6NQv6bUduv5Yd4ECnd1UU1Mjc+fO7XU7Wl8Niuraom6hddL6aNv1cSK9YCI4oW3WfZzJmTSJf8vEv6P+m3b9t9b93FPK5e7qrGk/q6urO/+t9Mv1XM7+0Trol/s6262n/agzobIZ8DlWHfSmMwC9FgDQiwj0GNdjM/FvrO3oa7pV7VtaRnJ/SewP7SPz5883/Qfd036b/J6l+1N/zsbMPv130n+PXEn0h8T7z8GDB496f9L3oZ76mh5rDz/8cOdM18R7UfJxr2ttO9G/3PCe1Be6r5PTMzs1Y7Sn9UUT7x9r1qw5or8k/p31/TTX4w0AAEDKYgAAAIDF9CNv19u6detcV6fx48cf83Vjxozp9rXJt+nTp6ddry1btsRuuummzrKmTJkSW7hwYWz58uWxlStXmv2m90uWLDHPq6ysNM/T5yToY/2d/r07Woa+Xut5rLakequrq0u77fra5LZr/RJt79rexL+X/q2/dH/2pW1z587tts6J/ah9Q5+jddV6ad313y+5DH1Otvu+blv3TfJ2tR66/7R+Wt/kfqx/y3SdutZBH+u2E/+W+jj57/rvmtyH3Ur/vRP11jrrvkvuk8f69+3axxOv0XK67g/dT26lbczE+11PjlVud8es7sNMS2ynt/e1rse43tJ9X9J/8768F3XXN5KPuUTfTBzzXftpYv/qeJMLbnhPSkViDM1W/+5K+1dfPidpf+w6bnf3/pG8H7Pxb5y8bQAAgHQRGAUAAIDV3BgY7SnA6WRgNPGleKpBosTr9EtQ/QI6UY/uAqM9fQHrdGBUv/DVdvel7dre5C/5td39CcimGxhN1Fm/kO6tP+sX012/tM5G0Eu3kxykOVZwTZ+vbUrsy+4Cv6lKDhT3JcChf0s+pnIROO6PxL9j1z7adb93F4xI9JdEoLin4FlycCwTgX8bA6Oqa6CvP+8/PdH30GMFXJ0OjGqbE3XQfab9rLfyu45h2bwgwQ3vSelIfr/ubX9mSvK43dPnkeQLKvRxT/XSfZZchu7LTL+nEhgFAACZQGAUAAAAVnNjYLS7L7P7Ui/9Elpv+gWufpnZXaA0nUBB4stMLS+dGR5a766Bgp5mjGr5Pd26K6O353e99edL4VQCnLqt5H3f3y9/E/XXMjRQ0F3QJflL+kRgKJUv7rv2lUx+4d41uKt9sK/7Mjmw0p9Zd137YCr7pussqFwEI9I9RrtrV3KgsLuAQXLgo7fAUNe+p4/dyA2B0a4BoGxccNCXIGcmA6PJ70V6DHTXxuR2Jo65VC8o6FpnDQRmOqjshvekdOi+z/Xx13UWeXK7k8e6Y12Ek9C132Q6gElgFAAAZAKBUQAAAFjNjYHR7r6ITOcL7eQvUdMNFCQHTfqT9q5rcKanwGhvugYEsz1jJ1HndL781i/Pu9Y3U/2qu1mkiX2R2G6qM626/vtk6kv3rrON0g1UJb5MT+f1XduWziy0rrNqnX6P6G6mdW+BgJ7eS5L7Um8B357ek9y0H9wUGO3uvbcv6dBTPa6OJdOB0d7SuiYHRhPtTzdw2F1K1kwFR93wnpSJ/Z3OGJqO7i6w0nokX6yUStC/u8wQmZwZTGAUAAD8//bu31eOK88P9uVgDK+x8KwoeSY1hsx2M4ly+I4BSgsYDpxQpEM7kITxH0CB0cIRQTr3glLi0CQndbIaAXZMUeFmHMGhd0FSu7DXXnixfPG548M5PKzu2/Wju6uqnwdo8ere7uqqU1Wnzjnf82MKP+q/KikAADDGO++80/n7Fy9e9NrOlStXzj766KNR+/Lpp5+e//vZZ5+db2+o999//+z27dtnS/LJJ5+cn4vHjx/3/mw+99VXX73xu+vXr5/98MMPo/cr53TTuch35O990zrnp95m9vP+/fuj9vNXv/rVeRoW2a8haRn37t07P6Zs88svv9z5c999993ZBx988MY+DLkOv/nmm7fSeS7u3r17/u8XX3yxc57y8OHDs9/85jdnH3/88fn/f/311xvziqThpjTvmyeditxL7T2adEyaT+HBgwfnefKxdd1Lz549O7/nkqfkuhoi+USdfkm3+j5ecp409rwX9XHsS54DXddszk3OR/6e9OtzLSYvyrXRlYcBAMyFwCgAAMzEkKDamGBmGnzLd07RCHvnzp2zpUhDdxqEE9zcFKi+yI0bN95oAE5aTtUA3DYst/s8dH/b4NlQ2Y/2mqkb9YcGInI9bwsAttp9GBoEyTVQB4FyLj///POzOShBmW3BiTbv+PWvf/06bZIm2zpQbLsOrl27NmCPT0PX9TH2Hijnsj5/x9Y+Y0qHirYzQV9tUDV5yph7bi550pj9L0HK5EdjOz3tItdZlxxvCYq2z40h18ymACwAwLEIjAIAwIG99957nb/PSJy+hgb12oDIFAGQQzXmTiEN5tnfIY2+24LB+xxZlMbqNNQPPedl9GA9wm2oNgBRAghjZTtpRE/Q/iIJotSN7Qlsjrkfus7lsRvzE7hIevQJipbf5fzm+h56jedzY9Jz7brOyRT3f7Yxp7y06xoYkw8VyS/aEak59k3BuiXkSWPUQdybN2+eHcKmEb/J93LcQ/OOd999963fjXneAABMTWAUAABm4tDTVu6joXIuo5y2KUGj/Hv58uXzKQOHNsa3wYt9NaAnYHBRgOwiXUGCIYG/jBhrr52x0ygnyJlzUa6fi0Z6dU3/OnbEclcwaooRgGOUEbDb7qtvv/125+meu3SN0suI5aEjk09F1/VSRnuuYRrdbcc91f513bNDniFzyJPGqp8bhxqtvulaHTol+Tam5QYA5kRgFAAATlTdULkpuNLXEqberIOBJUia0ZRDgoQJErQBxydPnpxNbWxQdNMoniHTN7fTBY8ddZvAQwn8Fhedi3YfEsibYnRjG5Q51NqCmzx69Oj8322jBzd1cNh1VF+u34xWTyAk11iCsU+fPjVadAddAayh0znX06nOZRrnLlOOZG2nsI7kA33vuznkSWPU69N2rdG5D9umtx1zDcexR9oDAFxEYBQAAGaiK3B1qO+bajTMIRp0x9rUaDt0pGcbGN1Xo3A7FW5fXYGuvvvaBgumGKnZNWpp237lb+25unXr1tkUukYAHmsKyBxnvv+iQFRXID73YZ9Aeq7hBFKTD4wNKp2SrrQaE0xP+ufcTTEF7FKeU133bq7FJeVJY9XT2h9qtPCm0aJTTJPclVZzvqYBgNMjMAoAAAf2/Pnzzt9fvXr1oPtRN1Qm0LTvNdTmYuoG2kMFRvex5mDf6Q27AhZjg+FdgZZt56griD9V2nR971Sjqfsq9+NFU4t2BTjmPOJwbboCWUPz0gT5Tu3cdQWCk4fuOiXxHPKksepg+lSdPIasL9o1gncIgVEAYO4ERgEAYCYOPXVlOwKxTB84xSiqsaMb92nTtKv7CDxO6dhTm5ZpPqdOs65A0LbgUFfQacqRyu22Mq3sMZSRoNvSOCPluqZDvnnz5l73jd/pClwPGYGfQGDO5Smeu65rvCtwN9c8aYyy3nUJHh5q1oWuDh9TjFbdFNAWGAUA5kRgFAAADmzTiMJDNxx2NYKm8feDDz4YNXo065PNfTrOBLtKA3TSPfs8tEG6DVgOWbfzInNoVN5XQDIjlDLqK8dYpnTdNGqpa128qQPG7WixY62Xl5FjSYdt574rCJH0OHYQ/ZQkENemdwly9pFgate2TkGeOa1dRozOIU8aqw6iH+q5uWmK8ClGq3YFtJcwxT4AcFoERgEA4MA2NZgfeo3RTdPmpcE0o6AuXbp0HihN4/M+gn3HlMbuBEdfvXp19uzZs9kHcucQLOlq8P7www8n2Xauw5yHvLYFILqCJVMHjdu07jvd8FRyTV601mLXOZn7yOc16upk0nf0ffLZU5tGd9s1W4+knHOeNNajR49e/3yo879pevApAphdefShpgcGANiVwCgAABzYphFoxxhVkcDLtqBgGvcTJL18+fL5GqhrDZQOUUYvHmtE4aEdIii56/Sy+9yHuYwYHXpO5jyN9Vp1BbT6TKebfDYB+bl30NiXTffwRffeHPKkMeqRxWV06iHss0NF10hUnTUAgLn58bF3AAAATk1XY+8xGw4zjWwa9i8a4ZT9znvK+9KIm/1O4HStDZ855jReZ9RQGnxPKRA6x5GsXQH5BOozunlfDj2Se1dd0wrHWu/FOStrQ9ZBoZJX7BLsSh58imuLtnlJe38n/fp2GJrD6Ppd5bwXhxwtvK8OFZumPzaVLgAwNwKjAABwQJuCasce5ZXRTdmHL774YufAXx0oTcPnV199tYoG0ATaHj58+NY6gSUQnPXwyuieBM2SZn2nzVyauYwQ7prWNqPs7ty5s7fvnGugZdP6oksaMbcmCWy1wa3kqxdNh5x7K+cyU3ufsuSlbT6zbRrrueRJU02je8jRwvsa1VkHeotTHQUNAMybwCgAABzQphEVcxjllQbMvBIYTIP+pn3d1NCagGE+17Xe3tylkT3Bzbt3777R4J5Ab4IdGc21KUA218DZlDYFyw89mrIrGFJG650a64vOS/KINjCaPOWiwGjec6rX8EX56Lbg51zypKHqjjc594fq0LDPUZ11oHcunb4AALpYYxQAAA6oa1RQGoTn1Cie4GiCLi9fvjwfAZJA5677l8DA/fv3z5YkIz6zhmr+LQ3VCTDlXOWV4z+F4OcQ0uV4rC86v3uhDUyX0aDbpDPJIadRXbul5En1GrS3bt1afIeKdI7qCmSf+hTRAMA8CYwCAMABdY2omGvDYRqYEyRNA24ChK9evTr/NyOgtjWkLmVq2Yw4unr16huB3BxzgsFpPJ5TsHquwYZDT2fZNapqDVNq9mV90XnqCnDWAbBWWbfYdKPd9/G2IOdc8qShMjNDcchZFvbVoSLTz3flR0sJVAMAp0VgFAAADmTTiIoEEpciwcLbt2+fBw4TKE0QsSuAmADBrmuVHkOZ+rfexwTdEvgVpNh9esptawDuQ1cj+6H3Ya4dLKwvenzJO9prtA6AdQVNDzmN6px13cfb0mUuedIQ9TWR83/I4OG+1hftus4/+eST0dsFANgHgVEAADiQrhEVaUg/VqN4RnV2NZL2kf1PMDHB0tZFa+tN7dKlSzuNVE0w9Pr1628EqdMwneMQoJj36KyM8D32PsyB9UXnq2sGgE3B0QS4TaO7+T7etl7oXPKksWWBQ57/fa0vmmdqV0eouc6GAQAgMAoAAAfSFbS7c+fO2bFkpOrdu3cn2VaCoG0gdK7T6WYUS9t4npGvpvzbritofOhRwdeuXTv6PsxBV4cG64suazrdBKmSDx1yGtW52tRB56KA3RzypCHqQPkhg4ddHSqmmDK+6/o2jS4AMGcCowAAcAAJErbBuDQcHnsdy00jSIbIqNF2Gtoptz9Vg3TbCJ99NtruYl1p9OTJk4PuQ9e0k0sIhEzJ+qLz1jU1bgmCtsEk03b/1rfffjvoep5DnjQmKHro4GHX8/hY0+jmfkjnrCWM8AUA1kdgFAAADqBrHdGuURaHlkbJsdPp1tpRo3MLWnWNkB07ardPw+79+/fPp/xdoq6G7mMEvrsa8qe8hueuK82tLzr/UaP1CPrkGQkmmUb3tzKN+ZAR0HPJk/qon/uHXoNzHyPNs82u5/xFI6HzLM7zcO7nCwBYJ4FRAADYszR+d03dOpdAxpQNkzmmOnD17Nmzs7lI423bMJyA0thRuy9evDg7BXMJSN66dWunEWf7umaOzfqi89c1ErQOiGVt0eQ9ztvv0qO1y2jaueRJu0o5oH7eHnIa3U3P+bHXYFcHr13OXRll6h4AAI5BYBQAAPYojbTtWptpNJzTFIpdgZYxjjE98C6jNrsahqdomD6lqQC7RgHtY8RPRlJ98MEHnX/LvdN2KkhHg311avj000/P5qQrCPzhhx8eZV/oluuzzQfrIHuCSdYW3TzNcIJlu3YcmkOeNCQAfOhpdPe1vmhXUPuikdC5F/LqmhodAOAQBEYBAGBP0th7/fr1N36XRsCvvvrqbE6mbkS+evXq65/fe++9nT/37rvvDg44lqn82m3Uukav1vs61L5GK57ylNAZTXTt2rWd9yPX8NTTNpfRXXMa0bRp6us57SObg0O5V0qAtGvk8xJMPUK+K/9op2RfQp60i7oDx6GnUd7H+qJdQe1dRkKX0aKmkgYAjkVgFAAA9iCNhRldUjcapsEwa6nNcYREO6p1jDoA2WdESjtCqE8DfAmKbRtl1BU4G3suss22YXjNU+smfdvRzmnknnLUbLkWtzWaZ5RYe+76BFP6rEc7p8b7TeuLHmOU9ppNcT13jUbP6LoE7bpGlC7FlFPVJv8sQbIiQbW+z4055El9p9E99KwR+1hftGsU6i6zMJS89ZBTCQMA1ARGAQBgYmns/fnPf/5GIC6NtwmKzmVd0X2OsKkbYPuMSOmaenJXJRi5rUG9K+3HNp4n3eYY6N6njHhuj7lr1NZQCXDmPF4UHPnmm2/eCl5MFQzJdu7fv985be8xdQUixo5i43fK9TNF54bcI23wq1xXcwq295V8eapZBjaNql1qnrTrlLOHDorua33Rrmf0RcHWErTu6twCAHAoAqMAAKzWMdZ+THAm07PW373PoOhUx5hgZjtyZ+zUsn0bXdsG1T4jkxIwuih9u6bNffLkydlQJcjRrm+57Zw8f/588Y3B2f/2mHPdTxEsSXqmsX2X0Z8JUrTvyzqAUyhBlalHoY7VlcZjR33xdt411ajITQHQpa8vOkVgN9dyez0nXxnynJxLnrRNHfA99DTK+1pftOtZd9Fzf655KwBwWgRGAQBYrU2jfvYx1Wka0hOgaBuMMzJkn9PntscyJlD66aefjt6fegrDvg2faVBt02nXYG3ed1Fjfde0fWOmXEwDb/Y5r7Yxf9No11wnu4zwa/dpigB41zaGbjfHfPv27Td+l/Qfs59Js6Rpgka7BtWzD/V7EwhJIGOMBFTyKlOezkXStuu6sr7odOpRhmOvo015Wtfvhup6lu17Ku8E1HIdjumE0PX53MtjRlLOJU/aZW3gOYwYnSLf6Aqubru2k68mTXOelt5BCABYNoFRAABWa9OUfH2maN2lwTEB0awnWjc+ptEvozQyimWfDYBtg2cZ8dRXAkBpvB0z+iyfL8HVNCQPGZHSBlN3mVaxBDAuGoWV89A2nMeQBv46eNbV0L1ppFJ+f9H3JR3b85hrdux127VPXSOJ+pyrOj2zf+26un3X5M0103cqzRxDnf4JZAxdM7cE2HMtzW1U36Z7e6lrVc5N7ss6eDXmOtrWIWOqaXRzv3WNbJ1yWvQu6diRey73ypDgcXnO1PlE8pEpRhDOJU9q1dfRoYOi0XWdfPjhh6O3287CsK2sk3ORaz9lDaNFAYCjewUAAAv38uXLV8+ePTt/PX369NXXX3/96vbt269S3O16vfPOO68ePHjw+jO7vrLtx48fv7p3796rjz766Hw7XdvPd+9Dux/Zh67vz+/z97wv70/6dKn3v2wzP9+4cWPQvl25cuX194/x/vvvv3E82a9t39s3zbvSLed0V3lv0i7XWZE0rreXtGhlH/O5bec112V7/PU28/dyXvO66J4o90PZ567t5nzX18u27W5Kj3Y/s61d5b3Zt3xu07W6i88+++yN/cj/91HyjL6fO5SuPG3svbZEuV7qa3eIXGclz8v53nRv5JX7Mdd47qM+13XX/g5tgmmfQ8kHtu1z+wwYcl8XbX5U7o9y3/e5X+rnRHnlWKY2lzypKw3r58Yh5Pu6rpEpjiva63DTeS/vG3odFtuesQAAuxIYBQBg8TYFCA/5SiNdGmOnamzcFAAc8toUPCkNlXXDdgmO5nh2bcCtG6GnCAonDdvG867gaGlkT6PzVEGmbY22aSwvAfGuRvY08HcFMpOOCeB0HcemRutdX5uCCuX7hr76Snq05yzX1bb0zN/Kfg4NcLWSnvV+5FxdFPTOOSmf2UeQZp/53Jz3d86B0TaI3uc1JLBVrq8h+1vy5CleUwZGI2mReyzv2ZYuydPbYGU+MyTQvLQ8qX52d3WM2bf2uVSeTVNpr8/2GZf/L2WNKc73Po4BADg9Pz72iFUAAFiaTBeX6eAypWCm2utaY3Kf3x3vvvvuhe/dZa25bK+e1i7T/D179ux8yrtMd5i/ZyrITJlXjjHbzXsyNWuZoi9pkO1MMa1nvjPrsmZa3rLGaKa5zPdn+/k335vvz/dmuuK+sq+3bt06u3v37uvvyPZynEmDHHvSuD3WTK+6aXrk/C2fKVPllqkDyzHlc5umURxyXneZHnJf223lvCSdMmVk0jbHXqYbzt9yr2RfyjqZ5ZW/bUuXvnI9ZD8yxWemvyxrBObVtR9leuF8LtODzmlN0VZ7zeX/5zbd79Lsen+MuTci90SuwTFTiNbnf5f7uX0GTLFOcSv3zffff3+eVyfPzP2Tezn5aPYx99iTJ0/eWCs69+GdO3f2PqXsXPKk+ti71rnet648bcqpbJNOyWvLsy7Pv7J+aab/TvomTb/66ivTfgMAs3Ep0dFj7wQAAHB4achOY+amBuA0aKYROQGjeo3LNCan0TuNnNnGPgPD+c40uiYoWfYh359G7W373keOMwGy+jgTUCgNujm2rMeWINQu68WWdEujfCR4fmoBrJyvhw8fvnHeImlZAtxlvblD70fp2JBrONfvruf12LLvZR3M3HO5L+YcyN2XHH/uqcj9P6RjBLtLWtdrVOZ+6Vpzs+t5UZ4VuU5zr+V8HeuaPVaelCBx+a6kTQkaHlKOK+cmx5YA/T6eRznGBFzzLK3z2bJm81QuXbp0/m+2XZ6xAAB9CYwCAAAAiyAwOs/AKG9LgDCB0Uig8OXLl8fepcUTGAUApvCjSbYCAAAAAJyrA8jHmEYXAIBuAqMAAAAAMKF6fdGyBicAAMcnMAoAAAAAEylrmZZpdLOGKQAA8yAwCgAAAAATefjw4RvrsgIAMB8CowAAAAAwkS+//PL1z7du3TrqvgAA8CaBUQAAAACYaBrdH3744fznK1eumEYXAGBmBEYBAAAAYAIPHjx4/fONGzeOui8AALxNYBQAAAAAJvDo0aPXP3/++edH3RcAAN4mMAoAAAAAI/36179+YxrdvAAAmBeBUQAAAADe8pvf/OaN/3/x4sXR9mUJHj9+/Ppno0UBAOZJYBQAAACAt4KiZfRj8d133x1tf5Y2ja71RQEA5unHx94BAAAAAOYxOjTB0G+//fbs3r17ne/5+OOPz0dDZprYd9555/z3pox9cxrd999/X5oAAMyUwCgAAADACfvyyy93nvo1AcC8ak+fPj0PBp6yBw8evP751q1bR90XAAA2ExgFAAAA4PUI0HfffffC95b1Rtvpdk/Vr371q9c/f/bZZ0fdFwAANhMYBQAAADhhCeQJ5k0TFM3I2RJgBgBgfn507B0AAAAAgKV6+PDh6593nZIYAIDjEBgFAAAAFjlK79KlSxtf9+/fP/YucoIjRm/evHnUfVmyq1evbr2nAQCmIDAKAAAAAAPUa6zeuHHDNLoAADNnjVEAAABgMXYNPAlQcQi5zh48eHD29OnTs3v37h17dxaflrvct+5tAGCMS69evXo1agsAAAAAAAAAM2cqXQAAAAAAAGD1BEYBAAAAAACA1RMYBQAAAAAAAFZPYBQAAAAAAABYPYFRAAAAAAAAYPUERgEAAAAAAIDVExgFAAAAAAAAVk9gFAAAAAAAAFg9gVEAAAAAAABg9QRGAQAAAAAAgNUTGAUAAAAAAABWT2AUAAAAAAAAWD2BUQAAAAAAAGD1BEYBAAAAAACA1RMYBQAAAAAAAFZPYBQAAAAAAABYPYFRAAAAAAAAYPUERgEAAAAAAIDVExgFAAAAAAAAVk9gFAAAAAAAAFg9gVEAAAAAAABg9QRGAQAAAAAAgNUTGAUAAAAAAABWT2AUAAAAAAAAWD2BUQAAAAAAAGD1BEYBAAAAAACA1RMYBQAAAAAAAFZPYBQAAAAAAABYPYFRAGB1fvOb35x98MEHZ/fv3z/2rgAT+u67786uXr169utf//rYuwIAAAAskMAoALC6wEmCoj/88MPZZ599duzdASb0/vvvn125cuXs448/Pvvyyy+PvTsAAADAwlx69erVq2PvBADAlEHRd9555+z7778//xdYn9znud/v3bt3dvv27WPvDgAAALAQRowCAKsKisY333wjKAorlns8I0e/+OILI0cBAACAnRkxCgCsZk3RTJ/79ddfn3300UfH3iXg/8l6oLlHc38+f/789c8vXrw4/zf//+zZs/NAZx/ue4DDSV6b/Pzhw4fn+W/Jy9MR7d133z3PgzPNef7d1jkt78nLaH8AAI5FYBRYhVTSU8HeVdYdfPDgwSTfWSr+aRDYJI2/tZcvX476buBNV69ePW+g2/XerkeX7kPyhQR5ki+URsKsjThUGh4vX7688/vzXU+fPj07tF/96ldnn3zyyUHzYuZt12t3SGC0vuZyz+WaH7INALbn412j80tANOWvVoKed+7ceStAWvLspT3/U24sweB08Cmde+qOPpna3dr2zIHrFQAu9uMd3gOwOqnYJ1hx48aN0dtK5aL+9yKm91yHNOykkSgVzAS90rijQf44Pv/88/PzkPTv08iWe3HX+7brs616W/k5jRKlE0X5TBoJ0wgxJB/os7/57lyjU+RxfeSe6EN+uP78Kuc412FpiCv3xVSy7bxKY/sxOgQArFXb4Sn5bcpd7Qj9Mvo/ZZ67d++e3b9//7y+9dVXX71RFulbTpiLTz/9dPLnF+yL6xUALmaNUWAVUjnPAPj6ldEnjx8/3lphGBoUab8zDbGbpoMqwZrsT95rtOh6GolKD/k0Au1z9CGbJe3LCIY+QdGMqMy9WOcZuY83TcWZ95d7uNzH7av+W7aV/KfeXhlxkdFzaTDsG1xq9zf7UxobuwKMhx6JUXqnd6Vh9i/p0R5Dequz/vwq5z5T3ea+yHmfesrbNLznGss1uNRGd4C5SVmlBEXLqPy2bFPk7ykrpT6UZ32pg+XzJV9Oea1rdOkS5JhT5soxTtmpK8/ozHpy6dKl8067S00fTuN6BYA1MZUusHqpaG4aaZVKQxprp1KvdxapkGwLzrJMOcddvXATiFrClERljahDjybc5xS6U91rm6b9HHtuM7qinYIujRXZ57Ej97K/2UZeaWCbYnrSocdYpg1v9yMBUGuJHccc86uuqazHXqu5v3INRhrvx0xdDXDq6jw1eXPy1b4BlpTPSrAvZYBss9SRljaVbivB3raTW9/natfyA6UjHMztegWAtTFiFDgJN2/e7GyUT3CobcAfIw0H9QiojGJhfTaNNB4zAvmQHj169MYIdTkB9QAAVohJREFUsqVKBb8cw1QjDzc1+m1bQ3gXaXxoO2GU4NDY81D2LdP0dn3vMRpRW4JUxzPH/Gofwfp6iurMCAHAMCmf1M/zlF+GjDpLXl86vaTMtpRy8i6mKHdmyuFW0qjtSNdXtjFl/ZblM0MLALxNYBQ4qQpBV2Ps2Cl1u4KwYeqa9do0DeTU00PuSxqpli7BxDI1W0aLThlo2dd9m+ujHdWavKceZT5mf5PntOkwtnFtV/me7MdS7oFTMsf8al/3WGn4K2vsAtBf3bkkHUvHlrGmnJ1nTsamy746Lq2lAyTTOtQMMgCwFAKjwEnpmmozlc8pR5eUBl+Vj/VK43s7Ai4NR0sZFbeGHvv1OoJL6gWdIG4bkMr5aKdSG6odsVmmTd4303HN19Lzqz6MGgUYJ2WGevr1rtko+kqdaMnT5u6rk8++Oi6toQMk09NhGwDeJDAKnJQ0BHdNqZuRJUaX0KdimbWW0gM+DT1pgFhScG7pPcjrKcLSeLS0Tgh1UHfqab27gpP7bozM9dROu8d8LD2/GnoPTDEdIcCpqcsMKWNNFUxJ3ry08tpSOy6toQMkAMC+CYwCJ+dQU+qyfmkwWmJDz7fffnu2ZPWaTEsMxm0aCdC11lRfXdPZJuC6z7wtjahLDFCfmqXmV33VecKaA8AA+1B30pp6ZoGujmGnbF8dl5beARIA4BAERoGTdIgpdWGO0liy9A4A9SiwTE27RF2NjRl1OUVjVleweJ8j57LtJQaoWacEfsv9lfvpEFNJA6xBPYVuvPfee5Nu/+bNm5Nuby2m7ri09A6QAACHIDAKnCRT6nKqln59JwhXArtLXtNyU+NX2yg5RILF7dR3+5pOt1xPSw1Qs05GjQL09+LFizf+//nz55Nuv2tWC6a1hg6QAACHIDAKnCxT6nKKppiu9ZjqAN/HH398tlTvvvvuXqc/a4PGZR3QfZwPI0CYm7rhPSNGPdMBLtaWQfYxJeuSy25LsPQOkAAAhyIwCpw0U+pySurRlkuUfa+De2scdTDV6IyuqW2nHjWa85Ggk2l0mZt0eqo7Pj169Oio+wOwxE5b+5iKfI1ltzlZegdIAIBDERgFTpopdTkV6fW/9ABWHdzIvdtOF7vk6eqKq1evTr7O4r7WGc328h1d66XCsdWN712doAB4U1uuSgeo+/fvT/odygz7s/QOkAAAhyQwCpw8U+qydrmO1zB12ddff72aEQeb8pZr165N9h1dgfApO3xkBOrSg+1TymjmNCAnTT755JPJG5Ppp87zvv3226PuC8ASdJVBvvjii8nrQ0vu2DZXa+gACQBwSD8+6LcBzFRGk3zwwQedU+oaadIt02slbdLgnMp40isNHQky37p163yNw00NH+nRnMr7s2fPOoPSZfvZZrad6UXzc0bZle/Kz3fu3Okc8dsGK/KZbdvJviZAvk1ZozHvz353bSfbaNd23EW2kYBVAn/5OdsqjVBl5F/Sqw4GJvASF12f2e5agvx1UO/DDz88W7KuQE3XKM8xci22jWSZYu3GjRujt537M9fq2tYXzT3+8OHD18dX52u5/5KebZ6V96bhOJ+tz2F+l209ffr0reu43OPJS8rPJT9Jw3TdCSDy++QvZb+yT3lfftd1zewzv9qUbgmU57ou+XbZx5J/bcrr96VOl7JPh94HgCVJvp28s12T/Pr16289y8b45ptv5McTWksHSACAQxIYBfh/DahpIG6nmixT6k4RSNgmQdk0QpRAYrvGTzv9ZirAadTeFhRMA3oqydu2WRrkX716tfO+Jo3a3uNJn9LAkePI3xOA+eqrrzrTbpe1DtOQnobssRIUbBt4hkh6Tz0VaUmrnKucpwSZctz5OeerBEkT/My5zHWan/OZXJebgmglyFqCKJvsMm1rrrGLgsaH0J7DJU/FVoJTrX309G/ztdJRYGyDZO7h3NtrGfVR34uR9Enavffee+eBxfw+I0DzSoA0x5/35JwlfZMWye/KdVnOZbZbP0OS9qVTw65KR5J8X7aT+zbfn33KsyM/twHOfeRXuzwPcvxlH6NOu6Rb8q9DXTNJr3xX2bfsx1SBYIC1yvOmLY/kWZbnTQKaU+Thu5Th6k5E6dhYd+wpnV1evnz51v7kc+mUVDoH5b1l3emUpes6yzFM3XFpTR0g99lR9CLluimdaeuOcenkle+dqu6R8khdTyvflbpfjq1cp2voLJ20yzma+0w/db5ROveVevm2855jz/1aOgaW6zSdt5dcVwU4FQKjAP9PaWhuA0mpbKYwf4jG3FL5m7JyO9U2U1FIxaZOn03B2XxXGsvz/lTs6spqaRC4SNK8VIhLZWOIbCcVzbrRYYg0COVY8vkSPBlbASuV+a7ARpQKVf5WAiq7BDMTlC7nqVy3m477ous6gaE5aNN8ySMNugLNOZ6LRj8PUQJ3tVxvY4LduZZKw9UalMBjkfyqq0GqvC/XYu7DMqom6dA2+NTXa51nlkavumF3mwQUk5fWeW1+V+eh2ac03tT38tT51UXPgxzTptGrkX3Ifv785z8/T99DNZClQa4cf86TwChD/MVf/MXZ2vzkJz85+73f+71en/k//+f/nP31X//11vf87Gc/670vf/VXf3X2t3/7t2dLM+RYl6DMotI+n5LvX758+fzveS7tsxw2tBNR6ahTZnkonWNSj8izoMzwUHdwOrQpOi6trQPkvjqKXqTUV+vzUTpLl45x+e78Pa+Lyjq7HGfpsFvPRFKOMYG58l059iln9jhE57iUO8vxPHny5Pw46+PZ1GH6mOrybDkf2deMkC/73rZlFDn2lMnz95yrHHfuy0ePHr3uFGnmMYB5ExgFqKSS3E5FdIgpdevpqeppGbsqr7tOSZjCfXpSl0pLrVS22sb0XYJ45fPpNb6pYpi/l7TM50rD/q6jRbve1xXg2UVb2S+VmL5SMa0rp0O3U85xSc+c+10q2DnneW/S9KJAR9d0Z6nwtQ0k26Yynpvsa7HkHrilgaW1ryBj0irnuG44y/ePaQRLhb806KwtKNoV5CzK/V+PBk0+1fX+vKfku3UjUPLG+lzn+ZIgZlfDZnkWtIHarmsl763fM2V+ddHzYJdG1aRR7uHkX3kdKqhe529TzBzAafrTP/3Ts7VJfvFHf/RHvT6Te/iidar/5E/+pPe+/Nmf/dnZn//5n58tzZBjXXJ9qCjBgpQvyui2qcsDfToR5e+Z6jd5fAlQdJVt66BU6eB0jKDgFB2X1tQBcp8dRfsG9RK425RepUxWzl/fdoF69o9NZc1cj6WOmP3K+/M9h5xtYxflHJRyVVfalTJpHXgsI0fn0rGyXHu5vrrqxDnXOQflffU5z//n920ZveRB6QiYv9dtIADMj8DoCv393//9+XQzcFEl6Ec/+tGxd2N2UljfNKVuKiqHCATkOxJ0TIG6ruSWYGYf+UwqWSnsl2NK4b/PVFht4KD0otwloJbKQSq5+XxpOBnaS3qqqSGznSkCBGV/hoxALQ0Audb6BvlSAWuvjVNQr8m5lGDurmtA7Xo/DVUH6cp+jMnPyj29dGmsqY8j9+NFaZL35PhLY1DStauDSfLdXabrqzuRtLJv+b4petePya+2PQ8umtK9lcawEhw9hLrhdIqp2QFOQZ6Fydu3lZfzHMyrvGfKQGlXJ6IS/KyVYEsCqNs6NpX9S3mrBDQi+55tHHJU1xQdl9bSAXLfHUU3adN8U0C2lmurjCIs9dpdA3zlM6UMedH3fP/996/rejnG/JzfzSE4mnsw92IpT15UDiz3XekEWJb6OXZwtFx724LcdZm/Xl4p5zM/d12zbefBXGcCowDzJTC6QgmKrnVqH6adFuynP/3psXdjUVPqppB7qEpJviOF8brSNqZBO/teprHpExRtAweRykOfSnaOI5/JdlIxGHoc2ed6vbgxyhSYYyUd+m4nFaZyDEOCA13Xximo78c5N/JsUvcA33Xk9VTKtHe1TSMdL1Kmws5+L11GjtTaNNpl/bVtMwrsep12vS/5dRp6uxrQynS+9XW0S/B0SH617XlQGs77OmTnjjZtp1hfF+AUlOl0LxolvC1QeuvWrfMyyNi6U+kc2paby0i0PgHAPIMSpCnPwxzfMQM1U3VcWqJjdBRtZyDaJSi6afaQbOeiz+b6LOui7jprUqkf5DqtZxepZ885hhxL2adI2XOXcmDp6FAC92X07bEChjmO0oHjok4RdZk/I7XLOrc57vaazXnqmgK8rLkKwPwYLgbQoaviUhrAD+XOnTtv/W7oiMkSVEoFZNeCeemdXUsFaEgwJemZfRibfplaa+nqhpehDfRrGK3XR67FuuFj7PRZh1Qa3PKqjyENKZnq+hDTAueeb+/bOkDfR/KQQ625vE9plKmDhDmeXe/HrrQcMxqxzdcSEE06dz0DSj5c1stMw0w67Oxb1/Ng1wa+1pDZD6YMjAKwmwQNhq5xWNaNzLqkKbeODfx1PaOTp+d52Lc83XYSTZngmB0OT7HDzlQdRft+Z12XLjNF9Q0MlnrYLmWZ8p6+nXLz/rrTW7772J1i2/OU6XP7XOP18eRYjrXEQYKXuX52GSneLslQPtt17rPUyKaO3QDMk8AoQIdNFaUype4hdAUzhjZEp9GgbwWyXndlSAWoVtYjPMXe0NumhB3aSJ/0PKVKVptOxwiQl+ljL3qlwpxGkwRvL126dP7/dZ6RezA9vofey0N1jYYc0tEilf41BObbxpA+jZJd7911RM2u13te2/LrMvKgT2eXMdrnwS7TBG9z7dq1s0MQGAUYJ8+aIcHHtryRAOmYZ2VX2W+XKfC75LnZdj7Kc85a1OvtKFqmXa71LYvXI43LNi8qV5RgWQKB+XzXiMJdjy8jFo8l+1If65DyZ3vPHeN4khflHG5bT3abfHZT+bwrjzKNLsC8CYwCbJDKUleBuU+FZupgRpmmqo80ZqchYtPoo02faYMmaQgf0wB/yHRbijHBsVPqXZ4RdMc+9gQ3c09c9Mq9lns0+5z9TI/vjOpLA9CrV6/Oz/kx9r9rlGff6680aE6x5uWcOihE33PSjvR98uTJ2VSS/86p80PX82BscPxQx9Z+z7GnoQNYopQhkn+mLDOmDFCW9pjKmLpFymbtM2LXKfVZXkfR9tzmmu5T9ss+dnXw3bbv7Yw3fWcZaYP+Zc3RQ8v+tvftkJHkKTvX52vo7DVjJFDZjsbdpmv/NpWBs82SLrm2+k7TDMDhWWN0hd57773z9SPhouuE3UYVtdPGpICcAvEhRnyVYEZdKM/39vnuUpHpUzDv6sE5tiH8UCOE5q5e5y+V26HXUrZzKiNw53CcqUgPWU9xTtq1act6obtO57umCv7UIwen3t6QETD70vU8mNP+LS0vAViq5P0l/0/5IeXYhw8f9uq0mXJvRlZN0clq7AwibbmoTLN/iGUOeLN8OfR62CW42bVWbt8g+KZrbUhnxz7rned9dRnzGDNftKMex3Teu3nz5htB1oyoPVTdogSld5lCd1PHxxz7tnPXt50GgOMSGF2hH/3oR2c//elPj70bsKopddtekvn/9FI+RONwRnrWlbd8d58Cd6ls9qnAdE11NfZYT2mE4zYJtNfpm/OZSlrpwbqrPpW6tZnLSLqlSWNkuz7RrhX40ktdZf8w5rSObvs8WHKDcTv6HIBh8iwos2LUQcWMKr1oVNunn346i/XKb9269Va5KJ2BTrmMvcaOol3TmfbtsJtrNdd6fb2kjWBb/basX98GM/t8d/v5Y8x80TWL1FCZTrj29OnTs0Mp11ef/W87fSy1YyAA3QRGAXYoRKc3Y1vpSmD05cuXe//+VLraXq2poOzSuzIVzVSm+lQ0u9ZLmaIh/NiNH3NRzmd9PeU8paKYdE4jTSpdSw4+TE0wYxplat+6kr9rR4s0FOaza+ngkEapKacjmzpd5pLOXc+DuezbrtpZF6CvX/7yl2dr85Of/GRQh419pMUf//Efn/3iF7+YfLscZzRpHShNQKrrWZs8OcHRYwcgy9Se9TNiyjXDmUdH0bLO59gRj9m31NMyDXC2sUuQLB0F0maQsneZXnVMnfjQ5Zmu+3dM5722DHnIqYFz3vqOTm2X3mhnEgNg2QRGAWY+pW4qT6l41RWHXae0LJWvPr0buyoopsGd1ldffdW5LlK7hmwaBpL2ufbm0LP+WNpGgLFTp52y5FnttNi7dLTIe7p63C9V2zDTd+3mNlj44Ycfnk1pLsHHrufB1Md6SAKkDPGzn/3s2LswC7/3e793/praH/zBH0y+TeYTKE3wq6vMW6a1PPbzrqujlOl019NRtGtt0DHbLCOld5Xre8yoyGPX/boCz2Pu2fazh+z8+v333/dKz+QD7bVjxCjAuvzo2DsAsAQpBHdNu5JgwSF6OrYjRtsAWpcU5NPokKl4xzYcz2laxzXItbRLkCnnuEzbfPny5fMAad8ADtS6AqAXde5IHpd8YS3ri0YbHO67ZlObT06xVtqcGsLWFEjUkQLgePJ83DT95xw6XHUFuQ45iu3UO4p2SV0ndd8ESS9dunT+b8ptqdf2LZd0nctjB+PHBHUPrR0xOTb92jLZIY+vb9m6vXbKCHMA1kNgFKBH5a2rMNzVC3pqXaMFLwpmlPVA+gYzuhovVAKml6nG0gu3T9qWntRtUOfUmFp3nDZPSAPUtsDgriPUl6RrWuBdG0Lb96XRd+pGtrkE89bwPKjzi6XtO8Aa5BnZNfJsDgHI9957763fPX/+/Cj7cmoO0VG0qxzTdc6PpT62dETO8SUYnFf+/9j3yKYO02Uf+75yfEvx5MmTN/7faFGA9TGVLsCO0qB6zCl1M/KzHjl60dqA+VsqnH0bggWdDifnJ6/79++fn69dR63l3KcH75ipmZZEMGNaya9Kx4ki119X41QZeb7Gay35eToa1GmwS6NHm05zGPGyL13Pg7kEbYdY8r4DHEICMfsIAKS82y4NUtaxPuYIvq4yZt9ZJBjXUTTnP2vO7jp6sHQUTae9i+rfXds8dr0i+58yaFsWz/2RMnrpvJcySwKmxwyOdt0LWTd1KnMevdumu/VFAdZHYBRgwJS6CRTUSk/PffYkLGuxtN/bNZIrBflUZIYEazUcH6dRIK+cs5y7BKHKOdzWw/gQAfk5OOa0S2tUGlzq62vTGqKPHj06f+8a19rKMeW+S8eESL5+0bpieU/dUJLGoTk36ozV9TxYWueZOr84dmMowJylLJCy5cuXL/eSX6Ye0wYbjh0Y7XrOKWeup6PonMosufZzf9XHV4Khm5ZkmGO55RRGTnZNY3wKxw1wakylCzDRlLr7nt4039lWmjaNVEqlMo0MQwrwXcemgeAwcs5K7+dM/fTq1avzwEuCN13n5VBr3LI+bX5VRoa2kseseermtvf39evXN95TpQNMkXtz7Y0kc2yQA2C/9hVMyjOzDYIee3Rm17F69h1H6jup/+RVlnG4KGheOorOucNvytgpb+ZVrvd0wktAN2XJqdepn9Kptgt0rS8KwPoIjAIMqCAkONpKRWffAYR2+/nOdo2VEuAYui9ZN2SX9VkYpkwb1qcRKcGp9N7vCoTvexrPTFV1iHV0t2kbRebU+3upukaat6OPy9qja1tftJZ8MseXhqk0epTGq1z3GdmSYGj+Tb5Y8tTck8kT1x4U3fQ8WFKDWLuvc1pXDGCu9hmsbAMMx36mdH3/mmeCOLWOoscO7OVeSpmy3r8EQhMUXUKwreteOIV6WDtd8CmU+QFOkcAowIgpfw49gq+rp3UbzCjrlQwNZnQV/DNNEdNIkLGdEnlXaRDImjS1UxgxOrfRBWvQNQI911LdWDR0neKlKNNV535MvpdGqrySdyYdMqVbWY81aZD7r/TuP5VG02vXri26o0zbeHcq5w1gjLbT5ZTafPjY+fLz58/f+t0pdaI5VgfIQ3UUPWaH35Qlk771caaM2dbl5qzr/jx2Z4ZDsL4owGkQGAVY2JS67fbTaD9lMCMVoPaz+2wgOYZjV+jGBDNzbhOgWfP5abXX45ICM3PWlVeVjhXl5zVPo1s6ldSNPum9X49QyCuNcAmIptFtCb37p5Tjbe+/JXWUaRtdj90AD7AET5482du220DVsTtfdZWhjQ5bT0fRrnN5qA6WOcZ2nfO2Q/PcdQUE195BdYr1Rce2NeR6zvWT/PLSpUtnly9ffj2bDQDTERgF2MOUuvvUNRL00aNHb4yAGhvMuHnz5lu/Gxt8myIYOVXjybErdEmLMfvQ9ore5/EcO4jcFdCYyz4tXSr57T1VGmwyHXf+tubGweRpx26QXYL2ebCkjhhtXnFqgW2AIbrWHN9Xvtw1M8EhtQG1lAs8K9bTUbSrw+8hOnjl2Nrj62o3uMgudZ4y+8k+6kdd9YB9dpyYg/a89e1Ul3aY69evj16PNuvjpgNAOmh+//335/X/nOsESZdUFgeYM4FRgD1MqXvoKTBLoCxBjRTexwYzunojPnz4cNHByGIuFYmxjU71Od4luJPK1dCpKId+dkp1pXQu19IatB0tyrrFd+/eXfXaouXaTgOEQHv/58EcOsrsos4rjBYF2F09g8SU6qBKV9DqkLqeZV2dQ9fsmGWgQ3UUbc/p2O+tt7OpPtc1MnRIm8Eu63nmOs7yD/tY+zP3aFt+mmoZl5yDfeUzx1xfNB3Wh3T4KFMvJ32zD7mGyswtpbNqAqWpnw0NvALwJoFR4CTso6Jw0ZS6+9SOCE3FIhWzvKaY+jIVoLbyNrbiMjawGm2ArmtdoEPsxxTG7kd9ze0SuOy6RndpDMl7utbnObS69/6SpvKce8NWV37x6aefnjeyrHka3fq+KSPu6dbV2WZs/rXPZ/K2BngAdrNpzcax6qDKoTuX7hK8WupUlUvtAHmIjqJd53SKUdHpRLjpehk76rCYQ+e9Ni+YqpNx0m6OdY323CVYuatcVzlnQ9btTf0rbTpJ723B2IwmzXdMFaAGOGUCo8CqlcrEPisVm6bU3acUltsKVimATzXKq60EJQ3TG3WIfHaKHqHtMQ85r3PpmZpK5ZiKZd3Tedcpv/pOJVXSdw4BhXqNG6P83r4WhgaauoJeuS5zTc3hvO9TOb59TT+2Jm3jcZ4FY9LsUGts1XmsqREB+pUthpb7N0lDfv3suHPnzqjtjR3119YJUodaatlnqR0gD9FRtKvD7xTlkFw/mwJYbdoPva7mMEtO0q7d/7H16TLa9lCdI7K/Zb3ObcHYNo+KPqM/EyxPebPvKNOUV0uwvp0iupZ9L3XiucyCBbBkAqPAqtVrb+6z4fsYU+p2FeqzD1ONXk0FqK00prA/JB0TtJ0i/evgWPQNBqVSlP1oKytTXRt9t5OeoUOVylCf66497qdPn259f+mJOoeAQrvv+xw12nUeh4xOPoRcByVQPLSC3JWXjGmsXEqQsVzXZeqq0sv7VPQ51k3PgyGSr+xz/bpNDYrt8wOA7dJxaMpRSXWnywQhx9ZZxgTV2pF+2Zd9jZI9lCV2gDxUR9GuaXfHlEVKmXGfI4y79m9b3XefI3/bMuDY4y5lyLGdI3aRDh6p65RrJe0Bm/K1TFXb2jWfyvnKtTwkHyl52UX3Yh2QnkP9HGDpBEaB1WorK2OCUHOcUrdrZOjU09HkO+rvGTI1TCojqXxM0djQBgH7VmhzPWQ/2vM0tDdu+7m+wbNUnob0uK2Pu0+63rp1643/v6ixq6xtMpfe83UFcF+9ZDcFi+bQY7tLna8NzeO6gutjOnp0pdUcezXXjTHZ5+Rtly9fPu9NvumVv6fHeQKpeX/J38boSq99BP7H5lft8yDH3ve8Zh8SoOxqzJn6Gmm3N3btbYBTlDx7is4sdTBiqiBk9mtI+axrNGwCImPrccfqaLn0DpCH6Ciaukwb9Mr3Dk3rfLZrJGX9fbUhZcUED9vj6trfEizte/32OfZcW/U9O2YmqXL/5dgOce11deTryjfKDFftPu068jrXRNJpSHmzXMcX5WelQ0n+Va4FmMArgJV5+vTpq9u3b79KFte+rly58urBgwevnj17tpfvfvz48evvunHjxqt9y3fUx7YvbXp+9tlnO33u3r175+/Pv0nz9nwMOQ9lm+WVNN/FRx999Or9999/K936bidevnx5ngZd19jXX3+99bPZh76fqSXN3nnnnfPP5bz01X7/pu8u56tPuuxbfR3u4/5K3pHrpOu85pW8I+f+2HJuch+U66B+5Xflfuujvp53vb+79mtT3pv9yrU0h/Tblp8MfeX4cux9jy/XXFeekPy8T76wr/yqS72tHPeu11q+K+/P8ea4u455yuujPre5rwHYLuWcttwztmxQ8v96u3kG9JXnw6a6Xd/t5DP1NvK8GKIthw0pl0+5nboeukva1HWjQ2vLPrnWxhzvrmWRtpw6pD5R6grbyixd5cs+Za6kR66LaMubrdybu9wHU1xnbR26bzmy3H/Zl0PUCTblG13fnXQs+1Wn1S514VwTY46pzpOyrX21VQHwJoFRYBXaCnefxuyplcrSIQKj9XEPrdQPbSzZVmjP70vFqezXVIHRqINXOYfbKmX5jlS+60b3rsBoaUDItvP3toJeKjxjr6+6ISANQ2VfdqmcpmJW9mFM8Ko+jvzcNlCV9+wz2D7FfT5GjjnH2Pectuf3UAGXTRX7XV67VNLrQNWuDZZj0q98dmjj35Q2BXOHvrY17pV7a0heUoLLu5gqv9q1wW/bMef6K2lcnotdz4PySh6Z9+U1ptGsfk4MaXAFODVdgdC63Fg6X/XJm9vnxdBOP13loFIuznNjl33Ke6YIyNXPta59OlbHpSV1gDxmR9ExwdFStthlX9sA/K6Bs1LfKd/R1lvrc1bui21pMNX1WrTX7K7byDkrQdEhnSOG2uU6K2lejqVP57pyfsYcU1fbRNIq522qjpIAvE1gFFiFUpgtjce7vPo2BPftCXmoBv9S6TpUr8u24J7/T+UhFYn8WyqM2a+6gjBlYDTaCl4q2Pn+NHC0+9I2sG8KjNavNvBYKvB9rq+8WmU7dUNMXfmq07McR35Xtpl0HduIUYLF7XlMmpbKbr5njr1V67QdUwEtgcA+eUbXOT5UT/vS8DFkH3fNG0owald1Pjo0/caMQBkr13fduFN3jGhf+X15tQ1dXa9NHVVKPjg0vXZtwJ0qv+rzPMh2kp4lD05+Uv7e5lvbAqNTPSOm2g7AKQZG67JDV2CldCLsKouVmS3q52VbL5giMJrt1cGWbeXjMmtBvT99Ag5DOxztq6Pl0jtAHrujaL2NXa6HnMdyne163XSNTr7oe8p91gY/23NaylpJx67rY6rrddcODzkP28pa5f2HDopGXbftqhOVvKEtu9cd7Lrylro+PTZ42TWTSvsa22EQgLddyn+mmJIXgOPImndZY6JdN2Wfso7Go0ePzr8za2HklfUusp5KXlnrtF33Iu/J2ny1Z8+ejV6/MmuBfP311+drc2SNlbIOSLabNUK69iVrA2atl3ffffd8v+t/s4/5+dq1a3tZ9yTfnX3rWlsp663kWLK+YDmOkq45hqzzNOV6IkmDrCNazmG+s5y/27dvn81R1okta9pkH6dYo4rTk3yjrMmc+zx5Wd+8KPdM8p3cs11rBU+Rvy1B1/OgzoOztnG7RlZ5HpR8N++t8+L33nvv/N+bN28OWvMteVvyy8g+XLTOGgC/ezambNVVDkzenb8lz++zPuGm7fWR70udp5a8PXl8Wd8va47meZJnTqlz5Flcr0WaZ0rWGO+7P1lbPM/8Ps+k7Fd77H23U9K5T7NdWTe9Xmu7rIdZ1lHMzym/HKucUtIh9ZCyfnnK9ynnl/398MMPX+9fjunJkyfnz/dSX0naXrS26DbZTr6vLsOVskeun6zFnn0s9bJS3+5bLslxlfpWkW3l2s33ZNs5tlyn+V2Oq63vZT+uX7/+1n23qQw71fV60fvLfVfvT/Y95bjceznmsr5qznPS4RhyP2Q/y/qcubbSbpB7IL/fdNzlc5FrrZQtk+Y5rqF1iC75nnzfNtn/77//fvR6yAD8lsAowIKVxt8U6qcMmO3DvgKjnJb6Osq1k2sIhgbXk28m/5xC3XgSAnLHk4b90tCZBqsxDacAp1SvSP65S9kqQZeHDx++7phYOtjVHSW7OsbsIzBav+fu3bvn+9R23EyHxzyn515fmtKcO0DOqaNopPyW67lNq7qj7dg6a33PdF2fOa5t90v2Kee0lFsvev+xOsiVjsol/bKfCUYeO5hX7oeS/tmfXEfpKLGtM3TeX+cr2zpfj1U6LpTrpMuUdReAUycwCrBgqWikgL6E4JDAKFMpvaC7GsVgm1w3uX4iDSIvX77cW0Au5HHHcenSpb2dYwAOb5fAKMCalFHV7cw06hcA0/jRRNsB4MDK1DRlOkg4FenZWxxrSiaWKVN+dV1HU2mvx3oEKYdRp/k+zjEAAOxbOn6kbpFOIPWI202jSQHoR2AUYKFKA3xZlwVORaaNKpXDrrUdYdNok3a9rX2oR68sYTT/2mS6s8LzEQCAuUkdNqPgM6PWRYHO1C2UaQGmJzAKsODCdB0gglPy1Vdfvf5ZcJRdZM2j2rvvvruX78k6UZu+k/1Kw1JpXJrDelYAAFBLWTWzfqXTZmYBqzv1bfLhhx++/vmU1koG2CeBUYCZ+OSTT87XRUuvwUyRe9FUgSlImyaQU5VOAWVtlS+++OLYu8MCtIHQNETsQ73duhGD/St5QQKi9+7dO/buAADAG9q2nl3WCy31i4we1fEPYBoCowAzcP/+/dfroqXQ+/HHH299f3oVpqdgPWUjnJrHjx+f/5tOArmHYJs0ItR55sOHDyf/jlyLdWOHHt2H7X1f0j4jyjUaAQAwZ6kr7NKZryyjpGM8wHQERgFm4Ouvv37rd5tGMyWAmgbgpY2GScAAplSvt7LLFERQ55sJpk89avTTTz99/bPOK4dV0j7pvq/1YwEAYIxSP3j27FlnO1Ary8akzpLyrTIuwHQERgFmoG08z0iXrilVElxM428KxEtrcO8KQOxrKktOR3rP5l7JvZG1WmCbBM1u3779+v8/+OCDyfKhTONaRv7nmiwjmtm/NBiVtUVLj3oA1qNrzW7reANLrY/klaWUdinjpo6b96tbAExLYBRgBuqpc9Og/s0333S+L4XnrJO3tEJxGqy71oFMIb80ZsNQ5X5IxfGi9Xkho0bLyNEE1LOuc66docr052U653RaSe9vU7keRtK/dIooHSUAWJeumWfMRgMsVeoKade5fPnyeR2ibhNJ2TZ1k3TgTBk3nTp3GVkKQD+XXr169arnZwDYgxR6UwBOw26ZHrSu+CcomqDP06dPZz9aNAX769ev92q0KEGEHJ+GbfoqvWlzHX3//feCUuyUT2UEfmmISL6TDhw3b97c6fpJfpz8uowSjTRcLG2a86VLo1HOYZ6bRosCrE+CBKkHtZ0py+wMc68XAWySfC1LwiSfyyttJ8nb8kq+t2u9BID+BEYBZiSF3zSyp4J/69at80JwegemAT49CvPzEoKGKeCnsbpvIT4Vgay1sYRjZH4S1EqP29w/CbDDLpK/JphZjzZOHpQpqzKatORjyZ+eP39+nr99++23rzt95L0Jyicwp+HiOB2Kcq70pAdYhwQHUo8Y0sEys+4IlAIAcBGBUYCZKaOQ0viehoHS6F6viwdsD5RkHd6lTTnN8aVjypMnT17nv1m/rDTKptE1HVTy77Vr184bbROQ05HjONIJIp0hdIQAWJc8f+uOSbvK8zqdZPJsBgCAbQRGAYBVBkdNawrrDWBnhgVBUQAAAKAvgVEAYHXKaLKuNXuB5Y8kMiocAAAAGEJgFABYbQAlTHUK65GpErPGq6kSAQAAgCEERgEAAAAAAIDV+9GxdwAAAAAAAABg3wRGAQAAAAAAgNUTGAUAAAAAAABWT2AUAAAAAAAAWD2BUQAAAAAAAGD1BEYBAAAAAACA1RMYBQAAAAAAAFZPYBQAAAAAAABYPYFRAAAAAAAAYPUERgEAAAAAAIDVExgFAAAAAAAAVk9gFAAAAAAAAFg9gVEAAAAAAABg9QRGAQAAAAAAgNUTGAUAAAAAAABWT2AUAAAAAAAAWD2BUQAAAAAAAGD1BEYBAAAAAACA1RMYBQAAAAAAAFZPYBQAAAAAAABYPYFRAAAAAAAAYPUERgEAAAAAAIDVExgFAAAAAAAAVk9gFAAAAAAAAFg9gVEAAAAAAABg9QRGAQAAAAAAgNUTGAUAAAAAAABWT2AUAAAAAAAAWD2BUQAAAAA2+uGHH85+9atfnX3yySdnH3zwwdnly5fPLl26dP7v1atXzz7//PPzv+d923z88cdn9+/fP9h+AwBA69KrV69evfVbAAAAAE5aAp1ffPHF2ZdffvnG7995552zd9999+w3v/nNW5+5ffv22Z07d87fUyuB1c8+++zswYMHG7/z17/+9fn3ZtvPnz9//fOLFy/Of86/X3311dmNGzcmPFIAGMfzC5bjx8feAQAAAADmpQQyizTkZmToRx999Mb7SsNvGoTv3r17PiI0gdS28TcB1l3kO7oCrgAwZ55fsBym0gUAAADgtQQ3S1A0Iz+fPn169vjx47eCouXv77///vlI0ZcvX56/L/L5EgxNoHTXxuJ8RwKq2WY76hQA5srzC5bDiFEAOILvvvvuvHGonmIl06rk/8vP9+7dO59q7BRID/oyTREA7EeCmCWgeeXKlfOgaJ8G3tIoXK8n2k7Fu007zW72xbqkAMyd5xcsh8AosJqgygcffLC37achII0CWUcnFfz0AktlH4b69NNPz69bfkt60JdpigBgeimP5RlbfP3114NGvaTu9OzZs7OrV6+ObhRO5zgNy8eVTmfplKbDGcDuPL9gvkylC6zGmGkq8tn21VYE00iQymB6fCUIe/ny5fMCTv7GfNZBSuPLpUuXzgPYcw6amGLlTdKDvlwzv5NnUxqxy7MpeWD+TX6YaQz7TF8IwGlLZ7UiU+MmwDlGAqtTOPVn/bE9evTovEyhPAHQj+cXzJPAKLAKaRjPejavXr16/cqUT11r4JT3pwdzeW8+277qv3WtqZOAaIKkJUDK8YOidWU9gYJ9jiKeoudgrqlcW7nG0vB0yqQHQ6YpOvVrJvlenkHpCJLgZzrwlM46ZWrhvCdB0wRJ877kjQDQJc+IegaPO3fujN5mAqvt1IJDZOYejid1ZwD68/yCeRIYBVYrwc80mndJI/GuvZ/Tuyvbysik9HhOsLRd57CMItWDdjdpsE9j/ZTu3r3b+T191jM6dmCQ35Ee67WP+/8Ur5kEOdMZJOmZZ1ICxHXnoDRgJk3qZ10avOvPAUCtDmCmQ+hUo1zynBo78pTjUm4AANZEYBRYtU2V+bE9ttJo0E4LVdY5FRw9zlRMmyrrS6rEazB6k/RYp31OxXYK0xQlT8uzJkHONFonAJpnUrvude6fjKLN39vRtAlMe14B0Ko7LrXPlbHSkZTlUmYAANZEYBRYvX01lKdBuh2RWhqslxSMW8tUTJumTd70+zk6haBOH9JjnfY5FdspTFN0/fr18444GX2TDjq7dCDIyNF2GsM0cHpeAVDUU+jGe++9N+n2b968Oen2OKxvv/322LsAADAZgVGAETK9bht4SyNzRkOx2T4a4tPw3/ZszyipqXu7A+MIxI0bbZOG6zx3+q7XlkBqO3K0dOYBgBcvXrzx/8+fP5+8w9uSOizyZmcq5TcAYE0ERgH2MC1Upjjcxxp6a7GvKTSzxl5GUCVgUNbXA+bFVGzD0+3+/fvnI0Tbqdx31a45Wm8XgNPWPp/38bzOOtcsj3otALA2AqMAI23q+Xz37t2D78tS7HMqppyPjIyyPiXMk6nYhikdPcau0db1+TyvjAQBOG3tdPTp6Dk1I0aXSb0WAFgbgVGACXRN15rpDo2MepupmOB0uf+H+/LLL8//TcePMbo+n3Py6NGjUdsFYF1ru+fZMPWMApa4WGb5Q9kNAFgbgVGACWwanZjgKG8yFROcLvf/MGXUTkbaTPFc6WqYfvz48ejtArBc165d65xlYOqgWBuAZd4d2j7//PNj7wYAwOQERgH2MPVUYcTo20zFBKfL/T9MWVM0AdIPPvjg7NKlS69HkE41leE+pkwEYDkSsOzqOHP9+vVJv+ebb755PT0885WAuDVhOaZ0Bsyo9QTnP/nkk8lHsANw2gRGAfbo+fPnx96FWTEVE5wu9/9wXZ1s0kg0tPPN1atXJ9grANama3RgghPplDPVMzzB132NGs0+pryRgN7ly5fPOxLllZ8TWBnTqWjXmTHyPUmv8v155mZ/Mvp2zKwP2Xb2vw4UZbvlu7qCmGXEZ/ahpEPed9F+5Lt+/vOfL6qT7yHTZ5N0Mst5rs9//s328z1TzJyS7yjHme/KdstxluPoOm/1vVHed4h7I2nZlSb5//y+a19LR8C8Hjx4cPbixYvz35ftDJFtJq269iO/n0MHwTlcw8dIq0PcN2Py8PrY9zkj3LGfX/tMz/r63CUdc03U6ZDPZztm5GNyrwBW7p133nmV7K5+PX78eNLvuHHjxlvfkdeDBw8m/Z4le/bs2Vvpk9/xO++//77rpyI91uNQ9/+VK1f2mtcfy0cffTTpMybp0rU9eTIA7bO0fn322WdHe1Zc9IzP/6fel1f2M8/I/O727dtvfDZ/n7JM+fLly/PvK9vPd+U7y/ffu3fvjed4/v7111+PLke1r3xHLd/f7k9dtm7TIPua49h2/nd95fsO6RDps83Tp09ffzbbq6+/nP96u2Ovv13OT3uPZh/Kdx/q3kiatNd9vi/70l5neV/Z53IvpX0l2yjqe6xP+T7HU7cHZbv18df7mPcdq+5w7Gv4GGl1yPumTx6eV767vl7rY8/P9bW55OfXviR9yn4nvZKO2e86nXN9dckxt9dfPleuzU2fgyEERoHVO0RgdFOjdd8C01qlsNlVidMI/yaBwDdJj/lJnlYqiKmU5Oc53f9rDYxu6nwz9PgERmF3/+N//I+tr//9v//3oO3+5V/+5dbt/s3f/M2g7T5//nzrdv/n//yfg7b74sWLrdv967/+60Hb/eGHH7ZuN38fIvuzbbs5niGSfvn8miVod1EDfWk07hvg29czPs/JixqM2/raLmWYi5TARGnY35YebeN79ie/20Xel/cn3TcFxuqgSQmE1cdYfle/6u/PtkvDfHltOv/t+9rXFGnbxyHSZ5M6OLXt/OdvdZr2Of+1EqRp60mbynPHuDfq+2JbebV9XzmmrnSsz+su+5c0qNMo6bApvesgTnutnMI1fIy0OvR90ycYvG372Z+SVn0CdHN8fu1LqWcmnbrqlvV936ZhqfN25Rk5L+VcHbrzDet1Kf+ZfhwqwHxk+oV26qfHjx+f3bhxY6/fceXKlbNnz5713lamjch6cvk3U6Nku5luKuuYZl24TCkxdt8zpUWmpMm2s4/l5/yb77x27drrNe2K/D7rAZX9yj7lffld13pE9Xd9+umnndNv5buTTkNlPzKdRvY726qPofyc/fvss8/OppBjefjw4fn263OTY0haZFqQbWlxkUzRUk8PkqmDptj3nLNc899++23nfmdakq41B49tKelR36uZPjv/5v/LfZWfu671/O3Ro0fn+1Kuqci+lHt9qmu3ljTNddzmMdm/fG+u43ZfyxRH+Wz+Vq7z3BP5+enTpwe//7tkmp16Sq6uvL5O91wDZd/2ne5jlOmEatnf77//ftB0hJmKqWu6xJcvX+5tekNYqn//7//91r8nj/mjP/qj3tv9D//hP5z9zd/8zca//4t/8S/O/tk/+2e9t/sf/+N/PPvLv/zLjX//xS9+cfbP//k/773d//Sf/tPZf//v/33j3/P8/Jf/8l/23m7y4j//8z/f+Pc//MM/PH8u9/Vf/st/Oc/jN/mn//Sfnv2bf/Nvem/3v/7X/3r23/7bfzv7kz/5k7M1yzO/z3p+KQuUZ+i+ypSbnvFlasfUXS4qV7TbyGeG7m++t0xtmP3I/vR9pueZmzJU3/JQyi4pJ9fHkuModchsvy0D5XftFJgX1Ymz/Xb6/X2U36Z2qPQp5amUG1NP2WW/MkVxXfYcWpYrkj+2U42Wc1SmnjzkvdGWMS/aTvv+TfW9MnVwfXyb5JizNnJJ57QH3L59u9c1U66XtV/Dx0irOdw3Xc+5Pm0N5Rh2Pfa5Pb/2pVybFz0T63aekhYlTfNMbNvUypS8NeEspmCNUYCRSmCh1dXovE1ZvycFiTz4S9AxBYU7d+6cF/xSWEiBIIHYoWsMZH+zjexfCoPZTr4vhZjsQ9ex5D0piOU9KbSk0JiCW1n/o92XbK+sdZHv2rQmUb2+yaZXqQB1SfqUY0mhthxLjmPTeekr28j2sy91xTOF5nz/zZs3z4PW+e5y/uay9kH2qawzkp9zzso1lf0v+13Wbzjk+h1rSo9cH+V+KtdhuZ82rc2U9+U78pnsR/7NfqQimv0o99CYe72V/Snr1OT7c23X13H+P78va2GVfS9rF2U/U1FJY0T2NftZtlun1aHu/yHKmlkl3cv532e6TyGV3uxnqTDn/7/55pvBDQKbOu1MGRQta0qVtazqtXLKGjNzySsBeFOej306YiY/TxkieX7y+LqssU95Vqez067BxbZ+NrScUa/3lgbcXYOiUTeklwBD3+dhntebAgol4DBlJ+ClOUT6lLUdcz53Ce6U/Ur5rSjnf4yvvvqq8/e5/1IfOeS9keu43k7S+aLATd5TB0HyvV35RsrqKb8mGLLteHJe6jWRc54vCvSVc1MHuEqn0LVfw4dOq7ncN6X9aGgH7BLULWv+Lun5tS85t6Vz1EXPxPpY7t69+/q6yPXXBkVzvrs6yO27fMFpEBgFmKDhoJWCzS6FyqIE1fJwTyEzhf5SOCsF1BSY8rcUDEuwLgWPvgWCMvI0BY5dCmApMOa7cpzZr/yb76wr8Pl7vR8p3KSQlxFz2d9tje3l75te77333sbPJs2SPvvqKZfzkiBK3Rs8I6pyLkpvypynnJdU0vJvjjn7NWR0w1RKJaecl7LfJQCY/8/+Z39LQbwUONtRaWuw7/TI9VfuqV1ku7lHcu1kP+p7vdxn5Zou93qfURvb8pjSizjHXu7nch2XfCfyvgSzSseHpE0+Ux9j3SO5DgAf6v7vK+me0as55kOl+5Syn6VBKOdjzOj0rgbYqfLREvQvjeL1yOQo5zb3mdGpAPNVykljOsfkedDWE6aScka2nf3c9XnSBhI2dQrdJs+2ukNY3WC/qzxzS12xlDn77kdXPS5ltqRLV8ChbVRPmq05eLrv9CltACmP9Qls5/31dlNGGlPeLGWqWrZZOl0e8t5IOXtI4KZO+3xnu51il7aLtu62KXC8aft1OuS8HLMT376v4WOk1Rzum+TfdTAz+XGfZ13dtrCpPXCuz699ynMsx7JLR6H62s5xlM92pWXaFVoXtTHArn688ztZpL/4i784yvf++Mc/fj2SpO/D4e/+7u/OjuFnP/tZ78/81V/91dnf/u3fnh1D0jfp3Mf/+l//6+z3f//397ZPpyiFoq4eYvuaSiSFtkwbUqYSSYNzfu4zlUjbw69rmpa29187BUvX8ZXRpNE1reY+pmJKmtWF2L7Tfk09tUrOT469nNNUNg49BU/f6XDKNKjlGijTnxxz6qClpUd733ZNaVX/Lft0Uc/QfF89XU6uxzJN3T6ntCrXeHl/9jXH1/X+Mko26vzhUPd/H9nXQ6f7nLXTbMXYThHJLxMUrwOgGYmcaz4zIKi8AixPygBldpZNs2DsUg7Ja+qlTIY8o7vKAJlyeddtlIBvkTLl0OdbZgQqdY2kbYJBfUaetu0tZQmRbLdL0r50dMs+b3rfWuw7fUpjfc5hXn2mU879VNcVUn7q06n6ImWpm0PeG2W2nG0B203a70ja5J7oW09o86mkQ9/7M+e9PTd97sulXMPHSqtj3zdl9rTariNXi3qUbdlm3+v1GM+vfcozPvd/n0BvLZ/ddC67YgtDgtHQRWB05f70T//0KN/705/+9Ozf/bt/1/tz//k//+eta+Ls05B1Yv7sz/5s65o4+/TLX/6ydzD3yZMng9YUolsKQ10NyX3WiRkzlUiZPqQENoesZ1q2l+/uOpalTcWUAlIKZWN7ztVrBg2dWqXezqHWKyy9F4u+0+GUwFUJiC+9wHms9Ehv267AaBk9t2tHhjrwGPl501qeU09plWu+NG7kexPgavc5aZk0nfs6U2WaokOm+5xtmu5paINc8tt0Pqgbw7KtpecfAPxWyg2pZ6QMk/LB0KUX0hg91Xrx5fkzJLiXcksdEOgT8G0b1McEF1MmSVqU53JZ2mRoI3eZnWFb+pZZTk7RlOmT7bT1zT7BvPY7Sofnqc5NtjUkmDfm3mi/r0/9oOu9Sc8+ZdOuDutD8poEq8oMXWU/8vMcOvhNdQ0fK63mcN+0o5jz2T7X6qblmvoGRo/x/Nqn0hlj13bDPkuRZZvlWVmWIDpU+xrrZypdgAHKSM26IJICYNdC4XOfSmRtUzGNDdLMYWqVodY0ddCS08OUVvOxxmmKxurKk4YGRcuzsNwb5TkoKAqwPmXdsEzpXvL6vtO6tyN+xhpS/2jLA7s+40sDfp0eY4MlbaB1zJpxOQ7T1B83ffoEKbrqClM65L1RRq6NqSO0eUk69ffRlj3HnOt0CL1oKs8lX8NzS6tD3Td5b/v86ZvnbpoZcUid+ND36L6UZ2OfQG97fyf9tqVh2iRT9kgnLUFRpiQwCtDzoZ9gS7u2Zx7OWbOub+NAPZVI33Up2+BkphI59DQtOe40qGck1hpMNbVKHUArU6vs21TT4Ux1TR3b3NJjyimtdrWPKa2WZsppitYg10N7HnO8QwKZ2Vb7LMxsBmPWPgVgGZLXpw6QAGlZ+zrPkl2et+lsNUVj7lTPm+fPn+/0vrYcOMX3t+mVZ2vXdPdDt8d+0mdTmTpLB+yq/fzQ2Z/mcG/E1PWEvttrR0CO6bRdzzgUc5o5Zopr+Fhpdez7pqu+0+e7yzG0HUrTJja2I8Ah7tF9Ke1lfa6jtsO5ZxfHYipd4CTl4b3LGooJEJbpMroK5ykEpeF9SA+xOUwlssmpTsU0l6lV+jqFqYOWnh6nOKXVHKxtmqKxukb+Drkukx6ZPrfdjqAowGkq9YJSTki5J43QXUG+MhPF2HX7DjlrRZ57bUPu2LW5N5U5ki5D61jteu7sL33SlpAOtbkucg7TvjCmzjTlyK+5z+gyta58Zsy5btNvTGeFuV3Dx06rY9437WjWoSNl82y7devWecfZbGNIfr2mezTp0Letpe10PNXzFPoSGAVOUt/Cbendln9T8MmDe19BwT5BtH013p/iVExzm1rlmNPh1EHFVCCWNl3JXNNjiVNa1Y2Afae0mou1TFM0Vq7jtlF3aDCzHSmaNJ7LdOowtV/+8pdb//6Tn/xk0Hb/7b/9t2d///d/v/Hv//gf/+NB2/3X//pfn/3d3/3dxr///u///qDt/qt/9a/O/u///b8b//6P/tE/GrTdP/7jPz77xS9+sfHv//Af/sNB2/3//r//7+zDDz/c+Pd/8A/+waDtZpt/+Id/OOizpxgoTdm6a0acPp1B59Cw3FV33FTu76utz40JwqypsX0fpkyfbGvMSMJ91rOPcR1k5N2UAcQ+x9DVyWLKvCWd5edi7Lk9dlod677p6sA+pkNnPjvm82vKqzN7XJ/z0rVMzdoGXLAcAqPASUrg5Ngjn0qwtQ1m9p1KpP78lFPwnFrhZMqpVer1XodMrdLXqUwdtOT0OMUpreZgTdMUjZHKZzv9evK8IfdG8rf2WhgyKheW4mc/+9letvtP/sk/2ct2pwrWtC5fvryX7f7BH/zBXrabwPLQ4PI2CSwPDS6fojxnUj/pGpGU51DfJStq77333tmhdM00NFX5vm1QLstwDNn+mhrb92Eu6bNplqGpHPLe2JS2bWe8i7Rly20dW3ZZ8mLMuW6fo3PqIDn2Gl5yWo25b7qC9sfMD45xj+5L32B1ey7KLF1wDAKjAEc05yl4Tm0qpjlNrbKk6XDmZq7pMZeGmFMj3X+rHa0ztHNQnjHtSPqxPaYBWP+zOKOU2mfRksqYXZ3DpmrI7erMMDQwqnF5PumT+n3qg6nv5+eMpJtTgG1q6YBXd07t26GyTZs+nfe60nWtbRljr+G5p9W+7puuAQRrCk4uSTsL1akNyGBeBEYBjsgUPPMwt6lVljQdztzMNT1ObUqruVjiPk8tgcz6OhgzY8Ldu3ff+l07EhWA5crzYh+NlAlyZLv182jMyMhDO/SsGUMDAfsaMT6FnPsp1pF79erV4M/uO31yjKmLtLPX5NpPeSn1w1zv2Y90FFhS54CLlGNrp4XeJT9p0yH5RZ98oev+7BrlPdSc8qix1/Ac0+oQ901XnqojyXG058/6ohyTwOiJr4mzLz/+8Y/3sibO3Fy0Js7cCkR9piNh/vY9Bc+cKgD7NrepVU5lOpxTSo9Tm9JqLk69J3AaGOqpvcdOI9+uwxxLW4MYgM3PjDRCv3z5ci8Nxm1HnVhKYPTQ5eGldUw8dbmuc+/UZecS1Nk08nGNQZkEt+plSDIb1i6B0XZJm64lbvoyCm3+aXXI+0aeOt82TPcqxyQwunL7WhNnX+bcw/GQa+Lsi/VwlueYU/CssbK2xqlV5j4dzqFJj3lMacXx5ZlRj+ZM49SYIGa213UNXbp0qddzJY1mKsAA85X6xj7qAcn72xFlS1y/HOqycjuCLaPbvvrqq5NcZiDHnA54pVNeOtSl/LgtLfKeOv3S7tG3s0Tyq7bekv8/pfaMJaXVMe6bpbU1r1XX+qJwTAKjADMzlyl4TqnwuOSpVeY4Hc4xSY95TGnFceWcX79+/fX/55kyNrD98OHDzt/3yStzDbmOAOZtn6M4UzapyyVLmZmkLU9NGUzoGsm0xmdljmlNs0zkesgUkPV1kbJW17IepyRpUs9WkvLopk5xZZR6XWcb0nku11Y7M86+Ongs3bHT6lj3TdfxLeX5syZtu4zOshybwCjATJiC53jWNrWKAuabTjk95jSlFYeRSn7OeansD21k2qXTQUbbr7HxFuCUpdF8X2Wn9pmxlGdIV51rqmBCV+P80juophySc1sHO/L/KYeusawVCfqu5fjGSNtF0iIduDN9dvKTBMLSKSL5SmbySfkxI0VL2TK/T9oNzQ+6gn2CXvNLq2PeN10zSHXNGsZ+WV+UufnRsXcA4NSlYJgCQd1zLhWHp0+fnjdom75y/5bc+KD345ukR/eUVkWZ0mqbKaa04jjqBofcC3mOTNW43RUYdV0ArM+TJ08O1ji9lE6eXc/SqcqXXR00TS84bwn61ec/17Gg6G+DHikvJiCaeybl0LwS/Ep6ZSRpWeojaZY6SmnzGFOm7AqumKZ7fml1zPumKw93jSxvfdFdn7vJY1LeuHz58vk139X+kf1JfpT3ZWmY1KHbWftYP4FRgCPKwzgP4DoIkUBoKggqxIez5GBaVyVybSNg+5AeF1eAM6XVpim4UxlIpbWYarQhh5Fzm+dKCYpO+Rxp80RBUYB1SgepfWmfJdeuXTtbajDh22+/nWTbbeO8cte8pQzdlqOzNmJfu9Q1S5BxKfXSEuSqy4gpi+b3GZ336tWr89fLly/Py6mZkWaKsmrXPbPPDh5Ldqy0OvZ9k2uybfOZKg9nN+3571uXTBCzXipmk7RnJG9JvpN8Juc5ba512Sbvye9yTaS9I3nSnTt3zq+benpv1k9gFODII3vqynB6U576uiStpFEdqNmHJU+t0lWgXErleR+kx+YprVLoT+NDGaWeeyuF/1QM8m/ug1IRSKU598CxG+cOcf+vRekNm3vg+++/nzxw2XYwEBgFWK99jZqoG+C7Gqrnqqs8lAbXfYygWUO5Z81l764RbkNmeNql42bKdRlluZROntnfY9zTXWvYb+oEOuQeXdMosmOl1Rzum5s3b76VT00xajTb2WeHorUYu77oo0ePLuxMlXORdo2yrnGu9XLeP/300/N/c20kcFo6Z+Q9uVZKMD3X8JqfYbxJYBTgSEzBMx9LnlrF1EFvkh7zmNKKwz9Pcq5zznL++jZKpTKfKYS23SvtlONLacwGoL99rS3ezpKzJPXSBFMFE9rp/fJsTRlt6cuNpJF5yUuV7HPUU7HGhvec9xzXMY6tzbMuWjpkV2scQXaMtJrDfZP9a00R0Lx7927nttl+DaQD9K5ynnLuL+o4lDaNBE/rkeilzprP5/rM+WrbOuplzWIpnVEYT2AU4AiOPZUIb1ry1CqmDnqT9JjHlFYcTip4qSyWtamHBCzLPbKtkaLd7lobPAH4bf0hnaemlLpPXR/JtHVL0u5v0mhsQKHtFDu3NBm63Eje0zUjzxpMtbTAGjtulrJhRnYdWjpatOdi7EjPMhJwaZ045phWc7hv8p3t/k0xMCFpd+xZlo6lrOWZDrbbOhC0z/++U+knmJm67kXp/PDhw7f2o/7e7G9Gk7bXX31d5bmng/jpEBgFOII5TCWyFIcK6C51ahVTB71JesxjSqup6NCxXfL2XJOpKH7zzTeDz3WZgncbFUSA05KOlVOVodpRShkVubTySfa3HWk1plE9ZZw6ffOcbUelzkHfzqOl7KbcsFlX3XBbXX0pndHKOT9Wp+z2fhw7ii/BmDl2WDjVtJrivmnz8NTvx7TVlJGMpzhitMw8VdrMUifdVGboWi5s1zJA0jh11Ytmsiidldp21fqZlb91BVfLs7fUqTkdAqMARzCHqUQObe5TMS15ahVTB71JesxjSqsl3f9LVNaGHTNStK4wXjRS+NatW6sf6QDAmzK93BTl4brBtCvAOMTz58/PDi2Np3Wja45raDmzrHe2af21uWgbkS9aW7Wc57XOQDJFB8zUD9vG+66yegn69C3jHePeqM95jiXTZJag0SGv1TpvKcuGjBk1n/O0xmv50Gk1l/sm+9EG6ZIXD71O89muEbhzvUenVILhF9UPy7qd7bWx6+wDSeNcrxeNFi0zKLXqZ/Smskd+n1m08nxb4/3OZgKjAEcwh6lEDm3uUzEteWoVUwe9SXrMY0qrJd3/S5PGhATpy7qxY+Q5knS+6DnU5mNLev4A0F8pB2dNrzEdw8ozqxg6w0H73Bn6HBq7nTSq1w2n169f792oniBCHXDumtrvIl37vY+lQNqOURcFNHLdJH2OPWJ0X+nTdS/0CfKkTpJ9a4MzXfuWMt4u6TiXe6MeLZjPJu+4fPny+TSbm175e8r6CaTm/bk3xoxUbzsvDBn5nvs5nUKSTw1Z7mgq+77HD5lWc7pvcsz16PwSfOsrx53P7nKNzOUencqmjtftLGzlusr10T77d9n3sqZo14jTrmBze53V15gpcun0CmDl3nnnnVfJ7urXvXv3jrpP7f589NFHvbfx+PHjt7Zz48aNje97+fLlxm3lb+22tr1/qnPx4MGDre8v+5Vj2NX777/f6ztqz549eysd+nz3prTPdve9719//fUbn01aj3H79u3z7Tx9+vTVsSw5Pa5cuTJJntOmQfajj+Qt5fj3cU/P7f6fS7rvU67BTfn9EJ999tnO6Vzeu8/nBADHkedyyd+T30fKsOX5nX/zXO2T9+f99XMj5bO+sg/t86cup++6P3nfpu3k2Ps+00oZK6+UG3b9/BRpkrJAW1bJK+WgIdu7SPtdm76j1KXG1J+msO/0acubu5azS/2k7EPKcpvqnaUcvK0MOsd7o72+h76Spjn2oWXN9nh2vSaTpjm/+f5j1oMPeY8fKq3mct+09fvy6lO3Kvn/RedijvfoVNr96EqLcu7KOarzh4vaQMt5HnMf1t83Vd2ZdREYBVavq/Bw7EbutlCYV18pKLeFwq7CRWnk2OZQgdF2f0ujy1SBxWgrEH0DI23AeUxAKZ/tUwAbu+9tRXRoUKg0ahy78Ljk9Gjv8aF5ztgAXV3hyz71qYAt8f6fS7rvS91Anfx+6CvH16bVLpXOtvPIsTsZAbCfwGhdVsjPXQ3IeX/XsyPPijwf6udMfu7TuJnnVFfn1osCKe1zKc+8IdvZ9blfp0s+t63TV46/Dqb2SZPy/B9yLHmNDVTW5Y+y3Xbfy3tyXId26PTJPdGWoy4KWJVrpQ3itOmaayjvKffAEu+NNr8Y++rTOXZbXTB1j231ivL+YwRFj32PHyKtjnnfbJLP1Nu6aH/yPSUYvOl9S7hHp1ACtUmPrvaFpM+m4yr723Xd5rordfGxnQDq7xqaj7BuAqPAqnUF/OYQ8OnqSdnnoZ+HeinwtQWhrgLLRRXUMgJp6P4MDTpetF+lAb+PtvA4pGA4pvdgWwjrE4SaYt/b4FPf81gqLHMcYbik9Jgqz2nToO92NuWBF1Wocsyl80Xyqynyg0Pc/3NJ931oGwGmfg1pOJ9DPgHANEr+vqnTSxn50vdZNKQTTWk8L43+u7y6yoqlcbXvdi7qvNWmS1vezP9nX3LspS5WPzv7NtCWjkl9jqM+nikahOvG6vY46wbyPh3apnKs9Gk7AOSV8mvSJNvM38u1kbTrKk+nHt51T+X9XWk553ujHR2XfU16JA3aV91hr6vT+BT5SKSc2t6fOfb6/qyDJ33u/SnN4R4/VFod477pOxoz287vsi/ZrzpImZ+31X/mfI9OrZynEpBNfT/nsPx+031bX2elo1Ve5foach671Of0GM8m5k9gFFittlfuXKacmNtUImuZimnb9CJDjuMQU6vU+76pZ+2Q3p9Lnzpoyekxx+ly5jKl1T7v/zmm+5S6elhP+eo7uqNOoz5TwZcGl65OPAAcV57Juz4PUi4qjcX16Jj8WzpWHXs61UPLM6407JbyY3nGluDCMcvXU14nOb/1ec8xnvIsEvX9UAdFkkYpM110L+TayXvy3l3eP0d1x7mhQY18pqRDV3l1TGBj2/2Z3/WdJnzNDpVWc7xvso2u/K0EbgXXNj8T6nOY/7/oeZe/15/Lv/n/qdog68Ef6p5sIjAKrELpMdbVa6xPo/+QtT6HOtZUImuaimno9CLHnFpl7L7v2ht0SVMHLT09ljBdzlymtJry/l9Cuk+l7QAz9WvIs6++pi5qAMvfyvt3yR8BAFiGukw4ZXtK1+hFgF30Wc+U0/XjM4CV+OGHH87eeeed89fQz7948eLsULKfz549O7t///7ZgwcPzn7zm9+cvz7++OOzjz766Oz9998/u3r16vl+PXny5OxXv/rV+e++/vrr87/X2/nmm2/Orl+/fv7evD7//PPzv+X9T58+nSytpkijK1eunO/TJ598cvbdd9+db/ODDz44u3Hjxvnf8v9ffvnl+c851m2yL+VYdt3/vHaVfUpaf/HFF+f7VM5Pvu/mzZvn5+f58+fnx/Htt9+ebzvvz/FdtE99973v/t++ffvss88+O/v000/Pr53sf165JrKP77333vn1l2P69a9/ff6ZvD/X4jEsOT3KfvTd91w7+06DHM+9e/fOjzVyX+XV9R31dkp+tEnymLw/6Xqs+3/O6T61fX9X7oO+cl0lP0z+mHOZ/LB+dkXuqdxP+XvSN9fLnTt3Bj+nAQCYj5Tx0p4RKd9dVH7v4/Hjx+d1jlKPyXelfpJ6AsA2dV6UOit0uZToaOdfADioFPQfPnz4usCfVyoXKfhfu3bt/GGe4MG2hvM0QJcCwEXvn4Psbx0UzjHkeFMB6htwOYQE1HKO2v3NK8GA7PccK2rZz0ePHp1XLrPfJRBU9j3XSoKApxKsOJX0SCNC3Ukix9v3+kz6JE9KvlIaJWoJfA295pd2/3Px8yvntJzL3D95duWcJhBed+gBAGD50sEx5cDSaW4fZfhLly69/nlf3wGsy+XLl193Lk7H7CEdgVk/gVEAgJXJKL7SezsBqal6byfAlQ4CxaZR6QAAwHol6JDgwxQdJncNvh5zhiNgGdJRt8xgFEJfbPKjjX8BAGBx9j2lVRok6u/aNuUuAACwPu0SO+++++5eviczkGz6ToBWWRopjBRlG4FRAIAVyTqqRdZznFrbS7seQQoAAKxfGwjdV2fJersffvjhXr4DWI+6Y7jlXNhGYBQAYEVTWpWppmJf6wzXPS8zbRYAAHA6MjNNXSfIevP7qNvUo78EOYCL1HnGxx9/fNR9Yd4ERgEAVsKUVgAAwCHcu3fv9c9ZymPqUaP1TDgJipoWE7ioM0Vehc4UbCMwCgCwEqa0AgAADiFBh9u3b7/+/w8++GCy+scXX3zxesmOK1eunD1+/HiS7QLr9e23377+WUcKLiIwCgCwEqa0AgAADjlqtIwcTT3h6tWrZ19++eXg7SWwmukvMwI1UrfJmoGp5wBsk7aJdKTQmYJdXHr16tWrnd4JAMDsJWhZr6WRNUBTMZjKJ5988rr3dioeaagAAABO13fffXc+9W3+jdQ/Murz5s2bOwU1U4d58ODB63pGZDRqPV0vAExFYBQAYGXSCFF6Wach4unTp5MER+vtZnvZrt7bAABACXAmmFnPMJN6QzpUZjRpqTtkdOnz58/PA6mZ/rKsC5j3fv7552efffaZegYAeyMwCgCwQglgJpBZpAd2GhiGTmmVBorSwJEprTI1zZQjUQEAgPXI6M8nT56cBz9Tn3jx4sXrAGiCnu++++75v9euXTtfn7RMgwkA+yYwCgCwUqa0AgAAAIDfERgFAFg5U1oBAAAAgMAoAMBJMaUVAAAAAKdKYBQAAAAAAABYvR8dewcAAAAAAAAA9k1gFAAAAAAAAFg9gVEAAAAAAABg9QRGAQAAAAAAgNUTGAUAAAAAAABWT2AUAAAAAAAAWD2BUQAAAAAAAGD1BEYBAAAAAACA1RMYBQAAAAAAAFZPYBQAAAAAAABYPYFRAAAAAAAAYPUERgEAAAAAAIDVExgFAAAAAAAAVk9gFAAAAAAAAFg9gVEAAAAAAABg9QRGAQAAAAAAgNUTGAUAAAAAAABWT2AUAAAAAAAAWD2BUQAAAAAAAGD1BEYBAAAAAACA1RMYBQAAAAAAAFZPYBQAAAAAAABYPYFRAAAAAAAAYPUERgEAAAAAAIDVExgFAAAAAAAAVk9gFAAAAAAAAFg9gVEAAAAAAABg9QRGAQAAAAAAgNUTGAUAAAAAAABWT2AUAAAAAAAAWD2BUQAAAAAAAGD1BEYBAAAAAACA1RMYBQAAAAAAAFZPYBQAAAAAAABYPYFRAAAAAAAAYPUERgEAAAAAAIDVExgFAAAAAAAAVk9gFAAAAAAAAFg9gVEAAAAAAABg9QRGAQAAAAAAgNUTGAUAAAAAAABWT2AUAAAAAAAAWD2BUQAAAAAAAGD1BEYBAAAAAACA1RMYBQAAAAAAAFZPYBQAAAAAAABYPYFRAAAAAAAAYPUERgEAAAAAAIDVExgFAAAAAAAAVk9gFAAAAAAAAFg9gVEAAAAAAABg9QRGAQAAAAAAgNUTGAUAAAAAAABWT2AUAAAAAAAAWD2BUQAAAAAAAGD1BEYBAAAAAACA1RMYBQAAAAAAAFZPYBQAAAAAAABYPYFRAAAAAAAA4Gzt/n8TuJUkL0540QAAAABJRU5ErkJggg==",
|
|
"text/plain": [
|
|
"<Figure size 1920x1440 with 1 Axes>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"plot_force_distance_comparison(rr=[r1, r2], ff=[fmag1, fmag2], ll=[\"PM (smoothed)\", \"P3M\"], L=L, Np=Np, Npm=Npm, a=Newton_prefactor, title=\"Particle's contributions to total force\")#, ss=[\"o\", \".\"])"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "f26ada41",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "p3m",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.13.3"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 5
|
|
}
|