JaxPM/jaxpm/pm.py
Wassim KABALAN 055ceedb7e temp commit
2024-04-19 01:11:25 +02:00

160 lines
5.1 KiB
Python

import jax
from jax.experimental.maps import xmap
import jax.numpy as jnp
import jax_cosmo as jc
from jaxpm.ops import fft3d, ifft3d, zeros, normal
from jaxpm.kernels import fftk, apply_gradient_laplace
from jaxpm.painting import cic_paint, cic_read
from jaxpm.growth import growth_factor, growth_rate, dGfa
from jax.experimental import mesh_utils, multihost_utils
from jax.sharding import Mesh, PartitionSpec as P,NamedSharding
from jax.experimental.shard_map import shard_map
from functools import partial
def pm_forces(mesh , positions, mesh_shape=None, delta_k=None, halo_size=0, sharding_info=None):
"""
Computes gravitational forces on particles using a PM scheme
"""
if delta_k is None:
delta = cic_paint(zeros(mesh_shape, sharding_info=sharding_info),
positions,
halo_size=halo_size, sharding_info=sharding_info)
delta_k = fft3d(delta, sharding_info=sharding_info)
# Computes gravitational forces
kvec = fftk(delta_k.shape, symmetric=False, sharding_info=sharding_info)
local_kx = kvec[0]
local_ky = kvec[1]
replicated_kz = kvec[2]
gspmd_kx = multihost_utils.host_local_array_to_global_array(local_kx ,mesh, P('z'))
gspmd_ky = multihost_utils.host_local_array_to_global_array(local_ky ,mesh, P('y'))
@partial(jax.jit,static_argnums=(1))
def ifft3d_c2r(forces_k , i):
return ifft3d(forces_k[..., i], sharding_info=sharding_info).real
forces = []
with mesh:
forces_k = apply_gradient_laplace(delta_k, gspmd_kx , gspmd_ky , replicated_kz)
# Interpolate forces at the position of particles
for i in range(3):
with mesh:
ifft_forces = ifft3d_c2r(forces_k , i)
force = cic_read(mesh , ifft_forces, positions, halo_size=halo_size, sharding_info=sharding_info)
forces.append(force)
print(f"Shape {ifft_forces.shape}")
return jnp.stack(forces)
def lpt(mesh ,cosmo, positions, initial_conditions, a, halo_size=0, sharding_info=None):
"""
Computes first order LPT displacement
"""
initial_force = pm_forces(mesh,
positions, delta_k=initial_conditions, halo_size=halo_size, sharding_info=sharding_info)
a = jnp.atleast_1d(a)
print(f"Shape initial {initial_conditions.shape}")
@jax.jit
def compute_dx(cosmo , i_force):
return growth_factor(cosmo, a) * i_force
@jax.jit
def compute_p(cosmo , dx):
return a**2 * growth_rate(cosmo, a) * \
jnp.sqrt(jc.background.Esqr(cosmo, a)) * dx
@jax.jit
def compute_f(cosmo , initial_force):
return a**2 * jnp.sqrt(jc.background.Esqr(cosmo, a)) * \
dGfa(cosmo, a) * initial_force
with mesh:
dx = compute_dx(cosmo , initial_force)
p = compute_p(cosmo , dx)
f = compute_f(cosmo , initial_force)
return dx, p, f
@jax.jit
def interpolate(kfield, kx, ky, kz , k , pk):
return kfield * jc.scipy.interpolate.interp(jnp.sqrt(kx**2+ky**2+kz**2), k, jnp.sqrt(pk))
def linear_field(cosmo, mesh, mesh_shape, box_size, key, sharding_info=None):
"""
Generate initial conditions in Fourier space.
"""
# Sample normal field
pdims = sharding_info.pdims
slice_shape = (mesh_shape[0] // pdims[1], mesh_shape[1] // pdims[0],mesh_shape[2])
slice_field = normal(key, slice_shape, sharding_info=sharding_info)
field = multihost_utils.host_local_array_to_global_array(
slice_field, mesh, P('z', 'y'))
# Transform to Fourier space
with mesh :
kfield = fft3d(field, sharding_info=sharding_info)
# Rescaling k to physical units
kvec = [k / box_size[i] * mesh_shape[i]
for i, k in enumerate(fftk(kfield.shape,
symmetric=False,
sharding_info=sharding_info))]
# Evaluating linear matter powerspectrum
k = jnp.logspace(-4, 2, 256)
pk = jc.power.linear_matter_power(cosmo, k)
pk = pk * (mesh_shape[0] * mesh_shape[1] * mesh_shape[2]
) / (box_size[0] * box_size[1] * box_size[2])
# Multipliyng the field by the proper power spectrum
local_kx = kvec[0]
local_ky = kvec[1]
replicated_kz = kvec[2]
gspmd_kx = multihost_utils.host_local_array_to_global_array(local_kx ,mesh, P('z'))
gspmd_ky = multihost_utils.host_local_array_to_global_array(local_ky ,mesh, P('y'))
with mesh:
kfield = interpolate(kfield,gspmd_kx, gspmd_ky, replicated_kz ,k, pk)
return kfield
def make_ode_fn(mesh_shape, halo_size=0, sharding_info=None):
def nbody_ode(state, a, cosmo):
"""
state is a tuple (position, velocities)
"""
pos, vel = state
forces = pm_forces(pos, mesh_shape=mesh_shape,
halo_size=halo_size, sharding_info=sharding_info) * 1.5 * cosmo.Omega_m
# Computes the update of position (drift)
dpos = 1. / (a**3 * jnp.sqrt(jc.background.Esqr(cosmo, a))) * vel
# Computes the update of velocity (kick)
dvel = 1. / (a**2 * jnp.sqrt(jc.background.Esqr(cosmo, a))) * forces
return dpos, dvel
return nbody_ode