mirror of
https://bitbucket.org/cosmicvoids/vide_public.git
synced 2025-07-04 15:21:11 +00:00
371 lines
15 KiB
Python
371 lines
15 KiB
Python
#+
|
|
# VIDE -- Void IDentification and Examination -- ./analysis/xcor.py
|
|
# Copyright (C) 2010-2014 Guilhem Lavaux
|
|
# Copyright (C) 2011-2014 P. M. Sutter
|
|
#
|
|
# This program is free software; you can redistribute it and/or modify
|
|
# it under the terms of the GNU General Public License as published by
|
|
# the Free Software Foundation; version 2 of the License.
|
|
#
|
|
#
|
|
# This program is distributed in the hope that it will be useful,
|
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
# GNU General Public License for more details.
|
|
#
|
|
# You should have received a copy of the GNU General Public License along
|
|
# with this program; if not, write to the Free Software Foundation, Inc.,
|
|
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
#+
|
|
#!/usr/bin/env python
|
|
#+
|
|
# VIDE -- Void IDentification and Examination -- ./crossCompare/analysis/mergerTree.py
|
|
# Copyright (C) 2010-2013 Guilhem Lavaux
|
|
# Copyright (C) 2011-2013 P. M. Sutter
|
|
#
|
|
# This program is free software; you can redistribute it and/or modify
|
|
# it under the terms of the GNU General Public License as published by
|
|
# the Free Software Foundation; version 2 of the License.
|
|
#
|
|
#
|
|
# This program is distributed in the hope that it will be useful,
|
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
# GNU General Public License for more details.
|
|
#
|
|
# You should have received a copy of the GNU General Public License along
|
|
# with this program; if not, write to the Free Software Foundation, Inc.,
|
|
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
#+
|
|
|
|
from void_python_tools.backend import *
|
|
from void_python_tools.plotting import *
|
|
import void_python_tools.xcor as xcorlib
|
|
import imp
|
|
import pickle
|
|
import argparse
|
|
import os
|
|
import string
|
|
import numpy as np
|
|
import matplotlib as mpl
|
|
mpl.use('Agg')
|
|
import matplotlib.pyplot as plt
|
|
import matplotlib.cm as cm
|
|
from matplotlib import rc
|
|
from matplotlib.ticker import NullFormatter
|
|
import random
|
|
import sys
|
|
|
|
# ------------------------------------------------------------------------------
|
|
|
|
dataNameBase = "xcor"
|
|
|
|
parser = argparse.ArgumentParser(description='Analyze.')
|
|
parser.add_argument('--parmFile', dest='parmFile', default='datasetsToAnalyze.py',
|
|
help='path to parameter file')
|
|
args = parser.parse_args()
|
|
|
|
# ------------------------------------------------------------------------------
|
|
|
|
filename = args.parmFile
|
|
print " Loading parameters from", filename
|
|
if not os.access(filename, os.F_OK):
|
|
print " Cannot find parameter file %s!" % filename
|
|
exit(-1)
|
|
parms = imp.load_source("name", filename)
|
|
globals().update(vars(parms))
|
|
|
|
if not os.access(outputDir, os.F_OK):
|
|
os.makedirs(outputDir)
|
|
|
|
for (iSample, sampleDir) in enumerate(sampleDirList):
|
|
|
|
with open(voidBaseDir+sampleDir+"/sample_info.dat", 'rb') as input:
|
|
sample = pickle.load(input)
|
|
|
|
print " Working with", sample.fullName, "...",
|
|
sys.stdout.flush()
|
|
|
|
sampleName = sample.fullName
|
|
|
|
# Sim parameters
|
|
Lbox = sample.boxLen # Boxlength [h^(-1)Mpc]
|
|
Lbox -= 2*Lboxcut # Reduced boxlength [h^(-1)Mpc]
|
|
Om = sample.omegaM # Omega_m
|
|
Ol = 1.-Om # Omega_l
|
|
z = sample.zRange[0] # Redshift
|
|
a = 1./(1.+z) # Scale factor
|
|
rho_m = Mpart*(Ni/Lbox)**3 # Background density [(h/Mpc)^3]
|
|
|
|
# Input files
|
|
voidDir = voidBaseDir+'/'+sampleDir+'/'
|
|
voidFilename1 = 'centers_central_'+sample.fullName+'.out'
|
|
voidFilename2 = 'voidDesc_central_'+sample.fullName+'.out'
|
|
|
|
|
|
# Read files
|
|
matter_file = open(matterDir+matterFilename,'r')
|
|
matter_data = []
|
|
count = 0
|
|
sep = 1e8
|
|
for (i,line) in enumerate(matter_file):
|
|
if i/int(sep) == i/sep: print str(round(i*100./Ni**3,1))+' percent of all particles read'
|
|
if random.random() > ss: continue
|
|
count += 1
|
|
matter_data.append(line.split(',')[0:3])
|
|
|
|
print str(count)+' particles read in total'
|
|
matter_data = np.asarray(matter_data,dtype=np.float32)
|
|
matter_file.close()
|
|
|
|
|
|
halo_file = open(haloDir+haloFilename,'r')
|
|
halo_data = np.reshape(halo_file.read().replace('\n',',').split(',')[0:-1],(-1,12)).astype(np.float32)
|
|
halo_file.close()
|
|
|
|
void_file = open(voidDir+voidFilename1,'r')
|
|
void_header1 = void_file.readline().split(",")
|
|
void_data1 = np.reshape(void_file.read().split(),(-1,len(void_header))).astype(np.float32)
|
|
void_file.close()
|
|
|
|
void_file = open(voidDir+voidFilename2,'r')
|
|
void_header2 = void_file.readline().split(",")+void_file.readline().split(",")
|
|
void_data2 = np.reshape(void_file.read().split(),(-1,11)).astype(np.float32)
|
|
void_file.close()
|
|
|
|
|
|
# Define arrays
|
|
xm = matter_data[:,0:3]
|
|
|
|
xh = halo_data[:,0:3]
|
|
mh = halo_data[:,6]
|
|
|
|
xv = void_data1[:,0:3]
|
|
rv = void_data1[:,4]
|
|
vv = void_data1[:,6]
|
|
mv = void_data2[:,8]*Mpart
|
|
|
|
|
|
# Interpolate to mesh
|
|
dm, wm, ws = xcorlib.cic(xm, Lbox, Lboxcut = Lboxcut, Nmesh = Nmesh)
|
|
dh, wm, ws = xcorlib.cic(xh, Lbox, Lboxcut = Lboxcut, Nmesh = Nmesh)
|
|
dv, wm, ws = xcorlib.cic(xv, Lbox, Lboxcut = Lboxcut, Nmesh = Nmesh)
|
|
|
|
# Load dark matter grid
|
|
#output = open('dm_'+str(Nmesh)+'_ss'+str(ss)+'_z'+str(z)+'.dat', 'rb')
|
|
#dm = pickle.load(output)
|
|
#output.close()
|
|
|
|
# Save dark matter grid
|
|
#output = open('dm_'+str(Nmesh)+'_ss'+str(ss)+'_z'+str(z)+'.dat', 'wb')
|
|
#pickle.dump(dm,output)
|
|
#output.close()
|
|
|
|
|
|
# Power spectra & correlation functions
|
|
((Nm, km, Pmm, SPmm),(Nmx, rm, Xmm, SXmm)) = xcorlib.powcor(dm, dm, Lbox, Nmesh = Nmesh, Nbin = Nbin, scale = 'lin', cor = True)
|
|
((Nm, km, Pvm, SPvm),(Nmx, rm, Xvm, SXvm)) = xcorlib.powcor(dv, dm, Lbox, Nmesh = Nmesh, Nbin = Nbin, scale = 'lin', cor = True)
|
|
((Nm, km, Phm, SPhm),(Nmx, rm, Xhm, SXhm)) = xcorlib.powcor(dh, dm, Lbox, Nmesh = Nmesh, Nbin = Nbin, scale = 'lin', cor = True)
|
|
((Nm, km, Pvv, SPvv),(Nmx, rm, Xvv, SXvv)) = xcorlib.powcor(dv, dv, Lbox, Nmesh = Nmesh, Nbin = Nbin, scale = 'lin', cor = True)
|
|
((Nm, km, Pvh, SPvh),(Nmx, rm, Xvh, SXvh)) = xcorlib.powcor(dv, dh, Lbox, Nmesh = Nmesh, Nbin = Nbin, scale = 'lin', cor = True)
|
|
((Nm, km, Phh, SPhh),(Nmx, rm, Xhh, SXhh)) = xcorlib.powcor(dh, dh, Lbox, Nmesh = Nmesh, Nbin = Nbin, scale = 'lin', cor = True)
|
|
|
|
|
|
# Number densities
|
|
nm = np.empty(len(km))
|
|
nh = np.empty(len(km))
|
|
nv = np.empty(len(km))
|
|
nm[:] = Npart/Lbox**3
|
|
nh[:] = len(xh)/Lbox**3
|
|
nv[:] = len(xv)/Lbox**3
|
|
|
|
# Number functions
|
|
Mbin = 40
|
|
Vbin = 40
|
|
Nh, Mh = np.histogram(mh, bins = mh.min()*(mh.max()/mh.min())**(np.arange(Mbin+1)/float(Mbin)))
|
|
Nvm, Mv = np.histogram(mv, bins = mv.min()*(mv.max()/mv.min())**(np.arange(Vbin+1)/float(Vbin)))
|
|
Nvv, Vv = np.histogram(vv, bins = vv.min()*(vv.max()/vv.min())**(np.arange(Vbin+1)/float(Vbin)))
|
|
|
|
# Bias
|
|
b_hh = np.sqrt(Phh/Pmm)
|
|
b_vv = np.sqrt(Pvv/Pmm)
|
|
b_hm = Phm/Pmm
|
|
b_vm = Pvm/Pmm
|
|
b_vh = Pvh/Phh
|
|
|
|
knl = 0.04 # Wavenumber above which nonlinearities kick in [h/Mpc]
|
|
idls = np.where(km <= knl)[0]
|
|
bm_hm = np.average(b_hm[idls],weights=Nm[idls])
|
|
bm_vm = np.average(b_vm[idls],weights=Nm[idls])
|
|
bm_vh = np.average(b_vh[idls],weights=Nm[idls])
|
|
|
|
# Shot Noise
|
|
sn_hh = Phh - Phm**2/Pmm
|
|
sn_vh = Pvh - Pvm*Phm/Pmm
|
|
sn_vv = Pvv - Pvm**2/Pmm
|
|
|
|
|
|
|
|
# Plots
|
|
ms = 4
|
|
mew = 0.2
|
|
margin = 1.2
|
|
kmin = km.min()/margin
|
|
kmax = km.max()*margin
|
|
rmin = rm.min()/margin
|
|
rmax = rm.max()*margin
|
|
|
|
plt.imshow(np.sum(dm+1,2)/Nmesh,extent=[0,Lbox,0,Lbox],aspect='equal',cmap='YlGnBu_r',interpolation='gaussian')
|
|
plt.xlabel(r'$x \;[h^{-1}\mathrm{Mpc}]$')
|
|
plt.ylabel(r'$y \;[h^{-1}\mathrm{Mpc}]$')
|
|
plt.title(r'Dark matter')
|
|
plt.colorbar()
|
|
plt.savefig(outputDir+'/dm_'+sample.fullName+'.pdf', format='pdf', bbox_inches="tight")
|
|
plt.clf()
|
|
|
|
plt.imshow(np.sum(dv+1,2)/Nmesh,extent=[0,Lbox,0,Lbox],aspect='equal',cmap='YlGnBu_r',interpolation='gaussian')
|
|
plt.xlabel(r'$x \;[h^{-1}\mathrm{Mpc}]$')
|
|
plt.ylabel(r'$y \;[h^{-1}\mathrm{Mpc}]$')
|
|
plt.title(r'Voids')
|
|
plt.colorbar()
|
|
plt.savefig(outputDir+'/dv_'+sample.fullName+'.pdf', format='pdf', bbox_inches="tight")
|
|
plt.clf()
|
|
|
|
plt.imshow(np.sum(dh+1,2)/Nmesh,extent=[0,Lbox,0,Lbox],aspect='equal',cmap='YlGnBu_r',interpolation='gaussian')
|
|
plt.xlabel(r'$x \;[h^{-1}\mathrm{Mpc}]$')
|
|
plt.ylabel(r'$y \;[h^{-1}\mathrm{Mpc}]$')
|
|
plt.title(r'Halos')
|
|
plt.colorbar()
|
|
plt.savefig(outputDir+'/dh_'+sample.fullName+'.pdf', format='pdf', bbox_inches="tight")
|
|
plt.clf()
|
|
|
|
|
|
pa, = plt.plot(Mh[:-1], Nh, 'ro-', ms=ms, mew=mew)
|
|
pb, = plt.plot(Vv[:-1]*1e9, Nvv, 'bo-', ms=ms, mew=mew)
|
|
plt.xlabel(r'$M \;[h^{-1}M_{\odot}]$ , $V \;[h^{-3}\mathrm{kpc}^3]$')
|
|
plt.ylabel(r'$N(M,V)$')
|
|
plt.title(r'Number of halos and voids')
|
|
plt.xscale('log')
|
|
plt.yscale('log')
|
|
plt.xlim(min(10**np.floor(np.log10(Vv.min()))*1e9,10**np.floor(np.log10(Mh.min()))), max(10**np.ceil(np.log10(Mh.max())),10**np.ceil(np.log10(Vv.max()))*1e8))
|
|
plt.ylim(10**np.floor(np.log10(Nh.min())), 10**np.ceil(np.log10(Nh.max())))
|
|
plt.annotate(r'$\frac{4\pi}{3}\langle r_\mathrm{v}\rangle^3$', xy=(4./3.*np.pi*rv.mean()**3*1e9,1.1), xytext=(-50,235),textcoords='offset points',arrowprops=dict(fc='k',arrowstyle="->",connectionstyle="angle,angleA=0,angleB=90,rad=10"))
|
|
plt.legend([pa,pb],['halos','voids'],'best' )
|
|
plt.savefig(outputDir+'/number_'+sample.fullName+'.pdf', format='pdf', bbox_inches="tight")
|
|
plt.clf()
|
|
|
|
|
|
plt.subplot(211)
|
|
plt.subplots_adjust(wspace=0,hspace=0)
|
|
plt.plot(np.sort(vv), mv[np.argsort(vv)], 'r-', ms=ms, mew=mew, lw=0.01)
|
|
plt.plot(np.sort(vv), np.sort(mv), 'k-', ms=ms, mew=mew)
|
|
plt.plot(np.sort(vv), np.sort(vv)*1e9, 'k--', ms=ms, mew=mew)
|
|
plt.title(r'Mass-volume relation of voids')
|
|
plt.ylabel(r'$M \;[h^{-1}M_\odot]$')
|
|
plt.xscale('log')
|
|
plt.yscale('log')
|
|
plt.subplot(211).xaxis.set_major_formatter(NullFormatter())
|
|
plt.subplot(212)
|
|
plt.plot(np.sort(vv), mv[np.argsort(vv)]/np.sort(vv)/rho_m-1., 'b-', ms=ms, mew=mew, lw=0.01)
|
|
plt.plot(np.sort(vv), np.sort(mv)/np.sort(vv)/rho_m-1., 'k-', ms=ms, mew=mew)
|
|
plt.xlabel(r'$V \;[h^{-3}\mathrm{Mpc}^3]$')
|
|
plt.ylabel(r'$\delta$')
|
|
plt.xscale('log')
|
|
plt.yscale('linear')
|
|
plt.ylim(-1.01,-0.861)
|
|
plt.savefig(outputDir+'/massvol_'+sample.fullName+'.pdf', format='pdf', bbox_inches="tight")
|
|
plt.clf()
|
|
|
|
|
|
pa ,= plt.plot(km, Phh, 'r-', ms=ms, mew=mew)
|
|
plt.plot(km, Phh-sn_hh, 'r:', ms=ms, mew=mew)
|
|
plt.fill_between(km, Phh+SPhh, abs(Phh-SPhh), color='r', alpha=0.2)
|
|
pb ,= plt.plot(km, Phm, 'y-', ms=ms, mew=mew)
|
|
plt.fill_between(km, Phm+SPhm, abs(Phm-SPhm), color='y', alpha=0.2)
|
|
pc ,= plt.plot(km, Pmm, 'k-', ms=ms, mew=mew)
|
|
plt.plot(km, Pmm-1./nm, 'k:', ms=ms, mew=mew)
|
|
plt.fill_between(km, Pmm+SPmm, abs(Pmm-SPmm), color='k', alpha=0.2)
|
|
pd ,= plt.plot(km, Pvh, 'g-', ms=ms, mew=mew)
|
|
plt.plot(km, -Pvh, 'g--', ms=ms, mew=mew)
|
|
plt.plot(km, abs(Pvh-sn_vh), 'g:', ms=ms, mew=mew)
|
|
plt.fill_between(km, abs(Pvh+SPvh), abs(Pvh-SPvh), color='g', alpha=0.2)
|
|
pe ,= plt.plot(km, Pvm, 'm-', ms=ms, mew=mew)
|
|
plt.plot(km, -Pvm, 'm--', ms=ms, mew=mew)
|
|
plt.fill_between(km, abs(Pvm+SPvm), abs(Pvm-SPvm), color='m', alpha=0.2)
|
|
pf ,= plt.plot(km, Pvv, 'b-', ms=ms, mew=mew)
|
|
plt.plot(km, Pvv-sn_vv, 'b:', ms=ms, mew=mew)
|
|
plt.fill_between(km, Pvv+SPvv, abs(Pvv-SPvv), color='b', alpha=0.2)
|
|
plt.annotate(r'$\frac{\pi}{\langle r_\mathrm{v}\rangle}$', xy=(np.pi/(rv.mean()),1.01*10**np.floor(np.log10(abs(Pvh).min()))/margin), xytext=(10,280),textcoords='offset points',arrowprops=dict(fc='k',arrowstyle="->",connectionstyle="angle,angleA=0,angleB=90,rad=10"))
|
|
plt.xlabel(r'$k \;[h\mathrm{Mpc}^{-1}]$')
|
|
plt.ylabel(r'$P(k) \;[h^{-3}\mathrm{Mpc}^3]$')
|
|
plt.title(r'Power spectra')
|
|
plt.xscale('log')
|
|
plt.yscale('log')
|
|
plt.xlim(kmin,kmax)
|
|
plt.ylim(10**np.floor(np.log10(abs(Pvh).min()))/margin, max(10**np.ceil(np.log10(Phh.max())),10**np.ceil(np.log10(Pvv.max())))*margin)
|
|
plt.legend([pa, pb, pc, pd, pe, pf],['hh', 'hm', 'mm', 'vh', 'vm', 'vv'],'lower left' )
|
|
plt.savefig(outputDir+'/power_'+sample.fullName+'.pdf', format='pdf', bbox_inches="tight")
|
|
plt.clf()
|
|
|
|
|
|
pa ,= plt.plot(rm, Xhh, 'r-', ms=ms, mew=mew)
|
|
plt.fill_between(rm, abs(Xhh+SXhh), abs(Xhh-SXhh), color='r', alpha=0.2)
|
|
pb ,= plt.plot(rm, Xhm, 'y-', ms=ms, mew=mew)
|
|
plt.fill_between(rm, abs(Xhm+SXhm), abs(Xhm-SXhm), color='y', alpha=0.2)
|
|
pc ,= plt.plot(rm, Xmm, 'k-', ms=ms, mew=mew)
|
|
plt.fill_between(rm, abs(Xmm+SXmm), abs(Xmm-SXmm), color='k', alpha=0.2)
|
|
pd ,= plt.plot(rm, Xvh, 'g-', ms=ms, mew=mew)
|
|
plt.plot(rm, -Xvh, 'g--', ms=ms, mew=mew)
|
|
plt.fill_between(rm, abs(Xvh+SXvh), abs(Xvh-SXvh), color='g', alpha=0.2)
|
|
pe ,= plt.plot(rm, Xvm, 'm-', ms=ms, mew=mew)
|
|
plt.plot(rm, -Xvm, 'm--', ms=ms, mew=mew)
|
|
plt.fill_between(rm, abs(Xvm+SXvm), abs(Xvm-SXvm), color='m', alpha=0.2)
|
|
pf ,= plt.plot(rm, Xvv, 'b-', ms=ms, mew=mew)
|
|
plt.fill_between(rm, abs(Xvv+SXvv), abs(Xvv-SXvv), color='b', alpha=0.2)
|
|
plt.annotate(r'$\langle r_\mathrm{v}\rangle$', xy=(rv.mean(),1.01*10**np.floor(np.log10(abs(Xvh).min()))/margin), xytext=(10,300),textcoords='offset points',arrowprops=dict(fc='k',arrowstyle="->",connectionstyle="angle,angleA=0,angleB=90,rad=10"))
|
|
plt.xlabel(r'$r \;[h^{-1}\mathrm{Mpc}]$')
|
|
plt.ylabel(r'$\xi(r)$')
|
|
plt.title(r'Correlation functions')
|
|
plt.xscale('log')
|
|
plt.yscale('log')
|
|
plt.xlim(rmin,rmax)
|
|
plt.ylim(10**np.floor(np.log10(abs(Xvh).min()))/margin, max(10**np.ceil(np.log10(Xhh.max())),10**np.ceil(np.log10(Xvv.max())))*margin)
|
|
plt.legend([pa, pb, pc, pd, pe, pf],['hh', 'hm', 'mm', 'vh', 'vm', 'vv'],'lower left' )
|
|
plt.savefig(outputDir+'/correlation_'+sample.fullName+'.pdf', format='pdf', bbox_inches="tight")
|
|
plt.clf()
|
|
|
|
|
|
pa, = plt.plot(km, b_hh, 'r-', ms=ms, mew=mew)
|
|
pb, = plt.plot(km, b_hm, 'r--', ms=ms, mew=mew)
|
|
pc, = plt.plot(km, b_vv, 'b-', ms=ms, mew=mew)
|
|
pd, = plt.plot(km, b_vm, 'b--', ms=ms, mew=mew)
|
|
pe, = plt.plot(km, b_vh/bm_vh, 'g-', ms=ms, mew=mew)
|
|
plt.plot(km, np.sin(km*rv.mean())/(km*rv.mean()), 'k:', ms=ms, mew=mew)
|
|
plt.xlabel(r'$k \;[h\mathrm{Mpc}^{-1}]$')
|
|
plt.ylabel(r'$b(k)$')
|
|
plt.title(r'Bias')
|
|
plt.xscale('log')
|
|
plt.yscale('linear')
|
|
plt.xlim(kmin,kmax)
|
|
plt.ylim(np.floor(b_vm.min()),np.ceil(max(b_hh.max(),b_vv.max())))
|
|
plt.legend([pa,pb,pc,pd,pe],['hh', 'hm', 'vv', 'vm', r'$\bar{u}_\mathrm{v}(k)$'],'best' )
|
|
plt.savefig(outputDir+'/bias_'+sample.fullName+'.pdf', format='pdf', bbox_inches="tight")
|
|
plt.clf()
|
|
|
|
|
|
pa, = plt.plot(km, sn_hh, 'r-', ms=ms, mew=mew)
|
|
pb, = plt.plot(km, sn_vh, 'g-', ms=ms, mew=mew)
|
|
pc, = plt.plot(km, sn_vv, 'b-', ms=ms, mew=mew)
|
|
plt.plot(km, abs(sn_vh), 'g:')
|
|
pd, = plt.plot(km, 1/nh, 'r--')
|
|
pe, = plt.plot(km, 1/nv, 'b-.')
|
|
plt.xlabel(r'$k \;[h\mathrm{Mpc}^{-1}]$')
|
|
plt.ylabel(r'$\sigma^2(k)$')
|
|
plt.title(r'Shotnoise')
|
|
plt.xscale('log')
|
|
plt.yscale('log')
|
|
plt.xlim(kmin,kmax)
|
|
plt.ylim(10**np.floor(np.log10(abs(sn_vh).min())), 10**np.ceil(np.log10(sn_vv.max())))
|
|
plt.legend([pa,pb,pc,pd,pe],['hh', 'vh', 'vv', r'$\bar{n}_\mathrm{h}^{-1}$', r'$\bar{n}_\mathrm{v}^{-1}$'],'best' )
|
|
plt.savefig(outputDir+'/shotnoise_'+sample.fullName+'.pdf', format='pdf', bbox_inches="tight")
|
|
plt.clf()
|