temp commit

This commit is contained in:
Wassim KABALAN 2024-04-19 01:11:25 +02:00
parent 6ca4c9191e
commit 055ceedb7e
5 changed files with 220 additions and 110 deletions

View file

@ -8,9 +8,14 @@ from jaxpm.ops import fft3d, ifft3d, zeros, normal
from jaxpm.kernels import fftk, apply_gradient_laplace
from jaxpm.painting import cic_paint, cic_read
from jaxpm.growth import growth_factor, growth_rate, dGfa
from jax.experimental import mesh_utils, multihost_utils
from jax.sharding import Mesh, PartitionSpec as P,NamedSharding
from jax.experimental.shard_map import shard_map
from functools import partial
def pm_forces(positions, mesh_shape=None, delta_k=None, halo_size=0, sharding_info=None):
def pm_forces(mesh , positions, mesh_shape=None, delta_k=None, halo_size=0, sharding_info=None):
"""
Computes gravitational forces on particles using a PM scheme
"""
@ -22,38 +27,88 @@ def pm_forces(positions, mesh_shape=None, delta_k=None, halo_size=0, sharding_in
# Computes gravitational forces
kvec = fftk(delta_k.shape, symmetric=False, sharding_info=sharding_info)
forces_k = apply_gradient_laplace(delta_k, kvec)
# Interpolate forces at the position of particles
return jnp.stack([cic_read(ifft3d(forces_k[..., i], sharding_info=sharding_info).real,
positions, halo_size=halo_size, sharding_info=sharding_info)
for i in range(3)], axis=-1)
local_kx = kvec[0]
local_ky = kvec[1]
replicated_kz = kvec[2]
gspmd_kx = multihost_utils.host_local_array_to_global_array(local_kx ,mesh, P('z'))
gspmd_ky = multihost_utils.host_local_array_to_global_array(local_ky ,mesh, P('y'))
@partial(jax.jit,static_argnums=(1))
def ifft3d_c2r(forces_k , i):
return ifft3d(forces_k[..., i], sharding_info=sharding_info).real
forces = []
with mesh:
forces_k = apply_gradient_laplace(delta_k, gspmd_kx , gspmd_ky , replicated_kz)
# Interpolate forces at the position of particles
for i in range(3):
with mesh:
ifft_forces = ifft3d_c2r(forces_k , i)
force = cic_read(mesh , ifft_forces, positions, halo_size=halo_size, sharding_info=sharding_info)
forces.append(force)
print(f"Shape {ifft_forces.shape}")
return jnp.stack(forces)
def lpt(cosmo, positions, initial_conditions, a, halo_size=0, sharding_info=None):
def lpt(mesh ,cosmo, positions, initial_conditions, a, halo_size=0, sharding_info=None):
"""
Computes first order LPT displacement
"""
initial_force = pm_forces(
initial_force = pm_forces(mesh,
positions, delta_k=initial_conditions, halo_size=halo_size, sharding_info=sharding_info)
a = jnp.atleast_1d(a)
dx = growth_factor(cosmo, a) * initial_force
p = a**2 * growth_rate(cosmo, a) * \
jnp.sqrt(jc.background.Esqr(cosmo, a)) * dx
f = a**2 * jnp.sqrt(jc.background.Esqr(cosmo, a)) * \
dGfa(cosmo, a) * initial_force
print(f"Shape initial {initial_conditions.shape}")
@jax.jit
def compute_dx(cosmo , i_force):
return growth_factor(cosmo, a) * i_force
@jax.jit
def compute_p(cosmo , dx):
return a**2 * growth_rate(cosmo, a) * \
jnp.sqrt(jc.background.Esqr(cosmo, a)) * dx
@jax.jit
def compute_f(cosmo , initial_force):
return a**2 * jnp.sqrt(jc.background.Esqr(cosmo, a)) * \
dGfa(cosmo, a) * initial_force
with mesh:
dx = compute_dx(cosmo , initial_force)
p = compute_p(cosmo , dx)
f = compute_f(cosmo , initial_force)
return dx, p, f
def linear_field(cosmo, mesh_shape, box_size, key, sharding_info=None):
@jax.jit
def interpolate(kfield, kx, ky, kz , k , pk):
return kfield * jc.scipy.interpolate.interp(jnp.sqrt(kx**2+ky**2+kz**2), k, jnp.sqrt(pk))
def linear_field(cosmo, mesh, mesh_shape, box_size, key, sharding_info=None):
"""
Generate initial conditions in Fourier space.
"""
# Sample normal field
field = normal(key, mesh_shape, sharding_info=sharding_info)
pdims = sharding_info.pdims
slice_shape = (mesh_shape[0] // pdims[1], mesh_shape[1] // pdims[0],mesh_shape[2])
slice_field = normal(key, slice_shape, sharding_info=sharding_info)
field = multihost_utils.host_local_array_to_global_array(
slice_field, mesh, P('z', 'y'))
# Transform to Fourier space
kfield = fft3d(field, sharding_info=sharding_info)
with mesh :
kfield = fft3d(field, sharding_info=sharding_info)
# Rescaling k to physical units
kvec = [k / box_size[i] * mesh_shape[i]
@ -68,11 +123,17 @@ def linear_field(cosmo, mesh_shape, box_size, key, sharding_info=None):
) / (box_size[0] * box_size[1] * box_size[2])
# Multipliyng the field by the proper power spectrum
kfield = xmap(lambda kfield, kx, ky, kz:
kfield * jc.scipy.interpolate.interp(jnp.sqrt(kx**2+ky**2+kz**2),
k, jnp.sqrt(pk)),
in_axes=(('x', 'y', ...), ['x'], ['y'], [...]),
out_axes=('x', 'y', ...))(kfield, kvec[0], kvec[1], kvec[2])
local_kx = kvec[0]
local_ky = kvec[1]
replicated_kz = kvec[2]
gspmd_kx = multihost_utils.host_local_array_to_global_array(local_kx ,mesh, P('z'))
gspmd_ky = multihost_utils.host_local_array_to_global_array(local_ky ,mesh, P('y'))
with mesh:
kfield = interpolate(kfield,gspmd_kx, gspmd_ky, replicated_kz ,k, pk)
return kfield