wip3m/notebooks/0_nonreg.ipynb

1 MiB

Tristan Hoellinger
Institut d'Astrophysique de Paris tristan.hoellinger@iap.fr

Non-regression tests towards implementing P3M gravity

Set up the environment and parameters

In [1]:
# pyright: reportWildcardImportFromLibrary=false
from wip3m import *
In [2]:
workdir = ROOT_PATH + "results/"
output_path = OUTPUT_PATH

L = 32  # Box size in Mpc/h
N = 64  # Density grid size
Np = 32  # Number of dark matter particles per spatial dimension
Npm = 64  # PM grid size
n_Tiles = 8  # Make sure Npm/n_Tiles >= 6

go_beyond_Nyquist_ss = True  # for the summary statistics

force = True
force_hard = True
run_id = "notebook1"

# Good set of parameters for the force diagnostic
# nPairsForceDiagnostic = 5
# nBinsForceDiagnostic = 30
# maxTrialsForceDiagnostic = int(2e9)

# Faster force diagnostic
nPairsForceDiagnostic = 3
nBinsForceDiagnostic = 20
maxTrialsForceDiagnostic = int(1e8)

# Simulation parameters
nsteps_pm = 50
nsteps_cola1 = 10
nsteps_cola2 = 3
nsteps_spm = 50
nsteps_p3m = 50

In principle nothing needs to be changed below this cell.

In [3]:
# Automatic reloading of modules
%load_ext autoreload
%autoreload 2

from os.path import isfile
from pathlib import Path
import numpy as np

from pysbmy.power import PowerSpectrum
from pysbmy.fft import FourierGrid, read_FourierGrid
from pysbmy.field import read_field
from pysbmy.correlations import get_autocorrelation

from wip3m.tools import get_k_max, generate_sim_params, generate_white_noise_Field
from wip3m.params import params_planck_kmax_missing, cosmo_small_to_full_dict, z2a, BASELINE_SEEDPHASE
from wip3m.plot_utils import *  # type: ignore
In [ ]:
corner = -L / 2.0
RedshiftLPT = 19.0
RedshiftFCs = 0.0
ai = z2a(RedshiftLPT)
af = z2a(RedshiftFCs)
k_max = get_k_max(L, N)  # k_max in h/Mpc
print(f"k_max = {k_max}")
cosmo = params_planck_kmax_missing.copy()
cosmo["k_max"] = k_max

TimeStepDistribution_pm = 0
TimeStepDistribution_cola1 = 0
TimeStepDistribution_cola2 = 0
TimeStepDistribution_spm = 0
TimeStepDistribution_p3m = 0

wd = workdir + run_id + "/"
simdir = output_path + run_id + "/"
logdir = simdir + "logs/"
if force_hard:
    import shutil
    if Path(simdir).exists():
        shutil.rmtree(simdir)
    if Path(wd).exists():
        shutil.rmtree(wd)
Path(wd).mkdir(parents=True, exist_ok=True)
Path(logdir).mkdir(parents=True, exist_ok=True)

input_white_noise_file = simdir + "input_white_noise.h5"
input_seed_phase_file = simdir + "seed"
ICs_path = simdir + "initial_density.h5"
simpath = simdir

# Path to the input matter power spectrum (generated later)
input_power_file = simdir + "input_power.h5"

# Paths the the force diagnostic CSVs
OutputForceDiagnostic_pm = simdir + "force_diagnostic_pm.txt"
OutputForceDiagnostic_cola1 = simdir + "force_diagnostic_cola1.txt"
OutputForceDiagnostic_cola2 = simdir + "force_diagnostic_cola2.txt"
OutputForceDiagnostic_spm = simdir + "force_diagnostic_spm.txt"
OutputForceDiagnostic_p3m = simdir + "force_diagnostic_p3m.txt"
k_max = 10.883000000000001

Generate the parameter files

The first preparatory step is to generate all the parameter files required for all the simulations.

To this end we use the generate_sim_params function defined in params.py.

In [ ]:
common_params = {
    "Np": Np,
    "N": N,
    "L": L,
    "corner0": corner,
    "corner1": corner,
    "corner2": corner,
    "h": cosmo["h"],
    "Omega_m": cosmo["Omega_m"],
    "Omega_b": cosmo["Omega_b"],
    "n_s": cosmo["n_s"],
    "sigma8": cosmo["sigma8"],
}

lpt_params = common_params.copy()
lpt_params["method"] = "lpt"
lpt_params["InputPowerSpectrum"] = input_power_file
lpt_params["ICsMode"] = 1
# 0 : the codes generates white noise, then initial conditions
# 1 : external white noise specified, the code multiplies by the power spectrum
# 2 : external initial conditions specified
lpt_params["InputWhiteNoise"] = input_white_noise_file

common_params_num = common_params.copy()
common_params_num["ai"] = ai
common_params_num["af"] = af
common_params_num["RedshiftLPT"] = RedshiftLPT
common_params_num["RedshiftFCs"] = RedshiftFCs
common_params_num["Npm"] = Npm
common_params_num["RunForceDiagnostic"] = True
common_params_num["nBinsForceDiagnostic"] = nBinsForceDiagnostic
common_params_num["nPairsForceDiagnostic"] = nPairsForceDiagnostic
common_params_num["maxTrialsForceDiagnostic"] = maxTrialsForceDiagnostic

pm_params = common_params_num.copy()
pm_params["method"] = "pm"
pm_params["TimeStepDistribution"] = TimeStepDistribution_pm
pm_params["nsteps"] = nsteps_pm
pm_params["OutputForceDiagnostic"] = OutputForceDiagnostic_pm

cola1_params = common_params_num.copy()
cola1_params["method"] = "cola"
cola1_params["TimeStepDistribution"] = TimeStepDistribution_cola1
cola1_params["nsteps"] = nsteps_cola1
cola1_params["OutputForceDiagnostic"] = OutputForceDiagnostic_cola1

cola2_params = common_params_num.copy()
cola2_params["method"] = "cola"
cola2_params["TimeStepDistribution"] = TimeStepDistribution_cola2
cola2_params["nsteps"] = nsteps_cola2
cola2_params["OutputForceDiagnostic"] = OutputForceDiagnostic_cola2

spm_params = common_params_num.copy()
spm_params["method"] = "spm"
spm_params["EvolutionMode"] = 5
spm_params["TimeStepDistribution"] = TimeStepDistribution_spm
spm_params["nsteps"] = nsteps_spm
spm_params["n_Tiles"] = n_Tiles
spm_params["OutputForceDiagnostic"] = OutputForceDiagnostic_spm

p3m_params = common_params_num.copy()
p3m_params["method"] = "p3m"
p3m_params["EvolutionMode"] = 4
p3m_params["TimeStepDistribution"] = TimeStepDistribution_p3m
p3m_params["nsteps"] = nsteps_p3m
p3m_params["n_Tiles"] = n_Tiles
p3m_params["OutputForceDiagnostic"] = OutputForceDiagnostic_p3m
In [6]:
reset_plotting()  # Default style for Simbelmynë
generate_sim_params(lpt_params, ICs_path, wd, simdir, None, force)

print(f"PM nsteps = {nsteps_pm}:")
file_ext = f"nsteps{nsteps_pm}"  # "pm" is already in the filename
generate_sim_params(pm_params, ICs_path, wd, simdir, file_ext, force)

print(f"COLA1 nsteps = {nsteps_cola1}:")
file_ext = f"nsteps{nsteps_cola1}"  # "cola" is already in the filename
generate_sim_params(cola1_params, ICs_path, wd, simdir, file_ext, force)

print(f"COLA2 nsteps = {nsteps_cola2}:")
file_ext = f"nsteps{nsteps_cola2}"  # "cola" is already in the filename
generate_sim_params(cola2_params, ICs_path, wd, simdir, file_ext, force)

print(f"SPM nsteps = {nsteps_spm}:")
file_ext = f"nsteps{nsteps_spm}"  # "spm" is already in the filename
generate_sim_params(spm_params, ICs_path, wd, simdir, file_ext, force)

print(f"P3M nsteps = {nsteps_p3m}:")
file_ext = f"nsteps{nsteps_p3m}"  # "p3m" is already in the filename
generate_sim_params(p3m_params, ICs_path, wd, simdir, file_ext, force)
setup_plotting()  # Reset plotting style for this project
[00:53:59|INFO      ]|(wip3m.tools) Generating parameter file...
[00:53:59|STATUS    ]|Writing parameter file in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/example_lpt.sbmy'...
[00:53:59|STATUS    ]|Writing parameter file in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/example_lpt.sbmy' done.
[00:53:59|INFO      ]|(wip3m.tools) Parameter file written to /Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/example_lpt.sbmy
PM nsteps = 50:
[00:53:59|INFO      ]|(wip3m.tools) Time-stepping distribution file: /Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/nsteps50_ts_pm.h5
[00:53:59|STATUS    ]|Write timestepping configuration in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/nsteps50_ts_pm.h5'...
[00:53:59|STATUS    ]|Write timestepping configuration in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/nsteps50_ts_pm.h5' done.
[00:53:59|INFO      ]|(wip3m.tools) TS.ai = 0.050000, TS.af = 1.000000, TS.nsteps = 50
[00:53:59|STATUS    ]|Read timestepping configuration in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/nsteps50_ts_pm.h5'...
[00:53:59|STATUS    ]|Read timestepping configuration in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/nsteps50_ts_pm.h5' done.
[00:53:59|INFO      ]|(wip3m.tools) Generating parameter file...
[00:53:59|STATUS    ]|Writing parameter file in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/nsteps50_example_pm.sbmy'...
[00:53:59|STATUS    ]|Writing parameter file in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/nsteps50_example_pm.sbmy' done.
[00:53:59|INFO      ]|(wip3m.tools) Parameter file written to /Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/nsteps50_example_pm.sbmy
COLA1 nsteps = 10:
[00:53:59|INFO      ]|(wip3m.tools) Time-stepping distribution file: /Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/nsteps10_ts_cola.h5
[00:53:59|STATUS    ]|Write timestepping configuration in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/nsteps10_ts_cola.h5'...
[00:53:59|STATUS    ]|Write timestepping configuration in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/nsteps10_ts_cola.h5' done.
[00:53:59|INFO      ]|(wip3m.tools) TS.ai = 0.050000, TS.af = 1.000000, TS.nsteps = 10
[00:53:59|STATUS    ]|Read timestepping configuration in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/nsteps10_ts_cola.h5'...
[00:53:59|STATUS    ]|Read timestepping configuration in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/nsteps10_ts_cola.h5' done.
[00:53:59|INFO      ]|(wip3m.tools) Generating parameter file...
[00:53:59|STATUS    ]|Writing parameter file in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/nsteps10_example_cola.sbmy'...
[00:53:59|STATUS    ]|Writing parameter file in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/nsteps10_example_cola.sbmy' done.
[00:53:59|INFO      ]|(wip3m.tools) Parameter file written to /Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/nsteps10_example_cola.sbmy
COLA2 nsteps = 3:
[00:53:59|INFO      ]|(wip3m.tools) Time-stepping distribution file: /Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/nsteps3_ts_cola.h5
[00:53:59|STATUS    ]|Write timestepping configuration in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/nsteps3_ts_cola.h5'...
[00:53:59|STATUS    ]|Write timestepping configuration in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/nsteps3_ts_cola.h5' done.
[00:53:59|INFO      ]|(wip3m.tools) TS.ai = 0.050000, TS.af = 1.000000, TS.nsteps = 3
[00:53:59|STATUS    ]|Read timestepping configuration in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/nsteps3_ts_cola.h5'...
[00:53:59|STATUS    ]|Read timestepping configuration in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/nsteps3_ts_cola.h5' done.
[00:54:00|INFO      ]|(wip3m.tools) Generating parameter file...
[00:54:00|STATUS    ]|Writing parameter file in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/nsteps3_example_cola.sbmy'...
[00:54:00|STATUS    ]|Writing parameter file in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/nsteps3_example_cola.sbmy' done.
[00:54:00|INFO      ]|(wip3m.tools) Parameter file written to /Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/nsteps3_example_cola.sbmy
SPM nsteps = 50:
[00:54:00|INFO      ]|(wip3m.tools) Time-stepping distribution file: /Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/nsteps50_ts_spm.h5
[00:54:00|STATUS    ]|Write timestepping configuration in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/nsteps50_ts_spm.h5'...
[00:54:00|STATUS    ]|Write timestepping configuration in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/nsteps50_ts_spm.h5' done.
[00:54:00|INFO      ]|(wip3m.tools) TS.ai = 0.050000, TS.af = 1.000000, TS.nsteps = 50
[00:54:00|STATUS    ]|Read timestepping configuration in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/nsteps50_ts_spm.h5'...
[00:54:00|STATUS    ]|Read timestepping configuration in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/nsteps50_ts_spm.h5' done.
[00:54:00|INFO      ]|(wip3m.tools) Generating parameter file...
[00:54:00|STATUS    ]|Writing parameter file in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/nsteps50_example_spm.sbmy'...
[00:54:00|STATUS    ]|Writing parameter file in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/nsteps50_example_spm.sbmy' done.
[00:54:00|INFO      ]|(wip3m.tools) Parameter file written to /Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/nsteps50_example_spm.sbmy
P3M nsteps = 50:
[00:54:00|INFO      ]|(wip3m.tools) Time-stepping distribution file: /Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/nsteps50_ts_p3m.h5
[00:54:00|STATUS    ]|Write timestepping configuration in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/nsteps50_ts_p3m.h5'...
[00:54:00|STATUS    ]|Write timestepping configuration in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/nsteps50_ts_p3m.h5' done.
[00:54:00|INFO      ]|(wip3m.tools) TS.ai = 0.050000, TS.af = 1.000000, TS.nsteps = 50
[00:54:00|STATUS    ]|Read timestepping configuration in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/nsteps50_ts_p3m.h5'...
[00:54:00|STATUS    ]|Read timestepping configuration in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/nsteps50_ts_p3m.h5' done.
[00:54:00|INFO      ]|(wip3m.tools) Generating parameter file...
[00:54:00|STATUS    ]|Writing parameter file in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/nsteps50_example_p3m.sbmy'...
[00:54:00|STATUS    ]|Writing parameter file in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/nsteps50_example_p3m.sbmy' done.
[00:54:00|INFO      ]|(wip3m.tools) Parameter file written to /Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook1/nsteps50_example_p3m.sbmy
No description has been provided for this image
No description has been provided for this image
No description has been provided for this image
No description has been provided for this image
No description has been provided for this image

Generate the initial phase

In [7]:
generate_white_noise_Field(
    L=L,
    size=N,
    corner=corner,
    seedphase=BASELINE_SEEDPHASE,
    fname_whitenoise=input_white_noise_file,
    seedname_whitenoise=input_seed_phase_file,
    force_phase=force,
)

Generating the input power spectrum

The second preparatory step is to compute the initial power spectrum to be used in the simulations, given the cosmological parameters and prescription specified in params.py. The power spectrum is saved in input_power_file.

In [8]:
# If cosmo["WhichSpectrum"] == "class", then classy is required.
if not isfile(input_power_file) or force:
    Pk = PowerSpectrum(L, L, L, N, N, N, cosmo_small_to_full_dict(cosmo))
    Pk.write(input_power_file)
[00:54:01|STATUS    ]|Setting up Fourier grid...
[00:54:01|STATUS    ]|Setting up Fourier grid done.
[00:54:01|STATUS    [00:54:01|STATUS    ]|Write power spectrum in data file '/Users/hoellinger/WIP3M/notebook1/input_power.h5'...
]|Computing normalization of the power spectrum...
[00:54:01|STATUS    ]|Computing normalization of the power spectrum done.
[00:54:01|STATUS    ]|Computing power spectrum...
[00:54:01|STATUS    ]|Computing power spectrum done.
[00:54:01|DIAGNOSTIC]==|L0=32, L1=32, L2=32
[00:54:01|DIAGNOSTIC]==|N0=64, N1=64, N2=64, N2_HC=33, N_HC=135168, NUM_MODES=1914
[00:54:01|STATUS    ]|Write power spectrum in data file '/Users/hoellinger/WIP3M/notebook1/input_power.h5' done.
In [9]:
# k grid used to compute the final overdensity power spectrum
Pinit = 100
trim_threshold = 100  # Merge bins until this minimum number of modes per bin is reached
log_kmin = np.log10(2 * np.pi / (np.sqrt(3) * L))  # Minimum non-zero k in h/Mpc
if go_beyond_Nyquist_ss:
    k_max_ss = get_k_max(L, N)
else:
    k_max_ss = get_k_max(L, N) / np.sqrt(3)  # 1D Nyquist frequency
Pbins_left_bnds = np.logspace(log_kmin, np.log10(k_max_ss), Pinit + 1, dtype=np.float32)
Pbins_left_bnds = Pbins_left_bnds[:-1]
input_ss_file = simdir + "input_ss_k_grid.h5"
Gk = FourierGrid(
    L,
    L,
    L,
    N,
    N,
    N,
    k_modes=Pbins_left_bnds,
    kmax=k_max_ss,
    trim_bins=True,
    trim_threshold=trim_threshold,
)
Gk.write(input_ss_file)
[00:54:01|STATUS    ]|Setting up Fourier grid...
[00:54:01|STATUS    ]|Setting up Fourier grid done.
[00:54:01|STATUS    ]|Write Fourier grid in data file '/Users/hoellinger/WIP3M/notebook1/input_ss_k_grid.h5'...
[00:54:01|DIAGNOSTIC]==|L0=32, L1=32, L2=32
[00:54:01|DIAGNOSTIC]==|N0=64, N1=64, N2=64, N2_HC=33, N_HC=135168, NUM_MODES=51
[00:54:01|STATUS    ]|Write Fourier grid in data file '/Users/hoellinger/WIP3M/notebook1/input_ss_k_grid.h5' done.

Running the simulations

We are now ready to run the actual simulations using the Simbelmynë executable.

In [10]:
%%capture

if not isfile(ICs_path) or not isfile(simdir + "lpt_density.h5") or not isfile(simdir + "lpt_particles.gadget3") or force:
    !simbelmyne {wd}example_lpt.sbmy {logdir}lpt.txt

file_ext = f"nsteps{nsteps_pm}"  # "pm" is already in the filename
if not isfile(simdir + f"{file_ext}_final_density_pm.h5") or force:
    !simbelmyne {wd}{file_ext}_example_pm.sbmy {logdir}{file_ext}_pm.txt

file_ext = f"nsteps{nsteps_cola1}"  # "cola" is already in the filename
if not isfile(simdir + f"{file_ext}_final_density_cola1.h5") or force:
    !simbelmyne {wd}{file_ext}_example_cola.sbmy {logdir}{file_ext}_cola1.txt

file_ext = f"nsteps{nsteps_cola2}"  # "cola" is already in the filename
if not isfile(simdir + f"{file_ext}_final_density_cola2.h5") or force:
    !simbelmyne {wd}{file_ext}_example_cola.sbmy {logdir}{file_ext}_cola2.txt

file_ext = f"nsteps{nsteps_spm}"  # "spm" is already in the filename
if not isfile(simdir + f"{file_ext}_final_density_spm.h5") or force:
    !simbelmyne {wd}{file_ext}_example_spm.sbmy {logdir}{file_ext}_spm.txt

file_ext = f"nsteps{nsteps_p3m}"  # "p3m" is already in the filename
if not isfile(simdir + f"{file_ext}_final_density_p3m.h5") or force:
    !simbelmyne {wd}{file_ext}_example_p3m.sbmy {logdir}{file_ext}_p3m.txt

The logs can be monitored in the corresponding files in the logdir directory.

Plot results

Plot the evolved dark matter density fields

In [11]:
slice_ijk = (N // 2, slice(None), slice(None))
DELTA_LPT = read_field(simdir + "lpt_density.h5").data[slice_ijk]
DELTA_COLA1 = read_field(simdir + f"nsteps{nsteps_cola1}_final_density_cola.h5").data[slice_ijk]
DELTA_COLA2 = read_field(simdir + f"nsteps{nsteps_cola2}_final_density_cola.h5").data[slice_ijk]
DELTA_PM = read_field(simdir + f"nsteps{nsteps_pm}_final_density_pm.h5").data[slice_ijk]
DELTA_SPM = read_field(simdir + f"nsteps{nsteps_spm}_final_density_spm.h5").data[slice_ijk]
DELTA_P3M = read_field(simdir + f"nsteps{nsteps_p3m}_final_density_p3m.h5").data[slice_ijk]
diff_p3m_pm = DELTA_P3M - DELTA_PM
diff_p3m_spm = DELTA_P3M - DELTA_SPM
[00:54:53|STATUS    ]|Read field in data file '/Users/hoellinger/WIP3M/notebook1/lpt_density.h5'...
[00:54:53|DIAGNOSTIC]==|ranges=[np.float64(-16.0), np.float64(16.0), np.float64(-16.0), np.float64(16.0), np.float64(-16.0), np.float64(16.0), np.int32(64), np.int32(64), np.int32(64)]
[00:54:53|STATUS    ]|Read field in data file '/Users/hoellinger/WIP3M/notebook1/lpt_density.h5' done.
[00:54:53|STATUS    ]|Read field in data file '/Users/hoellinger/WIP3M/notebook1/nsteps10_final_density_cola.h5'...
[00:54:53|DIAGNOSTIC]==|ranges=[np.float64(-16.0), np.float64(16.0), np.float64(-16.0), np.float64(16.0), np.float64(-16.0), np.float64(16.0), np.int32(64), np.int32(64), np.int32(64)]
[00:54:53|STATUS    ]|Read field in data file '/Users/hoellinger/WIP3M/notebook1/nsteps10_final_density_cola.h5' done.
[00:54:53|STATUS    ]|Read field in data file '/Users/hoellinger/WIP3M/notebook1/nsteps3_final_density_cola.h5'...
[00:54:53|DIAGNOSTIC]==|ranges=[np.float64(-16.0), np.float64(16.0), np.float64(-16.0), np.float64(16.0), np.float64(-16.0), np.float64(16.0), np.int32(64), np.int32(64), np.int32(64)]
[00:54:53|STATUS    ]|Read field in data file '/Users/hoellinger/WIP3M/notebook1/nsteps3_final_density_cola.h5' done.
[00:54:53|STATUS    ]|Read field in data file '/Users/hoellinger/WIP3M/notebook1/nsteps50_final_density_pm.h5'...
[00:54:53|DIAGNOSTIC]==|ranges=[np.float64(-16.0), np.float64(16.0), np.float64(-16.0), np.float64(16.0), np.float64(-16.0), np.float64(16.0), np.int32(64), np.int32(64), np.int32(64)]
[00:54:53|STATUS    ]|Read field in data file '/Users/hoellinger/WIP3M/notebook1/nsteps50_final_density_pm.h5' done.
[00:54:53|STATUS    ]|Read field in data file '/Users/hoellinger/WIP3M/notebook1/nsteps50_final_density_spm.h5'...
[00:54:53|DIAGNOSTIC]==|ranges=[np.float64(-16.0), np.float64(16.0), np.float64(-16.0), np.float64(16.0), np.float64(-16.0), np.float64(16.0), np.int32(64), np.int32(64), np.int32(64)]
[00:54:53|STATUS    ]|Read field in data file '/Users/hoellinger/WIP3M/notebook1/nsteps50_final_density_spm.h5' done.
[00:54:53|STATUS    ]|Read field in data file '/Users/hoellinger/WIP3M/notebook1/nsteps50_final_density_p3m.h5'...
[00:54:53|DIAGNOSTIC]==|ranges=[np.float64(-16.0), np.float64(16.0), np.float64(-16.0), np.float64(16.0), np.float64(-16.0), np.float64(16.0), np.int32(64), np.int32(64), np.int32(64)]
[00:54:53|STATUS    ]|Read field in data file '/Users/hoellinger/WIP3M/notebook1/nsteps50_final_density_p3m.h5' done.
In [12]:
print(f"max(DELTA_PM) = {np.max(DELTA_PM)}, min(DELTA_PM) = {np.min(DELTA_PM)}")
print(f"max(DELTA_P3M) = {np.max(DELTA_P3M)}, min(DELTA_P3M) = {np.min(DELTA_P3M)}")
print(f"max(diff) = {np.max(diff_p3m_pm)}, min(diff) = {np.min(diff_p3m_pm)}")
max(DELTA_PM) = 932.3659057617188, min(DELTA_PM) = -1.0
max(DELTA_P3M) = 1230.1751708984375, min(DELTA_P3M) = -1.0
max(diff) = 390.24505615234375, min(diff) = -88.38835144042969
In [13]:
# fields = ["pm", "spm", "p3m", "diff_p3m_pm"]  # fields to plot
fields = ["lpt", "cola1", "cola2", "pm", "spm", "p3m", "diff_p3m_pm", "diff_p3m_spm"]  # fields to plot

figname = "_".join(fields)
slices_dict = {
    "lpt": DELTA_LPT,
    "cola1": DELTA_COLA1,
    "cola2": DELTA_COLA2,
    "pm": DELTA_PM,
    "spm": DELTA_SPM,
    "p3m": DELTA_P3M,
    "diff_p3m_pm": diff_p3m_pm,
    "diff_p3m_spm": diff_p3m_spm,
}
titles_dict = {
    "lpt": "LPT",
    "cola1": f"COLA1 $n_\\mathrm{{steps}}={nsteps_cola1}$",
    "cola2": f"COLA2 $n_\\mathrm{{steps}}={nsteps_cola2}$",
    "pm": f"PM $n_\\mathrm{{steps}}={nsteps_pm}$",
    "spm": f"sPM $n_\\mathrm{{steps}}={nsteps_spm}$",
    "p3m": f"P3M $n_\\mathrm{{steps}}={nsteps_p3m}$",
    "diff_p3m_pm": r"$\delta_{\rm P3M}-\delta_{\rm PM}$",
    "diff_p3m_spm": r"$\delta_{\rm P3M}-\delta_{\rm sPM}$",
}

npanels = len(fields)
fig, axs = plt.subplots(1, npanels, figsize=(3 * npanels, 4), sharey=True)

ims = []
for i, key in enumerate(fields):
    ax = axs[i]
    data = slices_dict[key]
    title = titles_dict[key]

    if key.startswith("diff"):
        norm = TwoSlopeNorm(vmin=-np.log(1 + np.abs(np.min(data))), vcenter=0, vmax=np.log10(1 + np.abs(np.max(data))))
        im = ax.imshow(
            np.sign(data) * np.log(1 + np.abs(data)), cmap="RdBu_r", norm=norm
        )
    else:
        im = ax.imshow(np.log10(2 + data), cmap=cmap)

    ims.append((im, key))
    ax.set_title(title, fontsize=fs_titles)
    for spine in ax.spines.values():
        spine.set_visible(False)

axs[0].set_yticks([0, N // 2, N])
axs[0].set_yticklabels([f"{-L/2:.0f}", "0", f"{L/2:.0f}"], fontsize=fs)
axs[0].set_ylabel(r"Mpc/$h$", size=GLOBAL_FS_SMALL)

for i, ax in enumerate(axs):
    ax.set_xticks([0, N // 2, N])
    ax.set_xticklabels([f"{-L/2:.0f}", "0", f"{L/2:.0f}"], fontsize=fs)
    ax.set_xlabel(r"Mpc/$h$", size=GLOBAL_FS_SMALL)

for ax, (im, key) in zip(axs, ims):
    divider = make_axes_locatable(ax)
    cax = divider.append_axes("bottom", size="5%", pad=0.6)
    cb = fig.colorbar(im, cax=cax, orientation="horizontal")
    if key.startswith("diff"):
        cb.set_label(r"$\textrm{sgn}\left(\Delta\delta\right)\log_{10}(1 + |\Delta\delta|)$", fontsize=fs)
    else:
        cb.set_label(r"$\log_{10}(2 + \delta)$", fontsize=fs)
    cb.ax.tick_params(labelsize=fs)
    cax.xaxis.set_ticks_position("bottom")
    cax.xaxis.set_label_position("bottom")
fig.savefig(
    simdir + f"{figname}.png",
    bbox_inches="tight",
    dpi=300,
    transparent=True,
)
fig.savefig(
    simdir + f"{figname}.pdf",
    bbox_inches="tight",
    dpi=300,
)
plt.show()
No description has been provided for this image
In [14]:
full_field_p3m = np.log10(2+read_field(simdir + f"nsteps{nsteps_p3m}_final_density_p3m.h5").data)

if N <= 128:
    fig = plotly_3d(full_field_p3m, size=N, L=L, colormap=thermal_plotly, limits="default")
else:
    # Downsample the grid for visualisation
    downsample_factor = N // 128
    downsampled_field = full_field_p3m[
        ::downsample_factor, ::downsample_factor, ::downsample_factor
    ]
    fig = plotly_3d(downsampled_field, size=N, L=L, colormap=thermal_plotly, limits="default")

fig.show()
clear_large_plot(fig)  # Uncomment to clear the Plotly figure to avoid memory issues

Compute and plot the power spectra of the evolved dark matter fields

In [15]:
G = read_FourierGrid(simdir + "input_ss_k_grid.h5")
k = G.k_modes[1:]
AliasingCorr = False

DELTA = read_field(simdir + "initial_density.h5")
Pk_INI, Vk_INI = get_autocorrelation(DELTA, G, AliasingCorr)
Pk_INI, Vk_INI = Pk_INI[1:], Vk_INI[1:]
Sk_INI = np.sqrt(Vk_INI)

DELTA = read_field(simdir + "lpt_density.h5")
Pk_LPT, Vk_LPT = get_autocorrelation(DELTA, G, AliasingCorr)
Pk_LPT, Vk_LPT = Pk_LPT[1:], Vk_LPT[1:]
Sk_LPT = np.sqrt(Vk_LPT)

DELTA = read_field(simdir + f"nsteps{nsteps_pm}_final_density_pm.h5")
Pk_PM, Vk_PM = get_autocorrelation(DELTA, G, AliasingCorr)
Pk_PM, Vk_PM = Pk_PM[1:], Vk_PM[1:]
Sk_PM = np.sqrt(Vk_PM)

DELTA = read_field(simdir + f"nsteps{nsteps_cola1}_final_density_cola.h5")
Pk_COLA1, Vk_COLA1 = get_autocorrelation(DELTA, G, AliasingCorr)
Pk_COLA1, Vk_COLA1 = Pk_COLA1[1:], Vk_COLA1[1:]
Sk_COLA1 = np.sqrt(Vk_COLA1)

DELTA = read_field(simdir + f"nsteps{nsteps_cola2}_final_density_cola.h5")
Pk_COLA2, Vk_COLA2 = get_autocorrelation(DELTA, G, AliasingCorr)
Pk_COLA2, Vk_COLA2 = Pk_COLA2[1:], Vk_COLA2[1:]
Sk_COLA2 = np.sqrt(Vk_COLA2)

DELTA = read_field(simdir + f"nsteps{nsteps_spm}_final_density_spm.h5")
Pk_sPM, Vk_sPM = get_autocorrelation(DELTA, G, AliasingCorr)
Pk_sPM, Vk_sPM = Pk_sPM[1:], Vk_sPM[1:]
Sk_sPM = np.sqrt(Vk_sPM)

DELTA = read_field(simdir + f"nsteps{nsteps_p3m}_final_density_p3m.h5")
Pk_P3M, Vk_p3m = get_autocorrelation(DELTA, G, AliasingCorr)
Pk_P3M, Vk_p3m = Pk_P3M[1:], Vk_p3m[1:]
Sk_p3m = np.sqrt(Vk_p3m)
[00:54:55|STATUS    ]|Read Fourier grid in data file '/Users/hoellinger/WIP3M/notebook1/input_ss_k_grid.h5'...
[00:54:55|DIAGNOSTIC]==|L0=32.0, L1=32.0, L2=32.0
[00:54:55|DIAGNOSTIC]==|N0=64, N1=64, N2=64, N2_HC=33, N_HC=135168, NUM_MODES=51
[00:54:55|STATUS    ]|Read Fourier grid in data file '/Users/hoellinger/WIP3M/notebook1/input_ss_k_grid.h5' done.
[00:54:55|STATUS    ]|Read field in data file '/Users/hoellinger/WIP3M/notebook1/initial_density.h5'...
[00:54:55|DIAGNOSTIC]==|ranges=[np.float64(-16.0), np.float64(16.0), np.float64(-16.0), np.float64(16.0), np.float64(-16.0), np.float64(16.0), np.int32(64), np.int32(64), np.int32(64)]
[00:54:55|STATUS    ]|Read field in data file '/Users/hoellinger/WIP3M/notebook1/initial_density.h5' done.
[00:54:55|STATUS    ]|Getting auto-correlation in Fourier space (using 8 cores)...
[00:54:55|STATUS    ]|Read field in data file '/Users/hoellinger/WIP3M/notebook1/lpt_density.h5'...
[00:54:55|STATUS    ]|Getting auto-correlation in Fourier space (using 8 cores) done.
[00:54:55|DIAGNOSTIC]==|ranges=[np.float64(-16.0), np.float64(16.0), np.float64(-16.0), np.float64(16.0), np.float64(-16.0), np.float64(16.0), np.int32(64), np.int32(64), np.int32(64)]
[00:54:55|STATUS    ]|Read field in data file '/Users/hoellinger/WIP3M/notebook1/lpt_density.h5' done.
[00:54:55|STATUS    ]|Getting auto-correlation in Fourier space (using 8 cores)...
[00:54:55|STATUS    ]|Read field in data file '/Users/hoellinger/WIP3M/notebook1/nsteps50_final_density_pm.h5'...
[00:54:55|STATUS    ]|Getting auto-correlation in Fourier space (using 8 cores) done.
[00:54:55|DIAGNOSTIC]==|ranges=[np.float64(-16.0), np.float64(16.0), np.float64(-16.0), np.float64(16.0), np.float64(-16.0), np.float64(16.0), np.int32(64), np.int32(64), np.int32(64)]
[00:54:55|STATUS    ]|Read field in data file '/Users/hoellinger/WIP3M/notebook1/nsteps50_final_density_pm.h5' done.
[00:54:55|STATUS    ]|Getting auto-correlation in Fourier space (using 8 cores)...
[00:54:55|STATUS    ]|Read field in data file '/Users/hoellinger/WIP3M/notebook1/nsteps10_final_density_cola.h5'...
[00:54:55|STATUS    ]|Getting auto-correlation in Fourier space (using 8 cores) done.
[00:54:55|DIAGNOSTIC]==|ranges=[np.float64(-16.0), np.float64(16.0), np.float64(-16.0), np.float64(16.0), np.float64(-16.0), np.float64(16.0), np.int32(64), np.int32(64), np.int32(64)]
[00:54:55|STATUS    ]|Read field in data file '/Users/hoellinger/WIP3M/notebook1/nsteps10_final_density_cola.h5' done.
[00:54:55|STATUS    ]|Getting auto-correlation in Fourier space (using 8 cores)...
[00:54:55|STATUS    ]|Getting auto-correlation in Fourier space (using 8 cores) done.
[00:54:55|STATUS    ]|Read field in data file '/Users/hoellinger/WIP3M/notebook1/nsteps3_final_density_cola.h5'...
[00:54:55|DIAGNOSTIC]==|ranges=[np.float64(-16.0), np.float64(16.0), np.float64(-16.0), np.float64(16.0), np.float64(-16.0), np.float64(16.0), np.int32(64), np.int32(64), np.int32(64)]
[00:54:55|STATUS    ]|Read field in data file '/Users/hoellinger/WIP3M/notebook1/nsteps3_final_density_cola.h5' done.
[00:54:55|STATUS    ]|Getting auto-correlation in Fourier space (using 8 cores)...
[00:54:55|STATUS    ]|Read field in data file '/Users/hoellinger/WIP3M/notebook1/nsteps50_final_density_spm.h5'...
[00:54:55|STATUS    ]|Getting auto-correlation in Fourier space (using 8 cores) done.
[00:54:55|DIAGNOSTIC]==|ranges=[np.float64(-16.0), np.float64(16.0), np.float64(-16.0), np.float64(16.0), np.float64(-16.0), np.float64(16.0), np.int32(64), np.int32(64), np.int32(64)]
[00:54:55|STATUS    ]|Read field in data file '/Users/hoellinger/WIP3M/notebook1/nsteps50_final_density_spm.h5' done.
[00:54:55|STATUS    ]|Getting auto-correlation in Fourier space (using 8 cores)...
[00:54:55|STATUS    ]|Read field in data file '/Users/hoellinger/WIP3M/notebook1/nsteps50_final_density_p3m.h5'...
[00:54:55|STATUS    ]|Getting auto-correlation in Fourier space (using 8 cores) done.
[00:54:55|DIAGNOSTIC]==|ranges=[np.float64(-16.0), np.float64(16.0), np.float64(-16.0), np.float64(16.0), np.float64(-16.0), np.float64(16.0), np.int32(64), np.int32(64), np.int32(64)]
[00:54:55|STATUS    ]|Read field in data file '/Users/hoellinger/WIP3M/notebook1/nsteps50_final_density_p3m.h5' done.
[00:54:55|STATUS    ]|Getting auto-correlation in Fourier space (using 8 cores)...
[00:54:55|STATUS    ]|Getting auto-correlation in Fourier space (using 8 cores) done.
In [16]:
Pk_ref = Pk_PM

fig, ax = plt.subplots(figsize=(7, 4))

ax.set_xscale("log")
k = G.k_modes[1:]
kmin, kmax = k.min(), k.max()
print(f"kmin = {kmin}, kmax = {kmax}")
log_pad = 0.02
log_k_min = np.log10(kmin)
log_k_max = np.log10(kmax)
log_range = log_k_max - log_k_min
xlim_min = 10 ** (log_k_min - log_pad * log_range)
xlim_max = 10 ** (log_k_max + log_pad * log_range)

plt.xlim(xlim_min, xlim_max)
# ax.set_ylim([0.2, 1.8])
# ax.set_ylim([0.5, 1.5])
dark_grey_bnd = 0.05
light_grey_bnd = 0.1

label_ref = f"PM with $n_\\mathrm{{steps}}={nsteps_pm}$"

line1 = ax.plot([kmin, kmax], [1, 1], color="black", linestyle="-", label=label_ref)

line2 = ax.plot(k, Pk_LPT / Pk_ref, label="2LPT", color=cols[0], linestyle="-")

ax.plot(
    k,
    Pk_COLA1 / Pk_ref,
    label=f"COLA with $n_\\mathrm{{steps}}={nsteps_cola1}$",
    linestyle="-",
    color=cols[2],
)
ax.plot(
    k,
    Pk_COLA2 / Pk_ref,
    label=f"COLA with $n_\\mathrm{{steps}}={nsteps_cola2}$",
    linestyle="-",
    color=cols[3],
)
ax.plot(
    k,
    Pk_sPM / Pk_ref,
    label=f"sPM with $n_\\mathrm{{steps}}={nsteps_p3m}$",
    linestyle="--",
    color=cols[4],
)
ax.plot(
    k,
    Pk_P3M / Pk_ref,
    label=f"P3M with $n_\\mathrm{{steps}}={nsteps_p3m}$",
    linestyle="--",
    color=cols[5],
)

ax.axhspan(1 - dark_grey_bnd, 1 + dark_grey_bnd, color="grey", alpha=0.2)
ax.axhspan(1 - light_grey_bnd, 1 + light_grey_bnd, color="grey", alpha=0.1)

for i in range(1, len(k)):
    ax.axvline(k[i], color="black", linestyle=":", linewidth=1, alpha=0.1)
ax.yaxis.set_major_locator(plt.MaxNLocator(6))
ax.yaxis.get_major_ticks()[0].label1.set_visible(False)
ax.set_xlabel("$k$ [$h/\\mathrm{Mpc}$]", fontsize=fs)
ax.set_ylabel("$P(k)/P_\\mathrm{ref}(k)$", fontsize=fs)
ax.tick_params(which="both", direction="in")
ax.tick_params(axis="both", which="major", labelsize=fs)
ax.tick_params(axis="both", which="minor", labelsize=fs)

# Characteristic vertical reference scales
nyquist = np.pi * N / L
nyquist_PM = np.pi * Npm / L
epsilon = 0.03 * L / Np
particle_length = 2 * epsilon
xs = 1.25 * L / Npm
xr = 4.5 * xs
particle_wavenumber = 2 * np.pi / particle_length  # Too large to be shown
xs_inv = 2 * np.pi / xs
xr_inv = 2 * np.pi / xr
if nyquist <= xlim_max:
    line1 = ax.axvline(
        x=nyquist, color="black", linestyle="--", lw=2, label="Nyquist (density grid)", zorder=0
    )
if nyquist_PM <= xlim_max:
    line2 = ax.axvline(
        x=nyquist_PM, color="black", linestyle="-", lw=1, label="Nyquist (PM grid)", zorder=0
    )
if xs_inv <= xlim_max:
    line3 = ax.axvline(
        x=xs_inv, color="gray", linestyle="-.", lw=2, label=r"Split wavenumber $x_s$", zorder=0
    )
if xr_inv <= xlim_max:
    line4 = ax.axvline(
        x=xr_inv, color="gray", linestyle=":", lw=2, label=r"Short-range reach $x_r$", zorder=0
    )

empty_patch = mpatches.Patch(color="none", label="")
handles, labels = plt.gca().get_legend_handles_labels()
# handles = [empty_patch, *handles]
# labels = ["", *labels]
plt.legend(
    handles,
    labels,
    loc="upper center",
    ncol=2,
    bbox_to_anchor=(0.5, -0.2),
    fontsize=fs,
)
fig.savefig(
    simdir + "power_spectrum.png",
    bbox_inches="tight",
    dpi=300,
    transparent=True,
)
fig.savefig(
    simdir + "power_spectrum.pdf",
    bbox_inches="tight",
    dpi=300,
)
plt.show()
kmin = 0.6722924113273621, kmax = 10.397425651550293
No description has been provided for this image

Force exerted by particles on other particles

In [17]:
r1, fmag1, _ = load_force_diagnostic(OutputForceDiagnostic_pm)
r4, fmag4, _ = load_force_diagnostic(OutputForceDiagnostic_cola1)
r2, fmag2, _ = load_force_diagnostic(OutputForceDiagnostic_spm)
r3, fmag3, _ = load_force_diagnostic(OutputForceDiagnostic_p3m)

rr = np.array([r1, r4, r2, r3], dtype=object)
ff = np.array([fmag1, fmag4, fmag2, fmag3], dtype=object)
ll = np.array(["PM", "COLA", "sPM", "P3M"])

ix = [0, 1, 2, 3]

Newton_prefactor = (L / Np)**3 / (4*np.pi)
print(f"Newton prefactor = {Newton_prefactor:.2e}")
plot_force_distance_comparison(rr=rr[ix], ff=ff[ix], ll=ll[ix], L=L, Np=Np, Npm=Npm, a=Newton_prefactor, title="Particle's contributions to total force", save_path=simdir + "force_diagnostic_comparison.png")
Newton prefactor = 7.96e-02
Nyquist: 1.00 Mpc/h
Particle length: 0.06 Mpc/h
Split scale: 0.62 Mpc/h
Short-range reach: 2.81 Mpc/h
Figure saved to: /Users/hoellinger/WIP3M/notebook1/force_diagnostic_comparison.png
No description has been provided for this image
In [ ]: