Merge branch 'master' of bitbucket.org:glavaux/cosmotool

This commit is contained in:
Guilhem Lavaux 2014-07-05 22:05:27 +02:00
commit 15e824a097
8 changed files with 95 additions and 54 deletions

View File

@ -1,3 +1,5 @@
import matplotlib
matplotlib.use('Agg')
import healpy as hp import healpy as hp
import numpy as np import numpy as np
import cosmotool as ct import cosmotool as ct
@ -21,7 +23,8 @@ parser.add_argument('--iid', type=int, default=0)
parser.add_argument('--proj_cat', type=bool, default=False) parser.add_argument('--proj_cat', type=bool, default=False)
args = parser.parse_args() args = parser.parse_args()
INDATA="/nethome/lavaux/Copy/PlusSimulation/BORG/Input_Data/2m++.npy" #INDATA="/nethome/lavaux/Copy/PlusSimulation/BORG/Input_Data/2m++.npy"
INDATA="2m++.npy"
tmpp = np.load(INDATA) tmpp = np.load(INDATA)
L = args.boxsize L = args.boxsize

View File

@ -3,6 +3,8 @@ import numpy as np
import cosmotool as ct import cosmotool as ct
import argparse import argparse
import h5py as h5 import h5py as h5
import matplotlib
matplotlib.use('Agg')
from matplotlib import pyplot as plt from matplotlib import pyplot as plt
import ksz import ksz
from ksz.constants import * from ksz.constants import *
@ -54,48 +56,60 @@ def build_unit_vectors(N):
return ux,uy,uz return ux,uy,uz
def build_radial_v(v): def build_radial_v(v):
N = v[0].shape[0]
u = build_unit_vectors(N) u = build_unit_vectors(N)
vr = v[0] * u[0] vr = v[0] * u[2]
vr += v[1] * u[1] vr += v[1] * u[1]
vr += v[2] * u[2] vr += v[2] * u[0]
return vr
def generate_from_catalog(vfield,Boxsize): return vr.transpose()
def generate_from_catalog(vfield,Boxsize,dmin,dmax):
import progressbar as pbar import progressbar as pbar
cat = np.load("2m++.npy") cat = np.load("2m++.npy")
profiler = KSZ_Isothermal(2.37)
cat['distance'] = cat['best_velcmb'] cat['distance'] = cat['best_velcmb']
cat = cat[np.where((cat['distance']>100*dmin)*(cat['distance']<dmax*100))] cat = cat[np.where((cat['distance']>100*dmin)*(cat['distance']<dmax*100))]
deg2rad = np.pi/180 deg2rad = np.pi/180
Npix = 12*Nside**2
xp,yp,zp = hp.pix2vec(Nside, np.arange(Npix)) xp,yp,zp = hp.pix2vec(Nside, np.arange(Npix))
N2 = np.sqrt(xp**2+yp**2+zp**2) N2 = np.sqrt(xp**2+yp**2+zp**2)
ksz_template = np.zeros(12*Nside**2, dtype=np.float64) ksz_template = np.zeros(Npix, dtype=np.float64)
ksz_mask = np.zeros(12**Nside**2, dtype=np.uint8) ksz_mask = np.zeros(Npix, dtype=np.uint8)
pb = pbar.ProgressBar(maxval = cat.size, widgets=[pb.Bar(), pb.ETA()]).start() pb = pbar.ProgressBar(maxval = cat.size, widgets=[pbar.Bar(), pbar.ETA()]).start()
for k,i in np.ndenumerate(cat): for k,i in np.ndenumerate(cat):
pb.update(k) pb.update(k[0])
l,b=i['gal_long'],i['gal_lat'] l,b=i['gal_long'],i['gal_lat']
ra,dec=i['ra'],i['dec']
l *= deg2rad l *= deg2rad
b *= deg2rad b *= deg2rad
x0 = np.cos(l)*np.cos(b) ra *= deg2rad
y0 = np.sin(l)*np.cos(b) dec *= deg2rad
z0 = np.sin(b)
# x0 = np.cos(l)*np.cos(b)
# y0 = np.sin(l)*np.cos(b)
# z0 = np.sin(b)
x0 = xra = np.cos(ra)*np.cos(dec)
y0 = yra = np.sin(ra)*np.cos(dec)
z0 = zra = np.sin(dec)
DA =i['distance']/100 DA =i['distance']/100
Lgal = DA**2*10**(0.4*(tmpp_cat['Msun']-i['K2MRS']+25)) Lgal = DA**2*10**(0.4*(tmpp_cat['Msun']-i['K2MRS']+25))
idx0 = hp.query_disc(Nside, (x0,y0,z0), 3*rGalaxy/DA) profiler = ksz.KSZ_Isothermal(Lgal, 2.37)
vr = interp3d(DA * x0, DA * y0, DA * z0, vfield, Boxsize) idx0 = hp.query_disc(Nside, (x0,y0,z0), 3*profiler.rGalaxy/DA)
vr = interp3d(DA * xra, DA * yra, DA * zra, vfield, Boxsize)
xp1 = xp[idx0] xp1 = xp[idx0]
yp1 = yp[idx0] yp1 = yp[idx0]
@ -119,18 +133,33 @@ for i in xrange(args.start,args.end,args.step):
ff=plt.figure(1) ff=plt.figure(1)
plt.clf() plt.clf()
v=[] v=[]
with h5.File(args.base_h5 % i, mode="r") as f: fname = args.base_h5 % i
p = wrapper_impulsion(f) if False:
v.append(p[i] / f['density'][:]) print("Opening %s..." % fname)
with h5.File(fname, mode="r") as f:
p = wrapper_impulsion(f)
for j in xrange(3):
v.append(p[j] / f['density'][:])
print("Building radial velocities...")
# Rescale by Omega_b / Omega_m # Rescale by Omega_b / Omega_m
vr = build_radial_v(v) vr = build_radial_v(v)
vr *= -ksz_normalization*rho_mean_matter*1e6 # _,_,vr = build_unit_vectors(128)
del v # vr *= 1000 * 500
vr *= ksz_normalization*1e6
del v
# np.save("vr.npy", vr)
else:
print("Loading vrs...")
vr = np.load("vr.npy")
proj = generate_from_catalog(vfield,Boxsize) print("Generating map...")
proj,mask = generate_from_catalog(vr,args.boxsize,args.depth_min,args.depth_max)
hp.write_map(args.ksz_map % i, proj) hp.write_map(args.ksz_map % i, proj)
hp.write_map((args.ksz_map % i) + "_mask", mask)
hp.mollview(proj, fig=1, coord='CG', cmap=plt.cm.coolwarm, title='Sample %d' % i, min=args.minval, hp.mollview(proj, fig=1, coord='CG', cmap=plt.cm.coolwarm, title='Sample %d' % i, min=args.minval,
max=args.maxval) max=args.maxval)

View File

@ -52,8 +52,8 @@ def compute_ref_power(L, N, cosmo, bins=10, range=(0,1), func='HU_WIGGLES'):
p.normalize(cosmo['SIGMA8']) p.normalize(cosmo['SIGMA8'])
return bin_power(p.compute(k)*cosmo['h']**3, L, bins=bins, range=range) return bin_power(p.compute(k)*cosmo['h']**3, L, bins=bins, range=range)
def run_generation(input_borg, a_borg, a_ic, cosmo, supersample=1, do_lpt2=True, shiftPixel=False, needvel=True): def run_generation(input_borg, a_borg, a_ic, cosmo, supersample=1, do_lpt2=True, shiftPixel=False, psi_instead=False, needvel=True):
""" Generate particles and velocities from a BORG snapshot. Returns a tuple of """ Generate particles and velocities from a BORG snapshot. Returns a tuple of
(positions,velocities,N,BoxSize,scale_factor).""" (positions,velocities,N,BoxSize,scale_factor)."""
@ -74,7 +74,7 @@ def run_generation(input_borg, a_borg, a_ic, cosmo, supersample=1, do_lpt2=True,
# Compute LPT scaling coefficient # Compute LPT scaling coefficient
D1 = cgrowth.D(a_ic) D1 = cgrowth.D(a_ic)
D1_0 = D1/cgrowth.D(a_borg) D1_0 = D1/cgrowth.D(a_borg)
velmul = cgrowth.compute_velmul(a_ic) velmul = cgrowth.compute_velmul(a_ic) if not psi_instead else 1
D2 = -3./7 * D1_0**2 D2 = -3./7 * D1_0**2
@ -96,7 +96,7 @@ def run_generation(input_borg, a_borg, a_ic, cosmo, supersample=1, do_lpt2=True,
print("velmul=%lg" % (cosmo['h']*velmul)) print("velmul=%lg" % (cosmo['h']*velmul))
lpt.cube.dhat = lpt.dhat lpt.cube.dhat = lpt.dhat
density = lpt.cube.irfft() density = lpt.cube.irfft()
density *= (cgrowth.D(1)/cgrowth.D(a_borg)) density *= (cgrowth.D(1)/cgrowth.D(a_borg))
return posx,vel,density,N*supersample,L,a_ic,cosmo return posx,vel,density,N*supersample,L,a_ic,cosmo
@ -119,7 +119,7 @@ def whitify(density, L, cosmo, supergenerate=1, func='HU_WIGGLES'):
Pk = build_Pk() Pk = build_Pk()
Pk[0,0,0]=1 Pk[0,0,0]=1
cube = CubeFT(N, L) cube = CubeFT(L, N)
cube.density = density cube.density = density
density_hat = cube.rfft() density_hat = cube.rfft()
density_hat /= np.sqrt(Pk) density_hat /= np.sqrt(Pk)
@ -170,15 +170,15 @@ def write_icfiles(*generated_ic, **kwargs):
supergenerate=kwargs['supergenerate'] supergenerate=kwargs['supergenerate']
posx,vel,density,N,L,a_ic,cosmo = generated_ic posx,vel,density,N,L,a_ic,cosmo = generated_ic
ct.simpleWriteGadget("borg.gad", posx, velocities=vel, boxsize=L, Hubble=cosmo['h'], Omega_M=cosmo['omega_M_0'], time=a_ic) ct.simpleWriteGadget("Data/borg.gad", posx, velocities=vel, boxsize=L, Hubble=cosmo['h'], Omega_M=cosmo['omega_M_0'], time=a_ic)
for i,c in enumerate(["x","y","z"]): for i,c in enumerate(["x","y","z"]):
ct.writeGrafic("ic_velc%s" % c, vel[i].reshape((N,N,N)), L, a_ic, **cosmo) ct.writeGrafic("Data/ic_velc%s" % c, vel[i].reshape((N,N,N)), L, a_ic, **cosmo)
ct.writeGrafic("ic_deltab", density, L, a_ic, **cosmo) ct.writeGrafic("Data/ic_deltab", density, L, a_ic, **cosmo)
ct.writeWhitePhase("white.dat", whitify(density, L, cosmo, supergenerate=supergenerate)) ct.writeWhitePhase("Data/white.dat", whitify(density, L, cosmo, supergenerate=supergenerate))
with file("white_params", mode="w") as f: with file("Data/white_params", mode="w") as f:
f.write("4\n%lg, %lg, %lg\n" % (cosmo['omega_M_0'], cosmo['omega_lambda_0'], 100*cosmo['h'])) f.write("4\n%lg, %lg, %lg\n" % (cosmo['omega_M_0'], cosmo['omega_lambda_0'], 100*cosmo['h']))
f.write("%lg\n%lg\n-%lg\n0,0\n" % (cosmo['omega_B_0'],cosmo['ns'],cosmo['SIGMA8'])) f.write("%lg\n%lg\n-%lg\n0,0\n" % (cosmo['omega_B_0'],cosmo['ns'],cosmo['SIGMA8']))
f.write("-%lg\n1\n0\n\n\n\n\n" % L) f.write("-%lg\n1\n0\n\n\n\n\n" % L)

View File

@ -1,3 +1,4 @@
import numexpr as ne
import multiprocessing import multiprocessing
import pyfftw import pyfftw
import weakref import weakref
@ -13,14 +14,14 @@ class CubeFT(object):
self.max_cpu = multiprocessing.cpu_count() if max_cpu < 0 else max_cpu self.max_cpu = multiprocessing.cpu_count() if max_cpu < 0 else max_cpu
self._dhat = pyfftw.n_byte_align_empty((self.N,self.N,self.N/2+1), self.align, dtype='complex64') self._dhat = pyfftw.n_byte_align_empty((self.N,self.N,self.N/2+1), self.align, dtype='complex64')
self._density = pyfftw.n_byte_align_empty((self.N,self.N,self.N), self.align, dtype='float32') self._density = pyfftw.n_byte_align_empty((self.N,self.N,self.N), self.align, dtype='float32')
self.irfft = pyfftw.FFTW(self._dhat, self._density, axes=(0,1,2), direction='FFTW_BACKWARD', threads=self.max_cpu, normalize_idft=False) self._irfft = pyfftw.FFTW(self._dhat, self._density, axes=(0,1,2), direction='FFTW_BACKWARD', threads=self.max_cpu, normalize_idft=False)
self.rfft = pyfftw.FFTW(self._density, self._dhat, axes=(0,1,2), threads=self.max_cpu, normalize_idft=False) self._rfft = pyfftw.FFTW(self._density, self._dhat, axes=(0,1,2), threads=self.max_cpu, normalize_idft=False)
def rfft(self): def rfft(self):
return self.rfft()*(self.L/self.N)**3 return ne.evaluate('c*a', local_dict={'c':self._rfft(normalise_idft=False),'a':(self.L/self.N)**3})
def irfft(self): def irfft(self):
return self.irfft()/self.L**3 return ne.evaluate('c*a', local_dict={'c':self._irfft(normalise_idft=False),'a':(1/self.L)**3})
def get_dhat(self): def get_dhat(self):
return self._dhat return self._dhat
@ -152,16 +153,18 @@ class LagrangianPerturbation(object):
k2 = self._get_k2() k2 = self._get_k2()
k2[0,0,0] = 1 k2[0,0,0] = 1
potgen0 = lambda i: ne.evaluate('kdir**2*d/k2',local_dict={'kdir':self._kdir(i),'d':self.dhat,'k2':k2} )
potgen = lambda i,j: ne.evaluate('kdir0*kdir1*d/k2',local_dict={'kdir0':self._kdir(i),'kdir1':self._kdir(j),'d':self.dhat,'k2':k2} )
if 'lpt2_potential' not in self.cache: if 'lpt2_potential' not in self.cache:
print("Rebuilding potential...") print("Rebuilding potential...")
div_phi2 = np.zeros((self.N,self.N,self.N), dtype=np.float64) div_phi2 = np.zeros((self.N,self.N,self.N), dtype=np.float64)
for j in xrange(3): for j in xrange(3):
q = self._do_irfft( self._kdir(j)**2*self.dhat / k2 ).copy() q = self._do_irfft( potgen0(j) ).copy()
for i in xrange(j+1, 3): for i in xrange(j+1, 3):
div_phi2 += q * self._do_irfft( self._kdir(i)**2*self.dhat / k2 ) div_phi2 += q * self._do_irfft( potgen0(i) )
div_phi2 -= (self._do_irfft(self._kdir(j)*self._kdir(i)*self.dhat / k2 ) )**2 div_phi2 -= self._do_irfft(potgen(i,j))**2
div_phi2 *= 1/self.L**6
phi2_hat = -self._do_rfft(div_phi2) / k2 phi2_hat = -self._do_rfft(div_phi2) / k2
#self.cache['lpt2_potential'] = phi2_hat #self.cache['lpt2_potential'] = phi2_hat
del div_phi2 del div_phi2

View File

@ -9,10 +9,10 @@ cosmo['omega_B_0']=0.049
cosmo['SIGMA8']=0.8344 cosmo['SIGMA8']=0.8344
cosmo['ns']=0.9624 cosmo['ns']=0.9624
supergen=8 supergen=2
zstart=50 zstart=50
astart=1/(1.+zstart) astart=1/(1.+zstart)
halfPixelShift=False halfPixelShift=False
if __name__=="__main__": if __name__=="__main__":
bic.write_icfiles(*bic.run_generation("initial_condition_borg.dat", 0.001, astart, cosmo, supersample=1, shiftPixel=halfPixelShift, do_lpt2=False), supergenerate=supergen) bic.write_icfiles(*bic.run_generation("initial_condition_borg.dat", 0.001, astart, cosmo, supersample=2, shiftPixel=halfPixelShift, do_lpt2=False), supergenerate=supergen)

View File

@ -12,8 +12,8 @@ cosmo['SIGMA8']=0.8344
cosmo['ns']=0.9624 cosmo['ns']=0.9624
N0=256 N0=256
doSimulation=True doSimulation=False
simShift=True simShift=False
snap_id=int(sys.argv[1]) snap_id=int(sys.argv[1])
astart=1/100. astart=1/100.
@ -37,7 +37,7 @@ if doSimulation:
dsim_hat = np.fft.rfftn(dsim)*(L/N0)**3 dsim_hat = np.fft.rfftn(dsim)*(L/N0)**3
Psim, bsim = bic.bin_power(np.abs(dsim_hat)**2/L**3, L, range=(0,1.), bins=150) Psim, bsim = bic.bin_power(np.abs(dsim_hat)**2/L**3, L, range=(0,1.), bins=150)
pos,_,density,N,L,_,_ = bic.run_generation("initial_density_2588.dat", 0.001, astart, cosmo, supersample=2, do_lpt2=True) pos,_,density,N,L,_,_ = bic.run_generation("initial_density_988.dat", 0.001, astart, cosmo, supersample=1, do_lpt2=True)
dcic = ct.cicParticles(pos, L, N0) dcic = ct.cicParticles(pos, L, N0)
dcic /= np.average(np.average(np.average(dcic, axis=0), axis=0), axis=0) dcic /= np.average(np.average(np.average(dcic, axis=0), axis=0), axis=0)

View File

@ -18,11 +18,15 @@ frac_electron = 1.0 # Hmmmm
frac_gas_galaxy = 0.14 frac_gas_galaxy = 0.14
mu = 1/(1-0.5*Y) mu = 1/(1-0.5*Y)
tmpp_cat={'Msun':3.29,'alpha':-0.7286211634758224,'Mstar':-23.172904033796893,'PhiStar':0.0113246633636846,'lbar':393109973.22508669} tmpp_cat={'Msun':3.29,
'alpha':-0.7286211634758224,
'Mstar':-23.172904033796893,
'PhiStar':0.0113246633636846,
'lbar':393109973.22508669}
baryon_fraction = Omega_baryon / Omega_matter baryon_fraction = Omega_baryon / Omega_matter
ksz_normalization = T_cmb*sigmaT*v_unit/(lightspeed*mu*mp) * baryon_fraction ksz_normalization = -T_cmb*sigmaT*v_unit/(lightspeed*mu*mp) * baryon_fraction
rho_mean_matter = Omega_matter * (3*(100e3/Mpc)**2/(8*np.pi*G)) rho_mean_matter = Omega_matter * (3*(100e3/Mpc)**2/(8*np.pi*G))
Lbar = tmpp_cat['lbar'] / Mpc**3 Lbar = tmpp_cat['lbar'] / Mpc**3
M_over_L_galaxy = rho_mean_matter / Lbar M_over_L_galaxy = rho_mean_matter / Lbar

View File

@ -1,3 +1,4 @@
import numpy as np
from .constants import * from .constants import *
# ----------------------------------------------------------------------------- # -----------------------------------------------------------------------------
@ -11,27 +12,28 @@ class KSZ_Profile(object):
def __init__(self): def __init__(self):
self.rGalaxy = 1.0 self.rGalaxy = 1.0
def evaluate_profile(r): def evaluate_profile(self, r):
raise NotImplementedError("Abstract function") raise NotImplementedError("Abstract function")
def projected_profile(cos_theta,angularDistance): def projected_profile(self, cos_theta,angularDistance):
idx = np.where(cos_theta > 0)[0] idx = np.where(cos_theta > 0)[0]
tan_theta_2 = 1/(cos_theta[idx]**2) - 1 tan_theta_2 = 1/(cos_theta[idx]**2) - 1
tan_theta_2_max = (self.rGalaxy/angularDistance)**2 tan_theta_2_max = (self.rGalaxy/angularDistance)**2
tan_theta_2_min = (R_star/angularDistance)**2 tan_theta_2_min = (self.R_star/angularDistance)**2
idx0 = np.where((tan_theta_2 < tan_theta_2_max)) idx0 = np.where((tan_theta_2 < tan_theta_2_max))
idx = idx[idx0] idx = idx[idx0]
tan_theta_2 = tan_theta_2[idx0] tan_theta_2 = tan_theta_2[idx0]
tan_theta = np.sqrt(tan_theta_2) tan_theta = np.sqrt(tan_theta_2)
r = (tan_theta*DA) r = (tan_theta*angularDistance)
m,idx_mask = self.evaluate_profile(r) m,idx_mask = self.evaluate_profile(r)
idx_mask = np.append(idx_mask,np.where(tan_theta_2<tan_theta_2_min)[0]) idx_mask = np.append(idx_mask,np.where(tan_theta_2<tan_theta_2_min)[0])
idx_mask = np.append(idx_mask,[tan_theta_2.argmin()]) if tan_theta_2.size > 0:
idx_mask = np.append(idx_mask,[tan_theta_2.argmin()])
return idx,idx_mask,m return idx,idx_mask,m
@ -75,7 +77,7 @@ class KSZ_Isothermal(KSZ_Profile):
self._table = x,profile self._table = x,profile
def evaluate_profile(r): def evaluate_profile(self,r):
rho0, rGalaxy, rInner = self.rho0, self.rGalaxy, self.rInnerGalaxy rho0, rGalaxy, rInner = self.rho0, self.rGalaxy, self.rInnerGalaxy
Q=rho0*2/r*np.arctan(np.sqrt((rGalaxy/r)**2 - 1))/Mpc Q=rho0*2/r*np.arctan(np.sqrt((rGalaxy/r)**2 - 1))/Mpc
@ -140,7 +142,7 @@ class KSZ_NFW(KSZ_Profile):
return exp(0.971 - 0.094*log(Mvir/(1e12*MassSun))) return exp(0.971 - 0.094*log(Mvir/(1e12*MassSun)))
def evaluate_profile(r): def evaluate_profile(self,r):
cs = self._get_concentration(self.Mvir) cs = self._get_concentration(self.Mvir)
rs = self.Rvir/cs rs = self.Rvir/cs