/* * This file is part of Healpix_cxx. * * Healpix_cxx is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * Healpix_cxx is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with Healpix_cxx; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA * * For more information about HEALPix, see http://healpix.jpl.nasa.gov */ /* * Healpix_cxx is being developed at the Max-Planck-Institut fuer Astrophysik * and financially supported by the Deutsches Zentrum fuer Luft- und Raumfahrt * (DLR). */ /* * Copyright (C) 2003-2010 Max-Planck-Society * Author: Martin Reinecke */ #include #include "alm_fitsio.h" #include "alm.h" #include "fitshandle.h" #include "xcomplex.h" #include "safe_cast.h" using namespace std; void get_almsize(fitshandle &inp, int &lmax, int &mmax) { if (inp.key_present("MAX-LPOL") && inp.key_present("MAX-MPOL")) { inp.get_key ("MAX-LPOL",lmax); inp.get_key ("MAX-MPOL",mmax); return; } int n_alms = safe_cast(inp.nelems(1)); arr index; lmax=mmax=-1; chunkMaker cm(n_alms,inp.efficientChunkSize(1)); uint64 offset,ppix; while(cm.getNext(offset,ppix)) { index.alloc(ppix); inp.read_column(1,index,offset); for (tsize i=0; ilmax) lmax=l; if (m>mmax) mmax=m; } } } void get_almsize(const string &filename, int &lmax, int &mmax, int hdunum) { fitshandle inp; inp.open (filename); inp.goto_hdu(hdunum); get_almsize (inp, lmax, mmax); } void get_almsize_pol(const string &filename, int &lmax, int &mmax) { int tlmax, tmmax; fitshandle inp; inp.open (filename); lmax=mmax=0; for (int hdu=2; hdu<=4; ++hdu) { inp.goto_hdu(hdu); get_almsize (inp,tlmax,tmmax); if (tlmax>lmax) lmax=tlmax; if (tmmax>mmax) mmax=tmmax; } } template void read_Alm_from_fits (fitshandle &inp, Alm >&alms, int lmax, int mmax) { int n_alms = safe_cast(inp.nelems(1)); arr index; arr re, im; alms.Set(lmax, mmax); alms.SetToZero(); int max_index = lmax*lmax + lmax + mmax + 1; chunkMaker cm(n_alms,inp.efficientChunkSize(1)); uint64 offset,ppix; while(cm.getNext(offset,ppix)) { index.alloc(ppix); re.alloc(ppix); im.alloc(ppix); inp.read_column(1,index,offset); inp.read_column(2,re,offset); inp.read_column(3,im,offset); for (tsize i=0; imax_index) return; int l = isqrt(index[i]-1); int m = index[i] - l*l - l - 1; planck_assert(m>=0,"negative m encountered"); planck_assert(l>=m, "wrong l,m combination"); if ((l<=lmax) && (m<=mmax)) alms(l,m).Set (re[i], im[i]); } } } template void read_Alm_from_fits (fitshandle &inp, Alm > &alms, int lmax, int mmax); template void read_Alm_from_fits (fitshandle &inp, Alm > &alms, int lmax, int mmax); template void read_Alm_from_fits (const string &filename, Alm >&alms, int lmax, int mmax, int hdunum) { fitshandle inp; inp.open (filename); inp.goto_hdu(hdunum); read_Alm_from_fits(inp,alms,lmax,mmax); } template void read_Alm_from_fits (const string &filename, Alm > &alms, int lmax, int mmax, int hdunum); template void read_Alm_from_fits (const string &filename, Alm > &alms, int lmax, int mmax, int hdunum); template void write_Alm_to_fits (fitshandle &out, const Alm > &alms, int lmax, int mmax, PDT datatype) { vector cols; cols.push_back (fitscolumn("index","l*l+l+m+1",1,PLANCK_INT32)); cols.push_back (fitscolumn("real","unknown",1,datatype)); cols.push_back (fitscolumn("imag","unknown",1,datatype)); out.insert_bintab(cols); arr index; arr re, im; int lm=alms.Lmax(), mm=alms.Mmax(); int n_alms = ((mmax+1)*(mmax+2))/2 + (mmax+1)*(lmax-mmax); int l=0, m=0; chunkMaker cm(n_alms,out.efficientChunkSize(1)); uint64 offset,ppix; while(cm.getNext(offset,ppix)) { index.alloc(ppix); re.alloc(ppix); im.alloc(ppix); for (tsize i=0; il) || (m>mmax)) { ++l; m=0; } } out.write_column(1,index,offset); out.write_column(2,re,offset); out.write_column(3,im,offset); } out.set_key("MAX-LPOL",lmax,"highest l in the table"); out.set_key("MAX-MPOL",mmax,"highest m in the table"); } template void write_Alm_to_fits (fitshandle &out, const Alm > &alms, int lmax, int mmax, PDT datatype); template void write_Alm_to_fits (fitshandle &out, const Alm > &alms, int lmax, int mmax, PDT datatype); template void write_compressed_Alm_to_fits (fitshandle &out, const Alm > &alms, int lmax, int mmax, PDT datatype) { vector cols; cols.push_back (fitscolumn("index","l*l+l+m+1",1,PLANCK_INT32)); cols.push_back (fitscolumn("real","unknown",1,datatype)); cols.push_back (fitscolumn("imag","unknown",1,datatype)); out.insert_bintab(cols); arr index; arr re, im; int n_alms = 0; for (int m=0; m<=mmax; ++m) for (int l=m; l<=lmax; ++l) if (alms(l,m).norm()>0) ++n_alms; int l=0, m=0; int real_lmax=0, real_mmax=0; chunkMaker cm(n_alms,out.efficientChunkSize(1)); uint64 offset,ppix; while(cm.getNext(offset,ppix)) { index.alloc(ppix); re.alloc(ppix); im.alloc(ppix); for (tsize i=0; il) || (m>mmax)) { ++l; m=0; } } index[i] = l*l + l + m + 1; re[i] = alms(l,m).re; im[i] = alms(l,m).im; if (l>real_lmax) real_lmax=l; if (m>real_mmax) real_mmax=m; ++m; if ((m>l) || (m>mmax)) { ++l; m=0; } } out.write_column(1,index,offset); out.write_column(2,re,offset); out.write_column(3,im,offset); } out.set_key("MAX-LPOL",real_lmax,"highest l in the table"); out.set_key("MAX-MPOL",real_mmax,"highest m in the table"); } template void write_compressed_Alm_to_fits (fitshandle &out, const Alm > &alms, int lmax, int mmax, PDT datatype); template void write_compressed_Alm_to_fits (fitshandle &out, const Alm > &alms, int lmax, int mmax, PDT datatype);