update painting functions to accept pytrees

This commit is contained in:
Wassim Kabalan 2025-01-18 01:13:24 +01:00
parent 7c3577ea71
commit f5755b4b5d
2 changed files with 53 additions and 43 deletions

View file

@ -19,37 +19,37 @@ def _cic_paint_impl(grid_mesh, positions, weight=None):
""" """
positions = positions.reshape([-1, 3]) positions = positions.reshape([-1, 3])
positions = jnp.expand_dims(positions, 1) positions = jax.tree.map(lambda p : jnp.expand_dims(p , 1) , positions)
floor = jnp.floor(positions) floor = jax.tree.map(jnp.floor , positions)
connection = jnp.array([[[0, 0, 0], [1., 0, 0], [0., 1, 0], [0., 0, 1], connection = jnp.array([[[0, 0, 0], [1., 0, 0], [0., 1, 0], [0., 0, 1],
[1., 1, 0], [1., 0, 1], [0., 1, 1], [1., 1, 1]]]) [1., 1, 0], [1., 0, 1], [0., 1, 1], [1., 1, 1]]])
neighboor_coords = floor + connection neighboor_coords = floor + connection
kernel = 1. - jnp.abs(positions - neighboor_coords) kernel = 1. - jax.tree.map(jnp.abs , (positions - neighboor_coords))
kernel = kernel[..., 0] * kernel[..., 1] * kernel[..., 2] kernel = kernel[..., 0] * kernel[..., 1] * kernel[..., 2]
if weight is not None: if weight is not None:
if jnp.isscalar(weight): if jax.tree.all(jax.tree.map(jnp.isscalar, weight)):
kernel = jnp.multiply(jnp.expand_dims(weight, axis=-1), kernel) kernel = jax.tree.map(lambda k , w : jnp.multiply(jnp.expand_dims(w, axis=-1)
, k) , kernel , weight)
else: else:
kernel = jnp.multiply(weight.reshape(*positions.shape[:-1]), kernel = jax.tree.map(lambda k , w : jnp.multiply(w.reshape(*positions.shape[:-1]) , k) , kernel , weight)
kernel)
neighboor_coords = jnp.mod( neighboor_coords = jax.tree.map(lambda nc : jnp.mod(nc.reshape([-1, 8, 3]).astype('int32'), jnp.array(grid_mesh.shape)) , neighboor_coords)
neighboor_coords.reshape([-1, 8, 3]).astype('int32'),
jnp.array(grid_mesh.shape))
dnums = jax.lax.ScatterDimensionNumbers(update_window_dims=(), dnums = jax.lax.ScatterDimensionNumbers(update_window_dims=(),
inserted_window_dims=(0, 1, 2), inserted_window_dims=(0, 1, 2),
scatter_dims_to_operand_dims=(0, 1, scatter_dims_to_operand_dims=(0, 1,
2)) 2))
mesh = lax.scatter_add(grid_mesh, neighboor_coords, mesh = jax.tree.map(lambda g , nc , k : lax.scatter_add(g, nc, k.reshape([-1, 8]), dnums) , grid_mesh , neighboor_coords , kernel)
kernel.reshape([-1, 8]), dnums)
return mesh return mesh
@partial(jax.jit, static_argnums=(3, 4)) @partial(jax.jit, static_argnums=(3, 4))
def cic_paint(grid_mesh, positions, weight=None, halo_size=0, sharding=None): def cic_paint(grid_mesh, positions, weight=None, halo_size=0, sharding=None):
positions_structure = jax.tree_structure(positions)
grid_mesh = jax.tree.unflatten(positions_structure, jax.tree.leaves(grid_mesh))
positions = positions.reshape((*grid_mesh.shape, 3)) positions = positions.reshape((*grid_mesh.shape, 3))
halo_size, halo_extents = get_halo_size(halo_size, sharding) halo_size, halo_extents = get_halo_size(halo_size, sharding)
@ -79,25 +79,25 @@ def _cic_read_impl(grid_mesh, positions):
# Reshape positions to a flat list of 3D coordinates # Reshape positions to a flat list of 3D coordinates
positions = positions.reshape([-1, 3]) positions = positions.reshape([-1, 3])
# Expand dimensions to calculate neighbor coordinates # Expand dimensions to calculate neighbor coordinates
positions = jnp.expand_dims(positions, 1) positions = jax.tree.map(lambda p : jnp.expand_dims(p, 1) , positions)
# Floor the positions to get the base grid cell for each particle # Floor the positions to get the base grid cell for each particle
floor = jnp.floor(positions) floor = jax.tree.map(jnp.floor , positions)
# Define connections to calculate all neighbor coordinates # Define connections to calculate all neighbor coordinates
connection = jnp.array([[[0, 0, 0], [1., 0, 0], [0., 1, 0], [0., 0, 1], connection = jnp.array([[[0, 0, 0], [1., 0, 0], [0., 1, 0], [0., 0, 1],
[1., 1, 0], [1., 0, 1], [0., 1, 1], [1., 1, 1]]]) [1., 1, 0], [1., 0, 1], [0., 1, 1], [1., 1, 1]]])
# Calculate the 8 neighboring coordinates # Calculate the 8 neighboring coordinates
neighboor_coords = floor + connection neighboor_coords = floor + connection
# Calculate kernel weights based on distance from each neighboring coordinate # Calculate kernel weights based on distance from each neighboring coordinate
kernel = 1. - jnp.abs(positions - neighboor_coords) kernel = 1. - jax.tree.map(jnp.abs , positions - neighboor_coords)
kernel = kernel[..., 0] * kernel[..., 1] * kernel[..., 2] kernel = kernel[..., 0] * kernel[..., 1] * kernel[..., 2]
# Modulo operation to wrap around edges if necessary # Modulo operation to wrap around edges if necessary
neighboor_coords = jnp.mod(neighboor_coords.astype('int32'), neighboor_coords = jax.tree.map(lambda nc : jnp.mod(nc.astype('int32')
jnp.array(grid_mesh.shape)) ,jnp.array(grid_mesh.shape)) , neighboor_coords)
# Ensure grid_mesh shape is as expected # Ensure grid_mesh shape is as expected
# Retrieve values from grid_mesh at each neighboring coordinate and multiply by kernel # Retrieve values from grid_mesh at each neighboring coordinate and multiply by kernel
return (grid_mesh[neighboor_coords[..., 0], grid_mesh = jax.tree.map(lambda g , nc , k : g[nc[...,0], nc[...,1], nc[...,2]] * k , grid_mesh , neighboor_coords , kernel)
neighboor_coords[..., 1], return grid_mesh.sum(axis=-1).reshape(original_shape[:-1]) # yapf: disable
neighboor_coords[..., 2]] * kernel).sum(axis=-1).reshape(original_shape[:-1]) # yapf: disable
@partial(jax.jit, static_argnums=(2, 3)) @partial(jax.jit, static_argnums=(2, 3))
@ -157,7 +157,7 @@ def _cic_paint_dx_impl(displacements, halo_size, weight=1., chunk_size=2**24):
halo_y, _ = halo_size[1] halo_y, _ = halo_size[1]
original_shape = displacements.shape original_shape = displacements.shape
particle_mesh = jnp.zeros(original_shape[:-1], dtype='float32') particle_mesh = jax.tree.map(lambda x : jnp.zeros(x.shape[:-1], dtype=displacements.dtype), displacements)
if not jnp.isscalar(weight): if not jnp.isscalar(weight):
if weight.shape != original_shape[:-1]: if weight.shape != original_shape[:-1]:
raise ValueError("Weight shape must match particle shape") raise ValueError("Weight shape must match particle shape")
@ -165,13 +165,13 @@ def _cic_paint_dx_impl(displacements, halo_size, weight=1., chunk_size=2**24):
weight = weight.flatten() weight = weight.flatten()
# Padding is forced to be zero in a single gpu run # Padding is forced to be zero in a single gpu run
a, b, c = jnp.meshgrid(jnp.arange(particle_mesh.shape[0]), a, b, c = jax.tree.map( lambda x : jnp.stack(jnp.meshgrid(jnp.arange(x.shape[0]),
jnp.arange(particle_mesh.shape[1]), jnp.arange(x.shape[1]),
jnp.arange(particle_mesh.shape[2]), jnp.arange(x.shape[2]),
indexing='ij') indexing='ij') , axis=0), particle_mesh)
particle_mesh = jnp.pad(particle_mesh, halo_size) particle_mesh = jax.tree.map(lambda x : jnp.pad(x, halo_size), particle_mesh)
pmid = jnp.stack([a + halo_x, b + halo_y, c], axis=-1) pmid = jax.tree_map(lambda a, b, c : jnp.stack([a + halo_x, b + halo_y, c], axis=-1), a, b, c)
return scatter(pmid.reshape([-1, 3]), return scatter(pmid.reshape([-1, 3]),
displacements.reshape([-1, 3]), displacements.reshape([-1, 3]),
particle_mesh, particle_mesh,
@ -217,9 +217,12 @@ def _cic_read_dx_impl(grid_mesh, disp, halo_size):
jnp.arange(original_shape[1]), jnp.arange(original_shape[1]),
jnp.arange(original_shape[2]), jnp.arange(original_shape[2]),
indexing='ij') indexing='ij')
a, b, c = jax.tree.map( lambda x : jnp.stack(jnp.meshgrid(jnp.arange(original_shape[0]),
jnp.arange(original_shape[1]),
jnp.arange(original_shape[2]),
indexing='ij') , axis=0), grid_mesh)
pmid = jnp.stack([a + halo_x, b + halo_y, c], axis=-1) pmid = jax.tree_map(lambda a, b, c : jnp.stack([a + halo_x, b + halo_y, c], axis=-1), a, b, c)
pmid = pmid.reshape([-1, 3]) pmid = pmid.reshape([-1, 3])
disp = disp.reshape([-1, 3]) disp = disp.reshape([-1, 3])

View file

@ -28,8 +28,8 @@ def _chunk_split(ptcl_num, chunk_size, *arrays):
def enmesh(base_indices, displacements, cell_size, base_shape, offset, def enmesh(base_indices, displacements, cell_size, base_shape, offset,
new_cell_size, new_shape): new_cell_size, new_shape):
"""Multilinear enmeshing.""" """Multilinear enmeshing."""
base_indices = jnp.asarray(base_indices) base_indices = jax.tree.map(jnp.asarray , base_indices)
displacements = jnp.asarray(displacements) displacements = jax.tree.map(jnp.asarray , displacements)
with jax.experimental.enable_x64(): with jax.experimental.enable_x64():
cell_size = jnp.float64( cell_size = jnp.float64(
cell_size) if new_cell_size is not None else jnp.array( cell_size) if new_cell_size is not None else jnp.array(
@ -61,7 +61,7 @@ def enmesh(base_indices, displacements, cell_size, base_shape, offset,
new_displacements = particle_positions - new_indices * new_cell_size new_displacements = particle_positions - new_indices * new_cell_size
if base_shape is not None: if base_shape is not None:
new_displacements -= jnp.rint( new_displacements -= jax.tree.map(jnp.rint ,
new_displacements / grid_length new_displacements / grid_length
) * grid_length # also abs(new_displacements) < new_cell_size is expected ) * grid_length # also abs(new_displacements) < new_cell_size is expected
@ -89,7 +89,7 @@ def enmesh(base_indices, displacements, cell_size, base_shape, offset,
if base_shape is not None: if base_shape is not None:
new_indices %= base_shape new_indices %= base_shape
weights = 1 - jnp.abs(new_displacements) weights = 1 - jax.tree.map(jnp.abs , new_displacements)
if base_shape is None and new_shape is not None: # all new_indices >= 0 if base_shape is not None if base_shape is None and new_shape is not None: # all new_indices >= 0 if base_shape is not None
new_indices = jnp.where(new_indices < 0, new_shape, new_indices) new_indices = jnp.where(new_indices < 0, new_shape, new_indices)
@ -109,8 +109,11 @@ def _scatter_chunk(carry, chunk):
ind, frac = enmesh(pmid, disp, cell_size, mesh_shape, offset, cell_size, ind, frac = enmesh(pmid, disp, cell_size, mesh_shape, offset, cell_size,
spatial_shape) spatial_shape)
# scatter # scatter
ind = tuple(ind[..., i] for i in range(spatial_ndim)) ind = jax.tree.map(lambda x : tuple(x[..., i] for i in range(spatial_ndim)) , ind)
mesh = mesh.at[ind].add(jnp.multiply(jnp.expand_dims(val, axis=-1), frac)) mesh_structure = jax.tree_structure(mesh)
val_flat = jax.tree.leaves(val)
val_tree = jax.tree_unflatten(mesh_structure, val_flat)
mesh = jax.tree.map(lambda m , v , i, f : m.at[i].add(jnp.multiply(jnp.expand_dims(v, axis=-1), f)) , mesh , val_tree ,ind , frac)
carry = mesh, offset, cell_size, mesh_shape carry = mesh, offset, cell_size, mesh_shape
return carry, None return carry, None
@ -122,9 +125,10 @@ def scatter(pmid,
val=1., val=1.,
offset=0, offset=0,
cell_size=1.): cell_size=1.):
ptcl_num, spatial_ndim = pmid.shape ptcl_num, spatial_ndim = pmid.shape
val = jnp.asarray(val) val = jax.tree.map(jnp.asarray , val)
mesh = jnp.asarray(mesh) mesh = jax.tree.map(jnp.asarray , mesh)
remainder, chunks = _chunk_split(ptcl_num, chunk_size, pmid, disp, val) remainder, chunks = _chunk_split(ptcl_num, chunk_size, pmid, disp, val)
carry = mesh, offset, cell_size, mesh.shape carry = mesh, offset, cell_size, mesh.shape
if remainder is not None: if remainder is not None:
@ -147,9 +151,9 @@ def _chunk_cat(remainder_array, chunked_array):
def gather(pmid, disp, mesh, chunk_size=2**24, val=0, offset=0, cell_size=1.): def gather(pmid, disp, mesh, chunk_size=2**24, val=0, offset=0, cell_size=1.):
ptcl_num, spatial_ndim = pmid.shape ptcl_num, spatial_ndim = pmid.shape
mesh = jnp.asarray(mesh) mesh = jax.tree.map(jnp.asarray , mesh)
val = jnp.asarray(val) val = jax.tree.map(jnp.asarray , val)
if mesh.shape[spatial_ndim:] != val.shape[1:]: if mesh.shape[spatial_ndim:] != val.shape[1:]:
raise ValueError('channel shape mismatch: ' raise ValueError('channel shape mismatch: '
@ -183,8 +187,11 @@ def _gather_chunk(carry, chunk):
spatial_shape) spatial_shape)
# gather # gather
ind = tuple(ind[..., i] for i in range(spatial_ndim)) ind = jax.tree.map(lambda x : tuple(x[..., i] for i in range(spatial_ndim)) , ind)
frac = jnp.expand_dims(frac, chan_axis) frac = jax.tree.map(lambda x: jnp.expand_dims(x, chan_axis), frac)
val += (mesh.at[ind].get(mode='drop', fill_value=0) * frac).sum(axis=1) ind_structure = jax.tree_structure(ind)
frac_structure = jax.tree_structure(frac)
mesh_structure = jax.tree_structure(mesh)
val += jax.tree.map(lambda m , i , f : (m.at[i].get(mode='drop', fill_value=0) * f).sum(axis=1) , mesh , ind , frac)
return carry, val return carry, val