Adding an example of jaxdecomp implementation

This commit is contained in:
EiffL 2022-11-26 17:27:14 +01:00
parent 6644b35d71
commit 6ca4c9191e
5 changed files with 166 additions and 192 deletions

View file

@ -10,32 +10,32 @@ from jaxpm.painting import cic_paint, cic_read
from jaxpm.growth import growth_factor, growth_rate, dGfa
def pm_forces(positions, mesh_shape=None, delta_k=None, halo_size=0, token=None, comms=None):
def pm_forces(positions, mesh_shape=None, delta_k=None, halo_size=0, sharding_info=None):
"""
Computes gravitational forces on particles using a PM scheme
"""
if delta_k is None:
delta = cic_paint(zeros(mesh_shape, comms=comms),
delta = cic_paint(zeros(mesh_shape, sharding_info=sharding_info),
positions,
halo_size=halo_size, comms=comms)
delta_k = fft3d(delta, comms=comms)
halo_size=halo_size, sharding_info=sharding_info)
delta_k = fft3d(delta, sharding_info=sharding_info)
# Computes gravitational forces
kvec = fftk(delta_k.shape, symmetric=False, comms=comms)
kvec = fftk(delta_k.shape, symmetric=False, sharding_info=sharding_info)
forces_k = apply_gradient_laplace(delta_k, kvec)
# Interpolate forces at the position of particles
return jnp.stack([cic_read(ifft3d(forces_k[..., i], comms=comms).real,
positions, halo_size=halo_size, comms=comms)
return jnp.stack([cic_read(ifft3d(forces_k[..., i], sharding_info=sharding_info).real,
positions, halo_size=halo_size, sharding_info=sharding_info)
for i in range(3)], axis=-1)
def lpt(cosmo, positions, initial_conditions, a, halo_size=0, comms=None):
def lpt(cosmo, positions, initial_conditions, a, halo_size=0, sharding_info=None):
"""
Computes first order LPT displacement
"""
initial_force = pm_forces(
positions, delta_k=initial_conditions, halo_size=halo_size, comms=comms)
positions, delta_k=initial_conditions, halo_size=halo_size, sharding_info=sharding_info)
a = jnp.atleast_1d(a)
dx = growth_factor(cosmo, a) * initial_force
p = a**2 * growth_rate(cosmo, a) * \
@ -45,21 +45,21 @@ def lpt(cosmo, positions, initial_conditions, a, halo_size=0, comms=None):
return dx, p, f
def linear_field(cosmo, mesh_shape, box_size, key, comms=None):
def linear_field(cosmo, mesh_shape, box_size, key, sharding_info=None):
"""
Generate initial conditions in Fourier space.
"""
# Sample normal field
field = normal(key, mesh_shape, comms=comms)
field = normal(key, mesh_shape, sharding_info=sharding_info)
# Transform to Fourier space
kfield = fft3d(field, comms=comms)
kfield = fft3d(field, sharding_info=sharding_info)
# Rescaling k to physical units
kvec = [k / box_size[i] * mesh_shape[i]
for i, k in enumerate(fftk(kfield.shape,
symmetric=False,
comms=comms))]
sharding_info=sharding_info))]
# Evaluating linear matter powerspectrum
k = jnp.logspace(-4, 2, 256)
@ -77,7 +77,7 @@ def linear_field(cosmo, mesh_shape, box_size, key, comms=None):
return kfield
def make_ode_fn(mesh_shape, halo_size=0, comms=None):
def make_ode_fn(mesh_shape, halo_size=0, sharding_info=None):
def nbody_ode(state, a, cosmo):
"""
@ -86,7 +86,7 @@ def make_ode_fn(mesh_shape, halo_size=0, comms=None):
pos, vel = state
forces = pm_forces(pos, mesh_shape=mesh_shape,
halo_size=halo_size, comms=comms) * 1.5 * cosmo.Omega_m
halo_size=halo_size, sharding_info=sharding_info) * 1.5 * cosmo.Omega_m
# Computes the update of position (drift)
dpos = 1. / (a**3 * jnp.sqrt(jc.background.Esqr(cosmo, a))) * vel