wip3m/notebooks/4_limiters_concept.ipynb

1262 lines
347 KiB
Text

{
"cells": [
{
"cell_type": "markdown",
"id": "47c34537",
"metadata": {},
"source": [
"Tristan Hoellinger<br/>\n",
"Institut d'Astrophysique de Paris</br>\n",
"tristan.hoellinger@iap.fr"
]
},
{
"cell_type": "markdown",
"id": "b31e6021",
"metadata": {},
"source": [
"# Exploring baseline CONCEPT time step limiters for P3M\n",
"\n",
"## Set up the environment and parameters"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "0f8c355d",
"metadata": {},
"outputs": [],
"source": [
"# pyright: reportWildcardImportFromLibrary=false\n",
"from wip3m import *"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "2c415aeb",
"metadata": {},
"outputs": [],
"source": [
"workdir = ROOT_PATH + \"results/\"\n",
"output_path = OUTPUT_PATH\n",
"\n",
"# L = 8 # Box size in Mpc/h\n",
"# N = 8 # Density grid size\n",
"# Np = 8 # Number of dark matter particles per spatial dimension\n",
"# Npm = 16 # PM grid size\n",
"# n_Tiles = 2 # Make sure Npm/n_Tiles >= 6\n",
"\n",
"# L = 16 # Box size in Mpc/h\n",
"# N = 16 # Density grid size\n",
"# Np = 16 # Number of dark matter particles per spatial dimension\n",
"# Npm = 32 # PM grid size\n",
"# n_Tiles = 4 # Make sure Npm/n_Tiles >= 6\n",
"\n",
"# L = 32 # Box size in Mpc/h\n",
"# N = 32 # Density grid size\n",
"# Np = 32 # Number of dark matter particles per spatial dimension\n",
"# Npm = 256 # PM grid size\n",
"# n_Tiles = 32 # Make sure Npm/n_Tiles >= 6\n",
"\n",
"# L = 64 # Box size in Mpc/h\n",
"# N = 64 # Density grid size\n",
"# Np = 64 # Number of dark matter particles per spatial dimension\n",
"# Npm = 128 # PM grid size\n",
"# n_Tiles = 16 # Make sure Npm/n_Tiles >= 6\n",
"\n",
"# STANDARD PARAMETERS:\n",
"L = 32 # Box size in Mpc/h\n",
"N = 32 # Density grid size\n",
"Np = 32 # Number of dark matter particles per spatial dimension\n",
"Npm = 64 # PM grid size\n",
"n_Tiles = 8 # Make sure Npm/n_Tiles >= 6\n",
"\n",
"go_beyond_Nyquist_ss = True # for the summary statistics\n",
" \n",
"force = force_hard = True\n",
"run_id = \"notebook4\"\n",
"\n",
"TimeStepDistribution = 1 # 0: constant time step, 1: log\n",
"nsteps = 30"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "03aa3f4e",
"metadata": {},
"outputs": [],
"source": [
"# Automatic reloading of modules\n",
"%load_ext autoreload\n",
"%autoreload 2\n",
"\n",
"from os.path import isfile\n",
"from pathlib import Path\n",
"import numpy as np\n",
"\n",
"from pysbmy.power import PowerSpectrum\n",
"from pysbmy.field import read_field\n",
"from pysbmy.timestepping import StandardTimeStepping\n",
"\n",
"from wip3m.tools import get_k_max, generate_sim_params, generate_white_noise_Field, run_simulation\n",
"from wip3m.params import params_CONCEPT_kmax_missing, cosmo_small_to_full_dict, z2a, BASELINE_SEEDPHASE\n",
"from wip3m.plot_utils import * # type: ignore"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "57436422",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"k_max = 5.442\n"
]
}
],
"source": [
"corner = 0.0\n",
"RedshiftLPT = 199.0\n",
"# RedshiftLPT = 19.0\n",
"RedshiftFCs = 0.0\n",
"ai = z2a(RedshiftLPT)\n",
"af = z2a(RedshiftFCs)\n",
"k_max = get_k_max(L, N) # k_max in h/Mpc\n",
"print(f\"k_max = {k_max}\")\n",
"# cosmo = params_planck_kmax_missing.copy()\n",
"cosmo = params_CONCEPT_kmax_missing.copy()\n",
"cosmo[\"k_max\"] = k_max\n",
"\n",
"wd = workdir + run_id + \"/\"\n",
"simdir = output_path + run_id + \"/\"\n",
"logdir = simdir + \"logs/\"\n",
"if force_hard:\n",
" import shutil\n",
" if Path(simdir).exists():\n",
" shutil.rmtree(simdir)\n",
" if Path(wd).exists():\n",
" shutil.rmtree(wd)\n",
"Path(wd).mkdir(parents=True, exist_ok=True)\n",
"Path(logdir).mkdir(parents=True, exist_ok=True)\n",
"\n",
"input_white_noise_file = simdir + \"input_white_noise.h5\"\n",
"input_seed_phase_file = simdir + \"seed\"\n",
"ICs_path = simdir + \"initial_density.h5\"\n",
"simpath = simdir\n",
"\n",
"# Path to the input matter power spectrum (generated later)\n",
"input_power_file = simdir + \"input_power.h5\"\n",
"\n",
"# Paths to the time step logs\n",
"OutputTimestepsLog = simdir + \"timesteps_log.txt\""
]
},
{
"cell_type": "markdown",
"id": "d3bc340d",
"metadata": {},
"source": [
"### Generate the parameter files"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "012c5e01",
"metadata": {},
"outputs": [],
"source": [
"common_params = {\n",
" \"Np\": Np,\n",
" \"N\": N,\n",
" \"L\": L,\n",
" \"corner0\": corner,\n",
" \"corner1\": corner,\n",
" \"corner2\": corner,\n",
" \"h\": cosmo[\"h\"],\n",
" \"Omega_m\": cosmo[\"Omega_m\"],\n",
" \"Omega_b\": cosmo[\"Omega_b\"],\n",
" \"n_s\": cosmo[\"n_s\"],\n",
" \"sigma8\": cosmo[\"sigma8\"],\n",
"}\n",
"\n",
"lpt_params = common_params.copy()\n",
"lpt_params[\"method\"] = \"lpt\"\n",
"lpt_params[\"InputPowerSpectrum\"] = input_power_file\n",
"lpt_params[\"ICsMode\"] = 1\n",
"lpt_params[\"InputWhiteNoise\"] = input_white_noise_file\n",
"\n",
"p3m_params = common_params.copy()\n",
"p3m_params[\"method\"] = \"p3m\"\n",
"p3m_params[\"EvolutionMode\"] = 4\n",
"p3m_params[\"TimeStepDistribution\"] = TimeStepDistribution\n",
"p3m_params[\"ai\"] = ai\n",
"p3m_params[\"af\"] = af\n",
"p3m_params[\"RedshiftLPT\"] = RedshiftLPT\n",
"p3m_params[\"RedshiftFCs\"] = RedshiftFCs\n",
"p3m_params[\"Npm\"] = Npm\n",
"p3m_params[\"nsteps\"] = nsteps\n",
"p3m_params[\"n_Tiles\"] = n_Tiles\n",
"p3m_params[\"RunForceDiagnostic\"] = False\n",
"p3m_params[\"PrintOutputTimestepsLog\"] = True\n",
"p3m_params[\"OutputTimestepsLog\"] = OutputTimestepsLog"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "a162fa70",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[09:25:47|\u001b[1;36mINFO \u001b[00m]|\u001b[38;5;147m(wip3m.tools)\u001b[00m Generating parameter file...\n",
"[09:25:47|\u001b[38;5;113mSTATUS \u001b[00m]|Writing parameter file in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook4/example_lpt.sbmy'...\n",
"[09:25:47|\u001b[38;5;113mSTATUS \u001b[00m]|Writing parameter file in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook4/example_lpt.sbmy' done.\n",
"[09:25:47|\u001b[1;36mINFO \u001b[00m]|\u001b[38;5;147m(wip3m.tools)\u001b[00m Parameter file written to /Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook4/example_lpt.sbmy\n",
"[09:25:47|\u001b[1;36mINFO \u001b[00m]|\u001b[38;5;147m(wip3m.tools)\u001b[00m Time-stepping distribution file: /Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook4/p3m_nsteps30_ts_p3m.h5\n",
"[09:25:47|\u001b[38;5;113mSTATUS \u001b[00m]|Write timestepping configuration in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook4/p3m_nsteps30_ts_p3m.h5'...\n",
"[09:25:47|\u001b[38;5;113mSTATUS \u001b[00m]|Write timestepping configuration in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook4/p3m_nsteps30_ts_p3m.h5' done.\n",
"[09:25:47|\u001b[1;36mINFO \u001b[00m]|\u001b[38;5;147m(wip3m.tools)\u001b[00m TS.ai = 0.005000, TS.af = 1.000000, TS.nsteps = 30\n",
"[09:25:47|\u001b[38;5;113mSTATUS \u001b[00m]|Read timestepping configuration in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook4/p3m_nsteps30_ts_p3m.h5'...\n",
"[09:25:47|\u001b[38;5;113mSTATUS \u001b[00m]|Read timestepping configuration in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook4/p3m_nsteps30_ts_p3m.h5' done.\n",
"[09:25:47|\u001b[1;36mINFO \u001b[00m]|\u001b[38;5;147m(wip3m.tools)\u001b[00m Generating parameter file...\n",
"[09:25:47|\u001b[38;5;113mSTATUS \u001b[00m]|Writing parameter file in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook4/p3m_nsteps30_example_p3m.sbmy'...\n",
"[09:25:47|\u001b[38;5;113mSTATUS \u001b[00m]|Writing parameter file in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook4/p3m_nsteps30_example_p3m.sbmy' done.\n",
"[09:25:47|\u001b[1;36mINFO \u001b[00m]|\u001b[38;5;147m(wip3m.tools)\u001b[00m Parameter file written to /Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook4/p3m_nsteps30_example_p3m.sbmy\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAb0AAACMCAYAAADof3f4AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAS7hJREFUeJztnQd8FMUXx393l0svQEKooffekY6C9KoiCghYEMECIr1KE0SqAv6pAlIEUUB6FZReQidUQw0tIZDe7vb/ebO313KXK7lLu/nmc5/N7U7budl98968mZEJgiCAw+FwOBwXQJ7dBeBwOBwOJ6vgQo/D4XA4LgMXehwOh8NxGbjQ43A4HI7LwIUeh8PhcFwGLvQ4HA6H4zJwocfhcDgcl4ELPQ6Hw+G4DG7IxajVakRERMDPzw8ymSy7i8PhcDicbILWWYmNjUXRokUhl8vzptAjgRcSEpLdxeBwOBxODuHBgwcoXrx43hR6pOFJN+nv7293OnMGboWfV37zAWQCIMjMHuU+KpQcoMK9ZQqo4xXsOyH9T9cI/esZncvovLXXrQ1jS7jMxnFEXGem5cw0szOfnJZ3bipTXipvTuXeMjeo4+Xw9leiz5TGdqcTExPDlCBJLuRJoSeZNEngZUboebp7w8vdx36h56FGYH43PPNIgzpVzr4T0v90jdC/ntG5jM5be93aMLaEy2wcR8R1ZlrOTDM788lpeeemMuWl8uZUnnuooEqVwctDman3uISloS7uyMLhcDgcl4ELPQ6Hw+G4DFzocTgcDsdl4EKPw+FwOC6Dy4++fvrpp/hl7SqkqVMthnV384RcrkBSSjzcFO5IU6XoLs6R/qFBVN2+vEWDSuPdwK44dfAUzh0JRUpaslF4wE2uZPlX3F8RD8MfIjU5FXIoWT7GYYmPhn+Ec9tu4Gr4aaSpUtn1zr07Y9iMYdowL56/wIxfR+FRZDjUahXcfnRDjYY1MGTqEJQoW0IbLiUpBb8dWIiz1w8jOTURXss9kZaaBk8vT1StWxWfjvnUIPz2ddtxcNtB3Ai9haSUBMz+fAvWLdyJf/f8i/t37sPD0yNdvJiXMVg1dxXO/nMWTx89hY97AGqUbIouLfsBCMC6hesyjM+qYPQchB4NReTTSHj5eLEwA8cMpBpO9ztZk57+3J7R/Ubj9OHTmLpsKpq2bWqxHViT/tB3h+LiyYsG8Yx/I1uw9p6unruKFT+sQNj5MMgVcpSrUg6z1s5icTKLpTI8efAE7zd532TcSYsnoWWnlpkuQ2bLSLx49gL/m/4/nD16FolxiQgpG4LeX/RGiw4tkJux5t4f3X3E7v3ymctITUlF/Rb18dWUr1CgYAG4Ci6v6YWGhsLfW/8H13n+KOSGfQIPpRdSJaEliB6aIYHl4esVoA1ToVgtVC5ZFwX8CrHvft758PPUn1my9D8R4BuIP87+gXELxuH1Ot3Ruf5H7HxQ4SDM2zgPQ6YNQZVSdfF240Hs/MjZI1l4OpJnUviNcIQ/DkPtMi3wfushLMyODTtwbN8xsWiCgAkDJiDq1RO0rfU+BnWbisatG+PKmSsY3ns4EhMSteVdNGURLv93Eh+/OQklCpWHfz5/FCtVDD+s+wFpaWkY2WekQfjkxGQ0aNEAbRvoXm4XT11Et37dsGjrIpPxop5GMWH12bjPsHL/SvRtNwLXHpzG2r1zrIrP6rV6BYycMxKrD63GrF9nsX7FiD4jmEA3xpr0JDav2GzzwgbWpt/x/Y7sd5M+A8eSkLYPa/IkgTeq7yjUa1YPi/9ajJ+3/8ziOGrhBktlKFi0oMH90qf/sP6sk9Lw9YYOKUNmy0jM+HoGHvz3ANNXTMeKfSvQrF0zTBk8Bbeu3EJuxtK903FkH/EdMve3ufjpz59YB3fcR+PYQh+ugstremfPnkVIQRJc+XD/+Q0o5Aqo1GnsmnSkOXyxidEolC+EaTcPo26jTrk3cPrmPrSr2wfBhQtj+hrxhdaiajfUrt4Yd5/cwKx1X6BG2Ua4cf88roVew5fdZ2Pa6gGQy+QoEFwArbu3RrH7LbF863QWt12PdihfrTz7lH7aBuo4Of44/jP8AvxYeBJqtRrVYkKvec3OaFe9L+S+amw4sACFixfG9YvX0aRNE6YtUn7j+y1DYc8yLMw7XzZG99rd8TziOW5evomaDWsiLiYOuzbuQv92Y1CxaG1UrvgjfDpGoN8b/ZgGOHrOaBZHCk+888k77Lgt/Jy2DpkQ0sM4XumKpTFlyRTt9ZgShdC5/sdY8/cMqNJUFuNLWpJE4ZDC+GjER/ik7SeIinmKQDfDiajWpEfcvnobm5ZuwpIdS/B2vbetbjPWpk/aMv1ujsCaPKkD89aHb6HX57204Uxpt84qg0KhSHe/R/ceZRoeCb6swJp6unLuCr6e/jUq16rMvn/w1QfYvHwzC0PPXm7F0r1fOXsFTx4+wdLdS+HjJ07RGj13NLpU74Lzx86jbrO6cAVcXtNLSUlBRNR/CPIrwr6b0hxIKLJjUHnIZGKVFS9Q1mCenzFJyaJp8r8I0cz0zsfvoGhQKXYuJj6aNca+Lfti/f75uHLvJDu/at4qdn5Ql0G4cEvU2vTNlScPnUSH9zows8WlOyfwMv450+okbape83rsfzJbEEo3d218WpbHzU3s45A2R9DDQD29SiXqaMOVKFcChYoVwtXQq4iPjTcIby3WxEtKiWP1pnBT2Byfeqx7Nu1BkZAiyO9X0K7yJCUmYdqX05hWnVnBZK68B7YeQNeaXfFh6w+xbOYylqejMM4zOjKamTTzBebDF92/wFt13sKQHkNw+fRlh+VpqQzG3Lh0g3UsOvTsgOzCVBmr1a2Gv7f/zczupOEc+usQUpJTWIcyL2F87zRsAhmgdFdqw7h7uEMmlzFzp6vg8kIvMjISakGNpFTRBCDojcdJXLt/WnvtQaRoAvHyMD+Z/fzNo/jpj9Hs/4t3jqFi9YpszECiXPHqmLNhDrO337h/ASlp4suQepk/rP0Bzdo2w7K/JuNWhG5MaO/mvfD28Ubzds2ZDb5IYEmMX/sevpzfnl3v1KuTtidLvXsSXNv+XYGE5Fg27rd+0XomOH39fZnmRdB3egC8PX0Nyp8/KD8Togu/XYhq9appw1sDvUQsxYtLeIXdoWvRpEYHm+JvXbMV7Su1R4dKHXDq8ClmwnFTKO0qz6LJi1C1XlU0bWN5DM+e9Ft1bYWxC8YyczVpXvv+3IfvhnyXqbwyyvPx/cfsuHreamZW/X7N96hQrQK+6fUN0/wdjTW/M1kRSpYrycJkB+bKSOOLZPrrWqMr2pRrg7lj5mLKsinMrJ9XMHXvVepUgZe3F5bOWMo6YNR5pPE9tUqNqGdRcBVc3rwpEf70KjuS6bF80dq48UhnvpM4d+sQKhWrg+smruk3tpOXd6FQ/hA8eXEfglqNyGeReBn1kgylLAyN95WpVIZ9Xh30x+zfxHG5Jm82Qbmq5djn5O+XcfTadm26uzftZuZQd093bFyykY3pDWw7FYGFgvHdmoHYsX4HG7cjE4Wb0g2Tl0zGtA9nYeSqbuyeAgsHsrjk2GAN5/49h9iYWPz0x0821eOC8QsQfjPcbDzqfS7eMh5F8pdEp0Z9bYrfultrNl5FD+imJZswefBkfNFqPhTwtKk8ZCY+f/w8lu1eZtO9WZu+sTmWfufA4EB88/43zJEgsy9XU3lKYzKdendC+3fbaztRocdCsXvjbgwYPSBTeVpTBn2Sk5KZw1Pfr9L/xlmFuTKunLOSmfZnr5+NgAIBOLb3GGtLP27+kf1WeQFT905WgEk/T8L8sfPx5y9/Mg2vVZdWrJ1ktEBzXsPlhV5QUBBkkCExJY59J63PWOB5ufuy6+S5KTm3JGrMl8YcuLgRaUjBsPfmYeTit9m4II2jvV33bZYPceLqXrzX+Dx+O/4bShQ2PYZQOLAE7twXBfHdm3fx4M4DTFw0kb1Mls9ajgGdvkXV4EZsvI6oVr8aNi7dqLXLV6xREWP7LkF8VAL+PLsYt6NCUbx0cZSsUFKbB3lskSk0ISkOntCZf+7dvsdMsst2LUPBIpbNhxILJizAiYMnsOD3BSbjJcQlMEcLD3cvDHhzChQKN5vik5ZKH7qPKrWrsLGICyWOom5Ia5vKQwIv4l4EOlXrZBB+0sBJqN6gOgY2me2Q+9Wncm1x/OjRvcwJPXN5klAlSpUXTej65uqnEU/tzs+WMuhzZOcR5vTU5u02yA7MlZE6HVtWbWEOVZIGRB3BS6cvYevqrXZ71+YkMvp96jevj3VH1+HVi1dsDNY3wBdv1X0LRUqIwzuugOuIdzMolUp4efixKQhEoF8ReBqtw+nnlU8rEO88EW3fj17c0V4n5xaJmIQofPXO9/D1EoVIj9cHoWDhgqznP7bv/9i5WuUaawedYxNIA0zPs+hHyK/xAD139BzzXqSHk8bg6CM38sgjbU5QG5pmabxv+5mVuHb3LPP8vHvjLnN0kaA0SSskRxsp/LSvpiExPhHDZw63+kGgePSgHd1zlHmFmYpHGh55W1J+g7pNMRhvtCa+qTzpw6Zs2FieXoN7Ma+95XuWaz/E4ImDMWr2KIfcrzE0tqUvnGzFUp7k3BNUKIh5JepDpk0ydTsCW+6bTJtkeSDtIiuxVEbqNBLGmg118nK7B6Mtv09AgQAm8MgS8DLyJRq/af9Cz7kNl9f0aJ4eaXGCZgpCVOwTvUkLIqThEYnJcQjwDkRSagLO3T7Ezp24sRdPToZrw7orvbDz+BoE5xc9Ck9dO4gXUS9QpnIZJF4WhWNcYgwi7kYwb6o1v2+Ej6c/4pNicHDrQfYwkkPCpdvH0avFNywfCtfz055sjhu9wGq+VhObDy/BG9WikC8wv1Z76fmZLszhHYexZds+3Lh/EW0a9MT3w79H/Zb1UbZSWfbg0zwe0prIyeCPbf+DVwt//HtzGxuDLFWhFGo0qMHmMxE+/j7aeV50jsYCn0c/Yt8jIsOxY/BfOPPPGUxbMY2NOxrHkwQe9fzHzh+LB+sTICQkQSZTQ6UKxI8Tf2SmsGnLTccnrYwcD8hRh16izx8/x4bFG9i1amUaAEbvqvnj52eYHjmumHJeoXqjF8VLiF675rCUPmkTdJ3c9APyB+BO2B0snrKYzZMsW1nnAGULlvIkN/SeA3syZyjKg0zkNA58//Z9fPvzt3blaWsZJOj+L526hJmrZzokX0eWkca7SdOmcbzPxn/GnDzI3E3m/O9+ccyYa3Zhze+ze9NuNs5KQo88vGncjzyyHenlm9ORCZL7Xy6EtpIICAjAq1ev7F6dOzs3n1V6KEWPKiPIvZu0LWPavtOWuRhTYx7/zgyE3T1rNswfK/9gDdoUo+aMYtMjCJqaML2HODmdnF4shadJ5qvnr7bq/qR4F05cwNc9vzYZZsOxDWYnNEvxI59EYvao2czbNPZVLHO0IQHSd0hfxO8oyqZ2kJm38hCxD/d6idct3ocxFEeanB62IC1dmsZhM0r/WcQzTB8ynWnWiYmJCC4SzNIl13jJVZywlI8teUqQwxI5/MS+jEXZKmXZBH4y2RpjS962lmHZ98twYMsBbDi+waaxInvKZE8ZSftdOnMpm7dKz1nRUkVZp9JWU6wjyutIrLn3pTOWYs/mPax90DSnzn06o8cnPbL1PXh9gQqqOBm8A5T48PtmTpcHLi/0iBn9NsPfq4D9WwtpGr3+Q0AYPxCmHhJzD46lB8qaB87ah9KehzczD7wjXxbOePFk1cssO1+aOe2FnVPLlJfKm1O5nsVCz+XH9DgcDofjOnChx+FwOByXwWah17JlSwwdOtTktf79+6Nbt25WpXP37l1mR75w4QKylbQU7TqaZpEswGaOclqsOi1FPNJ3VSr7aK/RKi9qle56RucIc+clLF23Nowt4TIbxxFxnZmWM9PMznxyWt65qUx5qbyWUKuQ7/FlBN/5hx2z7H706hG0gH8W5OtQTW/BggVYtWoVcg37JgDTaB5LxsOaMs11c0ePpFi0WNOTHdn35Fj2ka41Xt8Xjdf30103c+61TQNQ5vQqdjQ+H3T3BPtOx4yuWxvGlnCZjeOIuM5My5lpZmc+OS3v3FSmvFRea++n1q7xqHJ4Djtmxf1I+bonxbDvsoQoYH414NpfuUfo0SBivnxZOy8nUwLv+I+OSy8DbVGZHAelkWekqXMe8VEIubyFHY3PVz04kwlEOpq7To2IPpbCENaG08eeOI6I68y0nJlmduaT0/LOTWXKS+XNqfcTZCZfxDwGNvV1quDLtMvRzp070atXLyxevBj79+/Hy5cvsXXrVnaNJnvOnj0bS5cuxYMHD1CoUCEMHDgQ48aNS5eOSqXCgAEDcPz4cezbtw8lSpRwrklTT+ApZclwk5lfDFgGFQQozB7dkMzm9tGR0qEjIf0vOQPrXzd3jnRHmZnzIZfFejV3vdzxpXplNhPmxDK8KFQV5U4stRyuSA2atSsmqFbZHkciM3GNcWRazkwzO/PJaXnnpjLlpfLaeD/6OPV+zNSjmKPmDbhnNFCpo1Pq0eYpCzSmV6tWLcyfPx/r16/HZ599xo6dOnViY3r6Qm/UqFFYtmwZ5s2bh6ZNm+Lx48e4fv06PvnkEzamV7p0aZw/fx6VK1fG+++/z87t3bsXBQuaXtooOTmZffRdVENCQmyfsnBiEbB3rC23zeFwOBwLpAgKuMvsG5db+2wh+gR/oTvRbwdQupnDpyzYrektWrSIaWzbt29HixbpdxyOjY1lY3wLFy5Ev360QzZQtmxZJvz0iYuLQ8eOHZkw+/vvv1mhzTFjxgxMnjwZmSb6rsHX95LG4hxoDUwZfJCEAMTDD4kIQBySZB7IL4uFPxLgJ0tAIjxQWvYET4QCSIQ7Biu2YbGqK0tnpttyrFO1wmWhNLrJj6Gx4hr+UDXDKXUltJWfRSuFuNzXkrROuCMUQS/FIdSS65YzG5/6IVLghlFuvyFQpjN9JgtuGJ/2ERtDnOr2Czxk6VcMWZDWHY+EIHyk2INKcsOlqPQZl/oR0qBgeRTQy8MU99TBWKjqhkDEYLTyN6ur9746GD/ZEU+fvap6OKiujcbya+imMNxmyR62qRrhmLoa3pBfQDvFGTiaRWldcV8IxgeK/agmN2xfzuC0uiI2qVqimiwc/d32IbvYo6rPfqem8svoqsh5pr1YwQuTUvvDU5aM6W4rkY1zsO1memovxMELgxV/IUT+HDmRR0IgpqZ+ADkELHZf4JhE4xy7ZmymhN7mzZvx7NkzHDt2DPXr1zcZJiwsjAmyVq1aZZgWaXjFixfHoUOH4OWV8UaTY8aMwbBhw9JpejaT33BR3vMoj1SIy/S8hDte6i2+rNW4adV62QPcEkLQQBaGMKEkYuGN9+WHsEn1ulbo7U1tiaOyMigjRDOhtyOpE/5WhCBE9hytcB6PkqtiU2p33HHzQjP5ZdTCHagFGbZETcOfvkWQAE98qdgKWZo/Cigf4dirD1DLfxN+V7VkeUx2062GEp1aDIdeDcbbQeOwX1UPV4TS6CA/hUrQCb3I1JI48upTFoYgIZwED3zptgUFIAq9/xIboIzXaVyLfwNVfMTl1YiHrWbj991uKJ7PA1917QDvjboV81+mFUY+tyf491V/NAvQOS8l9FyDe7Jq+H3VdRTL547Pv5gCxYOTBnFvJzZCOa8TuJ7QApW8jxjEVYW8xv4PPfwIm44+hqJ2T7RqpzN1G6dFUJ2ejO2lvUfjtIhTe+9j05lnCHjtfTR53XDTWeM0Kb1iHldxPq4Lavv+ZTZNffb+EoZLj+LR5O0BKFnB9Li2cT5RqSEIVD7A8Zg+aOy/1qp8JK6GPsfmXfcQWaEr3n7X9Mo7GeWdoAqAt+IVDkYPRqv8i23KW5+zhx7i9+NP4FH3XbzRxrYhCVO/JfFX1Hh0CZxmd5n0efIqBX/+dAlKhQxjRojbfdmLufJui5qIroFTHFJeU2xbcBHPYlPR/cMvka9w+r07HX0/xlhzP4+fJmDf8mug5X8PvnMWDUr5W53vH5HTkagOgLtct4Yxw9cxa8Y6ROjVrl0boaGhWLlyJerVq2dyCRtLAkyiQ4cOWLt2LU6cOIE33ngjw7AeHh7sk2nqD3CAeVOUhPq2YdLEfBWRgLoMfOTiQtKF3G8BqhCtpye9TIMQjjtCFe05uUxgL+xxSb9o0yaBRzQJ+BVxgm7rHP2azq98pH3RqzVX5N4FgGTJIg8EKe/pCQMZ1BrfJblvQYANIgtM4BE6gScD/ItCWZwWoT0NpZsbvCt2YufYQDMEJvAIncAT41A4z/uv2Bmlwg1+1HCN4pLAI3QCTxdXsuEr3KK1+xayNCSM0pLq9G2PcWbTYmflz9jR29PPMD0TaVJ6hE7gmU5THzVusqO/T374+QabDGOcDwk8QifwLOcjIXcTl6nz8fBKfz9W5E0Cj9AJPOvz1kctEx0RfL1M1KuNZZLQCTz7yqTPs0Rx9xQvpcL28llZXp3Ay3x5TZGYIuZVMF8w/HzN7+PpqPvRYf391PMFejeMx68n7+GHA4+x48uycFPIrcpXv7Oqny9KNs453ptkpiRT5LZt2/Dll1+aDFO+fHkm+A4ePJhhWoMGDcLMmTPRpUsXHDmi6/U7FVrhv/FX2q9ytmKxYPARxYOKXXNDGtyRCjeo4I4UuMvS4KE5R+KFjkqkMdOJGCZVkyaggJp9p6OEUqZKd45w16RJQlAfAXKWr1JGos1041RSvnIB8vofm7lpUSiSAKNer/x1SeibGsIG0G4ma+jubnK4U+OlRt/ue6vi0Cgxi+emaV42xNWelYHlS2U1wCAtWJUWiyaTsbS0ZTKbpnXlS5eETAY3OeWRwSPlgHwk1ILA7idd/WRB3sblUMhl8DBVr9lUJn1S0tSsHXkqHSCEsqC8xrCdRDS7p3i7O9ipQ+7Y+xn2ZgUEeClx/UksNpy+n2X5Zqkjy40bN9j3nj17su/Gjiw0/kbjenStSZMmeP78Oa5evYqPP/7YwJFFSm/ChAnYvXt3unE/p6296ehpC+agdT3TkoHUeMNzNM0hSW9rIf9iQLW3gSubgZgIw/PUCKp0EV15dwwFaE6LqesECzMESHhhPowUbs8o83mZwp44johrKq3tXwGJ0ZlPyxnly6J86PG1abFgJ92jzeXIgjLpo1KLwtkhZFU70SNVpWadKqcsDH3Ncfez5sRdTNx2lQm/w8NbIr+Pe5bk69QFp/WFnjR2R+f69OmDqKiodFMWyPmEPDgjIiJQpEgR5u1JY3PGQo+YO3cuvv32W+zZsweNGzfOmgWnafrC7HJAkmjuMYuHH0Dz6oIqAJE3AZ+CQEAIEBEK1OkHeAcBR+cAZV4HmgwFdn0DRN0G3pgINB0KXNoIbB0EBFcF2n8vqu4klChvou9fQKmmYu+GViX4uQnwPAxoORZoPtyw1xN+FFjdEfAtDLy9XEzLuFdEWx+t7S42ou5LTIchKK/NHwHXtooC961lVk0bwP+aAs+umS6fpbhbBwOXfgMqdQLeXWN/jy5sO7CxD1CgLNB5gfl7tAUq32+9gJt7gFq9gS4/OafHSfn80gF4cBJ47XOgzdQsnSqQYfvKDqhMcyoC8c+BjvOAuv2yv0yWyju3suhs0WEOUO/DnF1ea+7n0HTxHVakFjDgkF33k6ZSo9NPR5m298FrJTG1WzXL+d47LtYjmZ8z8Qw7zXvz8OHDBt9pusHTp6a9bGhbEfLwNDUvr1SpUqx3qA85qeg7qmSZqZMEmiWh5+YpCj0SdiT0aKPZ4Cqi0MtfUtTkiAJlgLItAQ9NpReqIv6IMs0PSeM9khuu/o9bsonuOx01G9ciuFL6RiB9pzKYc+mVdiWne8vI7ZfSyqdxQPArYl2DY+UT9/FDwQq2NVIKW6C0ri4y86LQbPwLT3+bXJstlk+qDxpXcNaLjNL112zySe0nK1+YlJdPEECOgIFlc8bLmsrgGSAKPVNtPqchPQP0srb1GciJyBVA8bri/wql3fdD43iTOlfF+8tO4vyDaNG8nJHpm/Jx1LNrJXw/DDIfRw7FTZU4yO2BVPgiCV5Igj/ikSzzYEd/VRryq6IQ8zAEFVOL4W50GSQnFcJo9UHMPFOMjQEuA7DwQSmcX3UGfRNLoQVCseKqgOMnzuCdIDe0ZzkI+G5XGO48i8PnTQqhjrYUAj5ZTfvjCZjToxYCJNu2ICAmKRVf/3aBjXMt60uOQ/J0q8CM+fMynscmYWS7SqhQyI88N9KFIRPPp2vOMhPJgvdqwcdD8/NLDdyoE3LxwUv8ePAWyhT0wbiOVQwrTUrfxFp55+9HY+Gh2ygb7IuxHSqnr3DthHfzm7WuOhaOo7ej8FadYuhQ3cwO0HI3i+lI/HTwFi4+fIW+jUqieQXT80B16SrFo4ld2c3x1YbzSExVYXKXqiiazzonLig8dGsO2giNmRwMe4ZONYqgW+1iNsdnnThC6qzZyZx9N3DjSSw+aloar5Wxb1d4XZk09Zaafi9Jezn5XxSW/xuOGsUD8FUrmpbkQJQaT8oUI69DB/LgRQImb7+KYH9PfNc9/b6IDsVd4ySTLDr/2EujsoFY/VEDNC0X5DiTsgPhQo9c9lFU61KSCAUSofOW1PqNpAIVgjxxMzIJ8SVr4GJEPBKi1RjcbwcOrL4B9tuOvYELm8Nx8PoztO44Aqg1A1d3PsLB609Qv01V4JsbTDs5syoM5++/RM96xcVzJODkbjh4/SmTOykqNfDeOvGl6xmA5CQ1S5NgNv2itcV40kuf5tvficTdqAR81kKzM3fx+powSgOhJ6Wj0hdwTYcBDQcB7obu0M9jk1n4yHgTLvg9VovChnrnRjzTxHuRYOZl3mAgUPsD3UvDBFcjYnAg7CnqlMxgWTvSjjV1aonzD17i0PVneLOKGc9KfVqMBJoMATx8YS1/33iG2KQ0jGlfyeo4aDcDeHOKqKnaSNhjsX6qFPGDXXT/n9ghMvH72cKZuy9w8r8X6FyzKDJNnz90Gp+DuP8igdVTmtrCovL20GujaMGx4/ezlsi4ZBwIe4Zi1nakMkPIa8CwMNE6lElaWOpYZiNc6Gl8NS0tOm1gMqSXrEzTu/MO1Akjv8KAZmK4jF6Y9F0muvbLyGRA3/UUKrartJ/OjVo6z8aqaeqBdD5JXCJN22kik6wmLQmNg5duoNvNw0QYwcDbUAs9tCYeXEkwmnQQ9DHfq1drCkMD7yYxk59B3pbSIJSegNLwHjNyBBDTs8LLUDIt20CaSixvht6bxuj9xrZCZiMiQ9NRRpB50wEka8phl/emMXrPgqNITlVppyw4HHNTUxxIYopYfh+PLDCfKul5ckDnRY+kVBV+PXEPfV4rCS9He5/aCRd6NiDTmBxJXmgFlFEYA8GlJ0r1ZYw0lmnqXEZpGggqIySBlpGM0Bd6Ciu8wCThZauJQnKxzqi81qahsEZIWYFWiFrr4m8jklC1SehlgkwLPQeRnKoRes4QKg6ATM5OE3pZQLxG6Hm5585Xdb+Vp3Eq/AXiU9IwtHUF5AT4JrKEyvKYECP2sWYpjdsQNOM9wnFxNQwZCZRdIyCwCZcA7hwWv2tc6mUUd9cI4OTPOkFI5sFdI9l5darOFMiExellYvhHoVphpZUhrx6K8Q5ONS8YX94Xw5BHlpE2aJAWcfugmNel3w2rRStITQiKc6vFOPdPprskldessLx3Qixb6JrMaXom6sGSJmaVpvef+Nvhwgab51JZPW+OuLFHzOeq6O1sC8kaIcvmUNrDtW3AzuHAjd32xZfKkaZynKZ3YT2wYxgQ/g8cRWKKWE+eztAyrvwplvem85aBS0gR300+WaElpSUDu0cD274QvdodwAeNSrLjz4fv4GG088Y+bYELPYZ1szaERHHemyzmkdZ5QiBXf2lvvdNLIWjmxsnIq5O+awaFZbT6yemlzM1eqw3SmMrpJWI4PWcGJmOu7xTDk4A1Nl3SHD2Kd2GdCU1PEyY+UhNmfTpBYhCOiDgv5hVuuDiAFN6k0Lu1T4zzVFy9xFQ8s0Lv2VWxbJSGGaQxmAy1TBP1YI5UTXpWaXqPL4n39t/fVmp5uno1uwqFKR6eEfO5fyITmp6dL0NyEz+zTCxDJkjSaHoOmfx95xBwdoVY/w4iSSOUPe2tp4y4d0ws7yNyQHOuedM7KzQ9mQI49TNw/lcgJXPOLBIdqxdBw9IFmBl8xq7ryAlwoWe1yDM0O4rjgOnjpvuuVet0J+hPPKdLkeY06vKR6dlH1elNl1rPTF1u6bRBE96b+iZUA2FixnszQ43NRPrpTZMyC16X6sxpejZ4b+rG3KwQejT+aoP3pmTatFnzkhxw7PCglISeTZqlg/J22pie1qM00eFCw8vdCa86yRErNcHp5k2Hr8ZizmdB+g2M9vq0F+qo0xQGeox3Xn6ME3eM9s/LBrjQswP9pcAkISMzWjrMWDnSraQgpNfcjAQSE5B6QkU3figzK3B0jiywGIYwkCXasIbTDySZJDcleLQCR2V+LNDcmJ40ZzEDYWVRcLIyKK0XelohakWT196b7ULPpjFDG4WrqTztHtNz0JSFFEeaN5XSlAXze1vaa351ypheFkxZIEeQLHNk0Z+2kKK3elQmqVLUH70ainNfafoFTWDPTnLn6KiDuRY0AcnRj6AW5HCTC1CwNS41wo2ULvrfOxBCQhTkJRsB94+Lq7GUawXZ2du40/YKBHqRHwZWVDrLVvGQ/bIQeAXMb6rC3AEdIb++A7gialN/fdGUCTm5nkmTOnJ3vuvAzrMXvZ42Vzy/l/aaiE4LlDg5ppWYplYKpxd6+b2V+O+7DmyszmA5I0kIGWltNEeO5oCZXLRHqx2mF3o964egR70Q0/Gs1NB+6V+faXsZLrsklcGKMdldXzVlgs8q5xpJC7JyrDeftzurVzKhZqiZGkMetiwf28dP1n3SkJlV7Z4GRR7ALO/MCb0LE9uwKTZ2jy2aFMSOE3o0t21yl2o664ojcXe+pvf56+UwoFkZAyc0p+LuKw4bOMi8KfHNmxWx/eJj7bqcHzQy3OkmK+FCjwkcNdyVFl5wcrXmQ4JQ+mh0ZenItBtBVKM0byNaPFrOFmzWaXqi9kIfvQWWtVqNVlXTBFezF7+oQJgXaIZx9YWSntlURmv3UVFlVk00T5evwUXdjurpLmUUj5XNzazA1E/DotaksF7To/SsNgVq07VeAyNt2MPWVSy0wtV2oUf34+6WCU9UB2l6dN+ejlqNRKvpOc68mel6ymbzZpZ76Hpo5ug5WOjRGpzftKmAf29FWl4cwslwoWc1RnMQqOelZ7JMN0dBb0UV09/1zrHzatOCyFQPNYPxNJvCWKG1OTSONq751VxsS8c2M6T16UpmR8d4sFk2bzo5H5N5ezhE6DkUJ2h6TiULzJtZjrtjVmUxBa3F2TcbNTwJLvQAdIr8EmGqwsyc6YUU+CKBLUVGO6gny9zhhwTkU6UiQP0CsY9DUDktCLdeVUDa9WL4Wl0Y8y6EwMNNhjm0g/ajsghbH4q+CUXQAMCKMAXOXwrFu4VkaK63DFnEy0R82bIMKmrKkJSmxjfrQ5kYnPNuTXjoObI8eZWEaTuvwdfDDTPfrmEobDWM3HwRialqjO9YGYX8PU0KvRfxKZi47QrrOc59V1zkOyMB+c/N59h09gHqlMjPlpmydhmyg2FPseX8I+a1ZdKMkcF4oMTsvTdw70UCPm1WBtWLB1g2kxp0QtIzbstltmLKiLYVEVLA20phZJ158/GrREzbEYYAb6VtS0VlQtP79q+riE5IwZBW5VGmoPUrx6Q3b9ovcOOT0zBi80V4uCkwu0fNzC855QRNj9rRg+gEfNy0NGoUt33RAevK6zyht/SfO7gWEYN364egcVnHLChg0bzpBE2PMB6qoHHprJrXqg8XerSkk7o4pNdvLJSIhY/JZcgqBrnjRmQKYkrXxol7CUiNFPBh7z+wY909eCnlmPP1eZz8/RH+vfQYrboMBSqNxbkdz7Hr2mM06FAOzb8MZQ/K4RW3cPNpHHo1CAHonEyGNKUfdl4S5/jRCwQd5wJtp7PdG2JfpWLHpcfI560UhV6+kmI8PbPS7itP2Eud9rRiaMO4GbykKB0a1J/7rl4FVO8BlH0j3fJD4ZHxLDzJk3RCr9VEoNkwcYskI24/i2PxSLh+0MhEhZdtBXx1PsNlyP699ZytldmtFq0QYUbo0Wo4Rvdojr1Xn7IlnQa11CzTlhHlWonpSi8AC7xMSGWeaUG+HrYJPdpl4qvXAHfbl32ipbUeRieif2M7e85VuwOlm+sWRrcDmnC86/IT1teY+25NZJqa7wEV2jl0GbJ/bj3HpYev0JW1IwdT/k1gyMVM1aElyNvx7xvP0bhcFgg8outCsQOpWWnKGdBzOHP3ddZZXPtxQ+dsl5QBXOjZAnM8SGEvawFi705GW/fgnvjDFSgDQUFL1wMyWoG9QDEIcs3kdKUHECi+oAThlniOtCVa5Z6UlSSdiY61AWkFfgr/SnQf1jphUC9dEy/95HSYDWN21RZadsvE0lvaeXqmevBsCSbTyzDpli8z05hpiTYL61pa572pSHeP5lBJ8/Ss0UZI+Nuw/qDWk9LW6QNWLMfmtBVZSLBkUrhIq7HQHDiHvLjomZF273DwlAWHzCPMZDvJzJQFn6xakcXfCZ0DE7/J9osRbLrLnitP0N7cgvJOwiG6Je2nN3ToULPXae88eiguXLigPXfs2DFUr14dSqUS3bp1Q3ZBLw99V/6MiEkUBdOzmCStAKGdCKSX9LFbkczkJGk7lHZUXIpWayIhQh/qIRPXHsdoBYtKb4Lz6fAXBhPJJRdfSo96fvrXWFy1oH3xXrj/Mt1140nUVHZT6ZibIE6mWGvC68orhqMVGGyJp38/MUliHZFGbGt8U+lJk6gvP3qV6fSMkdKmh9ie+7UVSj9B8zIMi4h1en7mkMpA8i4r7ttWqDykhRO0q0lOK58lqLy06DtxL0p8f+QFQgp4Y2DzMuz/aTvDcOTGc2y78CjL2pDNm8has7GsMSqViu2aHhQUBDc3scfSsGFDVKhQgW0y6+vry+LS5rP6gtHZm8jO2HUNS/4JZ9sCCVbI/yBEIxL5UVoWgbtCYRant3wf1qnbQA4VRrhtwvK0DohCABrKruJ1xSUsSuvCzKVBeInBnnvxTBaI/yW21qY52WczKgR7Y0xke9yN1fWW+/meRr+y8XhW5HV8cdQdkRrhSZT3V2FJ6X9QJjgAewp9gsnbr+HxK93gf5EAT0xtWxytX2wQx95aTcSeK48xYesVPNdLh8JN6lwF7Qo8Ba5uAQLLAXU+YNco/IjNl5jJNF34akWAm3vFVT1op4MKbbRhKN7w3y8hLtlMPCLqjrgEGe1N2PgLgzqm+KbuxyC+wcaX08QxvZZj0u0SYXN6EtH3gLMrRa2DNgDOAEp/7JYrbLzU6vQlXvwn1gOZkhp/mXHYzNyPKaTfgBa9ph0lbITKMX7rFYN2aVc59Im8DZynMgUBTb6yLw1H11NG0KpHx38UHdLenAxHkiXlN8Wdv4Fb+4FidYDq78CZy6s1mXkI0ZpOiSPu0Vp54PRRxJSUFCgUChQuXFgr8Ig7d+7gjTfeQPHixZEvn4MHmG0QeMaTzTMiUBbDjiVkzyDXxHnb7Sg7KqDGILftyC8TTZF15bfwmdt2+EBstAVkMfgI29BRdcggzd5pW9Ho8VrExhpuYls/+STK3FiGXfv3GrxYiISYaHYt7eiPGLQ21ODBIMjxZcKmU8DRecCxH9kDROH0BZ4Ujs5fOn8CODZfFHyaB47O6ws8/fB0na2PSHHu/qu9LsXTF3jp4hG0jBvFpeWO9JDim7ofg/haZMDRueKLx4Qzge3paYh9IpYvdLXp60bp6ws8q9KXiIkQf6NQw3qwlJ/N92Mub/YbrLU+jlE5jNulXeUwKNND4NgCg6Xz7MGh9ZQR5OxB5aWl5BxIlpXfFLR84slFovBzIuQkZyzwsuoebTYUx8fHY9CgQfjzzz/h5+eH4cOHp9sR/eOPP8atW7eY5vbWW2/h22+/RenSpXH+/Hkm4Oh/4qOPPmKfX375BZMniz0laWyAzvXv3x/OgMyEksAjrFV1JW1QzUSeWM5EQdrLTYYEwYNdI1IFBfsupU0T3+l7sqDb346IFzyhhCqd4E0S3Fh4lZC+X5KqyStFrTBZdjqngpifoFZg0l9XzYYjNoY+RTnBA1DJoEpKtRierjet5QY5xSH5lpLGzBLWxGtCG0uqFACLK2NxCZviG4zLeYlep0nJgN5cS/vTox9LrimfeG+myFT62nyUYj5kHjWTj0PzM4jkIX5SLOft1HIYJOCpKZPKpjJlWfnM1qEKSErRTcXJBFlaflPI/cV7Skyw+zew9h5h5h7prkjLfbNKYafco83mzcGDB2Pnzp1YuXIlgoODMXbsWBw5coQJLzJRktCLjo7GxIkTtWN1pOlJQo/G8cjUWbFiRUyZMgU9e/ZkKumECROwZ88eHDhwgMWhc15ehhsnJicns4++OhsSEmKzeXPFv/9h6s4wW26bw+FwOE6ke5wSW3x12t+GAa+xXdgdbd60SdOLi4vDihUrsHbtWrRq1YqdW716NTNR6kNmy2+++cbAkUVCMnWSRkcFpP8JGtcj86f03RQ0/idphJmB5n9xOBwOJ+dQQGWoKT+Ldc4iBTYJPRqHozE6ckKRKFCgANPa9KlXrx6cwZgxYzBs2LB0mp6tlDSanNz/cQICTMw3o/X6pEWepf+Nj3GahaZ9hfT/rwhIxsevPAy+E6bOZXTe0rWMrndrAGw9bTncF+2BckVkuP1YwMLd1oeXsDeeo+I7O72sTj+788vp5cit5cvr5c/MPSYZLdof7KdZocfBOGXyh4+P3uRuB+Lh4cE+mYVWCdE3byoFwN3EOpHkiC6tUyn9b3yURujczfyvhMzgu7lzGZ03d01/B3dT1wv4ytCptieOXE1CdLyQYbg6pbzYfLw6pQTk90m0OryEvfEcFd/Z6WV1+tmdX04vR24tX14vf2buURLpdFeFAzzRoHR6RcQR2DTyWrZsWTav7tSpU9pzNH538+bNTBfE3d2dTW3ICmhC78DmRiuM5ELa1cy4z9KrqTvc3OTo3czdYjjpAaKjLeEl7I3nqPjOTi+r08/u/HJ6OXJr+fJ6+TN7j9Jd0bQFpzjq2Cr0aNyNPDNHjBiBQ4cO4cqVK8zDUu4AryVygAkPD2fz9CIjIw0cVpzBmA5VnC74jBep8PUEfI0UVeq1ta/lhvw+snTnv2jnwT7mrvVskvH1emVFoUhHa8JJ2Bo+s/EcFd/Z6WV1+tmdX04vR24tX14vf2bukTS8n/vUcepcRJu9N8mZRX/KAjmskDenNDmdhBetzqK/Qgs5skjemxSOoKkLFF6alkBCrnfv3jh48CBevnxp1ZSFzE5Ol6YvzP7oDwSYWGvOmjE9tZe4Goc8UZ7u/8pfyRH2o1r7vepQcSmkq/NVBueo50Mbr5o6T2R0zZrrtoazN3xm4zkqvrPTy+r0szu/nF6O3Fq+vF5+a+/x2gI1ZAkyuPm64ZNZzezW8JzivSlpe7/++iv7SJDmZ8pTU4IEobFsJcGmD43Vbd68GVkNmTrNrRvITuvvSC6kP7pJ28oh/f9kWnRTqLXfpQZL/xufo6Op85auWXPd1nD2hs9sPEfFd3Z6WZ1+dueX08uRW8uX18tv9T3KaV6xuHats0ya+uR+PdkBLNk9Hvee07ikZaXX3c0TSjcPxCe9gr93AcQkRBvEk8vkUAtqKOQKCPMFqDVrYhYNKo1xzYcjNSUVk5d+h+jYZ2IE2o9Ig69XAOQyN8QkRKHi/op4GP4QqjQVChYpiAf/PdAF1IszcOxAdP2gK5Zsm46r4aeRpkpl1zv37oxhM3Seri+ev8DSGUtxcvcZxCa+gjstnr1YDU9vT1StWxWfjvkUJcqW0IZPSUrB4mmLcWDTISSlJMJd6Qnh5zR4epkOv33ddhzcdhC3rtxCQlwCZn++BZ4Qe1vrFq7Dv3v+xf079+Hh6ZEufszLGKyauwpn/zmLp4+eIl9gPlQp1Bgda34IH1+dp62ldFjVjJ6D0KOhiHwaCS8fLxZm4JiB9AuY/U2tSVeCOm+j+43G6cOnMXXZVDRt2zTD9mJrPkPfHYqLJy8axDP+Le3B2nu8eu4qVvywAmHnw9jmx+WqlMOstbNYHEdjqUxPHjzB+03eNxl30uJJaNmppcPLlJnyEi+evcD/pv8PZ4+eRWJcIkLKhqD3F73RokML5ETWWXFPj+4+Yvd0+cxl9v6q36I+vpryFQoUdI6jibPJ+s2MciCRtOwUBAT6GduRZfAy2l7GQ+mFFM0ml3GJr1CtDO2aR2N14gu+TkWxcZcuUhm+fr7I7yvuEuznnQ8j+4zE0b1HkaZKgUKzHc7I2SPxx9k/MG7BODSs8iba1enDzgcVDsK8jfOwfO9yvN75dTSp3gG9WwzXxqEPaajN2zfHoimLEP44DLXLtMD7rcV1FHds2IFj+45pX9QTBkzA4/uPMbDbFJQOroyQ4HLw8fPBtBXTkJaWxsqWmKDbx4zSPHHgBD7pPAElgirAx9MPxUoVww/rfjAZPjkxGQ1aNEDvz3unq9+Lpy6iW79uWLR1kcn4UU+jmJD6bNxnWLl/JUbNGYVrd89g3ZHZNqVDVKheASPnjMTqQ6sx69dZrD8yos8IqDPYu8+adCU2r9hs944C1ubT8f2OrE1IH+rYZBZr8iaBN6rvKNRrVg+L/1qMn7f/zOI4a+sXS2UqWLSgQT3Qp/+w/qwz0/B13bSprMKaOpzx9QzWQZ2+YjpW7FuBZu2aYcrgKawzmBO5aOGe6EjfqQ3M/W0ufvrzJ6SlpmHcR+Og1ixIn9vgQo+2svctiOZVu8JPs73OGzV6sKObXIlkzZqOfpotTwrlC0GhAHFuYL3yrTC4+zT2f9va4su+WJC4evgbdd/B979+j+g4cauhRtXaIj42Hvv/3I8hPX7QCj2/AD8UCC6A1t1b4+2WA3H7sdjLb9ejHcpXK88EzYfffIjebb5Go0rttXFIoNVqVAtFSxZlL6vmNTuj3xtj0KxmJxamcPHCuH7xOvufNMZrodcwdPpQlCpcEV93XYAh7/7AvGXv3riL0XNGMw3r5mXRCzcuJg67Nu7C4AmDUbFEbXzT/Sd2n3eu3WEaoHF44p1P3kGvz3uhSp0q6eqXhA/dT+mKpZnmYByfzk9ZMgWN32zM7rdOkzro0uRDXLl3Eio9YWUpHUkrqtmwJgqHFGYC8KMRH+FZxDNExTw1+/tbky5x++ptbFq6CSN/GGlFq7I/H9KmqU1IH+qcZBZr8qaOzlsfvsV+RwpHvX3qcLl7ZOxN6Kwy0UIW+vVAH+o0koZHgi+rsaYOr5y7gu79u6Nyrcrs2fzgqw/g6++b7jfOKcyycE9Xzl7Bk4dPWEe0TKUy7DN67mjcuHQD54+dR27E5YUeTbaPiPoPFYvVwUNa5R3A35f+YMc0dQozVRIhBcuLx6Dy4j54AIoX0O3lplSKEykfPr+jPRcfE691hLkWfo6Zi975+B0UDdJt/Dlj2Az0bdkX88bOQ0zCS1y9L04HWTVvFbrX7o5BXQaxB12f2FexOHnoJDq814F9J5PEpTsn8DL+uXbslLSnes3FRQLIJEHov7zIDKt0VzKTBQljwj+fqK1Sg6feXN2mdbXhCweWQKFihXA19Gq68LZiTfzE5Hh4unszM7G96VAvdc+mPSgSUgT5/QpmqnxJiUmY9uU0DJk2hL18HYG58h/YegBda3bFh60/xLKZy1jejsY47+jIaGbSJNPyF92/wFt13sKQHkNw+fRlh+dtbZmMoRctdTw69BTbfXZjqrzV6lbD39v/ZiZ70oQO/XUIKckprIOaG4g3uqfU5FQ2j4DeFRL0HpHJZezdkRtxeaFH0yNIsIU9PIc0tSgcBDZ0bMi1++KyJuS1+SBSNFV4eaTvgccnirssqNRpmDNmjlZAht46gorVKzL7PqFUiGMkHw77kNnQaRxn4ebRSE4VzQqk5f2w9gc0a9sMEz+diJsPdOM8F05cgLePN5q3a86+k329SGBJjF/7Hr6cL2qDnXp1YhoPQT12EljLvl+GhKRYNu637/RveP74OTMrLvx2IarVq8Z6e9L4HzVy3wBD027+oPxMmBqHtwV6EViK/+rFK+w+uQ6NK3e0K52ta7aifaX26FCpA04dPsXMNm4KU1P+rU930eRFqFqvKpq2sX4Mz558WnVthbELxjLTNmlc+/7ch++GfOeQPDPKm0zfxOp5q5l59fs136NCtQr4ptc3zFLgbKxpF2R9KFmuJAuT3ZgrL401komwa42uaFOuDeaOmYspy6YwC0ZOR23inshy4+XtxfwBqPNFHUka3yNfhahnUciNcEcWDeduH4JcpoBaUDGBlKpK1k5NMAh36xAqFauD64/OZZje/jOb4B3ojVG9F2LG2kEQ1GpEPovEyyjyWvWDh9IT8cmvmBmSnCHIbNC7mW48rMmbTVCuajn2IfPl0Ys7UK5lbbEMx84xc6i7p6i5bVm1hY3pDWw7FYGFgvHdmoHYsX4HGrdujLrN6sJN6YbJSybjh5E/YPjOt5iWV6lkHTYuEn4jnPXafvrjJ+vq6d9ziI2JtTq8MQvGL0D4zXCz8amnObr/aBQOLImOdfvZlU7rbq3ZuBQ9lJuWbMLkwZPxRav5UMDyskam0iVT8vnj57Fs9zKr79OefCTzrAS1icDgQHzz/jfMmcBRL05TeUvjM516d0L7d9trO16hx0Kxe+NuDBg9wCF521ImfZKTkpmjVN+v+iInYK68K+esZMMDs9fPRkCBABzbe4y1vx83/8h+z5zMAhP3RJr/pJ8nYf7Y+fjzlz/Zu6JVl1asbThifnZ24PJCjza2JeGWSHtjaSBHE0Jf4PVvNRarDn4HuVyhHY8jE5wx3p4+WieXlRuWIGKNj1bzex7xHG/XfVuc36cxm84ePZsJPbL/+3j6IyE5DoLmmkSJciVw+tol7feoJ1Fa0ya9DJbPWo4Bnb5F1eBGkPuKcavVr4aNSzcyoUdUrFERy/csR+isV0iJUSGgoD/Gru6BpIQkrNy3knmISpBXFplE415RnegExb3b95iJdtmuZQbhrWXBhAU4cfAEFvy+wGR88vokRwrSYvu1+BaKJKpntc3p0BgKfYqXLo4qtaugS/UuuFDiKOqGtLarfCTwIu5FoFM1cbxUYtLASajeoDrmb5rv0HrQp3Ltyuz46J5jhJ65vEm4EqXK60zvUtt7GmF+PNQRWFMfR3YeYc5Sbd7WbVicXZgrL3VMqANKzliSpkTjZJdOX8LW1Vsz7YGbXb9B/eb1se7oOmaBoXFWsgC9VfctFCnhxM1snUjuFNUOhJY/K1ygFAr6F2OOK0T3Rp+xI2lEEjRNgSBhdeeJaMt+9EI3fpeaJq4gExF5jx07Ne6LgPwB2us9Xh+EgoULsp782L7/006G7zdU1GbI1Eimx+CA9C82Mi8V8C+k/V60RFH2MBE09kYfuZGHHZVdUKefgkEmWV/PAPyyawZeRr7El1O+TNd4yQGEtEPSKAkaJ/xl5wwkxidi+MzhNjd2ik8P1dE9R5kHmKn4pOGRlyXlO33ldCjd3O1Kx1Qc+rCpHHaWr9fgXswTjzoN0ocYPHEwRs0eZWUt2Fd+GsPSF0r2YilvcvwJKhRkODVG0/bINO4MbKkPMm2S5YI0j+zCUnmpA0oYa0DUUcypno6CDb8Baa4k8Ej7p3cHOZ7lRlxe0yMSk2LxMiES+XyC8TL+GbafXsnOS9oYceTKVjFschzy+RREUmoCM4l6HBCF4cGLm9jxRazYKz4cug0p3z1A2nXR6/P0tUOIfhGNBq83QPT+BCSmiFpi9LNo/LX2L/yx8g/k8wtCw4pt8dep5Ti49SB7eOild2z/MfRu/Q1uPxaFLZkW6LxfPj/2Qqr5Wk1sPrwEb1SLQr7A/FrtpOdnPZknFoU5vOMwe2HEvgzEb/t+QtiDs0xLea3la2xuEeHj78Pm6pCWRM4CP0/9Ge819sGRs9tx6e5RlKpQCjUa1EgXnt33sxdsLJB6u0REZDjc03wQqAjC/PGrmWlq2vJpTIszji8JPOrJj50/FgmxCXgVnwYhQQ5/bz9tM50/fn6G6ZA2Rk4E5MBD90odiQ2LN7BrbGqJmfeOpXQlz0FjqF5t6QBYyofqjq6T2Zk6THfC7mDxlMWo0bAGylbWOU3Zg6W8ySW958CezIGK8iKz+t7Ne3H/9n18+/O3mcrb3jJJUL1cOnUJM1fPRHZiqbw0dk7aOI3jfTb+M+YMQqZxGhL47hfHjstm5W+we9NuNpZKQo+8wGncj7y1Tc1jzQ3YvAxZTsIRy5ARzpqHZAoyFZz550y68zQvL/JJZLrzND2hx4AeWDlbFMT6tH2nLXMfpoY6/p0ZCLt71mwYEqobl2zEi6fRzNRqCnJLJvdl/cnp+zcdYhqopfA0uXz1/NXpwnzQdjh+3Ts7w/jkmPN1z69Nhpn6ya9oOlHcr/H1Eq9nmA7V3+xRs5n3KXm4kuMNCYy+Q/oifkdRqOPkzPxbeYhhX89SuqagOPqT08MWpJlN39p8aGrF9CHT2TSSxMREBBcJZumT27vxtAVr8rPnHtcvWs8cgWJfxqJslbJsYj91jsxhaznsKRM5YB3YcgAbjm+weRwpM+Wzp7ykGS+duRRXzlxhlpGipYqi56c97TbLOrL89t7T0hlLsWfzHtYmyAehc5/O6PFJD4e9N68vUEEVJ4N3gBIfft/M6fKACz2aNtBvM/xN7KcH2t9JkBn+b3SUxtCkhqn/PzVSU43WXEPOqIFbavzWPhy2PkT2PnSZfVgd/bA7++Xh7PSzO7+cXo7cWr68Xv6cKPRcfkyPw+FwOK4DF3ocDofDcRm40ONwOByOy8CFHofD4XBcBi70OBwOh+MycKHH4XA4HJeBCz0Oh8PhuAy5euKHNMWQ5mdkhqSUBO2uBzbP00sW93tTpyjS/R8VrUJissLgO2HqXEbnLV2z5rqt4ewNn9l4jorv7PSyOv3szi+nlyO3li+vl98aEpLdoE6RQ5aszNS7XIpraep5rp6c/vDhQ4SEiBu6cjgcDofz4MEDFC8uruKU54QeLeIaEREBPz8/u5bEoZ4BCU2qpMys6MIxD69j58Lr1/nwOs4d9UuiLDY2FkWLFs1wubpcbd6kG8tIolsLVTRvzM6F17Fz4fXrfHgd5/z6pWXILMEdWTgcDofjMnChx+FwOByXwaWFnoeHByZNmsSOHOfA69i58Pp1PryO81b95mpHFg6Hw+FwbMGlNT0Oh8PhuBZc6HE4HA7HZeBCj8PhcDguAxd6HA6Hw3EZ8pzQW7RoEUqVKgVPT080bNgQp0+fzjD877//jkqVKrHw1atXx65duwyuk5/PxIkTUaRIEXh5eaF169a4desWXBVb6nfZsmVo1qwZ8ufPzz5Ud8bh+/fvz1bT0f+0a9cOrowtdbxq1ap09Ufx9OFt2P76bdmyZbr6pU/Hjh21YXgbNuSff/5B586d2cooVBdbt26FJQ4fPow6deowD85y5cqxdp3Zd7tZhDzEb7/9Jri7uwsrV64Url69KgwYMEDIly+f8PTpU5Phjx07JigUCmHWrFnCtWvXhPHjxwtKpVK4fPmyNszMmTOFgIAAYevWrcLFixeFLl26CKVLlxYSExMFV8PW+u3Vq5ewaNEi4fz580JYWJjQv39/VpcPHz7UhunXr5/Qrl074fHjx9rPixcvBFfF1jr+5ZdfBH9/f4P6e/LkiUEY3obtr9+oqCiDur1y5Qp7Z1C9S/A2bMiuXbuEcePGCX/++SfNDBC2bNkiZMR///0neHt7C8OGDWPv4Z9++onV8Z49e+z+3TIiTwm9Bg0aCJ9//rn2u0qlEooWLSrMmDHDZPh3331X6Nixo8G5hg0bCgMHDmT/q9VqoXDhwsIPP/ygvf7y5UvBw8ND2LBhg+Bq2Fq/xqSlpQl+fn7C6tWrDV4YXbt2dUp5XaGO6eVLAs0cvA07tg3PmzePteG4uDjtOd6GzWON0Bs5cqRQtWpVg3M9e/YU2rZt67DfTZ88Y95MSUnBuXPnmOlGf21O+n7ixAmTcei8fniibdu22vDh4eF48uSJQRha241Ua3Np5lXsqV9jEhISkJqaigIFCqQzbQQHB6NixYoYNGgQoqKi4IrYW8dxcXEoWbIkW7S3a9euuHr1qvYab8OObcMrVqzAe++9Bx8fH4PzvA3bj6X3sCN+N33yjNCLjIyESqVCoUKFDM7Td3roTUHnMwovHW1JM69iT/0aM2rUKGbn12+8NPaxZs0aHDx4EN9//z2OHDmC9u3bs7xcDXvqmF6yK1euxLZt27B27Vq280jjxo3ZtlsEb8OOa8M0hnTlyhV88sknBud5G84c5t7DtPtCYmKiQ949eWaXBU7uYebMmfjtt99Yj1jf0YJ6zRLkSFSjRg2ULVuWhWvVqlU2lTb30KhRI/aRIIFXuXJlLFmyBFOnTs3WsuU1SMujNtqgQQOD87wN5y7yjKYXFBQEhUKBp0+fGpyn74ULFzYZh85nFF462pJmXsWe+pWYPXs2E3r79u1jL4SMKFOmDMvr9u3bcDUyU8cSSqUStWvX1tYfb8OOqd/4+HjWafv4448t5uPKbdgezL2HaZsh8jZ2xHORJ4Weu7s76taty0wMEmTqoe/6PWF96Lx+eGL//v3a8KVLl2aVqh+GVO5Tp06ZTTOvYk/9ErNmzWIax549e1CvXj2L+ZBZjsZDyL3e1bC3jvUhM9Dly5e19cfbsGPql6Y2JScno0+fPhbzceU2bA+W3sOOeC4MEPIQ5NZKXmmrVq1irq+ffvopc2uVXLg/+OADYfTo0QZTFtzc3ITZs2czl/pJkyaZnLJAaWzbtk24dOkS89JyZXdvW+qX6o7cjDdv3mzgzh0bG8uu03H48OHCiRMnhPDwcOHAgQNCnTp1hPLlywtJSUmCK2JrHU+ePFnYu3evcOfOHeHcuXPCe++9J3h6ejK3bgnehu2vX4mmTZsyj0JjeBsWTNYJTVOiD4mYuXPnsv/v3bvHrlP9Uj0bT1kYMWIEew/TNCdTUxYy+t1sIU8JPYLmeJQoUYK9bMnN9eTJk9prLVq0YO7F+mzatEmoUKECC09uszt37kzn8j1hwgShUKFCrNJbtWol3LhxQ3BVbKnfkiVLskZv/KHOBZGQkCC0adNGKFiwIOtsUHiaf2NPQ3bVOh46dKg2LLXRDh06CKGhoQbp8TacuXfE9evXWbvdt29furR4G07P33//bfK5l+qVjlTPxnFq1arFfpMyZcoYzIO05nezBb61EIfD4XBchjwzpsfhcDgcjiW40ONwOByOy8CFHofD4XBcBi70OBwOh+MycKHH4XA4HJeBCz0Oh8PhuAxc6HE4HA7HZeBCj8PhcDguAxd6HA6Hw3EZuNDjcDgcjsvAhR6Hk4uZNGkS28ONdvKmTTVp127anZ7D4ZiGbyLL4eRSNAvGsw1jixUrhmvXrqFfv35sz0ISfhwOJz18wWkOJw/Rq1cvBAcHY/78+dldFA4nR8LNmxxOLuXevXv4/PPPUa1aNeTPnx++vr7YtGkTihcvnt1F43ByLFzocTi5kOfPn6N+/fpsh+65c+fi6NGjOH78OORyOWrWrJndxeNwcix8TI/DyYVs374dKpUKGzZsgEwmY+cWLlzInFhq1aqV3cXjcHIsXOhxOLmQwMBAxMTE4K+//kKVKlWYEJwxYwZzaClYsGB2F4/DybFwRxYOJxeiVqsxePBgrF+/Hl5eXujTpw+SkpLYON+OHTuyu3gcTo6FCz0Oh8PhuAzckYXD4XA4LgMXehwOh8NxGbjQ43A4HI7LwIUeh8PhcFwGLvQ4HA6H4zJwocfhcDgcl4ELPQ6Hw+G4DFzocTgcDsdl4EKPw+FwOC4DF3ocDofDcRm40ONwOByOy8CFHofD4XDgKvwfy1SahvBcSBcAAAAASUVORK5CYII=",
"text/plain": [
"<Figure size 500x100 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"reset_plotting() # Default style for Simbelmynë\n",
"generate_sim_params(lpt_params, ICs_path, wd, simdir, None, force)\n",
"file_ext = f\"p3m_nsteps{p3m_params['nsteps']}\"\n",
"generate_sim_params(p3m_params, ICs_path, wd, simdir, file_ext, force)\n",
"setup_plotting() # Reset plotting style for this project"
]
},
{
"cell_type": "markdown",
"id": "51aa0ec3",
"metadata": {},
"source": [
"Load time stepping:"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "a8aa16b2",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[09:25:47|\u001b[38;5;113mSTATUS \u001b[00m]|Read timestepping configuration in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook4/p3m_nsteps30_ts_p3m.h5'...\n",
"[09:25:47|\u001b[38;5;113mSTATUS \u001b[00m]|Read timestepping configuration in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook4/p3m_nsteps30_ts_p3m.h5' done.\n"
]
}
],
"source": [
"TS = StandardTimeStepping.read(wd + file_ext + \"_ts_p3m.h5\")\n",
"aKickBeg = TS.aKickBeg\n",
"aKickEnd = TS.aKickEnd\n",
"aDriftBeg = TS.aDriftBeg\n",
"aDriftEnd = TS.aDriftEnd\n",
"aiDrift = TS.aiDrift\n",
"afDrift = TS.afDrift"
]
},
{
"cell_type": "markdown",
"id": "56d49527",
"metadata": {},
"source": [
"### Generate the initial phase"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "6969353d",
"metadata": {},
"outputs": [],
"source": [
"generate_white_noise_Field(\n",
" L=L,\n",
" size=N,\n",
" corner=corner,\n",
" seedphase=BASELINE_SEEDPHASE,\n",
" fname_whitenoise=input_white_noise_file,\n",
" seedname_whitenoise=input_seed_phase_file,\n",
" force_phase=force,\n",
")"
]
},
{
"cell_type": "markdown",
"id": "af2c102d",
"metadata": {},
"source": [
"### Generating the input power spectrum"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "eeddae78",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[09:25:47|\u001b[38;5;113mSTATUS \u001b[00m]|Setting up Fourier grid...\n",
"[09:25:47|\u001b[38;5;113mSTATUS \u001b[00m]|Setting up Fourier grid done.\n",
"[09:25:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]|Computing normalization of the power spectrum...\n",
"[09:25:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]|Computing normalization of the power spectrum done.\n",
"[09:25:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]|Computing power spectrum...\n",
"[09:25:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]|Computing power spectrum done.\n",
"[09:25:47|\u001b[38;5;113mSTATUS \u001b[00m]|Write power spectrum in data file '/Users/hoellinger/WIP3M/notebook4/input_power.h5'...\n",
"[09:25:47|\u001b[38;5;246mDIAGNOSTIC\u001b[00m]==|\u001b[38;5;246mL0=32, L1=32, L2=32\u001b[00m\n",
"[09:25:47|\u001b[38;5;246mDIAGNOSTIC\u001b[00m]==|\u001b[38;5;246mN0=32, N1=32, N2=32, N2_HC=17, N_HC=17408, NUM_MODES=464\u001b[00m\n",
"[09:25:47|\u001b[38;5;113mSTATUS \u001b[00m]|Write power spectrum in data file '/Users/hoellinger/WIP3M/notebook4/input_power.h5' done.\n"
]
}
],
"source": [
"# If cosmo[\"WhichSpectrum\"] == \"class\", then classy is required.\n",
"if not isfile(input_power_file) or force:\n",
" Pk = PowerSpectrum(L, L, L, N, N, N, cosmo_small_to_full_dict(cosmo))\n",
" Pk.write(input_power_file)"
]
},
{
"cell_type": "markdown",
"id": "ed3ab1c8",
"metadata": {},
"source": [
"## Running the simulations"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "e3ed21b6",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[09:25:47\u001b[00m|\u001b[38;5;227mCOMMAND \u001b[00m]|\u001b[38;5;227msimbelmyne /Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook4/example_lpt.sbmy /Users/hoellinger/WIP3M/notebook4/logs/lpt.txt\u001b[00m\n",
"[09:25:47\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]|\n",
"[09:25:47\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| .-~~-.--.\n",
"[09:25:47\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| : )\n",
"[09:25:47\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| .~ ~ -.\\ /.- ~~ .\n",
"[09:25:47\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| > `. .' <\n",
"[09:25:47\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| ( .- -. )\n",
"[09:25:47\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| `- -.-~ `- -' ~-.- -'\n",
"[09:25:47\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| ( : ) _ _ .-: ___________________________________\n",
"[09:25:47\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| ~--. : .--~ .-~ .-~ } \u001b[1;38;5;157mSIMBELMYNË\u001b[00m\n",
"[09:25:47\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| ~-.-^-.-~ \\_ .~ .-~ .~ (c) Florent Leclercq 2012 - SBMY_YEAR \n",
"[09:25:47\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| \\ ' \\ '_ _ -~ ___________________________________\n",
"[09:25:47\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| `.`. //\n",
"[09:25:47\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| . - ~ ~-.__`.`-.//\n",
"[09:25:47\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| .-~ . - ~ }~ ~ ~-.~-.\n",
"[09:25:47\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| .' .-~ .-~ :/~-.~-./:\n",
"[09:25:47\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| /_~_ _ . - ~ ~-.~-._\n",
"[09:25:47\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| ~-.<\n",
"[09:25:47\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]|\n",
"[09:25:47\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]|2025-06-24 09:25:47: Starting SIMBELMYNË, commit hash bab918a5347585bc2fb9554e442fd77ad3ae69cc\n",
"[09:25:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]|Reading parameter file in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook4/example_lpt.sbmy'...\n",
"[09:25:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]|Reading parameter file in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook4/example_lpt.sbmy' done.\n",
"[09:25:47\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleLPT: Initializing snapshot...\u001b[00m\n",
"[09:25:47\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleLPT: Initializing snapshot done.\u001b[00m\n",
"[09:25:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]|LPT snapshot initialization: 0.001 CPU - 0.000 wallclock seconds used.\n",
"[09:25:47\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleLPT: Returning initial conditions...\u001b[00m\n",
"[09:25:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Reading field in '/Users/hoellinger/WIP3M/notebook4/input_white_noise.h5'...\n",
"[09:25:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Reading field in '/Users/hoellinger/WIP3M/notebook4/input_white_noise.h5' done.\n",
"[09:25:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Reading power spectrum...\n",
"[09:25:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Reading power spectrum in '/Users/hoellinger/WIP3M/notebook4/input_power.h5'...\n",
"[09:25:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Reading power spectrum in '/Users/hoellinger/WIP3M/notebook4/input_power.h5' done.\n",
"[09:25:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Reading power spectrum done.\n",
"[09:25:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Generating Gaussian random field (using 8 cores)...\n",
"[09:25:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Generating Gaussian random field (using 8 cores) done.\n",
"[09:25:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Writing field to '/Users/hoellinger/WIP3M/notebook4/initial_density.h5'...\n",
"[09:25:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Writing field to '/Users/hoellinger/WIP3M/notebook4/initial_density.h5' done.\n",
"[09:25:47\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleLPT: Returning initial conditions done.\u001b[00m\n",
"[09:25:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]|LPT initial conditions: 0.003 CPU - 0.002 wallclock seconds used.\n",
"[09:25:47\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleLPT: Evolving with Lagrangian perturbation theory (using 8 cores)...\u001b[00m\n",
"[09:25:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Computing Lagrangian potentials, periodic boundary conditions (using 8 cores)...\n",
"[09:25:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Computing Lagrangian potentials, periodic boundary conditions (using 8 cores) done.\n",
"[09:25:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Computing Lagrangian displacement field (using 8 cores)...\n",
"[09:25:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Computing Lagrangian displacement field (using 8 cores) done.\n",
"[09:25:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Changing velocities of particles...\n",
"[09:25:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Changing velocities of particles done.\n",
"[09:25:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Displacing particles...\n",
"[09:25:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Displacing particles done.\n",
"[09:25:47\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleLPT: Evolving with Lagrangian perturbation theory (using 8 cores) done.\u001b[00m\n",
"[09:25:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]|LPT evolution: 0.048 CPU - 0.015 wallclock seconds used.\n",
"[09:25:47\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleLPT: Computing outputs...\u001b[00m\n",
"[09:25:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:25:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:25:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Writing field to '/Users/hoellinger/WIP3M/notebook4/lpt_density.h5'...\n",
"[09:25:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Writing field to '/Users/hoellinger/WIP3M/notebook4/lpt_density.h5' done.\n",
"[09:25:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Writing header in '/Users/hoellinger/WIP3M/notebook4/lpt_particles.gadget3'...\n",
"[09:25:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Writing header in '/Users/hoellinger/WIP3M/notebook4/lpt_particles.gadget3' done.\n",
"[09:25:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Writing snapshot in '/Users/hoellinger/WIP3M/notebook4/lpt_particles.gadget3' (32768 particles)...\n",
"[09:25:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing block: 'POS '...\n",
"[09:25:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing block: 'POS ' done.\n",
"[09:25:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing block: 'VEL '...\n",
"[09:25:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing block: 'VEL ' done.\n",
"[09:25:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing block: 'ID '...\n",
"[09:25:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing block: 'ID ' done.\n",
"[09:25:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Writing snapshot in '/Users/hoellinger/WIP3M/notebook4/lpt_particles.gadget3' done.\n",
"[09:25:47\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleLPT: Computing outputs done.\u001b[00m\n",
"[09:25:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]|LPT output: 0.010 CPU - 0.004 wallclock seconds used.\n",
"[09:25:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]|ModuleLPT: 0.061 CPU - 0.021 wallclock seconds used.\n",
"[09:25:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]|Simbelmynë: 0.062 CPU - 0.022 wallclock seconds used.\n",
"[09:25:47\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]|Everything done successfully, exiting.\n"
]
}
],
"source": [
"run_simulation(\"lpt\", lpt_params, wd, logdir)"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "39c97bc2",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[09:25:47\u001b[00m|\u001b[38;5;227mCOMMAND \u001b[00m]|\u001b[38;5;227msimbelmyne /Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook4/p3m_nsteps30_example_p3m.sbmy /Users/hoellinger/WIP3M/notebook4/logs/p3m_nsteps30p3m.txt\u001b[00m\n",
"[09:25:47\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]|\n",
"[09:25:47\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| .-~~-.--.\n",
"[09:25:47\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| : )\n",
"[09:25:47\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| .~ ~ -.\\ /.- ~~ .\n",
"[09:25:47\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| > `. .' <\n",
"[09:25:47\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| ( .- -. )\n",
"[09:25:47\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| `- -.-~ `- -' ~-.- -'\n",
"[09:25:47\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| ( : ) _ _ .-: ___________________________________\n",
"[09:25:47\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| ~--. : .--~ .-~ .-~ } \u001b[1;38;5;157mSIMBELMYNË\u001b[00m\n",
"[09:25:47\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| ~-.-^-.-~ \\_ .~ .-~ .~ (c) Florent Leclercq 2012 - SBMY_YEAR \n",
"[09:25:47\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| \\ ' \\ '_ _ -~ ___________________________________\n",
"[09:25:47\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| `.`. //\n",
"[09:25:47\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| . - ~ ~-.__`.`-.//\n",
"[09:25:47\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| .-~ . - ~ }~ ~ ~-.~-.\n",
"[09:25:47\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| .' .-~ .-~ :/~-.~-./:\n",
"[09:25:47\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| /_~_ _ . - ~ ~-.~-._\n",
"[09:25:47\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| ~-.<\n",
"[09:25:47\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]|\n",
"[09:25:47\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]|2025-06-24 09:25:47: Starting SIMBELMYNË, commit hash bab918a5347585bc2fb9554e442fd77ad3ae69cc\n",
"[09:25:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]|Reading parameter file in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook4/p3m_nsteps30_example_p3m.sbmy'...\n",
"[09:25:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]|Reading parameter file in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook4/p3m_nsteps30_example_p3m.sbmy' done.\n",
"[09:25:47\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleLPT: Initializing snapshot...\u001b[00m\n",
"[09:25:47\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleLPT: Initializing snapshot done.\u001b[00m\n",
"[09:25:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]|LPT snapshot initialization: 0.001 CPU - 0.000 wallclock seconds used.\n",
"[09:25:47\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleLPT: Returning initial conditions...\u001b[00m\n",
"[09:25:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Reading field in '/Users/hoellinger/WIP3M/notebook4/initial_density.h5'...\n",
"[09:25:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Reading field in '/Users/hoellinger/WIP3M/notebook4/initial_density.h5' done.\n",
"[09:25:47\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleLPT: Returning initial conditions done.\u001b[00m\n",
"[09:25:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]|LPT initial conditions: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:25:47\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleLPT: Evolving with Lagrangian perturbation theory (using 8 cores)...\u001b[00m\n",
"[09:25:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Computing Lagrangian potentials, periodic boundary conditions (using 8 cores)...\n",
"[09:25:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Computing Lagrangian potentials, periodic boundary conditions (using 8 cores) done.\n",
"[09:25:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Computing Lagrangian displacement field (using 8 cores)...\n",
"[09:25:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Computing Lagrangian displacement field (using 8 cores) done.\n",
"[09:25:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Changing velocities of particles...\n",
"[09:25:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Changing velocities of particles done.\n",
"[09:25:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Displacing particles...\n",
"[09:25:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Displacing particles done.\n",
"[09:25:47\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleLPT: Evolving with Lagrangian perturbation theory (using 8 cores) done.\u001b[00m\n",
"[09:25:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]|LPT evolution: 0.047 CPU - 0.016 wallclock seconds used.\n",
"[09:25:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]|ModuleLPT: 0.048 CPU - 0.016 wallclock seconds used.\n",
"[09:25:47\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleP3M: Evolving with P3M...\u001b[00m\n",
"[09:25:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Read timestepping configuration in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook4/p3m_nsteps30_ts_p3m.h5'...\n",
"[09:25:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Read timestepping configuration in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook4/p3m_nsteps30_ts_p3m.h5' done.\n",
"[09:25:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|OutputForceDiagnostic: force_diagnostic.csv\n",
"[09:25:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|OutputSnapshotsBase: particles_\n",
"[09:25:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin P3M step 1/30, time_kick:0.005000, time_drift=0.005000.\n",
"[09:25:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 1/30 done.\n",
"[09:25:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:25:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:25:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:25:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:25:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[09:25:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[09:25:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[09:25:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[09:25:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End P3M step 1/30, time_kick:0.005462, time_drift=0.005966.\n",
"[09:25:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 1/30: Density: 0.009 CPU - 0.002 wallclock seconds used.\n",
"[09:25:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 1/30: Potential: 0.008 CPU - 0.003 wallclock seconds used.\n",
"[09:25:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 1/30: Accelerations (long-range): 0.065 CPU - 0.015 wallclock seconds used.\n",
"[09:25:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 1/30: Accelerations (short-range): 0.226 CPU - 0.103 wallclock seconds used.\n",
"[09:25:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 1/30: Kick: 0.006 CPU - 0.002 wallclock seconds used.\n",
"[09:25:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 1/30: Drift: 0.001 CPU - 0.001 wallclock seconds used.\n",
"[09:25:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 1/30: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:25:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 1/30: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:25:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 1/30: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:25:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 1/30: Total Evolution: 0.314 CPU - 0.126 wallclock seconds used.\n",
"[09:25:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin P3M step 2/30, time_kick:0.005462, time_drift=0.005966.\n",
"[09:25:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 2/30 done.\n",
"[09:25:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:25:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:25:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:25:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:25:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End P3M step 2/30, time_kick:0.006517, time_drift=0.007118.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 2/30: Density: 0.009 CPU - 0.002 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 2/30: Potential: 0.008 CPU - 0.003 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 2/30: Accelerations (long-range): 0.061 CPU - 0.013 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 2/30: Accelerations (short-range): 0.236 CPU - 0.049 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 2/30: Kick: 0.006 CPU - 0.001 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 2/30: Drift: 0.002 CPU - 0.001 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 2/30: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 2/30: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 2/30: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 2/30: Total Evolution: 0.323 CPU - 0.070 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin P3M step 3/30, time_kick:0.006517, time_drift=0.007118.\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 3/30 done.\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End P3M step 3/30, time_kick:0.007775, time_drift=0.008493.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 3/30: Density: 0.012 CPU - 0.003 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 3/30: Potential: 0.009 CPU - 0.003 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 3/30: Accelerations (long-range): 0.062 CPU - 0.014 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 3/30: Accelerations (short-range): 0.253 CPU - 0.039 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 3/30: Kick: 0.005 CPU - 0.001 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 3/30: Drift: 0.001 CPU - 0.001 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 3/30: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 3/30: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 3/30: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 3/30: Total Evolution: 0.343 CPU - 0.061 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin P3M step 4/30, time_kick:0.007775, time_drift=0.008493.\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 4/30 done.\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End P3M step 4/30, time_kick:0.009277, time_drift=0.010134.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 4/30: Density: 0.008 CPU - 0.002 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 4/30: Potential: 0.008 CPU - 0.003 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 4/30: Accelerations (long-range): 0.060 CPU - 0.015 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 4/30: Accelerations (short-range): 0.229 CPU - 0.042 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 4/30: Kick: 0.005 CPU - 0.002 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 4/30: Drift: 0.001 CPU - 0.001 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 4/30: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 4/30: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 4/30: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 4/30: Total Evolution: 0.311 CPU - 0.065 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin P3M step 5/30, time_kick:0.009277, time_drift=0.010134.\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 5/30 done.\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End P3M step 5/30, time_kick:0.011069, time_drift=0.012091.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 5/30: Density: 0.010 CPU - 0.003 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 5/30: Potential: 0.009 CPU - 0.003 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 5/30: Accelerations (long-range): 0.058 CPU - 0.014 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 5/30: Accelerations (short-range): 0.235 CPU - 0.043 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 5/30: Kick: 0.005 CPU - 0.001 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 5/30: Drift: 0.001 CPU - 0.000 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 5/30: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 5/30: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 5/30: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 5/30: Total Evolution: 0.319 CPU - 0.065 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin P3M step 6/30, time_kick:0.011069, time_drift=0.012091.\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 6/30 done.\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End P3M step 6/30, time_kick:0.013208, time_drift=0.014427.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 6/30: Density: 0.005 CPU - 0.003 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 6/30: Potential: 0.009 CPU - 0.004 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 6/30: Accelerations (long-range): 0.063 CPU - 0.014 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 6/30: Accelerations (short-range): 0.244 CPU - 0.058 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 6/30: Kick: 0.006 CPU - 0.001 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 6/30: Drift: 0.001 CPU - 0.000 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 6/30: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 6/30: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 6/30: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 6/30: Total Evolution: 0.328 CPU - 0.081 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin P3M step 7/30, time_kick:0.013208, time_drift=0.014427.\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 7/30 done.\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End P3M step 7/30, time_kick:0.015759, time_drift=0.017214.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 7/30: Density: 0.010 CPU - 0.003 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 7/30: Potential: 0.008 CPU - 0.003 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 7/30: Accelerations (long-range): 0.062 CPU - 0.013 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 7/30: Accelerations (short-range): 0.219 CPU - 0.040 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 7/30: Kick: 0.006 CPU - 0.001 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 7/30: Drift: 0.002 CPU - 0.000 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 7/30: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 7/30: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 7/30: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 7/30: Total Evolution: 0.306 CPU - 0.061 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin P3M step 8/30, time_kick:0.015759, time_drift=0.017214.\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 8/30 done.\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End P3M step 8/30, time_kick:0.018803, time_drift=0.020539.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 8/30: Density: 0.017 CPU - 0.003 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 8/30: Potential: 0.008 CPU - 0.003 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 8/30: Accelerations (long-range): 0.060 CPU - 0.014 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 8/30: Accelerations (short-range): 0.227 CPU - 0.037 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 8/30: Kick: 0.006 CPU - 0.001 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 8/30: Drift: 0.001 CPU - 0.000 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 8/30: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 8/30: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 8/30: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 8/30: Total Evolution: 0.319 CPU - 0.058 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin P3M step 9/30, time_kick:0.018803, time_drift=0.020539.\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 9/30 done.\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End P3M step 9/30, time_kick:0.022435, time_drift=0.024506.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 9/30: Density: 0.013 CPU - 0.002 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 9/30: Potential: 0.008 CPU - 0.003 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 9/30: Accelerations (long-range): 0.056 CPU - 0.014 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 9/30: Accelerations (short-range): 0.242 CPU - 0.036 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 9/30: Kick: 0.005 CPU - 0.001 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 9/30: Drift: 0.001 CPU - 0.000 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 9/30: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 9/30: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 9/30: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 9/30: Total Evolution: 0.325 CPU - 0.057 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin P3M step 10/30, time_kick:0.022435, time_drift=0.024506.\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 10/30 done.\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End P3M step 10/30, time_kick:0.026769, time_drift=0.029240.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 10/30: Density: 0.010 CPU - 0.002 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 10/30: Potential: 0.009 CPU - 0.003 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 10/30: Accelerations (long-range): 0.062 CPU - 0.013 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 10/30: Accelerations (short-range): 0.249 CPU - 0.044 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 10/30: Kick: 0.005 CPU - 0.001 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 10/30: Drift: 0.002 CPU - 0.001 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 10/30: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 10/30: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 10/30: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 10/30: Total Evolution: 0.337 CPU - 0.064 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin P3M step 11/30, time_kick:0.026769, time_drift=0.029240.\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 11/30 done.\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End P3M step 11/30, time_kick:0.031940, time_drift=0.034888.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 11/30: Density: 0.011 CPU - 0.003 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 11/30: Potential: 0.008 CPU - 0.003 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 11/30: Accelerations (long-range): 0.058 CPU - 0.014 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 11/30: Accelerations (short-range): 0.241 CPU - 0.037 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 11/30: Kick: 0.005 CPU - 0.001 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 11/30: Drift: 0.001 CPU - 0.000 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 11/30: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 11/30: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 11/30: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 11/30: Total Evolution: 0.325 CPU - 0.058 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin P3M step 12/30, time_kick:0.031940, time_drift=0.034888.\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 12/30 done.\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End P3M step 12/30, time_kick:0.038109, time_drift=0.041628.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 12/30: Density: 0.010 CPU - 0.002 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 12/30: Potential: 0.008 CPU - 0.003 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 12/30: Accelerations (long-range): 0.064 CPU - 0.012 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 12/30: Accelerations (short-range): 0.251 CPU - 0.038 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 12/30: Kick: 0.006 CPU - 0.001 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 12/30: Drift: 0.001 CPU - 0.001 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 12/30: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 12/30: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 12/30: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 12/30: Total Evolution: 0.341 CPU - 0.057 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin P3M step 13/30, time_kick:0.038109, time_drift=0.041628.\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 13/30 done.\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End P3M step 13/30, time_kick:0.045471, time_drift=0.049669.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 13/30: Density: 0.014 CPU - 0.003 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 13/30: Potential: 0.009 CPU - 0.003 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 13/30: Accelerations (long-range): 0.061 CPU - 0.013 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 13/30: Accelerations (short-range): 0.255 CPU - 0.039 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 13/30: Kick: 0.006 CPU - 0.001 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 13/30: Drift: 0.001 CPU - 0.000 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 13/30: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 13/30: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 13/30: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 13/30: Total Evolution: 0.346 CPU - 0.060 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin P3M step 14/30, time_kick:0.045471, time_drift=0.049669.\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 14/30 done.\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End P3M step 14/30, time_kick:0.054254, time_drift=0.059263.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 14/30: Density: 0.017 CPU - 0.003 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 14/30: Potential: 0.008 CPU - 0.003 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 14/30: Accelerations (long-range): 0.065 CPU - 0.012 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 14/30: Accelerations (short-range): 0.259 CPU - 0.036 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 14/30: Kick: 0.005 CPU - 0.001 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 14/30: Drift: 0.001 CPU - 0.000 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 14/30: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 14/30: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 14/30: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 14/30: Total Evolution: 0.355 CPU - 0.055 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin P3M step 15/30, time_kick:0.054254, time_drift=0.059263.\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 15/30 done.\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End P3M step 15/30, time_kick:0.064734, time_drift=0.070711.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 15/30: Density: 0.015 CPU - 0.003 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 15/30: Potential: 0.008 CPU - 0.003 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 15/30: Accelerations (long-range): 0.064 CPU - 0.013 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 15/30: Accelerations (short-range): 0.261 CPU - 0.036 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 15/30: Kick: 0.005 CPU - 0.001 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 15/30: Drift: 0.001 CPU - 0.000 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 15/30: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 15/30: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 15/30: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 15/30: Total Evolution: 0.355 CPU - 0.056 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin P3M step 16/30, time_kick:0.064734, time_drift=0.070711.\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 16/30 done.\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End P3M step 16/30, time_kick:0.077239, time_drift=0.084370.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 16/30: Density: 0.017 CPU - 0.003 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 16/30: Potential: 0.009 CPU - 0.003 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 16/30: Accelerations (long-range): 0.065 CPU - 0.012 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 16/30: Accelerations (short-range): 0.259 CPU - 0.035 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 16/30: Kick: 0.005 CPU - 0.001 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 16/30: Drift: 0.001 CPU - 0.000 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 16/30: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 16/30: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 16/30: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 16/30: Total Evolution: 0.356 CPU - 0.055 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin P3M step 17/30, time_kick:0.077239, time_drift=0.084370.\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 17/30 done.\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End P3M step 17/30, time_kick:0.092159, time_drift=0.100667.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 17/30: Density: 0.014 CPU - 0.003 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 17/30: Potential: 0.008 CPU - 0.002 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 17/30: Accelerations (long-range): 0.064 CPU - 0.013 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 17/30: Accelerations (short-range): 0.259 CPU - 0.036 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 17/30: Kick: 0.006 CPU - 0.001 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 17/30: Drift: 0.001 CPU - 0.000 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 17/30: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 17/30: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 17/30: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 17/30: Total Evolution: 0.352 CPU - 0.056 wallclock seconds used.\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin P3M step 18/30, time_kick:0.092159, time_drift=0.100667.\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 18/30 done.\n",
"[09:25:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:25:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:25:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:25:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:25:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[09:25:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[09:25:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[09:25:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[09:25:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End P3M step 18/30, time_kick:0.109961, time_drift=0.120112.\n",
"[09:25:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 18/30: Density: 0.014 CPU - 0.003 wallclock seconds used.\n",
"[09:25:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 18/30: Potential: 0.008 CPU - 0.003 wallclock seconds used.\n",
"[09:25:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 18/30: Accelerations (long-range): 0.063 CPU - 0.013 wallclock seconds used.\n",
"[09:25:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 18/30: Accelerations (short-range): 0.265 CPU - 0.036 wallclock seconds used.\n",
"[09:25:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 18/30: Kick: 0.006 CPU - 0.001 wallclock seconds used.\n",
"[09:25:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 18/30: Drift: 0.002 CPU - 0.001 wallclock seconds used.\n",
"[09:25:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 18/30: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:25:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 18/30: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:25:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 18/30: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:25:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 18/30: Total Evolution: 0.358 CPU - 0.056 wallclock seconds used.\n",
"[09:25:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin P3M step 19/30, time_kick:0.109961, time_drift=0.120112.\n",
"[09:25:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 19/30 done.\n",
"[09:25:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:25:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:25:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:25:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:25:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[09:25:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[09:25:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[09:25:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[09:25:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End P3M step 19/30, time_kick:0.131201, time_drift=0.143314.\n",
"[09:25:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 19/30: Density: 0.017 CPU - 0.003 wallclock seconds used.\n",
"[09:25:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 19/30: Potential: 0.009 CPU - 0.002 wallclock seconds used.\n",
"[09:25:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 19/30: Accelerations (long-range): 0.064 CPU - 0.013 wallclock seconds used.\n",
"[09:25:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 19/30: Accelerations (short-range): 0.267 CPU - 0.037 wallclock seconds used.\n",
"[09:25:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 19/30: Kick: 0.006 CPU - 0.001 wallclock seconds used.\n",
"[09:25:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 19/30: Drift: 0.001 CPU - 0.000 wallclock seconds used.\n",
"[09:25:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 19/30: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:25:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 19/30: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:25:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 19/30: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:25:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 19/30: Total Evolution: 0.364 CPU - 0.057 wallclock seconds used.\n",
"[09:25:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin P3M step 20/30, time_kick:0.131201, time_drift=0.143314.\n",
"[09:25:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 20/30 done.\n",
"[09:25:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:25:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:25:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:25:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:25:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[09:25:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[09:25:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[09:25:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[09:25:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End P3M step 20/30, time_kick:0.156545, time_drift=0.170998.\n",
"[09:25:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 20/30: Density: 0.016 CPU - 0.003 wallclock seconds used.\n",
"[09:25:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 20/30: Potential: 0.008 CPU - 0.002 wallclock seconds used.\n",
"[09:25:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 20/30: Accelerations (long-range): 0.063 CPU - 0.013 wallclock seconds used.\n",
"[09:25:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 20/30: Accelerations (short-range): 0.269 CPU - 0.036 wallclock seconds used.\n",
"[09:25:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 20/30: Kick: 0.006 CPU - 0.001 wallclock seconds used.\n",
"[09:25:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 20/30: Drift: 0.001 CPU - 0.000 wallclock seconds used.\n",
"[09:25:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 20/30: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:25:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 20/30: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:25:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 20/30: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:25:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 20/30: Total Evolution: 0.363 CPU - 0.056 wallclock seconds used.\n",
"[09:25:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin P3M step 21/30, time_kick:0.156545, time_drift=0.170998.\n",
"[09:25:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 21/30 done.\n",
"[09:25:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:25:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:25:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:25:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:25:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[09:25:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[09:25:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[09:25:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[09:25:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End P3M step 21/30, time_kick:0.186784, time_drift=0.204029.\n",
"[09:25:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 21/30: Density: 0.016 CPU - 0.003 wallclock seconds used.\n",
"[09:25:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 21/30: Potential: 0.009 CPU - 0.002 wallclock seconds used.\n",
"[09:25:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 21/30: Accelerations (long-range): 0.065 CPU - 0.013 wallclock seconds used.\n",
"[09:25:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 21/30: Accelerations (short-range): 0.275 CPU - 0.037 wallclock seconds used.\n",
"[09:25:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 21/30: Kick: 0.006 CPU - 0.001 wallclock seconds used.\n",
"[09:25:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 21/30: Drift: 0.001 CPU - 0.000 wallclock seconds used.\n",
"[09:25:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 21/30: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:25:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 21/30: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:25:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 21/30: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:25:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 21/30: Total Evolution: 0.371 CPU - 0.057 wallclock seconds used.\n",
"[09:25:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin P3M step 22/30, time_kick:0.186784, time_drift=0.204029.\n",
"[09:25:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 22/30 done.\n",
"[09:25:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:25:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:25:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:25:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:25:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[09:25:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[09:25:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[09:25:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[09:25:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End P3M step 22/30, time_kick:0.222865, time_drift=0.243440.\n",
"[09:25:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 22/30: Density: 0.018 CPU - 0.003 wallclock seconds used.\n",
"[09:25:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 22/30: Potential: 0.009 CPU - 0.003 wallclock seconds used.\n",
"[09:25:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 22/30: Accelerations (long-range): 0.065 CPU - 0.012 wallclock seconds used.\n",
"[09:25:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 22/30: Accelerations (short-range): 0.274 CPU - 0.038 wallclock seconds used.\n",
"[09:25:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 22/30: Kick: 0.006 CPU - 0.001 wallclock seconds used.\n",
"[09:25:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 22/30: Drift: 0.001 CPU - 0.001 wallclock seconds used.\n",
"[09:25:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 22/30: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:25:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 22/30: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:25:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 22/30: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:25:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 22/30: Total Evolution: 0.372 CPU - 0.057 wallclock seconds used.\n",
"[09:25:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin P3M step 23/30, time_kick:0.222865, time_drift=0.243440.\n",
"[09:25:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 23/30 done.\n",
"[09:25:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:25:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:25:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:25:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:25:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[09:25:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[09:25:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[09:25:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[09:25:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End P3M step 23/30, time_kick:0.265915, time_drift=0.290464.\n",
"[09:25:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 23/30: Density: 0.015 CPU - 0.003 wallclock seconds used.\n",
"[09:25:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 23/30: Potential: 0.009 CPU - 0.002 wallclock seconds used.\n",
"[09:25:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 23/30: Accelerations (long-range): 0.063 CPU - 0.013 wallclock seconds used.\n",
"[09:25:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 23/30: Accelerations (short-range): 0.286 CPU - 0.040 wallclock seconds used.\n",
"[09:25:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 23/30: Kick: 0.006 CPU - 0.001 wallclock seconds used.\n",
"[09:25:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 23/30: Drift: 0.001 CPU - 0.001 wallclock seconds used.\n",
"[09:25:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 23/30: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:25:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 23/30: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:25:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 23/30: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:25:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 23/30: Total Evolution: 0.381 CPU - 0.060 wallclock seconds used.\n",
"[09:25:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin P3M step 24/30, time_kick:0.265915, time_drift=0.290464.\n",
"[09:25:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 24/30 done.\n",
"[09:25:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:25:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:25:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:25:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:25:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[09:25:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[09:25:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[09:25:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[09:25:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End P3M step 24/30, time_kick:0.317281, time_drift=0.346572.\n",
"[09:25:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 24/30: Density: 0.015 CPU - 0.003 wallclock seconds used.\n",
"[09:25:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 24/30: Potential: 0.009 CPU - 0.003 wallclock seconds used.\n",
"[09:25:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 24/30: Accelerations (long-range): 0.061 CPU - 0.014 wallclock seconds used.\n",
"[09:25:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 24/30: Accelerations (short-range): 0.266 CPU - 0.043 wallclock seconds used.\n",
"[09:25:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 24/30: Kick: 0.006 CPU - 0.002 wallclock seconds used.\n",
"[09:25:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 24/30: Drift: 0.001 CPU - 0.003 wallclock seconds used.\n",
"[09:25:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 24/30: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:25:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 24/30: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:25:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 24/30: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:25:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 24/30: Total Evolution: 0.358 CPU - 0.066 wallclock seconds used.\n",
"[09:25:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin P3M step 25/30, time_kick:0.317281, time_drift=0.346572.\n",
"[09:25:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 25/30 done.\n",
"[09:25:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:25:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:25:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:25:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:25:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[09:25:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[09:25:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[09:25:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[09:25:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End P3M step 25/30, time_kick:0.378569, time_drift=0.413519.\n",
"[09:25:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 25/30: Density: 0.016 CPU - 0.003 wallclock seconds used.\n",
"[09:25:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 25/30: Potential: 0.008 CPU - 0.002 wallclock seconds used.\n",
"[09:25:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 25/30: Accelerations (long-range): 0.065 CPU - 0.012 wallclock seconds used.\n",
"[09:25:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 25/30: Accelerations (short-range): 0.304 CPU - 0.046 wallclock seconds used.\n",
"[09:25:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 25/30: Kick: 0.006 CPU - 0.001 wallclock seconds used.\n",
"[09:25:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 25/30: Drift: 0.002 CPU - 0.001 wallclock seconds used.\n",
"[09:25:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 25/30: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:25:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 25/30: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:25:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 25/30: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:25:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 25/30: Total Evolution: 0.401 CPU - 0.065 wallclock seconds used.\n",
"[09:25:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin P3M step 26/30, time_kick:0.378569, time_drift=0.413519.\n",
"[09:25:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 26/30 done.\n",
"[09:25:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:25:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:25:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:25:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:25:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[09:25:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[09:25:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[09:25:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[09:25:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End P3M step 26/30, time_kick:0.451695, time_drift=0.493396.\n",
"[09:25:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 26/30: Density: 0.018 CPU - 0.003 wallclock seconds used.\n",
"[09:25:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 26/30: Potential: 0.008 CPU - 0.002 wallclock seconds used.\n",
"[09:25:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 26/30: Accelerations (long-range): 0.063 CPU - 0.013 wallclock seconds used.\n",
"[09:25:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 26/30: Accelerations (short-range): 0.320 CPU - 0.050 wallclock seconds used.\n",
"[09:25:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 26/30: Kick: 0.006 CPU - 0.001 wallclock seconds used.\n",
"[09:25:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 26/30: Drift: 0.001 CPU - 0.000 wallclock seconds used.\n",
"[09:25:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 26/30: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:25:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 26/30: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:25:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 26/30: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:25:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 26/30: Total Evolution: 0.417 CPU - 0.070 wallclock seconds used.\n",
"[09:25:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin P3M step 27/30, time_kick:0.451695, time_drift=0.493396.\n",
"[09:25:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 27/30 done.\n",
"[09:25:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:25:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:25:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:25:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:25:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[09:25:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[09:25:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[09:25:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[09:25:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End P3M step 27/30, time_kick:0.538948, time_drift=0.588704.\n",
"[09:25:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 27/30: Density: 0.019 CPU - 0.003 wallclock seconds used.\n",
"[09:25:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 27/30: Potential: 0.009 CPU - 0.002 wallclock seconds used.\n",
"[09:25:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 27/30: Accelerations (long-range): 0.062 CPU - 0.012 wallclock seconds used.\n",
"[09:25:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 27/30: Accelerations (short-range): 0.342 CPU - 0.055 wallclock seconds used.\n",
"[09:25:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 27/30: Kick: 0.005 CPU - 0.001 wallclock seconds used.\n",
"[09:25:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 27/30: Drift: 0.001 CPU - 0.001 wallclock seconds used.\n",
"[09:25:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 27/30: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:25:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 27/30: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:25:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 27/30: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:25:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 27/30: Total Evolution: 0.438 CPU - 0.075 wallclock seconds used.\n",
"[09:25:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin P3M step 28/30, time_kick:0.538948, time_drift=0.588704.\n",
"[09:25:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 28/30 done.\n",
"[09:25:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:25:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:25:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:25:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:25:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[09:25:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[09:25:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[09:25:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[09:25:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End P3M step 28/30, time_kick:0.643054, time_drift=0.702422.\n",
"[09:25:50\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 28/30: Density: 0.016 CPU - 0.003 wallclock seconds used.\n",
"[09:25:50\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 28/30: Potential: 0.009 CPU - 0.003 wallclock seconds used.\n",
"[09:25:50\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 28/30: Accelerations (long-range): 0.066 CPU - 0.084 wallclock seconds used.\n",
"[09:25:50\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 28/30: Accelerations (short-range): 0.358 CPU - 0.336 wallclock seconds used.\n",
"[09:25:50\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 28/30: Kick: 0.006 CPU - 0.007 wallclock seconds used.\n",
"[09:25:50\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 28/30: Drift: 0.002 CPU - 0.010 wallclock seconds used.\n",
"[09:25:50\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 28/30: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:25:50\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 28/30: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:25:50\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 28/30: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:25:50\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 28/30: Total Evolution: 0.457 CPU - 0.443 wallclock seconds used.\n",
"[09:25:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin P3M step 29/30, time_kick:0.643054, time_drift=0.702422.\n",
"[09:25:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 29/30 done.\n",
"[09:25:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:25:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:25:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:25:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:25:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[09:25:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[09:25:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[09:25:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[09:25:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End P3M step 29/30, time_kick:0.767270, time_drift=0.838106.\n",
"[09:25:50\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 29/30: Density: 0.008 CPU - 0.006 wallclock seconds used.\n",
"[09:25:50\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 29/30: Potential: 0.009 CPU - 0.004 wallclock seconds used.\n",
"[09:25:50\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 29/30: Accelerations (long-range): 0.058 CPU - 0.019 wallclock seconds used.\n",
"[09:25:50\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 29/30: Accelerations (short-range): 0.358 CPU - 0.099 wallclock seconds used.\n",
"[09:25:50\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 29/30: Kick: 0.006 CPU - 0.003 wallclock seconds used.\n",
"[09:25:50\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 29/30: Drift: 0.001 CPU - 0.002 wallclock seconds used.\n",
"[09:25:50\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 29/30: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:25:50\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 29/30: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:25:50\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 29/30: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:25:50\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 29/30: Total Evolution: 0.439 CPU - 0.134 wallclock seconds used.\n",
"[09:25:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin P3M step 30/30, time_kick:0.767270, time_drift=0.838106.\n",
"[09:25:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 30/30 done.\n",
"[09:25:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:25:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:25:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:25:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:25:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[09:25:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[09:25:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[09:25:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[09:25:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:25:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:25:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[09:25:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[09:25:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[09:25:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[09:25:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End P3M step 30/30, time_kick:1.000000, time_drift=1.000000.\n",
"[09:25:50\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 30/30: Density: 0.015 CPU - 0.008 wallclock seconds used.\n",
"[09:25:50\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 30/30: Potential: 0.018 CPU - 0.011 wallclock seconds used.\n",
"[09:25:50\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 30/30: Accelerations (long-range): 0.125 CPU - 0.072 wallclock seconds used.\n",
"[09:25:50\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 30/30: Accelerations (short-range): 0.810 CPU - 0.367 wallclock seconds used.\n",
"[09:25:50\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 30/30: Kick: 0.013 CPU - 0.009 wallclock seconds used.\n",
"[09:25:50\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 30/30: Drift: 0.001 CPU - 0.001 wallclock seconds used.\n",
"[09:25:50\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 30/30: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:25:50\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 30/30: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:25:50\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 30/30: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:25:50\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 30/30: Total Evolution: 0.982 CPU - 0.468 wallclock seconds used.\n",
"[09:25:50\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Box: Density: 0.401 CPU - 0.090 wallclock seconds used.\n",
"[09:25:50\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Box: Potential: 0.268 CPU - 0.091 wallclock seconds used.\n",
"[09:25:50\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Box: Accelerations (long-range): 1.935 CPU - 0.532 wallclock seconds used.\n",
"[09:25:50\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Box: Accelerations (short-range): 8.537 CPU - 1.970 wallclock seconds used.\n",
"[09:25:50\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Box: Kick: 0.175 CPU - 0.057 wallclock seconds used.\n",
"[09:25:50\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Box: Drift: 0.041 CPU - 0.029 wallclock seconds used.\n",
"[09:25:50\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Box: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:25:50\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Box: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:25:50\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Box: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[09:25:50\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Box: Total Evolution: 11.358 CPU - 2.768 wallclock seconds used.\n",
"[09:25:50\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleP3M: Evolving with P3M done.\u001b[00m\n",
"[09:25:50\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModulePMCOLA: Computing outputs...\u001b[00m\n",
"[09:25:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[09:25:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[09:25:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Writing field to '/Users/hoellinger/WIP3M/notebook4/p3m_nsteps30_final_density_p3m.h5'...\n",
"[09:25:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Writing field to '/Users/hoellinger/WIP3M/notebook4/p3m_nsteps30_final_density_p3m.h5' done.\n",
"[09:25:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Writing header in '/Users/hoellinger/WIP3M/notebook4/p3m_nsteps30_p3m_snapshot.gadget3'...\n",
"[09:25:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Writing header in '/Users/hoellinger/WIP3M/notebook4/p3m_nsteps30_p3m_snapshot.gadget3' done.\n",
"[09:25:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Writing snapshot in '/Users/hoellinger/WIP3M/notebook4/p3m_nsteps30_p3m_snapshot.gadget3' (32768 particles)...\n",
"[09:25:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing block: 'POS '...\n",
"[09:25:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing block: 'POS ' done.\n",
"[09:25:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing block: 'VEL '...\n",
"[09:25:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing block: 'VEL ' done.\n",
"[09:25:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing block: 'ID '...\n",
"[09:25:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing block: 'ID ' done.\n",
"[09:25:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Writing snapshot in '/Users/hoellinger/WIP3M/notebook4/p3m_nsteps30_p3m_snapshot.gadget3' done.\n",
"[09:25:50\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModulePMCOLA: Computing outputs done.\u001b[00m\n",
"[09:25:50\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]|PMCOLA output: 0.019 CPU - 0.005 wallclock seconds used.\n",
"[09:25:50\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]|ModulePMCOLA: 11.618 CPU - 3.025 wallclock seconds used.\n",
"[09:25:50\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]|Simbelmynë: 11.667 CPU - 3.042 wallclock seconds used.\n",
"[09:25:50\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]|Everything done successfully, exiting.\n"
]
}
],
"source": [
"run_simulation(\"p3m\", p3m_params, wd, logdir)"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "7d24f105",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[09:25:50|\u001b[1;36mINFO \u001b[00m]|\u001b[38;5;147m(wip3m.plot_utils)\u001b[00m Plotting timestep limiters from /Users/hoellinger/WIP3M/notebook4/timesteps_log.txt...\n",
"[09:25:51|\u001b[1;36mINFO \u001b[00m]==|\u001b[38;5;147m(wip3m.plot_utils)\u001b[00m Figure saved to: /Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook4/time_step_diagnostics.pdf\n",
"[09:25:51|\u001b[1;36mINFO \u001b[00m]|\u001b[38;5;147m(wip3m.plot_utils)\u001b[00m Plotting timestep limiters from /Users/hoellinger/WIP3M/notebook4/timesteps_log.txt done.\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABwgAAARHCAYAAADndTeiAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAuIwAALiMBeKU/dgABAABJREFUeJzs3Qd4U1UbB/B/k+69gDLL3lsBBUG2KHsqCogIigv3QobIcuDnAhEBwYHIkqmgbBBkyV6ySxkFuneb0e85txYKdKS5ucm9yf/30CelTc5578lNenPfe97jlpOTkwMiIiIiIiIiIiIiIiIicgk6RwdARERERERERERERERERPbDBCERERERERERERERERGRC2GCkIiIiIiIiIiIiIiIiMiFMEFIRERERERERERERERE5EKYICQiIiIiIiIiIiIiIiJyIUwQEhEREREREREREREREbkQJgiJiIiIiIiIiIiIiIiIXAgThEREREREREREREREREQuhAlCIiIiIiIiIiIiIiIiIhfCBCERERERERERERERERGRC2GCkIiIiIiIiIiIiIiIiMiFMEFIRERERERERERERERE5EKYICQiIiIiIiIiIiIiIiJyIUwQEhEREREREREREREREbkQJgiJiIiIiIiIiIiIiIiIXAgThEREREREREREREREREQuhAlCIiIiIiIiIiIiIiIiIhfCBCERERERERERERERERGRC2GCkIiIiIiIiIiIiIiIiMiFMEFIRERERERERERERERE5EKYICQiIiIiIiIiIiIiIiJyIUwQEhEREREREREREREREbkQJgiJiIiIiIiIiIiIiIiIXAgThEREREREREREREREREQuhAlCIiIiIiIiIiIiIiIiIhfCBCERERERERERERERERGRC3F3dABE5JyMRiNOnz59289CQ0Oh0/G6BCIiIiIiIiIiIq0ym82Ij4+/7Wc1atSAuzvTDURawlcsESlCJAfr1q3r6DCIiIiIiIiIiIhIYcePH0edOnUcHQYRlQCn8hARERERERERERERERG5ECYIiYiIiIiIiIiIiIiIiFwIE4RERERERERERERERERELoRrEBKRIkJDQwusRR4eHg61W7hwIS5duoQKFSpg4MCBBd/p9Gngq6+AJUsAk0leh56egOjnhReAypXlx6YwJWLYs2cPPvzwQ+zYsQM5OTmy2tLr9XjwwQcxevRoNGzYsMSPV8MYE5UE91n14XPiuuOjlm0buGYgLqdetnm7AZ4B6F2jN/rV6Idg72C4yng6Ig579qmWcdaqlZ9MwuV/jyvWfqUGjdH0kR4oV6O2Yn1oDfdZ9eFz4rrjo9VtU2vcaonLkjhiY2NRt27dYs8FEpG6ueXIPRNLRFSAGzduoHTp0rf97Pr16yhVqhScSlQU8OmnwOzZQGamvLb0euCxx4B33gHq14crOnLkCMaMGYO1a9fCYDDIasvNzQ2tWrXCxIkT0bZtW5vFSEREpHbD/hiGvTF7FWvfW++NvjX74sm6T6Ksf1nF+iHSggPrVmPTvFmK91O+dj206D0AlRs1lY5ziYiIHMllzvsROTmWGCUikiMyEvjyy9xE4ejRQGCg9W2JmYgLFgANGgC9egG7d8PVNGjQACtXrsSpU6fw+OOPw9vb2+q2xPUvf/31F9q1a4d77rlHapeIiMgVdKzUUdH2M02ZWHBiAR759RG899d7OJd4TtH+iNSsbpsO8PCy/pjVUpdPHsOvU8fjp3dewb9//wWzWWYVEyIiIiJyeZxBSESKcNkriZKSgJkzgf/9TwyC/PbatwfefRfo0EFMiYOrEfvM+PHj8dNPPyE1NVV2e7Vr18Y777yDwYMHQ6fjNTJEROScUrNT0X5Je2QYM+zWZ/uK7TG8wXA0KNXAbn0SqcWGOTNwaP1au/YZUrY8mvXsi7qt20Hv7mHXvomIiFz2vB+Rk2GCkIgU4fIHChkZwHffAR9/DFy8KL+9e+/NnaHYsyfggomt5ORkTJo0CXPnzkV8fLzs9ipVqoTXXnsNL7zwAtzduRwvERE5n4l/T8TiU4vt3m/ziOZ4usHTuL/s/SyDSC4jOfYGfnznZWSmJNu9b/+wcDTr1hsN2j8EDxnVN4iIiErC5c/7ETkJJgiJSBFaPlBYunTpzcWY+/XrJ68xsY7ewoXA1KnAyZOyY0suXx5/P/ggUrt3R1+xXqHWx6eEfZYpUwbnzp3D9OnTERMTI7td0d7zzz+Pt95662Y5U0dsH5Ec3GfVh8+J646PmrYtJi0G/Vf3R2JWokP6rxtWF0/XfxodKnWAXqfX9Hg68tjHHn2qZZy17vLJ41g6aQyMhmyH9O8dEIh7Hu6Bxg91g7e/P5wZ91n14XPiuuOj1W1Ta9xqicuSOLR83o+IbnG9aShERMUQpSyTkpJsUtISHh7AkCHAsWPAr7/mzgSUIfDyZTz088946MUXgRkzcmcqanl8SthnVlYW3nvvPURHR+PLL79E5cqVZbV77do1qYRpuXLl8MYbb0gzFR2xfURycJ9VHz4nrjs+atq2CL8IfNn+S3jpvRzS//G443h96+votbIXfj39K7JN2ZodT0ce+9ijT7WMs9aVr10X/cZMkhJ1JSHu/9DIl1GjRUtZSwqI2Ys7Fv+E2S8+hW0L5iEtMQHOivus+vA5cd3x0eq2qTVutcSlljiISHmsq0ZEdIfq1asjODgY4eHhtmtUlAXt3Rvo1QvYsCF3RuHmzVY35x8XB4gk4QcfAK++Cjz3HBAUBM2OTwn7FGVBX3rpJalE6IIFCzB16lScOHHC6vYTEhLw6aef4ptvvsEjjzyCbt26oWrVqjbcAiLnek1S0ficuO74qG3bmpRugtmdZ2PUplElmkkY7BWMz9p+hmvp1zD36FycTjhtdQwXki9g/M7xmHFwBobUHYL+NfvD18NXU+OphmMfZ+nLFZKEgz/8AntWLMbxbZthyMos9L4e3j6o27otmvcagMDwUqjfrhPiLkdj78plOPHXZphNJqtiyM7IwN5Vy7B/7SrUb9sJzXr0QVDpCDgT7rPqw+fEdcdHq9um1rjVEpda4iAi5bHEKBEpgqUGLLBrV26icNUq+W2J5OALLwAvvwzcMe6uYvXq1fjggw+wb98+2W15eXmhd+/emDJlCqpUqWKT+IiIiBxZbnT24dlYfW41MoyFVx/wdfdFt6rdMKLhCGkGoiA+Lm6/vB1zjszBgesHZMcS6BmIx+s8jsdrP44Q7xDZ7RGpVVZ6Oo5v34TTu3YgNSFOStx5+vjAPyQMNe5rhbqt28PLt+BkeXLsdexbvRxHNv0JY3aWrDjcdDrUbvUgmvfsh/CKkbLaIiIiysPzfkTOgQlCIlIEDxRK4OhR4MMPc9cqNJvlteXjAwwfDrzxBlCpElzRtm3bMG7cOOlW7p84MVOxS5cumDx5Mho2bGizGImIiBwhNTtVShKuj1qP6+nXkWZIg5+HH0r7lkanyE7oXrU7/D0LX7ts/7X90ozCbZe2yY7Fx90HfWv0lWYVlvUvW+B9UrJTsPrsamy4uAHX0q4h3ZguJTHL+JVBx0od0aNajyLjJdK69KREaSbgwT9+Q1Z6muz2qt17H1r06o+yNWrd9TvR/vFtm3B6906kxMfCkJkJD29vBISGS+VP67bpUGhCk4iIXA/P+xE5ByYIiUgRPFCwwrlzwCefAPPmAVnyrhSGuzswaBDw9ttA7dpwRQcPHsSYMWPwxx9/wGg0ympLp9PhwQcfxMSJE9GqVSubxUhERKRF/8b/i++Ofod1F9bBnCPv4iZ3N3d0rdoVw+oPQ9XgqjdnPH57+FusObemyBmPIskokpr5ZzwSOSORvDv45+/Y//tKKWkoV6X6DdG85wBUatAIKXGx2L18EU5s31J0SVQvb9Rt0+5mSVQiInJtPO9H5ByYICQiRWj5QCEmJgaZmZnw9vZGRIQDTjZdvQp89hkwc6ZYGVpeW25uQJ8+wLvvAvfco9nxkdPnmTNnpEThihUrkCU38QqgefPmGD9+vLRWIZEaOPw9i+7C58R1x0er22Zt3NEp0Zh/dD5WnFmBbHO2rBjc4Ib2ldrjgXIP4PMDnyMpK6lEayZ+1f4rNC7dGErQ2rGPmvsieQzZWTi6eT32rf4VyTeuy24vtFwFpMTHwZBZeCL+Tt4Bgej15liUr1UHjsJ9Vn34nLju+Gh129Qat1risiQOLZ/3I6JbmCAkIkVo+UBh/vz5iIqKQmRkJIYOHeq4QBISgOnTgS++AOLi5LfXuTMwejTQpk1u4lBD42OLPq9evSqVHl24cCHS0uSXaKpXrx5Gjx6Nxx57TJphSARXf8+im/icuO74aHXb5MYdmxGLH4//iEX/LpLKljqCl94LszvPRpPSTWzetlaPfdTYF9mGyWjEyR1bsWflUsRfjrZ7/+4enug3ZhLK164LR+A+qz58Tlx3fLS6bWqNWy1xWRKHls/7EdEtPKNJRHYTGxsrHUDc+UWFCAkBxo4FoqJyZxSWLy+vvT//BNq2BUSJzDVrABe7PqRs2bKYPXs2oqOj8eqrryIoKEhWe8eOHcMTTzyBGjVq4Ouvv5ZdxpSIiEirwn3C8eo9r+LPfn/i5aYvI9Q71O4xZJmyMGrTKKk8KZGz07u7o96DHTB02gz0eH00IqrVsGv/RkM2VkybhORYfpYjIiIi0jLOICQiRRR0JVFh1PY2pJaSDnfJykLSjBnw/eoreFy4IL+9Bg1yS4/275+7ZqGLldlKT0/Hxx9/jJkzZ0pXuclVrlw5vPTSS1Ly0cvLyyYxEmn6PcuF8Tlx3fHR6rbZOu5MY6ZUdnT+sfm4nHoZ9jSg5gCMvX+sTdt0lmMfNfRFyhCfpy4eOYQ9Kxfj4tHDduu3UaeH0XH4C7A37rPqw+fEdcdHq9um1rjVEhdLjBK5DiYIiUgRWk4Qqp7JBCxbBkyZAhw6JL+9qlWBt98GnnwScMHElsFgwPTp0/HZZ59JswvlCgsLw/Dhw/Hee+8hICDAJjESERFpkdFsxLoL6zD3yFycSTxjlz593X2xsf9G+Hv626U/IrW5evpf7F6xBGf37VK8Lw9vHzw783t4+foq3hcREakLE4REzoEJQiJSBBOEdiDGbd263EThX3/Jb69sWeD114FnnwX8Xe+kmtlsxvfff48PP/wQp06dkt2eSA4OHjwYEyZMQHh4uE1iJCIi0iJzjhnbL23HnCNzcPDGQcX7G91iNAbWHqh4P0RqFnvxAvasWiatVZhjNivWT/thI9HkoW6KtU9EROrEBCGRc2CCkIgUwQShnW3fDkydCqxda5u1D0eNAl56SUyHgytatmwZJk2ahIMH5Z/E9PHxQd++faX2xALfREREruyfa/9IMwq3X96uWB/NIprhu4e+U6x9Ii1Juh6Dvat+xdEt62EyGGzefsW6DTBg/FSbt0tEROrGBCGRc2CCkIjsdqBw/PjxAmdSqe3g4a+//kJsbKwU6wMPPABNxXbgAPDhh8CSJbkzDOXw88udTfjaa0D58pbHoAB79pm/r6ysLIwfPx47d+6Uncj28PBA165dMXnyZNStW9dm8RKp+T3LVfE5cd3x0eq2OSLuf+P/xdyjc/HHhT+kGYa2FBkYiTW919isPVc69tHSfkslk5oQj/2/r8Te1b/K/5yQT0jZchj2+bewJ+6z6sPnxHXHR6vbpta41RKXJXEwQUjkHHSODoCIXIc4sBAHCnd+qc2ZM2dw6NAh6VZzsTVpAixaBPz7LzB8uMhKWd9ZWhrwv//lrlH4zDOic8tiUIA9+8zfV4cOHaQD4927d6Nz587Q6/Wy1jpcsWIFGjZsiE6dOmHPnj02jZtcl5rfs1wVnxPXHR+tbpsj4q4VWgsft/kYa3qtgbfe26ZtJ2Ul2bQ9Vzr2IeflHxKKNk88Bd/AIJu2m3zjOqKPH7FrVRjus+rD58R1x0er26bWuNUSl1riICLlMUFIRHQHf39/BAUFSbeaja1GDWD2bODcOeCVVwBfX+s7zc7ObatWLWDgQJSPjbX7+NjzOSmor2bNmuGPP/7A0aNH0adPH3h6elrdvslkwoYNG3DfffehZcuWWL9+vY0iJ1el5vcsV8XnxHXHR6vb5si4KwZWRGlfy8rSWyoxKxHPrn8We2P22iRp4YjxcfSxDzkvTx8fm7ZnMhqxeMK7WDjuTZz9Z49dEoXcZ9WHz4nrjo9Wt02tcaslLrXEQUTKY4lRIlIESw2oTGws8OWXwFdfAYmJ8tvr2hV4912gVSu4oujoaIwZMwZLlixBRkaG7PbErMKxY8eiX79+NomPiIhIS4b9MUxK5imhYamGGF5/OB6s+CB0brw+lkgk88SMP6WEV6qM5r36o9Z9D0Ano/oGERGpG8/7ETkHfkIiInIFYu3HDz4ALl4EPv4YiIiQ195vvwGiDv2DDwLr1tl0HRMtqFixIr7//ntcvHgRL774IgIDA2W1d/jwYfTv3x81a9bEnDlzYDbbdi0mIiIiNetYqaNibR++cRijNo9C31V9sfrsahjNRsX6ItKCGi1aKtp+7MUL+P3LT/Ddq8/i8IZ1MBoMivZHRERERNbjDEIiUgSvJFK5zExg/vzcZOH58/LbE2sfihmFffoALnilcFpaGiZPnozZs2dLC3nLVaFCBbz88svSl4ecdSSJiIg0IDU7Fe2XtEeGUf6s/OKU9y+PofWGolf1XvB2t+3ah0RakJWejlkjh8CQlWmX/vxCQnFP115o1LELPH1kLHtARESqwvN+RM6BCUIiUgQPFDTCaAQWLwamTgWOHpXfXs2awNtvA4MGATLW6dOqrKwsfP755/jyyy9x5coV2e2J18vIkSPxzjvvwFfOOpJEREQqN/HviVh8arHd+gvzDsOguoPwaK1HEeAZYLd+idRgw5wZOLR+rV379PbzR5OHu6NJl+7wCZBXfYOIiByP5/2InAMThESkCC0fKMyfPx9RUVGIjIzE0KFD4RKxiZKWa9YAU6YAu3fLb69CBeCNN4DhwwE/P009J7boS5QI/fbbbzFt2jScPXtWdkxicXARy/jx4xESEiK7PXIuan7PclV8Tlx3fLS6bWqIOyYtBv1X90dilg3WSi4Bfw9/PFb7MQyqMwhhPmGqGR+tHfuQtiTH3sCP77yMzJRku/ft4eWNhh0fwj3deiMgNNyqNrjPqg+fE9cdH61um1rjVktcxcVhSknB2R9/Qq0XntfkeT8iuoVrEBIREaDTAT16AH//DWzaBHTqJK+9S5eAV14BKlcGJk0CEhLgSnQ6nTTz79SpU1i4cCEaNGggq72kpCR88cUXUunRp59+2iazE4mIiNQkwi8CX7b/El56L7v2m2pIxZwjc/DQsocweddkXE69bNf+iRwhMLwUer0xBu4e9q/4IUqb/vPbSsx5cTj+nPUlEmJ4XEtEpBWGq1dxdfz7OP1gW9z43/8cHQ4R2QBnEBKRIrQ8g/DgwYNITExEcHAwGjduDJeNbd++3NKjv/4qv62AAOC554BXXwUiIlS93Ur1tW7dOrz//vvYbYMZmp6enujZs6e07mGNGjVsEh9pl5rfs1wVnxPXHR+tbpua4j5w/QBGbRpVopmEokRo09JNsePKDhjNRln96930eKTKIxhWfxiqh1R32Pg4w7EPqd/lk8exYtqkEs0k9A4IROdnXsLlk0dxaMM6GLOyZMXg5qZDzftaoXmv/ihduapFj+E+qz58Tlx3fLS6bWqNWy1xFRRH+v79uPTc8zAlJUn/jzca8cDZM5o870dEtzBBSESK0HKCkO5w4gTw0UfAggW5axbK4eUFDBsGvPkmUKUKXNHOnTsxduxYbNmyRSpFKoe7uzs6deqESZMmoWnTpjaLkYiIyJFEudHZh2dj9bnVyDBmFHo/X3dfdKvaDSMajpBmIIrH/XD8Byw9tbTIx1mqXcV2GN5gOBqWaii7LSI1lxvds2Ixjm/bLM3uK4yHtw/qtm6L5r0GSDMQhfTkJBxYtwYH161GZlqq7FiqNLlXShRWqF1PdltERGQ7Ijl48alhyMl3UQgThETOgQlCIlIEE4ROKCoKmDYNmDMHyCz85IFF9Hpg4EDgnXeAeq55AuDIkSMYM2YM1q5dC4PBIKstNzc3PPDAA/jggw/Qtm1bm8VIRETkSKnZqVKScH3UelxPv440Qxr8PPxQ2rc0OkV2Qveq3eHv6X/X4xIzE/HzyZ+x4MQCJGfLX2OteURzPN3gadxf9n7pby6RM8pKT8fx7ZtwetcOpCbEITsjA54+PvAPCUON+1qhbuv28PL1LfCx2Rnp0mzCf35bgbSEeNmxlK9dDy16D0DlRk35miMiUkFZ0fO9et+cOZiHCUIi58AEIREpgglCJ3btGvDFF8CMGUCy/JNu6NkTePddoEULuKILFy7gvffew6+//opMuYlXAPfcc480Q1GUICUiInJl6YZ0LDm1BD8c+wHXM67Lbq9uWF08Xf9pdKjUAXqd/q7fp2SnYPXZ1dhwcQOupV1DujFdmuVYxq8MOlbqiB7VehSY0CRyFsbsbBzbuhF7Vy9D0rUY2e2VrlwNzXv1Q40WLaEr4DWXlZ6G49s24fTunUiJj4UhMxMe3t4ICA2XHlO3TYdCk5pERGSZq++/j8RfFt31cyYIiZwDE4REpAgtJwjPnDmD1NRU+Pv7o3r13LVn1EINseXFEJiTg6rr1gGffSaecPkNt28PjB6de3vHlcL23G5HjfG1a9ekNQp/+uknqX+5ateujXfeeQeDBw+GTqezSYykTmp4X6Db8Tlx3fHR6rapNW5bxZVtypYSd98d/Q4XUy7KjqtyYGVpjUJR3tRD7yGVNv328LdYc25NkaVNfdx9pFmPeSVRi+IKxz7kvMwmE/79ezv2rFiC2Ogo2e2FlC2HZj36oW6bdtC7e+DIvr04tuF3xBw7BFN2dqGP8/Dylh6TvywqKYPvI647PlrdNrXGrZa48uLw0+lgGvoUctLT77oPE4REzsHd0QEQEanNX3/9haioKERGRqrqQFEtseWPoaqY+ffyy8B33wGffAJclHHSbdOm3K9mzXIThT16AP8ltuy53Y4a4zJlymDmzJn46KOPpDUF58yZg4SEBKvbO3nyJIYOHYrx48fj9ddfx3PPPSetWUjORw3vC3Q7PieuOz5a3Ta1xm2ruDz1nuhbsy96Ve+F9RfXY+6RuTgZf9Lq9i4kX8C4neMw4+AMaWagKINqSSlTkTxcfGox/oz6E1+1/wqNSzcu9L6ucOxDzkun16POA21Ru2UbnDuwF7uXL8bV0/9a3V7C1Sv4c9aX2Ln0Z9Rodj8OblyHHAtK9Is1FQ+tX4t/d+1ArzfHonytOlbHQEXj+4jrjo9Wt02tcaslrrw4msfGonIByUEich6cUkBERPKIsj0vviguMQPmzxdT1+S1t3cv0Ls30KAB8OOPgMz1+bQmMDAQH3/8Ma5cuSIlCiMiip5hUBxxUD9q1ChUrFgREydOtEkZUyIiIi0SZUG7VO6Cxd0WY2bHmbinzD2y2ruWfg0LTpZ8ncPErEQM/3M4Dlw/IKt/IrVz0+lQ7Z4WGDhxGgaMm4LIhk1ktZcaF4sD61ZblBzMLzMlGUsnvofLJ4/L6p+IyNWE/nvK0SEQkcJYYpSIFKHlEqOijILRaJRmW4myDmqihtiKjcFsBlasAKZMAf75R36HkZHIGjUKGQMHwj0gQPHtVsMY5ydiETML//e//0nrFcoVEhKCp59+WlqnUCQjSfvUts8SnxNXHh+tbpta47ZHXAevH5RmFG65tAX2FuwVjCXdlxRYbtSez4lan39yTtfOncHuFYtxes/fgJ1PR3kHBGLwh1+w3KgC+D7iuuOj1W1Ta9xqiSsvjut9+8F0+XKB92GJUSLnwAQhESlCywlCshHx52XDBmDqVGDzZvntif3ptdeA554T0+zgasxmMxYsWICpU6fixIkTstsTHzYef/xxfPDBB1J5UyIiIld2KuGUtEbhuvPrYMox2a3fATUHYOz9Y+3WH5FaxF2Oxt6Vy3Dir83SmoX20qjTw+g4/AW79UdEpEWZx48jYeEvSFyypND7MEFI5ByYICQiRTBBSLfZtSt3RuHq1fLbCgrKLWkq1j500f1p9erVmDBhAv6xwQxNLy8v9O7dG1OmTEGVKlVsEh8REZFWRadE4/tj32P56eXINmcr3p+vuy829t8If0/1zF4gsqfkG9exb81yHNn4B4wG5V9zHt4+eHbm9/ASyyQQEdFN5qwspPzxBxIW/IyMQ4eKvT8ThETOgQlCIlIEE4RUoCNHgI8+AhYuzC1FKoePDzBiBPD660ClSnBF27Ztk0qFbt++HXL/nIsSJl26dMHkyZPRsGFDm8VIRESkRbEZsfjx+I9Y9O8ipBnSFO1rdIvRGFh7oKJ9EKldelIi9q9dhQPr1iA7I13RvtoPG4kmD3VTtA8iIq3IvnQJiYsWIXHpMpgSEix+HBOERM6BCUIiUoSWE4Tr1q1DTEwMIiIipISJmqghNpvEcO4c8MknwHffAdkyrxR2dwcGDwbefhuoVcspxrikDh48iNGjR2P9+vXSOgFy6HQ6tG3bFhMnTkTLli1tFiMpR4v7rLPjc+K646PVbVNr3GqIKzk7GRNXT8TWlK3IcMtQpI9mEc3w3UPfOWzb1TDORHmy0tNw8M/fsf/3lVLSUAkV6zbAgPFTFWnbVfF9xHXHR6vbpta47RVXjsmEtL/+QsLPC5G6bZtVa8IyQUjkHNwdHQARkdqIg7GoqCiokRpis0kMVasCM2cC48YBn32W+31qqnVtiYTYvHnA/PlA377Au+8CTZtqeoxLqnHjxvj9999x5swZvPfee1i5ciWysrKsXutw06ZN0lfz5s2lUqZq+sBEzrHPOjs+J647PlrdNrXGrYa4Aj0DUS+lHrwveiO5UjJO+J/A1bSrNu3jevp1h267GsaZKI+Xrx9a9OqPpo/0wNHN67F31TKkxN6waR+pCXE2bY/4PuLK46PVbVNr3ErHZUxIQNKyZUj4ZREMly4p1g8RaQcThEREdxBXauW/VRM1xGbTGMqWBT7+ODepN3068MUXQJyVH9jFFW9Ll+Z+de4MjB4NtGkDuLlpboytVb16dSxatAhXrlyRSo+K79PSrC+LtmfPHjz88MOoX7++NEPx0UcflWYYkrpoeZ91VnxOXHd8tLptao1bLXHlj2Na52lo80sbpBqsvLCpAHEZcTCYDPDQexTYp6uMM1F+Hp5eUhnQhh26YOaIx5GVbruyo2JmoslohF5UIiGb4PuI646PVrdNrXErEZcoHph56BASFi5E8tp1yJFbxYmInApLjBKRIrRcYpQcSCSzZs8Gpk0DLl+W39799+cmCrt2LXGi0BkkJCTggw8+wLx585CUlCS7vWrVquH111/Hs88+y0QhERG5rK6/dsXFlIs2bbOMbxkMrTcUfWr0ga+Hr03bJtK6uS+PQGKMbWfuBpYqjXu790H9dp2kZCQRkbMxp6cj6bffpMRg1vETNm+fJUaJnAMThESkCCYISRZRHvOnn4APPwTO3H7AaZUGDXJnKfbvn7tmoYtJT0/HRx99hG+++UZ6HcpVrlw5vPTSS3j11Vfh5cUTKkRE5FqG/TEMe2P2KtJ2sFcwBtUZhMdqP4YgryBF+iDSmsUT3kX08SOKtO0bFIymj/RE486PSOVNiYi0LuvceST8shBJy1fAnJJiw5ZFCuHWhddMEBI5ByYIiUgRTBCSTZhMwLJlwJQpwKFD8turVg146y3gyScBF0xsGQwGfPXVV/j8888RHR0tu72wsDA888wzePfddxEQEGCTGImIiNTu5xM/Y+qeqYr24efhhwG1BmBI3SEI9wlXtC8itTuwbjU2zZulaB8iOdj4oa5o+nAPKWlIRKQlOUYjUjZtkmYLpv+9y2bt6tzNCKycgZDqaTAbdLi0PQSmbL30OyYIiZwDE4REpAgtJwhTU1NhNBrh7u4Of39/qIkaYnNEDKniqrd16+Dz2WfQ//23/AbLlQNeew149lngjm1QwxgrzWw24/vvv8eHH36IU6dOyW4vMDAQgwYNwoQJExAezpOY9uYK+6zW8Dlx3fHR6rapNW61xHVnHKnZqWi/pD0yjBmK9+2p80TvGr2l8qMVAio49TgTFUasPzhr5BAYsjIV78vd0wsN2nfGvd17IzD89s+zVDi+j7ju+Gh129QWtyklBUkrVyFx7VoYr11DTkYG9P5+8CgTgYDOnRHUqyf0BcRpuH4diUuWIHHxEulxtuIZaEBIjTQEVc6A3uNW6sCQpkPsiQAkXfBBXKaZCUIiJ8AEIREpQssJwvnz5yMqKgqRkZEYOnQo1EQNsTkihtv6FLMAp04F1q6V33BICDBqFPDSS2I6nOqffyUsW7YMkyZNwsGDB2W35ePjg/79+0vtVaxY0SbxUfFcbZ/VAj4nrjs+Wt02tcatlrgKimPi3xOx+NRiu8Wgd9Pj4SoP4+n6T6N6SHWnHGeiomyYMwOH1tvg+N9COr0edR5oh2Y9+yKsPI9ri8P3EdcdH61um1riNly9ithvZiFp9WrkpKcXej83X18E9eiO8GefhXtEBNL37kXCzwuRsmEDYDTaJhi3HARUyERojTT4lMqG261qoncxGdxw9qQXav16XZPn/YjoFl2+74mIiNSvdWvg99+B/fuBAQNQ5FFrcRISgAkTgMhI4PXXgcuX4Wr69u2LAwcOYMOGDWjVqhXcZIxnRkYGfvjhB1SvXh19+vTByZMnbRorERGRWoxoOEJaL9BeTDkmrDm3Br1X9caoTaNw+MZhu/VNpAbNew2Ad0Cg3fozm0w4tnUD5r/+PFb9bwqunbPBuuhERPmk79+P8716I3HRoiKTg4L4feIvi3D2ka4407ETLg55Einr1tkkOejuY0J4/WRU73ENFVolwLd00clBQcwqDKladMxEpA2cQUhEitDyDMIzZ85I5SZEmQmR6FATNcTmiBiK7PP0aeDjj4HvvxeL7MnryNMTSb174/Ljj8Ozbl3VPf/2sHfvXowZMwYbN26ESawBKYNer0f79u0xefJkNGvWzGYxkvreF+h2fE5cd3y0um1qjVstcRUWx4HrBzDizxHIMmU5JK4WES0wvOFw6VbOBT5qGWei4lw+eRxLJ42B0ZDtkP4jGzZBi94DUKFOfVmvOWfE9xHXHR+tbpuj4xbJwYtPDUNOlmOOIQS/MlkIrpGGgHKZcLNiCtGNNDNKT0vV5Hk/IrqFCUIiUoSWE4SkUZcuAZ9+Cnz7LVDM1XfF0ulyZye+8w7QqBFckZj9995772HNmjXIzpZ3EkacQLn//vvxwQcfoEOHDjaLkYiIyNFEklDM6EvMSrT4MUFeQehZrSfWR63H1bSrsmOoH1ZfShS2q9gOOmvO8BFpLEm4YtokZKYkW/wYb/8A1G3dDqd270BqfJzsGMrWrI0WvQagatNmTBQSkVVlRcXMQVNSkt371nmYEVwlHcHV0+AVWMwFwXpPoEZnoEF/wCcE+HkAYLy1FiwThETOgQlCIlIEE4TkMLGxwFdfAV9+CSRafrKuUF27Au++C7RqBVcUHR0tzShcsmSJVEJUrkaNGmHs2LFSaVMiIiJnEJMWg9mHZ2P1udXIMBb+t9LX3RfdqnaTypNG+EXAYDZg7fm1mHNkDs4nnZcdR7Wgani6wdPoUqULPHQestsjUqvk2BvYs2Ixjm/bDEPWrZPVd/Lw9kHd1m2l8qSB4aVgMhpwfPtm7F25FAlXr8iOI7xSZTTv1R+17ntAWrOQiMgSV99/XyoXak9eIdkIrZ6OwMgM6NyLSAWIC42qPAg06AfU7gb45CunfnEXsHAgkBEv/ZcJQiLnwAQhESmCCUJyuJQUYNas3FmFMTHy22vTBhg9GujcWd66hxoVGxuLCRMmSGsMJidbfsV2YWrUqIG3334bTz31FHRixiYREZHGpWanSklCMTPwevp1pBnS4Ofhh9K+pdEpshO6V+0Of0//ux5nzjFj88XNmH1kNo7FHZMdRzm/cniq/lPoVb0XvN29ZbdHpFZZ6ek4vn0TTu/agdSEOGRnZMDTxwf+IWGocV8r1G3dHl6+vnc9zmw24fTuv7F7xWLcuHBOdhzBZcqiWY++qPtgB7h7MDlPRIUzpabidOvWyMko/OIGW3HT5SCwUgZCaqTBO9RQ9GmMCs1yZwrW7QUElCn8fkmXgO2fAocW4UZiChOERE6ACUIiUoSWE4QHDx5EYmIigoOD0bhxY6iJGmJzRAyy+szMzF2f8KOPgPPyr85Hkya5Mwr79BGL7MHVpKWlSWsKfvvtt4iLk1+iqWLFinjllVfw0ksvwYMnVDT7vkC343PiuuOj1W1Ta9xqictecYiP5n9f/Rtzj8zFnpg9stsL8w7D4LqD8WitRwtMTKZkp2D12dVYcWwFYrNikY1sBPkEoYxfGXSs1BE9qvUo8HFEjmar16R4zV04tB+7ly/G5ZPyk/N+IaG4t2svNOz0MDy9fe76fVZ6Go5v24TTu3ciJT4WhsxMeHh7IyA0HDVatETdNh0KTGhqgVrer9XKmcdHq9vmqLjjf1qAa5MmKdqHh58RIdXTEFQ1A+5e5sLvWLouUL9v7ldolZKNT2Yybmydg9JdXtfkeT8iusU93/dERPTfgVBUVBQiIyNVd4CrhtgcEYOsPr29gWefBZ5+Gli8GJg6FTh61PpgDhzIXZ+wZk3g7beBQYMAT0+4Cj8/P0yZMgXjx4/H559/ji+//BJXrlyRVcL09ddfx0cffYSRI0dKswp9NXpixJXfF+h2fE5cd3y0um1qjVstcdkrDrGWWctyLaWvKfOnYEvGFlz1tX6NwrjMOHy+/3Mp4fhY7ccwqO4ghHqHSiVRvz38LdacW3NXSdSklCRcTLmIvTF7pceKWY95JVGJ1MJWr0nxmqvS+B7p69LJY9izYgnOH9hndXtpCfHY+tN3UsKxycPd0aRLd/gEBEolUXcvX4QT27cUWBI1MeYqoo8fwfafv0fdNu1ulkTVErW8X6uVM4+PVrfN3nGb09KQuv0vxH79tUI95MC/XJaUGPQrm1X4bMHgSkD9frklRMvUs358vAOBpoMB3J4gJCLtYYKQiIhcg7s78PjjwGOPAb/9BkyZAuzaZX17p07lJh3HjwfeeAMYPlxkz+AqvLy8pGTem2++Kc0mnDZtGs6ePWt1e+JKww8++ABffPGFVHZ03LhxCAkJsWnMREREWlEO5dDqeiv4RfohtlqstFahKEVqjRRDilS+9MfjP6J1hdbYdXWXNHuwOCJ5uPjUYvwZ9Se+av8VGpfWzolfopKqULseKrxTD9cvnJMShad27UCOla+5zLRU/L10IfatXo6qTZvhwuH9yEpLK/ZxInl4aP1a/LtrB3q9ORbla9Wxqn8iUgdjbCxSNm9G6oaNSPv7b+RkZ9u+E7cchNVORXC1dHj6mwq+j18poF6f3KSgKCXqgkumEFHhWGKUiBSh5RKj5CLEn7+tW3MThevXy28vPBx4+WXghRcAF0xsmc1mLF68WJpdeOTIEdntiVmEjz32GCZOnIhy5crZJEYiIiKtik6Jxvyj87H8zHIYzAa79++l98LszrPRpHQTu/dN5AgJVy9j76plOLZ1E8wmo937d/fwRL8xk1C+dl27901E1suOikLKho1I2bgRGaL6kMKn3fXeJtTsde3uX3gFAnW65yYFK7cB9LafI8TzfkTOgQlCIlIEDxRIU/btyy09uny5/AP4gADgueeAV18FIlyzHNe6devw/vvvY/fu3bLb8vT0RK9evaR1D6tXr26T+IiIiLTqRvoNaSbgon8XId2Ybte+g72CsaT7EpYbJZeSEheLf35bjkMb1sGYlWXXvr0DAjH4wy80V26UyJWI0+qZx44jZeMGaaZg1unTdu3fM8CIal2v5/5H7wXU6pJbQrRGZ8DDW9G+ed6PyDkwQUhEiuCBAmnSiRPARx8BCxYARplXCnt5AcOGAW++CVS5fcFvV7Fz506MHTsWW7ZskWYYyuHu7o5OnTpJMxS1tLYFERGREpKykrDw5EIsOLEAiVmJdut3QM0BGHv/WLv1R6QW6clJOLBuDQ6uWy2VELWXRp0eRsfhL9itPyIqXo7BgPR9+27OFDTGxDgsFt/SWYgc0Rho0B+o3TV3bUA74Xk/IufABCERKYIHCqRpUVHAp58Cs2cDmZny2tLrgYEDgXfeAeoVvgi4MxMlR8eMGYO1a9fCYJBXFs3NzQ2tW7eWSo+2adPGZjESERFpUbohHctOL8P8Y/NxPf2/GQQK8nX3xcb+G+Hv6a94X0RqlJ2RLs0m/Oe3FUhLiFe8Pw9vHzw783t4+foq3heRMzGlpCBp5Sqk/PknDNdiYE5Ph87XFx5lIhDQuTOCevWE3t/yv2XmtDSk/rUjd6bglq0wJydDDcq01iN09lGH9M3zfkTOgQlCInLYgUJWVDK8Iu13dVN+RfW9dOlSXLp0CRUqVEC/fv0seozS8vouLLaiHmNrlsRgTd/WPCe2kr/v2/oSCajPPwdmzABs8QGgZ0/g3XeBFi1sFq+Sj7GVvL4vXLiA9957D7/++isy5SZeAdxzzz0YP348unfvDlvS2vium78SJxPPl+j1oYb9QenH2FJJ+xfvIxnnEuBTNUSR9yytj/Gd7+lqj9dZjiGUfk4U/5tcxGtJ6XiLikOp/bekxz7ZpmysObcGc4/MxcWUi4Xer056VZzwPVeieO98zOgWozGw9kDYgzO9P9jyMa4ab17/q/f+WaLXhxIxG7OzcWzrRuxdvQxJ1wqfPRTmVR5xWZdL1Padj2k/bCSaPNQNat4nSvqcuNo+nPeeXju4CroM7elU7xFqO4bQeaYh9ptZSFq1CjkZGYXe1+zpgUvVa0DXrg86vfREgfcxxsUhdfNmaaZg2s6dyMnOtmm8utCqMMefs/oxOnczqr9UDfpnf4etFXQccudzywQhkXPQOToAInJNKdsu4cbMQ0haH2X3vkWfom8RQ0FSU1ORlJQk3aot3oJiK4iS8RYXQ3Hja028lm63Ne6M97a+xMHulCnAxYu5axTKPdBduRK47z6gQwdg40ar1jtUYnyVlD/eypUrY8GCBVKicOTIkfAvwRWbBfnnn3/Qo0cP1K1bFz/88IPsMqZ3xquV8a1/MhQVYwMtfn04Ol4tja+1MYdG6dEuvjZKn/eAvWlhjPO/z2ohXmc5hihK/rjVFK8lf//tEW9hcSi5/5b02MdT74k+NfpgVa9V+KTNJ6gVUuuu+zxxoyv+F/UG+sR1sDhecV/xGPHYPOuj1sMenO39oSCM17qYxd9ZS18fSsXs7ukplf8c9tksPDLqTYRXjLzrPvWCW6FjuUGoFdjM4nbFfcVjxGPznN61A2rfJ8Qxj1Kf15xhHxbjUjU2VDpu10K8Wj6GiH7xf0hctKjI5KCgyzagWnZ51LlcCbE/7Lr58+yLFxH33TxceGIQTj/QGlfHjEXqli02Tw561u4OvzbvwKN6J4sfI+4rHiMeKwRWzoC+SW8o4c7jEGteb0SkDe6ODoCIXI84oEj6/Xzu9xtzr3AO6nT3ByoliIOavD7zYghoU+G2+1SvXh3BwcEIDw9XXbxN61RDcKNbsRVE6XjvHJ+i4i1ofK2Jt6g+5Sgo3gL7CgrKLRE6ahQyR/8P7vOmwz35mvUdb9qU+9WsGTB6NNCjB6Ar/podpcZXKYXFW6ZMGcycORMfffQRJk2ahDlz5iAhIcHqfk6cOIEnn3wS48aNw+uvv47nnntOWrPQVvFqYXxbGGsg3q34x6glXi2Mr5yYa97Iff+oGhcqtcExvl3e+2z1uDBNxOssxxAFxXtn3FWTwlQVb3F//+01vgXFofTrzdpjH71Ojy5VuuChyg/hr8t/Yc6ROdh/fb+U4BsUm5vkG3G9r3T7a9jGYpODeffNe+yCUr/ZpZSpVt7P8jBe+8Ys/s76VGoBU3V/h8es0+tRp9WDqH1/a5w7sBe7ly/G1dP/Sgm++iEPSPdpHNZeuv03eW+xycG8++Y99ljiDqQmxEHt+4Q45vEufx+yq/spHqsW9+F7TdUQ/N8S91qIV8vHEJ41esCclQXDmfXFJtu86/eXvs88bsCld+Yi+8gyZJ3N3QYl+TZ+BPrKuUm+vBhKEq9X7e7Q6c0Ir/0L0PBRRWLMfxxizeuNiLSDJUaJSBEFlRo4fvw4gi+4wbT1xl33L/VcI8XLUIhyCOKKpzsFPVKl0IOb/Afl+TFeF4/XZITv8fUI2LUAHvGFl/GyWN26uQnIxx4DPDxcbnxFudFPPvkEM6bPwLXrMhKv/4mIiMDzzz+PN998E97e3jaPV2vjm4fxOnfMjJfx5sd4GW9+w+Y+jg9OP3fXz2eXXlZokjB/cjC/1yKnISowRtF1CLU2voyXf5PzE6fYFo58DW1C+tz1u4NxmwpNEuZPDua34cpPSHaLwzMz5sNbZvUNZxhfgfEyXkvizTy6pNCkW/5kW35p2z4scclPi+hy4Fc6CwEVMuFZvjIS3D62SbylGm6B1+Nj4aj9IbOOF0uMEjkBlhglIruZ+vi7BSYHxYGFPT5Yij5EX3cSB7IFlUko7CCX8RbMpeLVuyO9wcO4NvwHZEz8Frj3XnnBHD8ODBkC1KgBfP01UEA5FGceX5HEe+XBp7B76C+Y3PctRJarKKvvmJgYaTZhuXLlpCRhsgXrRzrz+AqM1/ljZrzKYrzKYrzKuhaSJCUD7yQSgAWVGy0sOSjaEGsRphvT0XlZZ0w/MB0JmdZXAHCW8WW8ytNSzG5ubsjwTpWSgXcSCcCCyo0WlhwUbYi1CA2ZmZj94lPYtmAe0hL5mmO8ytJivG5ux+76uUioFVS+s7Bkm0jQ2TI5KNYHDKyUgXL3x6NmrxhUahuPkOrp8PM5gaDg1bLjDfL5GV5dn4Ij94fUv68o3j8RKY8zCInIbjMID760CmG+wbf9bOKmGZi15xe7xlbUAWzeFXGW3MdeGK8G4hV/SjdsyF2ncPNm+UGVKQO8+irw3HNAYKDLja85x4xV0VsxY9/POHn6X9kxiLUOH3/8cXzwwQdSeVNbx1vQfeyF8SpPazEzXmUxXmUxXmUM+2MY9sbsLTLxlzeT0JL75Ofj7oP+NfvjyXpPorTv7cf+rjK+eRiv8rQS8+IJ7yL6+JEiE395MwktuU9+eg8P1G/bCc169EFQ6QiXHN88jFdZWonXlJqK0y3vg3ul9oUm/vJm5hWVHCyuxKcl9N4mBJTPlGYK+pbOgk7/3y9K1QaqtMn9imwF+IYiZdUOJO00WxVvkOf3CBg+AqjUAvZS0HMdl56Ixl/1uO1nnEFIpD1MEBKRwxKEIjn47d5FUhkWeyvqQDYlJQXm7bEF/s5RddaLilew50G5mJ0lSkKKWV+ilKM94rWkTzlsGu+uXbmJwlWr5Acm1j588UXg5ZeBfAfZatofLCEn3tWrV2PChAn4559/ZMfh5eWFvn37SuseVqlSRZF4HeHKbycKfc9SY7xaG19rYzbdHwSvFqUVec/S+hjf+Z6u9njvxGMI14u3qOMQpeK15bHPzyd+xtQ9U4tNAAolSQ7m56HzQK/qvfBU/adQMUBeJQC17w9FYbzK00LMB9atxqZ5s4pNAAolSQ7m56bToXarB9G8Zz+EV4x0+Pim1XRX9POalveH/O/pnscyeNxuY/Hz5+Lah9OKTQAKSiQHPQOMCKiQISUGvcMMcBPrwgdH/pcQfBCo0hoIKOS8SSFJQuPpRTCbAM/ajxY4czDgqaGKJwcLOg65c39ggpDIOTBBSEQOSRDmJQcFR70NFXawWxBHfxBWU7zz589HVFQUIiMjMXToULvEa2mfqhrfo0eBDz8EFi4EzHcf9JeIjw8wYgTw+utApUrKxKswufFu2bIF48ePx/bt22W/Z3h4eKBLly6YPHkyGjRooEi89iReHwFnzGhhrKGJeLU2vtbEfKpULLanHlb0PUvLY1zQe7qa4y0I43WteIs7DlEiXlse+6Rmp6L9kvbIMGYUmSQsiCXJwfz0bno8XOVhPF3/aVQPqQ5n3B+Kw3iVt+nT5ah5I1y1MWelp2PWyCEwZGUWmSQsiCXJwTtVu/c+tOjVH2Vr1IKj9gl7fF7T8j6cf3z6Vu2o+nhVO74mIxB3Bqbz+5Cxdwcyjp5A/N8xMGeJrByKTBIWxNrkoHdY9s2Zgl6BRsC/zH/JQJEUbA2EVLa4rZQ/jyFpU7xF9w2qfBgBA3sCQcrvE4W9pvPvD0wQEjkHrkFIRHanf7AUJv32lXTgIL4cRRy4FlRLXY0H5YKIQZx01lK8Whtfm8Zbvz7w00/A6dPAyJFi+pr1wYk1Cb/8EqhWDRg2DPj3X5cb37Zt22Lr1q3Yv38/Hn74Ybi7u1sdi8FgkGYmNm7cGB06dMDOnTttHq+9HfWI5vuDimK+GJYER9PaGDNedcQr3ke0FK/WxtdR8fp7+qN71e43/y8SfgWtSSg3OSiYckxYc24Neq/qjZc3vYyjsUfh7ON7J8arPPF3drf7adXG7OXri7pt2t38v0j4FbQmoS2Sg8LZfbvw85jXsWTiaEQdOSj7Yjqt7ROMVx3xng2PsW28qTeAs5uRs/1LZM4YhITn78WV7jVwtls3nHpyMqKnb0Hslmu3JQcFkfDLmzFos+SgWw78IjIRcW8iqveMQZXuRoT3bQevxz4EXtgDvP4v0Hc20HRwiZKDQkDnepbtD53LImDkC3ZJDtpifyAi7eAMQiKy6wzCqv2aqOIg19Ir4tRyUJ6/zEPW7uvQ/53ksHhLWvLKFuOrdIlRS8o1yh7fq1eBzz4DZs4EUlPlBSnqlvTtC7z7LlJSS2tm/7Xl6+3MmTN47733sGLFCmRnZ8uOq3nz5lIpUzGzUIl4lZT/9eF3yqj6eLU2vtbEbM/3LC2OsTXlGtW6TzhTvI4si2v3v8klZOlr2pb7g63fR2LSYtB/dX8kZiXe/FlRMwmtSQ4W5v6y92NEwxG4t8y9cJNqr1nHmV5vjFfZco1qiDk59gZ+fOdlZKYk3/xZUTMJrU0OFiSiWg007z0A1e9pIZUitcc+oYZjHzXvw5aUa1RTvLdJugRsm4akXelIMQ0u8C4eCT8gtMwaeDR/DGj9esmSWIZMIPZf4Nox6ctw5iAyjp9C5uUMZMR5IiPeAzmmku/HRc0ktCQ5qHM3w69sljRL0D9SD32NlrfWESzTAJDx2iqI2vaH4l7TIt5zSw9wBiGRE7D+8nsiIrI7aa2mECOS4LjZKY74wGfPPgMCApCE4mdilVjZssDHH0tJPUyfDnzxBRAXZ11b4tqepUulL59mbZBRvR+yKzbKTRy6iOrVq2PRokW4cuUKxo4dK32flpZmdXt79uyRZibWr18fo0ePxqOPPgqdjT/02eP1kXLqkkNjoVxqSrCoEcdHnUJDQhGgsudGsb/JLnjsE+EXgS/bf4kRf45AlikL9vT31b+lr8alGkuJwtblW8tKFBLdTLBcvKSK94iCBIaXQq83xmDppDEwGuRfzFYSMWdPY9W0yQirUElao7BWyzbQy6i+YQn+bXfS8bm4C4bZAxG734R0fU941S34bimXfZCwIxBB+5chfPcKeIz45e418sRnWJFslBKBR6Vb85VjyDwdhYxYfW4yMM4DxnSxr4qvADiCzsOM8q1S4XtvY+hqtAWqPgiUawLoPeBKNLvPElGJcQYhEdl9DUI1XQ1nST19xms9xlsEkcyaPRuYNg24fFl2c1nl6yPlvkHIrHb/bYlCVxnfhIQEfPDBB5g3bx6SkuQn0KtVq4aX+o9Ab/N90LkVnih0lfFVgtbi1WLMjFdZjFdZjFcZB64fwKhNo9D+yj3FrkOYN4sw2CsYT9R+AusvrsephFOyY6gVUgvDGw5Hp0qdoNfpnWp88zBe5Wkl5ssnj2PFtEmIdKtV7DqEebMIvf0DcG+33ji9529cO1d8KdXiBJYqjWbd+6Jeu47w8PRyqvHNw3gVcHEX0qf1xaUt/tBVeqjYdf3yZuXpPU2o0C4VvoMn5f5CSggeR07MMWTHpiJTSgTmJgMzEz2AHNtfMGLJOoSFzSL0LQtE/rkf8PCBvWhifyggXq5BSOQcmCAkIrsnCNVycKOqxbYtwHidNN6srNy1Cj/8UNTNlN1cdqmqUqIwo3ZbURfF5cY3PT0dH330Eb755hubrHFatnQEht03AMNq9YCnzrPA+7jS+LpqvFqMmfEqi/Eqi/Eq68qGEzBvsGzW1Z56Z9Cyz8PSDERx6mDbpW349si3OHzjsOw4KgdWxrD6w9CtWjd46DycZnwZr/K0FvONtSeRtfWGRfe9HnYF1Z9qL81AFK+5i0cOYfeKxYg+Jv815xsUjHu69kKjTo9I6yQ6y/gyXgUkXUL6hDa4+Icn3Kt0LjbZdmfSzU2fgwoPiGo5blIiUCQERWLQlK18hRZLkoN3xptfmU7hCP1qO+xFE/tDIfEyQUjkHJggJCKHJAgdfXBT2EGYiOn8+fMIPXH3Y9Qar1DY75SI96+//kJsbCzCw8PxwAMP2CVeS/rU/PiaTMCyZcCUKcChQ7KbMwaXR0qLgUir3wVw93S5/ddgMOCrr77C559/jujoaMgVFhKKp/oMwmv9n4dp892JR0eO7+Hvtxf6nmXv9wfNvN7sEHN0pTSYGvor8p6l9TG+8z1d7fHeiccQrhdvUcchSsWr1LFPYfEuKLMWZjczBsd0LTZecQphb8xezD4yG7uu7pIdU1m/shhabyj61OgDb3dvi+Ll/uua8Wox5sLi/dewDyaDAXV977co3iunTmLPyiU4u2+37Ji8fP3Q+KFuaPpID/gGBtlkfA/pLij6eU3r+0Pee3rVpLCCjxMClwPGbCSlP6qKeA0/jcT5jzcXOnNQJNaEwn5X3Pp+9k4OWhqvWHew+oyXoH/wRYfuv+JzhJ+fn0OPKQs6DrkzXiYIiZwD1yAkIofJO7Cw98FuUR8iRCz7z21AgLsZLYw1NBHvnfEpHe+ZM2cQFRWFyMjIAj/8KRFvcX3KUVi8p0rFon2b1lbFaxW9HhgwAOjfH1i3LjdR+NdfVjfnnngZIX9MQ+CO+UhpNgDJ2T1cav/18PDAa6+9hldeeUUqO/rxxx/j1Cnry6LFJcRj2twv8e2S+Rj4SD88H9EHoV6BNotXzvha8sHRXu8PWns/UzLmihf9cCrjBmDn/KAWxjj/e3ojc2XVx5sfjyGUpZq/yRYehyg5vkoc+xQ1vpnJXlJfQU2rFBuvWD+wednm0peYSTjnyBxsjt5sdVxX065i6p6pmHV4FobUHYJHaz0Kf0//QuNdV20Plsd+iHRjOnpUbIv+0e1Vvf9q7fWm1ni1GHNR8Xb47z2toPsUFG+5mrXR682xiL14AXtWLsXJnduQYzZbFVdWehp2L1+Ef35bgQYdOkvlTAPDSxca7wX3E/h32Q8wZGaiun9T1Pa49654s0vF4lDqYUU+rznD/iDe0wPOmBFqDLvrd0HucxGQvTz3P+6pSDI+bb94xZyRjAQgKTp3fcDEaCDuLGJ/WQtdpZ4WJQDvvE/e/+2dJCwqOWhpvIFVjdC3GGKHaIv+m7z9xmFE+kai7yMdHbb/3nkcUpKZjkSkLUwQEpHdBHasBOxMdujBuSUfIvz9/REdfgkR7imIvBSgynijKqSgVb4Y8uKxx8GjGJ+goCDp1toPaSWNt6g+5Sgs3kMB0ciI9HTI+ErrBz78cO7X9u3A1KnA2rVWN6dPjUXw5q8R+PePSN3TFylvv4aA7g1gD0rtDyWh0+nw9NNPS1/Lli3DpEmTcPDgQavbS05OxqxfvsMPPgvR457OeL3pkyjrE26zeLU2vs4cry1irnkjXGqDY4wC39NrpJbWRLzOdgxR0PgePnxYtfE69G9yEcchSr/ebH3sU1S88devIehSbl8ljbdhqYb4sv2XOJ1wWkoUrruwDuYc65IW8Znx+Hz/55h7dC7G4WXUP1Su4HURPTcCKbn//85/KRJLJ9y1nqJa9l8tv5+pKV4txqxUvOGVKuORl95AywGDsG/1MhzdskGaiWgNY3YWDqxdjUN//o4HGj2KsgkVC10XMc+hxI3IDEy+az1FccyTEVADGf4Fl+R39f1BHPNEGm//Oyt4JPyA+BPbcC29NMxGN+jcd8Czui90lQfaJl5jNpB8OTf5d/Mr+lZCUHwZ0m97iMnghnTdYHjXLT7Zlve9I5OEXhH+8KzaBijdS1a8Or0Z4f2NgPeti0CVotTfZFvKfxxSWLzSOb6vFAuBiOyEJUaJyG4lRkWpAe8TWQUeWJR6rhG8IpU9EMuKSsaNmYdKVKKhsAMhxns3xqtgvAcOwDR2InS/rYAb5P3ZNnv4wPzk03B//x2gfHm44vhu3LgR48ePx86dO6UyaXJ4eniiU5MH8da9T6FqQO52cf/VfrxajJnxMt78GC/jdVS80cnRUoJv5dmVMJqNVsVbJ70q/hf1RsHJwbCNBT6mT1yHu5KElsRrC9wf+DfZkfGmJsRLMwEPrV8LQ2aGVfGGeZVHx3KDik0O5lcrsNldSUJL4lV0fDuXRYDfJuDEqtykWHYa4OkHBJZHivtQJB0to6p4s44vRvapDSWaDXdbvDdn/xWS+BNfKTHijgX2IR5uytQhO8Ud2an6/27dkWWsA68Wo0tUOrSweNO2fQhz/DnYij7AGz51qsGnSTP43NcG3g0awBhnLnB8rYm31OCy8KpXHUpypvezzDpeBZ73Y4lRIm1hgpCI7JogFAcKdx7cBHSohKBOkXaJK2l9FFI2XixR/XbGaznGq6yU+Vvg9tmn8Du6Dm5WnnS7ydMTePJJ4K23gOrVXXJ89+zZgzFjxmDTpk0wiTUgZdDrdGjTsCXGPvsW2o3sDntQ+/hqPV4txsx4lcV4lcV4nSvemLQYfH/seyw9tRSZpswSx/vEja4YFNvVouRgYUnCtPs8UKvXfbAH7g/K01rM9o43MzUVB/5Yjf1rVyMz5faqPZaoF9wK9UMesCg5WGiSsJEPKgy8vfyo3ca38mEExE0GDGmFPiYl51EkZQ12zP6w5ghS/kos0Tp9dyaxAjwXI6hRBpAen2/2X+Hbe1sSMNUd2Sm3koDi1pCqh9moK/BxnrW7w6t2d1nxZp1cjeyTq2EtN3c9vGtWgU/T5vBu0hQ+jRrDo3w5qcx1cfuDVeN7rw5B/VrBHpzl/ayo835EpB1MEBKRIoo7UMg7uLH3B8v8BzclWdyZ8VqO8Sofb/ryfQiLXQvP3xYC6beXhCkxnS537cN33wUaNoQrju/x48elROGaNWtgsLJEUx7xgfX+++/HBx98gA4dOkBpWhhfLcerxZgZr7IYr7IYr/PFK8qGLjixAAtPLESK4b+6oCVMElqSHLwzSfhT+G/4rcIOLOm+BBF+EbAH7g/K01rMjohXrBN4eOMf2LfmV6TGx1mVJLQkOXhnkvBowl84azqCwR9+gcDwUvYdX5+fEZDzs0WPSTH2ltb4s2cySLLmVcRuNCDT61GLkld3JrGy/12FiHLz4Vsqu+AkYNZ/MwFFEvC/BKCYFWhIcS80CVicvCShNfFakxwUyT+fJk3g07ARfBo3glft2tCJi1pLuD/4635GxuHfkHTBBzlFbLvO3Qz/e9ohp+wT9t8fnOT9jAlCIufABCERKcKSAwVRqsAeJWkKYk3fjFfZvhmvFX3HxgJffgl89RWQeOuKVKt17ZqbKGzVyiXHNzo6WkoULlmyBBkZ1pVoyq9Ro0YYO3Ys+va9u+SZK46vVuO1tn+OsbJ9M15l+2a8yvbtivGmZKdg0b+L8OPxH6WkYUnKjZ7wLVl5uvyPGVBzAMbePxb2wv1BeVqL+ba+M5OAQ4sKLIGJOj2ARo9J65/ZIl6jwYAT2zdj76qlSLh6pUTlRuOyLpeor/yPadTpYXQc/gLs4uIuZM17C145ueUPTdluUlIo5ZIPDOn6/9b0y4GHrwkBFTIQVCUDeo8cZJlrw8vzAjBkJVBJxixjkzG3xGdGfO6svsJu027AcHIfzv9RCjn+1UtcclMXWlV6jM7TjLLNEmE2uNksCWhp37Z+jM7fHz4NG8C7USP4NGwIn0aN4B4aapvXW3AysP1TmPYuQtKZHKRE+8CYoZfWVhTPv7uPCQEVMxBUQwf9vQOQVeUFxcuKOuX7GROERE6DCUIiUoSWDxTmz5+PqKgoREZGYujQoVATNcTmiBjs2acaxrjEUlKAb74B/vc/IEasMyFTmzbA6NFA585iShxcTWxsrLRG4U8//YTk5JKXaLpTjRo18Pbbb+Opp56CTszYtDFN7rNOjs+J646PVrdNrXGrJS4e+9hOhjEDv57+FfOOzsO19GtQmq+7Lzb23wh/T3/F+9I8C5NXapC3z1avWBpP1NOrP2ZRCnLbNODw4qJLQnr4AY0eBVq/DgRZNqOoOGazCad378TuFUtw44Lt1oIrlN4dL875GV6+vsqP6TcPSAk6Q5oOsccDkBRV9IwxN3czgipnILxOCjz8zIBPKDBye+7+YkgvJMmXUHjyT7xmLHR1XxASz/jBVXnVqiUlAX0a5SYDPatWhZsCn4tuk5kMHF4EHF8JJF8BslMB8bcgsBxQtycWHDXhTPQ1hx9jaPnYR8vn/YjoFvd83xMRKapXy5oY2LMLhrz1CQJL2+YDjy0kXbuIHz95G8t++xOXYlORkmmEr6cOZYO9kXr0D9XFm5ORhCNrvkG7j16X4k3NMsHfS48K4f7o27Wz6sdX7fF6mDPQLOcAmsSsAr78Qr0nGvKID6bHFwGltgJvlAZ2moCtSUDc3eVnLLZtW+5Xkya5icLevQG93mVOPoWHh2PGjBn48MMPMXXSBHw75zvExSdY3d7p06cxfPhwTJgwAa+88gpeeukleHh4QBEaGF9Nx2tpzGqitTHWeLwDkmKRkaNDdkw4sDtbM+P7ULoOB3IqIsFcBmqiyb/JGtx/H4qZBc+cWPhEm3PHWcF4fdx98ESdJ6SZfWvOrcHco3MRlRwFpaQb07H63GoMrD0QdqeV/aG45JWYCXRhO7DhfZsnr6zla0xA15wNaBR9EriYre6YL+4CFj6Wm2gqjhj/fd8Bx1YAA38BKrWQ3b1Op0et+1uj5n0P4MLBf6RE4eWTx6AYkxHHt29Ck4e6QVHbP5XGNP2GJy5tD4Upu/hkk0geiiRdykVvVGgTD9/weGB6M8BsEjU6FQvVKGY2nveBq/KpWR6VV66wf8fi/bX5iNyvAhiOz7d7SEREasQZhESkiIKuJMrj5+mGwR3qY/Qnc1CxXnM4SvSxPZj8xtP4adMxpGUX/laopnjHvjgIS3eecWi8Bw8eRGJiIoKDg9G4cWO7jK+lfdri5Ijp4C/QmzLsemWvzU/mmHOAo0ZgRxZw3Sy/r5o1gbffBgYNAkqwDoTF8ap8fLOy0vD5sXB8+Vcirly3vCxaYcR748iRI6VZhb42uLpavD4yYk6jRswqhF/eqLnx1US8JYw5tnwHnI7oAZ+IGsq9Z2l4jAt8T1dxvAVy0nhNeh/omwxUTbxq+Ztc7HGIAvuDosc+Ktp/TWYT1ketx+wjs3Eq4ZQifTSLaIbvHvoOdqOi8bVp8iqPmHVlo+SVVS7ugvHH/nA3JKs/ZjG+P/QEjJklf6y7t/wSmIW4dPIY9qxYgvMH9kEJFes2wIDxUwu/g9mcO2NPJM3FrK7830u36fm+/+/LkO/7zERpbNOvu+PiljDkmEpe8cRNn4NKbeMKXNPPEnnr/hkzdTBlilv97d/n/S4j9+eA61VlyVPmnTcQOvRpqI1dzjFoOC5L4uAMQiLnwAQhEdk9QZgnzFeHVT9+g5Z9Cr6iS0k7ls1CjyHPIz7d8uQJ43XeeDV3csTSeMWf+FNGYHs2cNkkv98KFYA33wSGDwdKkthykvE15uRg9qlwfPpXGs5eui67m6CgIKns6Lhx4xASEmLzeLU2vmo/GampmBmvshivshivS8YrTktsu7QN3x75FodvHLZp25GBkVjTew1ceXy1lLxympjzlcDMY+kaeTfllcBUKIF8/cI5KVH479/bbdpuiL8ewzr550vu3ZHwE/+XSZQVPf9HaYtmDhZG72lClYdu5JYbFe9DZvEc3Z30E7e5/8+XCMzSATmum/SzlM5Lj+o7dkHvzzLPzogJQiLnwAQhETksQSh4uwMbfvkGrfo+C3smrzo+NhKZxpI/lvE6X7yaOtFgbbziT/0FE7DDAJw1yI8hPBx4+WXghReA4hJbTji+5pwcLIoKxZS/DDh69orsLsUswsceewwTJ05EuXLlbB6v1sa3UDwZaRnGqyzGqyzGC1ePV5yeaP1LayRlW762V3ECPAKw7bFtcNcpvMKKBsa3qORViSmcvNJiwu02a17NLRf6XzLLqjXyhLo9gftfyi2BacwSG33Hrfi5+D6z8N/ddpvXzq2ffb07AhlGGy0nIHZnNxOGVN2PEE8rXgt2XtPP3ccIvVcOk35iLEqVgmdkJDwqRyLrxDFkHjspu83gPt1QdsonNomP1IcJQiLnwAQhETk0QZg3c+zAnr/tUr5TlL1s3Pz+Es1suxPjdZ54NXeiwRbxxvkBUY2B1WvlxxMQADz3HPDqq0BEhEuO7y5vD0zYBew5ES27ey8vL/Ts2ROTJ09G9erVFYlXa+Pr0Hi1GDPjZbyMl/E6Qbxdf+2KiykX7/q5T2YO2hzNQYt/cxCWkgPvbCDTE4gLcMPuWm7Y1sANGV4Fn9yv4F8BwxsMR49qPeCh93Dp8b0zeWV1vMK9w4Bun8mLRZySEmvAielbOf/d3vx/vu/XjwUOL5KfcKvSFmg8EDAbAZMh91b0Id3e8X+rfm/KTdZd/keKuyRr5OWf2Za7Rp4NLuyzwNwz9yLRYNs18tyQg5qBN9AiLBqlvNOt3jVE+VCzwQ0mgxvMRh3M2W4wZOoQsycEOWbXTebJTgJGVoJnZGXpe0/xfaVK0OWrEGO4ehXne/aAKTnV6r70gf6osnIVPMqWtVH0pDZMEBI5ByYIicjhCUJhZOfamLnoT4vvn56egdi4otcCq1ihHNzcbv/Q8NyjnfHNn/KvhCtpvAaDAVdjii5JGFGmFDzvWN/NUfEKF6MvF/jz6MuXkJGegXLlyqBu7Tp2ifdC1AWkpaXDz88XlSMrw2Y2fgAcWSz/REODAUCHcbaLyx7xVhgIfDETWLwcMMksP+rlBQx6FBj1LFCpokuO7+kyZkzY744th6NhFuuqyODu7o5OHdpiypg30bh+HUXi1dr4OiRem8c81g7xTrRRvP2B9srFeyEqCulpaahw+nsEXlhro3jHWB6AtR9/Nk8GjiyxQbz9gHbv2SHeKcDRpfLjrd8XaDu6qABtsw1bpgLHfpUfb73ewINvF9JnIXEUc9+L0dFIT0+XZnxXEuW2he3TgOMr5cdbpzvwwKt3hRd96aJ0vOXj64OKFSreEWO+7y39+c6vgH9/lx9vzYeAFiPztf/f7c3u8v6fY8H/C/7dsBOzsTfl/M04wpJz0GenGa2P5sC7iHxJpgewrb4blrfUIS6w4MRBhEcAhoU3R5+QBvDS6W/Fcdtt/jHMKfw2/32OrwIu75M/vmXqA1Xb/pcZET/777bI/+eU4P6iZnoWcHZTbjJObrzis1ZwlXz93JHUu5nwMxeSACz5MagWEm75Y3XUGnklsTiqAaLTgxVrP9IzAU28rqA00nMTfdKXLjfxJ5J+//0/93e3/9+VZ/TZLAlYqRI8K0fCs2JF6Pwsn3WZvn8/Lg4dipzskr9u3Dw9UGn+9/Bt2gRqdebMGaSmpsLf39+yizNdLC5L4mCCkMg5MEFIRKpIEPp7ApdfC0BgIVf93mnZcQP6Lcko8j6mcQHQ5UsQJmfloNynKUizwefCksZ74oYJdb9OK/I+h0f6oUEZvSriFXQTkos85fdLXx88Wt9DNfHKoaUTDTaPN9EM7MwCDhgAK8rC3kY8XQ08gFaeQGm9S47vWQ93vLfTF2v3R8NolDeg4gKH1g0qYWIrI9qUTlEkXq2NryPi1WLMjFdZjFdZjFdZWoj35wB/TA0Plb6vdSkHby0xIaAElQqTfYCP++lxqkLhx5HhRhOGJiWjf0oqfG14SkQL46v1eLWQcFNqjTxby8sbH4gvhy2x1aC00NQMVLuegPCUDOljA8lLAuYmACNlJQEtSRJeeu45mJKSLX6MPigQFWZ+o+rkoDB//nxERUUhMjISQ4cOhVqoJS5L4mCCkMg5KFyEn4jIMqnZwI+HDHih+e0z6Gzph0MGmySvBMar/XjlnmgwZetxcXO4XU80KBJvsA54xAdo4wXszgb2ZgNZVgYnzq8dNuR+1XYHHvBCuqePS41vtbZxWPVwHM63CcGYXQFYtvcysrKsG1BxDde2w1F48DBwT60KGP+AG7pXuH1NJpfff+1AazEzXmUxXmUxXmVpJd4eqWn4PDQYla64YexCEzxLeL1NYAYwbqEJEwfq8W8hScJYdz2mhYVgTnAghiSl4LHkFATITBRqZXy1Gq9IuIlkpjXJQUE87tL2EEUTbvnFngiQlRzMG+trB4IQUjMtt9SmyU26FRMvb31/6+eW/158nzsm4go/D50b9HXNMOnlxVuceH8f6SswPUtKFEYkpTFRaIXSb7+FsKeesktfvk2bosqKFYidNQtJK1chJ6Pwi7RNHh4I69sH4c8+y7KiREQawhmERKSKGYRC28p6bH7ST7EZhO2+T8OWCzJLKVoZrzUzCB0ZrzUzCB0dr62u7E0xmbAqORnrU1IQYzQg3WyGr06HCHcPdAoIQM/AQPjr9Xa7sre4eEuq2Hgzc3KThLuygXT5hwjpfj64ERKOdLGmxR0lf20Sr8rH91qmO8btC8HPu64iNc269Vfyq1OlLN55wAuDqsTBlK5X/ZXpWruSXusxM15lMV5lMV5laS3eaZ6haLPYu0QzBwuaSfj2MH2h5UbzCzCZ8URyCgYlpyDIilLhWhtfrcUrXN0XhMQz8j8bBFRMR1jtNGn9utzqq26AVAH1v/+L25xb/8cd/5fWvfvvcTfvL1Vzdbv5vVi/Me2al6bKYx4tH46L4UF27dMvMxtVbySifEIKdDwzaRGdrw+qb9sGvb+/3fs2paYiaeVKpPzxJ4zXrsGUnga9rx/cwsPh1a4tArp1Q2BB69KrlCifKSq+iOUdRBlNtVBLXJbEwRmERM6BMwiJSDUuJyv7qeCSjdtnvNqO984re68aDJgVF4fVyUnIuPPaGZMJFw0G7MlIx/9uXEePwCA8ExaGsh4e0pW9op2y9ybZNV5rFRuvtxvQ2gu4zzO37KgoP5pk/XPhm5aByLRoZHh7IzY0DKniw0UJEoVaH98y3kbMeuAGPmnhiYkHymLuzutISCq8XGhxTpy/iifPA+PLlcKz1cPQLSsHehnnnrQ+vkrTWsyMV1mMV1mMV1lai7f332Zky0gO5s0k7L3TjDldctcalP5c5uRWRHcTt/99L36WBTfM8wvEIh9/9E1Ow8DkFISZbiW+cg8NxXpo+ToQSaP/vr1+ONBms8XC6qT+t7Thf3/g8y+NKPX5Xxx5/ee77233yx/zHfdNvOBjk3gvbguDX+ns3L7+W+pQSpTdXK4xt3+Lfp6XrLttucfc/4ucrSnj1gV6cqRE+0pfdDsxo+9qsD8M7rYZZ0ukeXviSMXSOF0mVEoUVoxLhl7Dcxj0QUHQh4fDXXyFhUEfHgb3MPH/MCT/8SfStm2T3Udgjx4OSQ4Kot/QJ56QvpyBmpKCaoxLLXEQkfI4g5CIVDODsJSnHv88UMGi+/5+PQ0jj8YWeZ8L7SrdNoPwnr8u4Ua27Wa4lSTe02kGdNh9pcj7/Nm8LGqLxfdUEK8QuSmqyBmE0+uFo0cZP9XEOzc6GX8nZKJegCfq+XuifoAnynrppXXcCiKu7k2L8ZZOSuxPT8cLly8hqQRXjAfr9ZhRvjya+IiZcTnwi8iEm4JVefLHK1tJ4jXnwPdaGgKjkuCRLneRQiDL01NKFCYHBlqeKHSi8c3KAeak+2L+mWu4Fhcvu6syoaF4olx5DDYY4GVtI040vqqOuUyW8mNsq9kKTh6vNZ9+RLzp120Xr29pG45vTiHx3rBhvOF3xlt4uzlWxpsR52mzeH1Cs2/Ge1d3Fj3/bkU+RsSbmSCqKNhidlAOvIINN/8k3tZVceNhwbZIM59yAEOKu83idfc1SS0VG+t/d7j9fgU2eTM2KS8kEkXG3NKHRGQ/8b7e2FOtLMw6hQ+yCuFpNKHyjURExibDw4qZvErQBwfnJvrCS0lJP5Hs04ukn/i+VDj00s/C4R4SAjfPwpfHMFy9ivO9+8CUmCgrlirLf2X5TlINziAkcg6cQUhEquGbo0PqZR+L7puZUvxid6Kt/AlCnxzxQcfkkHjTs4r/kCVOPKYmeasiXktkxXsi1eijmni3XInF1rQM/BmbcVsSr7aXF+p4eaOVnx9aFrBgu0gOPn0pGlklPGOcaDJhWHQ05laoiKa+vki7aruxVVyOW4niTYUvrlcIR0BqKsLi4uCTZf0l/V7Z2SgfcxWl4mIRHxKKxKAg5BR3EqKE8TpcMfE+iRwMCiuFJeXKY961a4i+ft3qrq7Fx+N/8fGYFxiI/hUrYbjJBP+SZj+cbHxVG7NINmoF41VWjhvSr2ks3hvaijcjzupLJhzADVmJyq+5bDtuMKbzNAKRMwpNz0Tzs1fxT5WIEs0k9DCaUOtKHG4E+uJakJ9VywoI2e56nCobhnOlQ1ApLglVbiTBy2i7z5eF8W3RAn4PtLo5208k/KQkYGgI3DxuLakhh0jqVfh6Bi4+NQw5VqxP7ublhQpff83kIBER2RyP7IlINcq42+bguzBiDTlRJtJWGK+64j1ZwActkcTblZ4ufaWZzXclCEVZUTFzsKTJwTzicS9euYxlkZWlcqNOzc0NKQEBSPH3h196upQo9Muwfk09T4MBEdevIfy/RGFCcDDM+dZ2dHZ6Nzc8lm3AgOAQrC0TgdlxsTh1pehZxkVJSE7Gt8eOYoGvL3pVroyROUCYSq68JiIiIiLtJAkfOBWNs6VDcDkkACZ94Rfy6U1maf1AUZ7Ux2BCpYQUpHp54GzpYFwJCUCOlYlCo14nJQkvhAehQnwKql5PhK9BfiWTguh8fVFhxnTFy3auW7cOMTExiHz2GZT/4ccSzSQUMwdFctC3aROoUd62RUREoEuXLtAKtcatlrjUEgcRKY8JQiJSjc4BAYq23ykgQFpDzlYYr3rijTcacc1Y9IfGOt53zyb4Ni6uRGVFCyKSkKKd8RpakF0WNzek+flJXz4ZGVKiMCAt1erm3E0mlI69gbD4OCQEhyA+JAQmd9c5PBGznLtmZ6NrQCC2NgjHN0mJOHTxotXtpaWnY8Hx41jm5YUuVargRZ0O5fKtoUREREREVBSR7Kt/ORa1rsZJScKYYH9keuhh0umgN5vhbTAhIjFVSg56mG+/0NI/y4BG0TdQMyYB50oHIzo0wOqSpeJxF8ODEF0qGDXqN8G9nR5Gqeo1ofP3x7UpU5G4aJHsbQ3s0d0ua/qJREtUVBQQGYkHlv+K2FmzkLRqNXLS04tMXor4wp99VtUzB29um8aoNW61xKWWOIhIea5zBo6IVM3XTYceYk0yCzX39cPCSpFF3ufO6xV7BgbifzeuI8MGS6+WNN7yHh7FxlvRw1M18Qo/FxNvpTtmzDky3hMWlGkRZUbzSzWZsCo5CbawOjkZr5cqBX8XmgEnZPj44FKFCvDKykRYXDwCU5KtXi1InGwIj49DaEI8EoOCERcaCqOzz8q8w4PZ2XjQxxf/1G+AGelp2H3+PKxdKjozKwsrTp7Eb+7uaFe1Kl7y8ES1YpLoRERERER5RPKvclyy9FUSgT16oHynjqgVEIDMnBwcObgHR3b9hezMW0tBlIQ4Hj51ZL/0Vb3ZfWjeqz/CRz6LlD/+uG0mnkGnw+UQf4sTmmJmnki+2YOYhZV3K5J9Zd9/H6XfeANJK1ci5Y8/Ybx2Dab0NOh9/eBepgwCHuqMoJ497ZK8tOW2aYla41ZLXGqJg4iU55Zj7ZknIqISLlZclEeDgu0yA2tCTAwWJVm/MHgexquueOfExeF/sTcK/b1I2+2tURPe+a5eXZCQgMnXr8FWxpQug8dDQuDKPLKzERYfj6DkJOhkHl6IRycFBiEuLBTZnlpaS8p2/nV3x1dZWdh2/hyMJnnrr+h0OrQUMwq9fdCQiUIiIiIibXJzg5u3N3ReXtKtm5cndF7euT/z9Mz9mbcXdJ65v9d5e8FN+t4r9zHSfW99L36fYzbjyptvWbU2XkGz3qpv23pXYisrPQ0H//gN//y+Ehk2uEizUv1GaFSvMUwTJiPDbMSZ0iFSWVNLS6L66txRad481ZbtJNLqeb/r16+jVKlSDouJiEqOCUIicniCMFivt9sabmLNub5RF6SykNZivOqL9/Url7E2JaXQ31f39MSqKlVv+9nQixdtWhK1uY8v5leqZLP2tMzdaEBofAKCExOhz5FX3lIcpKT4ByAuLAyZ3rfPAnUVF/V6zDAZ8cf588jOzpbdXtPKlfG8fwBa2nDNUCIiIiKnoNfDzd395hc8POAmvm77mft/P7v9526eHoD4fQ6Qsn49IPMCL8HNxwdVViyHe2iolNST4rFybb+iXH3/fST+Ir9kZ/Bjj0qz4wpjyMrE0c3rsXf1r0gp4gJPi/sLC0fKjevSbEFLeZjM6DbkWVTt0VN2/0SujAlCIufABCEROTRB6OXmhu8qVkQTH1/Yy/70dDx9KRpZVrz9MV51xvvIuXO4YCg8cdI9MBAflS1328+6nDuLizZMkER6eGBt1Wo2a88Z6EwmhCYkICQhHu4y13oUUn39EBsWJpU2FVdPu5pYnQ4zkIPVFy4gPcO6Ek351alQAc+GhKBjVra0FiIRERE5EfG3XSRNdLrchJL4Xtwajcix4TGwR6WK8IgoC+h1cNPp893q4Sb6FLeiDP9dvy/ofiLefPcXtzo9cowGxM38xiZxi4Rb5V8WSuUl70oEiu+tXC/PUQk3WzFcvYrzvfvcVrKzpMSYVln+q0Xr5ZmMRpzcsRV7VixB/JVLsDd3D0/0GzMJ5WvXtXvfRM6CCUIi58AEIRE5LEEoZorNKF8+Nxmk1yOgY0fpSkyliA+UKRs2SFdyiiTWi1cul2imG+PNZTQaYDbnQKdzg7u7h13iLazPPD8eOojD167h2PXrOBkbi+w7+h374IN49t5mt/2s6cyvcb2IReFLqrSvL/Y/9zyUkn98ZbPz/utmNiMkMVFaX9DDBuUts8qVQ2rzFsisWtVmiUItjW+SIRtfHDmKX/buQXJqquz2KkdE4Pn77sNjVasplii0+fh26qTo/nszZhtd/W+PmG0eb+eSxVuS2QwGgxHm7Gxkbt5ss3gDH3qoZONbwn1djG/yunW2idfdHYFdutwdr5zXn1sB8f72u83iDerWtYDxLSLe4rbljt+LeJNWrZISF7K5uyO4d2/LxtfCnxmk4xCzVK7Zw8MDOdnZSFy6zDbxergj5LHHcmcG5YtBzBg354hjHx08xTrVeXHljy9/qP/9/PbXYu73ZoMB8fPm2SReMa5hI5/NjVfqK19cN2PM+1G+n4kf5t8GtwLi/u97c2YWbvzvf9I4y47XywsR74+HTlxclBeD+JeXLMvbBunGDacTz2DthbU4EX9S+pk4WZIjbv/7/tbPcmMVP/fMzsGbv5rhZYPdQZottngRdAEBN+OTYv0vXrfCkn75/5/3fSFMqak43eZB5NjgOLiwcpJKYMJNeen79+PiU8OsKjUqXmuhX30J36ZN4V+C/UGUNz2zdxd2r1iMa+fOwJ68AwIx+MMvEBiufDIjNTUVRqMR7u7uJRofLdDqtqk1brXEZUkcTBASOQd3RwdARK7H100nzeh6JizsZhnJ4P797PJBLe+DZVNfX6mM5bdxcViVnISMIq6VYLy3mz9/PqKiohAZGYmhQ4faJd6i+hTeyfe9wWDAiRMncODAgZtfnSdNQvkHHrjtMYErV+D6Gdt9CA0qXx7lp30CTZwYsfP+m6PTIT40FAnBwQhKTkZYfBw8ZVwB7nXlCrxWLAcaNgTeeQfo3z+3nJON4lX7+JYHMAvA22PH4osVK/DzpUuIlXHy6UJMDN5asQKflyuHUaNG4ZVXXoFX/hPVNqKV8dVyzFqJN+89/cGGDVDmwEHNjK8uwN8249uvr33i9fXVVLyiNJ9a4y3sOMQm8fbti4j33rO4T2uZU5JtEm9Q3z4o9cILUFr2hfO2ibd3LylhbKmmaIumGI5DNw5h9uHZ2HppqwWPcsPWBjnofED+tdcej3SCV40aUJJI5gX16G6T8Q3s0d0uyUEh/NlnkbLuD9kJN9GOPYikXoWvZ8hKuFX4+mu7JQcFkdyrNO87XHr+hRKNsxjXw9264tjmzYg8d65E71kiAV6jRUtUb34/oo4clGYURh87DHvITEnGnhWL0XG48u9pS5cutel7uppoddvUGrda4lJLHESkPNvUTiAiskATbx+MKV0GW6pVw/iIiJvJIHt+UBP9iP4E0b+IY2u16lJcYg05USYyXK+XbsX/Ga/24hVX9jds2BBPPvkkPv/8c2zduhUP3JEcFCpUqABbKl9epG3sN77WctT+IIhEYWJwMM5WqYpLZcshU24S6vBh4PHHgdq1gdmzAStOvhQVr9rHt+Lzz+MFP39sLBOB0Q0aoHx4uKz2rly5gnfeeUfal0ePHo20tDTYktbGV4sxay3eK/ffr6l4tTa+jFdZjNe5421UqhGmd5iOxd0Wo1Nkp2Lvv7ylDslikqIM4vHL73dzifGVk3ATiTNrODLhVtKxFvevNG8efJs2gb2JmMWsRTHT0s3Xt9gLUcT9xP1TZX62ErNeKzdsggHjpmDgxGmodm8L2MPx7VuQZcOqMkRERFrDEqNEpIiCSg38Va06Qu+Y5SM+qNn7w4/c0imuHu+ZM2ekchOizET16tXtEm9xfVpj+vTpeOmll2zSVl57L9jhinq17Q+y4s3JgV9aGsLj4+BrgzX1UK4c8NprgDhZZeXV7Foc36ihTwH/laJb5eWJubGxOHv1quy2AwMDMWTIELz//vsICwuzWbxaGl+5McPTE5Hz56vnNaeSMc7/nl4uOVn18WptfPNjvLZR2HGIkvEqceyj1vHVQrxnEs5gztE5WHt+Lcw5Ba+rXOtSDsYuNMHTilKj2e7ABwP1uFTZDxv7b4S/p79LjW+Jj31GjgSSU0qUcBPJQUfEm1duNHbWLCStWl1kaVeRcBOzMkXi1Z6JzKLK0SatXImUP/6E8do1mNLToPf1g3uZMgh4qDOCeva8OYNUifesGxcvYO/KpTi5YxtyCnnd2UL7YSPR5KFuUJIS46MWWt02tcatlrgsiYMlRomcAxOEROSwBKEjP6iJD5bWlE5hvM4Tb3JyMsqVK2eTWVLioPny5ctSQsUetDC+JY3XJz1dShT622LWWmgoIJK/4suKxJYzjO9GTw/MSkzE0eho2e37+Pigf//+mDRpEipWrCi7Pa2NrxZjZrzKYrzKYrzKYrzyRCVHYe6RuVh9djWMOcYCk4RvLjUhMKNkMwc/7qfHqQq5swdHtxiNgbUHwhXH11KukHCjWxKvxWDf6mU4unk9TLZY+/UOFes2wIDxU23eLpGzY4KQyDkwQUhEdk8QquWDmtY+WDJe23vuuefwzTffyG5n5MiRmDlzpsX3F396RRkdZx9fa+IV1bnKuOvhffy4OEiR16mfX+5sQjGrsIQlYJ1lfHd7eODr1FTsi7og7XdyeHp6olu3bpg8eTJqi7KuCsSr1vHVYsyMV1mMV1mMV1mMV74rqVfw3dHv8OvpX2Ew376uclhyDnrvNKPN0Rx4F7HkcoYnsL2em1SeNC7w1nFhs4hm+O6h7+DK42spJtxcS2pCPP75bQX2rVkuVSKxlZCy5TDs829t1h6Rq2CCkMg5MEFIRHY7UPin/wBU7tlDdR/UtPbBkvHaTnR0NJo0aYK4uDir2xClFw8cOGDxzKqEhAS0aNECw4cPlxKLcmcdqnl8ZcV76hTw8cfADz8AhiLOrlnC0xN48kngrbeAEpZpcZbxPe7vj88vX8LWfftgMplk9aHX69GhQwdpRmGzZs0UiVet46vFmBmvshivshivshivfNfTr6PXyl5Iyb673KVPVo6UJGxxMgehKTnwyc5NCsYHuGF3bTdsq++GDK+7LxiLDIzEmt5rYG9qHF+igsx8ZhDSkyyf9Vocvbs7+r03CeXr1JN9ESeRK2GCkMg5MEFIRIrQ8oHCwYMHkZiYiODgYDRu3BhqoobYHBGDkn3u2LEDHTt2RGZmZokf6+3tjY0bN6Jly5YWP2bixIkYN26c9L3YHrEO4qhRoxAeHl7i/l3CpUvAp58C334LFHFVu0V0OuDRR4F33gEaNoSzKMnr4/jx4xgzZgzWrFkDg8zEqziBIvb9CRMmSAlDUtd7tZo58/hoddvUGrda4nK2Yx9H9uWM2i1uh9iMWJu156nzxIKuC1A7VN5sfWfGfda1n5O5L49AYoz89bbvVK5mHbToPQBVmtxr80ShM++zWt02tcatlrgsiUPL5/2I6BZdvu+JiOi/A6GtW7dKt2qjhtgcEYOSfbZq1QobNmyQZgKWhLh/SZODYr3DL7744ub/xQG3SBhGRkbi1VdfxSWRDKPbVagAfPYZEBUFjB0rsqrWt2U2AwsXAo0aAd26ATt3whmU5PVRt25d/Prrrzh9+jSGDBkirS9oLXGNWV6CXczEXbZsmdVtORs1vFermTOPj1a3Ta1xqyUuZzv2cWRfzsjX3dem7WWbs9F/dX+8sfUNnE86b9O2nQX3Wdd+TgJClbmw8sqpE1j+0QT8+NZLOLFjK8wyq264yj6r1W1Ta9xqiUstcRCR8pggJCIilyeShKJMqCj56eXlVeR9/f39pfuJ+5ckOSjMnj27wHKm6enp+Pzzz1G1alV8LMpq0t3EDMsPPshNFIoxKlNGXnu//SaeeODBB4E//rDpOiZaIJLS33//PS5evIjnn39edqlb8cGxX79+qFWrFubNmwezSMYSERG5gDJ+Mo9JCvHHhT+k8qVjd4yV1jwkolw1WpTsM1hJ3bh4Ab9/+QnmvToShzeug1HucgdEREQqxhKjRKQIlhogrUpOTsaPP/6IpUuX4vLly0hJSUFAQADKly8vJUAGDx5sVTIlKysL1apVk9osyvLly9GrVy8ZW+AiREnY+fOBjz4CLlyQ317TpsC77wK9e4tF9uBqxH4+depUfPvtt7LW5Mwj1uR85ZVXpBK6Hh4eNomRiIhIjX4+8TOm7pmqaB/uOnf0r9kfzzR8BuE+LEtPri0rPR2zRg6BIavkS0RYwz8kFPd0642GHbvA09v66htEzobn/YicAxOERKQIHigQ3W7u3LkYPnx4seUfjxw5Ap1YK89CSUlJUkJTlHcUJUpTU1OlWY4VKlRA3759pTKScmeHqZrRCCxaBEydChw7Jr+9mjVz1yh84gnA0xOuRiSyP/vsM3z11Ve4ckX+bAXxd0DMuH377bfh62vbEmxERERqkJqdivZL2iPDmKF4X956bzxe53EMqz8MQV5BivdHpFYb5szAofVr7dqnt38AmnTpjiYPd4ePf4Bd+yZSI573I3IOTBASkSJ4oEB0i8lkQu3atXHmzJki7/fDDz9IMxQtER0djcmTJ+Onn36S1jYsjJ+fn9Tm6NGjpVldTkuUtFyzBpgyBdi9W357YqzeeAMQSV0XTGwZjUapJO60adNw7tw52e0FBQXhqaeewrhx4xASEmKTGImIiNRi4t8TsfjUYrv15+/hjyfrPYnBdQfDz8PPbv0SqUVy7A38+M7LyExJtnvfHl7eaNjpYdzbtRf8Q0u2jj2RM+F5PyLnwAQhESmCBwpEt5w/fx6dOnXC2bNnC71P5cqVcerUKYvKMe7YsQM9evRAfHy8xTGEhYVh1apVJV43UXPEYc2WLbmJwg0bbLP24SuvAC+8AAQHw9WItQQXLVqEKVOm4OjRo7LbEwnrRx99FBMnTkS5cuVsEiMREZGjxaTFoP/q/kjMSrRrvyFeIXi6wdN4tNaj8Hb3tmvfRI52+eRxLJ00BkZDtkP617u7o96DHdGsR18ER5R1SAxEjsTzfkTOgQlCIlKElg8UxNpzolSjKNEo1pxTEzXE5ogY7NmnUn2JGVmibbHO2+HDh+/6/YwZM/D8889blBzs2LEjMsUafCXk7e2NDRs2oFWrVnAJe/fmlh5dvlx+WwEBgHh+Xn0VKFMGamKv18fvv/+OCRMmYM+ePbLb8vLyQs+ePaVZsNWrV4ezUcN7tZo58/hoddvUGrda4uKxD1niwPUDGPHnCGSZsuzed2nf0ni24bPoXaM3PHTOv/Yv91n1cdRzIpKEK6ZNKtFMQu+AQHR+5iVcOnEUhzeugzFL3mvWzU2HWi1bo3nPfigVWcXl9lmtbpta41ZLXJbEoeXzfkR0i+WLHBERuQixhptY103cqo0aYnNEDPbsU6m+3N3d8dhjj+HgwYNYs2bNbTP5ypQpI5VftKSsqJg5aE1yUBCPE0kZ0Y5LaNYM+PXX3LUJhwwB9Hrr20pJAT76CIiMzJ1NeOEC1MJer49HHnkEu3fvlpLU7du3L9FamQWtdbh48WLUqVNHale8LpyJGt6r1cyZx0er26bWuNUSF499yBJNSjfB7M6zEexVsooD4v4ftf4IXSp3sbrv6+nXMXHXRPRY3gOrz66GyWyCM+M+qz6Oek7K166LwR9+gUadHpZKfxbFw9tHup+4f43m96PdkyMwYvp3uK/vY/Dys75Ub06OGSd3bMUPb72E5R9NwOV/T7jUPqvVbVNr3GqJSy1xEJHy3O3QBxGRpojZLMHBwQgXpQVVRg2xOSIGe/apdF9ubm7o2rWrlBTZvn27VLpRJFt8fHyKfay4b0nKihYkLi5OamfmzJlwGXXrAt9/D0yYAEybBsydK7Kl1rUlrjD++mtg1izg8ceBd97Jbd+B7P2aFMntjRs3SjNhx4wZg7Vr10ozZK0hHicev27dOrRu3VoqPdqmTRtonRreq9XMmcdHq9um1rjVEhePfagkScIl3Zdg9uHZWH1uNTKMGYXe19fdF92qdsOIhiMQ4ReBR6o+IpULnX5gOrZe2mpV/5dSL2H0X6Px3dHv8GLjF9G+Unvp2NPZcJ9VH0c+J4HhpdBx+Ato/fhTOL59E07v2oHUhDhkZ2TA08cH/iFhqHFfK9Rt3R5ed6wt7hsYhFYDBqFZ9z44tH4t/vltBdISE6yO5dz+vdJXhbr10aJnf0Q2aiq9Bp15n9Xqtqk1brXEpZY4iEh5LDFKRIpgqQEiy4k/xcWdvElOTpbWbEtLS5Pdn7+/Py5fvozAwEC4pGvXgM8/z030JVtejqhQvXoB774LNG8OV11jUyQKly1bJs0MlOuee+7B+PHj0b17d5vER0RE5Aip2alSknB91Hpphl+aIQ1+Hn5SOdBOkZ3QvWp3+Hv6F/jYg9cP4qsDX2FPjLyy3vXC6mFUk1G4v9z9TpkoJLI1Y3Y2jm3dgL2rliHp+jXZ7ZWuUg0tevVH9eb3Q6e7vZpJVnoajm/bhNO7dyIlPhaGzEx4eHsjIDQcNVq0RN02He5KaBKpCc/7ETkHJgiJSBE8UCCyrenTp+Oll16yaXsviFKZriwxMTdJKJKFN27Ib69Dh9xEYfv2YqooXM21a9cwbtw4/PzzzzYpRSPKj7777rt44oknZJUzJSIi0qpdV3fhq/1f4XDs3etXl8Q9Ze6REoVNyzS1WWxEzsxsMuHfnduwZ+VSxEZHyW4vpFwFNO/RF3Vat0VaYiJ2L1+EE9u3wJBVeFUTUTK1bpt2aN5rgDRLkkhteN6PyDkwQUhEiuCBApFttWvXDlu2bLFZe23btsXmzZtt1p6mpacD330HfPyxWOhRfntiJqFIFPboAbhgYkvMdhWlQufOnYuEBOtLNOWpXLkyXnvtNTz33HPSWp5ERESuRJyy2RK9BV8d/AqnE07Laqt1+dZ4qclLqBNWx2bxETmzHLMZZ/fvxZ7li3H1zL+y2/MJDIYhKwPGElTd8A4IRK83x6J8Lb5uSV143o/IOTBBSESK0PKBQkxMDDIzM+Ht7Y2IiAioiRpic0QM9uxTDWNckBo1auDMmTM2be/UqVM2a88pZGcDP/8MfPgh8K/8EwDS2oRijcLHHgM8POBq+6yI6ZNPPsGMGTOk2YVyiW178cUX8frrr0vbqmZqfU7UwpnHR6vbpta41RIXj31IDcw5Zqw7vw4zDs7AxZSLstrqHNkZLzR5AVWDqt78WUp2ClafXY0NFzfgWto1pBvTpXUSy/iVQcdKHdGjWo9CS6LaG/dZ9XH250ScOo0+dgR7Vi5B1OEDdu/f3cMT/cZMQvnajl373Jmee7XGrZa4LIlDy+f9iOgWJgiJSBFaPlCYP38+oqKiEBkZiaFDh0JN1BCbI2KwZ59qGOOClC1bVjpItxVxkH/16lWbtedUTCZgxQpg6lTgn3/kt1e5MvDmm8BTTwE+PnCVfTaP0WjEzJkz8emnn0pxyhUSEoLhw4dL6x6qdR1NtT8njubM46PVbVNr3GqJi8c+pCYGswGrzqzCN4e/QUya9ceGOjedtA5iv5r9sOrsKqw5twYZxoxC7+/j7iPdf0TDEYjwc+zJdO6z6uNKz0nM2dPYs2IJTu/Zadd+xUzCwR9+obpyo1p97tUat1risiQOLZ/3I6JbXK/uFRERkQb5+9v2iu2AgACbtudU9Hqgb19g717gjz9EPVZ57V24AIj1HqtUAT76SNTghCsRZUHF+pnnzp3D999/j9q1a8tqT5QtFTMTy5cvL5UdFR9CiYiIXIWHzgN9a/bFmt5r8HaztxHqHWr1jMSVZ1di8NrBWHJqSZHJQUH8fvGpxei/uj8OXj9oZfRE2hdRrQZ6vD4aQz+diXoPdoBOfHawg8yUZOxZsdgufRERkevgDEIiUoSWryRSS0kHtcbGMluOwTUIHezvv3NnFK5eLb+toCDgxReBl18GbPCeqNZ9tigrV66U1in8xwYzNMV29+nTB5MnT5bWK1QDLT4n9uTM46PVbVNr3GqJi8c+pGbphnQsOLEA847Nk8qE2oOX3guzO89Gk9JN4AjcZ9XHlZ+T5BvXsXf1rzi66U8YDdmK9uXh7YNnZ34PL19fqIVWn3u1xq2WuFhilMh1MEFIRIrggQKRbU2fPl2ahWXL9l4Qs9oKYDAY4KHgmnmaduRI7hqFv/wCmM3y2hLlRkeMAN54A6hYEa5IJL3HjRuHv/76S1rbRQ6xzz788MOYMmUK6tWrZ7MYiYiItCApKwnfH/seP534qdjZgLYQ7BWMJd2XOLzcKJFapCUmYP/aVTj4x2/IzkhXrJ/2w0aiyUPdFGufyFI870fkHFhilIiISAOGDBkCPz8/m5UrHTx4cIG/O3nyJCpVqoSpU6ciKSnJJv05lQYNgAULgFOngGefBTw9rW8rIwP48kugWjVg2DDg33/hasRM1m3btmHfvn1Sck+UI7WWSGyvWrUKDRs2RIcOHbBr1y6bxkpERKRmQV5BGNV0FH7v8zsG1RkklSJVUmJWImYfnq1oH0Ra4hccgtYDn8QzX8/DA48NgU9gkCL9nN61Q5F2iYjINTFBSEREpAGBgYGFJvVKatCgQVJ7Bfnoo4+kciKjR4+WEoXilmu8FUAk9b75Bjh/PncGoJzkrcEAzJsH1KkD9O8P7N8PV9O0aVP8/vvvOH78OAYMGABPGYlXs9mMTZs24f7778d9992HP8Q6kkRERC4i3Cccbzd/G7/1/g19a/SF3k259dHWnFuD1OxUxdon0iIvXz+06D0AI6bPRfunnoWbzravwZT4OJu2R0REro0lRolIEVouNSBK3cXGxiI8PBwPPPAA1EQNsTkiBnv2qYYxLkx0dDSaNGmCuDjrPxSGhYXhwIEDqFhAScuLFy+iWrVqMBqNt/1crDswfPhwvPHGG4iMjLS6b6cWHy/qtgJffJH7vVwPPQSMHg20bg24uWl2n7XWlStXMHbsWPzyyy9IT5dfoqlBgwZ477330L9/f+h0yl8f54zPiS058/hoddvUGrda4uKxD2lZVHIUZhycgbXn1yrS/ugWozGw9kDYE/dZ9eFzUriZzw5GemKCzdpz0+nQ5flXUbtlG+j0yl0A4OzPvVrjVktclsSh5fN+RHQLZxASEd3hzJkzOHTokHSrNmqIzREx2LNPNYxxYURSb+XKlVLCzhricaIEY0HJQWHatGl3JQcFsTi5WLOwevXqmDlzplV9O73QUGDcOCAqCvjf/4Dy5eW1J2a9PfggID6M/fYbUMT1XGreZ61Vrlw5zJ07F5cuXcLLL7+MoCB5JZqOHDmCxx57DDVr1sQ333wjzTJUkjM+J7bkzOOj1W1Ta9xqiYvHPqRlkYGR+LjNx1jafSnaVmxr8/bXR62HvXGfVR8+J4XztPKzW2FyzGasnf4p5r78jLTeoSE7C46k1ederXGrJS61xEFEymOCkIiogPXZxMlocas2aojNETHYs081jHFRWrVqhQ0bNkgzAUtC3H/jxo1o2bJloVf/zZkzp8g2RPJQlG2kIoj95tVXgbNngdmzgerV5bW3cyfQrRvQuDGwcKF4EjS3z8oREhKCzz//XJpROG7cONlXo549exbPPfecVD5XlNPNylLmhIozPye24Mzjo9VtU2vcaomLxz7kDGqF1sJX7b9CGd8yNm33err9S9Fzn1UfPieFCwgNV6Td5BvXsPG7mZjz4tPYs3IpsmxQdcOVnnu1xq2WuNQSBxEpjyVGiZxcYmKiVFKtatWqmDVrlt36ZakBIuXLjU6ZMgU//vgj0tLSCr2fOKAXaw6KtQQLmzkojBkzBpMnTy6yz4cfflhaJ45KwGQCli4Fpk4FDh2yzdqHb78NDBkCeHnB1RgMBnzxxRfSl5hdKJcomTNixAip/KifnHUkiYiINKLd4naIzYi1WXt+Hn7Y/uh2eOg9bNYmkTM5sG41Ns1T/lyMl58fmjzUDU0e7gHfQHnVN4gswfN+RM6BCUIiJ00K7tu3D0uWLMHixYul/3fs2BHr19uv/AsPFIjsIzk5WUoSLl26FJcvX0ZKSgoCAgJQvnx59OvXD4MHD0ZgYGCxbYgZVUlJSUXeb/v27apan0FTxOHW2rXAlCnAjh3y2ytXDnj9deCZZ3JnLboYUSJ03rx50izA06dPy25PvEaGDBmC999/v8Szc4mIiLSk669dcTHlok3brBRQCa/d8xraV2oPt2LWTiZyNWJm36yRQ2DIyrRLf+6eXmjY4SHc0603AsN5/oWUw/N+RM6BCUIiJ1OtWjXEx8dLMwZFUnD//v1SOUImCImoMIcPH8aAAQPw77//FnofkRgUCUK5RBJSJDSXLVsmzQBLTU2VZjlWqFABffv2lZI0xSU0NU+Mo0gUrltnm7UPR40CXnop93sXJJLjkyZNktbIkMvX11dKrIv2ippxS0REpFXD/hiGvTF7FWm7aemmeKvZW6gXXk+R9om0asOcGTi0fq1d+9Tp3VG3TTs069EPoeVkro9OVACe9yNyDkwQEjm5Z599Ft9++y0ThERUJJPJhOXLl2Pq1KnShQV3EqVFRYlROSVRRQnTn376qciSqKLMo5j1WFxJVKdw4EBu6VFRglTu4ZgojzlyJPDaa7mzC12Q+BsnZgD+/fffkHt46+npiW7dukn7bO3atW0WIxERkaP9fOJnTN0zVdE+ulftjlFNRyHCL0LRfoi0Ijn2Bn5852VkpiTbv3M3N9Rs3hLNe/VHmaoy10cnyofn/YicAxOERE6OCcKSmz9/PqKiohAZGYmhQ4dCTdQQmyNisGefahhjRxKHBeK9QqxvuHXrVulnjRs3lpKG1pSMEjME3333XSxYsAAJCQkWP06UeVy1ahVatmwJp3fqFPDxx8APP4hF9uS15ekJiP32rbdy1yt0QXv27JHW1Ny0aZOU+JZDr9ejQ4cO0ozCZs2aWfw4V38fceXx0eq2qTVutcTFYx9yJqnZqWi/pD0yjBmK9uOl98KT9Z7E0/Wfhq+Hr03b5j6rPnxOih+f6BNH4XvxlKiV77A4Kjdqiha9BqB8nXo2Kwes1ederXGrJS5L4tDyeT8iukWX73siIiJyceKDYufOnbFlyxbs2LFDmkUlEnzWfoAUj50+fXqJkoNCXFyclJgRMTi9mjWBOXOAs2eBV14RdS6tbys7G/j229w2H39c1I+Fq2nevDn+/PNPqXRu79694eHhYXVbIsEo2mrRooVUZlckHYmIiLTM39NfmuGntCxTFr49/C26Lu+KZaeWwWSWd9EOkdaZfQMQ2LwNvANKtpyCuH+/MZPQdshw+IfKWyv7wqH9WDThHfwy/m2c279XdtUNIiLSPs4gJKf28ccf4+2338bZs2elNfmsJWbgzZo1C+fOnbv5MzEjT8zOE7dqxhmEJXfw4EEkJiYiODhYmjmlJmqIzREx2LNPNYyxszhz5gxq1qwp64OnmEl44MAB5y83ml9sLPDll8BXXwGJifLb69oVGD0acIXZmAUQV76OGzcOS5YsQUaG/NkS4n1h7Nix6NOnT6H34ftI0Zx5fLS6bWqNWy1x8diHnE1MWgz6r+6PxCwbHGdYqEZIDbxx7xtoWU7+8Qj3WfXhc2L5+FStUB57VizG8W2bYcjKLPQxHt4+qNu6LZr3GoDA8NzzKEaDASe2b8aelUuQGHNVdlylIqugec9+qHn/A9Dp9C713Ks1brXEZUkcWj7vR0S3MEFITkkk8kRibMOGDdL/rU0QipJ6YgZLaGiolGh85plnbrYvEoYiAdmvXz/Mnj1b+qOpRkwQEpGjtG3b9maZUjlGjhyJmTNnwuUkJwOzZgGffgpcuya/vQcfFFM6gc6dpbVIXE1sbCzGjx+PH3/8ESkpKbLbE8nvd955B08++SR0OhblICIibTlw/QBG/DlCmulnT63Lt8br976OasGuWQqdKE9WejqOb9+E07t2IDUhDtkZGfD08YF/SBhq3NcKdVu3h1chlUXMZhNO7dqBPSuW4EbUedmxBJcpi2Y9+6Jumw5wl1F9g1wLz/sROQcmCEnzxBUt+/btk5J2IhEokoIisZefNQlC0U6nTp2kx/3zzz8FJgBF4k0k4Iq6j6MxQUhEjhAfH4/w8HCblK3x9/fH5cuXERhYsnI8TiMzE5g3L3edwgsX5LfXtGluorB3b7HIHlyNSA5OnTpVutBH7KdyVapUCa+88gpefPFFWeVMiYiIHJEkHLVpVIlmEgZ7BaNrla5YfW41krOTrepX76ZHv5r98Fyj5xDmI69kIpErE5+1Lhz8B7tXLMblk8dlt+cfEop7uvVGw45d4Ontc9vvstLTcHzbJpzevRMp8bEwZGbCw9sbAaHhqNGipZRcLCyhSc6J5/2InAMThKR5eYk8kZy799570bRpUykpds8990jJQ2sShOJxVapUkW5F4k+0WVwCTtxH3FdtmCAkIkd46qmnpIXNbUWsY/jCCy/ApRmNwKJFwNSpwLFj8turVQt4+23giScAT0+4mqysLHz22Wf46quvcOXKFdntib95zz33HN566y348uQIERFpqNzo7MOzpYRfhrHwUty+7r7oVrUbRjQcgQi/CCRlJWHW4VlYeHIhjGajVX37e/hjeIPhGFR3ELz0XjK2gogunTgqzSg8f1D+eSlv/wA06dIdTR7uLiUCdy9fhBPbtxRdEtXLG3XbtLutJCo5N573I3IOTBCS0woJCbE6Qdi/f38sXbrUoqSfmLlYrVpueRSxvpEoOaomTBBat25aamqqNGupevXqUBM1xOaIGOzZpxrGWOvEoUVAQADS0tJsWq508+bNNmtP08xmYPXq3ETh7t3y2xPrO77xBjB8OOCCiS2j0SiVCp82bdptaw1bS1ywJI4jhgwZgoiICL6PuNj7rFa3Ta1xqyUuHvuQK0jNTpWShOuj1uN6+nWkGdLg5+GH0r6l0SmyE7pX7Q5/T/+7Hncx+SI+++czbLiYu7yHNcr5lcOr97yKhyo/BDcLyqBzn1UfPifqGZ9r589iz8qlOLXrL/HBTFZbeg9xEWEOTAaDxY/xDghErzfHonytOlAzte6zaonLkji0fN6PiG5xz/c9Ef03e1AkBwWRVCuOSDyKL3FSUZQsKyxBmJd0tAUxO+Gjjz6ySVt0t7/++gtRUVGIjIxU1YGiWmJzRAz27FMNY6x1f/75p02Tg4IoMUr/Eevd9ewJ9OgBbNmCKy++iHLHZZQUio4GXn4ZmDgReOUVQMzUVGHJbKW4u7tLM//EBTWLFi3ClClTcPToUVnHESLhuGDBAimxPWfOHJQtW9amMWudM7/PanXb1Bq3WuLisQ+5ApH8G1h7oPRVEpUCK+Gzdp9hX8w+fLLvExyPK/kxyZW0K3hz25v48cSPePPeN9G4dOMi7899Vn34nKhnfMpUqYbur7yN+CuDsHfVMqksqNlk3SxfkyG7xI/JTEnG0onvod+YSShfuy7USq37rFriUkscRKQ8JgiJ7iBm2+Vp1qyZRY/JSxCKtQ/FbUGzFd99912pFKotWJK4JCJylA4dOkizqPJmcdtq3Ti6g7jCvl07/PnmmzDs3InO//yDyDvW4C2R2FhgzBhAXIDy/PPAq68CZcrAVeh0OgwcOFD6+v333zFhwgTs2bPH6vbS09OldkTJ8l69emHSpEn8cE1ERE7r3oh7sbDrQvx27jd8sf8LXEu/VuI2Dt84jMFrB6NL5S54uenLqBBQQZFYiVxBaLnyeGjkKLTs/zj2rVmOwxvXwZiVZZe+jYZsrJg2CYM//ILlRomIVI4lRslpWVtiVKxdKBJ9gijJaUkyLq+MpzBr1iw888wzUAuWGC05UUZBlJwTs0pEOQU1UUNsjojBnn2qYYydQY0aNaSyJLZs79SpU1L50oyMDK7xVtg+e/FiboJvwQLAZJLXsLc3MGwY8OabQOXKcEU7duzA2LFjsXXrVphFaVcZxPPz0EMPYfLkyWjUqBFcmTO/z2p129Qat1ri4rEPUcmItQx/OPYD5h6dW+S6hkXx0HlIaxOOaDACAZ4Bt/2O+6z68DlR//ikJyfhwLrV0leWjau9FKZRp4fRcbg615FXw3Oi5rgsiUPL5/2I6BZdvu+JCLiZHBRCQ0MteoyYKZOnuDULSf3EwY94TtV0kKim2BwRgz37VMMYO4MKFWx7xXf58uWlW3GhQ6VKlTBx4kQkJCTYtA+tum2frVsX+P57sWhEbqlQkeSzVmYm8PXXgJj1NmQIIKeMqUa1atUKmzZtwoEDB9C9e3fpA7K1xAfs3377DU2aNJFKj27btg2uypnfZ7W6bWqNWy1x8diHqGR83H3wbKNn8Xuf39G3Rl/o3Ep+6slgNmDe0Xno+mtX/HLyFxjNxrv22RzPHPx84mcM+2OYdL92i9tJt+L/4udiXUWyD76PqH98fAOD0GrAIIyYPg9tnngKvkHKLylwfPsWZKWnQ43U8JyoOS61xEFEymOCkCgfUR40P0tnHYaFhd38ft++fTaPi4hIa/r27WvT9vLWdxVrvcbFxWHcuHFSovDNN9/E1atXbdqXUxAz/qZPBy5cAN55BwgMtL4tMRPxxx+BevWA3r0BGWU3taphw4ZYtWqVNIv1scceg5eXl9VtiVmwYkbigw8+KJUyX716tU1jJSIiUotwn3C83/J9LO62GPeVvc+qNhKyEjB592T0XdUX2y5tk/6OxqTF4IO/P0CHJR0wdc9U7I3Zi4spFxGbESvdiv+Ln7df0h4T/54o3Z+Icnn5+qJZj74YMf07dBz+PAJLKbekgCEzA8e3b1KsfSIiko8JQqJ8rF0vK/8MQluuuWUL8fHxjg6BiFzQkCFD4OfnZ5O2xFWLgwcPxs6dO7Fly5bbyp5MmzYNlStXxsiRI++6yIOQu4bg1KlAVBQweTIgt9zLihVAixZiMVxg40aR7YIrEesJLly4EFFRUVI5cbn7uLioqEePHqhbty5+/PFH2WVMiYiI1KhWaC182+lbzOgwA1WDLLsI907nks7hhY0vYOBvA9F7ZW8sObWk2PKl4veLTy1G/9X9cfD6QSujJ3JO7p6eaNTpETz9xbd45MXXEVahkiL9nN61Q5F2iYjINrgGITkta9YgFOVFxRqEeUT5uvzJv8KINf7EWn+CuL8ayt6JbRcny/v37y/dirg2btwojYMl2yRXQbXIrTF+/Hi8//77sKd169YhJiYGERER6NKlC9REDbE5IgZ79qmGMXYWzz33HL755hvZ7Yjk38yZM6USj2vWrCn0fjqdDgsWLJBmeLmSEu2zosTP3LnAJ58A0dHyO2/eHHj3XaBHD/EEwNWIv7WTJk3Cd999Z5O//SLZ/dprr0mvHTnlTNXOmd9ntbptao1bLXHx2IfIdkSp0GWnluHrQ18jPtN+F7N66b0wu/NsNCndxG59uhK+j2h/fHLMZpzdvxdrPv8QJoPBZu0GlymLp7+cDbVR63OilrgsiYNrEBI5B9c7k0NUgtl21iTSHD2DUCQE3dzcpARphw4dpG3K2w7xf/Fz8ftOnTo5NE41EwdBYnaIuFUbNcTmiBjs2acaxthZjB49+rYSzNYQjxftHD58uMjkoODp6Yl27drB1ZRon/X1BV56KXeNwnnzgFq15HUuyo2KsqMNGgA//SQW2oMrEX9fxSzWK1euYMKECSgjZmzKcOHCBYwaNQoVK1bE5MmTkSnWgXRCzvw+q9VtU2vcaomLxz5EtuOuc8ejtR/Fmt5rMKz+MHjoPOzSb5YpC6M2jWK5UYXwfUT74+Om06H6vS3g7WfbNecSr8dg16+LkJmmrjVB1fqcqCUutcRBRMpjgpBIRck9W1iyZIm0LoP4ErMZ7vzK+9369esdHapqiSukIiMjpVu1UUNsjojBnn2qYYydhUhyrFy5Et7e3lY9XjxOrPsm2vnwww+Lvf/TTz8tO0GjRVbts56ewNChwLFjwNKlQL7Z81Y5fhwYPBioUQP4+msgo+iSX85G7KtiXcxLly7hyy+/RIUKFWS1Jz6IjxkzBuXLl8dbb72F5ORkOBNnfp/V6rapNW61xMVjHyLbC/AMwKv3vIrVvVfj4coP26XPxKxEzD6svplMzoDvI84zPh5WfnYrVE4Odiz6EbNfeArbfp6PtETHV9xS83OilrjUEgcRKY8lRslpWVNidOnSpdIMvDyWvjzylxgtyeOcmZZLjBKRbe3YsQM9e/ZEXFxciWYOiuRgy5YtpffwmjVrFrk+m16vx5kzZ6QSjWQF8XdLXDgi1ivMt86j1USi9rXXRH1YIDAQrkbsq2JNQZHYPnnypE3W4Rw0aJA0S9EWf1uJiIjU5tCNQ/hk7yfSrZJ83X2xsf9G+HvadpYUkbNYPOFdRB8/olj77h6eqNeuE5p174Og0q53caczYYlRIufAGYRE+dhjbT4iIlfTqlUrHDhwQFpL0M/Pr9hEiLifuL9IDuZ9yKhdu3aRj3v88ceZHJTDzQ3o3BnYvBnYuRPo3l1ee9euAW+/DURGAmPGiE+PcCViPcwnn3wSJ06cwIoVK25b39gaqamp0nqe4ireJ554QipFSkRE5EwalWqEHx/+EZ88+AnK+5dXrJ90YzpWn1utWPtEWlejRe5nMKUYDdk49OdvmPvyCKyd/iniLl1UtD8iIioaZxCS07JmBuH+/ftvO4knSnJakjTMP4NQ3F88ztXxSiIiKogolShmVokZ25cvX0ZKSgoCAgKkUor9+vXD4MGDEVjAjDMxI0vMKJw6dSr2iHXv7nDs2DHUrVvXTlvhIo4cAURp119+EU+AvLZ8fIARI4A33hC1Z+GKtmzZIpUh/euvv2RXGvDw8MDDDz+MKVOmoF69ejaLkYiISA3EeoE/n/gZ3x7+FqkG269b1iyiGb576Dubt0vkDLLS0zFr5BAYsuy3Fnb1ZvehRa8BiKhe0259knw870fkHJggJKdlTYLw3LlzqFatmqwEoehH9OfqtHygIGZqGI1GuLu7S7OZ1EQNsTkiBnv2qYYxpsKJw5ZNmzZJicKNGzdKP+vVqxeWL19uVXti4fWff/4Zzz//PIKCgu76fVJSkpTQXLZsmbS+nNg/xH4h1pjr27cvhgwZUmBC054U32fF37RPPgHmzQOys+W15eGRu1ahmF1Y03lPABT1nIiLkcT6gn/++SdMJpPsmYpt27bF5MmTcd9990ErnPl9Vqvbpta41RIXj32IHCM+Mx4zD87EL//+YtN2IwMjsab3Gpu26er4PuJc47NhzgwcWr/W7v1Wqt8ILXoPQMV6DeEmKpy44HOilrgsiUPL5/2I6BYmCMlpWZMgFPcXj8tj6eM+/vhjvC1OdgJo2rQp/vnnH7g6LR8ozJ8/X0oaiFJuQ4cOhZqoITZHxGDPPtUwxmQZMZNQJArfffddNG/e3Ko2XnrpJUyfPl1K8r3wwgt45ZVXpPeu6OhoKeny008/IS0trdDHi5KpYtbj6NGjUdFBM+Psts9euQJ89hkwcyZQxJhYRHzg79sXePdd8YcTzsaS5+T06dN47733sHLlSmTLTbwCaNGihbRG4UMPPQS1c+b3Wa1um1rjVktcPPYhcqw2v7RBQpbtqvSE+4Rj84DNNmuP+D7ibOOTHHsDP77zMjJTkh3Sv5hJKGYUVrunOdx0Opd6TtQSlyVxaPm8HxHdwjUIifK5c7ZgXoKxOPlnDFqSUCQiIvlEUlDMHLQ2OXjt2jXMmTPnZulTkWwUH4BEqdOGDRti1qxZRSYHBfF7sTZckyZNsFOs3efMypXLnUl48SIwYQIQGmp9W+L6tKVLAVHWu0sXYNu23J+5kBo1amDx4sU4f/48hg0bBl9fX1nt7d69G126dJH23V9++UUqy0tEROQMAjwDbNqen3vRa2ITubrA8FLo9cYYuHt4OqT/mDOnsHLaJHz/5os4vn0zzDKrbhARUeE4g5CcljUzCAWxBqEo/yWsX78eHTt2LPYx/fv3l9bTEj766CO89dZbcHVavpLozJkzN8sIVq9eHWqihtgcEYM9+1TDGJN9iFl/IiloK97e3tiwYQNatWoFe3LYPpuaCsyeDUyblju7UK6WLcWTAjzySO4MQw2z5jkRZc3FDEBxta4obSuXKJn+xhtv4JlnnpFKkaqJM7/PanXb1Bq3WuLisQ+RYw37Yxj2xuy1acLxp4d/QtVgXtxrK3wfcc7xuXzyOFZMm1SimYTeAYHo+cZopCclYc+KJbh27ozsOAJLlUGzHn1Rv21HuHt6OvVzopa4LIlDy+f9iOgWJgjJaVmbIBSlQkXJUEHMHhEn1kqSVCxJX86MBwpEpGYiAVOpUiVp5qAthYWF4cCBAw4rN+oQWVnAjz+KK2TEJ0n57TVsmFt6tH9/QK+HqxGzUsXFRjNnzkRsbKzs9sqXLy+V0hXlc728vGwSIxERkT39fOJnTN1ju4u6BHedO4bWG4pnGj4DH3cfm7ZN5ExEudE9Kxbj+LbNMGRlFno/D28f1G3dFs17DZBmIArilHPU4QNSojD6+BHZsfgGBeOerr3QqNMj8JJZfYPk43k/IufABCE5LWsThPnXIRTJQZEkLE7e4smij/zlRl0ZDxSISM3EzEExg1AJI0eOlJI7LkeU/hGz6adMAQ4flt9etWr/Z+8+wKMo2jiA/9NDEpJAkA6BQGjSQhcEAakivdho8kmTooiU0HuoKk26IjaqdKQjTanSBKTX0EtII53vmY30JORu9+5mb/8/nzwX4t3su7OTy96+O++Iu3aAtm0BAya24uPjMXnyZOXr6tWrqtvLkiULOnbsqKx7KNbOJCIi0ovIuEjUXFITDxMeat52Ts+cCK4YjOp5qmveNpE9iY2OxomdW3Fmz25E3r+LuIcP4ZohA7wy+SGwUhUUq1ozzaTdtdMnsXfFEpw/uE91LG6engiq+y6C6jeCh7eP6vbIPLzuR2QfmCAku2VuglCoXbu2UiZOrEkoSn6lRTxPPN+UGYdGPVE4ceKEcoHyRTx5ICJrio6ORr58+ZT3KUsQZVhCQ0Ph7e0NQxKnlr//npwo3L1bm7UPe/cWd+2IzoXRiLUEv/vuO6W6wZkzZ1S3J8Zl27ZtMWzYMGXGKxERkR6M/GskFp9ebLH2RYIwuEIwcnrltNg2iAi4ffmiMqPw1J878eiRujWznV3dUPLtuij7btMnsxYfi42OwokdW3Fm75+IuHcH8TExcHF3R8bMWRBYsTKKVXubsxBVYoKQyD4wQUiGSBAePHgQZcqUSfdrz58/r5QNFa9fsmQJWrRo8cr1B0X7YjuU+olCamR7Gzp8+LBy7EWCuHTp0pCJDLHZIgZrblOGPibL+v7779GhQweLbmPatGno1q0brEHqMbtzZ3KicP169W1lzgz07An06JH8vcQsdUzEOcmoUaNwVIMZmh4eHsr5jWjP2iVxpR6zBt03WeOWJS6e+xDZ3o2oG2i5uiXCYpM/41uCKDXauWRntC3WFi5OLhbbjj3i+4hx+8fcfQu7cR37Vy/D8T82IzEhQVUMjk7OKFatBso3aqGsUbh3+SKc3PlHmiVRnVxckSmwKArXqI1K1eSZQSzLWElPHEwQEtkHR1sHQGQpj5ODwr1790x6rZhtOGfOnCcJQJEwTMns2bOV5KD4gyku2pF9ECdC27dvVx5lI0NstojBmtuUoY/JssTsKfGeHRQUZLFtiL8N1iL1mK1aNXk2oVinV6wp+F9JbrOIv+XDhgF58wJffglcuwZZWeqYiHOSI0eOYMOGDXjjjTdUz6RdsGABChYsiObNm+Pff/+FtUg9Zg26b7LGLUtcPPchsr3sntkxpeYUuDlZruy4KGH6zd/fKInI/Tf2W2w79ojvI8btH3P3zTd7DtTu2B2fTJ2Hcg2bwcXN3ewYkhIT8M+2Tfi+V2fM+6wjjm5en2ZyUEiMj8OdE0fw5+wpCD11ErKQZazIEgcRWR4ThGQXRJnPx18iaSdm/z2rc+fOSmkuccH28fOeTSCmRNxVv2nTJiX5J9oT7T4mXivaFF+1atXChQsXTCphSkREtuPk5KS8x4tZ3+vXr0e1atU034YoMUrPEMnYxYuBkycBMXvTRcVd+VFRwKRJQP784g+8qCMOo6lTpw7+/PNP7NmzRzkPEWPaXHFxcfjtt99QvHhx1K1bF/v384IoERHJKShrEObUmQP3R+YnEtLj3INz6LChAwbuGoi7D+9adFtERueV2Q9vte6Ajt9+j8otP4K7V0ZV7SWZOBvxUXwclo4ciNB/T6jaLhGRXrHEKNkFh/9mJIhkXnqkp3Tos89dvHixsr7gszMJxQW5xwlCsq8So0RkPGJ91Lt372q6DqG4eSSldVcJwJUryUk+cfPNw4fq2nJ0BN57D+jfHyhZEkYk1vgdOHAg1q5di/j4eNXnVJUrV8aIESNQs2ZNzWIkIiLSstzonKNzsPr8amXWX2o8nD1QJ18dJD1Kwupzq/EIpn/uzOiaEZ8FfYYWhVrAydH8G3KIKH3iYh7i2JYNOLD6N0TeN60amBruGb3RZuzkl9YypNSxxCiRfWCCkIisdqIgLmCmdLGcJw9EZGuBgYE4e/aspm2KNd46deqE3r17I3fu3Jq2bTdu3wamTBGLNoo7ctS39+67wIABgMrym3p16dIlDBo0SKmYEBOTdlml9BDrjQwePBjNmjXTJD4iIiItRcZFKknCTZc24Vb0LUTFR8HTxRNZPbKitn9tNAxoCC9XL+W5x+8ex8i/RiqP5ijuVxyD3xiMYn7FNN4LIkpJQnw8TuzYiv2rlirrFVpDqdr1UesT66wjbw+YICSyD0wQEpFF8ESBiPSkRo0a+OOPPyzStouLi7LuYb9+/ZREJKUgPByYNSt5VuHNm+rbe+ut5ERh7drq1j3UKfH3dvjw4fjxxx8RERGhur1ChQqhf//+aNeuHRzFjE0iIiIdSkxKxNLTSzH578mIiDf976OjgyPeK/weegT1UGYWEpHlJSUl4vSe3di3fDFuX75o0W25uGdA5xk/wM3Dw6LbsRe87kdkH5ggJCKL4IkCEenJtGnT0KNHD4tuQ5Ru3LBhA2qLpBWlTMx6+/57YPx44KIGFwDEmsTBwUDTpsmlSA1GJAdHjx6NOXPm4N499SWa8uTJg169eqF79+5K4puIiEiP7jy8g68OfKXMPjSHn7sf+pTvg3fyv/NkuRMisixx+frC4QPYu3wJrp2y3HqBNTt0QVDddy3Wvj3hdT8i+8AEIRFZhJ5PFERptqtXryolAdOzTqXRYrNFDNbcpgx9TNYXHh6OnDlzIioqymLbyJEjh7IuoZubm6bt2uWYTUgAFi4Exo4FjptXCuw5hQsnr1H40UdiSicsTbZjEhsbi6+++kpJhF+7dk11e+Lve9euXdG3b1+llK7e+0dLet03WeOWJS6e+xDJRasxu//GfozaMwrnH5w36/UVc1TEwIoDkd8nP4yO7yPG7R9b7NvVk/9g74oluHj4oOZt5ylWAq2GhsDoYyU9cej5uh8RPWW8W6mJiF4hMjISDx48UB5lI0NstojBmtuUoY/J+ry9vdGmTRuLbkOsRah1ctBux6yzM9C6NXD0KLBiBVChgrr2Tp0CPv4YKFAAmDoViI6GJcl2TMS4Cw4OVtYonD59OvLnz69JCdNcuXLhiy++QJiJ60fK1j9a0uu+yRq3LHHx3IdILlqN2fLZy2Npw6X4rMxncHdyN/n1e6/vRbNVzTDl7yl4mPAQRsb3EeP2jy32LXfR4mgePBytx06Gi7vpv7tpCb9zC7Yky1iRJQ4isjxnK2yDiEhXChYsCF9fX2TJkgWykSE2W8RgzW3K0MdkGwMGDMCSJUtw9+5dzdvOlCkTOnXqBEuw6zEryoI2bgw0agRs2waEhACbN5vf3pUrQM+ewMiRwOefA59+Cvj6wijHxNnZGZ9++im6dOmChQsXYsyYMTiuYoamSAx+/fXXmD17Nj744AOMGDFCmSmr1/7Rgl73Tda4ZYmL5z5EctFyzLo4ueCTEp+gfv76GLt3LP64atqa1AlJCZhzbA7WXViHARUHoFruajAivo8Yt39suW/Z8heAq3sGxItlCjTy4NZNbJo9DeUbNYdv9lef19rrWJElDiKyPJYYJSKLYKkBItKj3bt3o1atWojR8EOmMHToUAwbNkzTNg1r//7kROHy5erb8vZOThKKZGG2bDCidevWKbMB9+3bp8lMxSZNmiiJx4CAAE3iIyIisqZtl7chZF8IrkddN+v1b+d9G/3K90MOL+snFoiMaN5nHRF2w7zf17Q4ODiicOWqqNC4BV7zZxnhlPC6H5F9YIKQiCyCJwpEpOckYePGjU2aSejn54d+/fph+fLl+Ouvv577f56enkppR/Ec0tCJE8C4ccDPPwOJieraEqWJ/vc/oE8fwN8fRh33gwcPxvbt25GUlKR6pmLdunUxevRolCpVSrMYiYiIrCE6Phqzj87GD8d/QMKjBJNfn8E5A7qW6orWxVrDxfHp2scRcRFYfW41Nl/ejJtRNxGdEA0PZw9k88yGWnlroVGBRvBy9dJ4b4js2+Lhwbhy4phFtxFQpjwqNm2FnIWKWnQ7esPrfkT2gQlCIrIInigQkZ5duXJFmQX1448/IioqKtXneXl5oXXr1kp50jx58kCcVu3YsQMhISHYsGGD8hyxRtukSZPMimPv3r3YuHEjunfvrpQppRRcvAhMnAjMmweonfkp1j788EOgf3+gqDEvABw9ehQDBw7E+vXrkZBg+kXRZzk4OKBatWoYOXIkqlatqlmMRERE1nAu7BxG7RmFAzcPmPX6gr4FMajSIOTyyqUkHNecX5PmWoUisdgwoCE6luyI7J7ZVUROZByH1q/G1u9nWWVbuYsVR8XGLeFfqoxynmt0vO5HZB+YICQiq50onDhxIsX65bKdPNy4cUMpL+ju7o7s2eX6YCZDbLaIwZrblKGPSR7h4eFKknDp0qUIDQ1FREQEMmbMiFy5cqFFixZo06YNvEWZyhQcPHgQ48ePx1dffaU83xzvvvsu1q5dqyQiu3btil69er20xhvH7H9u3gS++QaYPh2IiFDXlvjA36QJEBwMlC9v8svt4ZicP39eSRSKWbGxsbGq2ytXrhyGDBmChg0b2kX/pEav+yZr3LLExXMfIrlYc8yKS2YisTfxwETci7lnVhtiFmF8Uny6n+/r5oupNaeidNbS0Au+jxi3f2y9b7HR0ZjVpS3iY7VdIiItWfMXUGYUBpZ/Aw5izXQ76k9T4mCCkMg+MEFIRBaR0olCamR7G5o/f75SDtDf3x/t27eHTGSIzRYxWHObMvQxkXDkyBGULl36pTXePv74Y/Tp0+fJGm/PjtmmTZsqCc1ly5bh6tWriIyMVJKLuXPnRvPmzdG2bdtUE5p2IywM+Pbb5GTh7dvq26tVCxgwAKhePTlxaLD3kZs3byqJvZ9//jnN2bTpVaxYMWWdT19fX+TPn1/3/WMvx17WuGWJi+c+RHKxxZh9EPsAUw9NxeJTi/EIlv/86ubkhjl15iAoaxD0gO8jxu0fGfZt89zpOLLpd6tvN1PO3KjQqDmKVq0OJ+en5YT13p/pjYMJQiL7oO1tDkRERESkibFjx770MzGTa+bMmShUqBA++ugj5UOb8ODBA/zwww/KTMUePXrgjz/+wNmzZ5U7P8Wj+Lf4ec6cOZWZiKKEqt3y9U1O6InSo1OmAHnyqGtv82agZk3gjTeAlSsBlevz6U22bNkwa9YsJeHcu3dv1aVuRTWBKVOmYN68efjzzz9VlzElIiKyBh83H6Vc6M/v/IyimS1fhjw2MRY9t/bEjagbFt8Wkd5VaNIK7hmtfxPk/WtXsWHmZMzr2Ql//77aqrMYiYi0whmERGQRep5BKEtJB1ljY5ktIssTSb3ChQsjKY1klLOzM86dO4fDhw+jXbt2CBMz59LJz88Pq1atQuXKlWH34uKAX34RGVfg1Cn17b3+enLp0ffeS16z0GDvI2K/ROncb7/9VpldqJboH7HGpkg+iv7SO70ee1njliUunvsQycXWYzYxKRGLTi1SZhRGxkdadFutCrXC4DcGQ3a2Piays+f+kWXfQv89gaWjBiEhPs7k14r1BLW4LpXB2wdl6jdC6boN4O7ppev+ZIlRIuNggpCILELPCUIiIlvr1KkT5syZk+ZzRFKwY8eOSrlG8eHNVOLD3ubNm1GlShUYQmIisGIFMGYM8Pff6tvLnx/o0wf4+GPRmTAaMfNv+vTpyhqbly9fVt1e5syZ8b///Q+DBg2y/zK4RERkF+48vIMJ+ydg3YV1FtuGh7MHtrTcAi9X85INREYikoQrJo5CTER4ul8jZh426TMYTk5O2LtiCc7u/0t1HK4ZMqBUnQYo+05jePqqq74hMyYIiewDE4REZLUTBVFWLEuWLC89lycPRERPhYaGKmuzxcfHp3mXq0jutWzZEvfu3TN7W2Im4aFDh5BHbRlOPRGnvps2JScKt29X3564o7ZXL6BLF8CAiS0xy1WseylK4v7777+q2xNrZrZu3RrDhw9P941GREREtrTn+h6M3jMaF8MvWqT9ARUH4IMiH1ikbSJ7E37nNvatWIwTO7alWfLTxT0DilWtrpQn9c7y9JrU3auXsW/lUpzc9QceqVxawNnFFcVr1ka5d5vBJ2s22BsmCInsAxOERGQRPFEgIjLPmDFjMHDgwDSf06xZM+U9VqxHqFaXLl0wY8YMGNKffwIhIcCaNdqsfdijB9CzJ5DCzTBGsHLlSowcORIHDx5U3ZaY4SrG+ejRo5EvXz5N4iMiIrKUuMQ4zD8+H7OPzlbWD9RS+ezl8V3d7zRtk8jexUZH48TOrTizZzci799F3MOHysw+r0x+CKxUBcWq1oSbh0eqr39w6yYOrPkN/2zdZFbZ0mc5ODqiaJW3UKFJS/jlzgt7wet+RPaBCUIisgg9nyjs2rULd+7cUWY7vvnmm5CJDLHZIgZrblOGPiZjEzOyxPqAIlG4f//+FJ+zbds2vPvuu4iKitJkxpaYtWjoso5HjyavUbhokTgA6try8EBogwb4p04deBYpYsj3kT/++AODBw/G7t27VZcRd3FxQf369ZXfh9fF+o+S0+vfEFnjliUunvsQyUXmMXsl4gqarWyGmETTy7+nxt/bH2uaanAzk0GPiQzsuX/0um/pjTsq7D7+XrcShzeuVZKMahUsXwkVm7RC9oKFnvt5bHQUTuzYiv0bf0fMgzAgKRGe3t7ImDkLAitWRrFqb6eZ0LRF/+j5uh8RPeX4zPdERATg7NmzOHLkiPIoGxlis0UM1tymDH1Mxubo6IgmTZpg7969ShnRmjVrPvf/a9eujX/++UeT5KAQGRmplIg0tJIlgV9+AU6fFgtAAq6u5rcVHY1cS5agVufOyDpgQHKbBlO9enXs3LlTSXDXq1dPWdPFXKLUrkiYlypVCm+//Tb27NkDmen1b4isccsSF899iOQi85jNkzGP5usFRsVrc85n1GMiA3vuH73uW3rjFmsIVv2wPTpO/x5vvt8WGbx91G13/x78PPALLBk5EJf/OYLw27ewac40zOrSDlu/n4WI0MuIjwxHfHQUwm5cx5UTx5Sfz+rSFpvnTldKqFqDXo8rEZmOCUIiohRm0/j4+CiPspEhNlvEYM1tytDHRI/XGRQJkS1btihJkcaNGys/Dw4OxrJlyzTd1tKlSzVtT7cKFABmzQIuXAB69wY8Pc1uyikpCYV27gSKFAFatQIOHYLRlC1bFr///jtOnjyprJfpqiLxmpiYiK1bt+KNN95ApUqVsGHDBshIr39DZI1blrh47kMkF9nHrIeztrN8MjhngOxkPya2Zs/9o9d9MzVud08vVGzaCh2nzUON9p2R0U/dLDmRHBRJwrk9P8HRzevTXC9REP//yKbf8WP/zxB66iQsTa/HlYhMxxKjRGQRLDVARKS9M2fOoGDBgihUqJCmd3MGBgbitAFnur3S3bvAtGnAlCnAvXvq26tXDxCzCqtWhRFdvXoVQ4cOxcKFCxEdHa26vRIlSijrdYrko5h5S0REJIMOGzpg/42Uy8Sbw9nRGUMqDUHjgo3h6MC/d0QySEyIx8ld27Fv5VLcv3bVqtt2dnFFi0GjkKtIMdgSr/sR2QeeWRARERHphEjkiZmFoiyo1okbMcuLXuDnBwwdCly6BEyaBOTMqa699euBatUAsY7HunWAwe7Ty507N+bNm6eMt88++0y5K1mNY8eO4f3331cS5rNnz1bW7yQiIrK1WnlradpeQlIChvw5BG1+b4Pjd49r2jYRmcfJ2QXFq9dC+0nT0fCLYGQLKGi1bSfEx2HFxFFWKzdKRPaNMwiJyCJ4JxERkWUThVqvByESjwcPHkRQUJCm7dqV2FhgwQJg3Djg3Dn17ZUqJWrGAi1aACrW6dMrsY7muHHjMGPGDNy5c0d1e7ly5ULPnj3Rq1cvuLi4aBIjERGRqSLjIlFzSU08THioedsOcEDLQi3RI6gHfN19NW+fiMwjLq9fOnoI+1YsUdYNtIZSteuj1ifdYCu87kdkHziDkIiIiEiHM7G0VqZMGZQuXVrzdu2KmxvQsSPw77/Ar78CJUuqa+/IEeD995PXKZw7NzkBaSCenp4YMWIErl27hgkTJqge16GhoejXrx9y5syJQYMGKQlIIiIia/Ny9ULDgIYWafsRHmHx6cV4d8W7WHxqMRKTEi2yHSIy/WbLfKXKoNXQEHwwcgICylaw+DZP7PwDsRqU7SciY+MMQiKyCD3fSTR//nxcunQJ/v7+aN++PWQiQ2y2iMGa25Shj4leZdq0aejRo4embS5duhTNmzfXtE27J06jRanQMWOAP/9U316uXEDv3slJSC8v2KvU3mdFidDvvvsO48ePV9bbVMvb2xvt2rVT1j30E+VirUCvf0NkjVuWuHjuQyQXPYzZG1E30HJ1S4TFhll0O8X8imFAxQEo9Vop2JIejokt2XP/6HXfrBH37csXlRmFp/7ciUePLFMKv2aHLgiq+65N+kfP1/2I6CnOICQiIiLSmbZt2yqzr7QsWdq0aVPN2jMMBwegQQNg1y5g+3agXj117YWGAl98Afj7AyNGAPfuwUgcHR3xySef4PTp01i8eDFKqpyhGR4ejqlTpyJv3rz4+OOPlbUPiYiIrCG7Z3ZMqTkFbk5uFt3Oibsn0HpdawzZPQT3Yox13kAku9fy5kODnn3Q4ZtZKFmrHpycnTXfxpk9uzVvk4iMhTMIicgiUrqT6MSJE8iSJctLz5Xt7qLDhw8jLCwMvr6+0pXbkyE2W8RgzW3K0MdE6dG1a1fMnDlTsztExUwr0sDff+N+//7w3bxZnGira0vMIuzSJTlpmCMH7IUp77MbN27EsGHD8Ndff6nerqurKxo2bIjRo0ejcOHCsAS9/g2RNW5Z4uK5D5Fc9DRmD906hJ5be1p8JqGQ0TUjupfujlaFW8HZUftEhL0cE1uw5/7R677ZIu7Ie3cx/8tPEathGfyMWV5Dp+nfwxb9wxmERPaBCUIisoiUThRSw7chIiLTXblyBUFBQbh7966qdsR6bRcvXoSLi4tmsRGAU6eA8eOBBQuAhAR1bbm6Ah9/DPTtCwQEwIj27t2rrCu4bds2JCaqW2/JyckJtWrVUhKFZcuW1SxGIiKi1MqNzjk6B6vPr8bDhIepPs/D2QMNAhog0DcQc4/Nxa2Ht8zaXuFMhZWyo2WylVERNRFZwszObRAVdl/TNvOVLouKTVoid9HisCYmCInsAxOERGQRTBASEVne7t27lURHTEyM2W2IEozdu3c367XLli3DkSNH0LNnzxRniJOSyQUmTQJmzwYepn5RMF0cHYH33wf69wdKlIARiWoEAwcOxNq1axEfH6+qLQcHB1SuXBkjRoxAzZo1NYuRiIgoJZFxkUqScNOlTbgVfQtR8VHwdPFEVo+sqO1fGw0DGsLLNXkNYvH/Zh2ZhR9P/IiER+bdaPRuwLv4ouwXeM2DF+uJZDHvs44Iu3HdIm3nLFxMSRTmDyqnnOdaGhOERPaBCUIisggmCImIrJckbNy4sUkzCf38/DBp0iTs2rULkydPhoeHh8nbTUpKUtaIO378uPL6Tp06oXfv3sidO7fJbRnC7dvAlCkiIws8eKC+vYYNgeBg4I03YESXLl1SZhQuXbpUVYL8MTEbV7TXrFkzTeIjIiLSwvkH5xGyNwR7ru8x6/UiAdm1VFd8WPRDuDiyWgSRrS0eHowrJ45ZdBuv+edHhcYtUOiNN+Ho6GSx7TBBSGQfmCAkIovQc4Lw7NmziIyMhJeXFwoWLAiZyBCbLWKw5jZl6GMiU8es+FqwYAFWrVqFqDTWtBDjunXr1hgwYADy5MmjarsrV65EkyZNnvuZKFPatm1b9OvXD4GBgTCqNN9HwsMBsXbkV18BN2+q31j16smJwtq1xZQ46IGW77PiIsTw4cOV8S/aVEusTSjGr1iT01HM2DTI3xBZ45YlLp77EMnFaGNWfF7efHkzxu8fr5QrNUdB34IIrhCMCjkqwBKMdkxMZc/9o9d9s1Xch9avxtbvZ1llW77Zc6B8o+YoVu1tOJu4nER6+ocJQiL7YPqnXiIiFWXBxMnCi1+yETNqxIVv8SgbGWKzRQzW3KYMfUxkCjFWxfpsderUwbVr1zBt2jRUr15dSdBlz55deRT/Fj8PDQ3FjBkzVCcHxYWqMWPGvPRzUfJx3rx5KFKkCN577z1cv26Z8jmyS/N9xNs7eS3BCxeA6dOBfPnUbeyPP4C6dYHy5UXNVzG1E7LT8n1WXJSYPn26MvZFYi9z5syq2jt16hQ6dOiA/Pnz4+uvvza5jKle/4bIGrcscfHch0guRhuzolSgKEG6svFKdCzR0ayZgGfDzuJ/G/+HPtv7mJ1kTIvRjomp7Ll/9LpvtopbJOtc3Nytsi1RynTT7GmY1+N/OLBmOeJiHtr9cSUi0zFBSERWI9anEncSvfhFRETa8Pb2Rrdu3bBt2zacPn1aSdCJR/Fv8XPx/7Ug2tu3b1+a5Uc3b96MjBkzptnOgwcPlMRljRo1lERmjhw5lEfxb/HzcDHbzl5lyAB8+ilw+jTw449AsWLq2jt4EGjRAnj9dWD+fJGthZGIsTZ27FglUSiS12IsqXH58mV88cUXSsncYcOGITo6WrNYiYiIzOHh4oGeZXpiReMVqJqrqlltrL+4Ho1WNMK8Y/MQn2iscwUiGbh5eKBYtRpW3Wbk/XvY/uM8zOnWAX8u+QUPIyOsun0ikhtLjBKRRei51IAoo5CQkABnZ2elnIJMZIjNFjFYc5sy9DGR7GO2du3aSgIwLSKpMnTo0BT/35UrVzB69Gj89NNPaZZE9fT0RJs2bTQpiSr9MREz/1avBsTMzDSSr+mWNy/w5ZfA//4HmLHGpN7HrGh/9uzZmDhxIi6I2Zoq+fr6KjMLBw8erHxvb39DZI1blrh47kMkF47Z5GoO269ux9h9YxEaGWpWG/m88yllRyvnqqw6Hh4T4/aPXvfNlnGH37mNH/t/hpgI29wM6eKeASVr1UO5Bk3gldnP7P7R83U/InqKCUIisgieKBAR2af9+/ejQoW0168RiT0xAyulco+7d+9Go0aNcO/evXRv08/PT1lfsXJl9RewpCdOzbduBUJCgC1b1Lcn/u5+/nnybMU0Elv2SsxmXbhwoTKr8Pjx46rbE2P7gw8+wIgRI1TPUiQiIlIrJiEG3x//XpkRGJsYa1YbtfLWQp/yfZDTK6fm8RFRykL/PYGlowYhIT7O5Nc6KOtkO+BRUqKqGJycnfH6W7WUdQrFeoWm4nU/IvvABCERWQRPFIiI7FOvXr3wzTffpPmcL7/8EhMmTEgxOVirVi3ExMSYvF13d3dl1mKVKlVgGGImoUgUrlihvi1RXlYkCUWyMFs2GNHatWsxfPhwJcmtlpubG5o0aaIkHgMCAjSJj4iIyFxXI65iwv4J2Hplq1mvd3dyx/9K/A8fF/8Ybk5uys8i4iKw+txqbL68GTejbiI6IRoezh7I5plNSSo2KtAIXq76mTFGJGOScMXEUSbNJHTP6I0mfQYjo18WHFyzHEe3bEBCnHk3Bzzm4OCIwpWrokLjFnjNP3+6X8frfkT2gQlCIrIInigQEdknceooEi0iMfLXX3+99P9dXV2Vko45c+Z8qaxo6dKlTZo5mNJMwkOHDumq3KgmxMy3ceOAX34BEtXdKQx39+Syo336AP7+MKKdO3diyJAh2L59uzKe1RBll+rWrauUzC1VqpRmMRIREZljV+gupezopfBLZr0+t1dudC7ZGUfvHMWa82vwMOFhqs/N4JwBDQMaomPJjsjumV1F1ETGJcqN7luxGCd2bEN8bEyaZUGLVa2OCk1awTvL0+tq0eEPcOj3VTi0YQ1i01i6Ib0CypRHxaatkLNQ0Vc+l9f9iOwDE4REZBF6PlFYv349bty4gezZs6NevXqQiQyx2SIGa25Thj4m0sOYFaeQO3bsQEhICDZs2PDk5507d8bMmTNfen7Xrl1T/LmpunTpghkzZsCQx+TiRUDMzJw3D4hVd6cwnJ2BDz8E+vcHir76AoA9vs8eOXIEAwcOVMavWGNFDQcHB1SrVg1NmzaFj4+PzfdNr8dE1rh47kMkF47ZtMUlxmHBiQWYfXR2mgk+rfi6+eIjj4/gfs+dx8SAY1av+yZb3LHR0Tixcyv2rFuNmPAHcHyUhIy+vvDK5IfASlVQrGpNuKWxrrh4/ZFN63Bw7QpEPwhTHY9H9pxwyh2APMVLoX79+ilsLwq7Vy3H2x+00eV1PyJ6yvmZ74mICFBOEi9dMu+OSyPEZosYrLlNGfqYSA9jViRE3nrrLeXr4MGDGDt2LFauXIk+YmbaC8LDw/Hjjz9qst2ffvoJ48aNg7comWm0Y5IvHzB9OjB4MCDKvH77LRARYV5bIiG2YAEgjkuTJkBwMFC+PIz0Pitm/K1Zswbnz59XEoXLly9HrJmJV5EwFzMSxVeRIkWU8qMyXGzS2zGRNS6e+xDJhWM2ba5OrvikxCd4N+BdTDwwERsuPr2RyxLCYsMwK2YW3rzxJsqirEW3pVf2PGb1um+yxS2Sf0F138WR63dw69Il+Pv7o3379ia9XpQILVO/Ef75YzP2r1qG8Ns3zY4n+sY14MY1nDp9HAUyeyOw/BvK2odixuPe5YtwcucfuP/ggdntE5E8mCAkInqBuIPs2UeZyBCbLWKw5jZl6GMivY3ZsmXLYsmSJU/uwn3RggULEKVByRshMjJSSTZ269YNhj0mot2xY5Nn/4mEoUgW3rljXluimMjy5clftWoBAwYA1auLDDDsecw+S6wh+Ouvv+L69etK6VHxvZrx+u+//yoJ81WrViE4OBgffvghHB0dITPZjolscfHch0guHLPpI8p+TnxrIloUaoGQvSE4/+C8xbaV4JCAPdn3oMprBlor2gT2PGb1um+yxq02LmdXV5Su8w5Kvl0X//65A/tWLMHdq5fNjicx/D5WfxWCTDlzI7BCZRzd/DtiIs28QZGIpMQSo0RkEXouMUpERNqqUaMG/vjjD83aq169OrZt26ZZe7oXHQ3MnQtMnCgWe1TfXsWKyTMKGzYEJE9sWUJYWBhGjhyJ7777TvlerXz58uHLL79Uyu+KNQuJiIisLT4pHr+c/AXfHv4W0QnRFttOq0KtMPiNwRZrn4hM8ygpCecO7sPeFYtx4+xpTduOjInFsFWbn/sZr/sR6Y/xPvETERERkVVdvXpV0/ZCQ0M1bU/3xHokPXsCZ88C330HFCqkrr29e5PLjpYsCfz8c3I5UgPx9fXFpEmTlHE2bNiwl254MtXFixfRvXt35M2bF2PGjDG7jCkREZG5XBxd0O71dljTdA0aBDSw2HbWnF+DyLhIi7VPRKYRZUELlq+ED0dNQsvBo5G3RGlbh0REkmGCkIiIiIgsSpQF1VKEuevu2TtXV+Djj4ETJ4AlS4CgIHXtHT8OtG6dnHCcMQOIiYGReHh4YOjQoUqC++uvv1YSfGqIEqZircOcOXOiX79+HMdERGR1r3m8hrFVx+L7ut8jMFOg5u2L2Ymrz6/WvF0iUr9+fN7ipdBy0Ch8NPorFCz/hq1DIiJJsMQoEVmEnkuMigvZCQkJShkwLy8vyESG2GwRgzW3KUMfE9nbmA0MDMRZMbtNw/ZOn9a2RI5dHhNxmr9xIzBmDLBjh/r2xFoovXoBXboA3t767x8TJSUl4YcffsD48eOVdQbVEvveunVrDB8+XPUsRbVkPSayxMVzHyK5cMxqIyEpAYtOLcKE/ROQ+ChRs3bLZy+P7+p+p1l79sCex6xe903WuK0Zl1ibcN/KpTi56w+lFKmpWGKUyD4wQUhEVksQnjhxAlmyZHnpubKdPMyfPx+XLl2Cv78/2rdvD5nIEJstYrDmNmXoYyJ7G7NGW4NQymPy559ASAiwZo36tnx9gR49ksuapvB3XZf9Y6IVK1Yo6xT+/fffqttyd3dHixYtlPbEeoW2IOsxkSUunvsQyYVjVlv1ltVDaKR25dv9vf2VUqZkjDGr132TNW5bxPXg1k0cWPMbjm3diMT4+HS/jglCIvvAEqNEZDXFihVTkoYvfhERkX1r3ry5pu2JZAqZqHJlYPVq4MgR4IMPAEcVHwPCwoCRIwF/f+Dzz4ErV2A0TZo0wcGDB5VEdZUqVZSyTeaKiYnBTz/9hEKFCintHhelXYmIiKwkNlHbtXFvR99GdHy0pm0SkeX4ZM2Gtzt0Rcdp36F84xZwzZDB1iERkRVxBiERWW0GYWpkexsSZfBEWQdRzqFgwYKQiQyx2SIGa25Thj4msrcxGx4erqy7FhUVpbotsZ+hoaHwVlHi0tL0cEwgSr6OHw/88AMQF6euLRcXoE0boF+/5PUK7aF/TCSShYMGDcKmTZuQmKiuTJuTk5MyS3b06NGoWLEirEHWYyJLXDz3IZILx6y2GvzWAJcjLmvaZmb3zPikxCdoVbgV3JzcYHT2PGb1um+yxi1DXDFRkdjyywKc2/0H4h+mnuznDEIi+8AEIRFZhJ4ThEREpL2uXbti5syZqtvp0qULZsyYka7nfv3118rfo88//5wz1lMTGgp89RUwaxagNoErZtGJ2Z3BwUBQEIzo1KlTSqJw1apViFObeAVQqVIlZY3COnXqaBIfERHRizps6ID9N/ZbpO2sHlnRqUQnNAtsBhcnF4tsg4gsIz42BjM7t0VcKklCJgiJ7ANLjBIRERGRxQ0YMAB+fn6q2hCvF+2kh5itKGZghYSEKGt49OjRQ1nPg16QKxcwaRIg+mbYMCBTJvPbEjf8LFkClCkD1K8P7NwJoylcuDCWLFmCc+fOKevGeHh4qGpvz549qFu3LkqVKoVFixYhKSlJs1iJiIiEWnlrWaztW9G3MGrvKDRc0RDLzyxHQlKCxbZFRNpycXOHh4+PrcMgIgtjgpCIrObEiRPK3UQvfhERkf3LkycPVq5cCXd3d7NeL14nZmWJdtJjzpw5uHv37pM13qZNm6aU6RFJm5MnT5oVg10TyduhQ5MThRMnAjlyqGtv/XqgWjWgalVg3brk5KGB5M6dG99//z0uX76Mnj17qi6Je/ToUbz//vtKAnL27NlMFBIRkWYaFWiEDM6WXXMsNDIUQ/4cgiYrm2Dd+XVIesS/Y0R6kDFzFluHQEQWxhKjRGS1EqN6KTVw+PBhhIWFwdfXF6VLl4ZMZIjNFjFYc5sy9DGRPY/Z3bt3o3Hjxk+Sd+mdOSiSg5UrV07X80Vpx4CAAGWtwpQ4ODigadOmmDt3LjKpmTFnJ8ckRbGxwIIFwLhxwLlz6tsrVSq59GiLFjh87Jj++8fEYy9mtI4dO1Yps3vnzh1NEpBiVmyvXr3gItaAtNMxK0tcPPchkgvHrPZG/jUSi08vttr2CvoWRPfS3VEzb03lvMze2fOY1eu+yRq3LHE9jiPi7L84vWlNis9hiVEi+8AZhEREKZwIbd++XXmUjQyx2SIGa25Thj4msucxW6VKFRw6dEhZS9DT0zPN53p5eSnPE89Pb3JQ+PHHH1NNDgri/jgxi9DHQiVz9HZMUuTmBnTsCPz7L/DLL0CJEuraO3IEeP99oEgRRE2ejF1btui7f0w89mKsjxw5EteuXcOECROQS5R2VeHq1avo168fcubMqax5KBKQlojb1mSJi+c+RHLhmNVex5Id4evma7XtnQ07i8//+BzvrXkPO67uUM7N7Jk9j1m97pusccsS1+M4bj9yUkqNEpH9YoKQiIiIiKxKlAmdMWOGkiwRpT+rV6+OwMBAZM+eXXkU/xY/F0k+8bz0lhUVEhMTMU7MenuF/v37w9GRp8Kv5OwMfPBBcoJv9WrAhERtis6eRZX589Fz8mQU27BBTK2DkYjZfl9++aVSelSUChVlb9UQsxHFWpsiUShKmZoyM5eIiOix7J7ZMaXmFLg5uVl1uyfvnUS3Ld3Q5vc22Ht9r1W3TUSv5ujigmLVatg6DCKyIJYYJSKL0HOJUSIi0q8lS5agVatWaT7H398fZ86cMas044MHD5QZisuWLVNmcUVGRiozHUXJx+bNm6Nt27aq15uTmvjosHMnMGYMIBJ8Wqx92LMn0L07kDkzjDpmR40apawzqJaHh4cy/sVsRTEmiYiITHHo1iH03NoTYbFh6X6NmHn4XuH3sO7COlyJuKJq+xWyV0D3oO4Iyhqkqh0i0k74ndv4sf9niIkIf+7nLDFKZB+YICQii2CCkIiIbEEk6EQCLy1idmK3bt1MavfKlSvKTK2ffvopzXKOopRkmzZtMGDAAJNmPurSwYPA2LHAsmXJiUM1vLyALl2AL74AcuSAEW3cuBFDhw7Fnj17VLfl6uqKhg0bKmO2cOHCmsRHRETGcCPqBuYcnYPV51fjYcLDVJ/n4eyBdwPeVcqTihmI8UnxWHV2FWYenam0oUaVXFXQo3QPvJ7ldVXtEJE2Qv89gaWjBiEhPu7Jz5ggJLIPTBASkUUwQUhERLYgTm03bNiAkJAQ7Nix46X/L/42Xbx4ERkyZEh3m7t370ajRo1w7969dL/Gz88Pq1atMmntRN06dQoQZV1FYjYhQV1brq7Axx8DffsCAQEwIpEgFOsK/vHHH0rJXDWcnJxQq1YtJVFYtmxZzWIkIiL7FxkXqSQJN13ahFvRtxAVHwVPF09k9ciK2v610TCgIbxcvV56XVxiHJadWYbZR2fjzsM7qmKomacmugV1Q6FMhVS1Q0TaJAlXTBz1ZCYhE4RE9oEJQiKyCCYIiYjI1kRiTyQK165d++Rn4t9i/UFT2hAJlpiYGJO37+7ujs2bN6NKlSowhMuXgUmTgDlzgIepzzhIF7E+5Pvvi8UigRIlYETHjx/HwIEDsW7dOsTHx6tqy8HBQUlWjxgxAjVr1tQsRiIiotSI2YeLTy3GvGPzcD/2vtntOMAB9fLVQ9fSXZHfJ7+mMRKR6eVG961YjBM7tuH+gwdMEBLZASYIicgi9JwgXLp0qbKulFi7p0WLFpCJDLHZIgZrblOGPiYyBcfsqx05cgRjx45VSjieP38ePj4+6S4rWrp0aZNmDqY0k/DQoUP2X270WbdvA5Mni1quYtFG9e01bAgMGABUqgQj/j6KGa+DBw9W2jYnUf2ioKAgDBkyBE2aNJH+fUSWuHjuQyQXjll9HRMx8/Dnkz9j/vH5iIiLMHsbjg6OSknTLqW6IE/Gl8+rRNurz63G5subcTPqJqITopUyqNk8s6FW3lpoVKBRijMercGex6xe903WuGWJ61VxxEZHY/fq5Xj7/da6vO5HRE85PvM9ERGJMgmRkXjw4IHyKBsZYrNFDNbcpgx9TGQKjtlXK1WqFH799VdcuHAh3clBYcyYMaqSg8Ldu3eVdgxFXBQYNSp5RqFYo/CFG4ZMtno18MYbQI0aYqE+9esd6uz3MV++fMq6mpcuXcKnn34KL7FeowoiYd20aVMUKVIE33//PZKSkqR9H5ElLp77EMmFY1Zfx0SUJe1UshPWN1+PziU7K0k7cyQ9SsKqc6vQaHkjjPhrxJN1DsWj+PfbS95GyL4Q7L+xH5cjLivlTcWj+Lf4ec0lNTHyr5Gq10c0hz2PWb3um6xxyxLXq+Jw8/BAiZp1rB4XEWnP2QJtEhHpWsGCBeHr64ssWbJANjLEZosYrLlNGfqYyBQcs+nn7e2d7ueGh4crSRkt/PTTTxg3bpxJ27cLYn/79QN69gS+/x6YMEFMhzO/vT/+SP4Sa+mJGYViBpwoRWqQ30dRmWH69OnKbNhRo0Zh7ty5qhLYp06dQocOHTBs2DC0atUKlSpVQrZs2SATWd7feO5DJBeOWX0eE29Xb3QP6o6Pin6E7//5Hr/++ytiEk2fGZ/wKAFLTi/BirMrUD1Pdey9vhfhcclror2y5Onpxdh4aSOm1pyK0llLw1rseczqdd9kjVuWuGSJg4gsjyVGicgi9FxilIiIaNq0aejRo4em7XXr1g2GJtbRW7gweVbhiRPq2ytSJHmNwg8/BFxcYDSxsbGYNGmSMrauX7+uuj1x3ta1a1f07dsXHh7mze4gIiJKr9vRtzH32Fwl2RefpG6tXVO5OblhTp05CMoaZNXtEtkTXvcjsg9y3XJLRERERCSBZcuWab6Oh+GJJF6bNsCxY8Dy5UCFCura+/dfoH17cYtz8nqH0dEwEjc3NwwYMACXL19WkoSiFKka4oLO8OHDkStXLvTu3RthYWGaxUpERPSi1zxeQ3DFYKxrtg4tCrWAs4P1ipzFJsai59aeNik3SkREJBMmCImIiIiIXnD16lVN2wsNDdW0PV0TZUFFedA9e4DNm4G331bXnljrUMz2FAmykBDgwQMYibOzszI79dy5c0pZ3Ndff11VeyIx+NVXXyF37tzo2LGjJrMTiYiIUpPdMzuGvjEUq5qsQqMCjeDoYJ1LlWGxYZhzdI5VtkVERCQrlhglIovQc6mBGzduICYmBu7u7siePTtkIkNstojBmtuUoY+JTMExaxk5cuRQ+lYr4tgw0ZLGmN23Lzm5t2KFNmsffvop8PnngJXX1JPl93Ht2rXKbMD9+/drMlOxadOmGD16NAICAmDE/uS5D5FcOGbt+5icDzuPb498iw0XN8DSPJw9sKXlFni5ell0O/Y8ZvW6b7LGLUtc6YlDz9f9iOgpziAkInrB+vXr8cMPPyiPspEhNlvEYM1tytDHRKbgmLUMLy9tLxRlzJhR0/bsbsyKcqOi7Og//ySXIXVyMn8D4eHJ6xyKGYViZuGlSzDa72ODBg2wb98+7NixA9WrV4eDg4OqtQ4XLlyIwoUL491338WRI0dgtP7kuQ+RXDhm7fuYBPgGYOJbE7G04VLUyFMDlhSdEI3V51fD0ux5zOp132SNW5a4ZImDiCyPCUIispo7d+4odxi9+EVERCQbUV5RS2JdN0oHUR5zwQLgzJnkWYBubua3FROTvDahWKNQrFV48iSMpmrVqti2bRsOHTqkJA1FOVJzJSQkKDMTg4KClKTjzp07NY2ViIjoWYUzF8aUmlPwyzu/oErOKhbbzqZLmyzWNhERkexYYpSILCKlUgOpke1tSJaSDrLGxjJbRHLhmLWMadOmoYeYfaZhe2KduGd9/vnncHV1Ra9evZSSpkZh0pgVZV6/+Qb49lsgIkLdhsUsuqZNgeBgoFw5GPH38fz58xg4cCCWL1+uzAxUq1y5chg2bJiSfLTn/uS5D5FcOGaNeUwO3jyIqYemKo9aypMxD9Y1WwdLsucxq9d9kzVuWeJiiVEi42CCkIgsQs8JQiIiovDwcOTMmRNRUVGalCsNDQ2Ft1gb7z+XL19GgQIFlFlZYo23jz/+GH369LH6Gm+6ERYGTJ+enCy8c0d9e7VrJycKq1dPThwajFgPc8iQIfj11181GePFihVDcHAwPvzwQzg6skgNERFZhrh28ObCNxEeF65pu/Xz10eTgk1QKUclODrw7xhRejBBSGQf+FePiIiIiOgFIpnXRqyFp4HWrVs/lxwUJk2apCQHBTGTa+bMmShUqJDy3H/EOnz0PF9fYOBA4OJFYPJkUQNWXXubNgE1awKVKwOrVgFJSTASMWN1zpw5uHr1Kr744gv4iv5V4cSJE8rvi0h6T58+/cnYJiIi0pJYU9fXTd3frJT8fuF3dN7UGXWX1VVmKV4Jv6L5NoiIiGTEGYREZBGcQUhERHp35coVZb21u3fvmt2Gn5+fsv5bnjx5nvsb6e/vj4cPH6b6usaNG2Px4sVKCVJKQVwc8PPPwNixwOnT2qx9KGYUvvceoGKdPr2Kjo7GhAkT8O233yp3fmuRgOzevTt69+6tzJAlIiLSSocNHbD/xn6Lb6dstrLKrMI6/nXg4eJh8e0R6Q1nEBLZByYIichqJwri7vIsWbK89FzZTh527dqFO3fuKLG++eabkIkMsdkiBmtuU4Y+JjIFx6xl7d69G7Vq1VLW4DCVSO5t27YNlcUstWcMGjQIo0ePTvO19evXx7p1ll0Pxy7GbGIisHw5MGYMcOiQ+uDy5wf69gXatwfc3Q3z+/g4bjGT8PDhw/j666+VMrhqZc6cGZ988oky5jNmzKjb/uS5D5FcOGaNfUx+OfkLQvaFwFo8nD1QJ18dNC3YFEFZg5RZjKay5zGr132TNW5Z4kpPHEwQEtkHlhglIqsRJxbiROHFL9mcPXsWR44cUR5lI0NstojBmtuUoY+JTMExa1lVqlTB5s2blZmApsiQIQO+/PLLl5KDYm3DadOmvfL1Yj03e6XpmHVyAlq0AA4eBNavB6pVU9fehQtA167JicIJE4CICEP8Pj6O++LFi/j8889x4cIFfPfddyhSpIiqdu/du4fx48cr63l27drV5NmJsvQnz32I5MIxa+xj0qhAI2RwzgBriU6IxoqzK9BufTu8u/xdzD46GzeibpjUhj2PWb3um6xxyxKXLHEQkeUxQUhE9AIvLy/4+Pgoj7KRITZbxGDNbcrQx0Sm4Ji1TpJQlAnt0qULPD0903yuOA61a9dGnz59lPKkL5oxYwYePHiQZhviLt2qVavCXllkzIq7+evWBbZvF7c8Aw0aqGvvxo3kmYR58wJDhgB37tj17+OLcTs6OuLjjz/GyZMnsXz5cpQpU0ZV+5GRkco6m6K0rlirUCQizYnLVnjuQyQXjln5WPU9y9ULDQMawhYuR1xW1iiss7SOsmbh+gvrEZsYa+gxq9d9kzVuWeKSJQ4isjyWGCUii2CpASIiskdiBuCPP/6IpUuXIjQ0FBEREUrpxFy5cqFFixZK8sPb2zvV1zds2BBr1qxJcxtr167FO++8Y4HoDebIkeQ1ChcvBpKS1LXl4QF06gT07g3kzg0j+uOPPzB48GCl7K7aj5AuLi7KGBeldl8X6z8SERGZQMzga7m6JcJiw2wdCjK6ZsQ7+d9RSpAW8ytmVglSIj3idT8i+8AEIRFZBE8UiIiIXiZOvbds2YKQkBBs3br1pf9fqlQpZbaiVheXxGxFkdBctmwZrl69qszkEncC586dG82bN0fbtm3TTGjaBVEaafx44IcfgLg4dW25uABt2wL9+gGBgTCigwcPKmsKbtq0CYliDUgVnJycUL16dSVRWLFiRc1iJCIi+3fo1iF03NgxXTP4XuQABzyC9pdDC/oWRJOCTfBuwLvwy5B2efqIuAisPrcamy9vxs2om0opU7HeYTbPbKiVt5ZSSlXMliSSFa/7EdkHJgiJyCJ4okBERJS2vXv3KonClStXPvnZwoUL8d5775nVnpjZFRgYqPz9vXLlipJ0+emnnxAVFZXqa0TJVDHrccCAAciTJw/sWmgo8NVXwKxZQBp9ki6OjslrH4q1IkuXhhGdOnVKSRSuWrUKcWoTrwAqVaqE4cOHo06dOprER0RExkgS9tza06SZhL5uvphacyr83P2w8txKrDq3Ctejrmsal7ODM6rmrqokC8Wji6PLc7MfxTqGa86vwcOEh6m2IdZZFKVUO5bsiOye2TWNj0gLvO5HZB+YICQii+CJAhERUfr8888/GDduHA4cOKB8L2ZVmSo2NhYBAQG4f/++UrpRzFIMC0v/xTI/Pz8l0VO5cmXYvbt3gWnTgMmTgfv31bdXv35yotCO141Mi5iZKkqPLl68GNHR0arbK1mypJJ4bNmypSbxERGRfRMJtzlH52D1+dVpJtzE7Dwxs+/FhFvSoyTsvb4XK86uwJbLW8yakZiWzO6Zle2KZGFkfCR6bO2BB7Fpr0edUkKzdFZj3pBE8uJ1PyL7wAQhEVmEnk8U5s+fj0uXLsHf3x/t27eHTGSIzRYxWHObMvQxkSk4Zu3nmIgkn5ubm1nbnDNnDjqJNfJUcHd3x+bNm1GlShUYYsxGRACzZwOTJgHXNZg58Oab2FS+PP709oZ/vny6+n3U4pjcvXsXI0aMUNoSa3WqVbBgQdSuXVs5d8yfP79N+5PnPkRy4ZiVjwzHJDIuUkkSbrq0CbeibyEqPgqeLp7I6pEVtf1rK7PxXlWyMzwuHOsvrFeShcfuHNM+SHEF1owq8m5ObphTZw6CsgZBNjIce3uKW5a40hOHnq/7EdFTzs98T0RERERENmJucjAhIUGZgahWTEwMGjdurKyBaPflRoWMGYHevYHu3ZPXJxTrFJ47Z357u3ah9q5dKJ49O041aQK0aSMW2YNRiFmokydPxpgxYzB27FjMnDkTd+7cMbu9s2fPKl/ZsmVD/fr18dFHH8FFrAFJRESUApH8+6DIB8qXubxdvdGqcCvl61zYOSVRKNYJvBtzV5sgzVxiWsxqFKVUlzRcwnKjRESkKc4gJCKL0POdRIcPH1bKsvn6+qK0ZOsKyRCbLWKw5jZl6GMiU3DMysfax0SsW/jBB+ZfDHtRly5dMGPGDBhuzCYkAEuWACEhwDENZg0EBgL9+iUnCl1dITNLHJP4+HglYfjNN98gVKz/qFKWLFmUsdm/f39l7Uxr4rkPkVw4ZuVjz8ckPikeu0N3K8nC7Ve2I+FRgs1iaVWoFQa/MRgy0euxlzVuWeJKTxx6vu5HRE8xQUhEFsETBSIiIssTp/JBQUE4cuSIZm16eXkpCR1vb28Ykvh4tHZtcqLwzz/Vt5crF/Dll0DHjoCVE1sySEpKwrx58zB+/HhlRqBaYly2a9cOQ4cOVWYtEhERWcu9mHtYe36tkiw8ff+01bcv1lHc0nLLK0ulElkDr/sR2QdHWwdARERERETm+f333zVNDgqRkZH48ccfYVgODsC77yolQ7F9O1C3rrr2xOy5Xr0Af39g5Ejg/n0YiaOjIzp27IgzZ85g8eLFKFmypKr2xPqGU6dORd68efHxxx/j6tWrmsVKRESUlszumdGmWBssbbgUi95dpJQz9XHzsdr2oxOilXUWiYiItMIZhERkEbyTiIiIyPLefPNN7N69W/N2q1evjm3btmnerm4dPAiMHQssW5Y8w1ANLy+ga9fkpGGOHDCijRs3KjMA9+zZo7otV1dXNGzYEKNHj0bhwoU1iY+IiCi94hLjsO3KNmVW4Z/X/kTSoySLbi+XVy6MqzYOr/u9DmdHZ4tuiygtvO5HZB+YICQii9DziYIofyVmT4gSawULFoRMZIjNFjFYc5sy9DGRKThmjXtMxGm8SLSMGTMGO3bs0LTtwMBAnD5tmdJZuh6z//4LjB8PiBmWYs1CNdzcgI8/Bvr0AQICYEu2OiYiQTho0CD88ccfSExMVNWWk5MTatWqpSQKy5YtCy3x3IdILhyz8uExSXYz6qYyw2/l2ZW4GH7RotvydPFE2WxlUSF7BVTMURGFMhWCo4P1C8Xp9djLGrcscaUnDj1f9yOip3irCRHRC3bt2oVLly7B399fqhNFWWKzRQzW3KYMfUxkCo5Z4x4TBwcH1K1bV/nKkiUL7t69q1nbERERSgJSbENruh6zRYoA330HDBsGTJoEzJkDPHxoXluxscDMmcltvP8+0L8/ULw4bMFWx6RSpUrYvHkzjh8/joEDB2LdunWIj483qy2RYNywYYOSNK9cuTJGjRqlzITVAs99iOTCMSsfHpNk2Tyz4ZMSn+B/xf+HI7ePKLMKfzvzGx5B+7kZUfFR2HF1h/IliFKn5bOVR4UcFVAxe0Xk98lvkfM4ezn2ssYtS1yyxEFElsc1CImIiIiIdC5TpkyatpcxY0Y0btwYX3zxBULFGnr0vLx5gcmTgUuXgIEDAR8V6w+JmXM//wyUKAE0biym1cFoXn/9daxYsUKZtdq6dWu4u7ub3ZZIbIuyuzVq1ECZMmWUdomIiKxJJOZKZy2NYZWHKSVBreFB7ANsvrwZY/aOQeOVjVFzSU3029FPSVBejVC/Xm9EXAR+OfkLOmzogAa/NUCNxTWUx8VYjLMZzyIWsZrsBxERWRdLjBKRRei51IAoo5CQkABnZ2elnIJMZIjNFjFYc5sy9DGRKThm5WOLYyKSIaJMo1ZEYuXvv/9WvndxcUG7du3Qr18/Te4gtssxGx4OzJiBpEmT4Hj7tvr2atQAgoOBWrXEVUZYmmzHRJwzDh8+HAsWLFBiU0usTSjGrxjHjo6m3yPLcx8iuXDMyofHJHUiobb/xn5bh6EkKkU5UjHDUDxm9Xj+ek1qbkTdwOyjs7Hm/Bo8TEi9akIGpwxoWKAhOpbsiOye2SE7WcesLHGlJw49X/cjoqeYICQii+CJAhERkfVMmzYNPXr00Ky9EiVK4NixY8/9TCRWWrZsieDgYJQqVUqzbdkVUW70+++T1ykUswvVEmvpDRgANGkiDgCMRpS6FaVC586di3v37qluL2/evOjVqxe6d++uXPAiIiKyNDHrLmRfCGSTzzufsnahSBaWz14emdxfrkZx6NYh9NjaQ5mdmF6+br6YWnOqMoOS7Buv+xHZByYIySTh4eHw9va2dRikAzxRICIisu45Ws6cOREVFaW6LQ8PD0RHR6f5nObNm2PJkiVWWdtGl8Q6egsXAiEhwMmT6tsrWhTo1w/48EMxpRNGExsbi6+++gpTp07F9evXVbcnzlE//fRTZVahmnKmRERErxIZF6mU+0xr9p0MCmcq/GT9wrLZyuJM2Bl03NgRsYmmlw51c3LDnDpzEJQ1yCKxkhx43Y/IPhjvNlQy24MHD5AvXz4EBgaia9eu2Lp1q61DIiIiIiJAuYGrTZs2mrQlEo2vki1bNiYH0yKSeOJ4/PMPsHw5UL68uvZEkrF9e0CUeJ02LXmmooG4ubkpM1cvX76szJYVn0nUEBevhg0bhhw5cqB3794ICwvTLFYiIqJnebl6oWFAQ8ju1P1T+PHEj+i+tTuq/FoFH6//2KzkoCBe13NrT6U8KRERyY0zCMlkhw4dwqJFi7B06VLcv38fnTt3xpgxY2wdFklGz3cSrV+/Hjdu3ED27NlRr149yESG2GwRgzW3KUMfE5mCY1Y+tjomV65cQVBQEO7evWt2G5kyZVKSJWl9RHBycsLZs2fNTtLY85hNdd9Ef4qb68Q5sxY32YlzrM8/Bz79FPDxUd2crMcktbiSkpLwyy+/YOzYsTh+/Ljq7Xh6euKDDz7AiBEjlKRheuOwJJ77EKWOY1Y+PCZpW7h2ISbdnoQYhxiz23B1dEUmt0y4+fAm9KJVoVYY/MZgyEjWMStLXOmJQ8/X/YjoKc4gNKjDhw8rd+H+9ttvSkkqU4gLT+LDuLgwtGnTJhw4cECZVWhqO0SyEidBly5dUh5lI0NstojBmtuUoY+JTMExKx9bHZM8efJg5cqVZpdMFK+rVq1amslB4cMPP1Q1g8uex2yq+yZmW779NrBlC7B3b/KagmrcupW8NmHevMmP4t+WiNvGUotLrIfZunVr/PPPP1izZg3Kq5yhKUrzinUO8+fPryQKz58/n644LInnPkSp45iVD49J2mJux6DSjUpwfmTe+reiZOe8uvOwudVm/N7sdwyvPBzv5H8HWTJkgczWnF+jlFiVkaxjVpa4ZImDiCyPK7MbVM2aNZWSoY8FBASgVq1aqF27tvKY3nUGy5Qpg40bNyrrd3Ts2FGZWUiUmjt37qT4c9nuLhJ3SD37KBMZYrNFDNbcpgx9TGQKjln52PKYVKlSBZs3b0bjxo1Nmkno5+eHFStWYMiQIa98rjjvU8Oex2y69q1CheSyo2Lm29ixwK+/AomJ5m1Q3KAn1jn8+mvgk0+AL78E/P0tE7cNpCeuBg0aKF87d+5Uxu/27dtfmeROa63DhQsXKpVS6tati9GjR6NUqVI89yGSDMesfHhM0ib6pSzKoljmYvgl+heExaa/tLWvmy+m1pyK0llLK//OnTG38tUssJny9+5C+AXsu74P+24kfz2IfXqtz9aiE6Kx/OxytCmmTRl8I4xZWeKSJQ4isjyWGDUokQjcIu5g/s+La8j4+vo+lzBMz13i4sKSmpJWZF9SKjWQGr4NERERaV9uVJSA//HHH5XZUanx8vJSZmINGDBAmYEo/ibv2LFDea24CexFTZo0wXKR3CLtXLgATJgAfPedyFCpa8vZGfjoI5HFBYoWhREdOXIEAwcOxIYNG5CQkKCqLfEZ6a233lJKj1atWlWzGImIyLjEunxzjs7B6vOr8TAh9TWFPZw98G7Au+hYsiOye6YvSZP0KAmn75/G3ut7lWThgRsHlCSdrfl7+yPAJwAFfQuigG8B5Su/T35lZqSlRMRFYPW51dh8eTNuRt1U+kH0aTbPbKiVtxYaFWikrA9J5mOJUSL7wAShQYnZgyEhIRg/fnyqz3k2afiqhKFYl1D8nAlCeowJQiIiItsTJeBFklDMiAoNDUVERAQyZsyIXLlyoUWLFmjTpk2qlSMOHjyonC+KkvSP/1bv3bsXFcQMODOI8qcVK1bkncipESWcvvkG+PZbICJCXVviPL5pUyA4GChXDkYkyoSKRKFIaIuZgWqJMqZDhw5VZisSERGpJUpviiThpkubcCv6FqLio+Dp4omsHllR2782GgY0VJ3Aik+Kx4m7J5QZhntv7MXhW4cRm6j+b6IWHB0ckSdjHs0ThyIBO/vobKW8aVoJ2AzOGZQ+NiUBS88nYH/e/zO6vtn1uZ8zQUikP0wQGvhikbgoJEpQderUCWXLllUuAol/v7jmRmoJQ1GWNHPmzLh37x7+/vtvpT2WGKXHmCAkIiKyD//++y/GjRunrEHy+++/m9WGuFjg7++v/M3v0KED+vTpo6z3ltJNbCKhuWzZMly9ehWRkZHKLMfcuXOjefPmaNu2bbpL4evW/fvA9OnA5MmiPrv69mrXTl6n8K23khOHBnP9+nWl9Oivv/6a5mza9Hr99dfRv39/ZS1OsRYiERGRXojk4NHbR5PLkV7fp3yf8EjdbHuZEoeHbh1Cj609TCqz+mIJV0p/AjbiXgT+7fnvc/+fCUIi/WGC0KAKFiyoJAVTSuiJCzMiUbhp06Y0E4aPk4aPh5B4XnpKkZIx6DlBKC5GipJUzs7OykVJmcgQmy1isOY2ZehjIlNwzMrHXo9JYmIinJyczHqtmMklypY+Jtpp2bIlBg0apCRcRElUsd7bTz/9lGYSx9PTU5n1+Lgkql0fe9EP8+Yllx+9elV9cJUqJScKxQy4FxJbso5ZLeMKCwvDyJEj8d133ynfqyUS3L1790bnzp2V+LTGcx+i1HHMyofHRJ/9Ex0frSTVxOxCkTA8ee+kUqZURq9KHIr96Lixo1kzJMXr59SZg6CsQbCVxyVRN1zYoMwofZj4UJlRaquSqCmN2RcTsAnhCUwQEtkBJggNKDg4GPfv38fMmTPT9XyRMDxw4MCThKGYLfhscrBMmTKYM2cOgoJs94eU9JEgPHHiBLJkyfLSc2U7eZg/fz4uXbqkzHRo3749ZCJDbLaIwZrblKGPiUzBMSsfHpOXzyXz5s2rVLBIyZtvvomjR4+m+v9TW/t61apVqFy5Muz+2MfFAT/9BIwbB5w+rb694sWTS4+2apW8ZqHEY9YScUVHRyvLLMyYMUO5iKVWjhw50L17dyVZ6Oam3VpKPPchSh3HrHx4TOyjf0Tip/369jgbdhZ6IRKHOTxz4Gb0TSQkmT8bUswkXNJwidXLjcpaEvXFMZtSApYJQiL7wJooBiTWoBFlcdLLx8cHb7/9NsaOHaskCpOSkpTkovh5v379lJ8xOUjpIZKD4kThxS8iIiKyX99++22ayb9du3aZlBwUxLrX4vx09+7dsHuurkCHDuJOK2DxYkDtefc//wAffQQULgzMmgXExMBIPDw8MGzYMKWE7ddff60kr9WWMBUzZHPmzKl8NhLrfBIREemRj5sPWhZqCT0RMx5DI0NVJQeFsNgwzDk6B9Ykkm4tVrfAktNL0kwOCuL/Lz69GC1Xt1TWkrR2ElPMHJRl/Uoi0hZnEBqQWCtDlNVRu36LKClap04ddO3aVbljluhVMwj1cifR2bNnn6x5JMrxykSG2GwRgzW3KUMfE5mCY1Y+PCbPz9YSJejFeYEliJmEhw4dkqbcqFWOvfj4tnEjIEq27tihvr3s2XGnXTtca9gQHtmySTVmrdGf4ubHH374QVln89SpU6rby5gxIz766CMMHz483eX2U8JzH6LUcczKh8fEfvonMi4SNZfUfGXCyh6J2YiVc1ZGZvfM8Hb1Tv5y80ZG14xP/v3kezdvuDu5K9XVzCF7SVQxZsMjwuHi4YKFtxdi1blVLz2HMwiJ7AMThAZUrlw5TJgwATVq1FDdlkg0ivZEiVEt2iP7oecEIREREWlj2rRp6NGjh0W30aVLF6VcpCGJGZQhIcDaterbypQJEMeqZ0+ReYUR/fbbbxg1apSSdFbL3d0dLVq0UNoT5bmIiIj0YuRfI5XZapQ2Z0fnp4lEkTx0ywhvl+Tk4YvJxMffi8eH8Q/RYUMHPIhLXstPbUlUMYtSJHTFl1hXUnlMiE71e7F95Wcvfv/M6x9/pYUJQiL7wAShAYmLKAcPHsT+/fs1aU/MJCxfvrxS6onoMSYIiYiIjC0+Pl65S/7y5csW3Y64Gz80NFR1dQxdO3IEGDs2uQRpUpK6tjw8gM6dAVEhJFcuGNHWrVsxZMgQ/Pnnn8qa62q4uLjgnXfewejRo/H6669rFiMREZElS0qKUpai7Ka5RDJsQMUBShtiTcNzYeeUx4g4luLWiphJKGY92mq2JxOERPaBCUIDEgk9cbFGrEM4RpQm0ijpKNr88ssvNWmP9I8JQiIiImMTHzO2bNmCkJAQJeFi6ZmK3bp1s+g2dOHsWWD8eGD+fJGhVdeWiwvQrh3Qty8QGAgjEjdUDh48GJs3b0ZiYqKqtpycnFC9enUlUVixYkXNYiQiIrIEtSUw59aZi9JZS790bnjn4R0lUXj+wXkmDnWOCUIi+8AEoUHVrl1buVDTuXNnfPvtt6rbE2V4OnXqpNmsRNI/PScIDx8+rJTP9fX1RenSz5/Q2poMsdkiBmtuU4Y+JjIFx6x8eExetnfvXiVRuHLlSou0LxIv27Ztg61Jc+xDQ4GvvgJmzQKiotS15egItGwJ9O8PWHmfZOnPVatWYfr06fjjjz8QFxenur1KlSopaxSK9dxTw3MfotRxzMqHx8Q++0ckCXtu7WnSTEJR+nJqzakvJQfTwsShPjFBSGQfHG0dANnG0qVLlTJMs2bNQqFChVRfUAkKCsLff/+tWXxEtj553759u/IoGxlis0UM1tymDH1MZAqOWfnwmLxMzJhasWIFjh07hjfeeEPz9kWJURlIc+xFadBJk4BLl4ChQ5PXFzSXKFm6aJE44QcaNAB27YLR+vPevXuoXLkyxo8fj/bt2yNDhgyq2tuzZw/q1q2LUqVKYcmSJSk+h+c+RKnjmJUPj4l99k9Q1iBlnbtWhVohg3Paf/tcHrkozxPPNyU5KDg4OOA1j9fwRs438FHRjzD0jaFYUH8Bdr+/G1tbbsXs2rPRv0J/tCjUQolJrONHRETaYILQoHx8fJSST+IunXPnzqFWrVqoV6+e2YlCMYNQ3AlFRERERJSa4sWLK1UnPMQ6dxq6evUq/v33+TuYCYCfHzBsWHKicOJEIEcOde2tWwdUrQpUqwb8/ru45R9G+wz1/fff48qVK+jRo4fqdS+PHj2KVq1aITAwEHPmzEGS2vUjiYiINJbdMzsGvzFYSdSJNQXLZy8Pf29/ZMmQRXnM8ygPSt8tjc7orDxPPF8r6Ukc5s2YV7PtEREZEUuMGpyY9SeSg6LUgfjD+1iLFi2UMqTiA+urPviGh4fj7bffRubMmbFhwwYrRE16oOcSo0RERGRZIiFyVqyXpyFxLtusWTMEBwejbNmymrZtN2JigAULgHHjxMLk6tsTZdKCg4HmzcUiezCaqKgopXSuqMpy584d1e3lzp0bn332mfLlItaAJCIiojT9cvIXhOwLsXUYhsQSo0T2gQlCwvnz59GyZUtlFqC4sCKGxLPJQjEzsFy5ckrCUHwfEBCg/FwkFTdt2oTFixcr3x88eFBXtdTJspggJCIiotTUqFFDWc/NUtq2bYsffvjBYu3rXkICIEpbhoQAx46pby8wEOjXD2jTBnB1hdHExsZi8uTJmDJliiblbrNkyYIuXbqgf//+8PT01CRGIiIiexQZF4maS2riYcJD1W05OzijWu5qSlvhceHKl1gDUXwlPkrUJF57wgQhkX1ggpCe6NevHyZMmKB8/zhB+Hh4PJswfJF4jrhrtmPHjlaKlPSACUIiIiJKzbRp05QSjZYi1orr06ePxdq3G+Jcf+1aYMwY4K+/tFn78MsvAfG5wICJLVEidO7cucr4E8s4qCUquYg1D4cMGQI/US6WiIiIXjLyr5FYfHqx6nbEGoqiTGpK1z2jE6IRHpucNHzyFZucQHw2mZjSz2MTY2FLzo7O8HD2UNaR9HDxSNf3yqOzh3I9eOCugSnuAxOERPaBCUJ6zoMHDzBmzJgnicLHnk0QPjtkxIxCsV5Gc1FWiOgZTBASERFRWiXqc+bMqZRo1Jo4P718+TIyZsyoedt2S5zf79iRPKNQiyUDRDLrs8+A7t2BTJlgxEThkiVLMHr0aBzTYIamWLNTLP0wcuRIpQwpERERPXUj6gZarm6JsNgws9vwdfPFkoZLNF1D8TGRXHucMFx2ehkWnFigWdvv5H8HNfLUeC6pl8Hlv8f//u3i5GKRBCwThET2gQlCStWWLVuUEqKbN29WSoiKUqTPlhwVZUk5a5DsMUG4dOlSXL16VbkAI9bjlIkMsdkiBmtuU4Y+JjIFx6x8eEzS1z/r1q1TzjW1NnjwYIwYMQK2oNdj/1zc+fMDY8cCy5YlJw7V8PICunYFevUCcuTQbX+qiUOs0T506FDs3btXdRyurq5o1KiRckOnWMdTK7L0M1F6cczKh8fEuP0jy74dunUIHTd2NGu2npuTG+bWmYvSWUvrqiSqSP5tabkFXq5esORxfbP+mykmYJkgJLIPjrYOgOT19ttvY+zYsThw4ADOnj2r3Akrvu7du4eNGzcyOUh2KzIyUplNKx5lI0NstojBmtuUoY+JTMExKx8ek/T1T926dTUvmyhmWvXs2RO2otdj/1zcZcsmr0944gTw8ceAs7OahgFRmUQkHUWi8L8bDs2Ky4bUxCHG+Z49e/DXX3+hZs2acHQ0/yN4XFyccsGuaNGiqFevnrIGvBZk6Wei9OKYlQ+PiXH7R5Z9C8oahDl15igzAU3h/sjdaslBQSTzGgY01KStdwPetUhy8MXjKmZVTqk5RUmkEpH9UfFpj4jIPhUsWFCZKZslSxbIRobYbBGDNbcpQx8TmYJjVj48Junvn5UrV6JWrVqIiYnRpO1OnToZ7m+kxeIuUgT47jtg2DBg0iRgzhzgoZl3u8fGAjNnJrfx/vtA//5A8eLmxWUDWsRRqVIlpUKLKDk6aNAg/P7774iPjzerrcTERGVmorhps3Llyhg1ahSqV69udmyy9DNRenHMyofHxLj9I9O+iSShKBM65+gcrD6/Os1Zem4ObijpUhJNcjSxWnLwsY4lO2LjpY2qS6KKdqx1XB8nYHtu7akqbiKSD0uMEpFF6LnEKBEREVnP7t270bhxY9y9ezfdrxEzDydOnIj169cra72JKhcuLi5KSXxz12ibO3cu6tevj1y5cpn1ert3+zYweTIwbZpYuFx9e40aAcHBInMGI7p48SIGDhyI3377TZMEeVBQEIYMGYImTZpoEh8REZGeiVKeIkm46dIm3Iq+haj4KHi6eCKrR1bU9q+tzOKz1Ow7eyqJmtJ6j48TsBH3IlhilMgOMEFIRBbBBCERERGl15UrV5R11X788UdERUWl+jwvLy+0bt0aAwYMQJ48eZSfnTlzBuPHj1fWZ5s+fbpZ2z969ChKlSqltNGuXTv07dtXuXOaUiCSg2I24FdfiZM79e3VqJGcKKxVC3BwgNGI82OxRuFPP/2kSXm2woULo1+/fso4VlPOlIiIiCyfJDR1Rp6YOTi15lSbJAevn3uAHAV8niRgfz7wM7pU6fLcc3jdj0h/mCDUKXGHc1hYmLIAcL58+WwdDtFLmCAkIiIiU4WHhytJQrHOWmhoKCIiIpAxY0ZlVp84723Tpg28vb1TfK34WONgZoLpww8/xK+//vrk3yKx0qpVK/Tv319JHFIKRLnR778Hxo8HLl1S355Y+3DAAEDMgDNgYkuMfVEqdN68ecqa72rlzZsXvXr1Qvfu3eGsZh1JIiIyrGcTQpZ8jZHjdcj+MF0lUT2cPZQ1B5tl/AivFw+Ate1bfR77115E5eYFEVQ7r/IzXvcjsg9MEOpU5syZlcVihbJly6Jz585o2bJlqhdMiKwtpROFxhPXoukbxdCsTC5kdHex+YnY422Hx8Rj+d+h+P2f67jxIAYRD+Pg7uyIbN6uaFzGX6p4b9y4gTsPorDtQhR2X45S4o2KS4SnqxOy+7ijfvEcFo9XxCBKYbm7uyN79uxpxptS/5oTb3q2qcaz2z57KRSrjt3ArouRuPcwyer9a2q8WvQv49V3vMf3nYdnVkfl98PD10/6ePXWv+bEHBV2F9fOhiFnQV+LvGfpvY9ffE+3dbxnz55VZl2JMqUpadCggTJjUaz1Jjy77Ss372DAuOnYuHYVIu7eRHxsNJzdMsArc1bUe7cJxvbvjlxZ/aT5nXsx3oTYh0q8nplfQ9WatTGkeweULl7EtHjFOnoLFwIhIcDJk6rjTShQCM6DB4isLQ79exYjp3+PnVs3Iere7SfxZvTLhjoNGlmtf9M6D0lP/5oSr9jOV199halTpyrbVUucj3/66afKrEIRf0rxrl+zApH3binxurh5WL1/06J1/zJefcf7OGYHz4fK78r9iIf46vvFUsestz42N97Hx8RSn9f03r+P/45E3UrC6xUCpI83pYRQes4hHl33wJ/LzqJ8g3yo0DBAyngf92/vDu/h3vEYnNx2T4p4T129hC6j++Dgtm2IvR+FpNgEOLo5wy2zJ8pWr4HZgyYg8oSD1fr32XOfy/ujlVgfEzFnKemBL4aOx9JZE557HROERPrDBKFOieTgrFmzlK8LFy48uVtaJAlFsrCGKNVDJFmCMHePn+Hk4QMPVye0zpQJPqeibHoiVvwdf2xIjMaKQ6GIjktM9fkyxTvlxCEcCXNFApxsFu/8+fNx6dIl+Pv7o3379lbp31dtU40X412y7xLiHznoYjzobfwyXsvFe8/rEg5nyYiT0V66iFcv/WtuzHXjE1Dwvgdccj1Ap8FNpY/X2n387Ht6Mb9qNo9XnDvPnj07zee0bdsWP/zww5P+zVreBSGLp+LwttV4FJ/6+nEOLu4oX74+GuZvhTrvVbDZ75xV4hUJ1lWrgDFjgP37Vcd+3d0DY+LiMDcpATE27t/UzkMs2b9iJuGmTZuUNTqvXr2qeh98fX3RpP57KJGhAfJU9uX4Zby6i/fZmO9kPIu5W35F6D97pI5Zb32sJt6shd1wPemoRT6v2UP/ir8jt/95BI9If13E+7hvhfuRt7Dq/GIcOPB7mvE6u7ijUmBt1A36EJm8slr13J3xWu7cJ3fmQMQcf5r0F/Gu//tn7D27GQkpxMsEIZH+sNaITvn4+Chro4ivQ4cOYeHChcqFjcWLF2PJkiXKB8D33nsPnTp1QunS1q9LTZSWYuEO8LmVvL7Q45MiW5yI/bPuEk67xyPaPfULkbLF6+CeEQnuCbqJV2/9K+KNd3fQVbx661/Ga5l4M0f6wyFBxMv3BxliLhjjoXwfH+qjtME+TlncFR/s32PbeK9du6ZcAEmLuBFPlBp93L/nbvyDvt0GITo24pXtiws9+/5cjuN/b8H9yFFiPqLVx4PV4hVlQUV50MaNga1bkxOF4tFMOWKiMRXAYABfA/hWzDDVMl7J+9fJyQlFixZFnTp14OLigrFjx+LEiRNmxyuWp5j/6yx4ePyIbNtyIDT0Ch7Fx2kWr9b4+8Z404p51nz5Y9ZbH6uNt3PdUcheMLnsoDXorX/FOY9HpAtD9ckAAQAASURBVI8u4hUzFh+fYym/b+vTF69IFu06sRqHzm9XxgPWAnmK+Vl89iPjtWy8ThnjlBmDYuaiKfESkX4Yb3EHOxQUFIRx48bh/v372LhxI5o1a6Z8P3PmTKX8aGBgoFIW6eLFp9PBiWylXIwzasS4PPczcXIkTpIs7dkTscdELCKm1DDel9WrVw/t2rVTHq0Vb2rbtMf+TQ3jtSzGa1l6i1ePMespXvFe3vDt95QEqq3jFaUc4+LSTpI0adIEvq45n1yInLamj8kXRqJiwjF1zZdYOG+NVceDTeIVlU3efhvYsgXYsyc5YaiCqEcRAuAygNEAXrNB/754HmKN/n28zXfeeUdZe/P48eNYtWoVypUrp2pfoqOjceHCOeV7MdPHw8NDk3jtZvyagfFant5iNmq8189GoHyxarA0PfavOOfRS7wi4SQSQmrjjcx5wyqlURmvZTx77iNKoIrtmRMvEcmPJUbt2NKlS5USpFvEh/P/7n7meoVkyxKj73ZciHqOL1/W2eudiLED3kRO3wwWj2v7qnPKLIUXbXOPx4EXZt6kdCFSYLypY7yWxXgti/Falt7i1WPMjNf0GVW5c+dGVFTyjMTU7Nu3D+XLl8eSeTvRvlsDVRdG3DJ4Y+e+AyhfPBCWJlW8x48DY8cCv/4KJKY9S/RVHgKYC2Dif0lDI/bvjh07MGTIEOVR7cd5Z2dn5MyZU7nBNCIi7X0xSv+ag/Fant5iZryWxXgta/8/Z/Bm+bKIizE/XicPb/y1Vz/xOmfwxtbNu1GqUAGIP63K39f/Hh8liW9f+Ld4fPZ5SU///eTnLzxPeUx6hBPnLqBl61qIiVE3HhZMWYOCefI+H9MLcSCFeB/H8TTOl2MXrxH/EBXkr9y8ip5jWqUrXpYYJdIfJggNvF5h7dq1lWRh06bWXRuHjJsgDGm7DBkz+D73swOu8Tjpmog3A7PgvfJ5LB7Xov1XcPf4fZSLe/ki4+NYhKJxTmk+h/EyXsbLeBmvfcerx5gZr2nEx6C/D/6F+d9Pxd4921N8TsWK1TD124XK9x17dceRHb9BLf+iFfDr90vg7PLyPqUlMiIcx479rUzQE+fzyjn9f+f1DuI/BwcUL1EG7u4ZNI03MKgG5k6dgwwZXj3T7FmJiYk49e+x537mdfsGXl+7DIE7N8IpPl5VXOLVPwMYB+DfF+KdPmEKfDP5mdzm6dPHkZBGXFmz5kCW17Jp27+la+CrUeORLXsuk1/755+bsXjhXOzdu1vpbzXE+BEJc5EkFMnztOIdM3gE/P0LmLyNmzdCcffu7VT/v3sGDwQEFHravzu16d8hfQagUKHXTX7t/ft3cf3alVT/v4OjI4oWLal83+kL7eId8PmXKFKkJBxF2V4TREdH4eLFM8/97MWrPQULFoWrqxs6f9lDs3iDe36J/PkLpfoeoVxUT+094tQx5cJ6avLkyY+MGZNnyHTp0wNHdi1XH3Op6pg8ZjJ8fTOn/cQU4jp95gQSEuJSfc5rr+VAlizJn4G7BX+GwxrEW6hUdYwZGIJsWXO+Mj7lx88c9CtXziMyKiLV1/j4ZEbOHHmUcfL5kF449Kf6eAuXqI6Bnw1CntwBz23zyTh4HMML/xTf3Lp9Dffu3075/wPI4JYB/nmTk019x/TB33vUx1vk9bfQs/0XCMhX5MkvzHO/N0ruJzkB9GJcDx7cxc3boS/E+vQfDg6OKJj/deX74dMG4sD+FarjLVbkLbRr3AkBeYvC0cHxpfiexP44OfQkpEd4GBONqzcvJP/78f98ZtfEz/LkCISLkyum/DoSew6vUh1viYJV0aRaO+T0ywc3lwxPkmnJm3uacHsSx5OfAUmJCbh068zzz38c+n/Pe80nNzzcPPHr9m+U8ptqlcr/JuqU/gB+GXPAK4Pps/Ou3j2HxMTUzyN8PV+Dj6cfFu7UNl5vj8zKuoSmuhl2BTFxqd8o5+nugyzeOUyKlwlCIv1hgtBgRIJQlB6dM2eO8sFPfBDkeoVkywQhERERka1dun0KGw/9iqMXdj13MbvnuxNRKFcQHsZFYeCPrRCXEKPJ9ka3XqxcIDIpxlv/YsLybmk+Z9gHPykXcrSOt2fDSSiU07TPCbHxD9H7u3dT/H8ixfY5gM+c3JAhMVZVbOIG9+X/lSE9+N/PWr35Gaq93sjktgb//AHuR95K9f83qdQZtUq10rx/qxdvhhZV0j62Kfl2XX+cuLIfGTJkUM67r1+//sqSuemRK1cuxMbG4s6dOyn+/yK5y6J7g/Emt/vbXzOx9eiSVP+/f9Yi6NN0uub9Ky6ajvzoV5Nf99e/6/Hz9gmp/n9XZ3d89b+1mscrfPW/dXB1djPpNRdvnsTEFd3TfM6ID39BBjcvzePt0+xb+L9WWLP3iMe61h+D1/NW1LyPjfYekZqKheqiTY2+msfL94hkfI+wzntEQPbimsfbunpfVCpc1yLvEVWKNtA83lql3kOTSp0s8h4h3ntMiZcJQiL94RqEBpM/f35lvcJ79+5h06ZN+OSTT55br9DPz4/rFRIRERGRoYiLVh3rDMPAVvNQsVAdODo6IV/Wogj8Lym27/QmTS/kHDi7FZbwuFKI1vEev7wPWroJIBjAoBp9saf8xwh3dlf1gba56FMAG8SFdHFT5I1/YEla9+/1++o+ez18+BCXLl16sq6gSBiqERoaqiQHs2fPjmzZkmdMPissKuXEoaz9GxcvCtPqJ15L01u8loj5ws3jMNJ7hLXj5XuEvn/nGK9lMV4ikg0ThAb29ttvK2VHk5KSsHjxYtSsWVNJFo4dOxYFChRAhQoVMG/ePISHh9s6VCIiIiIii8ueyR9tavTDsPd/xPvVej1JuB2+sEPT7Ry9uNvk15hS9kXreE+H/g1LeOiSAQfLtEbVLAXxmSiHp7K9OmINS3FH/IWdyHfxT7HADixB6/69FXZVk3bE7EGRKBSPefPmRcaM6tacv3HjBm7evKnMBBDrFD4WHn0PlqR1/8YmqJulau14LU1v8Voi5su3T8GSZH2PsFa8fI/Q9+8c47UsxktEsmGCkBQtWrRQZhQ+nk0oSo0eOHBAKTuaKVMm1KtXD8uXq6/vTkREREQku8wZsyG339M11sIitZ0NER591/QXpWNlCLEWoSXijYx5AEu6Hn0fUwCIHu8AQO2l+3KJcWiwYTDeX9oJgWe2wCFJ3fp8L9K6f2PjozVtT6ztdvnyZRTNWQmtandCJt9MqpcOuHbtmvK5UKxTmJDG+koy9m+Sxsff0vFamt7itUTM0bGRsCTZ3yMsHS/fI/T9O8d4LYvxEpFsmCCk5/j4+ChJwYMHD+LcuXP48ssvkS9fPmzcuFFJIjo5OeHTTz/F1q2WKYtERERERCSb2ARty4/FmFHO7Nm1Ea0db1y8ZUtLPY5XXFL+HkAxAC0BqJ236HfvAupsHYOPFrXD6ydWwykhTtN4tZKQlABLcHjkgGoB7yExzkFZVzBLliyq2hM3k169ehXuHq7YcnqBxUqOad2/pvzuyBCvpektXkvEHJ+ozXuB3t8jLBWvpRNufI+wLMZrWYyXiGTDBCG9cr1CkSgUCUOxXqFIIIoZhrVr1+Z6hURERERkCG7O6tZ0e5G7i4fJr3mUnhmE/5VE1TpeVxfz1whMjxfjFYVBlwIoC6AegO0q2/cJv47qO79Bm18/QtDhRXCJUzcbR+v+dXZ0hiWJeF+1rqApxBIUy7f9gCGL3sO6E7MQFa/tDFOt+/fxzFpL0TpeS9NbvJaI2cXJFZakx/cILYl1fC2J7xGWxXgti/ESkWyYIKR0CQoKUtYrvHfvXorrFRYqVAiTJk3ieoVEREREZHd8vdTNvHqRj6cfLMPBIvF6ufvAktKKdwOA6gCqAFijcjue0fdQee9stP3lQ1TYPx9uZpZO1bp/3cxIGJsbb2rrCpojMjIS63YuxtBfPsRvR75GeIw2Zci07l9LJyu0jtfS9BavJWL2cPOCJen5PUILzk4usCS+R1gW49VfvDEOj3DPMQl3HZNwxzEJtx2TcMsxCTedknDDKQnXnZJw7b+vUKdEXHVKxBWnRDx0SPvms3DHR3DNqK/+JSLTWfY2JLJLotSo+Hrw4AEWLVqkJA4PHTqEPn36oG/fvsrsws6dO6Np06a2DpWIiIiISLXS+avhzLUjmrVXKv+bsIT/JhBqHm+hXGVgSemJ908ADQGUBNAfQCsA5l7SdY+NQPm/f0Tpo0twvGgDHC7ZElFer2karymy+uaGJaUUr1hXUMicOTM8PDyUGYbpmaWakpiYGGzdswY7D25AhRLVUPv1NsjikUfTeNVwc3aDJWkdr6XpLV5LxJz3tcKwJHt4j1DD2yMz4p8p25naO8uLP39VYVIxuzza4RGKBVTVNF4XZzeEOSY9F9OzsaX0vXiM+O81qRHPEcmZ/AXe1Px37oJzIpydE1+O2eHlfRAlVJVY/nt+Wk66JOC1glU0j/eIawIuuz8dFc8+Jn89wiOH5/9fvNOrSwHvc0uAU+HKgMbx7naPxymv5DLaIq6ncabw5fC0jyMd0/47utM9HihWSfN4j7ol4op3rMmvu+mUdryXnZPgWrQSEKqvvxlEZBqHR+Z+CiB6xoULF7BkyRIlWSi+f1zeqGXLlkqysEaNGrYOkaxMXHTImjXrcz8LabsMGTP4Pvezv9zicdQ1Ee4ujpj8fml4uFruvoXouAT0XHgIhaMc8Ubsy3c1Po5FKBnnlOZzjByvWJP05q2byJY1G+rUqWNSvMf+i7dEGvGK57i9EG9q21RDxPvZwkMoZIF4LYHxMl7Ga7149RiznuIV7+mhN29jR3xBFIt1lj5e4fa9+6hbvSSSNFiLz9E1A9ZvPYysfplNel1CQgKio6OS//HokZLMUb7Ef/99pPPxyaSsGa5pvC7uWL1xP3Jlz27S65KSknD9+tU0n5M5cxZkyOBhVrwFAPQF0F6UQDUpshRidXHB/UatcKJxK0TkfPlC/M4dO3Hn7h3kyeOPxo2baN6/S1bvRIF8+Z77uXLuc/OmUg40tXOfu3duKcm51Hh4eiJTJj/cvheGum+VSDNeb29v+Pr6KonCxER164c5OjmhSpVq6NKjP14v8TS5/CDsPiIjI1J9nYuLK7Jmy44798JQ5xXxpjsWF3f8vGQjihUtauIrHRAVGYGwsPupP8PBATlz5VHGQ51q2sW7YNE6vF6sOBwdTSv4FBcXi9u3bqYQ59Pvs2XPifvhkaj9ZnHt4l38O4oUKgxXt9QTsQ6pvUdc++89IpUKj5n9kt8jbt29j9pVtIt51ea9yJfXhCT2f/GJeJMSk1ItTent44OMPj5KvG9XLKZJvA4u7li5+U8UDAh47limFN+L/0h+j0hh/bD/nuLp4YXMWbLg5p17eCuoCB5pEq8blm/ajaJFCpn82rD79xAZkcZ7hKsrsmXPoXG87liyfhtKvP66ya8V72dh9+6l3raDA3Llyat5vIvWbEaJEma8R8TG4tbNG2k+J3vOXLgbFo6aQUWQoGG8RYuk/R6BVN4jrl29kuZz/LK8hvDoGM3jLVgwAJ6eps80vh56Nc2/oT6+voiOS9Q8Xv+8ueGbybTzSuHO7VuIeZjyGoPiPOR+WBiy++TH2OGfpnvd4Vu3bilVCohIPziDkDRbr1DMHhRfYjahWKdQJAxFOVLxKD5sikRhq1atULp0aVuHSzay2y1eWUfmWeKCX4wDULhyTrxR0rQLT+ZouiUzfO79d3HtGdvc43HA/eni77syJChx1Yh5/oIk4wUO7YlD9P1wvOadCaWKZLFKvGltU40mEvYv42W8jFeOePUYs17iTX5PD8NbSY9QMIXEn2zxJsuCcuXrY9+fy1W3VKrGu6hdxfQLpzaLt2ZDvFO9uFmvDSr2/M1iWsZ7DkBnAMMBfPHf9+YWDXSMj4ffsp9Rdfmv4g5HoH9/4JnPLLeuHIW7YxjyZnP+7zxE2/5tVrfcSz8/9Fccou+F47WMmVCqcCrnPqn9/CWvjlcsFSG+xGxCcWHv2rVriI+PhzmSEhOxc8c25euNN97A8OHDlSozIg6t4jWlf99vXNXMV4tSwPnS9Twt4/2oqYqba19PT9nYbNrG20QUATZPycB0jomAzJrG3KCamItsutf9M6XrecXy+moWb+maDdGwWpB5L87pna6nFcqWEeU1ijdfmWpo/JZYQdYM2TJaPV7Rv81rVjI/3gI50xVv8eI1cOzQ79Ai3pZ1RNFtc2QE8r76d+56jCMqBdbGrhOroVaZKg1UxAsUyfHqEufXzz2QJt5C2YrqLN7Uf+cuHz+ASwkR8M/tgKBy9bF3j/rfNyKSE9cgJIuuVyjuOGnWrNmT9QrLli2rrFc4b948W4dJNnDYPVG56PciccHv/YBsFt++OBHzOfXqC6ePiZ8x3peJJP9bb731UrLfkvGmtk177N/UMF7LYryWpbd49RiznuIV7+XlX6+Ggvc9dBHv4/5tmL8VPN3Td7E1NeL143oFw9KMFO81AF8C8AcwxskV8V4q9jkpCVi0SHygARo0AHbtSvE8xBr9q+W5jynxRkdH49KlS8pMVH9/f7i7u6va9l9//aXMgCxVqpRy46jW8ep9/D6L8dpPzEaOd+D/usHS9Ni/rYq11U28OQr44NPuvVXH6+bujRlTQ2BpjNcynj0PmTpnnLI9IrJPTBCSRdWqVUv5ICgShGJWofjDcvbsWXTq1MnWoZGNpHSBL9eb2VCiVHrvMFd3Ila+Qb50XYh8jPG+TPweV69e/aULVpaMN7Vt2mP/pobxWhbjtSy9xavHmPUUr3gvf6dFDd3E+7h/67xXAZ3qjoSLk3kFLcXrBvWZjtp1zZwJYgIjxhvh5ArHAfPgIkoWTpwI5MihLqh164CqVYFq1VD6+nVUfyZZZ43+1fLcx5x4RelSkSgUpW1FotDT01NVDEePHlWqyYibRefMmaOUjtMyXr2PX8ZrXzEbOd7/dWwMSzNy/1rrd+6Drm9h4JfTzI7XyckV3/68COWLB8IaGK/2nj0PEduZ/uNCODqrLepORDJiiVGyCh8fHyUpKL4ePHigzC4k43p88U/c9S8u7DVpbXq9f3NVaBigPO5fexF7vRNxwDH1C5GPMd70Y7yWxXgti/Falt7i1WPMjNca8b6rfP/txsGIfRie7teKu8TFhb3+I1rDWgwdb+/eQPfuwA8/AOPGAefPmx/Yzp3JXyJRFxwMNG8urswZpn9FgvDOzfvo12sKYh3PK5Vi7ty5Y3YcZ86cUT4TjhgxAp999pny5eLycqlho/SvwHjtM2bGa1mM1/KCR7aBVw5P9OrzMRKj0x+vSwZvzPxpETo0e3GBGctivJb1vxb1AaxA53bvmxQvEcnP4dHjFe2JiDR0+/ZtZM36/B39uXv8DCcPH3i6OqFJUC6lJJi1ZoKkVObjkZ8rpm87i+WHQpWFolPDeE3HeC2L8VoW47UsvcWrx5gZr+XjvfrwFjp/ORCHt67Go/iYVJ/r6JpBWXNQlASz1l3/LzJ8vAkJgChtGRICHDumPsDAQKBfP6BNG8DV1XD9Gxsbi8mTJ2PKlCkIDQ1VHY9Y71CsVd+/f/8UZykarX+tTW/x6jFmxmtZjNfy9v9zxqR4Z00cbbWZeClhvLaN99atW8rfdiLSDyYIichqCcLGE9eiWeViaBqUCxndX75T2FYiYuKVC5Lrjl3HzfBYPIiKgbsz8JqXK5pXCJAqXlGi99b9cPx1PRH7byQo8UbGJsDLzRnZvN3wTokcFo9XxBAZGQkvLy8ULFjQ5P41J15Tt6nGkROnsPb4bey9FofweEer96+ptOhfa2K82nv29yNbbn/p49Vb/5oT882rl6z2nqXHPk7rPV3GeNMSeusugsdPx4bVKxFx7xbiY6Lg7OYBz0xZ8E7jZgjp2w25svpB1ngTYqLh7O4BD18/VK5WE/06f4QqFcpCFrv3HcS4WT/jzx1bER1290m8GTNnRd2GjU3rX/Gxd+1aYMwYsTCe+uBy506eqdixI/BfYiu1/jUnXmuc+zyOd93K3xB1/w4SYqPh4u6ZrnhFidC5c+di/PjxOHfunCYVZ9q1a4dhw4YhU6ZMacarRf9aA+O1nMe/H1FxiZi1eK0uYtZbH5sarzU/r2kRr7Wl1D8yx2sP5xCv6t/OrRooN57JcL6u9m+yJbzqd1rE22vYeCyZMf65nzNBSKQ/TBASkdUShHo5UZg/f76y5opYb6V9+/aQiQyx2SIGa25Thj4mMgXHrHx4TIzbP3rdN1njtkhc4uPvjh3JMwo3bFDfnp8f8NlnySVNU0ls2fO5j0gUijXnR48ejWMazND08PBQ1iocOXIkcoskLJGO3rOMjMfEuP2j132TNW5Z4kpPHHq+7kdETzk+8z3RK4WHs840ERERERHplIMD8NZbwPr1wIEDQIsWyT8z1927wJAhQN68QN++wPXrMBJHR0e89957OHr0KNavX4+KFSuqai86Olq5KFmgQAG0bNlSWbOQiIiIiIgsgzMIKd0ePHiA/Pnzw8/PD7Vq1VI+sNWsWdPWYZGk9HwnkSijkJCQAGdnZ6WcgkxkiM0WMVhzmzL0MZEpOGblw2Ni3P7R677JGrfV4vr3X2D8eODHH5PXLFTDzQ34+GOgTx8gIMCQ5z579uzBwIED8ccffygzDNVwcnJC7dq1lRmKZcqUUR0b2QdZ37OMjMfEuP2j132TNW5Z4kpPHHq+7kdETzFBSCY7dOgQFi1ahKVLl+L+/fvKovJjxFoeRM/giQIRERER6crly8CkScCcOcDDh+racnIC3n8f6N8fKF4cRiRKjg4aNAi///474uPjVbXl4OCAKlWqKKVHq1evrlmMREREZB5e9yOyDywxalCHDx9GcHAwfvvtN5PLhgYFBWHs2LHKgrWbNm3CgQMHEBgYyPKjRERERESkX6JM6OTJwKVLwMCBgI+P+W0lJgI//wyUKAE0biym1cFoSpQogZUrV+L06dP48MMP4e7ubnZb4r7mXbt2oUaNGihbtqzSLhERERERqcMZhAaVOXNmpWToYwEBAUrZUFG+RTx6e3ub1F6/fv1w8eJFZWYhkcA7iYiIiIhI18TnpZkzga++Eiey6turUQMYMAB4+2116x7qlPgsMHToUPz0009K6TK1ihQpgv79+6NNmzbKWohERERkPbzuR2QfmCA0KJEI3LJly3MlW57l6+v7XMIwX758r2xTrE149+5di8RL+qPnE4X169fjxo0byJ49O+rVqweZyBCbLWKw5jZl6GMiU3DMyofHxLj9o9d9kzVuWeLauHIlMi5bhtIbNiCDFonCcuWSE4ViZmEqiS17PvcRlWdGjRqFefPm4d69e6rby5s3L7744gt069ZNWSuJ7J8s7w30FI+JcftHr/sma9yyxJWeOPR83Y+InuJtdgYl1g/s27fvk3+LPPGzX2JtQfEcsb5ggQIFlOTfe++9h7lz5yozBVNal5DIXoiToEuXLimPspEhNlvEYM1tytDHRKbgmJUPj4lx+0ev+yZr3LLEde3+fWwsUACLR48GFiwAihZV1+CBA0CzZslrE4r2Ulifz57PfUS1mvHjxyM0NFRJFIqLj2pcvnwZn3/+OXLnzo0RI0YgJiZGs1hJTrK8N9BTPCbG7R+97pusccsSlyxxEJHl8fY6gxIzBv/++2/l+06dOinrOBw8eBCbN2/G+fPnlZ8/O7n0ccJQfD2eYSjKkopSpeKuT9FWixYtbLQ3RNp6fJFC7cUKe43NFjFYc5sy9DGRKThm5cNjYtz+0eu+yRq3LHE93n428Sjuov/oI2DVKmDMGGD/fvMbPnkSaNcOGDIE6NMH6NAByJDBMOc+Yk3CgQMHKstVzJo1CxMnTkzxZtT0unnzplLC9JtvvkGHDh0wZMgQk5fOIH2Q5b2BnuIxMW7/6HXfZI1blrhkiYOILI8lRg2qYMGCSlIwpTUDxdqEIlG4adOm5xKGqSUaHw8h8bz0lCIlY2CpASIiIiKya+Jz0NatyYlC8aiWOHfu1Qvo2hXw8YHRJCUl4eeff8bYsWNx4sQJ1e15eXnhww8/VGYVZsuWTZMYiYiIKBmv+xHZByYIDSg4OFiZEThz5sx0PV8kDA8cOPAkYfh45uHj5GCZMmUwZ84cBAUFWThy0hOeKBARERGRYezdC4SEACtXqm9LzHrr3h347LPkpKEBrV69Wknsic+harm5uaFp06YYM2YM8ufPr0l8RERERsfrfkT2gQlCAwoMDFSSfWpm+82ePRv9+/dX1igMER+EiV7AEwUiIiIiMpx//gHGjQN+/RVITFTXlig3+sknwJdfAnnzwoh27NihlAoVj2ovXTg7O6NevXoYPXo0SpYsqVmMRERERsTrfkT2gQlCA3J0dERYWJjq9RhESdE6deqga9eu6N27t2bxkX3Q84lCZGQkEhISlIsIojSRTGSIzRYxWHObMvQxkSk4ZuXDY2Lc/tHrvskatyxxmRXHhQvAhAnAd98BsbHqAnB2Blq3Bvr1A4oUgb32c1oOHz6MQYMGYcOGDUqsaj8Pv/XWWxg5ciSqVKmiWYxkPXoYs0bDY2Lc/tHrvskatyxxpScOPV/3I6KnmCA0oHLlymHChAmoUaOG6rZEolG0J0qMatEe2Q89nyjMnz8fly5dgr+/P9q3bw+ZyBCbLWKw5jZl6GMiU3DMyofHxLj9o9d9kzVuWeJSFceNG8DXXwMzZgAREeoCcXAAmjUTa0YAZcvC3vo5Pc6ePaskClesWIFYtYlXABUqVMDQoUPxzjvvaBIfWYeexqxR8JgYt3/0um+yxi1LXOmJQ8/X/YjoKcdnvieDEAm9vn37atKWr68vNm7ciBYtWmjSHhERERERkd3Inj255OilS8DIkUCWLOa3Je7tXbZMfKAD6tYF/vgj+WcGUrBgQSxcuBAXLlzAJ598Ak9PT1Xt7du3Dw0aNEDx4sXx66+/IikpSbNYiYiIiIhkxxmEBiRKg4oPVmINQbFQuxa6dOmitPmlWB+DSOd3Eok7k0U5BVFGQYxrmcgQmy1isOY2ZehjIlNwzMqHx8S4/aPXfZM1blni0jSOqChg7lxg4kTg6lX1wb3xRvKMwnffTZ5hqON+Nsf9+/eVUqHfffcdHjx4oLq9gIAAZfmMTp06KWXVSE56HrP2isfEuP2j132TNW5Z4kpPHHq+7kdETzFBaFC1a9fG1q1b0blzZ3z77beq2zt06JDyIWr//v2axEf6xxMFIiIiIqJUxMUBP/2UPLvw9Gn17ZUoAfTvD7RqlbxmocFER0dj/PjxmDFjhvKZQ62cOXOiR48e6NWrF9zc3DSJkYiIyJ7wuh+RfWCC0KDE3ZX58uVDeHg4ChQogFmzZqleQ9DJyQmJiYmaxUj6xhMFIiIiIqJXEJ+ffvsNCAkRd12qby8gABDLSbRrB7i7w2ji4+Mxbdo0fP3117hy5Yrq9vz8/JRSpgMHDkTGjBk1iZGIiMge8LofkX3gGoQG5ePjgy1btkDkh8+dO4datWqhXr162LZtm9kzCMV6hERERERERJROTk5Ay5bAwYPA778D1aqpa+/8ebH+Q3KiUJQxjYiAkbi4uCiz/i5evKiUHS1UqJCq9u7evYtx48YhV65c6NatG+7cuaNZrEREREREtsYZhAb3999/K8nBsLAwODyzZkWLFi2UMqStWrWCt7d3mm2IWYhvv/02MmfOjA0bNlghatIDPd9JdPjwYeV3QiS9S5cuDZnIEJstYrDmNmXoYyJTcMzKh8fEuP2j132TNW5Z4rJ6HLt340FwMHx27lTfVqZMQI8eQM+eYjqc1P1sKcuWLcOoUaOU/VQrQ4YMaNmypdJenjx5NImPTGfvY1aPeEyM2z963TdZ45YlrvTEoefrfkT0FGcQGlyZMmVw4MABBAUFKbMJBfG4dOlSZX3CTJkyKWVV6tati4kTJ2Lu3LnK2oXi67fffkPXrl2RP39+JdEo7qwksgfiRGj79u2aXESwx9hsEYM1tylDHxOZgmNWPjwmxu0fve6brHHLEpfV46hSBcs7dMDMLl1wvmJFwFHFx/b794ERIwB/f+CLL4DQUGn72VKaN2+uVLzZvHkzqlSp8tyNsaZ6+PAhFixYoCzT0bRpU5w4cULTWCl97H3M6hGPiXH7R6/7JmvcssQlSxxEZHlMEBICAgJw8OBB9OnT50mS8DHx7/v37ysfpvr166ckDcXMQvEl7pycPXu28v9nzpwp1R03REREREREenYze3bsEOVCT50COnYU9TPNbywqCvj6ayB//uS2zp6F0YiqN7t27cLevXtRp04dOInyrirWOlyxYgVKliypfDbet2+fprESEREREVkDS4zScx48eIAxY8ZgwoQJz/382bssnx0yYqr5nDlzlLsyiZ7FUgNERERERBoSs/+++gqYOROIjlbXlpiVKNY+DA4GSpWCEf37778YOHAg1qxZg7i4OFVtic/LlSpVwvDhw5WEIRERkb3jdT8i+8AEIaVqy5Yt2LRpkzJ7UNSdPi8WvP8vKViuXDllBmFHcfcpUQp4okBEREREZAF37wJTpwJTpiSXEFXrnXeAAQOU0qZGdOXKFQwaNAhLlixRSoiqJWYVDh48GC1atNAkPiIiIhnxuh+RfWCCkIgsgicKREREREQWFBEBzJ4NTJoEXL+uvr2qVZMThXXriilxMJo7d+4oMwDFGoPh4eGq2wsMDETfvn3RoUMHOKpZR5KIiEhCvO5HZB94lkpERERERESkNxkzAr17A6LSy6xZYnF5de3t3AnUrw+ULQssWQIkJsJIsmTJgqlTp+LatWsIDg5W/q3GmTNnlIo7/v7+mDhxorJuIRERERGRTDiDkIgsQs93Ei1duhRXr15F7ty5pSsNJENstojBmtuUoY+JTMExKx8eE+P2j173Tda4ZYlLN+c+CQnJib2QEODYMfVBFCoE9OsHtG4NuLrCaGJjY/HNN99gypQpStJQLfE5qEuXLujfvz88PDw0idGoZHlvoKd4TIzbP3rdN1njliWu9MSh5+t+RPQUZxASEb0gMjISDx48UB5lI0NstojBmtuUoY+JTMExKx8eE+P2j173Tda4ZYlLN+c+zs7ABx8AR44Aq1cDb7yhLojTp4H//Q8oUACYPBmIioKRuLm5oV+/fsoahTNmzEAB0Q8qiAupI0eORM6cOfH555/jvhbrRxqULO8N9BSPiXH7R6/7JmvcssQlSxxEZHnOVtgGGcDhw4dRunRpW4dBpImCBQvC19dXdVkhe43NFjFYc5sy9DGRKThm5cNjYtz+0eu+yRq3LHHp7txHrB/47rtAgwbAjh3JMwo3bDA/mKtXgc8/B0aOTH7s1g3IlAlGIdYPFDP/OnXqhMWLF2PMmDE4pmKGprjgOnnyZMyZMwfvv//+k6Qh6e+9gZ7iMTFu/+h132SNW5a4ZImDiCyPJUZJld9++025q/LChQtIECVtiP7DUgNERERERJI4eDA5Ufjbb4DaSwBi7cOuXYFevYDs2WFE69evx7Bhw7B3717Vbbm6uqJx48YYPXo0AgMDNYmPiIjI0njdj8g+sMQomWXu3LnKh5eWLVvi3LlzYJ6ZiIiIiIhIUmXLigWFgBMngPbtk8uRmisiAhg/HsiXD/j0U+DCBRhNvXr1sGfPHuzevRs1a9ZUZhmaKy4uDkuWLEGxYsXwzjvv4O+//9Y0ViIiIiKi1DBBSCYnBv38/NC5c2cmBomIiIiIiPSkSBHg+++Bc+eAHj2ADBnMbys2FpgxAxCz3tq0AY4fh9FUrlwZW7ZsUZbcaNSoEVxcXMxuS1Tk+f3331GuXDlUq1YNf/zxh6axEhERERG9iCVGKV0mTpyIkJAQhIWFPUkKOoi1LSAq1DxSvk9MTLRxlCQTPZcauHHjBmJiYuDu7o7skpVNkiE2W8RgzW3K0MdEpuCYlQ+PiXH7R6/7JmvcssRl1+c+t24hcvRoeHz/PRzFzEC1GjcGgoOBihVhRBcvXsTAgQOVpTjE8VOrbNmyGDx4sFKClOR7b6CneEyM2z963TdZ45YlrvTEoefrfkT0FGcQ0isTg2LGoFhn8P79+0+SgeKLuWWy5zVFfvjhB+VRNjLEZosYrLlNGfqYyBQcs/LhMTFu/+h132SNW5a47PrcJ2tWLA0Kwvhu3XCgRQvl36qsXAlUqgS8/TawebP69Q51Jl++fPj555+VRGGXLl3g5eWlqr2DBw+iSZMmKFq0qDIekpKSNItVz2R5b6CneEyM2z963TdZ45YlLlniICLLY4KQzEoMiq+AgAAmCYmIiIiIiHQu1t0d/zRoIKbAAdOmAf7+6hrcuhWoXRuoUAFYvhwwWGIrW7ZsmDFjBkJDQ/Hll18iU6ZMqtr7999/0b59e+Uz+OTJk5VypEREREREarHEKD0RHh6ulBEdLxac/6906IulRIUWLVpg3Lhx2Lx5s7IW4ePnsMQo2UupAVlKOsgam12X2ZKkj4lMwTErHx4T4/aPXvdN1rhlicuQ5z7x8cCvvwJjxwInT6rfSNGiQP/+wAcfACrW6dMr0b+TJk3CtGnTlP5WSxynrl27om/fvspxMxpZ3hvoKR4T4/aPXvdN1rhliYslRomMgwlCSndisFOnTsqMwvz58yv/njNnDhOElCqeKBARERER6ZyY+bdqFTBmDLB/v/r2xMzEPn2ADh2ADBlgNGLmn5hZ+NVXXyllSNUSMxM7dOiAIUOGwNvbW5MYiYiI0oPX/YjsA0uMGjwxGBwcrHyoEMnBx6VDXywlKhKDoszozJkznyQHicxx584d5QTixS8iIiIiIpKQoyPQpAmwdy+waRNQs6a69i5dArp3F4v1Jc9OfPAARuLs7IwePXrg3LlzWLBggbK2oBric7qYmZgrVy7l5t2bN29qFisRERER2T8mCA2aGBTlSF6VGBTlSh4nBn18fGwdNtmBYsWKKXcXvfhFREREREQSE9VlatUCtmwB9uwBGjdW196tW0BwcPKMwoEDk/9tII6OjmjTpg1OnDiBVatWoVy5cqrai4yMxOzZs+Hv748PPvgAFy5c0CxWIiIiIrJfLDFqIKKEiVg7UHxwSKuUqEgMipmFr0oKssQomVpqIDWyvQ3t2rVLme2YJUsWvPnmm5CJDLHZIgZrblOGPiYyBcesfHhMjNs/et03WeOWJS6e+6Tin3+AceOS1ypU+1lQlBv95BPgyy+BvHlhRDt27MDgwYOxc+dO1Z+PxEzFevXqYfTo0ShZsiTsjSzvDfQUj4lx+0ev+yZr3LLElZ44WGKUyD5wBqFBEoPvvfceChQooCQHU5oxKJKBInkoZgyOHTuWMwbJ0M6ePYsjR44oj7KRITZbxGDNbcrQx0Sm4JiVD4+JcftHr/sma9yyxMVzn1QULw78+CNw5gzQtSvg5mZ+EA8fAlOnAgUKAB9/DPz7L4ymWrVq2L59O/7++2/Ur19fSfKpWetwzZo1CAoKQs2aNbF7927YE1neG+gpHhPj9o9e903WuGWJS5Y4iMjymCA0SGJw6dKlaSYG7927hz59+jAxSATAy8tL+V0Qj7KRITZbxGDNbcrQx0Sm4JiVD4+JcftHr/sma9yyxMVzn1cQ69R/+634ACrK0YgGzQ8mIQGYP1+sTQC0aAEcPAijKV26NNatW4eTJ08qn+fdVCRek5KSsG3bNmX2R8WKFZV27YEs7w30FI+JcftHr/sma9yyxCVLHERkeSwxaocOHz6MkJAQJSmYWilRX19fpYyoSAqaiyVGKS0plRoQa2yI8gQvYvkBIiIiIiI7cf8+MH06MHkycOeO+vbq1Eler/Ctt5LXQjSYa9euKaVHFy1ahKioKNXtvf766xg4cKCSfBRrIRIREZmDJUaJ7APPBu0sMVi3bl2ULVs2zRmDs2bNejJjkMiaRHJQnCi8+EVERERERHYiUyZg0KDkGYXffAPkzq2uvY0bgRo1gCpVgNWrxR2vMJKcOXNi3rx5uHLlCnr16qW66s/x48fx4YcfIjAwEN9++61SjpSIiIiIjIkJQjtLDG7evDnFxGD+/PmfJAY7duxo65CJiIiIiIjInnl6Ap99Bpw7B8ybBwQGqmvvr7+ARo2AUqWAX35JLkdqIJkyZcJXX32lzCgcOnToS7M2THX+/Hl069YN/v7+GDt2LGJjYzWLlYiIiIj0gQlCnScGy5cv/1xiUHgxMbhkyRJlUVkmBomIiIiIiMiqXF2BDh2AkyeBxYvFInvq2jt2DPjoI6BwYWDWLCAmBkbi4eGBYcOG4erVq0rCME+ePKraEwlHsfxIrly50L9/f0RERGgWKxERERHJjWsQ6ljmzJnx4MGD5xKDj78PCAjAuHHj0Lx5c4ttn2sQkr3WIp8/fz4uXbqk3E3bvn17yESG2GwRgzW3KUMfE5mCY1Y+PCbG7R+97pusccsSF899NCY+s27YAISEADt2qG8vRw7giy8A8dk0Y0YYTVJSEn744QdlFuDp06dVt5cxY0a0adMGw4cPT3H9eBnI8t5AT/GYGLd/9LpvssYtS1zpiUPP1/2I6CnOINSxli1bPpccFMqUKfNkxqAlk4NEREREREREJhOfXevVA7ZvB3buBN55R117168DffoA/v7A0KHA3bswEkdHR3z88cc4deoUli5ditIqZ2iKGYRibcK8efOiXbt2ytqHRERERGSfnG0dAJlPrCkoSoD07dsXy5YtU5KEAwYMQLNmzWwdGpGuiQ/V+fLlg6+vL2QjQ2y2iMGa25Shj4lMwTErHx4T4/aPXvdN1rhliYvnPhb05pvA2rVi/Qxg7FhgyRIxJc68tu7fB0aMACZNAjp1Anr3BnLlgpGIm4TF15YtW5R1Cv/8888nNxWb6uHDh1iwYAF+/fVXNGjQAKNHj0axYsU0j1nP7w30FI+JcftHr/sma9yyxCVLHERkeSwxaicuXLjwJFFYoEABJXH4v//9z6LbZIlRSgtLDRARERERkUnOnAHGjwd++AGIj1fXlosL0K4d0LcvEBgII9q/fz8GDRqkJAzVfl53cnJCjRo1lERhhQoVNIuRiIj0idf9iOwDS4zaifz58z8pLVqzZk107NgRfn5+mDdvnq1DIyIiIiIiIno1kcibMwc4fx7o1Qvw8DC/LZFgnDsXKFIEeP994MgRGE358uWxYcMG/PPPP0qlIVdXV7PbEgnGzZs3o1KlSqhcuTI2bdqkaaxEREREZH1MENqZgIAApfTovXv30KJFiyeJwkmizAoRERERERGR7HLnBr76Crh8OXldwUyZzG9LlCxdtEjUSwMaNAB274bRFClSRKk2JG4obtu2LTJkyGB2W6II1V9//YU6deqgVKlSyrqHRERERKRPLDFq5x48eIAxY8ZgwoQJyJQpk7JGYW+xFoMGWGKU7LXUgPjgHBkZCS8vLxQsWBAykSE2W8RgzW3K0MdEpuCYlQ+PiXH7R6/7JmvcssTFcx8JREQAs2YlJw2vX1ffXtWqwIABQN264sMsjObOnTsYPny4ssZgeHi46vYCAwOVJU86dOgAR0fL34euizFrMDwmxu0fve6brHHLEld64tDzdT8ieoozCO2cj48Pxo0bh/v37+OTTz5Bnz59lBmFIlGoxQcBInu0a9curFy5UnmUjQyx2SIGa25Thj4mMgXHrHx4TIzbP3rdN1njliUunvtIIGNG4Msvk0uPzpwpSueoa2/nTqB+faBsWWDJElE/E0aSJUsWTJ06FdeuXUNwcLDybzXOnDmjVC/y9/fHxIkTEa92/Uh7GLMGw2Ni3P7R677JGrcscckSBxFZHhOEBk0Uzpw588mMQiYKiYiIiIiISHru7oCoYnPqFPDLL0Dx4uraO3QIaNUKKFYM+O47IC4ORuLp6alUHLp69SrGjh2LnDlzqmpPtCNuSs6VKxeGDBmC6OhozWIlIiIiIu2xxKiBjR8/XvkQIMqQ9uvXD/3794e3t3e6X88So5QWPZcaEGUUEhIS4OzsrJRTkIkMsdkiBmtuU4Y+JjIFx6x8eEyM2z963TdZ45YlLp77SEysL7h2LRASAvz1lzZrH4qZip98IrJnMJqkpCTMnj1bmQV47tw5TW5Ubt++PYYOHarcoKwVXY9ZO8VjYtz+0eu+yRq3LHGlJw49X/cjoqeYIKTnEoUi4SeShaI0yKswQUhp4YkCERERERFZhbissWMHMGYMsHGj+vb8/IDPPgO6dwc0TGzpKVG4ZMkSjB49GseOHVPdnoeHB95//32MHDlS9SxFIiKSA6/7EdkHlhglZTHxe/fuYcaMGVi4cCECAgLw6aef4tKlS7YOjYiIiIiIiChtDg7AW28BGzYABw4AzZsn/8xcd+8CQ4YAefMC/foBN27ASBwdHfHee+/h6NGj+P3331GxYkVV7YlSo9999x3y58+PVq1aKWsWEhEREZHtMUFIT3Tq1OmlRKG4y4+JQiIiIiIiItKFsmWBpUuBEyeA9u0BZ2fz24qMFCV3gHz5gK5dgfPnYTT16tXDnj17sHv3btSsWVNJHporLi5OmZlYrFgxvPPOO/j77781jZWIiIiITMMSo5QqsfaAKD964cIFtGzZEsHBwShVqtST/88So2SvpQbWr1+PGzduIHv27MoHYpnIEJstYrDmNmXoYyJTcMzKh8fEuP2j132TNW5Z4uK5j85dvgxMnCg+wAIxMeracnIC3n8f6N8fKF4cRiRKjg4aNEiZWRgfH6+qLXEd4c0338SIESNQvXr1dL/O7sesDvGYGLd/9LpvssYtS1zpiUPP1/2I6CnOIKQ0ZxSePXsWixYtwoEDB1CmTBnlj8KRI0dsHRqRRYmTIDFzVjzKRobYbBGDNbcpQx8TmYJjVj48JsbtH73um6xxyxIXz310TpQJnTIFEJVxBgwAfHzMb0vcFPvzz0CJEkCTJsDevTCaEiVKYOXKlTh9+jQ+/PBDuLu7m92WuF99586dqFGjBsqVK6e0mx52P2Z1iMfEuP2j132TNW5Z4pIlDiKyPBW1NsgoWrRooXwtXboU/fv3VxKFtWrVgq+vr61DI7IIcYfUs48ykSE2W8RgzW3K0MdEpuCYlQ+PiXH7R6/7JmvcssTFcx87IWY5jB4N9O0LzJgBfP21mOpgfnsimSW+atYEgoOBt99Wt+6hzuTLlw8///wzbt68iWHDhuGnn35CpCjJaqaDBw+iSZMmKFKkiHLdoU2bNqmWMzXMmNURHhPj9o9e903WuGWJS5Y4iMjyWGKUTCYShWPHjlXWCxAlQcQQYolRehFLDRARERERkbQePgS++y55jUFRhlStcuWSZyg2bgyoWKdPr8LDwzFq1CjMnTsX9+/fV92ev78/evfuja5du8JZzTqSRERkEbzuR2QfjHfWSqqJ2YSi5OjGjRtRunRpW4dDREREREREZJoMGYBu3YCzZ4EffgCKFlXX3oEDQLNmyWsTLlgAqFyfT2+8vb0xfvx4XLt2TUkUqp11Ikrb9ezZE3ny5MHIkSMRo3b9SCIiIiJ6CROEZDZRZlSUARGJwo4dO9o6HCIiIiIiIiLTuLgAbdsC//wD/PZb8kxANU6eBNq1AwIDgenTk2cqGohYk3DgwIG4cuUKpkyZopQiVUOsfzVkyBDkzJkTffr0UWYqEhEREZE2WGKUiCxCz6UGxNoZCQkJSikbLy8vyESG2GwRgzW3KUMfE5mCY1Y+PCbG7R+97pusccsSF899DEZcItmyBQgJAbZuVd+e+EzUqxfQtSvg4wOjSUpKUtYqDAkJwUmRPFVJjNH33nsP/fr1Q44cOThmJcH3EeP2j173Tda4ZYkrPXHo+bofET3FBCERWYSeTxTmz5+vlLQR6160b98eMpEhNlvEYM1tytDHRKbgmJUPj4lx+0ev+yZr3LLExXMfA9u7NzlRuHKl+ra8vYHu3YHPPktOGhrQ6tWrMXz4cKUSkVpubm6oWrUqZs+ejfz582sSH5mP7yPG7R+97pusccsSV3ri0PN1PyJ6iiVGiYiIiIiIiIheVLEisGIFcOwY8NFHgJOT+W2J0phjxgCi5GbPnsDlyzCahg0b4sCBA9i2bRuqVasGBwcHs9uKjY3F5s2bUbhwYTRq1AjHxDEiIiIiIpNwBiERWYSe7yQ6e/asUk5BlFEoWLAgZCJDbLaIwZrblKGPiUzBMSsfHhPj9o9e903WuGWJi+c+9MT588CECcD334sMlbq2nJ2B1q2Bfv2AIkVgRIcPH8aAAQOwadMmpZSdGo6OjnjrrbcwatQoVK5cWbMYKX34PmLc/tHrvskatyxxpScOPV/3I6KnmCAkIovgiQIREREREdml69eBb74Bvv1WLNSkri0xi65ZMyA4GChbFkYkLkQPHDgQK1euVGYGqlWhQgWllGm9evU0iY+IiF7G635E9oElRomIiIiIiIiI0itHDmDcuOQyoSNGAH5+5rcl7tletgwoVw6oWxfYvj35ZwYiZqcsWrQI58+fR4cOHeDp6amqvX379qF+/fooUaIEfv31VyQlJWkWKxEREZE9YYKQiIiIiIiIiMhUmTIBgwcDly4lzyjMlUtdexs3AtWrA1WqAKtXGy5RmDNnTsybNw9XrlzB559/Dh8fH1Xt/fPPP/jwww8RGBiIGTNmqC5jSkRERGRvWGKUiCxCz6UGxFoYYWFh8PX1RenSpSETGWKzRQzW3KYMfUxkCo5Z+fCYGLd/9LpvssYtS1w896F0i4sDfvoJGDsWOHNGfXslSgD9+wOtWiWvWWgw0dHRGDduHGbOnKl8ltQiAdmjRw/06tULbm5umsRIyfg+Ytz+0eu+yRq3LHGlJw49X/cjoqc4g5CIKIUToe3btyuPspEhNlvEYM1tytDHRKbgmJUPj4lx+0ev+yZr3LLExXMfSjdXV6BDB+DkSWDRIkDtxd1jx4CPPgIKFwZmzQJiYmAkHh4eylqCV69exaRJk5AnTx5V7V27dg3BwcHIlSsXBgwYgIiICM1iNTq+jxi3f/S6b7LGLUtcssRBRJbHBCERERERERERkVacnJJn/f39N/D778Cbb6pr7/x5oEsXICAAmDgRMFhiy8XFBV988QUuXryIuXPnIl++fKrau3v3LkJCQpA7d25069YNd+7c0SxWIiIiIj1hiVEisgiWGiAiIiIiIvrPrl1ASAiwbp02ax/27An06AH4+cGIli1bhlGjRmkyuyVDhv+zdyfwVlX33f9/Fy6IiHgZxCEoMmiUODI4IGYCUk2bZgKNaf+JTyyYJ22atEkw9LFJkyYSrGkT27RF8jyJSdtEIEPTNrVB0lpxQsCZGGXwOsuMojLf/+u76cLN4Qz7nD2tffbn/Xod7/Vyzj6/vfY++6y1fnutdaTNmDEj2F7cUYoAUBb0+wHtgRGEAAAAAAAAadIown/7N7MHHjC74gqzXjG6Y7ZuNfvSl8xGjDD74z82e+45K5sPfvCD9sADD9jtt99uF198sXV0dLS8rddff92+973v2ZgxY+wDH/iAPf7444nGCgAA4CsShAAAAAAAAFnQuoQ//KGZklC/93uaP7P1bb36qtlf/ZXZyJFmM2earVljZTNlyhRbtmyZ3Xffffaud73Lemt61xbt3r3bfvKTn9iZZ54ZbGv58uWJxgoAAOAbEoQAAAAAAABZOvVUswULDqwv+Ed/ZNa/f+vb2rPH7NvfNnvzm82uvNLsoYesbCZOnGj/8R//YY8++mgwClDrFrZq3759tmTJErvwwguD0Yn6HQAAoB2xBiGAVBR5LvLFixfbs88+GyxaP336dPOJD7HlEUOW7+lDGQPN4Jz1D8ekvOVT1H3zNW5f4qLug0xs2mT213994KEpROP6zd80mzPH7OKLrd1EOWefeeYZu+6662zRokXBFKJxnXPOOcH2+IxUx3WkvOVT1H3zNW5f4ooSR5H7/QC8gRGEAFBhx44dtn379uCnb3yILY8YsnxPH8oYaAbnrH84JuUtn6Lum69x+xIXdR9kYujQA+sKdneb/cVfmJ1wQrztab1DrXv41rea3XabWRvdGx7lnD3ppJPslltusaefftr+4A/+wAYOHBjrPR966CGbMWOGnXbaafbtb3/b9u/fH2t77YbrSHnLp6j75mvcvsTlSxwA0teZwXsAQKFocfquri4bqka6Z3yILY8YsnxPH8oYaAbnrH84JuUtn6Lum69x+xIXdR9k6uijzT77WbM/+AOzW24xu+GGA9OQturOO80uu8zsvPMOjCj8wAfMYqzT54Nmzlk956//+q/t+uuvt7lz59rNN99smzdvbvm9n3zySZs5c6Z96Utfsk996lPBI850pu2C60h5y6eo++Zr3L7E5UscANLHFKMAUsFUAwAAAAAQ0969ZgsXms2da/boo/G3d9ppZtdea/a7v2vWt6+Vza5du+wb3/iG3XTTTfb888/H3p7atx//+Mft85//vPWPs44kABQM/X5Ae2CKUQAAAAAAAB91dpp9+MOa49LsZz8zu/DCeNt74gmzq682Gz3a7JvfNHv1VSuTI444wq699lrr7u62v/3bv7XRKoeYHeR//ud/bieeeKJ9+tOftq1JrB8JAACQERKEAAAAAAAAPuvVy+w97zG7+26z//xPs3e9K972nn3W7NOfNjvlFLOvfMWsZImtzs5O+9//+3/bE088YT/4wQ/szDPPjLU9rdX1zW9+04YPH25XX311IqMTAQAA0sYUowBSUeSpBl588UXbuXOn9evXz44//njziQ+x5RFDlu/pQxkDzeCc9Q/HpLzlU9R98zVuX+Ki7gNvrVhh9rWvmf34x2Zxu3a09uH//t9mf/RHZp6fB2mds7fddpt98YtftOXLl8feVt++fe29732vffWrX7VTTz3V2h3XkfKWT1H3zde4fYkrShxF7vcD8AZGEAJAlYbhLbfcEvz0jQ+x5RFDlu/pQxkDzeCc9Q/HpLzlU9R98zVuX+Ki7gNvTZhgtnix2erVZldddWA60la98orZDTccGFH4iU+YrV9vvkrrnL300kvtvvvus7vuusve+c53Wi+N2mzR7t27bdGiRTZ27Fh797vfbatWrbJ2xnWkvOVT1H3zNW5f4vIlDgDpI0EIAAAAAABQVKefbvad75itWWP2yU+a9evX+rZ27TL7u78z06i3/+//M3vsMSubSZMm2dKlS+3BBx+097znPcF0pK3au3ev/fu//7tNmDDB3vrWt9p//dd/JRorAABAHEwxCiAVRZ5qwJcpHXyNjWm2AL9wzvqHY1Le8inqvvkaty9xUfdB4WzYYPaNb5h961tmL78cf3vvfa/ZnDlmF1xgPsj6nF2/fr1dd9119uMf/zh437jGjx9vf/qnfxpMQdouuI6Ut3yKum++xu1LXEwxCpQHCUIAqaCiAAAAAAA52r79wGjAv/xLNdDib++d7zT7kz858LOjw8rmpZdesi984Qv2T//0T7Zjx47Y2zv99NNtzpw59ru/+7uxpjMFgDzQ7we0B2ogAAAAAAAA7eaYY8w+/3mz7m6zv/kbs5NPjre9X/7SbOrUAyMJf/pTs/37rUyOO+44mz9/vj333HP22c9+1gYNGhRre48//rh99KMftVGjRtlf//VfB9ORAgAAZIkEIQAAAAAAQLs68kiz3//9A2sU3nLLgTUL47j/frP3v9/srLPMvv99sz17rEwGDhxof/EXf2HPP/+8ffnLX449DWB3d7f94R/+oZ100kn253/+54lMYwoAABAFU4wCSEWRpxpYtmyZbdq0yYYOHWqTJ082n/gQWx4xZPmePpQx0AzOWf9wTMpbPkXdN1/j9iUu6j5oOxr598//bHb99WYrVsTf3ogRZp/7nNnHPnYgGZky385Zjfz7u7/7O/v6178eJPvi0sjEq6++OlinUMnIIvDtmPimncunqPvma9y+xBUljiL3+wF4AyMIAaDCmjVr7KGHHgp++saH2PKIIcv39KGMgWZwzvqHY1Le8inqvvkaty9xUfdB29F6dxoBuHy52S9+YfaOd8TbnpJif/AHZqecYjZvntnLL1uZztnOzk775Cc/aevWrbNbbrnFzjjjjFjb27p1q9144432pje9ya655ppg7UPf+XZMfNPO5VPUffM1bl/i8iUOAOkjQQgAFQYMGGDHHHNM8NM3PsSWRwxZvqcPZQw0g3PWPxyT8pZPUffN17h9iYu6D9pWR4fZtGkH1ha85x6z3/7teNvbsOHAmoda6/C66zS8xMp0zvbq1cs+8pGP2OrVq+1nP/uZjR8/Ptb2duzYYTfffLONGDHCfud3fsfWr19vvvL1mPiincunqPvma9y+xOVLHADSxxSjAFLBVAMAAAAAUDCPPmr2ta+Z/fCHZvv2xduWphudOdPsM585kDQsof/6r/+yL37xi3bnnXda3O63Pn362KWXXmpf/epX7Syt/wgAOaLfD2gPjCAEAAAAAACA2Zlnmv3DP5g98YTZxz9udsQRrW/r9dfNbrrJbPToA+sT/vrXVjZvf/vb7Y477rBVq1bZZZddFkxH2qo9e/bYv/zLv9i5555rU6ZMsbvvvjvRWAEAQPmQIAQAAAAAAMAbRo0y+7u/M9O0lp/7nOaba31be/eafec7Zlqbb8YMs1WrrGyU1Pv5z38eTD96+eWXW9++fVve1v79++2Xv/ylXXzxxXbBBRfYbbfdlmisAACgPEgQAgAAAAAA4HAnnGB2ww1mTz9t9uUvmw0Z0vq2NMXm4sVmWpvvN37D7I47DvytRE499VS79dZbg/UEP/axj1n//v1jbW/58uXByERNOfqDH/wgSB4CAABExRqEAFJR5LnIv/vd71p3d3ewGPxVV11lPvEhtjxiyPI9fShjoBmcs/7hmJS3fIq6b77G7Utc1H2AkFdfNVuwwOzGG82eey7+9iZNMpszx+w3f9Oso6N05+zWrVvty1/+sn3nO9+x7du3x97e6NGj7TOf+Yxdc8011qtXdmMC2umYpKGdy6eo++Zr3L7EFSWOIvf7AXgDIwgBAAAAAADQ2FFHmX3602Zr15p9+9saEhdve1pH7z3v0RycZj/4wYHpSEtk0KBB9ld/9Vf2/PPP2xe+8IXYHetr1661T3ziE3bSSSfZ1772Ndu1a1disQIAgPbT+urIANDG60Occsop1tXVZb7xIbY8YsjyPX0oY6AZnLP+4ZiUt3yKum++xu1LXNR9gCqOOMLs6qvNNLLkRz8ymzvX7MEHW9/eww+bffjDZn/6p2azZ5t99KMH3qMk56ymGv3Sl75k1113nd100032jW98w5599tmWt6eE45w5c+zGG2+0WbNmBb8fffTRlpZ2PCZJaufyKeq++Rq3L3H5EgeA9DHFKIBUMNUAAAAAAJSEupZuu+1AovDOO+Nv78QTzf74j82uucZswAArG60lqGlH582bZ08++WTs7Q0cONB+93d/N0hCDh06NJEYAZQb/X5Ae2CKUaANbdu2za699lqbNm1aMGWJHvpdf9O/AQAAAACQGK0feNllZv/93wcShO9+d7ztPf+82Wc/a3byyWZ/9mdmmzdbmWj9wKuvvtqeeOIJW7RokZ1zzjmxtvfyyy/b3/7t39rJJ59sH/3oR+2ZZ55JLFYAAFBcJAiBNnP77bfbyJEjg9/nz59v69evDxoUmhbghhtuCJKF+gkAAAAAQOImTzb7t38ze+ABsyuuOJA8bNXWrWZf+pLZiBFmn/mM2XPPWdlMnz7dHnzwQfvFL35hkyZNso4Y5fn666/b9773PRszZox94AMfsMcffzzRWAEAQLEwxSjQRtatW2fjx4+3pUuX2rhx4w7795tvvtmu0RQt/5M81FoEaSnyVANr1qyxHTt22IABA4KGk098iC2PGLJ8Tx/KGGgG56x/OCblLZ+i7puvcfsSF3UfICZNkambVG+5xWzPnnjb6tvXtr///fbchz9sfceOLeU5u3z58mCtwl/+8pe2b9++WNvq3bu3vfOd77SvfOUrdv7557e8Ha4j5S2fou6br3H7EleUOIrc7wfgDZ2h3wEUnJJ/Wny8WnJQlBBUYnDVqlXBc6dOnWqjRo3KPE7fLVu2zLq7u23EiBFeVRR9iS2PGLJ8Tx/KGGgG56x/OCblLZ+i7puvcfsSF3UfIKZTTzVbsMDsi180+8u/1N2qZq+91tq2du+2Y2691Y5euNCeUkLr5pvNzj7bykSJPI0mXL16dZAo/Nd//Vfb02LiVQnGJUuWBDMRXXTRRfblL3/ZpkyZ0vR2uI6Ut3yKum++xu1LXL7EASB9TDEKtBFV6rXOYL0pRN0IQlm8eHFGkQEAAAAASm348AMJwu5usy98wayrq+VN9erpsVH33Wemtfl+67fM7rrLymbs2LH24x//2J588kn7yEc+YkceeWTL29LkYnfffXdwE/G5555rP/rRjxKNFQAA+IkpRoE2sW3btmB9QdGowLVr11Z9nkYPahrS8IjCNBR5qgFNo7B3717r7OwMplPwiQ+x5RFDlu/pQxkDzeCc9Q/HpLzlU9R98zVuX+Ki7gOk5JVXDowm/PrXzV58Mf723vpWszlzzH7jN+Kte1hQmzZtsi9+8Yv2/e9/315R2cZ06qmnBjcg/6//9b+sV6/64wu4jlhpy6eo++Zr3L7EFSWOIvf7AXgDIwjR1jSSTgt4a22+OLR2n5JqSsC5x4wZM4IRe77o6uoKFi/XT1Xia9myZcshr8HhVPlR2fhUSfQptjxiyPI9fShjoBmcs/7hmJS3fIq6b77G7Utc1H2AlBx9tNlnP2u2fr3Z3/+92ciR8bb33/9tdtllZrohVrPlxFyfr2iGDh1q3/rWt+y5554Llh4ZMmRIrO1pZOLv/d7v2SmnnGJ/+Zd/WXcaU64j9bVz+RR133yN25e4fIkDQPpIEKItKSE4bdq0uomyKDTaTsnAefPmBVNzbt26NXisXLkyGKWn91CiUKP3fLBo0aIgPo0MrLdPzsSJEzOKDAAAAACAKvr101oYZk88YfaP/2h25pnxtvfAA2YzZmgOTrP/9/+CdQvL5Oijj7brr78+SBTOnTvXTjzxxFjbe+aZZ+wzn/mMDR8+3D72sY/ZP/zDP9ijjz7a8rqHAADAH0wxisJTcm7FihVBUlDTampUXzgJJvq7EnrN0HaUANTrlBCsNtpOIwuVOKz3HN+MHj06KKt605AmgakGAAAAAABN27/f7N/+zez6683uvTeZtQ8/9zmz3/s9s/79rWw0TeCCBQvsxhtvjD27UlifPn3s9NNPtzPPPNPOOuusg4+TTz45mMkJQHuj3w9oDyQIUXgukafk3IQJE2zcuHFB0k5TgrqRfc0mCPW6kSNHBj+V+NM2a9F7KVGo5+i5vk+56kZVNtqvMlcUbrvtNnvxxRft+OOPt0svvdR84kNsecSQ5Xv6UMZAMzhn/cMxKW/5FHXffI3bl7io+wA5UXfVHXccSBQuWRJ/e0OHmn3602a///tab8PKZv/+/bZw4UL76le/GowATHMEY2XSUP8fd8rTImvn62xR983XuH2JK0ocRe73A/CGztDvQCFNnTrVks5zz5w5M0gOKoHWKImmhJsShBq1uHjx4mAdQF8TqYpVidSlS5emmhwsOlWCuru7zUc+xJZHDFm+pw9lDDSDc9Y/HJPylk9R983XuH2Ji7oPkBONQnv72w88VqwwmzvX7Cc/OZA4bMWmTWbXXWc2b57ZJz5xIFl4/PFWFr169bIPfehDwePf//3f7c/+7M9s+fLlib/PK6+8Yvfcc0/wCDvhhBMOSxqOHTvWjjzySGt37XydLeq++Rq3L3H5EgeA9JEgBCooMahEn0s+NqKRiXpoqg7N718rQai1Ct1245o9e3awLmJUSl666VKXLFnS9HSrZaM7pMI/feJDbHnEkOV7+lDGQDM4Z/3DMSlv+RR133yN25e4qPsAHpgwwexHPzL71a/suT/8QzvhP//Teu3b19q2XnnlQJLwG98wu/rqA9OPnnKKlclll10WPO666y770z/9U7vjjjuCEYZpeuGFF4LHL37xi0OSlmPGjDkkaaifWhqld+/e1i7a+Tpb1H3zNW5f4vIlDgDpY4pRtK1Bgwa1NMVoeBrORYsWRRoRqOSbRujVey8l6bRWYhKUuIy6P24KVu2H9icrTDUAAAAAAEiFRrbceKPZt79ttnNnvG0pEfXhD5t9/vNmY8daGT388MN23XXXBSMLtWZh3jSqUKMLw0lDPZSsYH1DwA/0+wHtgQQh2larCUKtXahknmi0XZRRhG4dQpk/f77NmjXLfKARixq5WCsmlY+mHE0DFQUAAAAAQKo2bDgwEvBb3zJ7+eX423vf+8zmzDE7/3wro/Xr19v/+T//x3784x/brl27zDdax7Da+oZa9xBAtuj3A9oDU4wCFVxyUAYPHhzpNeEk28qVK82X5KDWUlQ81dYb1EjJzZs3NzVVaVw7dqy1I4/cmtn7AQAAAADaWH8z+5OrzH7/g9ZnwT9Zn29913pt2tL69n760+Cx9+0X2Z7PXGP73nbhgbUQS0L9+jff/Gd2/fWftOuv/6b94Af/Yjt2vGa+UB+GpkPVI+zkk99kY8eeZm95y4HH2LGnBn/TFKYA0rEpzrUWgDdIEAIhWkcwLOqoQ93F5iQ1jWgcGs2oxJ+Sg7X24f7777crrrgi07hWPfAh6+pqn3UEAAAAAACeeKtZr/MH2om3ddjJt263Ize0PlVm53/dEzy2n36EPXVll22a1N+sV3kShXLFh8ze+75hds89r9lDD75u69fvtvVP7bbXXvVvIrKnn34ueNx223/mHQoAAIVCghAIcVOSNis8grDVbSTFraE4e/bsYBRhrbvu9G9zNHUKAAAAAABtYH+/Xvbs+46x535roB23dIed8sNtdtTTe1re3jGP77JzvviS7RjRx7qv7LKX3jHAejrLkyjs16+XveMdA4KHaJWiDRv2HUgW/s/jqfW77emnd5sHSxcCAIAmkSAEErZly5bck4Pu90aqTT0KAAAAAECRKYn34m8cbS9OG2DH3vWanfJPW23gE7tb3t6A7j32lq9ttFHf3Wrdlx9jL1x6tO0/onzTV3Z0dNhxx3UGjwsv1PyuB+zd22PPPrvH1q87MMrQJQ9ffIGsIQAAPiNBCNRJ7oVHBkaV1whCTY/qkoNRRJ0+FQAAAACAQurVYRsvOco2Tu5vg1e+biN+sM0GP7iz5c0d+eJeO/2mzTby+9vs6enH2HPvGWj7jipforBSZ2eHnXJK3+DxjtDfX3ttv3V37z6QOAyNOty+fX+O0QIAAIcEIRCS9/SgcSjhp+k+AAAAAABASEeHbZnQP3gMXL3TTvnBNjv27tda3twRW/fZqQu2BNt59r0D7ZkPHGN7unonGnI76N+/l51xRr/g4ajfYtvWfbbukGlK9wSJxJ076dMAACBLJAgBAAAAAABQCi+P7WcP//nxdtS63cEahcf95w7raHFAW58d+23kP26zkxdvt+fffbR1X95lu4bR1dZomtJBgzttvB7j35imdP/+Hnvhhb0H1zVc9z8/NXXpfgYcAgCQCmotQMwpRQEAAAAAQLG8OqqvPfYnw2zdVYPs5Fu32Yn/8Yr12tPatnrv6rGTfvKyvelfXrYXpx5tT33oGHv9pL5Jh9zWevXqsDe9qU/wmDz5qIN/3717vz399J4Dow1DU5Vu2rQv13gBAGgHJAiBkMGDBx825WizSUOSjAAAAAAAFMPrJ/axX//Rsbb+I4OCkYBK8nW+3tpUl732mp142yt2wn+8YhsuOcq6r+yyV047IvGYy6Rv3142ZswRwSPslVf2HRxp6KYp1c9XX2W4IQAAUZEgBBJO7lUmGfGGcef90I491v/y+ek//9ReeP4FO+HEE+x9732f+cSH2PKIIcv39KGMgWZwzvqHY1Le8inqvvkaty9xUfcB/JLqOXuZ2c4t26zPzf9gff/2+9axdVtLm+noMTvuv18NHnunXWK7//ga23/xhGAtxLIdk127dtkjjzxiDz30UPB7XCeddJKNHz8+eK8OO7Q8tb7hc8+9aGvXPmU7d+42X9xz7z22ZfMWGzxksF104UXWToq6b77G7UtcUeLYvv0Vu/rqz2QeG4BkkSAE6iT3tmzZEilpqJGGDiMIaxswYLQNGHCs+W7vnmH22muvBz8HDDjNfOJDbHnEkOV7+lDGQDM4Z/3DMSlv+RR133yN25e4qPsAfkn9nB1gZl853+zz15stWGD29a+bPfdcy5vrXHJn8LCLLzabM8fs3e9uu0RhvWMyYIDZ299+lk2aNN1Wrlxpd999t73yyistv9evf/2K/frX/2XDhw+3Sy65xE477bRgXUPn9NPfbKef/jbzySuv9LHu7m4bMWKEffCDV1k7Keq++Rq3L3FFiWPjxo1mRoIQKLqOHt1eA7ShQYMGHUzcrV271kaNGhXpdeGKpSqv48aNa/iaa665xm6++ebg9+nTp9uiRYus7FRRGDZs2CF/27Bhgx17rP8JQgAAAAAAAhr19g//YPa1r5mtWRN/e+ecY/b5z5vNmGHWu7eVzd69e+3hhx+2ZcuWBTdlx6V+ByUKx44da71LWJ5AXuj3A9pDr7wDAHwTTghGrayGnzdx4sRU4gIAAAAAABk74gizq682e/xxsx/+8ECCL46HHjK78kqzN7/5wAjFBKbdLJLOzs6g3+UP/uAPghusjz/++FjbU0LiRz/6kf3N3/yNrVixIkhAAgCAaEgQAhWmTp168Pd169ZFek34eargAgAAAACANqLRaVdcYfbAA2b/9m8HpgyNY+1as1mzzDTb0V/+pdmOHVYmvXr1sjPPPDOYkel3fud37OSTT461va1bt9q//uu/2je+8Y1gGtMk1jsEAKDdMcUo2larU4zqNXqtzJo1y+bPnx95WlK9h94LTDUAAAAAAGhzd95pNneu2b//e/xtDR5s9od/aPbJTx74vYS05pmmHn3yySdjb6tfv352wQUXBI/+/fsnEh+AN9DvB7QHEoRoW60mCGXatGl2++23W1dXV3AXWj16np4vSiYqqYjqFYXVq1fb0KFDD3uub5WHxYsX27PPPhsseu7biFAfYssjhizf04cyBprBOesfjkl5y6eo++Zr3L7ERd0H8IuX56xGFWqNwkWLzOJ2sx11lNnHP272x39sduKJVsZj8sILLwSJQvUhxO227NOnj02YMMEuuugiGzhwoOXBy3O25Pvma9y+xBUlDhKEQHtgilGUgksURqVEn5KDep2+FBs9VzSHPsnB+rRouCoPlQ/f7Nixw7Zv3x789I0PseURQ5bv6UMZA83gnPUPx6S85VPUffM1bl/iou4D+MXLc/a888xuvfXAOoVar7BPn9a39eqrZl//utnIkWbXXHNgKtKSHZMTTjjBZsyYEaxTqL4WTUfaqj179tg999xj3/zmN+1nP/uZbd682bLm5Tlb8n3zNW5f4vIlDgDp68zgPYDck4Jbtmxp6rUabbhgwYKgQqpHrRGIN998c5BAVDJxke4URFsYM2ZMcEyrjXbMmw+x5RFDlu/pQxkDzeCc9Q/HpLzlU9R98zVuX+Ki7gP4xetz9rTTzL79bbMvfvHAuoI332z22mutbWv37gOv1/a09uHnP2929tlWpmMyZMgQ++3f/m1729veFiT5Vq5cGST8WrFv3z5btWqVPfDAA/aWt7zFJk+ebMcff7xZ2c/Zku6br3H7EpcvcQBIH1OMoi1omk9n3bp1wag+VfwcJfe08LV+6gtONMWE+73edpUglHnz5h0cIajk47XXXhskCKdOnRokBxttq2yqTTVQC5chAAAAAEDb2bTJ7KabzP76r9WREH97v/VbZnPmmE2aZGX06quv2vLly+2+++6znTt3xt7eqaeeapdccomdfPLJicQHlAlTjALtgQQh2kJHR0fwM2qSTgk+JfWizOet5y5cuDBIOir56CgxqKSjfuJwJAgBAAAAADCzl1/W+iQHpg596aX423vb2w4kCt/1LnWIWNns2rXLVqxYEYwqTGIKxBEjRgQjCjVqyvUvAaiPBCHQHkgQAsisoqAFxqtNT0DlAQAAAADQ9jTq7TvfMbvhBrOnnoq/vXHjDiQK3/9+s969rWw03ehDDz1ky5YtO2SZmVZpylGNKDzjjDNirXsIlAEJQqA9kCAEkIoiVxRefPHFYLqSfv36ZbYmQZFiyyOGLN/ThzIGmsE56x+OSXnLp6j75mvcvsRF3QfwS1ucs3v3mt16q9ncuWaPPRZ/e29+s9m115r9zu+Y9e1rZTsmWl/wscceCxKF6ndIYu3Diy++2M4++2zr7OwsfPmkqaj75mvcvsQVJY4i9/sBeAO3wwBAhdtuu81uueWW4KdvfIgtjxiyfE8fyhhoBuesfzgm5S2fou6br3H7Ehd1H8AvbXHOKumkZN7DD5v99Kdm558fb3u//rXZxz5mNmbMgTUPX3vNynRMevfuHSTzPv7xj9uVV15pw4cPj7W9zZs3289+9jO76aab7N5777Xdu3cXunzSVNR98zVuX+LyJQ4A6SNBCAAAAAAAAGRN01i+971m995rtnSp2dSp8bb3zDNmn/qUFtUz++pXzRKYdrNINC3om9/8Zrv66qvtox/9qI0aNSrW9l5++eUgQfKNb3zD7rjjDnv99dcTixUAAB8wxSiAVBR5qgFfpnTwNTam2QL8wjnrH45JecunqPvma9y+xEXdB/BL25+z999/YOrRn/wk/raOPtrsE58w+6M/MjvuOCvjMXnuueeCqUd/9atfxd5W3759beLEiXbhhRfa0SrbNiifuIq6b77G7UtcTDEKlAcJQgCpoKIAAAAAAECLVq82mzfP7B//UYvsxdtWv34HpiD93OfMTjnFytpHoUThI488Yvv37489pel5550XrFM4aNCgxGIEioR+P6A9kCAEkAoqCgAAAAAAxPTUU2Y33mj2f/+v2c6d8bbVu7fZhz9s9vnPm40da2W0bds2u/vuu23VqlW2d+/eWNvq6Oiws846yyZPnnxY/wfQ7uj3A9oDCUIAqaCiAAAAAABAQl56yewb3zD727/V4njxt/e+95nNmWN2/vlWRjt27LB7773X7r//ftu1a1fs7Wntw0suucSGDx+eSHyA7+j3A9oDCUIAqShyRUHTjmzatMmGDh0a3AnoEx9iyyOGLN/ThzIGmsE56x+OSXnLp6j75mvcvsRF3QfwS+nP2W3bDiQJlSzcuDH+9qZMMfuTPzF7xzs0JK50x0TrrClJeM8999hrr70We3sjR44MymDUqFHBCMOil08jRd03X+P2Ja4ocRS53w/AG3qFfgeAVKlyoQpE5cM3a9assYceeij46RsfYssjhizf04cyBprBOesfjkl5y6eo++Zr3L7ERd0H8Evpz9murgMJPU09etNNZiedFG97S5ceSBJeeKHZT39q1sL6fEU+Jv369QtG/n3605+2yy67zI455phY21u/fr19//vftwULFtivfvWrYL3DIpdPI0XdN1/j9iUuX+IAkL7ODN4DAAJja6xx4NtA5gEDBgSNAv30jQ+x5RFDlu/pQxkDzeCc9Q/HpLzlU9R98zVuX+Ki7gP4hXP2f/Tvb/bJT5pdc43ZP/2T2de+ZvbrX7e+veXLzd7//gNrE2rq0Q99yKyzszTHpG/fvnbBBRfYhAkT7JFHHjk4gqpVzz//vN16663BaCpte+DAgYUun3Y79r7G7UtcvsQBIH1MMQogFdWmGqiFyxAAAAAAADHs23dgBODcuWYrV8bf3imnmH3uc2b/63+ZHXmklY1G/j3++ONBolDJvriUbLn44ovtvPPOsz59+iQSI5AnphgF2gMJQgCpIEEIAAAAAEDG1L5esuRAovC//iv+9o47zuyP/9js4x83GzjQykb9FevWrbM777zTntK0rjEdddRRduGFF9rEiROD6U2BoiJBCLQHEoQAUkGCEAAAAACAHN1zz4FE4b/8SzJrH156qdlZZ73xGDHCrKPDyuKZZ54JRhT+Os5Urv/jiCOOsPPPPz+Y1pRpHFFEJAiB9kCCEEBmFYXVq1fb0KFDD3sulQcAAAAAAFLyyCMH1ij84Q81d2Zy2z36aLO3vOXQpKEeQ4ZYO3vppZeCROGjjz4a+4bnzs5OGzdunE2aNMm6lIQFCoIEIdAeSBACSEWRKwrf/e53rbu720aMGGFXXXWV+cSH2PKIIcv39KGMgWZwzvqHY1Le8inqvvkaty9xUfcB/MI5G8PatWZ/8Rdm3/mO2e7d6b3P8ccfnjQ84wyz/v2tnWzZssXuvvtue+CBB2yf1oCMoVevXnb22WcH6xQWod+k6J9HX+P2Ja4ocRS53w/AGzpDvwMAAAAAAABoR6NHm/3935t94Qtmf/VXB37fsSP593nxxQMPrYXoaCrSMWPeSBieeeaBn/pb795WRIMHD7bf+q3fsre97W12zz332IoVK2x3i4nX/fv324MPPhg8zjjjDLvkkkvsxBNPTDxmAADCSBACQIVzzz3XTjnlFC+n9/AhtjxiyPI9fShjoBmcs/7hmJS3fIq6b77G7Utc1H0Av3DOJkCJJ40knDPH7G/+xuyb39RwuHTfUxOYPfnkgcePf/zG3/v1Mxs79tCkoR4nnFCY9Q2PPvpoe9e73mWTJ0+2+++/3+699157/fXXW97er371q+AxevToIFGoUVwdnpZFUT+PvsbtS1y+xAEgfUwxCiAVTDUAAAAAAEABaBThggVmX/+62XPPmRcGDz40YegSiAMHmu80inDlypXB9KOvvPJK7O0NHz48SBSedtpp3iYKUT70+wHtgQQhgFRQUQAAAAAAoEB27TL7/vfN5s0zW7PGvHTyyYevb/jmN5v17Wu+2bt3rz388MO2bNmyYL3CuNTHokTh2LFjrXdBp2VF+6DfD2gPJAgBpIKKAgAAAAAABbRvn9nixWZz55o99JB5r7PzQJIwPNLwlFPMevUyH2h9wbVr19qqVats8+bNsbc3cODAYArI008/3Tq170AONm7ZYsPe9rZD/ka/H1A8JAgBpKLICcI1a9bYjh07bMCAATZGC6Z7xIfY8oghy/f0oYyBZnDO+odjUt7yKeq++Rq3L3FR9wH8wjmbIXUZrlhh9stfmj3yiNmjj2qBPM2hmXdkAHK2UaNaK/5WlH4/AG/gNhMAqKDpP7q7u4OFwH1rcPoQWx4xZPmePpQx0AzOWf9wTMpbPkXdN1/j9iUu6j6AXzhnM6T17iZOPPBw9uwxe/LJAwnD/0kavnz33TZwo9IFAACgSEgQAgAAAAAAAGisTx+zsWMPPK64IvjTj7/7XXv+iSfs7N697bc0tadLHupB4hAAAG8xxSiAzKYYXb16tQ0dOvSw5/o2/YCmq9Fi4prLX9PW+MSH2PKIIcv39KGMgWZwzvqHY1Le8inqvvkaty9xUfcB/MI5W7BjsmHDoQlDPR57zOy11/IKF0ACmGIUaA8kCAFkliCshcsQAAAAAAAlsX+/2fr1h0xTGvx84gmzffvyjg5ABCQIgfbAFKMAAAAAAAAAstGrl9no0Qce73vfG3/fudPs8cffSBi6x7PP5hktAABtiwQhAAAAAAAAgHz162d27rkHHmHbth2eNNRj+/a8IgUAoC2QIASACrfddpu9+OKLdvzxx9ull15qPvEhtjxiyPI9fShjoBmcs/7hmJS3fIq6b77G7Utc1H0Av3DOlvCYdHWZTZ584OFoqZLnnjt8mtLVq812704+BgAA2hAJQgCZWb16tQ0dOtR8p4ZNd3e3+ciH2PKIIcv39KGMgWZwzvqHY1Le8inqvvkaty9xUfcB/MI5659cjklHh9nw4Qcel132xt/37jV75pkD05V64ic/+Yk9//zzduKJJ9r73//+WNvat2+frVmzxlatWmWbN2+OHVtXV5eNGzfOTjvtNOvs7Mx137Lka9y+xBUpji1bDk3aAygkEoQAMqPkYBEWK9Zdj+GfPvEhtjxiyPI9fShjoBmcs/7hmJS3fIq6b77G7Utc1H0Av3DO+serY6Ik18iR5pMju7vtqBNPtCNVPmecEWtbvc3szWeeaaf+9m/bE088YXfeeac9p5GULdpkZmseecQGdnfbpEmTgmRh3759c9m3LPkaty9xRYpj48aswwKQgo6eHo3JB4Bkbdy40YYNG3bI3zZs2FCIBCEAAAAAAIDv1K371FNPBYnCdevWxd5e//797YILLrDzzz/fjjzyyERiRHui3w9oDyQIAaSCigIAAAAAAEA2NJJw2bJl9qtf/Sr2tjSKcOLEiXbhhRfa0UcfnUh8aC/0+wHtgQQhgFRQUQAAAAAAAMi+P0aJwkceecT2798fa1u9e/cOph3V9KODBg1KLEYUH/1+QHsgQQggFUWuKOzYscP27t0bLNA9YMAA84kPseURQ5bv6UMZA83gnPUPx6S85VPUffM1bl/iou4D+IVz1j8cEz/LZ9u2bXb33XfbqlWrgvePo6Ojw8466yybPHnyIX09RT32vsbtS1xR4ihyvx+AN3SGfgcAmNnixYutu7vbRowYYVdddZX5xIfY8oghy/f0oYyBZnDO+odjUt7yKeq++Rq3L3FR9wH8wjnrH46Jn+XT1dVl7373u+2tb32r3XvvvXb//ffbrl27WtqWxpc8/PDDweP0008PEoXDhw8v7LH3NW5f4vIlDgDpI0EIAAAAAAAAAG1II8CmTp0aJPWUJLznnnvstddea3l7jz/+ePAYOXKkvf7660HyEABQTEwxCiAVRZ5qYM2aNcF0CqpEjxkzxnziQ2x5xJDle/pQxkAzOGf9wzEpb/kUdd98jduXuKj7AH7hnPUPx6RY5bN792574IEHgulHt2/fHnt7Wpvw7LPPtre97W3Wq1cvKwLfjolvcUWJo8j9fgDeQIIQQCqoKAAAAAAAAPhp37599sgjj9iyZcts06ZNsben/h6NUjzzzDOtd+/eicQIf9HvB7QHEoQAUkFFAQAAAAAAwG/79+8PpgxVovD5559PZO3DSZMm2XnnnWd9+vRJJEb4h34/oD2QIASQCioKAAAAAAAAxaAu4nXr1tmdd95pTz31VOztHXXUUXbRRRfZhAkTrF+/fonECH/Q7we0BxKEAFJR5IrCgw8+aNu2bQvuejv33HPNJz7ElkcMWb6nD2UMNINz1j8ck/KWT1H3zde4fYmLug/gF85Z/3BM2q98nnnmmWBE4a9//evY2zriiCPs/PPPtwsvvDBIGvrA12PiS1xR4ihyvx+AN3SGfgcA/E9FqLu720aMGOFVRdGX2PKIIcv39KGMgWZwzvqHY1Le8inqvvkaty9xUfcB/MI56x+OSfuVz0knnWRXXnmlvfTSS0Gi8NFHHw1GGLZi165dwajEe+65x8aPHx9MP3rMMcdYnnw9Jr7E5UscANJHghBAZmotes3dRQAAAAAAAH457rjj7IMf/KC94x3vsLvvvtseeOAB27dvX0vb2rt3r9133312//3329lnn22TJ0+2oUOHJh4zACA6phgFkIpqUw3UwmUIAAAAAADAb6+88kowEnDFihW2e/fu2NsbO3ZskCg88cQTE4kP2WGKUaA9kCAEkAoShAAAAAAAAO3n9ddft+XLl9u9994b/B7X6NGj7ZJLLgmmtOzo6EgkRqSLBCHQHkgQAkgFCUIAAAAAAID2pVGEK1euDKYf1ejCJNY+1IjC0047jUSh50gQAu2BBCGAVJAgBAAAAAAAaH9aX/Dhhx+2ZcuW2ZYtWxJZ+1CJQk1B2rt370RiRLJIEALtgQQhgMwqCqtXr666ALVvlYfFixfbs88+a8OHD7fp06ebT3yILY8YsnxPH8oYaAbnrH84JuUtn6Lum69x+xIXdR/AL5yz/uGYlLd8Kvdt//79Qd/PnXfeaS+99FLs7Q8aNMguvvhiO/fcc62zs9Pa/Zj4EleUOEgQAu0huSsrADSg5GARKgo7duyw7du3W1dXl/nGh9jyiCHL9/ShjIFmcM76h2NS3vIp6r75GrcvcVH3AfzCOesfjkl5y6dy33r16mVnnnmmveUtb7E1a9YEicKnn3665e1v3brV/vVf/9XuuOMOu+iii2z8+PF2xBFHJB63L3yJy5c4AKSPBCEAVBgzZkxQCao22jFvPsSWRwxZvqcPZQw0g3PWPxyT8pZPUffN17h9iYu6D+AXzln/cEzKWz619k3rB5566qnBo7u7O0gUKmHYKq1v+Itf/CLYzvnnn28XXHCB9e/fP/G48+ZLXL7EASB9TDEKIBVMNQAAAAAAAAB54YUXgjUKH3vssdjb6tOnj02YMCEYVThw4MBE4kNz6PcD2gMJQgCpoKIAAAAAAACAsE2bNtldd91lDz30ULBmYRy9e/e2c845J1incMiQIYnFiMbo9wPaAwlCAKmgogAAAAAAAIBqtMbdPffcYytXrrQ9e/bE2pamNNW6h5MnT7bjjz8+sRhRG/1+QHsgQQggFUWuKLz44ou2c+dO69evn3cVSx9iyyOGLN/ThzIGmsE56x+OSXnLp6j75mvcvsRF3QfwC+esfzgm5S2fJPbt1Vdftfvuu8+WL18ebCsurXt4ySWX2Mknn1y4Y+JLXFHiKHK/H4A3dIZ+BwCY2W233RYsoj1ixAi76qqrzCc+xJZHDFm+pw9lDDSDc9Y/HJPylk9R983XuH2Ji7oP4BfOWf9wTMpbPkns21FHHWXvfOc7g2lCV6xYEYwq3LFjR8sxPfnkk8FDMSlROHr06GCEYdJxp8GXuHyJA0D6SBACAAAAAAAAAHJzxBFHBEnC888/3x588MFgncJt27a1vD0luPTQCDglCs844wzr1atXojEDQNExxSiAVBR5qgFfpnTwNTam2QL8wjnrH45JecunqPvma9y+xEXdB/AL56x/OCblLZ80923fvn322GOP2bJly4L+pLiGDBkSJCDPPvts27Rpk5fHxJdzhSlGgfIgQQggFVQUAAAAAAAAEMf+/fvtiSeesDvvvNOee+652NsbOHCgTZo0ycaNG2d9+/ZNJMYyot8PaA8kCAGkgooCAAAAAAAAkqAu7KeeeipIFK5bty729vr3728XXHBBMKXpkUcemUiMZUK/H9AeSBACSAUVBQAAAAAAACRNIwk19eivfvWr2NvSKMKJEyfahRdeaEcffXQi8ZUB/X5AeyBBCCAVRa4oqJKp+eiHDh1qkydPNp/4EFseMWT5nj6UMdAMzln/cEzKWz5F3Tdf4/YlLuo+gF84Z/3DMSlv+eS9b+p7UgwPP/xwMMIwjt69e9t5550XrFM4aNAgK2N5NhNHkfv9ALyhV+h3AICZrVmzxh566KHgp298iC2PGLJ8Tx/KGGgG56x/OCblLZ+i7puvcfsSF3UfwC+cs/7hmJS3fPLeNyWj3v/+99unPvWpYKrQzs7Olre1b98+W7Fihd1000324x//OEh2la08fYsDQPpav2oCQJsaMGCAHXPMMcFP3/gQWx4xZPmePpQx0AzOWf9wTMpbPkXdN1/j9iUu6j6AXzhn/cMxKW/5+LJvXV1d9u53v9ve+ta32r333mv333+/7dq1q6VtaSSiRiTqcfrppwcj6IYPH25lKk9f4gCQPqYYBZCKalMNrF69OpieoBLTDwAAAAAAACAJO3fuDJKE99xzj7322muxtzdy5Ei75JJLgp8dHR2JxFh0TDEKtAcShAAyqyjUwmUIAAAAAAAASdq9e7c98MADdtddd9nLL78ce3snnnhikCh885vfbL16lXvlLhKEQHsgQQggFSQIAQAAAAAAkLe9e/faI488EiQKN23aFHt7SoJp6tEzzzzTevfubWVEghBoDyQIAaSCBCEAAAAAAAB8sX//fnv88cftzjvvtBdeeCH29rRO38UXX2znnXee9enTx8qEBCHQHjrzDgAAfPPd737Xuru7bcSIEXbVVVeZT3yILY8YsnxPH8oYaAbnrH84JuUtn6Lum69x+xIXdR/AL5yz/uGYlLd8irZvmhZ07Nixdt999wX/369fv2C9wlZt377dfv7zn9sdd9xhF110kU2YMCHYZtHL05c4AKSPBCGAzKxevdqGDh2adxgAAAAAAAAoqY6OjuBx/PHH25QpU4IRhU888UTL23v11Vft9ttvD7Zz/vnn24UXXmhHHXVUojEDQBpIEALIjJKDRZhq4Nxzz7VTTjnFurq6zDc+xJZHDFm+pw9lDDSDc9Y/HJPylk9R983XuH2Ji7oP4BfOWf9wTMpbPkXdt3DcJ510kn34wx+2l156yZYtW2aPPvpoy0vh7Nq1K0gS3nPPPTZ+/HibNGlSMA1pK3HlyZc4AKSPNQgBpIK5yAEAAAAAAFAkW7ZssbvuussefPBB27dvX+wpTc8++2ybPHly282oRb8f0B5IEAJIBRUFAAAAAAAAFNHLL79s9957r61YscJ2794de3ta+1CJwhNPPNHaAf1+QHsgQQggFVQUAAAAAAAAUGSvvfaaLV++3O677z57/fXXY29v9OjRdskll9iIESOCdRCLin4/oD2QIASQiiJXFNasWWM7duywAQMG2JgxY8wnPsSWRwxZvqcPZQw0g3PWPxyT8pZPUffN17h9iYu6D+AXzln/cEzKWz5F3bdW4tb6gqtWrbK7777bXnnlldgxaO1DjSg87bTTDiYKfSnPKHEUud8PwBs6Q78DAMyCRam7u7uDu7l8q+D6EFseMWT5nj6UMdAMzln/cEzKWz5F3Tdf4/YlLuo+gF84Z/3DMSlv+RR131qJ+4gjjrCLLrrIJk6caA899FCwTqHWK2zVM888Yz/4wQ/suOOOCxKFmoLUl/L0JQ4A6SNBCAAAAAAAAABAA52dnTZ+/Hg777zzbPXq1XbnnXfaSy+91PL29Nof/ehH9stf/tJ69eplTPYHIEtMMQogFUWeakDTKOzduzeo9Gk6BZ/4EFseMWT5nj6UMdAMzln/cEzKWz5F3Tdf4/YlLuo+gF84Z/3DMSlv+RR135KMW13rTz75ZJAo1KjAuI466iibMGGCTZo0KRi16Gv5FLnfD8AbSBACSAUVBQAAAAAAAJSFpuVUolBr+MV15JFH2vnnn28XXHCB9e/f33xDvx/QHkgQAkgFFQUAAAAAAACUzQsvvBAkCjUFaVx9+vQJRhRq/cOBAweaL+j3A9oDCUIAqaCiAAAAAAAAgLLatGmT3XXXXfbQQw/Z/v37Y22rd+/eds4559jFF19sQ4YMsbzR7we0BxKEAFJR5IrCbbfdZi+++KIdf/zxdumll5pPfIgtjxiyfE8fyhhoBuesfzgm5S2fou6br3H7Ehd1H8AvnLP+4ZiUt3yKum9Zx719+3a7++67beXKlcHafnF0dHTYW97yFps8eXIQf17lU+R+PwBv6Az9DgAwCypBmjfeRz7ElkcMWb6nD2UMNINz1j8ck/KWT1H3zde4fYmLug/gF85Z/3BMyls+Rd23rOM+5phj7LLLLrO3vvWtdt9999ny5ctt586dLW1LY30effTR4HHqqafaJZdcYieffHKi8Rb1uAJoHglCAKjg7sBK606soseWRwxZvqcPZQw0g3PWPxyT8pZPUffN17h9iYu6D+AXzln/cEzKWz5F3be84j7qqKPsne98p02aNCkYTahRha+++mrL23vyySeDx4gRI4JE4ejRo4MRhmU9rgCaxxSjAFLBVAMAAAAAAABAdXv27LEHH3wwWKdw27Ztsbd3wgknBFOPnnHGGdarVy9LE/1+QHsgQQggFVQUAAAAAAAAgPr27dtnjz32mN15551Bf1pcQ4YMCRKFZ511lnV2pjOBIP1+QHsgQQggFVQUAAAAAAAAgGj2799vTzzxRJAofO6552Jvb+DAgcF0puPGjbO+fftakuj3A9oDCUIAqShyRWHHjh22d+/e4C6rAQMGmE98iC2PGLJ8Tx/KGGgG56x/OCblLZ+i7puvcfsSF3UfwC+cs/7hmJS3fIq6b77G7eLq3bt30K+2bNkyW7duXezt9u/f3y688EKbOHGiHXnkkYmUT5H7/QC8IZ0xxgBQYIsXL7bu7u5gkeerrrrKfOJDbHnEkOV7+lDGQDM4Z/3DMSlv+RR133yN25e4qPsAfuGc9Q/HpLzlU9R98zXuyrhGjRoVjCTUiMLHH3+85e2+9tpr9stf/jJIOCpJeNFFF9VNjPpaPgCSR4IQAAAAAAAAAADPvOlNb7IPfehDwei8u+66yx5++GFrdULA3bt3B9u49957g2lHNf3ooEGDEo8ZQHEwxSiAVBR5qoE1a9YE0ynobqoxY8aYT3yILY8YsnxPH8oYaAbnrH84JuUtn6Lum69x+xIXdR/AL5yz/uGYlLd8irpvvsYdJa6tW7fa3XffbQ888EAwDWgcHR0ddtZZZ9nkyZMP6cOLEkeR+/0AvIEEIYBUVKsorF692oYOHXrYc6k8AAAAAAAAANEogaeRgMuXLw9GBsZ1+umnB4nC4cOHR3o+CUKgPZAgBJCKahWFWrgMAQAAAAAAAM15/fXX7f777w+ShVprMK6RI0faJZdcEvzUCMNaSBAC7YEEIYBUkCAEAAAAAAAA0qdRhJp2VGsMvvzyy4msfagRhW9+85utV69eh/07CUKgPZAgBJCKIicIH3zwQdu2bZt1dXXZueeeaz7xIbY8YsjyPX0oY6AZnLP+4ZiUt3yKum++xu1LXNR9AL9wzvqHY1Le8inqvvkadxJxaV3CRx55xJYtW2abN2+OHZMSfkoUnnnmmda7d++DfydBCLSHzrwDAADfqELW3d1tI0aM8Kqi6EtsecSQ5Xv6UMZAMzhn/cMxKW/5FHXffI3bl7io+wB+4Zz1D8ekvOVT1H3zNe4k4urs7LTzzjvPzjnnHHv88cftzjvvtBdeeKHlmJQI/MlPfmL/+Z//aZMmTQq23adPn5a3B8AvJAgBZGb16tU2dOjQvMMAAAAAAAAA2pamBR07dqydccYZtnbt2mBE4VNPPdXy9jSy8ec//7ndcccddtFFFwVJTADFxxSjAFLBVAMAAAAAAACAH5555plgROETTzwRe1t79uyx66+//pC/0e8HFA8jCAEAAAAAAAAAaGMnnXSSffjDH7aXXnopGFH46KOPWqtjh3bv3p14fACy1yuH9wQAAAAAAAAAABk77rjj7IMf/KB98pOftPHjx1vv3r3zDglATkgQAgAAAAAAAABQIoMHD7b3vOc99qlPfcomTZpkffr0yTskABljilEAqLB48WJ79tlnbfjw4TZ9+nTziQ+x5RFDlu/pQxkDzeCc9Q/HpLzlU9R98zVuX+Ki7gP4hXPWPxyT8pZPUffN17jzimvgwIH2rne9yyZPnmzLly8P1inct29fZu8PID+MIASACjt27LDt27cHP33jQ2x5xJDle/pQxkAzOGf9wzEpb/kUdd98jduXuKj7AH7hnPUPx6S85VPUffM17rzj6t+/v7397W+3N73pTcH/M/Uo0P4YQQgAFcaMGWNdXV02dOhQ840PseURQ5bv6UMZA83gnPUPx6S85VPUffM1bl/iou4D+IVz1j8ck/KWT1H3zde4fYnrtNNOC6Yf1eOoo46yu+66y7Zs2ZJrTADS0dHT09OT0rYBlNjGjRtt2LBhh/xtw4YNduyxx+YWEwAAAAAAAIDo9u/fb6tXrw6mHn3ppZeCv7366qt24403HvI8+v2A4mEEIQAAAAAAAAAAOEyvXr3szDPPtLe85S325JNPBonCxx9/PO+wACSANQgBAAAAAAAAAEBNHR0dwfSjV199tV155ZV5hwMgAYwgBIAKL774ou3cudP69etnxx9/vPnEh9jyiCHL9/ShjIFmcM76h2NS3vIp6r75GrcvcVH3AfzCOesfjkl5y6eo++Zr3L7EFSWOk046KfO4ACSPBCEAVLjtttusu7vbRowYYVdddZX5xIfY8oghy/f0oYyBZnDO+odjUt7yKeq++Rq3L3FR9wH8wjnrH45JecunqPvma9y+xOVLHADSxxSjAAAAAAAAAAAAQIl09PT09OQdBID2s3HjRhs2bNghf9uwYYMde+yx5jtfpnTwNTam2QL8wjnrH45JecunqPvma9y+xEXdB/AL56x/OCblLZ+i7puvcfsSV5Q4itzvB+ANJAgBpIKKAgAAAAAAANB+6PcD2gNTjAIAAAAAAAAAAAAlQoIQAAAAAAAAAAAAKJHOvAMAAN8sW7bMNm3aZEOHDrXJkyebT3yILY8YsnxPH8oYaAbnrH84JuUtn6Lum69x+xIXdR/AL5yz/uGYlLd8irpvvsbtS1y+xAEgfYwgBIAKa9assYceeij46RsfYssjhizf04cyBprBOesfjkl5y6eo++Zr3L7ERd0H8AvnrH84JuUtn6Lum69x+xKXL3EASB8JQgCoMGDAADvmmGOCn77xIbY8YsjyPX0oY6AZnLP+4ZiUt3yKum++xu1LXNR9AL9wzvqHY1Le8inqvvkaty9x+RIHgPR19PT09GTwPgBKZuPGjTZs2LBD/rZhwwY79thjc4sJAAAAAAAAQDz0+wHtgRGEAAAAAAAAAAAAQImQIAQAAAAAAAAAAABKhAQhAAAAAAAAAAAAUCKdeQcAAL757ne/a93d3TZixAi76qqrzCc+xJZHDFm+pw9lDDSDc9Y/HJPylk9R983XuH2Ji7oP4BfOWf9wTMpbPkXdN1/j9iUuX+IAkD5GEAIAAAAAAAAAAAAlwghCAKhw7rnn2imnnGJdXV3mGx9iyyOGLN/ThzIGmsE56x+OSXnLp6j75mvcvsRF3QfwC+esfzgm5S2fou6br3H7EpcvcQBIX0dPT09PBu8DoGQ2btxow4YNO+RvGzZssGOPPTa3mAAAAAAAAADEQ78f0B4YQQggM5s2bar6dyoPAAAAAAAAAABkhwQhgMyMHTu26t8ZyAwAAAAAAAAAQHZIEAJAhTVr1tiOHTtswIABNmbMGPOJD7HlEUOW7+lDGQPN4Jz1D8ekvOVT1H3zNW5f4qLuA/iFc9Y/HJPylk9R983XuH2Jy5c4AKSPBCEAVFi2bJl1d3fbiBEjvKsI+RBbHjFk+Z4+lDHQDM5Z/3BMyls+Rd03X+P2JS7qPoBfOGf9wzEpb/kUdd98jduXuHyJA0D6emXwHgAAAAAAAAAAAAA80dHD4l8AUrBx40YbNmzYIX9bvXq1DR069LDnHnvsseYTTaOwd+9e6+zsDKZT8IkPseURQ5bv6UMZA83gnPUPx6S85VPUffM1bl/iou4D+IVz1j8ck/KWT1H3zde4fYkrShzV+v02bNjgXR8fgPpIEAJIBRUFAAAAAAAAoP3Q7we0B6YYBQAAAAAAAAAAAEqEBCEAAAAAAAAAAABQIp15BwAAvrntttvsxRdftOOPP94uvfRS84kPseURQ5bv6UMZA83gnPUPx6S85VPUffM1bl/iou4D+IVz1j8ck/KWT1H3zde4fYnLlzgApI8EIQBUUCWou7vbfORDbHnEkOV7+lDGQDM4Z/3DMSlv+RR133yN25e4qPsAfuGc9Q/HpLzlU9R98zVuX+LyJQ4A6SNBCAAVdIdU+KdPfIgtjxiyfE8fyhhoBuesfzgm5S2fou6br3H7Ehd1H8AvnLP+4ZiUt3yKum++xu1LXL7EASB9HT09PT0ZvA+Aktm4caMNGzbskL9t2LDBjj322NxiAgAAAAAAABAP/X5Ae+iVdwAAAAAAAAAAAAAAskOCEAAAAAAAAAAAACgR1iAEgAo7duywvXv3Wmdnpw0YMMB84kNsecSQ5Xv6UMZAMzhn/cMxKW/5FHXffI3bl7io+wB+4Zz1D8ekvOVT1H3zNW5f4vIlDgDpI0EIABUWL15s3d3dNmLECLvqqqvMJz7ElkcMWb6nD2UMNINz1j8ck/KWT1H3zde4fYmLug/gF85Z/3BMyls+Rd03X+P2JS5f4gCQPqYYBQAAAAAAAAAAAEqko6enpyfvIAC0n40bN9qwYcMO+duGDRvs2GOPNd+tWbMmmE5B0yiMGTPGfOJDbHnEkOV7+lDGQDM4Z/3DMSlv+RR133yN25e4qPsAfuGc9Q/HpLzlU9R98zVuX+KKEkeR+/0AvIEEIYBUUFEAAAAAAAAA2g/9fkB7YIpRAAAAAAAAAAAAoERIEAIAAAAAAAAAAAAl0pl3AADgmwcffNC2bdtmXV1ddu6555pPfIgtjxiyfE8fyhhoBuesfzgm5S2fou6br3H7Ehd1H8AvnLP+4ZiUt3yKum++xu1LXL7EASB9JAgBoEpFqLu720aMGOFdRciH2PKIIcv39KGMgWZwzvqHY1Le8inqvvkaty9xUfcB/MI56x+OSXnLp6j75mvcvsTlSxwA0scUowAAAAAAAAAAAECJdPT09PTkHQSA9rNx40YbNmzYIX/bsGGDHXvssbnFBAAAAAAAACAe+v2A9sAIQgAAAAAAAAAAAKBESBACAAAAAAAAAAAAJUKCEAAAAAAAAAAAACiRzrwDAADfLF682J599lkbPny4TZ8+3XziQ2x5xJDle/pQxkAzOGf9wzEpb/kUdd98jduXuKj7AH7hnPUPx6S85VPUffM1bl/i8iUOAOljBCEAVNixY4dt3749+OkbH2LLI4Ys39OHMgaawTnrH45JecunqPvma9y+xEXdB/AL56x/OCblLZ+i7puvcfsSly9xAEgfIwgBoMKYMWOsq6vLhg4dar7xIbY8YsjyPX0oY6AZnLP+4ZiUt3yKum++xu1LXNR9AL9wzvqHY1Le8inqvvkaty9x+RIHgPR19PT09GTwPgBKZuPGjTZs2LBD/rZhwwY79thjc4sJAAAAAAAAQDz0+wHtgSlGAQAAAAAAAAAAgBIhQQgAAAAAAAAAAACUCGsQAkCFF1980Xbu3Gn9+vWz448/3nziQ2x5xJDle/pQxkAzOGf9wzEpb/kUdd98jduXuKj7AH7hnPUPx6S85VPUffM1bl/i8iUOAOkjQQgAFW677Tbr7u62ESNG2FVXXWU+8SG2PGLI6j3/7M/+zB588EHbtm1bsCD3ueeeG/wN8JkP1wUcimNS3vIp6r75GrcvcVH3Afziy7UBb+CYlLd8irpvvsbtS1y+xAEgfSQIAQD4H1/60pcO+f9//ud/ppMMAAC0Leo+AAAAQHl19PT09OQdBID2s3HjRhs2bNghf9uwYYMde+yx5jufp1LwIbZ2nmaro6PjsL/xNQnf+XBdwKE4JuUtn6Lum69x+xIXdR/AL75cG/AGjkl5y6eo++Zr3L7EFSWOIvf7AXgDCUIAqaCigCKikwwAAJQJdR8AANAK+v2A9tAr7wAAAAAAAAAAAAAAZIcEIQAAAAAAAAAAAFAinXkHAAC+WbZsmW3atMmGDh1qkydPNp/4EFseMfiw34Cv+Hz4h2NS3vIp6r75GrcvcVH3AfzC58M/HJPylk9R983XuH2Jy5c4AKSPBCGAVKgiUe1vPs9F7vP86T7ElkcMPuw34Cs+H/7hmJS3fIq6b77G7Utc1H0Av/D58A/HpLzlU9R98zVuX+LyJQ4A2WGKUQAAAAAAAAAAAKBESBACAAAAAAAAAAAAJUKCEAAAAAAAAAAAACgREoQAAAAAAAAAAABAiXTmHQCA9rR///7D/rZ27dqqzx06dKj5YNOmTZH+VtbY8ojBh/3WIt2Aj3z4fOBQHJPylk9R983XuH2Ji7oP4BcfPh84FMekvOVT1H3zNW5f4momjmp/r9YXCMBvHT09PT15BwGg/dx11102efLkvMMAAAAAAAAAkLLVq1fbGWeckXcYAJrAFKMAAAAAAAAAAABAiZAgBJCKwYMH5x0CAAAAAAAAAACoggQhAAAAAAAAAAAAUCKsQQggFXv37rUnn3wy+H3Lli3Bz66uLuvV6/D7EoYOHZp5fAAAAAAAAACat3///oP9fc6pp55qnZ2ducUEoHkkCAEAAAAAAAAAAIASYYpRAAAAAAAAAAAAoERIEAIAAAAAAAAAAAAlQoIQAAAAAAAAAAAAKBEShAAAAAAAAAAAAECJkCAEAAAAAAAAAAAASoQEIQAAAAAAAAAAAFAiJAgBAAAAAAAAAACAEiFBCAAAAAAAAAAAAJQICUIAAAAAAAAAAACgREgQAgAAAAAAAAAAACVCghAAAAAAAAAAAAAoERKEAAAAAAAAAAAAQImQIAQAIEfbtm2za6+91qZNm2aDBg0KHvpdf9O/AQAAtCvVdVTvueaaa/IOBQAAACgdEoQAAOTk9ttvt5EjRwa/z58/39avX2+LFi2yrq4uu+GGG4JkoX4CAAC0U1JQdSAlBVUP0u/r1q3LOywAAACgdDp6enp68g4CAICyUUfY+PHjbenSpTZu3LjD/v3mm28+eDe9koezZs3KIUoAAIDkjB492rZs2WKjRo2yqVOn2qpVq4IEoX5fsmRJ3uEBAAAApUKCEACAHGg6LT1mz55d8zlKIKrjTNauXRt0pgEAALQL3Qylm6JIEAIAAADZY4pRAAByoLvltc5gvSlEw+vxLF68OKPIAAAAAAAAALQ7EoQAAOSw9o6j6UNrmTBhwsHfNYIQAAAAAAAAAJJAghAA4AWNpOvo6AjW5otD01Rpas5BgwYdfMyYMSMYseeLrq4umz59evBTowhr0Ro94dcAAID2Uaa6DwAAAAD/kCAEAORKnWJai69eoiwKrdWnDrF58+YFU3Nu3bo1eKxcuTJYu0/voc6y8Oi9PC1atCiIb9asWTWf49YflIkTJ2YUGQAASFNZ6z4AAAAA/NKZdwAAgPJQB9WKFSuCjjFNmak728NJsFZpO+oEU2eYOsXCo+30N3WcjR49Oug80/tVPsdXbvpR7YNGHAIAgGKh7gMAAADAV4wgBABkRh1k7o55dVZNnTo16CyL02GljjfdHe9G5dXalkbq6aEOuilTplgRph1zU45pvwAAQPFQ9wEAAADgK0YQAgAyo06xnp6eRLc5c+bMoKNs3LhxwaMedc5pnR510C1evNjbUXkaFaBY1eG3dOnShvsFAAD8RN0HAAAAgK8YQQgAKCx1jqmzy3XANaIpt/SQuXPn1nye7srv6OhI5NHs+kLqwAtPGUZyEAAAtHPdBwAAAEA+GEEIACgs3RHvTJw4MdJr1EmmqbaUiNNP12kWNmfOnCBJl4QonXeV6wnp7n6mFQUAAO1e9wEAAACQHxKEAIDCuvXWWw/+HnUtn3CnmBJyWpunUpQpu5Km0QC6e3/+/PlVY9KIgTjrFQEAgOJrp7oPAAAAgHyRIAQAFJbuhHcGDx4c6TXhzjRN4ekDJQe1nlCtKUVvuOEG27x5s82bNy+X+AAAgB/ape4DAAAAIH+sQQgAKCRNkRVWbbqsaoYMGXLw9xUrVpgPU4VprZ566w3ef//9kacRAwAA7ald6j4AAAAA/MAIQgBAIWnKzVaE76JvdRtJ0chAJQdnz54djCKsRiMH9W9aGwgAAJRXO9R9Km3ZsiXvEAAAAIDSIkEIACitPDulXHLQ/d4I6wIBAIB2ScgpUakRkW7KVI1s1O8aFcmaywAAAEA2mGIUANAWHVytdCbldRe9OsRccjCKqFOIAQCA9lXkuo8zY8YM6+josEGDBtmUKVOCfXL7of/X3/Xv06ZNyzVOAAAAoAwYQQgAKKS8O7jiUMKvp6cn7zAAAECBFLnu4yxatCjvEAAAAAD8D0YQAgAAAAAAAAAAACVCghAAUEisTwMAAMqEug8AAACAJJEgBAAU0uDBg2NPu0VHGwAAKArqPgAAAACSRIIQAFBISXRwVXa0AQAA+Iq6DwAAAIAkkSAEABRSZQfXli1bIr0ufLc9d9EDAICioO4DAAAAIEkkCAEAhVTZwRV1mq21a9ce/H3UqFGJxwUAAJAG6j4AAAAAkkSCEABQWOPGjWv6Lvrw8yZOnJhKXAAAAGmg7gMAAAAgKSQIAQCFNXXq1IO/r1u3LtJrws+bPn16KnEBAACkgboPAAAAgKSQIAQAFNacOXMO/r5y5cpIr1m1atXBKbaYZgsAABQJdR8AAAAASSFBCAAo9Fo87k76hQsXNnz+7bfffvD3a6+9NtXYAAAAkkbdBwAAAEBSSBACALyybdu2pp4/f/78oLNMr1u8eHHD57r1e2bNmhUrTgAAgCRQ9wEAAACQBxKEAACvOsa2bNnS1Gs1VdaCBQuC32fMmFFzPZ6bb7456ERTh9qiRYtiRgwAANA66j4AAAAA8tbR09PTk3cQAIDyCE91pQ4t3dnu1sZxnV7XXHNN8FMdWjJhwoSDv9fbrjrJZN68eQfvklcHnKbUUieZpuRSB1mjbQEAACSFug8AAAAAH5EgBABkqqOjI/gZtaNKnVzq2Jo+fXqk52o9HnW8he+mV+eYOt7cmj0AAABZoe4DAAAAwEckCAEAAAAAAAAAAIASYQ1CAAAAAAAAAAAAoERIEAIAAAAAAAAAAAAlQoIQAAAAAAAAAAAAKBEShAAAAAAAAAAAAECJkCAEAAAAAAAAAAAASoQEIQAAAAAAAAAAAFAiJAgBAAAAAAAAAACAEiFBCAAAAAAAAAAAAJQICUIAAAAAAAAAAACgREgQAgAAAAAAAAAAACVCghAAAAAAAAAAAAAoERKEAAAAAAAAAAAAQImQIAQAAAAAAAAAAABKhAQhAAAAAAAAAAAAUCIkCAEAAAAAAAAAAIASIUEIAAAAAAAAAAAAlAgJQgAAAAAAAAAAAKBESBACAAAAAAAAAAAAJUKCEAAAAAAAAAAAACgREoQAAAAAAAAAAABAiZAgBAAAAAAAAAAAAEqEBCEAAAAAAAAAAABQIiQIAQAAADS0atUqu/baa2306NE2aNAg6+joCH5OmzbNbrjhBtu2bdthr1m3bp2NHz/e2on2SeVwzTXX2IwZM4L9d2Wiv7cbHVftq/YxfMx1PgAAAAAAiqsz7wAAAAAA+J0QU4Lo9ttvt66uLrv88ssPJv3Wrl0b/PvcuXOD5Njs2bNt3rx5B1+r17VbIkn7o4RoGdx8883BcVWScP78+cGx37JlS5Ag1DmwZMkSmzp1at5hAgAAAABaQIIQAAAAQFVKCmqUnBJE06dPt0WLFtV87uLFi4Nkkn6uXLkySBzq9e1G5dDT0xOUycKFC4MkaDvSsXSJUB3PcePGBb/PnDkzOLaifVeSGAAAAABQPEwxCgAAAOAwSgJppJgbPVYvOegSZ0okaZShRpcpkdTOtJ+zZs1qyxF04VGSGhXqkoPu3xyXKAQAAAAAFA8JQgAAAACHUXJQlABTIixq0kxJQmm3qUVrGTVqlLUbjRp15syZc8i/hROi7ZgcBQAAAICyIEEIAAAA4LC159zosEYjB6vR2nQoJiV23bHXyEElfcM0mlTHV+dFux1njXzVFLkAAAAAUAYkCAEAAAAclgRyo+MqE0RR6HVRRx3CLytWrGg4OlIjBzWlbLthylQAAAAAZUKCEAAAAMBBWnPQTQ8aXnuuWddee22CUSEra9eubevpUxud+wAAAABQFiQIAQAAACQ+ikrJpbIlmNpBOEk2ZMgQKwtGDwIAAAAoGxKEAAAAAA7asmXLwd/dSMJWaSpKoEjT6gIAAABAWZAgBAAAAHDQ4MGDDxlVFWdk1bRp0xKKCkjXzTffnHcIAAAAAJApEoQAAAAADqqcFvSaa65peVtaw7CrqyuBqID0LF68mPUHAQAAAJQOCUIAAAAABymhp8Sec/vtt9sNN9zQcrJx6dKlCUYHJEsjZGfOnJl3GAAAAACQORKEAAAAAA4xZ86cQ/7/2muvtRkzZrQ03Wg42RiV1j7Ue44fP94GDRpkHR0dwe+KQaO9WqFtajRkeJujR48O/qYkaF40ck3TW2o6VsWjuBSf4lRiNs4Ur3nJoqyTOEcUi16T1ujBWuXQbIzaT21H54i25c6Tyufp3/U+euj3uGuItkLnq9tnt7+KHwAAAIB/SBACAAAAOMT06dMPS+wpoaHOfiUelLhKI/mg5IJLgihpdsUVVwQjENeuXWsLFiywiRMnBskGxRE10aTkjxIyemi7ixYtsq1btwbb1LYWLlx48D2zTsZpH0eOHBkkVFTeS5YssZ6eHlu5cmWw725fWx3BGYW2rUSOe4TX4tP7h//NPWqVUxZlncQ5ovjcuVyZHNS/VdvnyrJpFKPi02PLli02b948W79+fXBsdYwVo0YtKpHXKFGoMtQx0ntrf/S5qyw7/ZvOIT107kyYMOFg8jOrc1rl6JLcK1asCPZZx177q3/T3/XTPU/7nkcCEwAAAMAbOnrUSgEAAACAKkmOeqOrNB3p1KlTgw5//axcv7AZShbo/UTbUmKhFpcQUTKk0QhFJSaU8FTCohrt35QpUw4mK6JsM0xxuMTR7Nmza75PJTeKTGWo96xWdjoGil9mzZpl8+fPt6Rpv8OJtFtvvfVgWagclICrpFiqrS2ZdlkndY5UJlznzp178DxX/ErgVaN/a3SO65jq2Kp8lNxTnPWSqSp7bVfPrUfngso1nKRUU17/r/NCSVK9pxtJ6Og1Oi/TpOOi46p9qvUZ0L7q33UsXPk383kBAAAAkAIlCAEAAACg0sqVK3u6urp0Q2Gkx7hx43rmzZvXs3Xr1qbeZ8mSJQe3MXXq1EivmT9/fhBbvfeaPn16z6xZsxpua+3atQffv9E2K2n77rWzZ8+O9BrF5V6jMq5n0aJFB5+rsk1bK/uTRVmndY7IqFGjDm5b5d0qvV/U4+roM9PMPoU/bypLxR7eP71v+DlpnzPh92t0/CuvF3HKGgAAAEB8TDEKAAAAoCqN9tEIrFqjoGqtC6dpM6OuseZGUjmNRlKJRkhpdJhbv6/WiCvFoH9vNNWiRoVpVJyLJ8010xSTKxu9Z6MRdOFRa4orrfXy4ki7rNM6R9JYb9CNjIs6MtLti1trsJHwCEaNvtP5ER7NqffV3/VT5Zzm6EEdZ40cdHE1GuHqjrsT9boCAAAAIB0kCAEAAADUpI5/TeWoNd6UbIgyjahL6ERJzGgtNpf0qjV1ZZgSKeEpMe+///6qzwuvb+YSl/WEp2VMM6Gk/XWiJiKVBHKySHY1K+2yTuscSVI4gTlnzpzIr9PnySXKml3bU2s6VpsCVp9TJfbTmJK22rShEuW93PSwbr8bHUcAAAAA6SJBCAAAAKAhdehrZJIShVu3bg1GPilZUy9hqBFV9RIebuRZ+PmNVI6gGzx4cNXnNZt8qBzxlcZIPSWA3HYVX9Q1G8MJNa0R6Js0yzrNcyQpis+NmtS+NVse4eSi1kOMSvvVzBqOSVIS2H22leCMMhpQSUuH0YMAAABA/kgQAgAAAGiKEiAa1aZRQy5hqN+rdfqHR8xVqhx1FCXZofd1I+r0/Fqj1cJJC8XbaFRXZbKu3jSZrQrvbzMJkgkTJhz8vZkRZllJs6zTPEeSEk7qtZL4Cr9Gycaoyem8kmyKT8luJ2r5hkd1hpPeAAAAAPJBghAAAABALEoKaTShpiKtXB9OCa1a00iGR4Y1MxJK79HT0xOMSKo3Ck/x6HlKYOY10iqcVAknwqKOHnTlGx6VlkbyMq60yjrtcySJ4xpO2o4ePbrpbVTGp6lDo8hris7KUY5REpWV5z8jCAEAAID8deYdAAAAAID2oZFbSs6Ep03UKDAlEJNKmMWlhI5GM2ltOsWxZcuWVKYUrTV6qpVEkqaTdDGmHasvZZ3nORLVihUrDvn/JGJUsrXy81JNK8nIJIRHD4bXx4x6/lcmvAEAAADkgxGEAAAAAA4Rd4SakgbhBIeSRJVJISWKslwnTgkKJS07Ojps/PjxwVp+SuZoekQlNDVVapoq91dr6SmWqA93TIqQXEmqrLM+R1qR1GjO8DGNmkDNozwqE91RpwpV0tNh9CAAAADgB0YQAgAAADgkAaBEjqZmjEPbCE8tqkRKeIrIyiRIWkkvva+SVW4aSCUv582bl/lotMr9VcKk3RIlSZd1VudIHGmM5oyadMyjPMKJPrn88ssjvY71BwEAAAD/kCAEAAAAkPioKCWFlBB0yaLKBGEWiRatXxee6jTPpJyPya2ilXURplZtNcbw63w+V1qZKpT1BwEAAAA/McUoAAAAgFQSMeGRY5WJhMpRZZXTSSY1zaWjEZF5JiYqp4NMampKH6RV1mmfI62svVf52UgjRh/XWnTC+z9hwoSm12nUdcDn/QMAAADKhAQhAAAAgIZrjcVNilUmyCpHHyWdMAsnrGbPnl139GIWKt+/CKPh8i7rtM+RZs2fP/+wGJI4rpWvmThxovkqvP9JrT/YTp8FAAAAoEhIEAIAAAComgxJMplQLWkUXr/MTUWaBK19GE46zJkzJ/Y2Ozo6YiUyNGoqPHLq/vvvt3aQdlmndY4kpfK4rl27tultVCYdizIFZ9SpUButPzhy5EiShAAAAEAOSBACAAAAqLqmXNxOeze1YK2ExzXXXHPI/7eSAFLCoTLBEh6xFHWdtCxGp4X3t9URmtX2N09pl3Va50grak0fGve4hl/j1u70Vfj4Rp0qNHzMKq8F+jeNLvZ53UUAAACgXZEgBAAAAFDVlClTWn6tkh4uwThv3ryqz1EiJJwwmDt3blPvoeSCkpCViYpwMqiVJEZaNP2mS4SobJpNJilGvcanNdzSLuu0zpGwcHKq3hqCOmbVthM+riqPZpORt95668Hfa31WfBF13cHwCNN66w9q34syYhIAAABoNyQIAQAAANRMrlSO4IrKvU6d//VGRIWnMtWoxWaSK9dee63NmjXrsL+H1zuMuj3F0ShR1GiUU5QRl4sWLTok/mbMnDkzSEZlJcr+ZFHWaZwjtZJeK1eurFsWtc6BBQsWHPKezXzGXMJ0+vTpwSOqPKblDK832ej9dZzCZVEtuarjGd4mAAAAgOyQIAQAAABQlZIVGgGkKRqbSUYoOajkgJIp4YRYNUoahJ8TNVmguPQe1UZcVSYxGo1YcyP5wuvnhZNQbl/qTaNa+ZpalDB1MSuuqMkkPU/7kvYIs8r9biSLsk7jHKm1D7VGdWpb9ZJ3+jeXvFXSS49GVF5ulG7lPtYSLqs81rFUstUdn/D0stX2TdeNcHI2nEwWnStKDjOCEAAAAMhHR09PT09O7w0AAADAM0qQqGNfCYu1a9cGnfguiaHOfiX/ak3X6BIeeo2SCBqNFXXayfBIIo04XLp0ac2knJI1SpjV27625ZI0bl9q7a/2ySU7Ro8efdhr9O+KRYkmJWjcdvWayoSSkh0qP5c0qhXfDTfccDA5qMRSvSSW3n/hwoVNlWdUjfbHTfE5ZMiQmvuUVlmnfY6EjR8//mByUyMWw4ktndcjR44M3q/R+oDh46qEX62kosrdrY1Yb19UZopr8+bNB3+vdb7p9Y1GSybBHQe93/r16w+L2+2bjqXObVe22s/wCE09R3/zfVpVAAAAoG0pQQgAAAAAsmTJEt1A2LNo0aJD/j579uzg73qMGjWqZ/r06cHf5s2bF/ycOnXqwX/Xv23durXp9167dm3PuHHjDm5H2125cmWwLf2cP39+8N56jp7bSDjmrq6uYJ9cXNqe4tT2wtvS/oRf497P0Tbcv9V7VCvDSorB7a/eR++tvyke/dT/a1sq2yj72wq3P432yT1H50dWZZ3FOeLo9eHtajt6vfZX29P7ROVeo+3o2KkstC23vVmzZh18H5VBPe65Uc63LJv3Kh+9n8pM5S76qXgVT/g80d9dfO65Kk+VEQAAAID8MIIQAAAAwEFu2sta0wdq9NCtt94ajBLSQ6OrNIJIo7Q0mumKK65oOMqqEY2U0ugr/dQUhHoPbV/b1aikZqYk1Gs1mkz742JWvFp3TqOgqo24cu/vRkKlve5feH/dFJKt7m+esizrJM+RyvNbIwg1dazbZpR1DJuJUQ+Vx+WXX95wXcsiXCtcWans9fmvdgzdeoRuhKqOj9ZtLPL+AwAAAEVHghAAAAAAAAAAAAAokV55BwAAAAAAAAAAAAAgOyQIAQAAAAAAAAAAgBIhQQgAAAAAAAAAAACUCAlCAAAAAAAAAAAAoERIEAIAAAAAAAAAAAAlQoIQAAAAAAAAAAAAKBEShAAAAAAAAAAAAECJkCAEAAAAAAAAAAAASoQEIQAAAAAAAAAAAFAiJAgBAAAAAAAAAACAEiFBCAAAAAAAAAAAAJQICUIAAAAAAAAAAACgREgQAgAAAAAAAAAAACVCghAAAAAAAAAAAAAoERKEAAAAAAAAAAAAQImQIAQAAAAAAAAAAABKhAQhAAAAAAAAAAAAUCIkCAEAAAAAAAAAAIASIUEIAAAAAAAAAAAAlAgJQgAAAAAAAAAAAKBESBACAAAAAAAAAAAAJUKCEAAAAAAAAAAAACgREoQAAAAAAAAAAABAiZAgBAAAAAAAAAAAAEqEBCEAAAAAAAAAAABQIiQIAQAAAAAAAAAAgBIhQQgAAAAAAAAAAACUCAlCAAAAAAAAAAAAoERIEAIAAAAAAAAAAAAlQoIQAAAAAAAAAAAAKBEShAAAAAAAAAAAAECJkCAEAAAAAAAAAAAASoQEIQAAAAAAAAAAAFAiJAgBAAAAAAAAAACAEiFBCAAAAAAAAAAAAJQICUIAAAAAAAAAAACgREgQAgAAAAAAAAAAACVCghAAAAAAAAAAAAAoERKEAAAAAAAAAAAAQImQIAQAAAAAAAAAAABKhAQhAAAAAAAAAAAAUCIkCAEAAAAAAAAAAIASIUEIAAAAAAAAAAAAlAgJQgAAAAAAAAAAAKBESBACAAAAAAAAAAAAJUKCEAAAAAAAAAAAACgREoRAQaxbt85Gjx5tq1atyjsUwFs33HCDXXvttXmHAaBkuPYAAACUVzv216RRv/W9zux7fADSdUNJrwEkCNE2H+Bp06bZtm3brF3Nnz8/qHQCqO6aa66xW2+91ebNm5d3KABKZvbs2UGH0IwZM/IOBQCAxJWhvQ3E0W79NWm1rX2uM9OfAGC2x9eoNHX09PT05B0EkMSdWjJr1qygYtaOBg0aZIMHD7a1a9fmHQrgZWV+4cKFtn79euvq6so7HAAlpE7TkSNH2tSpU23RokV5hwMAQCLK0t4G4min/pq029Y+1pnpTwDg8zUqbYwgROGF7+65+eab2+quLef2228PLlCqtCA9On/Gjx8fVO7dQ3eNqPyLGoM+Dxoerzt+ta2Ojo5g+9rm4sWLE7ujWNvN67OnMtNj6dKlVSvz2tdweeqhTg73CP9d+1H5OVP56e9RXu+OVxZU7novHVsdU8WiOJO4szvNbeu8UxmHt61yS+p8BPKi64+uQzqX9RkCAKAdlKG97TvaqX63U1vpr3FtTPeobFO6MnGPynLW8Wjm9Xp+Em3rdqwz059AfwLg8zUqExpBCBTV2rVrNQL2kMesWbN62s306dODfdu6dWveobSllStX9nR1dfWMGjWqZ/78+YecX7Nnzw7KXscgzfJPIwZ9FrRNvV7b12v1WLRoUfB3bVPvt2TJkpZiVmxTp049+NnT/2dN+6X31j7We472Ufs9b968g/vuHvp//V3/rudV7of+v9Hr9f7u9Xq/LOh8GDdu3GHXwCTO0zS3rTKstm2VH9AOdA3XOd3qtRUAAF+Upb3tK9qpxWinttJfo+eG25iVnzNtU+Xt2pj1Xq/nVbZRtf/h10eJLUrbut3qzPQn0J8A+HyNygoJQhSaKpaqOKbxpeMTV8FD8nShdw2QWueN+1Ko9xzfYtD5oket5+rv4Yppoy881wBRHKq8VquQ5ZEgVHno0YzKBli4oRuFKp7h12t7eQtfB5M+R9PcdrjhToUe7aSVaxMAAL7Jo72tjmW1U8rQIVcP7dTitFOT6K8Jf85a2Va4XdVqHTRu/bWVz27edWb6Ew6gPwHtSt8Jcb4DRpWkXc8Uowl7eeceu+Xup+xDN99jb/+L/7SJX709+Kn/199f2bkn7xDbhoamaxoATXmiRUQrh/C3CzcVRNkWSM3qHHLlqnmla02hobU29NDUJFOmTPE+Bg2B1/PqbU9/D08XpOkZ6k29smLFiuA5+mxpwV7Nxa31FfKcn99NcdTs570yZq0VEef1PqxRMG7cuEJuW+cU0I50XdL1qTRTkgBAil5Yuz2T1yD/9ramUdSUXnpvtTnKinZqcdqpSfTXqKzD+9jKtsJTkE6fPj2ztnXcz26edWb6E95AfwLaVdy6xLUladeTIEzI89tetz/5ySN24fVL7Ys/e8zuXbfFntr8mm18ZVfwU/+vv19w/VL7Pz95JHg+LPaHdNSoUUHlZ86cOYd90Scxt7UP3CLwqnQjWTNnzgzOE1VYGlVaXKVRXy5Jzm2eRgxz584NvsA0D3u9LzE1nsLCDbFqz9XNkVu3brUlS5YEz9XnLy8qM3cNaPaz0WwFvgjS3Kc0t+1DYwhIg65LOr9dgwIA0Jrl/7LOfvwXK+2BJU9Hfo2eq9fotShWe1vtjCw6lX1HO7U47dQk+msq1xes3P9mO8CbTZrEaVvH/ezmVWemP+FQ9CegHSVRT5lVknY9CcIErHhqi737pjvtn+572l7bva/uc/Xv/3jf0/abN91pK7u3ZBZjO9/NKPqwtuMoQnf3VSt3gKFx2brGS5QKuCqOrqGhho2vMWib4S/Bep+DyoaT7r4sCtcp0cxC8ACQJdeZ6jqOAADNUYLv/n97Kvj97h+tiZQk1HP0XNFrSRIWq70dTpQ0myRpF7RTi9NOTaq/Jpxc02et2QRn3ARjEm3rOJ/dPOrM9CcA7a/y2tiqOSVo15MgTCA5+Dvfvs+2vdbc1KFbX9tjH15wX/B6xLub0WnHUYRuugoqLemVrUycODHSa1xFXY2AJO4cSSOGOHdQFelOOPfFTPIcgK/c3cjhaz0AIPoUoS456DRKEoaTg462wXSjxWlvu5FQZR49SDu1OO3UpPpr4ibG4468TaJtHeezm0edmf4EoP0lldCbVYJ2PQnCGDRN6O99b4Xt2ru/pdfrdTO/t4LpRmPezei04yhCXcy0X2W9ezJNt956a9ONlfCdfEnciZJWDO680UPrO9RS2XArSkNc+63Yw3eqAoBv3B3g4bvwAQDRnDD6GJv0wTGH/b1WkrBaclC0DW0L/re3GT14AO3U4rRTk+iv0b6G97eVNdXifHaSaFvH/exmXWemPwFof7qeJDWCsKsE7fpOK4ide/bZ01teM5/ctPTJpkcOVhtJeP3Pf2V/OOVU88nJg/tbvz69rSh3M4bvagzPZe8aNkWcl9rdeVfZCCsKHQc1LLQPuojqmKmyqLvr4lTwtS2th1CvQdHsPP1R70gMn0crV66M9f5pxuAWim+k8suyKCNV3bEvc8cBgGLQdUp1EXUgcYcyAF/t3bPPtm/076bVk98y2F57+SR7cMkzh/xdicDXXt5lp190QvD/j9/zwmHPkXOnnRRsY/PzO8w3xxx7pHXS3q45CqqVJEm7oJ1ajHZqUv01ea8/mETbOonPbpZ1ZvoTgPY3ZcqURLc3tc3b9YVJECo5+K6/+m9rR//68AvBwye/+KO32mnHHW2+3s1YKznk7moMN1rUwCniPMEuZh8rw40qqDNmzDjsrj/9v46dHrqwav9auVtLFei4d4FUxhY1jiFDhiS2DoIPMYQ/F1kv5h6HO/7jx4/POxQAqEudJPre83XtHAAQJQd/+OXlViRKCFZLCjb7nLx86Avn25ATB5hv8mxvM4LQjzaiDzEUoZ2aVH9N3usPJtG2TuKzm2Wdmf4EoH2pHqM+6cqbJ+Ka1ubteqYYRaHUu5sxq7URVGFWJXD06NE2aNCg4Gfl1CpJvN/ChQuDkXZxKsNZxRp+P1Wy9FOVW90dqIqzGpiq2LvKoipk1WKJQqMS4zYQWt3n8F2Rccst7xjUqHdfmDo2RRmpqn12jdYidBzo+qPPoCoT+my4z2K1ucvdIumqzLjn67l6xPn8h7ej3/W5i7s2SZrbjkLXEJWTK8/w+/u29mytslL8Uaen0Oc1fF5ovzs6Og7ua/g99Pfw9b7R8chy25Xns14fPo76vdHx02u03fD29HAV9nrnjIu/8qG/h/fZ0TZrPV+xRuGuU+FrFwAAZW9vu/pG+BHuzKv8t6IvHVKUNqIPMRSlnZpEf03e6w+20rZO67ObVZ2Z/oTo6E/wR7PxZtn2TaK/I0q7X3Fo/127vzJ+1x+t51beOFHtulWtDMrcridBiMKvhVApzbURXLJNFwMlvbZu3RpMn+EuiIrRXRDj3K2gi6j7cvc91jD3paHy1/spOagkoRqY+psqr2vXrj3Y4NTFXu8f9UtDF3k914eK3JYtWwoXg5uDW8dJnwk1IHRMfG10VRP+ovfxTtJKOt91h5EebhqaepUQ9zztp37quc1WUHVe6Piq4qTH0qVLg8+jHurQ0XW01QR9mtuOQmXh3lu/u2tb+P1rNZjyEG6ghctKcWu6JlfJb3QNvP/++4Nzx50XrkLqjodrLC5YsCDYvt5L10ldY/X3et8laW+78nx2tM8qF73edWzob/WmAlE8ek89X3UBV57r168/eF2r9Z0yYcKEgzer6Hf32XIxVZseze1b+LluBHxl52gtbp0dSWoNBAAAit7e1neyvs/dI7w9tR/D/6ZH1O9d0E7NQhL9NVLZNrziiisyX3+w2bZ1Wp/drOrM9Cc0Rn+CP/0JrcabVds3qf6OWu3+uXPnBtdFt231aevf9LkYOXLkIZ9nvZ/2y117wjdMaB8qr016NDM9elebt+sLM8UoEOVuxrTWRtCF0Y2Mc6PiHLfAtv5dHZvughunYu62f/nll3sfq6MLviogje7y0zFUDLqg6svEjSDRxVsd0LXuetP29TztQ9wGYuX+tnJexL2rKMsYXKI4TOdGEdfnVMIh6YXqtc1myqGZhHq4g0Wfu3qvVQxuvQ49r9UpT/Q50edMlaZKun6qkqdt6xqpz2Ez65Skue1G3B1hOu91jansvNL7KzY9x1Vuo6xxkuZ3lr57FIPKJXyOKU5dm13jR+XqbqioJjzNV/jzrNepIqwEWXj7+nxoe64s3FQY1Y5HFtvWMVMF3l2z9FP7rUq5yiJ8B2C1z4j+Td9Ztb5j3Ih1fWfqeYq98hzRc1z9Qc/V+7t6gvap2veWnq8Y3dTY2p9WrpnaR8We5OcBAIAit7cr6/LhUVBx16wvMtqpxWinxumvCavsZFbZN9PxXFl2za7/10rbOs3PbhZ1ZvoTGqM/wY/+hDjxZtH2TbK/I8yd59qGjn9lDHov9VPo/NA1TzG79w/fJOGuJ+41SdwQMKqN2/WMIERb3c1Y765G3XnQ6nurY1MXZ3f3RDWKLfxl3eooN3f3XOUF1sdYw9wdGlHv8tN7qlLgYnQVGDdMXglBHXN354gbndhqB22YD1MGZBmDyrmnpyd4uLt5NCVK1Cn9fOIaQaoQJEUVJXdXVpRHq3ezNfM5i9NgUdnUWjdG9PlxDTm3ZqgP227E3TWnsqn1XRC+BuU9FZW7i89dx6pRrO56FvUO5GqN8lrXRNfB4o5Ho06DtLZdWVmfOXPmIevQ6q7Gep8Tlxx0o9HrvY/uLtRPfa7DHZeVFLtrNGnbte5q1Pexayy1+t3jrlftOBUJAKA95NnelvD3cNLJQdXDqk0tlsaj2QRNJR/aZbRT0+uvqRROrombSjLqo7L90Gy/ThJt6yQ/u1nUmelPaIz+BD/6E5KMN422bxr9Hdpn11ddLwbXPyBJrIEcVTu360kQohDU2Ih6N6NTOcpMX9qtVDDdSDs3+q6WcAdnnC9jVYillekqso41zCUlm6VOZjUGwl9Wbt0qlYF+d2saap98mF60yNydRO5OHFUMlFROegHftLgv4iTvKNV55RqmUR6VDbmohgwZ0tTzW93HKBVZXU/d3Vs6B6JO+ZDmtutxo42l0Qhi9++6FtZLEKUt/H1Tb5R2+JoW5XMYbsxG6cQLV8rdNM15blvlov0M77e+h/TZ0nWp8vNVuQ5NI240oTRaw0KffZek1HdO5XP1+kbfp1G4MmrHhgQAoD3k2d5Oe00wdThqv7J4JNmZXTZFaafG6a+pFB4tqPprM21SPcJ9Oa3068RtWyf92c2izkx/QmP0J+Tfn5BGvEm3fZPu79BxdtdEHf96I/7yunmkq43b9SQI4T13kYt6N2OSdzWGOyZ1gar3Basp1pw4lSPd/RAeDu5zrGGqkLYyZ764LyHdQahjpm25+PWloL9pmrtmy6Te++Ut7xhUrprSNTwtrW+Nr3oVgSTv+Gs3Ucsm3IER9e64NLfd6I52p9F1QJ8tV5nM8m6yWtdyxVLv+ytc8W12uueoxyPcqEj6WLey7VrHsLJjw01FWnlcGwl/FzXqvAk30MN3/atxovNOIxLjcmXpw5pAAAD41N6uTJLEHYFXjZsqLYtH3Ono8m4j+hCD7+3UVvtrKlWuJdfKuR93Vqi4beukP7tZ1JnpT2iM/oR8+xPSjDfJtm/S/R3h49zoZpvwe2e5RvHgNm7XkyBEW97NmMRdjeGOyWY7GVtNlKmSqEpes3PZ5xFrJX0hxB2N6L5YdNegRhXq7iolDZNeg6CyUtLK3Sdx4/EhBn2mwtso0h2veTdc20G4EemuPT5u292lK1GvMe55ed7Z5UZH6xpWL7EVvhM0rTvhfDvWEydObPrYh0e+NxI+T9TYqVeubn0EcWviup9uutK4NE22+DhNFgAAebW3q7VNyz5bjA9tRB9i8LWd2mp/TTWVaw02e+5Xvj5Ogq7V45X0ZzfLOjP9Ce3XxmyX/oQ0402y7Ztkf4eObzj2RteT8HtnuWbx6DZu13daQZw8uL/94o/ear54dddeu3LBvbZzz/7Y2zqyT2/7p5kX2FFHdHpV3j7dzdjqXRtuqrHw3RdqAEW5OzL8Gl3sGo1cCFfQWr1Auf1sdrqKPGJtZsoJ3V0RJa5mthunQpdEZTDuHWc+xCBq3LjzR8fKLTLsq3a8U8cXui6kdT2Is+1wwzPqOR++1ui8TuraE5cqvioLVWR1Liu2LBodlWWf5LFuZdtRj0f42Me5Zrq1FGrRNU83puj656Y2SeKmFwAoimOOPdI+9IXzzUeP3/OCPbjkmcP+fu60k+z0i06I/Bwfy7zs7e3Ktqm2VfbvXh/aiD7E4Gs7tdX+mkb1XNWNmy33ymkqW0nQxW1bF/GzS39CeuhPSEba8abZ9m21v6Pyhgdkz5+MVAP9+vS204472nzywXHD7R/vezr2dj4w7k123smDEompXe9mjFMR1IUu3GBRA0h3OjaqgIUbSY3upnRrKsW9c0pxan+bvTDnEWs9+gJQpbnyIu8akFHKv962dXecvnBaVfklqy+uKPGE7xJJ+s7MPGII3wETrozk3fBqVG7teLdOXnQOufLcvHmzl9sOVyh1Tak8Z2txleK8p49R/OHvIV2jdQ3TiDjFWG9R73Y91lGvXeFjH+c4RmmU6HtU55eb7qnsIxgAlEtnn9425MQB5psHljxdNfE36YNj7LxpJx/8/4s/eKr1H3iE3f2jNYc8T6/V38PPhT/t7co1zJqZLaBd+dBG9CEGX9uprfbXVBPuK2ml3hn39XHb1kX97NKf0L5tzHbpT8gi3iTbvkn0d4SPry83d5dNYRKEPvr9d4yxnz/ygm19bU/L2xjUv0+wHSR/N2OcuxrDlZ0o0zUkMfe6mwat2fmT84i1HpVzrTvq3DF1x7WVCr7ij3vXV2WDJWoFMZyUjPullVYMSv66L1/9bPRFXxmHT+s71EOl3v8GUlLbDm9D14w81xVslq6F7rtHsSc9XXJR5Z20rUWNGbewe9wbUao1eDj2ABDdC2u3H5bwq5YcdNzfKl+j/z9+1DF2wuhjUoy2mPJsb1drm/oyjWSeaKf6205ttb8mi/UH4/brtNJmS+Ozm2Wdmf6EZNCfkLys4k2i7ZtGf4fPo3w3t3G7njUIYzix60hb8JEJdkRna8Wo1337oxOC7SCduxmdysZJo7URKkcbNKq8JjH3urvoN7u/ecRar5LokoPatt6rci1B11jQ81pZcFyLvydxR0n4rr+oX0Dh50VdQyvrGKZMmRIcBz30Jd9o5Ey1O0R95r6IfY+zKMLlGPXOtKy3HXVRa9/o+uYqy7puuYW08xL+zkv6WKe17fD1Kc6xj1LubmF2V19wazEkWT6+JkYBwEdK6E38zVMiJQcd/ZueE6ZtkBz0r73tsP7g4Win+tlObbW/Jov1B1v97MRpW6fx2c2izkx/QrLoT0heFvEm0fZNsr8jyjqFSVNfdLP7vK2N2/UkCGOacMpg+8ffuyAYCdgMPV/rDo4f0X4nVZJ3MyY17Zq7q7GyQVRLuLIaJRnlFpGtnHtd24k6l7LmflbFqtkLah6x1uKSg6os6hHeH8U2e/bsg4lCd0HWl0rU46wvH8V4xRVXWNKLHkcRfl6jqVzziEHlWfll2igBW1nh8H04v4uvDHf8ZbGP4fdIulMmqW1XXqeKQNdC99nTd08r14skj3+zN5L4su3w3dDNlEflcxvF5BpEatjoe0oP970cHg3RKned9f36CgC+Of89ow4mCRslB6slCfVabQP+tberrWFW63sy7npv2seOjo5MHknM0EM71c92aqv9NVmsP9jqlKdx2tZpfHazqDPTn5Dee9CfkIy0402i7Zt0f0fl8c3i3HVrJDb7Gh++j9JAgjChJOG//eEl9jsXnGz9+/au+9yj+vYOnqfnkxzM5m7GVu5qDH/YG33ww9NDVF7UdAdFlBFy7iLcSuMn61hr0ZeJtq8vmUZf3i5R6L74dCx0R1C9BKWbutQlGuMKTw2iBXqjcOWjGJL4Qkg6hmoNi0aNhcr3TSL5mia3z0W486tSMw2/LCqulTcXJFnJSXLb4etis9eoPKYi0jU2XLFudF2vNZWHOrOSSE6563NaxzrNbYcbGitWrIj8uvBzo8SkzjzVEdx3V3iR9nDjp1Xue7cdGxIAkDYl+D7wufFNrSOo5+o1JAf9bW9XLpVRq/2oulDcerG+51WnyOKRxOwDtFP9a6fG6a/xdf3BOG3rtD67WdSZ6U9IDv0J6Ug73rht3zT6O/T+4fO7mcErSfWZlL1dzxqECdE0oV99/1n2+ctOt5888FywNuFLL++yHbv22oAjOu24gUfYu886wd5/3pvs6H7NjTYsm6TWQoizNkK4strogx+Os/KOQXWcKmHWiNtGK3ddZB1rvbvYFEvUfVCsqvS7BWtVAVBM+ru24aYQ0JeJSz5W7kPc80FfiPri0ajKRtsNf0FFudNWMTdawDzpGFzFSWWl7eo5jc6Jyi/evBd+b8RNV5P3GhStCE9D0OiOqDj7F7WxE07sRP1cpbntWtw1wW1TP6NcZ1TGGqGsaY6rraWic1+fz6Qrd5WNsUadH80kvlo9HuE7+JM+1q1sOyrXcanvCXfMonSChL/LGsWkjjwdo8pr39KlS23kyJHB+2pKrPXr17d8x7g7xjofAQDNa2WKUKYV9bu9XVkHqjXyTq+N00YV1R2KNH0p7dTDt5l3OzVOf43P6w+22rZO67ObRZ2Z/oTG6E/Itz8hjXiTbPum1d+xYMGCgzfZ6JhH2WfFogRlte+HRp8XvbbZY7eindv1PYBnZs+e3dPV1dWzdu3axB9Llizp0WkffmzdurVqHOPGjQv+ferUqTVjrdzeypUrD/6b3m/UqFEN91fvr9dOnz69xRLLLtZ69N46dq1QGcyaNeuwYxN+6JzQPiRJ+63tavuLFi2q+1wdHz1PZd1oX1SWLu558+ZlGoO2oedEKavKc2L+/Pk9zXKxV55TaXGflzjvp/0M73ejck+q3MKxN/qs6BwKl20j4c9P1M+h275em9e2w8ei3nFQ2bltqmxqXbcrPy/V3j+8rVbP+0af6SjfMY1iUfzVyiR8POpd8x0dM/f8Zo51mttWGUUVvqY2uv5Wln+j71VX36h1jMKf9SjlUSv+VvYbAIB2b2+7dkuttovibFS/aFe0U/1ppybRX1OvLRqlXRO1XyertnUan92s6sz0J1RHf4I//QlJx5t02zfN/g69b71rSyVto9Z3WfjcqHaMVFaNvgfL1K4nQQivhD9wWT1qfUGpslDvgqcLmS7U4YtOuIKhi02ULz9dkKJe/GrJKtZ69Pq4CSJdZLUdNSzCX4ZxY4taua11kXfl5hrSUbfnXpN1DK7Tvt6XnUsKN1tRqxTe16QTuLW4c6PVipj7zLVaoas8xs1UKlwyv17jWcdC23TPjVK2rtKtstFxbfRZdM+P0tBNc9vhY9HoOIQ7KRpVklWGtW56qGzQRfmMNitcsa23X3pe+HwKfw51/Kt91sMNLD2n3mc3XL7NHOs0tu06jlppjIevV/UaPeHnNYrJ7WujxF/4WLZynXTHN43zDACAIre3w52MlXUD1Z+i3BjUzmin+tFOTaK/plbdspWbtCtvrM6jbZ3GZzfLOjP9CYejP8Gv/oQk402j7Ztmf4c7b7Xv9c6VRvscru9U+7zUS5aWsV1PghBeCY9GyPJR66LgLvy6qLnn6AKmi6suMO5v7uLovtibqRS5O3viyiLWdqXKko6BHuEvt/DIxnC5NtpW+NyKWrZJxhBOCmt7+lxp+/py1SNciVJ8UTvrtQ33cOdNeF/1ftq23ts9r9k7IqNwiYaodyW6u5kVl+IL38HkvuD1dxdzZSXFvV4PPS/cYA2/3u13vfIMV/K0H+Hy0evCd31VK99GSSPFoG1qO9UaAe7fKs+zepLetitPPSd8LNxNDNWOQeV7hMvdPVc/9Xptp95npdqd7Wkkt8MJscryUKyK0V2Hw999eq7+v1blPdwpoLj1Pnpu5ajwcEOs2WOd1Lb1Ove5qbwuumMdtezDx96dK4pFf9f7uDsi3XlRSc/VOVxttHqtfahs/LnrsIs9yvXNHdtWRyACANDO7W33vew6DV3bh+/NA2in5t9Ojdtf4+rDeu9w+yBcD3VxVYsp/Ppqn9/wfrUyqqXZtnVan90s68z0J9CfUIT+hDjxZtH2Tau/o/L52gf3/npov3Qeh/u5awknJ7UdPd/F1uzNJ7PbvF1PghBeqfyizerRqINTFz5XMXQdm7XuXtBzolaQ3ci/pEbIpRlru1MZuMaEawDpUavyEuWLQ2Xc7FR6ScXguEpBeFSm22azU2GEK7BRHq4SmDRXIYt6x2W4QhUl5sqGgjueUV8f9U63yuPs7q5y3L+7iryr7Ff7vFZrjLkGiM4p/dR+aBvN3uGY9LbDFclq5RflmlhttHEznxVXUXaV6TTOU3GJK8Xp3ku/62dlnOEEV73GariS7xqPLpnnruvufGrlWCe57XDjt9ax1qOZ62StY+9iqvV9VutzXO9aUu+a16ju4LiGeVrnGAAARW9vuw5zV+9tZjRNGdBOza+dGre/pjKRUC+eau9TOZVfo9e3Mg1qs23rtD67WdaZ6U+gP6Eo/QmtxptV2zeN/o56+6z3aPY7wt3g7Lah7bVyrRrX5u36Dv0n73UQgbLSYqpaxH3t2rWJL2wLtLNBgwYFCw3z2UFc1157bbBYfZRFsH363pCVK1c2XBTcl22Xka5RulZpgXctFg8AAIDiKEt/Td5t6zzqzHnvM9pH0foT0LxtJWjX98o7AKDMFi5cGHTAUiEBmjNnzpzg5+LFi/MOBQW3bt26oKIHpPEdL7Nmzco7FAAAADSpLP01ebet86gz573PaB/0J7S/hSVo1zOCEMiJKiIzZsyw+fPnt/VFBkhDGe7gQTZ0Hq1fv74wlXpGEBbH6NGjgwajrlFFOb8AAABQrv6avNvWedSZ895ntI+i9SegeaNL0K5nBCGQE1U05fLLL887FKBw9KU8b968oGLvEhpAs1atWhXcEdyulTzk26mkRoSuU5xfAAAAxVKm/po829Z51ZnpT0AS6E9of4tL0q5nBCGQA3e3kuaoXrRoUd7hAIW+k0e0dgDQrGnTpgVrBkydOtWKIjzKb8mSJYnGnua2y2b8+PEH1zUBAABAcZS1vyaPtnXedWb6E1C2/gQU6xqVFUYQAjnOX6zOWACtU4NNd/OoUgY04/bbbw/OnaJV5hWzo4pqUbZdJjfccENwN6m78xwAAADFUdb+mqzb1j7UmelPQNn6E1Csa1RWGEEI5HQHgpu/GEA8GvGkxhtrpiEqJb90HdYoOU0J4jtVSrds2RL8DDdeFbv+Xz/dw6dtl5G+23UnsqYgmT17dt7hAAAAoEll7q/Jqm3tU52Z/gS0e38Cin2NygIJQiCni4wWui7DXQhAFlSh152eLA6NKJT4mjhxYjBtUJEWxZbK89uN9Gu14prmtsvaUFTHQpmmowIAAGgX9Nek37b2sc5MfwLauT8Bxb9GpY0EIZDDF4mGKXN3EpB8pX7FihXBZwsA8liDQh0KZWlEAAAAtBv6a9JvW/taZ6Y/AYDP16g0sQYhkAPNUV3myiaQBt3hqc8W6wcAyJo6ksp0hyEAAEC7or8mvba1z3Vm+hMA3ODxNSpNjCAEAAAAAAAAAAAASoQRhAAAAAAAAAAAAECJkCAEAAAAAAAAAAAASoQEIQAAAAAAAAAAAFAiJAgBAAAAAAAAAACAEiFBCAAAAAAAAAAAAJQICUIAAAAAAAAAAACgREgQAgAAAAAAAAAAACVCghAAAAAAAAAAAAAoERKEAAAAAAAAAAAAQImQIAQAAAAAAAAAAABKhAQhAAAAAAAAAAAAUCIkCAEAAAAAAAAAAIASIUEIAAAAAAAAAAAAlAgJQgAAAAAAAAAAAKBESBACAAAAAAAAAAAAJUKCEAAAAAAAAAAAACgREoQAAAAAAAAAAABAiZAgBAAAAAAAAAAAAEqEBCEAAAAAAAAAAABQIiQIAQAAAAAAAAAAgBIhQQgAAFJx++23Bw8AAAAAAAAAfiFBCAAAUjFjxgxbtGhR3mEAAAAAAGK64YYb7Nprr807DK9RRgCKpqOnp6cn7yAAAEB7Wbx4cZAgXLlypY0bNy7vcAAAABCjw3vJkiXBjV9dXV15hwMgB9dcc42tWLEiaN+hvmnTpgXXSm6WBVAEJAgBACixbdu2BYm8UaNG2fz58xNtFG3ZsqVuA1LvPXfuXFu1alXQ2JQJEyYECcU5c+bQAQUAAJCzdevW2ejRo4PfZ82alWh9EcAbnzO1x9J6fhLJwYULF9r69etpo0Wgdu7IkSNt6tSpJAkBeI8pRgEAKGGDRWsDqqGnhot+VyMzKdqW234t+ne9t6ijSY1Nd1e67lIfNGhQ8BMAAAD5mTdv3sHfb7755kTrjEAcOh/Hjx8ftBvcQzc+ZrkGelIx6DUdHR3BTZbapm6gVJvN0edOM7SofeXeIyuKR4+lS5dWTQ66uBS7ykI3FChG/b2sVE4qL5UBbVoAviNBCABAiajBpsSc1kVQw0Uj9pLm7izXXebVqIGrRq0aTep00t2visXdYelerxjVGAUAAED2VGerrIuFE4ZAHpQ8UwJK56ISU1u3bg0emrlE7QolqtTWCCfYihKDu8nSJR2VNNRDbThtz30esxqVpv1UPLNnz665bISuE5oNRrHr+fr/NMu+KFReateqTZtl0hoAmsUUowAAlJgafGpoKjmntWWSoMbs5ZdfXnMKKjWY9VBDsxY1itXAlLVr12Y6hQ4AAPDTrtdetdX//Ut78r677ZUtm2zPzp3Wp18/O3rwUDv1gkk29q1T7Ij+/fMOs63qidVmmlAihGkGkQedj2pHqG2gZFy181BtG5279Z7jWwzhtk897obKrD5/bnphtceiULm4ZJjinD59uuVFZaoY8m5HNluGAJA1RhACAIDEaBoV3TGqOyVrUaNR/15vupXw9KRlnp4GAACYvbxpoy1Z8Dc2/+MftV9+Z749s/oR2/biC/bqtq3BT/2//j7/4x+x27/9reD5iEf1OSU5NEKq8qauevU8IO2106VekkyzmOihxPaUKVPaIgaNRtPNnHpklRx0Uwo383lXgtAXURKuWVD5qRyZahSAr0gQAgCAxMydOzdowNa6UzM83UytEYYSnvqUuy0BACiv5x5fbd+/9g/t4dtvsz27dtZ9rv79oSX/bt///KfsuV//KrMY25E6tVWf0wigOXPmHJY4YApBZG3mzJnBeae2Rq3pLh2X1FKSKMmbDdOMQcl4tXvckgt66Hc3dalGD2bF3fCpa0CtZSOq8WVksU/XJ5WfysUlCgHANyQIAQBAItTgUQO4shMpTI0jdTS5RlItW7ZsOeQ1AACgnMnBxV+5znbueKWp1+185WVb/Of/J3g94o0edHUxRhEi73PSJdmiJMqU2HI3LOoGxqLE4JLybgSiazdlzd0EEJ7VpUh8W/PPtY/r3SALAHkhQQgAABKhTiSXAKzH3Qlb727U8JQwEydOTDROAADgP00T+tO/+HPbu2d3S6/X635641eYbjTm6EGHUYTIk863ZtsGLjmndkUSI7d8iCErLpGV5xqCcfiWiHPt3vA5BAC+6Mw7AAAA0B7U4Km8uzxuo66ycwoAACRr7+7dtu2lF8w39/zoB02PHKw2kvCOf/i/dtEHrzSfdB13gnX27Ws+jx7UDV1hbhRheB0tJRJ964hHe7r11lsP/h51RF14yQONKGtmqkxfY8iC4lQyMzwCskh0DfNtBKHOF5WlylWjUGnfAvAJCUIASJka0Zs3bz44RU+7vZ+vMWSpbPtbjbsbMolpaFSe7g7bys6pLHFcASB7XHuzp+TgLZ/9fWtXT9yzLHj45KM3fsuGnjTCijJ6MDyKMJwgdNOQMh080haeXWTw4MGRXhM+L7WGXzvEkAXX/spyzcMkTZkyxXyk8tQ1UzdVkCAE4BOmGEVbUCNl2rRpTHEC7yhZojsNs+zk0p29arzMmDHDyrLPecu7zH2gho4aPXHvMtXdnuqYUmNajehx48ZZHsp4HgOAD/hOBfxZe7ASaxEiD5VTc0ZtbwwZMuTg7ytWrCh8DFlxo+/Gjx9vRbt+qV8wnMj1iWIr0nkAoDxIEKLwVFFTo8R1KgO+UIJh4cKFtnTp0lzu+tNnIuvOtTz3OW9xy1yv6+joSOSR9bVQjTA94o4e1DbUcFKDO+/kYFnPYwDwQV71GKDs6o0ezGotQrXvVRcbPXq0DRo0KPhZWbflxuByafV4h0fvxT1nsozBff/p/HcPJeuyWL9OMbpkaFYjCN1nXvsY3l+VgabjjPJ699rKqUV1/ajWXo5yLNxxcNciF5euR62cD648w2UMAD4gQYjCC9/dqAoTX7TloYpZuJIXrkC7R/jfKyuLOl+aeX0zFXI9Vw8lGPKYckfvqfdWhTo8DVCa0tpndyezKueqkLtKvn4qmVSvgq5/y2oh8Lhlrs4WjcJL4pHENJ/N0Htq/+NMlaLPp46vtrF27drc1rtodB5XXneafbiGpY6Rr3e3ojWuc0LHOevPYFJ0/VLsura6663O2SidM0DR6zFA2TUaPZjFKEKXGNR3qm4U2Lp1a3DTmEsgKEbXTqMehWZs2bLF+xg0vbbqYPoM6nxfv3598BnQTyWX9LdqSbAkhbedRXtM+6R2vvZb3/vaXz30+dc0ri5BV68uquepzJYsWRI8wjeZqp3q/h5+1OuvcCMR3Sxl7lqkh9rsuk7qODTbz6D3dO/r2xqJAMqNNQhRaGooVH4pq2LAQunloMqZq7S5kaRhSjTo31VhVEWs8g64yy+/PKj06vWqrFcmmvR8VUjd6ydMmBApLjeSSg3nvEZAid7bJYv0e5p3AKaxz2oEKH5Xedax0rYnTpx4sLGi464Kviroeu9wh4aOpzoVs1zrIU6Z6/l5ni9x6Dpc2VHU7LHWZ01lN2vWrMP+XZ/LLBLtUc5jlzxx1525c+cect3Q63Rtqhavnq/kp/bXJSJ1LrvpWVFs4aSvjq3Ok6KtL6JzVNMe0ekKH2RZjwEQbfRgWmsRqi6lG1P0PaS6YLg9r22qg17/rrXFXL3Lh4QPslF5rFs5z+KOIMwiBn2mqrWH9F76fClR5toiagOn8b14//33Bz+zaJe6m3m1v9qXcJm6NpIbQVyvrVjZ16PXurpss0tguBv+dKwq+xdE10dtz93wKdViqsXFVpT1KAGUQ0dPT09P3kEArdIXspIHlaMGdWcPC6WXj7vb1FUEVWluhira4WSUOvJbjUNafX3SsognyfdQhXnmzJkHK/WqhOuzXq8BpISLXqPnqANBjSuXMM7ja863c6Aela0aZq18ZkSv1TZave66Y6c7Rqs1RHUsdTdtFmsBtnLcXHLTidpYrzzPWy1/+PkdJLU6MYoi/J2o62rRkp1oH0X6Ti2qTc902y2f/f28wyiVj974LRt60gjzhRuZ18z13t2M51TrTI/63iNHjgx+1qsP6TvJreEldGXFV3kM0xSnrltZ34567F07pdnX5RGDtn3FFVc0/Py5+qbaXWp/Jc1N6xm3bSiNrie65rikaeWNAbWeF6Xcw1OTNjszjStftUvrJfHcZ6fZ4+Dq17T9APiEEYRJ27nd7KFbzX71M7OXnzPb/apZ36PMBr7J7IzfNjvnQ2b9BuYdZVtNgaJKh+5yClds9WXNKMJyqZzHvZU1a8LTPLTaEeqmufXp/NPnQZV0fUbijPLKYp/DlXlVyhcsWBDp7kUdL1Wy1bmgu/nCSZd2LHOfqCOo8o7PqNzd5mp81Wq46fquxnLaWj2PW70ZxTU6XePSTbGa17TESO5zLzqGGqVeZOEEIZCnMn2nAnnRjAhRRw/WGkWo32vNolCPGxXoRgrWEp7Npaizbvj4XZ/VEi3h5C4OV+/cD9NnVJ81fWb0/Zj0TZTufMiiPRIeUVlvRLDamq6PQO38tD7/qmu4/a9ca7XW9U/70Ez9xJUrSyMB8AkJwqRsf9bsv280e3ih2Z5XD//3LevMnrrT7PY/MzvnCrNLPmN2zPA8Im3LKVBUYUhyihMUT2UnZrOJocrp1FppwLhKus5Ln0aNKBbFpYebEiMpSe2zKshKDrrjoM9vs52A+ryroh6earaVRLHvZZ60ONMz6Xi1mhx2ozx1nGutKaGRg/q3Rg20uPL87LpGvcpD5alOMqacKSadO+q81Gei1aS5T4oeP9pHkb5TgSJyHdxRExSVaxGG2+FKNDaTsHD1H/dZr/fdoymwHaYcTobKsQhl6UOdxIcYXD+F+8y1mpSPkrTTMitpUxtS3+1uDcFawt/7aU0t7AYgOI1ullCZKy7XFo7ad+HKlSmSAfiEBGESnr7X7AcfMns9wrByJQ9X/D+zx35qduUPzU6+IIsI23r0YK3GCaMIyyU8PYOrrGWZYBSdkzo3005mtMIlzvSZSPIuwyT22SVFXGMkzrR8ug6E14TLs8GbVpknPerWdcq4dcf02YnayHR3mzdbzuEpYKNMa5T2XeJ5f3Z1fugapPJ36yDy/VVMRV5LFPCZ79+pRdd13AnBlJc+2b3zdVv05T+xvbt3x95W5xFH2Iw//ar17Xek+VTmRR49mMQoQneDlhOehrFRey+L2SXgj8pkVSvrk8dNovkQg1T2c6gNkcY08FkkRNXmj9LuHzJkSGJrSdaycOHCg79HrcvreWpPNzMa0E2bntZ+AEArSBAmkRz83nvN9u5s7nWvbzH73m+bfeSfzU6+MK3oSrWAetILpaNYwgm+VpJC4QZnq527rkPfx3Wa3N337nORlLj7rMp0UsnByilIWkkUF6HMk5zG1V0f3c/wsWi0LoKep+00u2865uHOoEayOIY+fHY1na6mGA2v3UGiCQD8/k5tF519+3q1Hp7zlrdNsYeW/Hv87bz1nXbiqacnElO7jh5s9cYk1SH1+QyPvIk6ijD8GtX3GtX5wu096kjlkkSfTtwRcT7EUG0bWo4hyTZM3iPbdLOkPutaO1CxNJuAa1W43Rv1OIWvWYqRGQ4AFFWvvAMo/LSiGjnYbHLQ0et+cOWB7aDp0YOVjQ43ijCsmU5oFFdlpbGV6UHjJhj1elcp9LFi6JJlLqmThLj7rFiUEHEJKTVskpje0cWS93Q5aZR5EjTyWou766EF1Ssf7t8aLZruOnWaPWYqE/ceUR5qHKbJl89u5cgzvr8AwP/vVKTr/Pddbv2OHhhrG3q9toP6owfj1MEr2+VuXa5GwknJRgkObS/vNcaRn8qETdQkVvg8THoEYVIx6LzWqLJBgwYdkjSPKumRaFlMLVpJbTHdHNnR0RH0DyjpqZ8aBKD12bOY5SXcn6T2oY5Jo4fqI64NmUe5AUD5RhDu2Wm2db155Y550aYVbTSS8BfXmb3Ns47AQSPN+vSzoowedBhFWE4+rD/oprv1ucGq2PSZUGM8ibsM4+5zeLSaPqPNrnvSaNqOVo6j72XuE7dPRb+++vTZ1XRZ7nrkphzlDnkAaP/vVFQ3cOix9r7PXmeLv3Kd7d3T/FSjnX362vs+96fBdpD86ME4owjdVPdOo3p7uL3nQx0f2apsb0RNioVvNIx7I2BaMcycOfPgZ0FJsssvv7yp9lVabbGspsDUPodvPM2r/y68v4ojreUeNm/eHPwsehsaQHspToJQycG/bdOpOB/7yYGHTz5xr9mwM8z3tQcrlWEtQjWONLJHlUjdpaQ7q5qtRLqy1DzrqrC60TNFnbLJh/UH3TbcFIE+UmNanx+tNZeEOPusOMKJ2STPPXf3nj4X7VbmvnCj7pJK6ubJp89u5bXn1ltvJUEIAG3+nYr63nT6WJt+3Vfspzd+xXa+8nJTIweVHHzTm/1r07bT6MFwXT6cIGy0FmHllIGN2l/h9p4PN3Uhe6oTu/Zj1NF74edNnDjRyxianT6z8n3dzbFJcZ/ZLKYaVfvLlafalVnd/KP31PUv3JbVtdAdizT33SUiGXEIwCdMMYpCqTd60KmcfkANlSTvfnLTH7hpIPSzciq4NO620vvqvdQ5ogaXpjNw61QpDv2M+r6KV6/RzyzmSk+7zPJefzB8B2wSDda0ysvFVnnHbivi7LNeG96fpDomHFXodRzj3JXn7qhWo0XHQA/XMZlXmftEN13ouBU9eZX0Zzeuymtx5c0Lasxq6h13TlY+9G/Vpt7TupPVXqe/Oe77ROe5zntdd/TvldPt6N/dv2kb2nZlnFGvceHPl34Pr4/ZSNLxuuuSi0nPd9feRtdbba8yFm2jmWkQFXf4muPe3113olzzkyhX3yWxjypnPb/y3HFlHH4Pd964c6HRdTzLbbv9D5eN/t2df/q90XlTed5F/b7TOV/rWqS/h/fZ0TZrPV+xlvk7FdGShP/f175p50y7zPocUX+Wmz79jgyep+eTHGxc101qSnM3ijBMHfC1hD/DUdqiurHVvU+4/qntNFsPwRt0/N11O+1H3JGf4bp61O+A8POSSD6lEUP4/I8yeq7yfZO+KdbFk/YIQtWHXHJQ145Wjk+rMbq1DcMqrytpcclHH5elAVBeJAhR+LUHK6W5FqFL2riRM1qva+XKlQc7fBSj6/ConLYyDjcvvfZNySy3Vph+d5VUlc3IkSPrvq/iVCeQm0pG29B+qEzTGj2YdplpO+GKoaboy2P9QSduRS/N8tL54xoccRvScfZZnQXhY6b9SpIaGCqzVrnPkkZv6XPhPm9q1LokQB5l7gu3/lM7rJGX5Gc3CZUdApWfccWo677OS7cWl3vo2qVrRrVrmM5b/T38fHUmhO+a1WhyjcpxU5tWNox13rvvCj1X60MuWLAgOBfcZyMKPc8lObSmiPt8KRbdSesSHI2SPXHjDZ+/2oZL5rjrrl6jjgJ9X+p6UK+jQOWpWPRwsTTTYaFY9N66Nuo7zJWLrmP6N8WiGOpdQ5IqV58ltY9a18Z1KIfPHXXYuCSxtqPzRdvXe+nzo3NBf693rqe9bW3TbTt8joU/h+6mJ/1NU3k3Ou/cNcWV5/r164OydDeTVSvPCRMmHKw/6vfwtaVWB6fbt8rrluqjUdcWasfvVESnaUKn/t7v2zV//z1758c+bieNPcsGnXCiHdU1KPip/9ffr/m7W4LnMa1odqMHW1mLMFzvalQHC3+vVtZzdA0J15fCNwe5m0gqbwRy/6bnhV+r57i2mHvoehglWeButnDbdzev1Guv6f0qb7ZwybRGN4hVuxGjFSoDJWayeES9GaSW8HdF1LaeK/+k1hpPIwad0yof1VUr+7GijKZNeqpKF2Pao+jCNyI1akfUWpNen+lW1m2sJhxDs/0szTzffW59aHsCwEE9RfHS6p6eLw7kkdVD5e2ZWbNm9YwaNSrSc7du3dqj0zv80N9apdfqvbUdxVHNuHHjgod7vyVLlvQkpaurq2f69Ok1/33+/PmH7OvKlSsPe87atWuD7Wg/qv170rIqs8p91/9rO1Efla9vJYbZs2cHr9W++F5e7vW13iOLfXb7mcRnM2n6nCmmWp839+/NlF9SZe6LefPmBfvTDpL47OpzGPcaEqbrdHh7unZXo89N+LlRPkfu+Y2+A8LXGb3/1KlTg2tlvfMhyr678tZnoVa84e3Ves8k41VZ6PW1ytmVWdRzRO/ttr9o0aLIseu6WKtMXIy1yjitcg1/P0bZlzSltY/h7yOVsY5fre2HyyPK+ZDWtsOfff109Qd3DlfWa6q93p1PKrN67+Oep/KPcnwaxa/jp+fUK4uyfacCeXBt5ajXyma4z7l71Lt+uOc0+jyHrzGVMVe2bXUt1HPcNdhdH3XtCH+Xubaxqxe579rw96z+1qg+5mLQa8PXNf0epd2g5+l9GtUf3LXP7Ue9eNqZKycdu2bq6FHOdZVrlH6SpGPQsWymTRyuX6TRr6NyqFWHSKr+GP5sRXmfcF0/vE19tqqVa/g6VK2M9Jpq7X33mW2m7uuup1GPn7vupHH9BYBWFaeHjwRhqROE7ku3mQ6qcEMiSudGvfd2X+KqDEbtJE6KKg713rdaRa5aRUgVyXodkEnKsszClbgkHnFiiHKc8i4v16BpNda4+1zZGIgbR5LcNaNeTOHPWdQGWVJl7gs1uFq9nvom7mc3jQRhZQK93nlWr8OsVuO6XkKgWqJF71HvBpXwDTn1nifhhGa9zrLw86JoNV4d90Y3zTTqYKgXS6M6S7gzsF5HX7g8qu1bWuXqU4IwrX0M1yGiJP3Cx7fRdSOLbbsbyGp1aFfbjutka/R5rayfNLp2ROlU0+ctyvuW6TsVyIO+K/XZ1ndP0o/KelG9jnN3PWqm/VOZDKx1A7Grs1dL3oXLwV2jaz3H1QNqffeE46tWB4xyQ0blc2t913PdOzSx26hu4r6Xotx4E65/NzpWacSgczFKXSFcN0urPRauK7eSgIxSf3RJ0UbXCBdPuH4XbvOofKu9RziGWgnEasc5/F5R+84UQ9SblsJlW9YkPwA/McUoCjUFSjPzkldOV1RvipN6ND2TXqepG8LTsVXSFEtOkutyRZ3+U2UTfl54Cg9NHaKpUTQdRdJTUORdZuEppjRFzv/c+BD5EX7fVmNw0860WrZZlpeLMe68+q3us6btDIu7FkVSNIWarhGNjkF4KpCo05slVea+0FROaU1JnLW4n90s1JveJzwVTqNjon3VI8rURWGatkfTIdYSLrtG0+uEv4Pr7Vd4+rBmp/hpJl59hvVe9a6nmibMifIZjnou6ZrjriH67qo3zVCjuksW5Zq3tPZRU5M6Ua5r+vyEp7isN51pFttWuWg/w/ut81n1G019Fp6GTPQ958olSkzhNcUarZOo7053Hlebkk+vb/QdW8bvVCCvtQf1MzyVZlKPanX7WmsRuu9rXfOqfdfpOqi6juqe1eg6Vqt/IHyt0PTd1b6f3Xe8rovqO6j3HE0j3qh9Fv69cvmLyjZQNZp2WjG4domja6q2XXlNLyN9z7jzpt70r6oPqhyjfO/o/Atvp97amWnF4L6T9fmpVe9znwfRd3Na7bHwdN61zvu4dTaVYbju4tYYrUZlHK7bh6cbVdlXq8eH12Wsdv3Q+1WbXln7rfqTfrrleerVw1W30fWj1jWqkqv7a/tMMQrAJyQIUZhGTLMVoGprETaq7FUKd6SoAlGv4y9ceWplHbtq9N6VC7HXo/117+3WrFMlRA9VWrKohGRZZpXrPLWSbAp3ILZ63FwM4c5AX88xF2PcNQVa3efKBlRSn5U4FJNLqEdZGD68HlSWZY7kxfnspqXyPKkXW7hx7dY9q0XfAa2sM6T3aPSZcP/e6BxXDK5BXO87Pfxd1eznppl4pdF6OOHnJvkZDq+B2CiGcLlVW6sti3LNWxb7GPU6ED4GUddiTXPbtTrHK+uObv2tZjumwms7N1ojKNx5Ha6T6dqkjlJ1fsfFdyoQT7Pt4STUulFX1ynXsa7vQvcc145VrOqsV/3F1XdcXUfXFLWNovQR1GpvhK/Ntdrbrh5QK0mgf3c3nlarf7hrbdSbjNx1Utdrt+a3u9EXb3zvuRuflcAJr0Hn1pF0629rXd1G33eVxy3K92PSMYjOdT1Pa0y64+/WHtbnQw+9nz4zURNSrXKfmajrLLp2iMohfI3R51N/q0zCisrP1WFUVpVrCer5qku4dTJd356uJ3quykif4WplG07Kqgy1fR0Xt816/S7ano6Z3lPP1zrgek8Xv37q/XXzgLYdtYzC/QfVbiYAgDyRIERbjh5MYhRhuCOl2U6RcGdKHGr0NJtACd+dpoqLKpJq8CS5AL0vZVbZGd5sWVW+Pu5otmZHIeVxjrm7YJNY1L6Vfa5sGDSbtFbcLumtCrkebmSUHu5v7t+jCB+DRp+TcPxRRy8kXeZInk8jCCvPk0afkfD5W6+zQN8Hja4x1STZgNXna+vWrcGdv/X2a8iQIQd/b/Zz02y8zTw/qc+wu25F/e4Kl1u1DswsyjVvPu1j+Hi57508tz1x4sRI2w7fnd/MeR8+52qN8nF0bNx1yN184366kTFx8Z0KxFPZCZ+VWiOEdH13I3aUaFFyRNcM/e7+7tpBShDoGqPnqM0b9aaDKDfbJnEjra53bpSX4tcj6s0e4Vhde17lkNTNFe3GJd6UgHLnhB5K5ugGEp0vUWdP0rZc8knnQdSR7knG4Gg7eo3OpZkzZwbnkPsu1fvo/bLo13Fthqgz5ug8V1+Ke50bhahy0N/0b9XaKSprfc7dZ9uNQtZ+63Xarjs22n8324L+rnpAvcS5+g9Vb1R56frjri3afqMbC1yC0b1eI4AVU0dHR/BT7+uOVTPH15VnK20yAEhTpxXFoJFmn7jXvLH7VbPv/pbZ3tfjb6tPf7OP/otZ36PMq/L2aPRgq3dIuamRwg0hJRyj3GkYfo0qio0aDeHKU1JTjKpCEp7eLAp3V5mrdKgMs5oOMOsyC1cIo4waqff6OKPZWr2L3YdzrFWt7nO4Uzw8fUlU+vyGp9ypR8ez0d22riEvURpb4VGDPo06Q2t8H4ES5TOi81zXDncuu+mKK681Sgi00vnVzHdQKx32LqGv7zsdD5fsb1Ur35lZi9rZEkfS5eqjvPax8vtXMST1ndzKtqN+rsPfh3HOe8VU76Y919nvplbT81UPzbveAuAA3Wzhm3BSLImlN/L4PlIyRz91fVQ73M1Koutgo5kCKmkblX0YqN3Xk0TCrNVzK8kYwnX7vGfZ0fu7aTb1aFTXiDN9uD7/UesIzR4nd+NSq/2JjWauaIabFl7l2srgBwBIU3FGEPbpZzbsDH8ewyeYnXtlMvt2zocObC/vfQo/VN4ejR6MU+Gq/EKPOoowXIlo9AXuvuwlycpclMpYNSqvcCUrqylJsi6zcCdrK9uI+/q4iSIfzrGs9zn8ula2oc+zm8ZHHRyVU3ro86LOYv17lPM+vMZTlBGk4XOGdQOKz7ckb+Vooaif9fBdqNWmDtO1ptk72NNMoLmpw9xduEq866dG/esu+WrTaBZxNGgtmzdvTuU6kma5+sKXfQyfZ+Hjmce2o57z4eRpnGtflCRseFp71V98qLcAQBqUxNP3kOpwansoUeKSK3GusxrxpPa8rqHaPpA1V6eqtyYymh9FncUIUABo3wShjy75jNmRMTsX9XptBzVHD7baqVl5V1czay+4+cmjJg7CSYO401SGqQOn1SmUwonR8Dp3acm6zJJefzCJ49bMscrrHHOdjUl1ojd7fia5nle1NZTUcdxMh3s4iRjlTr7wORP1buCkyxzJ82WquvA6o81MJRz+jqu821znrE8d9PqMapSf4nTTRqozzd3YUrbPSVKjWMtQrmXYx3a40aHad2qSdWO+UwH4wq01526MiFrXqjcyUNt0UyDqRkh9v7l104AsufZFHuuWtiPXP9cON+wBaD8kCOM4ZrjZlT8w62xxtJ1ed+UPD2wHqYwebHUUYeXd0Y0q++EkQ5KdsLpbsNXpsiqnUdC0J2nKusySXn8wznFznVTNdPTmdY658z5uh2Ir+1wZexJJmcrj2Ox0He71UaY1qbx7MupxSKrMkbxWz+O0hKfnaWbt3fBUNTrfwueqvkt9WedC32muU0z7qu+pMnbyJ71OXhnK1bd9DB+3Zqe1zWvb4e+gONe8KOWu71YdL1f/dusQJoHvVAC+CLdDLr/88obLEzhu/bRqpkyZcnCKUXHrt+q94t44DTRD552+x3WuMt1tPGqbuXUk262ODqA9kCCM6+QLzT7yz82PJNTzP/Izs5MvSCuyQktq9GCrowjDyZsoo5HcdAF6n3CiQduJs9aQmy6xWRoxokpIeM0X/S3q2m2tyLrMkl5/MM7aOOFptKLK6xxznYJxp7VrZZ+lMlERd2Rr5ZpKzexX+L2jjNTS4uSOWyw9yzJH8lo9j9OgGMKf5WbXuwjfjeq+39w2fZjKRp9995lTPK2sveHDcUpC5c0FcfarDOXq2z42e4OPL9sOjz5pdsaDZmJyyUAlcvVd6b4vVS9NooOR71QAWap3vaxsk1Xj6naV26lsu4anEg3XAfU8t6SC2vIkapAlfYcnuQ5f2Qc/NNOHAABZIkGYVJLw43eaTfiYWZ+j6j+374ADz9PzSQ5mMnqwlVGE4U6HRh0Q4akuKztNdId7nATIhAkTDiaGmqGOGVcBCY9IUcI1ralG///27j7WkvQu7Hy1MQwMZtw9QxyG+GW7G2eJQAH6RasNISJ0D0hoscOmp0dRBFlv0m1jK//sonYaKVKUSGn1aKWVYvPS7gQnZKOk+w6LsKNdoN0hgCDSdt9JkEhAFj0txk5MEndfv+CJnWRyV99j/S5P11TVqZenTtU55/uRztyee+tUPfXUU3XqPL/6Pc+q62wu8w+m+9vlifyp2lisJ1eAsGsWAu9L96HvhOEhPT/qntzN0QY4BpGVFU9TrrrOlV/fdjyGNMub9tg1CEInVfpACG2WTiTOi6mfVC0/ebwso7HuwRg+wzahY6w8HGaXhzzS/d+Gep3jPqYZulxDcl7bx1x3ek0pD2fcJF22TZliaLz4XE0fVkuDvX35mSqp60OEVZ+zXEvSZaquTSwTGYDcV5WDgOloD3z/Tv8ew4JyDYxl+CyiDyL93hH3azGPYdW1jd+l19FloyFJOdGfRDs1g7WfmO5naL+HJI3JAGEuDBP6P/2fRfG//05RfP//URT/3XcVxZPHi+INf/TLP/l/fv+//faXl3NY0ZVlD/bJIkyfBlzWAZF+0JfnBqCjZ+jQlZS5S6dWfDmJLzzlJ74YtmSMLxSrrLO5zT94+vTp16xzmanaWHT0DZ3svs8+V+0PbbtvZ2H5y3HX45h2CizLIE3PoTTovso6V35D2nFOnMdpALprG6sKntBmOdfmMLxouUNt2fnWJXixrq5fv37w77YdBtRjejznVq8xvG3fodGrrHIf2z4okN47tj12Y667rfTBu3LGcpP0erSsTNyDcozK99sxRF6O+1A/UyU14bvFoUOHFj+57vDi2sTv4n6PfoYjR44sHjSMZbg2sUxcn/i8ZRmulbEMwz6zTPkayYtrLNclluEn24h5CfnM5yefkcyjGtdVysPyLBufE+UpDWKfWDbKwWcFZcs1dLPUhM912nIEutReBFbTB6ckaZb2pZm5dOnS/uHDh/fv3buX/XXr1q19mn362tvbqyzHiRMnFn8/e/ZsbVnL69vd3T34G9s7duzY4PqgfKynrpypc+fOLcqxs7NTWa9RTtZH+XJbVZ1du3at1THsU4Y+2H6fda26jaXlHHr8++5z1X7F+d7n/by3bztI65X1tSnr1atXO20jZ50rv6HtuOocbWpLy65nOa7N6TnBNaYP2nmsg/J12WYV9qntNZu/petLt89nXNXnW+7y1h2fNud/unxVWVNc+7u0G/Y/LcPY9dplX5rWP8TY+3jx4sWD5Zs+i6vupXhvk1Wtu8s1I+4p214f0vqnDpeVn/qvO0bptbJNfdSV389USZJWj3uPps95Vd9zLbt/kqQ5MECoWUm/+K/qRYdGFTqLmzqk6GjiAz/tQEs7mLmBqlt3V3QI0pFTdzNGJ0kEm5o68dLOp5wdeKuus7RTtU8QNu1Ya9NB3EZ0Snap01W3MdYXQbWp9rncWdi1Q5m2Hsef/Yl96hoISeue99a9P12uz37mrnPlN7QdxzHuGiCkbcVDHdEOc3zhTq/zy4I6bdbRJijW5nqaXreb6prl0jpNr3HUUVVQYIzyVgUf21xv0+Xb1H98dtMOm4LUbLvq827Meu0SeC0/uJPzmjfmPqb3AyzTdIzT+mjT2TPmutNrR9eHG+LhomWByHS5ZWWKfV0W+EuPZZ97ZD9TJUmaDp/3fR9A3Dbc8xgclLQuDBBqVsoBrFW96jplo8OLD/dYhg6TuDGK30WHR3RM8r7cN07xZDY/6YCmQ4iOkugkquv8WhaU4d85b17GqDP2lXKn+1sOdPI3lqk6lun7q9oYZYj3930iPcq17Kn/KdtY7HvfJ/dz7XOK/Us7UWmPrJeyxjGJ4xYd6SyfHudyVk0baTuIQA31Eh2trD+WoYO0b3ZZ7jpXfl3bcWSj86LdRQd6vCJIEcukL87btC1Hm8/5sEZk/HTtQI/rJGUpf0bwu/L1Mc7N8gMXkalVFShNr9/lfY7gf5zL6Tka9ZaeR2OWN45x07rL2dxVy8cDHnWfTXWZY7E8L8oWDzHUrSNnvbbZl6rPyaoRGrpm0zbJuY+ptD1Q3vJnQaw/lutyvuZed7T5NJgY939xbNrWOW0p6jSOLWXh92wn7jl5VX2+smzV+VR1fOqCyHG9bHOOBD9TJUmaFp/FuR6E31TcO1lHktaJAULNStoZtcrXsg4ZOlHoQKF80RFT93R/BNzGGHohyhL1FNvqkyXCPvDeWFeO4VDHqLNyp2N0WJVf8ffyjVh5eLJl7+8bKI1y9qnHVbWxNlmmq9rnMvaFfU7rIY4X5a4bHq6vNEAT2H5se8i5VbWdnGVXXl3b8dAHWaJNRyBoDMuylZYFYJZdH9PratP1tCqQFMEHykidc57xb36W6yMNUpQDuGOWt/zQQtWyaYCiTVmWPWTAtqNe0s/ltte+VdZrXduKeovt577u5drHqjKnxyiCeeXPg66B/NzrTh9GqDs2deddl3aXlqnuPiOug1XlqLuWLjsH29SBn6mSJEmSlNch/jP1PIiStAmYLJ6J7e/du7eYqH5OKBflY2L7vb29rdjnJocOHVr8ZLLwW7durVWdK791bcdN+7O7u7sR+6L19P73v784ffp0ce7cuWLO3v3udxcf+tCHFv/mnDlx4sRarHsb+ZkqSZIkSfm9boR1StJWunz58uLnCy+8UMzNzZs3Fz8vXry4Nftc52Mf+9jBv5955pm1q3Plt47tuA4BiVOnThkc1KReeumlRSBHysXPVEmSJEnKzwxCSdqCp9uPHz++6LClXDk7bee8z02ZLc8///zoWR1j1bnyW8d23NTurl27tsiOlabC+XT//v3ZX/vMIFwffqZKkiRJUn5mEEpSJnRYXb16dRFsiE7BOSArik41ypa7U22u+9w2g3CsDtsx61z5rVM7JuhA8IWfZVF2g4Oa0osvvrjIYPXap1z8TJUkSZKkcZhBKEkjPOUO5jObg5MnTx7Mr7Yt+9xm/kGCg2R1rGuda/vaMR3kUcaqrCQCh9evX5/9vG/abAzdTKb2OgSq0yw/5qPNWeYx171t/EyVJEmSpHGYQShJme3s7Cw68ukgnRpDaZLNwZCD27LPbbMHx+qsXVWda/vacXlewTQ4SJmZe9DgoKa+xnIOrUswjLIGAlDrsu5t4meqJEmSJI3n9SOuW5K2Ep32dGSRPfDcc89NNu9QBDoYkmvsztq57PMyZHGkWS7rXOfaznZ88eLFRVZStGXaHGUmMHP79u2pi6ctRhCMcye9zs4RwaaHDx8ufqYPjXDt5vcE4uM1p3VvIz9TJUmSJGlcDjEqSSOho/TmzZvF/fv3Vz5nDh21DMlFgIOsqG3Y5zYICkanbe6Pv6nqXNvXjgkQ0mEeAQc6zvl/aUoEck6fPj37LFaG6Y3svvL5HZl+nE+XLl2a1bq3jZ+pkiRJkjQ+A4SSNHKg4e7du6PNddcUCKNzcopOtan2uY0XXnihuHLlSnH58uXsndhT1rm2qx1L0qbzM1WSJEmSxmeAUJJGFvOZrSrDh/l6Hjx4MGlG0ar3eWpzqHPlt23tWJLmwM9USZIkSVoNA4SSJEmSJEmSJEnSFnnd1AWQJEmSJEmSJEmStDoGCCVJkiRJkiRJkqQtYoBQkiRJkiRJkiRJ2iIGCCVJkiRJkiRJkqQtYoBQkiRJkiRJkiRJ2iIGCCVJkiRJkiRJkqQtYoBQkiRJkiRJkiRJ2iIGCCVJkiRJkiRJkqQtYoBQkiRJkiRJkiRJ2iIGCCVJkiRJkiRJkqQt8vqpCyBJkiRJkqTpfexjHyt2dnaKu3fvFp/5zGeKl156qTh8+HBx7Nix4tSpU8W73/3u4sSJE6953/vf//7iqaeeKi5dutR5m2zjhRdeKG7durX498OHDxfbZpu8nnnmmeLcuXOLf3fx7LPPLtZbh7JevXq11boOHTq0+EldVKG8lJG6m7LO+V3TPg9BGcr7x/aef/753utkP9nHLseY+qCOxkR5+rTlVak6X/h5/fr1RT2uAsf9zp07B9uOtru3t1d7nmx7nUnSHBkglCRJkiRJ2lJ0lF+5cuWRQM/Zs2eL55577iBgQ0c6nesnT548CBTF3whw8d6LFy922u6LL764CDDxfgIKvJ+AXayXjnz+du3atcVy/J5/U7Y2Ll++vAgmRSCAMrO+QJkJBLVZH++NOkgDcFHu48ePLwJdU9c5+0NZWP+9e/eKD33oQ4/8nfdTJ02BzgcPHhzUPf/fhHWxzQgOsU/peyg3x6G8vTgmu7u7xc2bNxfb4hgTlKtaPsWyaYCQfWI7Tz755OL/eS/rJ+BKG0tRxywfy4B1RXA2NecAYZS5vH+rRHCQckxZhnWrM0mapX1JkiRJkiRtnWvXru3TNRSvq1ev7u/t7TW+59KlS4tld3Z2FssePnx48f8XL15svV2WTbe5DNuK7Zw9e3ZpGev2NdYRL/6/67pu3brV+72rrnPWnW6L93fd12PHjh28fxnWn26P97fRpZyx7ydOnNi/d+9e43rTdbIfTXZ3dw/2lXWvC86Hvsc3l7SN9DkntrHO2mjTxiVpKOcglCRJkiRJs/fZz362+OAHP1j82T/7Z4u3v/3txdNPP734yf/z+8997nNTF3GtMAQnGWAgA4uhAcmaWjY8IFl+ZLbxfrLblmWZpViW90RmG+tpk6nFEIBkm5H9RQbZ0aNHOw8zSYZZZCGm5blw4UKn9UQWGtl7XYdSXHWdDx3qkX2l3mM9y7bbd3vUQXpc2M802zMVw89Ge2hbnmVl43iwTow9hGlOZHBOrWoI3DmbQ521YbajpFUwQChJkiRJkmbrE5/4RPGe97yn+GN/7I8Vf/Wv/tXin//zf1787u/+bvH7v//7i5/8P7//xm/8xuJHfuRHFstreQd5DJVZDgK1wXsY8rJLICWCg9HpTcCr7XChIBjEe2JdDKXZJ5BDYC/dLvXQdd4+6ortz73OY9jNISgj87SNHTjjuKQBP4KEZRGgZDjSMbCvBCu7BL2nNof5/nK0s22rs2XWqQ1KWm8GCCVJkiRJ0iz9+q//evHt3/7ti+yiL3zhC43L8vef+qmfKr7jO76j+I3f+I2VlXHdkMEW2Vl0lEfQrSuy+ni1RcAnAkzlIF1bBJAIkoWY/64r1pEGCcgi7LKergGRqeo8F7ZJucfOrEvbBMejPIci8xbi/Pnzo5WBeSClqdVl0EpSbgYIJUmSJEnSLIODBAwiKNDWgwcPijNnzizer0cRcEmDLpEZ1lc50Fbn+eeff6TDmyEzhwSrItOMgFXXIULLWXERjKrKWFvnOs+Nc/HOnTujbqOclZkGg+M4se9j7n8Ml2kGl6aUDrkrSWMyQChJkiRJkmaFYULf8Y53FF/84hd7vZ/3vfOd73S40ZJ0aEYCITmy0cgGbEKg5cqVK48sPzTAk+4Hw3b2mauLfU/LTgCznLG2rnU+htOnT4+eQVhuF+Xt8f/L5h3MVY51modQm4VrphmEklbl9SvbkiRJkiRJmr1//a//dePf3/zmNxdvfOMbO6/3d37nd4pXX3219u9PP/30wdCNf/tv/+3OmYNVmYQ/+qM/WnzgAx8o3vSmN3V+//3794tXXnml9u9HjhxZzHu4LsjiS7Oicg2lyPCZrLsOwcF0uzky9Rhiku2mQbg+w3aSpXPz5s2D8rFOMuVyBaGmqvO+CJBSXubhKyO4eePGjWJM5ay9csCQa8IqAoRsY+j1R+qLDHhJWhUDhJIkSZIk6cC3fuu3Nv6dgEqfIM93fdd3FZ/+9Kdr//7BD36weN/73ld87nOfK/7hP/yHRQ6Ulc7+NIOtrXe9613Fr/zKr9T+/b3vfW/x4z/+48W6DlmXay476rcpI5AMv1SfuQfL2B7bjSwvsm1i+MmuGMaSuQwDbXt3d7dY5zrv6969e7VDa546deqRoOwYCOovaytkMo6NfZ3DEKNkxt69e3fx4MQUc09qtWKo4z4Z0ZLUl0OMSpIkSZKk2fiZn/mZ4gtf+EK29f3mb/5mse0IpKVDJkaALRcCOeX546q2m3ubqb5D8rGeNGOOzvkc2XlT1fkQTcNqUv6xhzYtH8PLly8/8v9svyq7MTcCu2MG5GhfBII4focOHVr8JPgagSF+njx5cpEZS7CaZdMgdq5jTTnYDtnQ8WI7OYbaZf3sU7r+2Keuw7fWrYt6KT+AMAfUH/XIcY0X5WUfCALyd/4/3b/Yt/I5EG2k/GoTwGZd0c7Kx6Du/dE2KT/LxvZj+fRY8HvWyTJ9jqukeTBAKElrjpuwqhtGX4++JEmStB5+9md/Nuv6fvu3f7vYduVO5xjKNRey8KoCN+Xt5gyQlTPo+gwxGq5evfpI2XJ0dk9V530RAJgy2EJQLM2cIkg3RpbklNi/CKaQCUnwb39/f3EsaS8EXQjMXLhwYfE72nRkbeack47tUw7WT9vf29tbvBhWmeAQfyfw06c9MDQr72c/eN2+fftg/QR8CY5FHbTB/kfAKl0X9cM5FQGwOQQKuWZQFspGvZKRGy+OdQTd2Kf0+sJ+sDzHgxfD+abnQfw+fTWdG5zLUf/8m/IFFkh1AABZg0lEQVSUjwHHtyoQfOfOnUXZaG+01yhnHNcIGl6/fn2xPo4JDysQWIxAt6T14hCjkrTmvAGTJEnSJvnkJz+ZdX0MWbrt6KBOrWIet6rt5gz4PPXUU4/8/9CAHp3oaVYPnevl8q9DnXdFAIFgQNuAzRgIRKTzrhEsGTtbcdUiSyyCPun+ERAi6EOAhWNB4DfaC38jmzHH0Koca+qZ+qaOywHmyBJljk+WI/jGMizbFu+h7FXnDvtBMIl6IKDEvjYN50ubJIhFmXhfev1gG9RjBBvZbrleV41rBmWse1iB/ed4ljN/eU+aEc2+RbC865yo0c5iLtHysaMMrC8ClUjrjOtgoJxxXaV+CWQSRE6PA/tDvcf6OF4Mi5trmGZJ4zODUJLWGDeN3FRzQ8eTh77qX5IkSVoPf/AHf5B1ff/5P//nYtuVg2eryswqbzdnFl15H4YGCOnoTjvTWd+QoNlUdd6ETv7ySCtkEvH7VQ8PGFlKMVwhAQ2CIQQWVjGM6KrFEKF1Q7UStIn9JniWZlPmyhaN4CBBoqb1UUYyw/hJWboMucs5ngaZqtYdATTK0jSfbWS48bPuXGQ/4tya8uFpMhhj+M0mHOcxg5iRNVi+nqX4Wxz/pmtcmsmIpsxF9im2x3HNPSSupPEYIJSkNXblypXFzymf9pQkSZJyesMb3pB1fV/1VV+VdX3qj2HqcmkzB1dXdJqnneLlQM26Y//SYQoJ5Iw53x5BgropIMhO4u83b95cbJ/AYHl4xU1BIDQCsOW5M1NpliDHJae0LbfJCEwDmV2G3G3TN5EGyQis1Q0Pmp7jTdeOtE6nOl8j6Nkmc64pKDpEOnRpef7Osvg7dVwXAE4f6GjTZtJgLW1+DsO+SlrOAKEkrSlu/LjhiiEiJEmSpE3w5je/Oev6nnjiiWLblb8vjBFcW/V2Hzx40LitvsrZT30786eq8yYEoAimxIvvkgRq2OcxhgRM57erejHSS8wnt4mBwaqgVVMWbdpmcs45SNuLwB0BnLbnynPPPXfw77bZeW2zhNPzqi6oGPNQUt6mAFW6PzkfQugihg0l23FZYOzUqVONgeK+xzidU3BZ0D9tB22C0W2PaxqY9EF2aT0YIJSkNRU3W13mA5AkSZLm7s//+T+fdX1/4k/8iWLblee8WtVwkuV5AsfMIMw1hGfMbRbaDBs4pzrviwBd7qAFx6TppdUgSzMNTrWVBm0JWOYMcqdtjXOjKvOP4DUBZOYzbApqpteZqQLx6f4Q/Iy5EasCvbT9pmFYhx7jtsH2WC7ntanNcZU0L6+fugCSNCfcwDDMydyfYByaPRgTTOcetmQZbtYZFpWbRCauji8o1DVPmi37khg32HOd8JqhOXiS2aCtpCZeKyTN3W/91m+NkuH3a7/2a8Wrr75a+/enn3568fOHf/iHi7/21/5a8YUvfKEY6vHHHy8+8IEP9Hrvhz/84eKVV16p/Ttzt62LcuAnd5YN309i3qum7ebsLC53auec8yqy6qJzn8wcvkN1CaBNVedDtPluyX3MJs4ROKb0GDUFY9I2kvO4xvCXGBKY5XwYazha1t1mn7mGsCxBQ+qL+pxD8D3m/IsHuSlTOn8jf6fvg4cNxuhrSo9x22y/9HynvDmysMv71va4SpqOGYTaCHzgxkS80hAEzOZwczlm9iA31FOMBc+N4dGjRw/q+f79+4sv3THxOR0sbSY/jy8Ec8ON/o0bN+zwl7QUnWpcy8aaf0SShvqWb/mWxtcb3/jGXuv95m/+5sb1RqcmQ4L+0A/9UJZ9IdhYzuRqi3vXpvJ+4zd+Y7Eu6PhNO3/57pzzew/399wLl9ExXA5I5AoSlr8TnD9/vsipaqjRLn0OU9X5EMuCR5R/1Q+ZbgKCxdEWmr7LpkGeZXPIdZG2u7bBo2Xryd3eykMGl7fL923mrjx58mRx586dxU/q6Pbt21nraug9PteNqkAb1z0eNKDcY3wHSI8NbYzPvWUv+oXiOjWkXfQ9rpLmwQCh1h4fgpFV5PjWGoobNm6O1iF7MP2S0UV8oeszTM6QMnMTzM07ATTKzU0j+8ANdJSJczgdN78syjy3L6WUiyE92D9JaiOyEgwSSlK1H/uxH3vN8JRd8X7Wo6Ly/j/nQ4N0ftcFYsuBuxhJZOj2lgUihyoPA0iA78KFC2tR533xXa3puxbbzDXX47ZJg39VfVfpHHIchzn3SeTSJijFOUQ7p25iyFHOS/49xnk/FBmWZDdyvAkY0udRLiPXAQKFOaUPL1A3lKHLa271KGl1DBBq7aXZOtwwrEP2l+YpxtRfZeBsSJvvm6lGIGvVQVDqlKf66rYZN/exbN15TLm5weaGei4Zw1x3eBEcrLqp5ssfTzr2fZFZSYY02ZV9r2/xIAXrYX3x5CWBiTadFGy7qYw5h3NiXU3bapNlKq0SHWVctzifOK/owOA8W/ZZwvWC6wbnoO1akl7rLW95S/HzP//zxVd/9Vf3ej/v+8hHPrJYj76Mzur0fjVn9hlBv7rhN8vfW3I87Fdex1ijeNDZnw6pyOd2lyDfVHU+FoIe2xC4GkN8B48RdHjFd1r6IriP5P9py7mHcE0DcUOGus0dRErLUhXspk4iaBoPFq9LIItzk2PJORPzKKbXg8go7KNqJJI0cJ97OOOu0r6a3A8xSMrPAKHWGp3e5Q9Uh/fT0C+ZBKvmKp4q5GazzxezCKytOggaGb5NneBpmZq+dMdy6STcUwcGuNGvOx78nS8FfKHh+lT+QsP7+BvLpK/4AsQT13z5p/5iovMuwVG2H08nsn2GduULCgHbyF5ivU1D3dApku5D+alh3ptjqKh0bsrAtthm1NFYc15IffEFnHYb50HMB9QG5z/neYyEIEl61Hd+53curo9dMwlZnocw/tSf+lOjlW1dpd+Xc009wDoIQNRllnH/mwY82O6Qe8c00wp8NxozUHb9+vVH7uHJIuzy4N4UdT4WzsfTp0+vdJubIoZz5LtYDA/LMMY8WEYbicyzMeZ3TB/o7PJdsrxs7vMsXX953XyPjesEfTR9vgeu8qFiytvU3xHfa3d3dw/O274PS8Tci33muRxbedurfohBUg/7yupzX/rc/j/6N/9o/12/8K797//Z79//7hvfvfjJ//P7z3/p81MXcaNcvHhx/9ixY/s05fS1t7c32jbPnTu3f/jw4f1bt26Ntg1Ng7Zz9uzZ/bm3ecq5u7vb6/3s39jnSBnbinOT87UO+xTLsZ9NOAdPnDixPzX2p2mfquzs7DxyvWp7Lbl69eoj72M9bY43r7rjze+py65lYTmW53rY9pi1wTrK+9m3reu1OGfu3bs3dTE2Wtp+u5wTfa4lkrRNXn755f33vOc9+1/7tV/7mu9+6esNb3jDYjmWV730Ho57waH4DGtzb8q9SGx3yL18fCeK8rf9bkMZ+2437n/T17Vr12Zf5+XvHm3es+z7WtP9ebmeutTRGNLvOlN/f6QNjFEfrHPZ8eU7QJ/2lx7PpnvV9Jxs+/0tLVN53WkfQpt1pttP64DfV9V5mzrrc3zbtrGo17pjkV4vqr6/8f7yttL67NrdX1e/fY5r+n3I7zfSejCDMJPf/8LvF3/zX/zN4szOmeLK/3eluPP7d4qXP/9y8en/9OnFT/6f33/PzvcUf+tf/K3F8homnhqsGn5hrLkIeVouMrByTayueYgnUOc8F9TQ7EGe5KIN8+TdKoflYFuxzaZzMx0GY1n5yKob+uTxUDGkcdfrTd+65zqXPmFIW23KOIohScm8q9smv0+faObJ0jZPG8YQNWnWZ9/hUVLsT/kJw3UZQmYd+Lk1vr4ZrlxHOPccalSSqjFM6E/+5E8W/+7f/bvigx/8YPHd3/3dxdvf/vbiG77hGxY/+X9+/2//7b9dLOewos24P4x7Lr5jDBkunvtBsmHafAamQ/JzX9Lnezv3i+l9Z90w/1WGDLtHfQ0ZaWaqOs/pypUri58OMdoP93rpPISrRHuJ9kv7aztyRToHZ9tst7bnWZpJW153U3ZclRzzmubAda1N1uKpU6ce+dk0JGzV+qifcvZw+ZrQNlOZ9cfwtjmOa1wncg0nLWl8Bggz+Jf/4V8W5z56rtj5+E7xn/7rf2pclr/f/PjN4tmPPlv8q//wr1ZWxk3El4n4AGSovBRfGMYYSiC9mfOmeLOsw/Ci8QW67zC6sY9TzLHIFwuGUmmq3zR4sWzYmtiHqW44ub7ENWiVbYZtpV8EmgLa3JjzxYEha5qCDuWAXJf2xXvT8gwJEvLeVQevt8lc5uzcdOmX+a7ndjxE4VzKklTviSeeKN73vvcVv/zLv1x8/OMfLz71qU8tfvL//J6/q5106PZ0/rMuuCfnvW2DHnzWpcPrcY/a5f6RbUVgLdbV5Xs5+zfkc5bvHkOG9JyiznPNRcZxiiEy1Q/BoJh7eop783SqiDbB+XRKH9pt26Ei27bNCCRxH7zsIdGm+iqf12mb599978/7YgjiZSKgWXf9iilC0mVTXPuq+kzS4ZDbTk1CeeO7SJM2/QTpNquOq6R5MkCYITh44ZcuFJ/90mc7ve8zX/pM8Vd+6a8s3q9h2YNVcxqMlUWYPmXlB93miIzQOc9tFm2eG8i+wWnez7ky17Ybwb42T8NGPUw1D2E8hDBFsDU9fuX5V9Lfp18Gmq6H5S/5XZ++TOtgSMCW905Rn9vC+e3mLx528klbSdKqxJzX4PvQsgfL0vsK5rCmU56O6i6492Setbjf5/6P17KObMoVwUG+BzCvdtfvRewr2xkyB2CaUbUOdZ4jEMV3ibhPXxYgLG9v6ofU0u1PXZaoQ+qT437o0KFHXvyOF8eZB0G7ZIC1CQjTF0DwjmNI22v67kU7i/ONc7Vtu2cblHvZyCVxzrPuqntfyph+72363k9dERgLXF/S/ai6TrStsz7Y/2UPPsTDxnVBN0ZMClX1Q31UPagcD07wk31f9hAC5eBYtfn+QT019StwHYtrWd1xlTRTU49xus4+9Qef2v/Of/yd+9/697+19+tP/+M/vViP+s092DRG+RjzrM1l7HrlFWOkz3leyUuXLg0qY4xxz3rmKB2nvu3Y9jFvQK45A7qIuU/7zOdWnpej6zEtz9FXN29m+XrYpM36quYfqbr29qkT3hPbLc+d4Jx5ecT8o9bnuNLzoeu8nPHeHPMSSZLU9TMovm/EizmwuO/kXpv7Ve6943s4n1U55lLjnjLmJWSdrJ9tcb9Cmfg75Yp777bz7qXrZ3nWkc5FF/vHPvT5fhV1NaQOxqpz6o73sg7WVd5v6jvWX/Xib/HeuH9MX+Xvk7E9XrwnjlU63126T2PNL17eB+oqnfMy/a7D39I6WOWc5+Xvcste1F9VG416Z1/SY0z9R7uuu++n7cUcd7F8+ZxjnXHs2oi56qjXWH9VueNvbdtzOhdfefn4DhllTM8nluX/0++2Q+qsjShrXLP4/7Rtse8xdyB/X9bu0vlDqV/eH/u8rF8nPcZxHGPf+Mn+UgbW1dRvms5BSNlZJ+9Jy876Yrlcnw2SVusQ/5k6SNnGl179UvGJz32imJOf+s2fKn7x935x8Hq+723fV7zn295TzMlbnnhL8dhXPFbMEU+/8FQVTzCVs4x4miV9+o4nanI9tZIOZ0K2Yt9hHjU/PKHH01AMgTnnNs+Tb12f0A3xBCJP081tWJg4t3jKjTlE2j4JHPXCk4WrnMshyhtPP/d9f6DsXbI6eRoxfdqzrhwsF0/48URlXVYmTxZyDoQ21zeeMuRpxLiFYH8iQ63P9ZH9YR2UsVyeObbZdRPnCqzP1dV1n3uQyAyouseRJGkVuKfjc4hRJfhM4rON+3SG6eM+/bnnnsv+GcV2+K7CfTH/juECuWeJEVDYbteMwTQLq2r4vMis6dMtxr0w2f856iJnnXfJPOuDe5s0cyn6YNpMExAZY0OzMKtw/xX11gXvGfI9uwvqiu9otGuOadUwmg8ePFi0Ab5vpcNmlu8Nm9p2tOtl38tYP8eT9pe2O4ZCZf1ksbWtT77PledYZL3sB+tI943vfV2m6WAdN27cWKyP9VB/MXQodZp+l446BuVP78Vz1FmXKWE4Lyh31AGibtvuP/XF+sgYjLZK2ymPoNb1GFNnHLNl/RAsE/UZQzqzLtbJfkX2Zdf9kjQvaxMg/N293y1+8CM/OHUxtsbPvePnim868k3FHMWY+1Ud4mnHXCDok2NOqzT42LVDX/MVgY45B32j7fVtd1MF0rrUPzf5MdxJF3GTn+s8byNukvs+gDA0QEhbSIf2GPqFthxwbBNAKgcIy/PBdA22ExSJa7oBwvw4VjHMj/U57wBhXF/meL2WJEnSsPvxcoC1CcszP1wEmOb6QLM2V1WAUNLmcQ5CrfXcg2VjzkW4yvkH2RblJvgRH8h9xsuP+op1jTEv47qLztu5zn3GMSQgxI1Y33YX4/XPbR9p53xR4knIvkGL2KdlY/znFNeCdOLwVeLJy9TQ61EawEgnru+CMkSAtuu8LixrptQ4OBYEbpfNAaL5iEB717lAJUmSNE98n+d+nO88XTKs6ANghJ3IwBszM1SStL0MEGqtxES+TZ3JDPOR6hNcI3ulPGF02sFa/luuwFtkztBByE1kTG5MEISMhDaTt4eY+JqfrHesjBHWTfAxJtkmaJIGU9PysG8slw5HODWCZ9x4zzWjJgJf5XbdBUEfvlR0CcJE8C4mSU+H7q2SttE2aNu0A4JTVUPMtG3nBKY4dleuXClWgXLFUC9TZRGXz50hbSO+rEY7aTtUSZX0y26XrCmO3dyC12VxHabNcl7EtawqME0bYVmui7E8y5az25vWzbU0HVIoMjTjb6yL9dddR2NCepYrL1P1+carfM6t2z434T28N/aBF9vlc6nr/QFlp1yxntyfaXFdSa81kiRJWl8MM4l0FJm2YshPeG8oSRqDAUJtTPZgzixCAhYM7RWvdH10gqd/4zWkgz7QSU/nJeVnnQwfwSsdfpD9P3r0aGM2SHQM0/FPJz3rYH+ot9xDaEYQ6fTp08X9+/cXww0SrOHGN+1Ejg5gssQoDwG5OQQJCVJFx/ZcETxZFhRvEnMXMP5+l3qhTpi3juNF+yvP71lePgLx/Fz2xYXlGSqFISqqnqBkO10CfhE4X0V7SrcxRVCZ45me/5zjfebZiIAJx5XzsXyd6yM9j2KOg2XS+WXmjGsXGV284pxqCizFcjHvBsvWLR/rjmXL9ca1Mq7fLMt1lnMzguxV1y/m42D5+IxKh4KhzZQ/w3iV29G67XNTBiUv/s1nYXy28rnN9aou6FkWy0Zgk8+8WFeUlb/FPBx9cRziWEz9GSlJkqThuDfPYVVTakiStosBQm1U9mCuLMIYzjFeqZjIN33luFE7c+bMYt8ImsQ6Y/JgOm8jI4f9SOeTqgoOskxd8CWXCDCwHQILUQd04qZBG5ZhEuUoC2WMTs8+87flFNvvEjxbJQJl1OGQwG7XIVRpV5xr6fjyMR9cXdCu3P6bAtgx5G3T+PV37txZBJ3bira1ivZE2TDF2PvUK9eJQLvoco6nmVgEOAi28H6GrcmRDcn1OV1Pm+PBMjkesBgbdU2bjQccmnA+sCyBrTZzQ8a6CYKV181x4hpaDvLxWRHXBc6pciApPjvilQZgy59fVZ9z67jPZXzW8EANy/EZVbU+2n55bo0qMdw3nTvsY/qZhwiyxwgAQ8XxGjK3qCRJkuYhvotzL9t19AruZeO+d679FtoOQx+ElDRfBgi1UdmDTVmEQ4YgTMd6HyMwwL4xbETVUIuBjvz071VBQjom6cAce/LgCPzRuVrO/KHuY9ssQydteiz4XZR7yiEyIosqV4B3jtmD0bY4Hm3bA5l95ay0CIrVfZmhDttknxHw5MsR+8M5xf+XXwQP+VuXjLIIhkRG6JiizeZ6CrTN9min1FsE/9nXCMx3EZlYvCKzmCF2Y+jGHHWXBqLbZGWt4/yDXYKpXa/DPEwR4jysCwL3HdJ1W/Y5sgYpT929A3+L86hupAHadNwDEARsujaxrhzB9ri+OIyUJEnS+uP7DveJ8UB323u8GD0DVSN+SGNL2+rYfS2SpvP6CbctjRooISslHRKRf/O7PsPxjT3nGJ2XTcHBcgZFdGTSqU+nP7hxpJz8/9g3jgSR6Kit6wiOzk0CG+VO3PSmIu0YXjUCI5jr8KKRPRgZmX1Ep3bbfeR4RQCq/PtlHf+0S7ZXN99lBP/i37mDDOwj5eS4jpk5G9eCnOdYm4yjmEOSa1iO4H+sj3XxJZVjR/0R9B+yftbJumN4yQjCV2GbU83jOMRTTz3Vafmoj64IsDKMZdN622TtbuM+cz2Ic3VZhmrcK1BefqaBd9pvBLq5rrR5cIHP5TbB8SaxnwYIJUmSNgPfl/nex3diRp3gexD3rHz3invM6HuKfhT+HX1Ac5+SQZuD71lkC8b0EYG2y+9pi/GStBnMINTsRadd12EWc2URph+IOYYOK+NDN826WybNUOCGMQIjcRM59oc026Rjv6nTNe3ULAdrCITyO47n0DnPhohMlZzZSzk7c3NkD0Zwtm3AjOXLwcQ0K29ZQDfKWm7L1EuXeUD7tOEITI2dSRV1kTODkHMh5jKreqUZf7kzg6nrCEI3DV/cRdremq7bVe1Njx6bZYHo+PumDPeSY59jxIGw7BrK+uKaU75+pO2TwF8bOa4NsY5NOa6SJEn68gPnMSw/3+u49+QekxFdmAqC4fF5GJsRfPj+zPdAvgMaiNEq0SYjmB1TH/Hiu0nMx56OsiZp/a1NBuFbnnhL8XPv+LliLl75L68Uf/mX/nLxxVe/OHhdX/0VX138ve/9e8XjX/l4Maf6noshgZIcWYQM5RDGyHa5e/du5/Vyk8hNJOgIJWuKG8wxM6dCzOdUV4dpxmVVMCNuhKdE+QiC5Kov9pm54ejUTdtLXzFn5pC5B+PJwy7nDQHAcltMj9WydfEkZNUx5/zly83YOJ6c4xzbsecIzJlBGDfcU0mz/sqZyX3wpSGuu5GVWt4/2idfMKaYy3FdMOz0tsmxz5Edjrbti+Vok+lDHuX/X2W2a8z76jA+kiRJm4fvx0O+60tjGtIXIGk9rU2A8LGveKz4piPfVMzJO46/o7j58ZtZ1vMn3/Qns5RpU7MH+waUYi6jNJuAgGOXm7HIIOyS5df1wzc6A9uKTKnIbhgaTOpiWVAtzbica3ZQtKcc5WN/0/nb6obY7CKe1BoSwIzj0GUY13IAMIaIRDr0SVNbnnLISJ5k43pBmccKPG1qRg8T3sd1kjbMv/u2P9oJ9R+ZiKyrnC1s9uByXT4XNiWQlGOf04c02mbzpde2uIann2WSJEmSJEmbyCFGB7jwJy8Uhx8blvXB+1mPmrMHhwRKyoGzmGuojTQbbqxsjr4BpfIcgDky13K4cePGI0GHOSJgEUGMoYE8ghxpJ/TQQG2O7EFEoC49Hn3KEtoEc+hQH2MY3rbiHBgzSJlzaNE5B2aGXk/SIYirHvBgSJJVZDyvsymzStd5n9OsP65JtO1lL9pjzKMR53j65Ow2HgtJkiRJkrT5DBAO8A1f+w3F3/mev7PIbuyD933gez6wWI/qswe7zF1WpSoTq+1chGkGQdv5h7qiM7Jv9kcaRIqhFacWY5ETfJtjp2oMeTgkeynmauMnnchpG40A35TZg6Cjm0DZkLHh0+DisvLEcHxTZhBS97S7VQxbOfeMLa4FBGt5tcmEKp+rQ68laTZqDHcb+PeU7USbLT03uW5xje7ymsPn1oMHDxY/51AWSZIkSZK0uQwQDvQdb/qO4vr3Xu+cScjyf/d7/27x7W/69tHKtu5yZA8OzSIce/5BEGhKMx66KGfmMKH1lNJgVJehLVcp6mxouyJDKl1X2pGbZt5NkT0YIgjapzyUI4JEbdo+dTFlxihtb2jgt404znMfapQ5MQnERVbnsmtMOTMyx/6l51h6raJ9O7zovHCuj/UQzKqlGflD2vFTTz012QMBsb1NzViWJEmSJEnzYIAwU5Bw5wd2ivN//HzxNa//msZlH3/944vlWN7g4PjZg0OzCNP5B+uGAR3a0c16+0wCTIcuQRE62yNjit9Rb1NJM87K89mlKONU5aTOCHgNyczgveX9S9tX2wzVMo5ljuzBQBljvsqu0oyvNsOGEoScMugT+zh2kDKuA3POIOQ6UC7fsozAciBl6DyaSNtDBHB5sa1VZHnOxZzbSuCY9H1QZW77nLatIfs0ZZZrnI85zkNJkiRJkqQ6BggzYZjQv/4//vXinz37z4of+x9+rDj9DaeLtz3xtuLrv+brFz/5f35/+9nbi+UcVnR12YN9swjT+QfrOgoJigztVGVuw5s3b3Z+H9ke1NGlS5eKnZ2dg98TVB1zqNEIBFUNWxgZhE0B1Shj285X6pftpfNFtR02sarsGCOQlc65RtvpOrQny7Ov6XpyIGBGe+jaTtPllwVzKDvteKqgD/VNe4iA6JiiXc85g7CqDpYdm93d3Uf+P0cGcHm4V86/qQPJOXRpYzmDblNap31O21fXz8J0edpu+jnWdl05rg1xb2KAUJIkSZIkjckAYWZv+Ko3FH/hm/9C8dPf99PFP/3Bf1r88vlfXvzk//k9f9dqswf7ZhHevXt3aQYVQcehw0FGuboMA0lwkE7YGAKVTsS0HAwvOEYGB8eFzlfKWq6TNCDW1KnJOgjktAkmEfQhIEgdpXNExRCFXYOEkWXWlN2YK6uwaxZhzD1IwHeMzvKu7TQNCCwb5o6y5xoWtY+o61UEnk6fPr34OYf5Putw/sU5SCCe68SyQEP5XMr1cEZ6TDj/xhyKNgLzYweo0vNh2XV2Lu1kWZmps6Y2sk77zH6k1+K2D2ukc8uG9LqWZsgvW89Qcf9BeSRJkiRJksZigFCzQ2c/wQk6tum0zPkqz7HUlEWY/r6q4zSy4HJkTZE1Rkdkm45F9oEOT7IG03IRWIrgUnR05u4oTztIy3XCcVtWF5SH5doGk9hXAhVVy5OlkWZOtp1Tb4zgYEiz/9hW247ysbIH0yyurlmqbefxIgDUNuA7FgLWlHcVQwKm25g6ENIkzpk22boEB9NrBUG8ZRljbbOk0kAj26CdLFt3nwAL7zl69OjimsFDBX3nAW0jrc8HDx60CvxPLQ00pQ+/pBmkEfzehH2+fv36QRkoT5s2xRy+5flkubbFvnO/0OYzNX24qU82YQzFO/Uwp5IkSZIkaQvsSzOyt7e3T7Nc5evSpUuVZbl3797BMru7u4/87dq1a/snTpzIuu9Xr15drJM6qCsPf6c8Ozs7tethf9L9o6y5nDt3brFOykF5yvVB2Q8fPrxYprwf/P+xY8cay55inXXlv3jxYud9o355z61bt/bHFMeIF/XVBvVCvY0l6rJt3Yc4ltR3U5udEseTMlKWVYl66XtucRzSc3Sssse1oGn9nMe0v2XXw7KzZ8+2LntcN9qef3FM666/TW08XmOeT+l53tT+qcs4R9ruf3r9blO36T63/WytKjP1VffZs677TNuOc5U23rR/lIFl6sT+sL70s6/qvEj3vWmdy64PY7dhSZIkSZIkA4SalXJwa1Wvuo7DCERFpznL8Ts6AcfafzoF+UmnKh3jdBbWBebq8N7oGI2ORsrcNmDVtN5ywIiO+bTzNZZhe/E7lqEMXQJUEdCL96XHiH+3CRqsMghXF/xZ1ukey7cNzPQRwYGu7TbtYE+DYdQ9bWloe8ohzo1l9TzGNusCp1X1yHnBi3adBuSijfN72kKc97mwzmj76XWFV5xjcW1p2i77wLqqyk+7on2Uz9PAepuCJWn9xPUkXT//z+9jmaprYDmoOPbDAOm5QXtI9zvOj2gfacAo9ie9lrN87Hv5uh37ne4z/09dx+dT+kBCtKFl1ybeS5lZL8evzfVnHfeZMsb5GudZrJef0d7Sz6s6se2qz7I4z1h/VVtk39teL+M+aKz7DEmSJEmSpGCAULOSdhSu8tWUCRQd4pQtOgDHFB2tURcR3Oua/QX2i/emWRRD0fkZ6+RV7iiOjtfYh1ima9AjggrlTmY6adsESavWNWYQrq4dL9tmdKSPHeDqG0hj+fQc4EWZ+7THuQQ+h4oAQNvzKTr8o/6aXhH0yC2CKxy79NoSAZZl0mBiXbl51Z3nEURsWnfb+qm7BkcAJwI+q2ijkS2XlrG87fh7BMkikBbnYpphWVev0SbSzPam41B3jeT3bDuWpTxdP9PWbZ9jHZyHVe2/SyC5vJ7Yx/RzKQ2Is1w8nNO2ntuMFCBJkiRJkpTDIf4z9TCnklSFecTq5o+6detW6/mZmCePdd27d69yPsncmKsq5qFiPqu9vb3aud+eeeaZxdyRbedl7Cu2xXZirsp1F/XMXJRjzi1Z5ciRI4t2uao2pW5oF8ypt+p2IQ3BNYVrS9PnhiRJkiRJUi6vy7YmScrs4sWLi07S3d3d4tq1a4909hP0a+vmzZvFiRMnVhbIodxphy/BySoRRLx8+fLoZSKYSqcz9bgp2Bf2aYogUByzF154YeXb1nIvvfTSom1I64TPqvJniCRJkiRJ0lgMEEqaFQJqBM7IeAsE9+gwJVOMjK0IALRBAId1dgkoDkVgIu3grcoOZP9efPHFRTbfqgIZBLWot7Ru1xV1x75M1ZEe271y5cok21cz2vipU6emLobUSXxWrOKhEUmSJEmSJAOEkmblzJkzjwzRWUYWIAE1goZtRMbc+fPni1VKy18VlFtl9mA5qLUJWYSxD6sM/KZog3TmN2WIarrgcVwnpHXBwyx8VnBdse1KkiRJkqRVcA5CSbNy/Pjx4uHDh4tswao5Bun8P3ny5GLY0WVBwpjPiSEoWd+qMedfBAbZF+ZNTPeBgN2qg3VRJoZuXedO6EOHDi2OP+1g6vaKyGzV9GjjBODbzlEqzQGfCTGvqSRJkiRJ0iqYQShpVsgIY2jA8nyBkalFhiFBtTYZhDGf01RZZmkWIUG5GBY1fl819OjYoi6ibtZRZOxNdVxTBJ45rnUZr1qtOM8MDmqdkDXPgyObkN0tSZIkSZLWhxmEkmbZyU/wLAJqZLoRIKTTn0BMOXjYlJHBOsiWmzLDLPaDjEGCWlNlDwayKp988sm1zVSh/uhMn8vHFwFLjmubrFaNh2sEbYNM3bbXCGlqfD7wOcFnHnPSSpIkSZIkrYoBQkkb3ek6ZSAuDR4FAkgEt6Yc4pPyUK51DGjN5bhW1SlZmffv31/roVvXGQ8PnD59ejGksLROQW2uw1MMgy1JkiRJkrabAUJJGxssYNi2OQTByNijIzhMHdyaa5Bt3Y5rVZDw7t27k8+LKGl95svkgQKDg5IkSZIkaQrOQShpYzEk6RyCSATiUlPPV8fwi+ucZTWX41pGsDWGwZWkJjzoYOagJElSu/smv2NJ0mp57d0eZhBK0sjIHiSLEATm7BCWJEmSJKmZo7RI0nQc9WY7GCCUpBV49tlni4997GOLLzZk8EmSJEmSpGrO8y5J0yc8HD16dDFalkHCzeUQo5K0AnyQ7u3tGRyUJEmStHIME3bo0KHeL0ZEYR5zgjYvvPBCse2oA+qC7IqTJ08u6oY6WlY3zAfP8tQp71e1D33oQ4vX7du3WwcHqVvaOceEY0EdU9c8rDukzVIO1sM64xUPAM+pbUlTe/HFFxdtl/Mjbbte69YX11+uw1x/GHJUm+n1UxdAkiRJkiRJ44mAA9kABFKYP5ufgewAlqkKxvCehw8fLh56jMANc+levXp18b5tRN0x9CUd4l1Qx/Ee6pFjss7zw48ZZLh06VLruecj2/DixYuLdhkP5hLEu3DhwqJzm9/FvPFty3HmzJniySefXAQeWTfi/Iljd/369awZjn3bljQ1Pidou7RhPje0GbgOc83jOsu/t/Vzf5M5xKgkSZIkSdIWIWBClkdgKoQ2wZjy+5xj/ctzNEU2GXXRFPAjoyYNzNLpGoEn/WEd4d69e63rP+q+LsDNEHkRsLh169bSDm6OJ+slqMi5UbVeArx0mDcts8q2Jc0J2WYE1sE1jmvdnJHxyDnmqF/5rs1aHw4xKkmSJEmSZulLv/e5lbxn2/QNZpQDgjEc4jaLAFUb0WEex+D8+fMjlWo9EXSLoULbBiFYvi44CH5PVmF6vNIgbRmBxAiCN62XoAcv1kWm4dRtS5qTdQtmm7G7HNdlrncONbp5DBBKkiRJkqTZ+eyt3yv+40/+ZvH5X/1k6/ewLO/hvarHsIlDOn7TbEOCOtvcudol2EpAiWwzAk/3798fJetsXRGYowOaDJ62WZVXrlxZdFgzz1lTp3U5YzANGJYxJClloY0vy6qNQCbtf4w5Am0f2sbPmFVzONR2uC5zTYpAoTaHAUJJkiRJkjQrBPg+f/vlL//7/7nfKkjIMiy7+Pftlw0SjqicNUigRu0QdCLIavDnUQSa6ahvm5HKsmnHflPWYXnYQOZJq1tnBPrazLPFemPdngPSeophfLXc5cuXFz/nPmSsujFAKEmSJEmSZoMhQiM4GJYFCdPg4MHvbr/scKMjOXXq1CP/v80ZhMojOpzbDk04JMBal91EkDKcPn261boiQMg5YFaNtH4MdrUX2d3ptVLrzwChJEmSJEmajcfe9kTxxu8/+prf1wUJq4KDYB2sS/k9fPjwkf83G05DM3gIrqUZeW079ml7vNK5McvKgbu6oUNv3LjRuU2n5TUTSVovZA173rbHdZFrXpptrfVngFCSJEmSJM3K1/2ZN7cKEjYFB1mHxlHOGCxnFEpdRHCvzbCe5WyWvb29xasp87AcAKgbxjRt123nUEsDicwvKWl9nDlzZuoirJ24Tpt5uTkMEEqSJEmSpLULEhocnE65Y7Bp/jdpmQjgnTx5cvT2evXq1cosxXKWYdtMxqeeemrp3IbbhCArww+aXaQ5IwPumWeecXjsHqg3eL3bHAYIJUmSJEnS2gUJDQ5O4/nnn38kmEL2V5tgCu8hc4sg0JEjRxYv/v3ss8/2CiYQhKCj8vjx4wcv1sc26Pzl720CTgSnKAPvT8tF0JP15MA2KBflZd2xrbr9puzl5Q8dOvRIvbPO2H/+xvrYjz7D5a2iDuqw/tivrhmEbdtrBAEIDl66dKm2HH2kGYRj11Vb1Cf7nZ5rvGgvfecOY33RRmhv/KSNRt3yM9oMmZQsG4GEXPqc81Hu8rkUxyq9LsV5xDLsR9c5JXNf4+qOZ9R/HM+27S7neR7Hoty+Vj1cZ9c2QV1GPZbLGm2j/GpTN33qdlVtM9dnZYjrdHrt1prblyRJkiRJmrHP/con9j/x/l9tfLGM2tnd3d2nSyhe/H8bly5dOnjP4cOH92/dutXqfRcvXtw/ceLE/s7Ozv7e3t7B7+/du7f4G+s7duzY4u/L8B6WPXv2bGW5WQd/jzLWoRysg+XK62IdvJe/Xbt2rbE8/D3qpK78/J79j3UuW556Zvl0WV7sOyhvVZljOeq0jVx1MERa7lzYL9rmuXPnFuulLpe11fI5kbbTtse/qb310aZt1Z2jHM90n9kf1kcZebVdH/US59PVq1cP6iX9PduijqN9pnWZw5BznjZQdy5RVyzPfrFe9o2fcU3qci7lvMZVHc9yOaONxz40te+c53m0oXJ7AOtl/ewv+921DlfRJqLe4pW2DfYt/Vu8mgyp27HbZq7Pyiqr+GzQ6hgglCRJkiRJax0kNDg4XoCQTsYIcEVHIp2XbQMo0cFNZ2bde+gETTtpm9ChSVmaROd0Xacnf48OTsq3rI6aytQ1iBOdyW2XTzuQKTfvrytPWo/LOrZz1sEQ0T6WHdM2orM7fTW1uxT1lb6vrfT4587D6NK22MdoK7SDNsvVHfeQBnmqjn/69/K6CH40laOLHOd8rCfKy/o4l+raRlr3y7ad+xoX4jhR7rr1co7GclXnfM7zPALulCeCwXX7mtb1GAHCXG0i9il9AKOtnHU7RtvMVUdVos2NcWy1egYIJUmSJEnS7BkgHC9AGB2Eda9Ypi4ToUn6/qbOxHS5ZdlmbTrY2VZdp2d0xrbt+G/qPO0aIEwDBV2Xpzx0aNehQzmWbVoudx0MER30tK2cqIs0g4ftNAUK00zGdQwQRof9suMO6iHNAqvTJrsozSruem1oI9c5Xw4GtQlIp+deU/vMeY2repCgKXCVrrPq2Oc6z9PMtTaBtD5ZmFO3ia4BwpzX0NxtM2cdVUmzJrX+nINQkiRJkiTN2ud/9ZOVcw4G/sYy6oc5w/b29mpfPGB+79694sSJEwfzITF/URvp/EsPHz6sXS6dfy7mNSu7devWQXmXYW6nKpQ75k26fPly4zri7+wD80XlkM5Z1xVzRV2/fr3VuuvqcA51kIpyDKmXKqzv3Llzi7bCv5kD7ujRo431sq7K8ywuQ31cvHhx8e+6+cyYU63N3JCnT58++Pe1a9eK3HKc8+HJJ588+HebemK+ymiX1EfdPII5r3FgOzE/HsepaY7Xpvnxcp3nlCXmrlxWnrbHYi5toq/c19DcbXPsOoptOwfhZjBAKEmSJEmS1jY4GAwSjotOYToud3Z2Fv9Ph/GRI0dqO83ToAGdifH+pvUv62Q/fvz4wbaXbffUqVOvCWzQQRsd3SCA1CTKHfsxNcqyLJAWf6+rw7nVQQQ40g7ynCh7BFXZFgHuquBM7gDlqrBPBPnKx2qZ55577uDfVcH+tI6ajk26vQhq5TT0nK/Ttr2lwZ+o5zGvceXtLAvepNtOy5rzPE/bR9tg0ljn85htoq2xr6E52ubYdRRlbGrHWh8GCCVJkiRJ0loFB9/4/UcXrzKDhOOjMzQ6OekopcO4qQOSjBOyEMlAbApePPXUU0uzYtJOTLZLJygdo1WBCTplI5gZbt68efBvsiHbiOXmkClBR+5Qc62DMQN0tNl0/VVBjnKnfFNmVp0pgozp8ezSPtJjz/nTZ39XYeg5n3P7tP+q4HLOaxzrT8+zZYGbdNvpMc11nvPvLuXZhjYxl2toU9scu44iADnX64a6MUAoSZIkSZLWKjj4dX/mzYuXQcJplIeZowOyS8cnHZkMtUZmCu8lq+vKlSutOlnTDB22yXqeeeaZxbCnrId1LhuitEuWRrqfUwcJo1O2jbqO27nVwaoyUM6fP//IPqQZQLmCe2NmTdVJj+eQfSgHDtLAR9MxT49f22BJF0PP+RzbT7XNkux7jcuVhZnrPB8jK3Td28RcrqFNbXPqOtJ6ef3UBZAkSZIkSeoSHAzx7/Ky8f/pssqLzsV0WDM6I5uGT6ODkmUiMENWF52VZD3Recrv64bwK8+9xPJVc6fR2cmLdbH+clZEujydqW0DbtG5O0UAKHcQa251wPpWkYVS3k86+WMevihHOfDVpr7Tsk+RQZgezyHHpnwukYHEMef3TUGiNFhSNxcb52rb+Su5hqTHZeg5nwPHNY7zgwcPRr3GpetvO1xsXVlynOdkJs5xGN4p28ScrqFNbXPq80brwwChJEmSJEmajS/93udaBQfbBAm/6m1PFI+97YkRS7u9umTWEEyMTnM6/+lEH9LZTIcmL7ZJgIKOzrt37z4SrGHYU7Ikdnd3D36X/p1yzGFewVWbax10DRJyzCPYws9lQx+W21s5c6b897blSQMoQwI6c8S5FcEP6rg8v146Fxt/GyODcOg5vyq5r3FDs2vnep5vQptYp7odq44iGDmnoLH6M0AoSZIkSZJmg4De1515a/H52y8vDQ42BQlZh8HB8ZSzIOqGTaPjMYIxZCnQWZkLQaHyPEx01tJRTwdoZEhERlJkRK1yaMu5mVsdRAdz17KcOXPmoJObzu9l879VZQiWEeCKttq2POlyp0+fLlYt3a8hx7Oqo5/6pE5ieELm0ONcYlnqnKAYx4BgGNlKdZ577rnWWVbLAr1dz/kc0mBK1X7kvMa1madwled5rvKMacw2wXsZGjbNsJvTNXRZ2xyrjmK7U2fVKw/nIJQkqQFffOY47r4kSdIme+Mzb1sE+NoEB0M6JyHvZR0aTzkgWBWcSec4ouOxT8d52gHK+pqGKqQMBCvIhIjypNkdbedV22Rzq4M4Tl2CD7Sp8vLL5tIqd+RXtddyB3ob6XI5g99tMYRl6FKH5WWrAnNkFlFPe3t7i/Poxo0bxdGjR4sjR44szjP2l8BsU3Aw2hznf5tX+bgMPeeHqhp6dcxrXHn9fYNyuc7zZQHbKayyTXDdKNffXK6hTW1z7DqK6+mmZU1vKwOEkiQ1YEJxx2OXJElaPQJ8f+RHvq3TPIIsy3sMDo7vzp07j/x/Vcd2DLkXHZZth2pMMbRhrIdOSYIUy9BpGZ2daSdqWoZlAaWyrsvP1dzqIDqYu2TiVGW7LRvesjx8HlltZekcem2H24s6YT+m6CxPA1IMHdhWumxd2TnXIgBJ8Is6IVjIi+EKCTCMvc9Dz/mhCJKm20j3d4xrHO04bd9dHlauK8uQ85zypPvcdl1jZtZN3Sbmcg1taptj11EErg0QbgYDhJIkNdxwceOz7EZfkiRJ4+gzRKjDio6Pe+RydkL5nrkp66JK2+BGVfZYlVOnTj3yMzoz04BK2sHahO0xjOBch9jrYm51EMNyduk4TzvDCUwTrFrWUV0OtFQNpUdgJgLdN2/eXFqOdJ0xH+Kqsd+xLxybtgGl9CHYuswhzmHqdmpDzvmhASyGl6yrp7GucdevX6/dZh3Kkl6Dc57n6dyTbYJOsZ51aBPpEJlV66Ney9eWsa+hOdrmWOdNuS2zP1p/BgglSWuPmx6ebMwdyOMmi5v8pht9ts2XQbbPUCu8+De/24QOBEmSJG2eodkdFy5ceOT/GWKwfM9czvJqujfmb2lne1o+/l2e56i8/aYOzHK56HyPsrW9Z2d7MffaJphTHaSZp12ChBG0oPzLhkEkaJa2L77n1e1H/I06WdbxH53yMYTmVNJMvjaBSuoiss0IdNTVHwED6oCHAab+bjvknK+SBr3qpOcGx7dcT2Nd49Jj0nbKE8pa3qdc53laHtpCm0yztB2OlU2Yo02kAa6qAC5Zs1Vzi455Dc3RNtNt5jxvwHZj23McglY97EuStIb29vb2b926tX/x4sX9w4cP7/ORdvbs2Wzrv3fv3mKd165dq12G7bPtS5cuLZaPMp07d27xXl5Xr17NViZJkiQph52dnYP7VV67u7ut3sf97okTJx55L/fjdbg/j+Wa7qtZLi0T99eB7XGvjfQ+u2l98b5jx45V/o31xXcIlmG/6lCWuvWA+/22ZSovzz4vw/a7fLdIj02TnHUwVJSjTf2Vy7WsXthPyl7VtuqkbTHaXhll5e+UvW6Zobq0rXQ/m87JdDnOpyZcF9L2VH6x77xYH+tq0567ynXOg3qJdbFsU1tI676pnnJf48r7E/XcdI1uOj9znudpeZraPPuafk7kvnbkbBPUR9omytjXujrLWbe522bOOiqLdsy+azMYIJQkrR1uXrgZiRunuCnPGSCML5t14maw7kY9vjD2+aIrSZIk5cS9Kw+y8aJzMQ2YxH00nX6xTPnF/WzagRmdmG0Ci00dlZSLbUeAJw2GsWzc65fXFZ2t/H9ahnhgLzo8m8rHsrE+7uspQ3R685Ptsw62X+74jfpkmeggjk5ifsff0g70Nsun26DcVcvz76r18/8cv/IxiqANf89dBzlFGZoCW3XYv/h+SLtgX6k/XmlHetv2Wn4YNOo8UA9Rz2PUS9e2VXc8Y/l4kJV9p35in9o+yJrWYZsX665rb33kPOfT8yMe7OUYpu+hvmK58rFfxTWuLF2ecsW1ghdtn/3m1dQOc57nad2UA8JxLrJ+ylluG5RzWVB61W0iyp3WMe+P47bsgYJcdZu7beauo6o2mbP/TdMyQChJWnvpF7RcuOFa9jT0si9V6VNzYz1VKkmSJC2TdjIPefXNFIrgRHRGRoYJP8vBhDSIUb4f529phy3342lWCy/W2eUBPe7To2wRkOEn+1kX6EgDArHdeFVlCLVZPu2gbbN8dLTHyCdVy6bLN30f6VMHOUUwYUimUQRIq/ahb2Ybnei0pVhnvMasl65tq8vxjHOjbVAzzkXWw7nGe9MXv2MZylx+6CBXNmHOcz4NwsT5FsGYCDL3uYbkvMa1PZ59rsW5zvPyeiKLlH2J60xkn/L7qAe2k2OEpbE+B9LRqaLNr6puc7fNMeooxHrGyBjWNA7xnz5Dk0qSNBfMPcgcCjFB/VDMs/Dss88W9+7dq53s/tChQwfjwzPnShXKFPMiNi0nSZIkSduMudyZ16rpO5hWh7nZmBOSeRbbzq/I8sx5xk/mWdvb2yvm2G8Qc8u1nXNNGtu6tE2u0Vyr53h+q7/XDXivJEkb6cqVK4sbsrovpukE1DExfd2k7oEvupIkSZKk17p8+fLBw5qa1vPPP78I8p07d651cBB8h759+/YieMB3Zo+ltFlu3ry5+NnluqD5M0AoSVLipZdeWnwZii+oVfjCw5clfr7//e+vXe7hw4ePvEeSJEmS9FrR4czDmprWjRs3Fj+feeaZzu/le288KMt3a0mbg5Gx0NRfpvVjgFCSpNINTwQAm+zs7CyGVGh6copAYzh9+nTWckqSJEnSpuA7GN/FyDyLofY0jSeffDLLenxIVtocZAQT9I8+M20OA4SSJCX4MppruIQYfpShSpcFHCVJkiRpmzFnO9+dIktF082HhgjYdvGxj31s8cL58+eLuUpH+5HmZK5tk+xurs9cp7VZDBBKUs2Y+01DR26abdvfOvGkanwhGlqnMaQK2YZT8LhK2mZeAyVJWj98d+J7lJ/h0+HhVoIAHIeTJ0+2HiqUDKMYlvTWrVuzyzJK96Nr4FPa5rYZ85LGQ/DaLIf29/f3py6ElONCxc0HN5JzuwHR+iE4dPfu3WJ3d7fYJtzIc/5MFcwaeswI7p09e3ZxLeiLLz8MpzJkHeCJyahPJmlnsvZV29Z2LEmb8tkmSdK24rsd32f4LjPFdyn94fdaArUEBviuzTHheJBFFIEMAhssR+CAfxNcJPMwlpkaZScji59p0Jny8f/8jJe0SuvSNjmvjx8/vjivzR7cTAYItfbiQgWGBfRpBg3BDe/NmzeL+/fvb12wmZv7o0ePLm78+3akPvvss4unBnPgxqPt0DI5AoTclBEgZN+HDAca6+EmjrJMcTO3ze1YknJ/tkmSpNXzO828+t3oa4uABv/PPRbHJQIYPJSVa6qOnOgvjOyscjuKTC0DH5rCOrRNykH/Fg8G+F1qcxkg1NqLwEC4d+/e5E9XaD2N9ZQiH6h8sSFYFDfS/IwbabZ1+fLlyi89PDXETcOqbrQjuNX3JoT3k7WWA525bc/lHAHC+AK6t7dXDM0cJMA41c3TsnZMmyLruq/4Enjq1KmDJ0i1GbguEeTnPF7XB254QCGutXRecL3l5/Xr150HdIsN/WyTJEnTcFQUSZqOo7FsBwOE2pjswbCunZqaR+dhl6y1Nh3VtMWYoDuCgadPnz4IfNGG6cxmmfK2I5Cz6mFVIsBEuQi4rYMcAcJDhw4NOv4cb4IrHPOqgG48YTl1O6bNpYFqJppOx7hvClizPA9hsK/xpBttmX1el7ai5pv/uF5haDbtFLhm3rhxY3EupNZxX5TXOn62SZKkL38vRq7v6ZKkdt+tHzx44LV3Cxgg1Fqjo4fOzPKEyWQAjdURTwCAbdLZaAfT5ohAM8GPoeiYvnDhwkEHNZ3StNWm9kLAhffEEGh8EMcXoSku0znrYx0ChNFx3PfaEcevbr7BVd1Y9TluEdgMbTvPy+186PyPmtcQJ6gLdq9jwNMA4WaIYaD7jhSxbp9tkiRJkiSN6XWjrn0Lvfr5zxcP/69/VPzeD/+l4ne/7/uKj3/Xdy1+8v/8/tU/+IOpi7gxyHihU79quKh0ctec6GikM51tl7MTtL5oR3SK52g3BFrowKR9ECgi+69NMJmOa+ZWoI3x/ijLVEFotk+dDBmKcp1wHaGu+wQHaT/UV1Om5507dxaZo3Nsx30fpoj2HdffaLtpNqLWS9p2aBfnz58v1hkBQm2Wofde2/bZJkmSJElSEzMIM/kvn/pU8emfulZ89qMfLfZfeaV2uUOPP1688R0/UHz9u99dfOXTT6+0jJuaPchT4HRIHzlyZPQswnTuLoeo2gy0naNHjxZPPvnkoIyCdO4u9J3nKM0cnDqDh3OK+lmHeT2pe4L3fbLYYljOPud0HC+O9VNPPVW5DJmDYw8VO6Qdx7yJoU89pNfGCBxqPXE+cD3rGzCfk8gMhhmE6y/u9YZ+Jq3TZ5skSZIkSWMygzCDV158sbj/536w+MyNG43BQfD3z/yTG8X9H/yfi1de/JcrK+MmZw+CTsxVZBGmczMZHNwMtCPaU3Qi9xEBpggOEtTrExwE70s75adsZ8xDhznP6RnZvFH3TGDPv7tksTEHH53EfYOD6b+rXmngbM7teAiuxbF/1P9U5dBwHEcCaeseHNTmSe/BNv2zTZIkSZKkVTBAmCE4+PK7/tfi1c9+ttP7Xv3MZ4qX3/WuxfvVHZ3udOin2QDR4VPuMM8pghBjdvRrtaKDsG9mCZk2Z86cOWhrOTL+IlBFB/2U2Q2xH5xLc8wYPHTo0CIThPp/+PDhQUCD/+f3/H3ZEIMcNzIPuwa0ug7lOfZxHNqOc7h+/frBv2kzDsMsKadcAb05f7ZJkiRJkrRKBggHDiv6yR95b7H/pS/1ej/v++R737dYj/pnD4axswjNHtw8HFMCPQRv+gRwaIvpnGsEZ3IMBxplmbqdRYAygmhzwnCBjJDNi+GEy6/427LhRqODuOtxo15iG21eQ4avHbsd58KDE+nDE2PNBStp+/A5lCuDcM6fbZIkSZIkrdLrizXx3770peK/vPxyMSf/8Sd+onPmYFUm4b9//vnij7z3vcWcfOVb31q87rHHinXJHkyzCGM4P0QgMcdQaWmgYVlWktYDQaYhgbg0c5A2Fusb6vjx47NpZ9QN5xGZG5s4f1fs1zoPpzi0Hef03HPPHWQO0pnPv824ljQUn7c5bfpnmyRJkiRJGxUgJDj40g+8o9hEn/9/f2HxmpNjH/1I8djb317MNXuwLhATWYRpkJCAYo5hqcwg3DxxTMkC7Ko8hGI5o3WIJ598cvHz/PnzxdQIUrKvzO23aSLzLldgdx3bcW7la+ONGzcMEEoadN/HkNK5hyze5M82SZIkSZLacohRrZWm7MGccxGSwcX8Zekr7Zwq/23bhtIjqELnGvO8UVdV8/iwDPO6EbRgOV68J9cQYUPRJihjn4Av702POW0yx9Cigfn0CKoMyWqjjATKy/Xfdc6lqJu0vjYFDw5w7NY5gDWkHY+hPMRp+XznOhpzR1a9+FvVkH/pnJPl5QNtm2sO7Zx2H9fxtN1SHv4ef2MdrLvrdanq+sa/WVfbIQtzlzeuS1Emlud9/G7ZZyDrK5eFdXQZfpFyp9ec2H5cd9p8Dueo13VAfbNPUc+xn3XHiuXrzpu4Dym/Lz6jq5Zn26s+Bl3bB8vHsuX2XnWPVlUH2/rZJkmSJElSWwYItfZzD5blmIuQjCKGFI1Xuj4CQenfeJWDkpuODj06EJnrjeAK/07rmH9HRzN1yXL3799fBL74/RwCqmmHY9d5265cufJIRyT7nxNtbHd3t/f7OU+OHj26yN7ifIl5+eK4dRm6lPMpApVzCe7mEHNPzaEtTtWOx1AOapezfigj10zaZcwBFi867LleVAU6abf8Pl2eDNs0+5N5HskGiqFNy53+tHu2y4tlmRvy+vXri3YQ50YbLEewhPfcvn374PyiLGT/RuBnWTBlaHnTtss6IrAX11zew/WZoAzXg6YgCPVJWXhFWboEWygL2+bayDCzUS9cx/gbZaEMTdeQXPU6Z9Qp+8eLf8ex4sV9BNduAmLlBzlOnTq1WJa2wL/T8wBVQ6lHey6fYzwYUXfPMtYx6NM+2B77FfdZ6YMc7EP5PoxXl4dqNvWzTZIkSZKkTvbXxBc//vH9f/Pff7OvFb2o77m5ePHi/rFjx1otu7e3t0/zTl/8rq9Lly4drGd3d3d/m1EXvMLOzs4jdXz27NnFsapy69atg2Xv3bu3P6U4pidOnOj8XtphrraV27lz5xZl4mfT3+uOURXqqOt75u7q1auLfVp3Q9px1XnJi/8f4vDhw4+sr+5c57xJl21zHsXyy67D0WZj+1yXrl271tgW2ux71DfnQl150/XVbTNneakL3l9Xz1FnbdsI2471c31vW3aui3V1EmWsq+Ox6pXluuzLmDg+cSzSz9ByPbXZx/SepOm4Up8swzFddn6N3baHtI/0syvn/cMmfrZJkiRJktSFGYTaqOzBpixCnlzvK31aPvdwhDw9XzVU1hivLpljdTgOddkHZ86cWdR93ZyPaYbT1E/sRzZNzPfXVjnTh4yMIUOB5m5LtNXIxKpC9kbVHIpNoo42aRg2MlbK14h11Lcdj6lclrpMNM6bdGjemzdvLl031xA+B5Zdh6Odg+tReVup9PfL5quNzC5+1mWf0q7imtA2K7FveakLsrrILKzLII25TDnf25zzXT4nWDbW2ZTBxWdDLFdVx2PV65xE1iBtt+5ehr/Fdakpu5n3x1Dr1GtdRh+fsyzXJrtujGOQq32MZRM/2yRJkiRJ6uL1nZaWJkJwb9ncg2UEsRhaLfBvftc1mDP2HF90oK2qc2pogJBOSI5DWod37tx5ZJm6wFRVgGZKUedd2wPDdqZyBF1z4NjQxtmfpmNQDtK2CXhHHW1SJ+oqO6Hn2I5XiaGF6xBkiOs0QY+muTzZV15dA7sEPBjiuE5ad8sCaGmws2m/+KyIoA3r7PJgSZfycg5TZ03rZ2jHQP0tK0vbtsT+xYMelKFpiNtlw5Wuol6nRDuPc3XZkORx7xLzyNa1d67zHFvWS5CYz9T0GBDkW/Z5MOYxyNk+xrKJn22SJEmSJHVhgFCzF51kbTu5ylmEaZCQQGPbLMSqTLcxgkF0to0ReBwDwbE006VcP2SxNEk74Z566qnW2+UYsm3aAh2XTRlybUWHZNfMq3JH4hyOXXQQ181FVacc3K0TddTUaaxp9G3HYyq3k6ayETTgHOI6QjvmZ905RVC3KYDYtI1l5wR/j+tLE8pA4CXmR2vaZuh63nQpL+Lcb1q2b1mapFlmy8qQ1ltVgGwV9Tr1CAhh2YNOHC/2k/OBemkKiJOVFwFg7k/iwRvOo2WB5rGPQc72MRY/2yRJkiRJ284hRrWR2YOh3NEUT+V3QQfcnIJBU6o6DpFxQxbBsmyOtC67ZH6wLIFJOvFyZxp0zbwqBwibsiKqUH46b3nFkH+RGcUrfhd/byPtiF0WQEnL3zZrIjqgp8ry0HJzyiAst5Nl50jafpsyOwl49Bla8tSpU0UunF97e3uvydYqSx+A6HredC1vl+VzncNVQy23rbeqa/8q6nUq6dC5bT/3Yrll12jqKs6ZeFAkft6+fbvTdSHnMcjdPsbiZ5skSZIkadutTQbhV771rcWxj36kmIv/9sorxe/9pf+l2P/iFwev69DXfE3xtr//4eJ1jz9ezKm+55Q92Hc4wJjHKX16v2sWYWTIsa51Gc5sLOV6S7MH2wRPuy6fLsvrwYMHj2SEDtE3YyDt9KRNdA3M0P7a7gP7nAZV68oTw721ya5KswbnlHWmfuae+dLmHKGdR8YUbZnrfvk9XMMJhHUNyJeH2FymT6AgAvoENzgeEezvq0t5pwoOr2IO2dz1OpX0Gt72mpu2c/a5qd1z3d/d3V2cIzGsZ5t5Osc8BlPPMSxJkiRJkjYsQPi6xx4rHnv724s5eeOfe2fxmX9yY/h63vmO4mu+7duylGlTswf7DCsX6ChLA4Rd5iJM5x/MmYWyKdKOzzbDr6bZhn10GZZ0GTpq+wQD0vf1CbDRHiPQGu3r5MmTB3+nvVOvbQMhERxsewzSjts+wRbNS992PJZy1mvbBwHIDIxMwqqHOHhIpOvw0GMG0Dhv088WMqs5/yKIye/TzMh1zQatw8MaY1xHxqzXqaQBNa6/bQPAUa9tPmc4P2KYXq4HQ0Y7yHEMxmofkiRJkiRpSwOEc/T173538flf+MXi1QGds19x+PBiPcqfPZgjizANpiybQ2cbdckI7Js9OLauwZWc83nFXFPlQEmXDtU0SNtmGN40gNO2TUdn7zoELrbVXIKEd+/efeT/y3OW1uEaHUEHrtXp9Zk2OzTokRPnaHyeUO4u835uolxZrJtar+m5yX4Nvaepw/U/stPT+QinPgZzznL2s02SJEmStO2cg3CAr3z66eLNP/HjxaHHHuv1ft735p/4icV6NE72YCgHA9vORej8g/kyArtmG44tOgS7dl6m7SBHUKY8FFvXuTbj/W2OQZpt2KVND8mY1Dzb8Vh2dnYO/t1l7lj2I5alvaVtlc+CPnMPjoFs3wigsK8Ee7YxuJB7LsBNrtf0gY+xzlM+B9LAesxDONUxmGKuSO5Huu6zn22SJEmSpG1ngHCgx0+cKN764Z9eZAJ2wfJv/fCHi8dPfMdoZduE7MFcQ4lFFmGKTucu8w/WZXUN7bhmHw8dOrSSV87A3KrmHxxLHM+unZfl410eUrGrNHDa1M6qpNtuk6l148YfDol86dKl1tuJTm2Hipufvu14DJQhPc+7DgnK0M/l63OsM8eDIkNx7sc5R3m6BvPncpxyKF/Dh+zXptdr+vDGGHMoRjCQoB7X9bi2E2RPR05Y5THI2T7aijkSu74HfrZJkiRJkraVQ4xmChIe/bn/u/j0tWvFZz/y0WL/lVdql33d448XT7zjBxbDipo5uJrswb5zEabzD9YFtFjf0A4/gnZjdBrWbWvu8w/SqUnmAkMV8lQ/x4e5j/rOP1YnOgS7ZnTwPtpDBEIo65Ah427evHnw7/Pnz3d6b5egK20ssrKo0y71GZ27dqLOT992PIYLFy480h67Bhm4NvDiWsEr2iznxdTZZJwD6efHsgdD6oZ35IEQMrXmEPAcguPEMYlrA9eitsebeoz934Z6ZZ9i6M+uD5Sw/LLPTD5/uZ7HZwD/5njwXrbN52fTOsY4Brnax9j8bJMkSZIkbTsDhJkQ7Hv6b/yN4k0/+qPFZ3/+54vP/+IvFf/13//74tVXvlB8xeNfW7z+j/7R4uu+73uLN77zncVXvOENUxd3K+YeHDoXYTqXVl0AjPemQ+r1QafeHDLqpp5/MLIg+Hn9+vVHApAECeh4zBkkOH36dO8MQNrm8ePHF/+mPdGh2maIz7LyULddA7hpHS3bftrOu7bZOBc4BpqXIe04J87RNADd97rIuRQBigh0DL3G5lB+iGPZ+Vaei3ETcZ2OIR25JrYJAFGPHN8IAM2tXiNjlXLkChrFULtxfvCzTV1RFq65e3t7tZ991D9lLQfUbt++XRw9enSxjjNnzhT379+vXcdYxyBH+0ilw4BWZSTy3q7HzM82SZIkSdK2c4jRzAj+PfkX/2Lxtp/5B8XxX/yF4o//2q8tfvL//N7g4HIE7ejIIpBEh0/OV3l+mqa5CNPfV3U68bQ8ZewTGNoEOecfjI5Q1rm7u/uajkT+n3XkzLRMA5Vdgyu0h3Sf6IDtWjY6oWlDaadt10BxGngtz2VYXi4C42mmSRscmzgX1jGQvemGtONcaFtxbeXc4BzuG8wnMBDvZb38ew7X2PL+NA2ZmGafl7M7+femzHfGdTnaH9eYpmtQ4JqXPqwwp3pl/QTVaMs8ANJ2eM62wbLYV+qgzZCbZOSm50MZ66HOWXdZGqRnW01z8411DHK0j1QaxKsKUnLdiQcm2vCzTZIkSZIkA4SaafYgP+mgy/2qCk7VzUWYdkqXOx7pOKSzK3eW47rIPf8gnZccc+ZOqssA4Pddh+BsQqdodIz2yUphPwgSxjBqbTuU6VylHfKiAzc6d2NItrbSYBDvrZuvk+Wi3dNeu8w92HYeTk1naDseMj8YbYtzNzL+aId00g9tJ2n2UDovYRcPHjzotH/LlomhhauGBi6jTtKgTTokI+d/VcAzd3nrlk23k2PdXANjf9jvpiA11yj+nl6Dxq7XdF+WDcPLttPlc82BDM7RCJxTVoJdTfUcdVV3jxHDljJ8aN3nRjo6QTyQUmXMYzC0faTSz/+qeqHcXYYm9bNNkiRJkqSiKPalGbl06dI+zXLVr729vcryXLx4cfF3ygWW43dnz57d32bpcbp169bS5WPZEydOvOZvvD/+vru727ieOB7nzp3bz4H1sD7W21e0idiHw4cPL9ZLHe3s7Cz2j5/8P/sf20vbHMtfvXq19zGg3lgH7TLqkPXHMseOHVtat8u2s+1tfs66tuN79+4t2iUv2h3tI70ecqyj7ZZf165de6QtR5vn97lQvlhvF7TxKCPvLZePv7HuEOdmev7G9SX2v66ueZX3mXVTd3Eup+do1Ft6Ho1Z3jjGTetOrwl1y9M2Yvm6z8nyvlK+WJ4XZaO98KpbR856bbMvab2m9Vu+N2jz+dYF+x/7StnYpygLPykf5WR/0rrib1XHvqq+Ar8vL8t6645nzmOQu30Elk3Xw/JRtrhPa8vPNkmSJEmS9vcNEGpW0s68Vb6aOrejA52y8bNrIGcTpR2cy6SdrlUdeGnH4TK5A4RRNo7rUHRU0o4oW7SXqCM6PqMTP5c0QBOic5lt8opAT47t5Cy78urajoc+iBFtOjr6x8D6u3b4pwGOOAfilQbT0iBk1bLp8lWBJAJrESSNYA7/5me5Plgu1lkO4I5Z3vJDC1XLpoGRNmVZ9pAB2456ifdRP22vfaus17q2FfUW2x/ruldVV/FwSdU5Feds1f7UnffL2kvVfU+uYzBG+0jXw/ZiHayvz32Zn22SJEmSJO3vH+I/U2cxSlovDCXGEF8Mc7ZsaC6GDWMoNDDEWnkIMoYde+GFFxb/XnY5YnsM48ncRjG/0lBHjhxZDPXGUGnrNMzYoUOHHhnqdAzUC/XDEGx7e3ujbEPFVrfjpv3JMVyp1BefXcxpV54TV+vPzzZJkiRJkr7MOQgldUan/dWrV1t13qfzD1bNEZXO79h3LrQhYo6zCFKug7ROq+bVzCXmouoyr5OmsY7tuA4PATC3msFBTf0gTJd5YbU+/GyTJEmSJOnLDBBKGtWLL754kOlWJQ1wPXz4sFi16CC8cuVKsS7SjMG6es2BIHAafNJ8rWM7bmp3ZG9JUz+IQaBam8fPNkmSJEmSvswAoaRJM90Yvi0yCxm2tMkYAUQyROgsJHuRzKV1sCwrMwcy0cigoW7Mopm/dWrHDBXM8H78LIuyjxn4lto82EIGq9e+zeNnmyRJkiRJf8g5CCWNZtn8g4HOuuPHjy866+rmHaPD9uTJk6PNu8f2wRxu6zL/IPVJfY2Buo457bQ+5t6O41wP5esCgcPr168775smxQMtfH4ZqN48frZJkiRJkvSHzCCUNHmmGwFBAgXMR0jnXfo+EGR89tlnD9bB3/ldebkhdnZ2FsGLuQ9tmO7zWJ3X1C0B2WUZnZqfubfjcvA/vS5QZoZ0NDioqa+xnEMGBzePn22SJEmSJD3KAKGkyeYfLAcKeKKfOYEIFJBlRLAwsgb5G8EDsgwJMty4cSNrJx/bZ33RgThXaeZk3bCtQ0RwieHX7CBfP+vQjmO+xGjL0eYIzBDglKZCZhlD3+bOUNf0/GyTJEmSJOm1HGJU0ijo7I8AFgGLCArMHZ3DN2/eLO7fvz/L+Ymo08gizH35pnOcgCxBJgM1623u7Zi5BumoZ15RAv502PP/0pQIIJ0+fdos1g3jZ5skSZIkSdUMEEoarUPu6NGjB8OHrltw5e7du7Ms9wsvvFBcuXJlkWmZuxOb4CPBJDtQN8Oc27EkrYqfbZIkSZIkVTNAKEkVYg63bclqYkjKBw8ebM3+botta8eSlPKzTZIkSZKkegYIJUmSJEmSJEmSpC3yuqkLIEmSJEmSJEmSJGl1DBBKkiRJkiRJkiRJW8QAoSRJkiRJkiRJkrRFDBBKkiRJkiRJkiRJW8QAoSRJkiRJkiRJkrRFDBBKkiRJkiRJkiRJW8QAoSRJkiRJkiRJkrRFDBBKkiRJkiRJkiRJW8QAoSRJkiRJkiRJkrRFDBBKkiRJkiRJkiRJW8QAoSRJkiRJkiRJkrRFDBBKkiRJkiRJkiRJW8QAoSRJkiRJkiRJkrRFDBBKkiRJkiRJkiRJW8QAoSRJkiRJkiRJkrRFDBBKkiRJkiRJkiRJW8QAoSRJkiRJkiRJkrRFDBBKkiRJkiRJkiRJW8QAoSRJkiRJkiRJkrRFDBBKkiRJkiRJkiRJW8QAoSRJkiRJkiRJkrRFDBBKkiRJkiRJkiRJW8QAoSRJkiRJkiRJkrRFDBBKkiRJkiRJkiRJW8QAoSRJkiRJkiRJkrRFDBBKkiRJkiRJkiRJW8QAoSRJkiRJkiRJkrRFDBBKkiRJkiRJkiRJW8QAoSRJkiRJkiRJkrRFDBBKkiRJkiRJkiRJW8QAoSRJkiRJkiRJkrRFDBBKkiRJkiRJkiRJW8QAoSRJkiRJkiRJkrRFDBBKkiRJkiRJkiRJW8QAoSRJkiRJkiRJkrRFDBBKkiRJkiRJkiRJxfb4/wFe9HtnTTga4AAAAABJRU5ErkJggg==",
"text/plain": [
"<Figure size 1650x1200 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plot_timestepping_diagnostics(\n",
" log_path=OutputTimestepsLog,\n",
" aiDrift=aiDrift,\n",
" TimeStepDistribution=TimeStepDistribution,\n",
" nsteps=nsteps,\n",
" save_path=wd+\"time_step_diagnostics.pdf\",\n",
" show=False,\n",
")\n",
"a = aiDrift\n",
"plt.loglog(a, 0.1 * 0.031 * np.ones_like(a) / a)\n",
"plt.loglog(a, 1e-2 * np.ones_like(a))\n",
"fac_p3m_concept = 0.14\n",
"lambda_p3m = lambda x, eta: eta * np.maximum(0.1 * 0.031 / x, 0.01)/fac_p3m_concept\n",
"approx_P3Mlim = lambda_p3m(a, fac_p3m_concept)\n",
"plt.loglog(a, approx_P3Mlim, color=\"black\")\n",
"approx_P3Mlim_eta01 = lambda_p3m(a, 0.1)\n",
"plt.loglog(a, approx_P3Mlim_eta01, color=\"red\")\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c1c096bb",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"id": "dadb9198",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "p3m",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.13.3"
}
},
"nbformat": 4,
"nbformat_minor": 5
}