vide_public/external/healpix/Healpix_cxx/alm_fitsio.cc
2012-10-30 13:56:48 -04:00

250 lines
7 KiB
C++

/*
* This file is part of Healpix_cxx.
*
* Healpix_cxx is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* Healpix_cxx is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Healpix_cxx; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
* For more information about HEALPix, see http://healpix.jpl.nasa.gov
*/
/*
* Healpix_cxx is being developed at the Max-Planck-Institut fuer Astrophysik
* and financially supported by the Deutsches Zentrum fuer Luft- und Raumfahrt
* (DLR).
*/
/*
* Copyright (C) 2003-2010 Max-Planck-Society
* Author: Martin Reinecke
*/
#include <string>
#include "alm_fitsio.h"
#include "alm.h"
#include "fitshandle.h"
#include "xcomplex.h"
#include "safe_cast.h"
using namespace std;
void get_almsize(fitshandle &inp, int &lmax, int &mmax)
{
if (inp.key_present("MAX-LPOL") && inp.key_present("MAX-MPOL"))
{
inp.get_key ("MAX-LPOL",lmax);
inp.get_key ("MAX-MPOL",mmax);
return;
}
int n_alms = safe_cast<int>(inp.nelems(1));
arr<int> index;
lmax=mmax=-1;
chunkMaker cm(n_alms,inp.efficientChunkSize(1));
uint64 offset,ppix;
while(cm.getNext(offset,ppix))
{
index.alloc(ppix);
inp.read_column(1,index,offset);
for (tsize i=0; i<ppix; ++i)
{
int l = isqrt(index[i]-1);
int m = index[i] - l*l - l - 1;
if (l>lmax) lmax=l;
if (m>mmax) mmax=m;
}
}
}
void get_almsize(const string &filename, int &lmax, int &mmax, int hdunum)
{
fitshandle inp;
inp.open (filename);
inp.goto_hdu(hdunum);
get_almsize (inp, lmax, mmax);
}
void get_almsize_pol(const string &filename, int &lmax, int &mmax)
{
int tlmax, tmmax;
fitshandle inp;
inp.open (filename);
lmax=mmax=0;
for (int hdu=2; hdu<=4; ++hdu)
{
inp.goto_hdu(hdu);
get_almsize (inp,tlmax,tmmax);
if (tlmax>lmax) lmax=tlmax;
if (tmmax>mmax) mmax=tmmax;
}
}
template<typename T> void read_Alm_from_fits
(fitshandle &inp, Alm<xcomplex<T> >&alms, int lmax, int mmax)
{
int n_alms = safe_cast<int>(inp.nelems(1));
arr<int> index;
arr<T> re, im;
alms.Set(lmax, mmax);
alms.SetToZero();
int max_index = lmax*lmax + lmax + mmax + 1;
chunkMaker cm(n_alms,inp.efficientChunkSize(1));
uint64 offset,ppix;
while(cm.getNext(offset,ppix))
{
index.alloc(ppix);
re.alloc(ppix); im.alloc(ppix);
inp.read_column(1,index,offset);
inp.read_column(2,re,offset);
inp.read_column(3,im,offset);
for (tsize i=0; i<ppix; ++i)
{
if (index[i]>max_index) return;
int l = isqrt(index[i]-1);
int m = index[i] - l*l - l - 1;
planck_assert(m>=0,"negative m encountered");
planck_assert(l>=m, "wrong l,m combination");
if ((l<=lmax) && (m<=mmax))
alms(l,m).Set (re[i], im[i]);
}
}
}
template void read_Alm_from_fits (fitshandle &inp,
Alm<xcomplex<double> > &alms, int lmax, int mmax);
template void read_Alm_from_fits (fitshandle &inp,
Alm<xcomplex<float> > &alms, int lmax, int mmax);
template<typename T> void read_Alm_from_fits
(const string &filename, Alm<xcomplex<T> >&alms, int lmax, int mmax,
int hdunum)
{
fitshandle inp;
inp.open (filename);
inp.goto_hdu(hdunum);
read_Alm_from_fits(inp,alms,lmax,mmax);
}
template void read_Alm_from_fits (const string &filename,
Alm<xcomplex<double> > &alms, int lmax, int mmax, int hdunum);
template void read_Alm_from_fits (const string &filename,
Alm<xcomplex<float> > &alms, int lmax, int mmax, int hdunum);
template<typename T> void write_Alm_to_fits
(fitshandle &out, const Alm<xcomplex<T> > &alms, int lmax, int mmax,
PDT datatype)
{
vector<fitscolumn> cols;
cols.push_back (fitscolumn("index","l*l+l+m+1",1,PLANCK_INT32));
cols.push_back (fitscolumn("real","unknown",1,datatype));
cols.push_back (fitscolumn("imag","unknown",1,datatype));
out.insert_bintab(cols);
arr<int> index;
arr<double> re, im;
int lm=alms.Lmax(), mm=alms.Mmax();
int n_alms = ((mmax+1)*(mmax+2))/2 + (mmax+1)*(lmax-mmax);
int l=0, m=0;
chunkMaker cm(n_alms,out.efficientChunkSize(1));
uint64 offset,ppix;
while(cm.getNext(offset,ppix))
{
index.alloc(ppix);
re.alloc(ppix); im.alloc(ppix);
for (tsize i=0; i<ppix; ++i)
{
index[i] = l*l + l + m + 1;
if ((l<=lm) && (m<=mm))
{ re[i] = alms(l,m).re; im[i] = alms(l,m).im; }
else
{ re[i] = 0; im[i] = 0; }
++m;
if ((m>l) || (m>mmax)) { ++l; m=0; }
}
out.write_column(1,index,offset);
out.write_column(2,re,offset);
out.write_column(3,im,offset);
}
out.set_key("MAX-LPOL",lmax,"highest l in the table");
out.set_key("MAX-MPOL",mmax,"highest m in the table");
}
template void write_Alm_to_fits
(fitshandle &out, const Alm<xcomplex<double> > &alms, int lmax,
int mmax, PDT datatype);
template void write_Alm_to_fits
(fitshandle &out, const Alm<xcomplex<float> > &alms, int lmax,
int mmax, PDT datatype);
template<typename T> void write_compressed_Alm_to_fits
(fitshandle &out, const Alm<xcomplex<T> > &alms, int lmax, int mmax,
PDT datatype)
{
vector<fitscolumn> cols;
cols.push_back (fitscolumn("index","l*l+l+m+1",1,PLANCK_INT32));
cols.push_back (fitscolumn("real","unknown",1,datatype));
cols.push_back (fitscolumn("imag","unknown",1,datatype));
out.insert_bintab(cols);
arr<int> index;
arr<double> re, im;
int n_alms = 0;
for (int m=0; m<=mmax; ++m)
for (int l=m; l<=lmax; ++l)
if (alms(l,m).norm()>0) ++n_alms;
int l=0, m=0;
int real_lmax=0, real_mmax=0;
chunkMaker cm(n_alms,out.efficientChunkSize(1));
uint64 offset,ppix;
while(cm.getNext(offset,ppix))
{
index.alloc(ppix);
re.alloc(ppix); im.alloc(ppix);
for (tsize i=0; i<ppix; ++i)
{
while (alms(l,m).norm()==0)
{
++m;
if ((m>l) || (m>mmax)) { ++l; m=0; }
}
index[i] = l*l + l + m + 1;
re[i] = alms(l,m).re;
im[i] = alms(l,m).im;
if (l>real_lmax) real_lmax=l;
if (m>real_mmax) real_mmax=m;
++m;
if ((m>l) || (m>mmax)) { ++l; m=0; }
}
out.write_column(1,index,offset);
out.write_column(2,re,offset);
out.write_column(3,im,offset);
}
out.set_key("MAX-LPOL",real_lmax,"highest l in the table");
out.set_key("MAX-MPOL",real_mmax,"highest m in the table");
}
template void write_compressed_Alm_to_fits
(fitshandle &out, const Alm<xcomplex<double> > &alms, int lmax,
int mmax, PDT datatype);
template void write_compressed_Alm_to_fits
(fitshandle &out, const Alm<xcomplex<float> > &alms, int lmax,
int mmax, PDT datatype);