initial commit
This commit is contained in:
commit
95df4b9c63
6 changed files with 1099 additions and 0 deletions
2
README.md
Normal file
2
README.md
Normal file
|
@ -0,0 +1,2 @@
|
|||
This is pysphereproj
|
||||
|
25
pyproject.toml
Normal file
25
pyproject.toml
Normal file
|
@ -0,0 +1,25 @@
|
|||
[project]
|
||||
version = "1.0"
|
||||
requires-python = ">= 3.8"
|
||||
name = "pysphereproj"
|
||||
dependencies = [
|
||||
"numpy"
|
||||
]
|
||||
authors = [
|
||||
{ name = "Guilhem Lavaux", email = "guilhem.lavaux@iap.fr" }
|
||||
]
|
||||
readme = "README.md"
|
||||
classifiers = [
|
||||
"Intended Audience :: Developers",
|
||||
"License :: OSI Approved :: MIT License",
|
||||
"Programming Language :: Python :: 3"
|
||||
]
|
||||
|
||||
[project.urls]
|
||||
Homepage = "https://git.aquila-consortium.org/guilhem_lavaux/pysphereproj"
|
||||
Issues = "https://git.aquila-consortium.org/guilhem_lavaux/pysphereproj/issues"
|
||||
|
||||
[build-system]
|
||||
requires = ["setuptools >= 61.0", "wheel", "Cython"]
|
||||
build-backend = "setuptools.build_meta"
|
||||
|
11
setup.py
Normal file
11
setup.py
Normal file
|
@ -0,0 +1,11 @@
|
|||
from setuptools import setup, Extension
|
||||
from Cython.Build import cythonize
|
||||
|
||||
extensions = [
|
||||
Extension("sphereproj._project", ["sphereproj/_project.pyx", "sphereproj/project_tool.hpp", "sphereproj/openmp.hpp"])
|
||||
]
|
||||
|
||||
|
||||
setup(
|
||||
ext_modules = cythonize(extensions)
|
||||
)
|
900
sphereproj/_project.pyx
Normal file
900
sphereproj/_project.pyx
Normal file
|
@ -0,0 +1,900 @@
|
|||
from cpython cimport bool
|
||||
from cython cimport view
|
||||
from cython.parallel import prange, parallel
|
||||
from libc.math cimport sin, cos, abs, floor, round, sqrt
|
||||
import numpy as np
|
||||
cimport numpy as npx
|
||||
cimport cython
|
||||
from copy cimport *
|
||||
|
||||
ctypedef npx.float64_t DTYPE_t
|
||||
DTYPE=np.float64
|
||||
FORMAT_DTYPE="d"
|
||||
|
||||
__all__=["project_cic","line_of_sight_projection","spherical_projection","DTYPE","interp3d","interp2d"]
|
||||
|
||||
cdef extern from "project_tool.hpp" namespace "":
|
||||
|
||||
DTYPE_t compute_projection(DTYPE_t *vertex_value, DTYPE_t *u, DTYPE_t *u0, DTYPE_t rho) nogil
|
||||
|
||||
cdef extern from "openmp.hpp" namespace "sphereproj":
|
||||
int smp_get_max_threads() nogil
|
||||
int smp_get_thread_id() nogil
|
||||
|
||||
|
||||
@cython.boundscheck(False)
|
||||
@cython.cdivision(True)
|
||||
@cython.wraparound(False)
|
||||
cdef void interp3d_INTERNAL_periodic(DTYPE_t x, DTYPE_t y,
|
||||
DTYPE_t z,
|
||||
DTYPE_t[:,:,:] d, DTYPE_t Lbox, DTYPE_t *retval) nogil:
|
||||
|
||||
cdef int Ngrid = d.shape[0]
|
||||
cdef DTYPE_t inv_delta = Ngrid/Lbox
|
||||
cdef int ix, iy, iz
|
||||
cdef DTYPE_t f[2][2][2]
|
||||
cdef DTYPE_t rx, ry, rz
|
||||
cdef int jx, jy, jz
|
||||
|
||||
rx = (inv_delta*x)
|
||||
ry = (inv_delta*y)
|
||||
rz = (inv_delta*z)
|
||||
|
||||
ix = int(floor(rx))
|
||||
iy = int(floor(ry))
|
||||
iz = int(floor(rz))
|
||||
|
||||
|
||||
rx -= ix
|
||||
ry -= iy
|
||||
rz -= iz
|
||||
|
||||
ix = ix % Ngrid
|
||||
iy = iy % Ngrid
|
||||
iz = iz % Ngrid
|
||||
|
||||
jx = (ix+1)%Ngrid
|
||||
jy = (iy+1)%Ngrid
|
||||
jz = (iz+1)%Ngrid
|
||||
|
||||
ix = ix%Ngrid
|
||||
iy = iy%Ngrid
|
||||
iz = iz%Ngrid
|
||||
|
||||
f[0][0][0] = (1-rx)*(1-ry)*(1-rz)
|
||||
f[1][0][0] = ( rx)*(1-ry)*(1-rz)
|
||||
f[0][1][0] = (1-rx)*( ry)*(1-rz)
|
||||
f[1][1][0] = ( rx)*( ry)*(1-rz)
|
||||
|
||||
f[0][0][1] = (1-rx)*(1-ry)*( rz)
|
||||
f[1][0][1] = ( rx)*(1-ry)*( rz)
|
||||
f[0][1][1] = (1-rx)*( ry)*( rz)
|
||||
f[1][1][1] = ( rx)*( ry)*( rz)
|
||||
|
||||
retval[0] = \
|
||||
d[ix ,iy ,iz ] * f[0][0][0] + \
|
||||
d[jx ,iy ,iz ] * f[1][0][0] + \
|
||||
d[ix ,jy ,iz ] * f[0][1][0] + \
|
||||
d[jx ,jy ,iz ] * f[1][1][0] + \
|
||||
d[ix ,iy ,jz ] * f[0][0][1] + \
|
||||
d[jx ,iy ,jz ] * f[1][0][1] + \
|
||||
d[ix ,jy ,jz ] * f[0][1][1] + \
|
||||
d[jx ,jy ,jz ] * f[1][1][1]
|
||||
|
||||
@cython.boundscheck(False)
|
||||
@cython.cdivision(True)
|
||||
@cython.wraparound(False)
|
||||
cdef void ngp3d_INTERNAL_periodic(DTYPE_t x, DTYPE_t y,
|
||||
DTYPE_t z,
|
||||
DTYPE_t[:,:,:] d, DTYPE_t Lbox, DTYPE_t *retval) nogil:
|
||||
|
||||
cdef int Ngrid = d.shape[0]
|
||||
cdef DTYPE_t inv_delta = Ngrid/Lbox
|
||||
cdef int ix, iy, iz
|
||||
cdef DTYPE_t f[2][2][2]
|
||||
cdef DTYPE_t rx, ry, rz
|
||||
cdef int jx, jy, jz
|
||||
|
||||
rx = (inv_delta*x)
|
||||
ry = (inv_delta*y)
|
||||
rz = (inv_delta*z)
|
||||
|
||||
ix = int(round(rx))
|
||||
iy = int(round(ry))
|
||||
iz = int(round(rz))
|
||||
|
||||
|
||||
ix = ix%Ngrid
|
||||
iy = iy%Ngrid
|
||||
iz = iz%Ngrid
|
||||
|
||||
retval[0] = d[ix ,iy ,iz ]
|
||||
|
||||
|
||||
@cython.boundscheck(False)
|
||||
@cython.cdivision(True)
|
||||
@cython.wraparound(False)
|
||||
cdef void ngp3d_INTERNAL(DTYPE_t x, DTYPE_t y,
|
||||
DTYPE_t z,
|
||||
DTYPE_t[:,:,:] d, DTYPE_t Lbox, DTYPE_t *retval, DTYPE_t inval) nogil:
|
||||
|
||||
cdef int Ngrid = d.shape[0]
|
||||
cdef DTYPE_t inv_delta = Ngrid/Lbox
|
||||
cdef int ix, iy, iz
|
||||
cdef DTYPE_t f[2][2][2]
|
||||
cdef DTYPE_t rx, ry, rz
|
||||
cdef int jx, jy, jz
|
||||
|
||||
rx = (inv_delta*x)
|
||||
ry = (inv_delta*y)
|
||||
rz = (inv_delta*z)
|
||||
|
||||
ix = int(round(rx))
|
||||
iy = int(round(ry))
|
||||
iz = int(round(rz))
|
||||
|
||||
if ((ix < 0) or (ix+1) >= Ngrid or (iy < 0) or (iy+1) >= Ngrid or (iz < 0) or (iz+1) >= Ngrid):
|
||||
retval[0] = inval
|
||||
return
|
||||
|
||||
retval[0] = d[ix ,iy ,iz ]
|
||||
|
||||
|
||||
@cython.boundscheck(False)
|
||||
@cython.cdivision(True)
|
||||
@cython.wraparound(False)
|
||||
cdef void interp3d_INTERNAL(DTYPE_t x, DTYPE_t y,
|
||||
DTYPE_t z,
|
||||
DTYPE_t[:,:,:] d, DTYPE_t Lbox, DTYPE_t *retval, DTYPE_t inval) nogil:
|
||||
|
||||
cdef int Ngrid = d.shape[0]
|
||||
cdef DTYPE_t inv_delta = Ngrid/Lbox
|
||||
cdef int ix, iy, iz
|
||||
cdef DTYPE_t f[2][2][2]
|
||||
cdef DTYPE_t rx, ry, rz
|
||||
|
||||
rx = (inv_delta*x)
|
||||
ry = (inv_delta*y)
|
||||
rz = (inv_delta*z)
|
||||
|
||||
ix = int(floor(rx))
|
||||
iy = int(floor(ry))
|
||||
iz = int(floor(rz))
|
||||
|
||||
rx -= ix
|
||||
ry -= iy
|
||||
rz -= iz
|
||||
|
||||
if ((ix < 0) or (ix+1) >= Ngrid or (iy < 0) or (iy+1) >= Ngrid or (iz < 0) or (iz+1) >= Ngrid):
|
||||
retval[0] = inval
|
||||
return
|
||||
# assert ((ix >= 0) and ((ix+1) < Ngrid))
|
||||
# assert ((iy >= 0) and ((iy+1) < Ngrid))
|
||||
# assert ((iz >= 0) and ((iz+1) < Ngrid))
|
||||
|
||||
f[0][0][0] = (1-rx)*(1-ry)*(1-rz)
|
||||
f[1][0][0] = ( rx)*(1-ry)*(1-rz)
|
||||
f[0][1][0] = (1-rx)*( ry)*(1-rz)
|
||||
f[1][1][0] = ( rx)*( ry)*(1-rz)
|
||||
|
||||
f[0][0][1] = (1-rx)*(1-ry)*( rz)
|
||||
f[1][0][1] = ( rx)*(1-ry)*( rz)
|
||||
f[0][1][1] = (1-rx)*( ry)*( rz)
|
||||
f[1][1][1] = ( rx)*( ry)*( rz)
|
||||
|
||||
retval[0] = \
|
||||
d[ix ,iy ,iz ] * f[0][0][0] + \
|
||||
d[ix+1,iy ,iz ] * f[1][0][0] + \
|
||||
d[ix ,iy+1,iz ] * f[0][1][0] + \
|
||||
d[ix+1,iy+1,iz ] * f[1][1][0] + \
|
||||
d[ix ,iy ,iz+1] * f[0][0][1] + \
|
||||
d[ix+1,iy ,iz+1] * f[1][0][1] + \
|
||||
d[ix ,iy+1,iz+1] * f[0][1][1] + \
|
||||
d[ix+1,iy+1,iz+1] * f[1][1][1]
|
||||
|
||||
@cython.boundscheck(False)
|
||||
def interp3d(x not None, y not None,
|
||||
z not None,
|
||||
npx.ndarray[DTYPE_t, ndim=3] d not None, DTYPE_t Lbox,
|
||||
bool periodic=False, bool centered=True, bool ngp=False, DTYPE_t inval = 0):
|
||||
""" interp3d(x,y,z,d,Lbox,periodic=False,centered=True,ngp=False) -> interpolated values
|
||||
|
||||
Compute the tri-linear interpolation of the given field (d) at the given position (x,y,z). It assumes that they are box-centered coordinates. So (x,y,z) == (0,0,0) is equivalent to the pixel at (Nx/2,Ny/2,Nz/2) with Nx,Ny,Nz = d.shape. If periodic is set, it assumes the box is periodic
|
||||
"""
|
||||
cdef npx.ndarray[DTYPE_t] out
|
||||
cdef DTYPE_t[:] out_slice
|
||||
cdef DTYPE_t[:] ax, ay, az
|
||||
cdef DTYPE_t[:,:,:] in_slice
|
||||
cdef DTYPE_t retval
|
||||
cdef long i
|
||||
cdef long Nelt
|
||||
cdef int myperiodic, myngp
|
||||
cdef DTYPE_t shifter
|
||||
|
||||
myperiodic = periodic
|
||||
myngp = ngp
|
||||
|
||||
if centered:
|
||||
shifter = Lbox/2
|
||||
else:
|
||||
shifter = 0
|
||||
|
||||
if d.shape[0] != d.shape[1] or d.shape[0] != d.shape[2]:
|
||||
raise ValueError("Grid must have a cubic shape")
|
||||
|
||||
|
||||
ierror = IndexError("Interpolating outside range")
|
||||
if type(x) == np.ndarray or type(y) == np.ndarray or type(z) == np.ndarray:
|
||||
if type(x) != np.ndarray or type(y) != np.ndarray or type(z) != np.ndarray:
|
||||
raise ValueError("All or no array. No partial arguments")
|
||||
|
||||
ax = x
|
||||
ay = y
|
||||
az = z
|
||||
assert ax.size == ay.size and ax.size == az.size
|
||||
|
||||
out = np.empty(x.shape, dtype=DTYPE)
|
||||
out_slice = out
|
||||
in_slice = d
|
||||
Nelt = ax.size
|
||||
with nogil:
|
||||
if not myngp:
|
||||
if myperiodic:
|
||||
for i in prange(Nelt):
|
||||
interp3d_INTERNAL_periodic(shifter+ax[i], shifter+ay[i], shifter+az[i], in_slice, Lbox, &out_slice[i])
|
||||
else:
|
||||
for i in prange(Nelt):
|
||||
interp3d_INTERNAL(shifter+ax[i], shifter+ay[i], shifter+az[i], in_slice, Lbox, &out_slice[i], inval)
|
||||
else:
|
||||
if myperiodic:
|
||||
for i in prange(Nelt):
|
||||
ngp3d_INTERNAL_periodic(shifter+ax[i], shifter+ay[i], shifter+az[i], in_slice, Lbox, &out_slice[i])
|
||||
else:
|
||||
for i in prange(Nelt):
|
||||
ngp3d_INTERNAL(shifter+ax[i], shifter+ay[i], shifter+az[i], in_slice, Lbox, &out_slice[i], inval)
|
||||
return out
|
||||
else:
|
||||
if not myngp:
|
||||
if periodic:
|
||||
interp3d_INTERNAL_periodic(shifter+x, shifter+y, shifter+z, d, Lbox, &retval)
|
||||
else:
|
||||
interp3d_INTERNAL(shifter+x, shifter+y, shifter+z, d, Lbox, &retval, inval)
|
||||
else:
|
||||
if periodic:
|
||||
ngp3d_INTERNAL_periodic(shifter+x, shifter+y, shifter+z, d, Lbox, &retval)
|
||||
else:
|
||||
ngp3d_INTERNAL(shifter+x, shifter+y, shifter+z, d, Lbox, &retval, inval)
|
||||
return retval
|
||||
|
||||
@cython.boundscheck(False)
|
||||
@cython.cdivision(True)
|
||||
cdef DTYPE_t interp2d_INTERNAL_periodic(DTYPE_t x, DTYPE_t y,
|
||||
npx.ndarray[DTYPE_t, ndim=2] d, DTYPE_t Lbox) except? 0:
|
||||
|
||||
cdef int Ngrid = d.shape[0]
|
||||
cdef DTYPE_t inv_delta = Ngrid/Lbox
|
||||
cdef int ix, iy
|
||||
cdef DTYPE_t f[2][2]
|
||||
cdef DTYPE_t rx, ry
|
||||
cdef int jx, jy
|
||||
|
||||
rx = (inv_delta*x + Ngrid/2)
|
||||
ry = (inv_delta*y + Ngrid/2)
|
||||
|
||||
ix = int(floor(rx))
|
||||
iy = int(floor(ry))
|
||||
|
||||
rx -= ix
|
||||
ry -= iy
|
||||
|
||||
while ix < 0:
|
||||
ix += Ngrid
|
||||
while iy < 0:
|
||||
iy += Ngrid
|
||||
|
||||
jx = (ix+1)%Ngrid
|
||||
jy = (iy+1)%Ngrid
|
||||
|
||||
assert ((ix >= 0) and ((jx) < Ngrid))
|
||||
assert ((iy >= 0) and ((jy) < Ngrid))
|
||||
|
||||
f[0][0] = (1-rx)*(1-ry)
|
||||
f[1][0] = ( rx)*(1-ry)
|
||||
f[0][1] = (1-rx)*( ry)
|
||||
f[1][1] = ( rx)*( ry)
|
||||
|
||||
return \
|
||||
d[ix ,iy ] * f[0][0] + \
|
||||
d[jx ,iy ] * f[1][0] + \
|
||||
d[ix ,jy ] * f[0][1] + \
|
||||
d[jx ,jy ] * f[1][1]
|
||||
|
||||
|
||||
@cython.boundscheck(False)
|
||||
@cython.cdivision(True)
|
||||
cdef DTYPE_t interp2d_INTERNAL(DTYPE_t x, DTYPE_t y,
|
||||
npx.ndarray[DTYPE_t, ndim=2] d, DTYPE_t Lbox) except? 0:
|
||||
|
||||
cdef int Ngrid = d.shape[0]
|
||||
cdef DTYPE_t inv_delta = Ngrid/Lbox
|
||||
cdef int ix, iy
|
||||
cdef DTYPE_t f[2][2]
|
||||
cdef DTYPE_t rx, ry
|
||||
|
||||
rx = (inv_delta*x + Ngrid/2)
|
||||
ry = (inv_delta*y + Ngrid/2)
|
||||
|
||||
ix = int(floor(rx))
|
||||
iy = int(floor(ry))
|
||||
|
||||
rx -= ix
|
||||
ry -= iy
|
||||
|
||||
if ((ix < 0) or (ix+1) >= Ngrid):
|
||||
raise IndexError("X coord out of bound (ix=%d, x=%g)" % (ix,x))
|
||||
if ((iy < 0) or (iy+1) >= Ngrid):
|
||||
raise IndexError("Y coord out of bound (iy=%d, y=%g)" % (iy,y))
|
||||
# assert ((ix >= 0) and ((ix+1) < Ngrid))
|
||||
# assert ((iy >= 0) and ((iy+1) < Ngrid))
|
||||
# assert ((iz >= 0) and ((iz+1) < Ngrid))
|
||||
|
||||
f[0][0] = (1-rx)*(1-ry)
|
||||
f[1][0] = ( rx)*(1-ry)
|
||||
f[0][1] = (1-rx)*( ry)
|
||||
f[1][1] = ( rx)*( ry)
|
||||
|
||||
return \
|
||||
d[ix ,iy ] * f[0][0] + \
|
||||
d[ix+1,iy ] * f[1][0] + \
|
||||
d[ix ,iy+1] * f[0][1] + \
|
||||
d[ix+1,iy+1] * f[1][1]
|
||||
|
||||
def interp2d(x not None, y not None,
|
||||
npx.ndarray[DTYPE_t, ndim=2] d not None, DTYPE_t Lbox,
|
||||
bool periodic=False):
|
||||
cdef npx.ndarray[DTYPE_t] out
|
||||
cdef npx.ndarray[DTYPE_t] ax, ay
|
||||
cdef int i
|
||||
|
||||
if d.shape[0] != d.shape[1]:
|
||||
raise ValueError("Grid must have a square shape")
|
||||
|
||||
if type(x) == np.ndarray or type(y) == np.ndarray:
|
||||
if type(x) != np.ndarray or type(y) != np.ndarray:
|
||||
raise ValueError("All or no array. No partial arguments")
|
||||
|
||||
ax = x
|
||||
ay = y
|
||||
assert ax.size == ay.size
|
||||
|
||||
out = np.empty(x.shape, dtype=DTYPE)
|
||||
if periodic:
|
||||
for i in range(ax.size):
|
||||
out[i] = interp2d_INTERNAL_periodic(ax[i], ay[i], d, Lbox)
|
||||
else:
|
||||
for i in range(ax.size):
|
||||
out[i] = interp2d_INTERNAL(ax[i], ay[i], d, Lbox)
|
||||
|
||||
return out
|
||||
else:
|
||||
if periodic:
|
||||
return interp2d_INTERNAL_periodic(x, y, d, Lbox)
|
||||
else:
|
||||
return interp2d_INTERNAL(x, y, d, Lbox)
|
||||
|
||||
|
||||
@cython.boundscheck(False)
|
||||
@cython.cdivision(True)
|
||||
cdef void INTERNAL_project_cic_no_mass(DTYPE_t[:,:,:] g,
|
||||
DTYPE_t[:,:] x, int Ngrid, double Lbox, double shifter) nogil:
|
||||
cdef double delta_Box = Ngrid/Lbox
|
||||
cdef int i
|
||||
cdef double a[3]
|
||||
cdef double c[3]
|
||||
cdef int b[3]
|
||||
cdef int do_not_put
|
||||
|
||||
for i in range(x.shape[0]):
|
||||
|
||||
do_not_put = 0
|
||||
for j in range(3):
|
||||
a[j] = (x[i,j]+shifter)*delta_Box
|
||||
b[j] = int(floor(a[j]))
|
||||
a[j] -= b[j]
|
||||
c[j] = 1-a[j]
|
||||
if b[j] < 0 or b[j]+1 >= Ngrid:
|
||||
do_not_put = True
|
||||
|
||||
if not do_not_put:
|
||||
g[b[0],b[1],b[2]] += c[0]*c[1]*c[2]
|
||||
g[b[0]+1,b[1],b[2]] += a[0]*c[1]*c[2]
|
||||
g[b[0],b[1]+1,b[2]] += c[0]*a[1]*c[2]
|
||||
g[b[0]+1,b[1]+1,b[2]] += a[0]*a[1]*c[2]
|
||||
|
||||
g[b[0],b[1],b[2]+1] += c[0]*c[1]*a[2]
|
||||
g[b[0]+1,b[1],b[2]+1] += a[0]*c[1]*a[2]
|
||||
g[b[0],b[1]+1,b[2]+1] += c[0]*a[1]*a[2]
|
||||
g[b[0]+1,b[1]+1,b[2]+1] += a[0]*a[1]*a[2]
|
||||
|
||||
@cython.boundscheck(False)
|
||||
@cython.cdivision(True)
|
||||
cdef void INTERNAL_project_cic_no_mass_periodic(DTYPE_t[:,:,:] g,
|
||||
DTYPE_t[:,:] x, int Ngrid, double Lbox, double shifter) nogil:
|
||||
cdef double delta_Box = Ngrid/Lbox
|
||||
cdef int i
|
||||
cdef double a[3]
|
||||
cdef double c[3]
|
||||
cdef int b[3]
|
||||
cdef int b1[3]
|
||||
cdef int do_not_put
|
||||
cdef DTYPE_t[:,:] ax
|
||||
cdef DTYPE_t[:,:,:] ag
|
||||
|
||||
ax = x
|
||||
ag = g
|
||||
|
||||
for i in range(x.shape[0]):
|
||||
|
||||
do_not_put = 0
|
||||
for j in range(3):
|
||||
a[j] = (ax[i,j]+shifter)*delta_Box
|
||||
b[j] = int(floor(a[j]))
|
||||
b1[j] = (b[j]+1) % Ngrid
|
||||
|
||||
a[j] -= b[j]
|
||||
c[j] = 1-a[j]
|
||||
|
||||
b[j] %= Ngrid
|
||||
|
||||
ag[b[0],b[1],b[2]] += c[0]*c[1]*c[2]
|
||||
ag[b1[0],b[1],b[2]] += a[0]*c[1]*c[2]
|
||||
ag[b[0],b1[1],b[2]] += c[0]*a[1]*c[2]
|
||||
ag[b1[0],b1[1],b[2]] += a[0]*a[1]*c[2]
|
||||
|
||||
ag[b[0],b[1],b1[2]] += c[0]*c[1]*a[2]
|
||||
ag[b1[0],b[1],b1[2]] += a[0]*c[1]*a[2]
|
||||
ag[b[0],b1[1],b1[2]] += c[0]*a[1]*a[2]
|
||||
ag[b1[0],b1[1],b1[2]] += a[0]*a[1]*a[2]
|
||||
|
||||
|
||||
@cython.boundscheck(False)
|
||||
@cython.cdivision(True)
|
||||
cdef void INTERNAL_project_cic_with_mass(DTYPE_t[:,:,:] g,
|
||||
DTYPE_t[:,:] x,
|
||||
DTYPE_t[:] mass,
|
||||
int Ngrid, double Lbox, double shifter) nogil:
|
||||
cdef double delta_Box = Ngrid/Lbox
|
||||
cdef int i
|
||||
cdef double a[3]
|
||||
cdef double c[3]
|
||||
cdef DTYPE_t m0
|
||||
cdef int b[3]
|
||||
|
||||
for i in range(x.shape[0]):
|
||||
|
||||
do_not_put = False
|
||||
for j in range(3):
|
||||
a[j] = (x[i,j]+shifter)*delta_Box
|
||||
b[j] = int(a[j])
|
||||
a[j] -= b[j]
|
||||
c[j] = 1-a[j]
|
||||
if b[j] < 0 or b[j]+1 >= Ngrid:
|
||||
do_not_put = True
|
||||
|
||||
if not do_not_put:
|
||||
m0 = mass[i]
|
||||
|
||||
g[b[0],b[1],b[2]] += c[0]*c[1]*c[2]*m0
|
||||
g[b[0]+1,b[1],b[2]] += a[0]*c[1]*c[2]*m0
|
||||
g[b[0],b[1]+1,b[2]] += c[0]*a[1]*c[2]*m0
|
||||
g[b[0]+1,b[1]+1,b[2]] += a[0]*a[1]*c[2]*m0
|
||||
|
||||
g[b[0],b[1],b[2]+1] += c[0]*c[1]*a[2]*m0
|
||||
g[b[0]+1,b[1],b[2]+1] += a[0]*c[1]*a[2]*m0
|
||||
g[b[0],b[1]+1,b[2]+1] += c[0]*a[1]*a[2]*m0
|
||||
g[b[0]+1,b[1]+1,b[2]+1] += a[0]*a[1]*a[2]*m0
|
||||
|
||||
@cython.boundscheck(False)
|
||||
@cython.cdivision(True)
|
||||
cdef void INTERNAL_project_cic_with_mass_periodic(DTYPE_t[:,:,:] g,
|
||||
DTYPE_t[:,:] x,
|
||||
DTYPE_t[:] mass,
|
||||
int Ngrid, double Lbox, double shifter) nogil:
|
||||
cdef double half_Box = 0.5*Lbox, m0
|
||||
cdef double delta_Box = Ngrid/Lbox
|
||||
cdef int i
|
||||
cdef double a[3]
|
||||
cdef double c[3]
|
||||
cdef int b[3]
|
||||
cdef int b1[3]
|
||||
|
||||
for i in range(x.shape[0]):
|
||||
for j in range(3):
|
||||
a[j] = (x[i,j]+shifter)*delta_Box
|
||||
b[j] = int(floor(a[j]))
|
||||
b1[j] = (b[j]+1) % Ngrid
|
||||
|
||||
a[j] -= b[j]
|
||||
c[j] = 1-a[j]
|
||||
|
||||
b[j] %= Ngrid
|
||||
|
||||
|
||||
m0 = mass[i]
|
||||
g[b[0],b[1],b[2]] += c[0]*c[1]*c[2]*m0
|
||||
g[b1[0],b[1],b[2]] += a[0]*c[1]*c[2]*m0
|
||||
g[b[0],b1[1],b[2]] += c[0]*a[1]*c[2]*m0
|
||||
g[b1[0],b1[1],b[2]] += a[0]*a[1]*c[2]*m0
|
||||
|
||||
g[b[0],b[1],b1[2]] += c[0]*c[1]*a[2]*m0
|
||||
g[b1[0],b[1],b1[2]] += a[0]*c[1]*a[2]*m0
|
||||
g[b[0],b1[1],b1[2]] += c[0]*a[1]*a[2]*m0
|
||||
g[b1[0],b1[1],b1[2]] += a[0]*a[1]*a[2]*m0
|
||||
|
||||
|
||||
def project_cic(npx.ndarray[DTYPE_t, ndim=2] x not None, npx.ndarray[DTYPE_t, ndim=1] mass, int Ngrid,
|
||||
double Lbox, bool periodic = False, centered=True, output=None):
|
||||
"""
|
||||
project_cic(x array (N,3), mass (may be None), Ngrid, Lbox, periodict, centered=True, output=None)
|
||||
|
||||
This function does a Cloud-In-Cell projection of a 3d unstructured dataset. First argument is a Nx3 array of coordinates.
|
||||
Second argument is an optinal mass. Ngrid is the size output grid and Lbox is the physical size of the grid.
|
||||
if output is not None, it must be a numpy array with dimension NgridxNgridxNgrid. The result will be accumulated in that array.
|
||||
"""
|
||||
cdef npx.ndarray[DTYPE_t, ndim=3] g
|
||||
cdef double shifter
|
||||
cdef bool local_periodic
|
||||
cdef DTYPE_t[:] d_mass
|
||||
|
||||
local_periodic = periodic
|
||||
|
||||
if centered:
|
||||
shifter = 0.5*Lbox
|
||||
else:
|
||||
shifter = 0
|
||||
|
||||
if x.shape[1] != 3:
|
||||
raise ValueError("Invalid shape for x array")
|
||||
|
||||
if mass is not None and mass.shape[0] != x.shape[0]:
|
||||
raise ValueError("Mass array and coordinate array must have the same number of elements")
|
||||
|
||||
if output is None:
|
||||
g = np.zeros((Ngrid,Ngrid,Ngrid),dtype=DTYPE)
|
||||
else:
|
||||
if type(output) != np.ndarray:
|
||||
raise ValueError("Invalid array type")
|
||||
g = output
|
||||
|
||||
cdef DTYPE_t[:,:,:] d_g = g
|
||||
cdef DTYPE_t[:,:] d_x = x
|
||||
|
||||
if not local_periodic:
|
||||
if mass is None:
|
||||
with nogil:
|
||||
INTERNAL_project_cic_no_mass(d_g, d_x, Ngrid, Lbox, shifter)
|
||||
else:
|
||||
d_mass = mass
|
||||
with nogil:
|
||||
INTERNAL_project_cic_with_mass(d_g, d_x, d_mass, Ngrid, Lbox, shifter)
|
||||
else:
|
||||
if mass is None:
|
||||
with nogil:
|
||||
INTERNAL_project_cic_no_mass_periodic(d_g, d_x, Ngrid, Lbox, shifter)
|
||||
else:
|
||||
d_mass = mass
|
||||
with nogil:
|
||||
INTERNAL_project_cic_with_mass_periodic(d_g, d_x, d_mass, Ngrid, Lbox, shifter)
|
||||
|
||||
return g
|
||||
|
||||
def tophat_fourier_internal(npx.ndarray[DTYPE_t, ndim=1] x not None):
|
||||
cdef int i
|
||||
cdef npx.ndarray[DTYPE_t] y
|
||||
cdef DTYPE_t x0
|
||||
|
||||
y = np.empty(x.size, dtype=DTYPE)
|
||||
|
||||
for i in range(x.size):
|
||||
x0 = x[i]
|
||||
if abs(x0)<1e-5:
|
||||
y[i] = 1
|
||||
else:
|
||||
y[i] = (3*(sin(x0) - x0 * cos(x0))/(x0**3))
|
||||
|
||||
return y
|
||||
|
||||
def tophat_fourier(x not None):
|
||||
cdef npx.ndarray[DTYPE_t, ndim=1] b
|
||||
|
||||
if type(x) != np.ndarray:
|
||||
raise ValueError("x must be a Numpy array")
|
||||
|
||||
b = np.array(x, dtype=DTYPE).ravel()
|
||||
|
||||
b = tophat_fourier_internal(b)
|
||||
|
||||
return b.reshape(x.shape)
|
||||
|
||||
|
||||
|
||||
@cython.boundscheck(False)
|
||||
@cython.cdivision(True)
|
||||
cdef DTYPE_t cube_integral(DTYPE_t u[3], DTYPE_t u0[3], int r[1], DTYPE_t alpha_max) nogil:
|
||||
cdef DTYPE_t tmp_a
|
||||
cdef DTYPE_t v[3]
|
||||
cdef int i, j
|
||||
|
||||
for i in xrange(3):
|
||||
if u[i] == 0.:
|
||||
continue
|
||||
|
||||
if u[i] < 0:
|
||||
tmp_a = -u0[i]/u[i]
|
||||
else:
|
||||
tmp_a = (1-u0[i])/u[i]
|
||||
|
||||
if tmp_a < alpha_max:
|
||||
alpha_max = tmp_a
|
||||
j = i
|
||||
|
||||
for i in range(3):
|
||||
u0[i] += u[i]*alpha_max
|
||||
|
||||
r[0] = j
|
||||
|
||||
return alpha_max
|
||||
|
||||
@cython.boundscheck(False)
|
||||
@cython.cdivision(True)
|
||||
cdef DTYPE_t cube_integral_trilin(DTYPE_t u[3], DTYPE_t u0[3], int r[1], DTYPE_t vertex_value[8], DTYPE_t alpha_max) nogil:
|
||||
cdef DTYPE_t I, tmp_a
|
||||
cdef DTYPE_t v[3]
|
||||
cdef DTYPE_t term[4]
|
||||
cdef int i, j, q
|
||||
|
||||
j = 0
|
||||
for i in range(3):
|
||||
if u[i] == 0.:
|
||||
continue
|
||||
|
||||
if u[i] < 0:
|
||||
tmp_a = -u0[i]/u[i]
|
||||
else:
|
||||
tmp_a = (1-u0[i])/u[i]
|
||||
|
||||
if tmp_a < alpha_max:
|
||||
alpha_max = tmp_a
|
||||
j = i
|
||||
|
||||
I = compute_projection(vertex_value, u, u0, alpha_max)
|
||||
|
||||
for i in xrange(3):
|
||||
u0[i] += u[i]*alpha_max
|
||||
|
||||
# alpha_max is the integration length
|
||||
# we integrate between 0 and alpha_max (curvilinear coordinates)
|
||||
r[0] = j
|
||||
|
||||
return I
|
||||
|
||||
@cython.boundscheck(False)
|
||||
cdef DTYPE_t integrator0(DTYPE_t[:,:,:] density,
|
||||
DTYPE_t u[3], DTYPE_t u0[3], int u_delta[3], int iu0[3], int jumper[1], DTYPE_t alpha_max) nogil:
|
||||
cdef DTYPE_t d
|
||||
|
||||
d = density[iu0[0], iu0[1], iu0[2]]
|
||||
|
||||
return cube_integral(u, u0, jumper, alpha_max)*d
|
||||
|
||||
@cython.boundscheck(False)
|
||||
cdef DTYPE_t integrator1(DTYPE_t[:,:,:] density,
|
||||
DTYPE_t u[3], DTYPE_t u0[3], int u_delta[3], int iu0[3], int jumper[1], DTYPE_t alpha_max) nogil:
|
||||
cdef DTYPE_t vertex_value[8]
|
||||
cdef DTYPE_t d
|
||||
cdef int a[3][2]
|
||||
cdef int i
|
||||
|
||||
for i in xrange(3):
|
||||
a[i][0] = iu0[i]
|
||||
a[i][1] = iu0[i]+1
|
||||
|
||||
vertex_value[0 + 2*0 + 4*0] = density[a[0][0], a[1][0], a[2][0]]
|
||||
vertex_value[1 + 2*0 + 4*0] = density[a[0][1], a[1][0], a[2][0]]
|
||||
vertex_value[0 + 2*1 + 4*0] = density[a[0][0], a[1][1], a[2][0]]
|
||||
vertex_value[1 + 2*1 + 4*0] = density[a[0][1], a[1][1], a[2][0]]
|
||||
|
||||
vertex_value[0 + 2*0 + 4*1] = density[a[0][0], a[1][0], a[2][1]]
|
||||
vertex_value[1 + 2*0 + 4*1] = density[a[0][1], a[1][0], a[2][1]]
|
||||
vertex_value[0 + 2*1 + 4*1] = density[a[0][0], a[1][1], a[2][1]]
|
||||
vertex_value[1 + 2*1 + 4*1] = density[a[0][1], a[1][1], a[2][1]]
|
||||
|
||||
return cube_integral_trilin(u, u0, jumper, vertex_value, alpha_max)
|
||||
|
||||
|
||||
|
||||
@cython.boundscheck(False)
|
||||
cdef DTYPE_t C_line_of_sight_projection(DTYPE_t[:,:,:] density,
|
||||
DTYPE_t a_u[3],
|
||||
DTYPE_t min_distance,
|
||||
DTYPE_t max_distance, DTYPE_t[:] shifter, int integrator_id) nogil except? 0:
|
||||
|
||||
cdef DTYPE_t u[3]
|
||||
cdef DTYPE_t ifu0[3]
|
||||
cdef DTYPE_t u0[3]
|
||||
cdef DTYPE_t utot[3]
|
||||
cdef int u_delta[3]
|
||||
cdef int iu0[3]
|
||||
cdef int i
|
||||
cdef int N = density.shape[0]
|
||||
cdef int half_N = density.shape[0]//2
|
||||
cdef int completed
|
||||
cdef DTYPE_t I0, d, dist2, delta, s, max_distance2
|
||||
cdef int jumper[1]
|
||||
|
||||
cdef DTYPE_t (*integrator)(DTYPE_t[:,:,:],
|
||||
DTYPE_t u[3], DTYPE_t u0[3], int u_delta[3], int iu0[3], int jumper[1], DTYPE_t alpha_max) nogil
|
||||
|
||||
if integrator_id == 0:
|
||||
integrator = integrator0
|
||||
else:
|
||||
integrator = integrator1
|
||||
|
||||
max_distance2 = max_distance**2
|
||||
|
||||
for i in range(3):
|
||||
u[i] = a_u[i]
|
||||
u0[i] = a_u[i]*min_distance
|
||||
ifu0[i] = half_N+u0[i]+shifter[i]
|
||||
if (ifu0[i] <= 0 or ifu0[i] >= N):
|
||||
return 0
|
||||
iu0[i] = int(floor(ifu0[i]))
|
||||
u0[i] = ifu0[i]-iu0[i]
|
||||
u_delta[i] = 1 if iu0[i] > 0 else -1
|
||||
if (not ((iu0[i]>= 0) and (iu0[i] < N))):
|
||||
with gil:
|
||||
raise RuntimeError("iu0[%d] = %d !!" % (i,iu0[i]))
|
||||
|
||||
if (not (u0[i]>=0 and u0[i]<=1)):
|
||||
with gil:
|
||||
raise RuntimeError("u0[%d] = %g !" % (i,u0[i]))
|
||||
|
||||
completed = 0
|
||||
if ((iu0[0] >= N-1) or (iu0[0] <= 0) or
|
||||
(iu0[1] >= N-1) or (iu0[1] <= 0) or
|
||||
(iu0[2] >= N-1) or (iu0[2] <= 0)):
|
||||
completed = 1
|
||||
|
||||
I0 = 0
|
||||
jumper[0] = 0
|
||||
dist2 = 0
|
||||
while completed == 0:
|
||||
I0 += integrator(density, u, u0, u_delta, iu0, jumper, max_distance-sqrt(dist2))
|
||||
|
||||
if u[jumper[0]] < 0:
|
||||
iu0[jumper[0]] -= 1
|
||||
u0[jumper[0]] = 1
|
||||
else:
|
||||
iu0[jumper[0]] += 1
|
||||
u0[jumper[0]] = 0
|
||||
|
||||
|
||||
if ((iu0[0] >= N-1) or (iu0[0] <= 0) or
|
||||
(iu0[1] >= N-1) or (iu0[1] <= 0) or
|
||||
(iu0[2] >= N-1) or (iu0[2] <= 0)):
|
||||
completed = 1
|
||||
else:
|
||||
dist2 = 0
|
||||
for i in range(3):
|
||||
delta = iu0[i]+u0[i]-half_N-shifter[i]
|
||||
dist2 += delta*delta
|
||||
|
||||
if (dist2 > max_distance2):
|
||||
# Remove the last portion of the integral
|
||||
#delta = sqrt(dist2) - max_distance
|
||||
#I0 -= d*delta
|
||||
completed = 1
|
||||
|
||||
return I0
|
||||
|
||||
def line_of_sight_projection(DTYPE_t[:,:,:] density not None,
|
||||
DTYPE_t[:] a_u not None,
|
||||
DTYPE_t min_distance,
|
||||
DTYPE_t max_distance, DTYPE_t[:] shifter not None, int integrator_id=0):
|
||||
cdef DTYPE_t u[3]
|
||||
|
||||
u[0] = a_u[0]
|
||||
u[1] = a_u[1]
|
||||
u[2] = a_u[2]
|
||||
|
||||
return C_line_of_sight_projection(density,
|
||||
u,
|
||||
min_distance,
|
||||
max_distance, shifter, integrator_id)
|
||||
|
||||
cdef double _spherical_projloop(double theta, double phi, DTYPE_t[:,:,:] density,
|
||||
double min_distance, double max_distance,
|
||||
DTYPE_t[:] shifter, int integrator_id) nogil:
|
||||
cdef DTYPE_t u0[3]
|
||||
|
||||
stheta = sin(theta)
|
||||
u0[0] = cos(phi)*stheta
|
||||
u0[1] = sin(phi)*stheta
|
||||
u0[2] = cos(theta)
|
||||
|
||||
return C_line_of_sight_projection(density, u0, min_distance, max_distance, shifter, integrator_id)
|
||||
|
||||
|
||||
@cython.boundscheck(False)
|
||||
def spherical_projection(int Nside,
|
||||
npx.ndarray[DTYPE_t, ndim=3] density not None,
|
||||
DTYPE_t min_distance,
|
||||
DTYPE_t max_distance, int progress=1, int integrator_id=0, DTYPE_t[:] shifter = None, int booster=-1):
|
||||
"""
|
||||
spherical_projection(Nside, density, min_distance, max_distance, progress=1, integrator_id=0, shifter=None, booster=-1)
|
||||
|
||||
Keyword arguments:
|
||||
progress (int): show progress if it is equal to 1
|
||||
integrator_id (int): specify the order of integration along the line of shift
|
||||
shifter (DTYPE_t array): this is an array of size 3. It specifies the amount of shift to apply to the center, in unit of voxel
|
||||
booster (int): what is the frequency of refreshment of the progress bar. Small number decreases performance by locking the GIL.
|
||||
|
||||
|
||||
Arguments:
|
||||
Nside (int): Nside of the returned map
|
||||
density (NxNxN array): this is the density field, expressed as a cubic array
|
||||
min_distance (float): lower bound of the integration
|
||||
max_distance (float): upper bound of the integration
|
||||
|
||||
Returns:
|
||||
an healpix map, as a 1-dimensional array.
|
||||
"""
|
||||
import healpy as hp
|
||||
import progressbar as pb
|
||||
cdef int i
|
||||
cdef DTYPE_t[:] theta,phi
|
||||
cdef DTYPE_t[:,:,:] density_view
|
||||
cdef DTYPE_t[:] outm
|
||||
cdef int[:] job_done
|
||||
cdef npx.ndarray[DTYPE_t, ndim=1] outm_array
|
||||
cdef long N, N0
|
||||
cdef double stheta
|
||||
cdef int tid
|
||||
|
||||
if shifter is None:
|
||||
shifter = view.array(shape=(3,), format=FORMAT_DTYPE, itemsize=sizeof(DTYPE_t))
|
||||
shifter[:] = 0
|
||||
|
||||
print("allocating map")
|
||||
outm_array = np.empty(hp.nside2npix(Nside),dtype=DTYPE)
|
||||
print("initializing views")
|
||||
outm = outm_array
|
||||
density_view = density
|
||||
|
||||
print("progress?")
|
||||
if progress != 0:
|
||||
p = pb.ProgressBar(maxval=outm.size,widgets=[pb.Bar(), pb.ETA()]).start()
|
||||
|
||||
N = smp_get_max_threads()
|
||||
N0 = outm.size
|
||||
|
||||
if booster < 0:
|
||||
booster = 1#000
|
||||
|
||||
job_done = view.array(shape=(N,), format="i", itemsize=sizeof(int))
|
||||
job_done[:] = 0
|
||||
theta,phi = hp.pix2ang(Nside, np.arange(N0))
|
||||
with nogil, parallel():
|
||||
tid = smp_get_thread_id()
|
||||
for i in prange(N0,schedule='dynamic',chunksize=256):
|
||||
if progress != 0 and (i%booster) == 0:
|
||||
with gil:
|
||||
p.update(_mysum(job_done))
|
||||
outm[i] = _spherical_projloop(theta[i], phi[i], density_view, min_distance, max_distance, shifter, integrator_id)
|
||||
job_done[tid] += 1
|
||||
|
||||
if progress:
|
||||
p.finish()
|
||||
|
||||
|
||||
return outm_array
|
41
sphereproj/openmp.hpp
Normal file
41
sphereproj/openmp.hpp
Normal file
|
@ -0,0 +1,41 @@
|
|||
#pragma once
|
||||
|
||||
#ifdef _OPENMP
|
||||
#include <omp.h>
|
||||
#endif
|
||||
|
||||
namespace sphereproj {
|
||||
|
||||
static int smp_get_max_threads() {
|
||||
#ifdef _OPENMP
|
||||
return omp_get_max_threads();
|
||||
#else
|
||||
return 1;
|
||||
#endif
|
||||
}
|
||||
|
||||
static int smp_get_thread_id() {
|
||||
#ifdef _OPENMP
|
||||
return omp_get_thread_num();
|
||||
#else
|
||||
return 0;
|
||||
#endif
|
||||
}
|
||||
|
||||
static int smp_get_num_threads() {
|
||||
#ifdef _OPENMP
|
||||
return omp_get_num_threads();
|
||||
#else
|
||||
return 1;
|
||||
#endif
|
||||
|
||||
}
|
||||
|
||||
static void smp_set_nested(bool n) {
|
||||
#ifdef _OPENMP
|
||||
omp_set_nested(n ? 1 : 0);
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
};
|
120
sphereproj/project_tool.hpp
Normal file
120
sphereproj/project_tool.hpp
Normal file
|
@ -0,0 +1,120 @@
|
|||
|
||||
// Only in 3d
|
||||
|
||||
template<typename T, typename ProdType>
|
||||
static T project_tool(T *vertex_value, T *u, T *u0)
|
||||
{
|
||||
T ret0 = 0;
|
||||
for (unsigned int i = 0; i < 8; i++)
|
||||
{
|
||||
unsigned int c[3] = { i & 1, (i>>1)&1, (i>>2)&1 };
|
||||
int epsilon[3];
|
||||
T ret = 0;
|
||||
|
||||
for (int q = 0; q < 3; q++)
|
||||
epsilon[q] = 2*c[q]-1;
|
||||
|
||||
for (int q = 0; q < ProdType::numProducts; q++)
|
||||
ret += ProdType::product(u, u0, epsilon, q);
|
||||
ret *= vertex_value[i];
|
||||
ret0 += ret;
|
||||
}
|
||||
|
||||
return ret0;
|
||||
}
|
||||
|
||||
|
||||
template<typename T>
|
||||
static inline T get_u0(const T& u0, int epsilon)
|
||||
{
|
||||
return (1-epsilon)/2 + epsilon*u0;
|
||||
// return (epsilon > 0) ? u0 : (1-u0);
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
struct ProductTerm0
|
||||
{
|
||||
static const int numProducts = 1;
|
||||
|
||||
static inline T product(T *u, T *u0, int *epsilon, int q)
|
||||
{
|
||||
T a = 1;
|
||||
|
||||
for (unsigned int r = 0; r < 3; r++)
|
||||
a *= get_u0(u0[r], epsilon[r]);
|
||||
return a;
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
template<typename T>
|
||||
struct ProductTerm1
|
||||
{
|
||||
static const int numProducts = 3;
|
||||
|
||||
static T product(T *u, T *u0, int *epsilon, int q)
|
||||
{
|
||||
T a = 1;
|
||||
T G[3];
|
||||
|
||||
for (unsigned int r = 0; r < 3; r++)
|
||||
{
|
||||
G[r] = get_u0(u0[r], epsilon[r]);
|
||||
}
|
||||
|
||||
T F[3] = { G[1]*G[2], G[0]*G[2], G[0]*G[1] };
|
||||
|
||||
return F[q] * u[q] * epsilon[q];
|
||||
}
|
||||
};
|
||||
|
||||
template<typename T>
|
||||
struct ProductTerm2
|
||||
{
|
||||
static const int numProducts = 3;
|
||||
|
||||
static inline T product(T *u, T *u0, int *epsilon, int q)
|
||||
{
|
||||
T a = 1;
|
||||
T G[3];
|
||||
|
||||
for (unsigned int r = 0; r < 3; r++)
|
||||
{
|
||||
G[r] = get_u0(u0[r], epsilon[r]);
|
||||
}
|
||||
|
||||
T F[3] = { epsilon[1]*epsilon[2]*u[1]*u[2], epsilon[0]*epsilon[2]*u[0]*u[2], epsilon[0]*epsilon[1]*u[0]*u[1] };
|
||||
|
||||
return F[q] * G[q];
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
|
||||
template<typename T>
|
||||
struct ProductTerm3
|
||||
{
|
||||
static const int numProducts = 1;
|
||||
|
||||
static inline T product(T *u, T *u0, int *epsilon, int q)
|
||||
{
|
||||
return epsilon[0]*epsilon[1]*epsilon[2]*u[0]*u[1]*u[2];
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
template<typename T>
|
||||
T compute_projection(T *vertex_value, T *u, T *u0, T rho)
|
||||
{
|
||||
T ret;
|
||||
|
||||
ret = project_tool<T, ProductTerm0<T> >(vertex_value, u, u0) * rho;
|
||||
ret += project_tool<T, ProductTerm1<T> >(vertex_value, u, u0) * rho * rho / 2;
|
||||
ret += project_tool<T, ProductTerm2<T> >(vertex_value, u, u0) * rho * rho * rho / 3;
|
||||
ret += project_tool<T, ProductTerm3<T> >(vertex_value, u, u0) * rho * rho * rho * rho / 4;
|
||||
return ret;
|
||||
}
|
||||
|
||||
template
|
||||
double compute_projection(double *vertex_value, double *u, double *u0, double rho);
|
||||
|
Loading…
Reference in a new issue