SelfiSys: Assess the Impact of Systematic Effects in Galaxy Surveys =================================================================== .. image:: https://img.shields.io/badge/astro--ph.CO-arxiv%3A2412.04443-B31B1B.svg :target: https://arxiv.org/abs/2412.04443 :alt: arXiv .. image:: https://img.shields.io/github/v/tag/hoellin/selfisys_public.svg?label=version :target: https://github.com/hoellin/selfisys_public/releases :alt: GitHub Release .. image:: https://img.shields.io/github/last-commit/hoellin/selfisys_public :target: https://github.com/hoellin/selfisys_public/commits/main :alt: Last Commit .. image:: https://img.shields.io/badge/License-GPLv3-blue.svg :target: https://github.com/hoellin/selfisys_public/blob/main/LICENSE :alt: License **SelfiSys** is a Python package designed to address the issue of model misspecification in field-based, implicit likelihood cosmological inference. It leverages the inferred initial matter power spectrum, enabling a thorough diagnosis of systematic effects in large-scale spectroscopic galaxy surveys. Key Features ------------ - **Custom hidden-box forward models** We provide a `HiddenBox` class to simulate realistic spectroscopic galaxy surveys. It accommodates fully non-linear gravitational evolution, and incorporates multiple systematic effects observed in real-world survey, e.g., misspecified galaxy bias, survey mask, selection functions, dust extinction, line interlopers, or inaccurate gravity solver. - **Diagnosis of systematic effects** Diagnose the impact of systematic effects using the inferred initial matter power spectrum, prior to performing cosmological inference. - **Cosmological inference** Perform inference of cosmological parameters using Approximate Bayesian Computation (ABC) with a Population Monte Carlo (PMC) sampler. For practical examples demonstrating how to use SelfiSys, visit the `SelfiSys Examples Repository `_. References ---------- If you use the SelfiSys package in your research, please cite the following paper and feel free to `contact the authors `_ for feedback, collaboration opportunities, or other inquiries. **Diagnosing Systematic Effects Using the Inferred Initial Power Spectrum** *Hoellinger, T. and Leclercq, F., arXiv e-prints*, 2024 `arXiv:2412.04443 `_ `[astro-ph.CO] `_ `[ADS] `_ `[pdf] `_ Contributors ------------ - **Tristan Hoellinger** `tristan.hoellinger@iap.fr `_ Principal developer and maintainer, Institut d’Astrophysique de Paris (IAP). License ------- This software is distributed under the GPLv3 Licence. Please review the `LICENSE `_ file in the repository to understand the terms of use and ensure compliance. By downloading and using this software, you agree to the terms of the licence. Requirements ------------ The code is written in Python 3.10 and depends on the following packages: - `pySELFI `_: Python implementation of the Simulator Expansion for Likelihood-Free Inference. - `Simbelmynë `_: A hierarchical probabilistic simulator for generating synthetic galaxy survey data. - `ELFI `_: A statistical software package for likelihood-free inference, implementing Approximate Bayesian Computation (ABC) with a Population Monte Carlo (PMC) sampler. A comprehensive list of dependencies, along with installation instructions, will be provided in a future release. .. toctree:: :maxdepth: 2 :caption: API Documentation selfisys.hiddenbox selfisys.normalise_hb selfisys.prior selfisys.selection_functions selfisys.selfi_interface selfisys.sbmy_interface selfisys.grf selfisys.utils .. toctree:: :maxdepth: 2 :caption: Contribute ../../CONTRIBUTING.md .. toctree:: :maxdepth: 2 :caption: References ../../REFERENCES.md