mirror of
https://bitbucket.org/cosmicvoids/vide_public.git
synced 2025-07-05 07:41:11 +00:00
removed 2d correlation function
This commit is contained in:
parent
6f004beded
commit
3523e667fe
1 changed files with 2 additions and 48 deletions
|
@ -15,8 +15,8 @@ def computeXcor(catalog,
|
||||||
# Computes and plots void-void and void-matter(galaxy) correlations
|
# Computes and plots void-void and void-matter(galaxy) correlations
|
||||||
# catalog: catalog to analyze
|
# catalog: catalog to analyze
|
||||||
# figDir: where to place plots
|
# figDir: where to place plots
|
||||||
# Nmesh: number of grid cells in power spectrum calculation
|
# Nmesh: number of grid cells in cic mesh-interpolation
|
||||||
# Nbin: number of grid cells in plot
|
# Nbin: number of bins in final plots
|
||||||
|
|
||||||
# Parameters
|
# Parameters
|
||||||
Lbox = catalog.boxLen # Boxlength
|
Lbox = catalog.boxLen # Boxlength
|
||||||
|
@ -41,10 +41,6 @@ def computeXcor(catalog,
|
||||||
((Nm, km, Pvm, SPvm),(Nmx, rm, Xvm, SXvm)) = xcorlib.powcor(dvk, dmk, Lbox, Nbin, 'lin', True, True, 1)
|
((Nm, km, Pvm, SPvm),(Nmx, rm, Xvm, SXvm)) = xcorlib.powcor(dvk, dmk, Lbox, Nbin, 'lin', True, True, 1)
|
||||||
((Nm, km, Pvv, SPvv),(Nmx, rm, Xvv, SXvv)) = xcorlib.powcor(dvk, dvk, Lbox, Nbin, 'lin', True, True, 1)
|
((Nm, km, Pvv, SPvv),(Nmx, rm, Xvv, SXvv)) = xcorlib.powcor(dvk, dvk, Lbox, Nbin, 'lin', True, True, 1)
|
||||||
|
|
||||||
# 2D Power spectra & correlation functions
|
|
||||||
((Nm2d, kmper, kmpar, Pmm2d),(Nmx2d, rmper, rmpar, Xmm2d)) = xcorlib.powcor(dmk, dmk, Lbox, Nbin, 'lin', True, True, 2)
|
|
||||||
((Nm2d, kmper, kmpar, Pvm2d),(Nmx2d, rmper, rmpar, Xvm2d)) = xcorlib.powcor(dvk, dmk, Lbox, Nbin, 'lin', True, True, 2)
|
|
||||||
|
|
||||||
# Number densities
|
# Number densities
|
||||||
nm = np.empty(len(km))
|
nm = np.empty(len(km))
|
||||||
nh = np.empty(len(km))
|
nh = np.empty(len(km))
|
||||||
|
@ -155,46 +151,4 @@ def computeXcor(catalog,
|
||||||
plt.clf()
|
plt.clf()
|
||||||
|
|
||||||
|
|
||||||
# 2D power spectra & correlation functions
|
|
||||||
kpermin = kmper.min()
|
|
||||||
kpermax = 0.3001
|
|
||||||
kparmin = kmpar.min()
|
|
||||||
kparmax = 0.3001
|
|
||||||
rpermin = rmper.min()
|
|
||||||
rpermax = 40
|
|
||||||
rparmin = rmpar.min()
|
|
||||||
rparmax = 40
|
|
||||||
|
|
||||||
for (P2d,idx,vmin,vmax) in ([Pmm2d,'mm',None,None],[Pvm2d,'vm',None,None],[Phm2d,'gm',None,None],[Pvv2d,'vv',None,2.9],[Pvh2d,'vg',None,None],[Phh2d,'gg',None,None]):
|
|
||||||
cut = np.where(kmper[:,0] <= kpermax)[0].max()+2
|
|
||||||
plt.pcolormesh(kmper[0:cut,0:cut], kmpar[0:cut,0:cut], P2d[0:cut,0:cut]/1e4, cmap=cm.Spectral_r, shading='gouraud', vmin=vmin, vmax=vmax)
|
|
||||||
plt.colorbar(format='%.1f')
|
|
||||||
plt.contour(kmper[0:cut,0:cut], kmpar[0:cut,0:cut], P2d[0:cut,0:cut]/1e4, levels=np.array(P2d.min()+(P2d.max()-P2d.min())*(np.arange(Nbin/6+1)/float(Nbin/6)))/1e4, vmin=vmin, vmax=vmax, colors='k', linewidths=0.2)
|
|
||||||
plt.xlabel(r'$k_\perp \;[h\mathrm{Mpc}^{-1}]$', fontsize=fs)
|
|
||||||
plt.ylabel(r'$k_\parallel \;[h\mathrm{Mpc}^{-1}]$', fontsize=fs)
|
|
||||||
plt.axes().set_aspect('equal')
|
|
||||||
plt.xscale('linear')
|
|
||||||
plt.yscale('linear')
|
|
||||||
plt.xlim(kpermin,kpermax)
|
|
||||||
plt.ylim(kparmin,kparmax)
|
|
||||||
plt.title(r'$P_{\mathrm{'+idx+r'}}(k_\perp, k_\parallel) \;[10^4h^{-3}\mathrm{Mpc}^3]$', fontsize=fs)
|
|
||||||
plt.savefig(figDir+'/P'+idx+'2d_'+sample.fullName+'.pdf', format='pdf', bbox_inches="tight")
|
|
||||||
plt.clf()
|
|
||||||
|
|
||||||
for (X2d,idx,vmin,vmax) in ([Xmm2d,'mm',None,None],[Xvm2d,'vm',None,None],[Xhm2d,'gm',None,None],[Xvv2d,'vv',None,0.2],[Xvh2d,'vg',None,None],[Xhh2d,'gg',None,None]):
|
|
||||||
cut = np.where(rmper[:,0] <= rpermax)[0].max()+3
|
|
||||||
plt.pcolormesh(rmper[0:cut,0:cut], rmpar[0:cut,0:cut], X2d[0:cut,0:cut], cmap=cm.Spectral_r, shading='gouraud', vmin=vmin, vmax=vmax)
|
|
||||||
plt.colorbar(format='%+.2f')
|
|
||||||
plt.contour(rmper[0:cut,0:cut], rmpar[0:cut,0:cut], X2d[0:cut,0:cut], levels=np.array(X2d.min()+(X2d.max()-X2d.min())*(np.arange(Nbin/6+1)/float(Nbin/6))), vmin=vmin, vmax=vmax, colors='k', linewidths=0.2)
|
|
||||||
plt.xlabel(r'$r_\perp \;[h^{-1}\mathrm{Mpc}]$', fontsize=fs)
|
|
||||||
plt.ylabel(r'$r_\parallel \;[h^{-1}\mathrm{Mpc}]$', fontsize=fs)
|
|
||||||
plt.axes().set_aspect('equal')
|
|
||||||
plt.xscale('linear')
|
|
||||||
plt.yscale('linear')
|
|
||||||
plt.xlim(rpermin,rpermax)
|
|
||||||
plt.ylim(rparmin,rparmax)
|
|
||||||
plt.title(r'$\xi_{\mathrm{'+idx+r'}}(r_\perp, r_\parallel)$', fontsize=fs)
|
|
||||||
plt.savefig(figDir+'/X'+idx+'2d_'+sample.fullName+'.pdf', format='pdf', bbox_inches="tight")
|
|
||||||
plt.clf()
|
|
||||||
|
|
||||||
return
|
return
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue