selfisys_public/docs/_sources/index.rst.txt
2025-01-10 17:03:16 +01:00

95 lines
No EOL
4.1 KiB
ReStructuredText
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

SelfiSys: Assess the Impact of Systematic Effects in Galaxy Surveys
===================================================================
.. image:: https://img.shields.io/badge/astro--ph.CO-arxiv%3A2412.04443-B31B1B.svg
:target: https://arxiv.org/abs/2412.04443
:alt: arXiv
.. image:: https://img.shields.io/github/v/tag/hoellin/selfisys_public.svg?label=version
:target: https://github.com/hoellin/selfisys_public/releases
:alt: GitHub Release
.. image:: https://img.shields.io/github/last-commit/hoellin/selfisys_public
:target: https://github.com/hoellin/selfisys_public/commits/main
:alt: Last Commit
.. image:: https://img.shields.io/badge/License-GPLv3-blue.svg
:target: https://github.com/hoellin/selfisys_public/blob/main/LICENSE
:alt: License
**SelfiSys** is a Python package designed to address the issue of model misspecification in field-based, implicit likelihood cosmological inference.
It leverages the inferred initial matter power spectrum, enabling a thorough diagnosis of systematic effects in large-scale spectroscopic galaxy surveys.
Key Features
------------
- **Custom hidden-box forward models**
We provide a `HiddenBox` class to simulate realistic spectroscopic galaxy surveys. It accommodates fully non-linear gravitational evolution, and incorporates multiple systematic effects observed in real-world survey, e.g., misspecified galaxy bias, survey mask, selection functions, dust extinction, line interlopers, or inaccurate gravity solver.
- **Diagnosis of systematic effects**
Diagnose the impact of systematic effects using the inferred initial matter power spectrum, prior to performing cosmological inference.
- **Cosmological inference**
Perform inference of cosmological parameters using Approximate Bayesian Computation (ABC) with a Population Monte Carlo (PMC) sampler.
For practical examples demonstrating how to use SelfiSys, visit the `SelfiSys Examples Repository <https://github.com/hoellin/selfisys_examples>`_.
References
----------
If you use the SelfiSys package in your research, please cite the following paper and feel free to `contact the authors <mailto:tristan.hoellinger@iap.fr>`_ for feedback, collaboration opportunities, or other inquiries.
**Diagnosing Systematic Effects Using the Inferred Initial Power Spectrum**
*Hoellinger, T. and Leclercq, F., arXiv e-prints*, 2024
`arXiv:2412.04443 <https://arxiv.org/abs/2412.04443>`_
`[astro-ph.CO] <https://arxiv.org/abs/2412.04443>`_
`[ADS] <https://ui.adsabs.harvard.edu/abs/arXiv:2412.04443>`_
`[pdf] <https://arxiv.org/pdf/2412.04443>`_
Contributors
------------
- **Tristan Hoellinger**
`tristan.hoellinger@iap.fr <mailto:tristan.hoellinger@iap.fr>`_
Principal developer and maintainer, Institut dAstrophysique de Paris (IAP).
License
-------
This software is distributed under the GPLv3 Licence. Please review the `LICENSE <https://github.com/hoellin/selfisys_public/blob/main/LICENSE>`_ file in the repository to understand the terms of use and ensure compliance. By downloading and using this software, you agree to the terms of the licence.
Requirements
------------
The code is written in Python 3.10 and depends on the following packages:
- `pySELFI <https://pyselfi.readthedocs.io/en/latest/>`_: Python implementation of the Simulator Expansion for Likelihood-Free Inference.
- `Simbelmynë <https://simbelmyne.readthedocs.io/en/latest/>`_: A hierarchical probabilistic simulator for generating synthetic galaxy survey data.
- `ELFI <https://elfi.readthedocs.io/en/latest/>`_: A statistical software package for likelihood-free inference, implementing Approximate Bayesian Computation (ABC) with a Population Monte Carlo (PMC) sampler.
A comprehensive list of dependencies, along with installation instructions, will be provided in a future release.
.. toctree::
:maxdepth: 2
:caption: API Documentation
selfisys.hiddenbox
selfisys.normalise_hb
selfisys.prior
selfisys.selection_functions
selfisys.selfi_interface
selfisys.sbmy_interface
selfisys.grf
selfisys.utils
.. toctree::
:maxdepth: 2
:caption: Contribute
../../CONTRIBUTING.md
.. toctree::
:maxdepth: 2
:caption: References
../../REFERENCES.md