JaxPM/jaxpm/pm.py

99 lines
3.6 KiB
Python

import jax
from jax.experimental.maps import xmap
import jax.numpy as jnp
import jax_cosmo as jc
from jaxpm.ops import fft3d, ifft3d, zeros, normal
from jaxpm.kernels import fftk, apply_gradient_laplace
from jaxpm.painting import cic_paint, cic_read
from jaxpm.growth import growth_factor, growth_rate, dGfa
def pm_forces(positions, mesh_shape=None, delta_k=None, halo_size=0, sharding_info=None):
"""
Computes gravitational forces on particles using a PM scheme
"""
if delta_k is None:
delta = cic_paint(zeros(mesh_shape, sharding_info=sharding_info),
positions,
halo_size=halo_size, sharding_info=sharding_info)
delta_k = fft3d(delta, sharding_info=sharding_info)
# Computes gravitational forces
kvec = fftk(delta_k.shape, symmetric=False, sharding_info=sharding_info)
forces_k = apply_gradient_laplace(delta_k, kvec)
# Interpolate forces at the position of particles
return jnp.stack([cic_read(ifft3d(forces_k[..., i], sharding_info=sharding_info).real,
positions, halo_size=halo_size, sharding_info=sharding_info)
for i in range(3)], axis=-1)
def lpt(cosmo, positions, initial_conditions, a, halo_size=0, sharding_info=None):
"""
Computes first order LPT displacement
"""
initial_force = pm_forces(
positions, delta_k=initial_conditions, halo_size=halo_size, sharding_info=sharding_info)
a = jnp.atleast_1d(a)
dx = growth_factor(cosmo, a) * initial_force
p = a**2 * growth_rate(cosmo, a) * \
jnp.sqrt(jc.background.Esqr(cosmo, a)) * dx
f = a**2 * jnp.sqrt(jc.background.Esqr(cosmo, a)) * \
dGfa(cosmo, a) * initial_force
return dx, p, f
def linear_field(cosmo, mesh_shape, box_size, key, sharding_info=None):
"""
Generate initial conditions in Fourier space.
"""
# Sample normal field
field = normal(key, mesh_shape, sharding_info=sharding_info)
# Transform to Fourier space
kfield = fft3d(field, sharding_info=sharding_info)
# Rescaling k to physical units
kvec = [k / box_size[i] * mesh_shape[i]
for i, k in enumerate(fftk(kfield.shape,
symmetric=False,
sharding_info=sharding_info))]
# Evaluating linear matter powerspectrum
k = jnp.logspace(-4, 2, 256)
pk = jc.power.linear_matter_power(cosmo, k)
pk = pk * (mesh_shape[0] * mesh_shape[1] * mesh_shape[2]
) / (box_size[0] * box_size[1] * box_size[2])
# Multipliyng the field by the proper power spectrum
kfield = xmap(lambda kfield, kx, ky, kz:
kfield * jc.scipy.interpolate.interp(jnp.sqrt(kx**2+ky**2+kz**2),
k, jnp.sqrt(pk)),
in_axes=(('x', 'y', ...), ['x'], ['y'], [...]),
out_axes=('x', 'y', ...))(kfield, kvec[0], kvec[1], kvec[2])
return kfield
def make_ode_fn(mesh_shape, halo_size=0, sharding_info=None):
def nbody_ode(state, a, cosmo):
"""
state is a tuple (position, velocities)
"""
pos, vel = state
forces = pm_forces(pos, mesh_shape=mesh_shape,
halo_size=halo_size, sharding_info=sharding_info) * 1.5 * cosmo.Omega_m
# Computes the update of position (drift)
dpos = 1. / (a**3 * jnp.sqrt(jc.background.Esqr(cosmo, a))) * vel
# Computes the update of velocity (kick)
dvel = 1. / (a**2 * jnp.sqrt(jc.background.Esqr(cosmo, a))) * forces
return dpos, dvel
return nbody_ode