mirror of
https://github.com/hoellin/selfisys_public.git
synced 2025-06-07 16:41:11 +00:00
95 lines
No EOL
4.1 KiB
ReStructuredText
95 lines
No EOL
4.1 KiB
ReStructuredText
SelfiSys: Assess the Impact of Systematic Effects in Galaxy Surveys
|
||
===================================================================
|
||
|
||
.. image:: https://img.shields.io/badge/astro--ph.CO-arxiv%3A2412.04443-B31B1B.svg
|
||
:target: https://arxiv.org/abs/2412.04443
|
||
:alt: arXiv
|
||
|
||
.. image:: https://img.shields.io/github/v/tag/hoellin/selfisys_public.svg?label=version
|
||
:target: https://github.com/hoellin/selfisys_public/releases
|
||
:alt: GitHub Release
|
||
|
||
.. image:: https://img.shields.io/github/last-commit/hoellin/selfisys_public
|
||
:target: https://github.com/hoellin/selfisys_public/commits/main
|
||
:alt: Last Commit
|
||
|
||
.. image:: https://img.shields.io/badge/License-GPLv3-blue.svg
|
||
:target: https://github.com/hoellin/selfisys_public/blob/main/LICENSE
|
||
:alt: License
|
||
|
||
**SelfiSys** is a Python package designed to address the issue of model misspecification in field-based, implicit likelihood cosmological inference.
|
||
|
||
It leverages the inferred initial matter power spectrum, enabling a thorough diagnosis of systematic effects in large-scale spectroscopic galaxy surveys.
|
||
|
||
Key Features
|
||
------------
|
||
|
||
- **Custom hidden-box forward models**
|
||
We provide a `HiddenBox` class to simulate realistic spectroscopic galaxy surveys. It accommodates fully non-linear gravitational evolution, and incorporates multiple systematic effects observed in real-world survey, e.g., misspecified galaxy bias, survey mask, selection functions, dust extinction, line interlopers, or inaccurate gravity solver.
|
||
- **Diagnosis of systematic effects**
|
||
Diagnose the impact of systematic effects using the inferred initial matter power spectrum, prior to performing cosmological inference.
|
||
- **Cosmological inference**
|
||
Perform inference of cosmological parameters using Approximate Bayesian Computation (ABC) with a Population Monte Carlo (PMC) sampler.
|
||
|
||
For practical examples demonstrating how to use SelfiSys, visit the `SelfiSys Examples Repository <https://github.com/hoellin/selfisys_examples>`_.
|
||
|
||
References
|
||
----------
|
||
|
||
If you use the SelfiSys package in your research, please cite the following paper and feel free to `contact the authors <mailto:tristan.hoellinger@iap.fr>`_ for feedback, collaboration opportunities, or other inquiries.
|
||
|
||
**Diagnosing Systematic Effects Using the Inferred Initial Power Spectrum**
|
||
*Hoellinger, T. and Leclercq, F., arXiv e-prints*, 2024
|
||
`arXiv:2412.04443 <https://arxiv.org/abs/2412.04443>`_
|
||
`[astro-ph.CO] <https://arxiv.org/abs/2412.04443>`_
|
||
`[ADS] <https://ui.adsabs.harvard.edu/abs/arXiv:2412.04443>`_
|
||
`[pdf] <https://arxiv.org/pdf/2412.04443>`_
|
||
|
||
Contributors
|
||
------------
|
||
|
||
- **Tristan Hoellinger**
|
||
`tristan.hoellinger@iap.fr <mailto:tristan.hoellinger@iap.fr>`_
|
||
|
||
Principal developer and maintainer, Institut d’Astrophysique de Paris (IAP).
|
||
|
||
License
|
||
-------
|
||
|
||
This software is distributed under the GPLv3 Licence. Please review the `LICENSE <https://github.com/hoellin/selfisys_public/blob/main/LICENSE>`_ file in the repository to understand the terms of use and ensure compliance. By downloading and using this software, you agree to the terms of the licence.
|
||
|
||
Requirements
|
||
------------
|
||
|
||
The code is written in Python 3.10 and depends on the following packages:
|
||
|
||
- `pySELFI <https://pyselfi.readthedocs.io/en/latest/>`_: Python implementation of the Simulator Expansion for Likelihood-Free Inference.
|
||
- `Simbelmynë <https://simbelmyne.readthedocs.io/en/latest/>`_: A hierarchical probabilistic simulator for generating synthetic galaxy survey data.
|
||
- `ELFI <https://elfi.readthedocs.io/en/latest/>`_: A statistical software package for likelihood-free inference, implementing Approximate Bayesian Computation (ABC) with a Population Monte Carlo (PMC) sampler.
|
||
|
||
A comprehensive list of dependencies, along with installation instructions, will be provided in a future release.
|
||
|
||
.. toctree::
|
||
:maxdepth: 2
|
||
:caption: API Documentation
|
||
|
||
selfisys.hiddenbox
|
||
selfisys.normalise_hb
|
||
selfisys.prior
|
||
selfisys.selection_functions
|
||
selfisys.selfi_interface
|
||
selfisys.sbmy_interface
|
||
selfisys.grf
|
||
selfisys.utils
|
||
|
||
.. toctree::
|
||
:maxdepth: 2
|
||
:caption: Contribute
|
||
|
||
../../CONTRIBUTING.md
|
||
|
||
.. toctree::
|
||
:maxdepth: 2
|
||
:caption: References
|
||
|
||
../../REFERENCES.md |