Some minor fixes

This commit is contained in:
Deaglan Bartlett 2024-06-14 16:04:42 +02:00
parent 42be9de326
commit 2016ef0599
11 changed files with 460 additions and 31 deletions

View file

@ -1,2 +1,3 @@
# mgborg_emulator # mgborg_emulator
bash build.sh --c-compiler icx --cxx-compiler icpx --python=/home/bartlett//anaconda3/envs/borg_env/bin/python3 --hades-python --with-mpi --install-system-python --build-dir /data101/bartlett/build_borg

View file

@ -37,6 +37,7 @@ mixing = 1
[model] [model]
gravity = lpt gravity = lpt
logfR0 = -5.0 logfR0 = -5.0
gauss_sigma = 0.05
af = 1.0 af = 1.0
ai = 0.05 ai = 0.05
@ -65,11 +66,14 @@ z0 = 0
[emulator] [emulator]
use_emulator = True use_emulator = True
model_weights_path = /home/bartlett/mgborg_emulator/weights/emulator_weights.file_type model_weights_path = /home/bartlett/mgborg_emulator/weights/d2d_borg.pt
architecture = StyledVNet architecture = StyledVNet
use_float64 = False use_float64 = False
use_pad_and_NN = True use_pad_and_NN = True
requires_grad = False requires_grad = False
style_size = 1
in_chan = 3
out_chan = 3
[run] [run]
run_type = mock run_type = mock

View file

@ -4,7 +4,8 @@ import numpy as np
# Emulator imports # Emulator imports
import torch import torch
# from .model_architecture.cosmology import * torch.cuda.empty_cache()
from networks import StyledVNet, StyledVNet_distill from networks import StyledVNet, StyledVNet_distill
# JAX set-up # JAX set-up
@ -16,6 +17,7 @@ from jax.config import config as jax_config
jax_config.update("jax_enable_x64", True) jax_config.update("jax_enable_x64", True)
from utils import myprint from utils import myprint
import utils
class Emulator(borg.forward.BaseForwardModel): class Emulator(borg.forward.BaseForwardModel):
@ -85,7 +87,7 @@ class Emulator(borg.forward.BaseForwardModel):
# Step 2 - correct for particles that moved over the periodic boundary # Step 2 - correct for particles that moved over the periodic boundary
if self.debug: if self.debug:
start_time = time.time() start_time = time.time()
disp_temp = correct_displacement_over_periodic_boundaries(disp,L=self.box.L[0],max_disp_1d=self.box.L[0]//2) disp_temp = utils.correct_displacement_over_periodic_boundaries(disp,L=self.box.L[0],max_disp_1d=self.box.L[0]//2)
if self.debug: if self.debug:
myprint("Step 2 of forward pass took %s seconds" % (time.time() - start_time)) myprint("Step 2 of forward pass took %s seconds" % (time.time() - start_time))
@ -102,7 +104,7 @@ class Emulator(borg.forward.BaseForwardModel):
# Step 4 - normalize # Step 4 - normalize
if self.debug: if self.debug:
start_time = time.time() start_time = time.time()
dis(dis_in) utils.dis(dis_in)
if self.debug: if self.debug:
myprint("Step 4 of forward pass took %s seconds" % (time.time() - start_time)) myprint("Step 4 of forward pass took %s seconds" % (time.time() - start_time))
@ -162,7 +164,7 @@ class Emulator(borg.forward.BaseForwardModel):
# Step 9 - undo the normalization # Step 9 - undo the normalization
if self.debug: if self.debug:
start_time = time.time() start_time = time.time()
dis(dis_out,undo=True) utils.dis(dis_out,undo=True)
if self.debug: if self.debug:
self.dis_out = dis_out self.dis_out = dis_out
myprint("Step 9 of forward pass took %s seconds" % (time.time() - start_time)) myprint("Step 9 of forward pass took %s seconds" % (time.time() - start_time))
@ -227,7 +229,7 @@ class Emulator(borg.forward.BaseForwardModel):
# reverse step 9 # reverse step 9
if self.debug: if self.debug:
start_time = time.time() start_time = time.time()
dis(ag,undo=False) utils.dis(ag,undo=False)
if self.debug: if self.debug:
myprint("Reverse step 9 took %s seconds" % (time.time() - start_time)) myprint("Reverse step 9 took %s seconds" % (time.time() - start_time))
@ -274,7 +276,7 @@ class Emulator(borg.forward.BaseForwardModel):
# reverse step 4 # reverse step 4
if self.debug: if self.debug:
start_time = time.time() start_time = time.time()
dis(ag,undo=True) utils.dis(ag,undo=True)
if self.debug: if self.debug:
myprint("Reverse step 4 took %s seconds" % (time.time() - start_time)) myprint("Reverse step 4 took %s seconds" % (time.time() - start_time))
@ -314,9 +316,9 @@ class Emulator(borg.forward.BaseForwardModel):
y = y * Ny / Ly y = y * Ny / Ly
z = z * Nz / Lz z = z * Nz / Lz
qx, ix = get_cell_coord(x) qx, ix = utils.get_cell_coord(x)
qy, iy = get_cell_coord(y) qy, iy = utils.get_cell_coord(y)
qz, iz = get_cell_coord(z) qz, iz = utils.get_cell_coord(z)
ix = ix.astype(int) ix = ix.astype(int)
iy = iy.astype(int) iy = iy.astype(int)
@ -352,9 +354,9 @@ class Emulator(borg.forward.BaseForwardModel):
y = y * Ny / Ly y = y * Ny / Ly
z = z * Nz / Lz z = z * Nz / Lz
qx, ix = get_cell_coord(x) qx, ix = utils.get_cell_coord(x)
qy, iy = get_cell_coord(y) qy, iy = utils.get_cell_coord(y)
qz, iz = get_cell_coord(z) qz, iz = utils.get_cell_coord(z)
ix = ix.astype(int) ix = ix.astype(int)
iy = iy.astype(int) iy = iy.astype(int)

View file

@ -7,9 +7,10 @@ import symbolic_pofk.linear
import jax import jax
from functools import partial from functools import partial
import ast import ast
import torch
import utils as utils import utils as utils
from utils import myprint from utils import myprint, initial_pos
import forwards import forwards
import networks import networks
@ -56,7 +57,7 @@ class GaussianLikelihood(borg.likelihood.BaseLikelihood):
# Initialise model parameters # Initialise model parameters
model_params = { model_params = {
'logfR0':float(config['model']['logfr0']) 'logfR0':float(config['model']['logfr0']),
'gauss_sigma':float(config['model']['gauss_sigma']) 'gauss_sigma':float(config['model']['gauss_sigma'])
} }
self.fwd_param.setModelParams(model_params) self.fwd_param.setModelParams(model_params)
@ -134,7 +135,12 @@ class GaussianLikelihood(borg.likelihood.BaseLikelihood):
if self.run_type == 'data': if self.run_type == 'data':
raise NotImplementedError raise NotImplementedError
elif self.run_type == 'mock': elif self.run_type == 'mock':
raise NotImplementedError output_density = np.zeros(self.fwd.getOutputBoxModel().N)
self.fwd.forwardModel_v2(s_hat)
self.fwd.getDensityFinal(output_density)
state["BORG_final_density"][:] = output_density
output_density += np.random.normal(size=self.fwd.getOutputBoxModel().N) * self.getModelParam('nullforward', 'gauss_sigma')
state["mock"][:] = output_density
else: else:
raise NotImplementedError raise NotImplementedError
@ -179,9 +185,6 @@ class GaussianLikelihood(borg.likelihood.BaseLikelihood):
output_density = np.zeros((N,N,N)) output_density = np.zeros((N,N,N))
self.fwd.forwardModel_v2(s_hat) self.fwd.forwardModel_v2(s_hat)
self.fwd.getDensityFinal(output_density) self.fwd.getDensityFinal(output_density)
# Get velocity field
output_velocity = self.fwd_vel.getVelocityField()
self.delta = output_density self.delta = output_density
self.vel = output_velocity self.vel = output_velocity
@ -219,7 +222,7 @@ class GaussianLikelihood(borg.likelihood.BaseLikelihood):
self.fwd.adjointModel_v2(mygradient) self.fwd.adjointModel_v2(mygradient)
mygrad_hat = np.zeros(s_hat.shape, dtype=np.complex128) mygrad_hat = np.zeros(s_hat.shape, dtype=np.complex128)
self.fwd.getAdjointModel(mygrad_hat) self.fwd.getAdjointModel(mygrad_hat)
elf.fwd.clearAdjointGradient() self.fwd.clearAdjointGradient()
return mygrad_hat return mygrad_hat
@ -263,6 +266,10 @@ def build_gravity_model(state: borg.likelihood.MarkovState, box: borg.forward.Bo
config.read(ini_file) config.read(ini_file)
ai = float(config['model']['ai']) ai = float(config['model']['ai'])
af = float(config['model']['af']) af = float(config['model']['af'])
# Setup forward model
chain = borg.forward.ChainForwardModel(box)
chain.addModel(borg.forward.models.HermiticEnforcer(box))
# Cosmological parameters # Cosmological parameters
if ini_file is None: if ini_file is None:
@ -270,10 +277,6 @@ def build_gravity_model(state: borg.likelihood.MarkovState, box: borg.forward.Bo
else: else:
cpar = utils.get_cosmopar(ini_file) cpar = utils.get_cosmopar(ini_file)
chain.setCosmoParams(cpar) chain.setCosmoParams(cpar)
# Setup forward model
chain = borg.forward.ChainForwardModel(box)
chain.addModel(borg.forward.models.HermiticEnforcer(box))
# CLASS transfer function # CLASS transfer function
chain @= borg.forward.model_lib.M_PRIMORDIAL_AS(box) chain @= borg.forward.model_lib.M_PRIMORDIAL_AS(box)
@ -322,10 +325,7 @@ def build_gravity_model(state: borg.likelihood.MarkovState, box: borg.forward.Bo
# Initialize model # Initialize model
model = getattr(networks, config['emulator']['architecture']) model = getattr(networks, config['emulator']['architecture'])
# if use_distilled: model = model(int(config['emulator']['style_size']), int(config['emulator']['in_chan']), int(config['emulator']['out_chan']))
# model = networks.StyledVNet_distill(1,3,3,num_filt=num_filt)
# else:
# model = networks.StyledVNet(1,3,3)
model.load_state_dict(emu_weights['model']) model.load_state_dict(emu_weights['model'])
use_float64 = config['emulator']['use_float64'].lower().strip() == 'true' use_float64 = config['emulator']['use_float64'].lower().strip() == 'true'
@ -505,7 +505,7 @@ def build_likelihood(state: borg.likelihood.MarkovState, info: borg.likelihood.L
myprint("Building likelihood") myprint("Building likelihood")
myprint(chain.getCosmoParams()) myprint(chain.getCosmoParams())
boxm = chain.getBoxModel() boxm = chain.getBoxModel()
likelihood = VelocityBORGLikelihood(chain, fwd_param, fwd_vel, borg.getIniConfigurationFilename()) likelihood = VelocityBORGLikelihood(chain, fwd_param, borg.getIniConfigurationFilename())
return likelihood return likelihood

View file

@ -1,8 +1,8 @@
import torch import torch
import torch.nn as nn import torch.nn as nn
from .styled_conv import ConvStyledBlock, ResStyledBlock from map2map_tools.styled_conv import ConvStyledBlock, ResStyledBlock
from .narrow import narrow_by from map2map_tools.narrow import narrow_by
class StyledVNet(nn.Module): class StyledVNet(nn.Module):
def __init__(self, style_size, in_chan, out_chan, bypass=None, **kwargs): def __init__(self, style_size, in_chan, out_chan, bypass=None, **kwargs):

View file

@ -1,5 +1,9 @@
import aquila_borg as borg import aquila_borg as borg
import configparser import configparser
import numpy as np
import jax.numpy as jnp
from scipy.special import hyp2f1
import symbolic_pofk.linear
cons = borg.console() cons = borg.console()
myprint = lambda x: cons.print_std(x) if type(x) == str else cons.print_std(repr(x)) myprint = lambda x: cons.print_std(x) if type(x) == str else cons.print_std(repr(x))
@ -34,3 +38,83 @@ def get_cosmopar(ini_file):
cpar.sigma8, cpar.omega_m, cpar.omega_b, cpar.h, cpar.n_s) cpar.sigma8, cpar.omega_m, cpar.omega_b, cpar.h, cpar.n_s)
return cpar return cpar
def initial_pos(L,N,order="F"):
values = np.linspace(0,L,N+1)[:-1] #ensure LLC
xx,yy,zz = np.meshgrid(values,values,values)
if order=="F":
pos_mesh = np.vstack((yy.flatten(),xx.flatten(),zz.flatten())).T
if order=="C":
pos_mesh = np.vstack((zz.flatten(),xx.flatten(),yy.flatten())).T
return pos_mesh
def correct_displacement_over_periodic_boundaries(disp,L,max_disp_1d=125):
# Need to correct for positions moving over the periodic boundary
moved_over_bound = L - max_disp_1d
axis = ['x','y','z']
for i in [0,1,2]:
idx_sup, idx_sub = check(disp,L,moved_over_bound,max_disp_1d,i,axis)
# Correct positions
disp[:,i][idx_sup] -= L
disp[:,i][idx_sub] += L
check(disp,L,moved_over_bound,max_disp_1d,i,axis)
assert np.amin(disp[:,i]) >= -max_disp_1d and np.amax(disp[:,i]) <= max_disp_1d, "Particles outside allowed region"
return disp
def check(disp,L,moved_over_bound,max_disp_1d,i,axis):
idxsup = disp[:,i]>moved_over_bound
idx = np.abs(disp[:,i])<=max_disp_1d
idxsub = disp[:,i]<-moved_over_bound
sup = len(disp[:,i][idxsup])
did_not_cross_boundary = len(disp[:,i][idx])
sub = len(disp[:,i][idxsub])
if not sub+did_not_cross_boundary+sup == len(disp[:,i]):
myprint(f'Disp in {axis[i]} direction under -{moved_over_bound} Mpc/h is = '+str(sub))
myprint(f'|Disp| in {axis[i]} direction under {max_disp_1d} Mpc/h is = '+str(did_not_cross_boundary))
myprint(f'Disp in {axis[i]} direction over {moved_over_bound} Mpc/h is = '+str(sup))
myprint('These add up to: '+str(sub+did_not_cross_boundary+sup))
myprint(f"Should add up to: len(disp[:,i]) {len(disp[:,i])}")
myprint('\n')
assert sub+did_not_cross_boundary+sup == len(disp[:,i]), "Incorrect summation" # cannot lose/gain particles
return idxsup, idxsub
def dis(x, undo=False, z=0.0, dis_std=6.0, **kwargs):
dis_norm = dis_std * linear_D(z) # [Mpc/h]
if not undo:
dis_norm = 1 / dis_norm
x *= dis_norm
def linear_D(z, Om=0.31):
"""linear growth function for flat LambdaCDM, normalized to 1 at redshift zero
"""
OL = 1 - Om
a = 1 / (1+z)
return a * hyp2f1(1, 1/3, 11/6, - OL * a**3 / Om) \
/ hyp2f1(1, 1/3, 11/6, - OL / Om)
def get_cell_coord(x):
ix = jnp.floor(x)
return x - ix, ix
def get_cell_coord_np(x):
ix = np.floor(x)
return x - ix, ix

View file

@ -0,0 +1,19 @@
Memory still allocated at the end: 479.03 MB
Statistics per context (name, allocated, freed, peak)
======================
*none* 64.0001 122.07 312.32
BORG LPT MODEL 113.12 0 553.44
BORGForwardModel::setup 0.000205994 0 216.82
BorgLptModel::BorgLptModel 144 0 216.82
[/home/bartlett/borg/libLSS/physics/chain_forward_model.cpp]virtual void LibLSS::ChainForwardModel::forwardModel_v2(ModelInput<3>) 160 16.25 617.35
[/home/bartlett/borg/libLSS/physics/forward_model.cpp]void LibLSS::BORGForwardModel::setupDefault() 64 0 72.8201
[/home/bartlett/borg/libLSS/physics/forwards/borg_lpt.cpp]std::shared_ptr<BORGForwardModel> build_borg_lpt(std::shared_ptr<MPI_Communication>, const BoxModel &, const PropertyProxy &) [Grid = LibLSS::ClassicCloudInCell<double, false, true>] 0 0 8.82007
[/home/bartlett/borg/libLSS/physics/forwards/particle_balancer/balanceinfo.hpp]void LibLSS::BalanceInfo::allocate(MPI_Communication *, size_t) 16.16 0 569.6
[/home/bartlett/borg/libLSS/physics/forwards/primordial_as.cpp]std::shared_ptr<BORGForwardModel> build_primordial_as(std::shared_ptr<MPI_Communication>, const BoxModel &, const PropertyProxy &) 4.41 7.62939e-06 4.41006
[/home/bartlett/borg/libLSS/physics/forwards/transfer_class.cpp]std::shared_ptr<BORGForwardModel> build_class(std::shared_ptr<MPI_Communication>, const BoxModel &, const PropertyProxy &) 4.41 7.62939e-06 8.82008
[/home/bartlett/borg/libLSS/samplers/core/gridLikelihoodBase.cpp]LibLSS::GridDensityLikelihoodBase<3>::GridDensityLikelihoodBase(MPI_Communication *, const GridSizes &, const GridLengths &) [Dims = 3] 64 32.5 280.82
[/home/bartlett/borg/libLSS/tools/mpi/ghost_planes.hpp]void LibLSS::GhostPlanes<std::complex<double>, 2>::setup(MPI_Communication *, PlaneList &&, PlaneSet &&, DimList &&, size_t) [T = std::complex<double>, Nd = 2, PlaneList = std::set<long> &, PlaneSet = std::set<long> &, DimList = std::array<long, 2> &] 7.62939e-06 0.000495911 5.34058e-05
dispatch_plane_map 0.000988007 0.000499725 0.00104141
lpt_ic 32 16.25 601.6

63
tests/fft_wisdom Normal file
View file

@ -0,0 +1,63 @@
(fftw-3.3.10 fftw_wisdom #x029d284e #xc5dfc84e #xce4ac490 #x98c4e7bb
(fftw_dft_thr_vrank_geq1_register 0 #x10bdd #x10bdd #x0 #x8c3bd361 #x74c82e49 #xd9d08cec #x490fb3c3)
(fftw_dft_vrank_geq1_register 0 #x10bdd #x10bdd #x0 #xa79e8a60 #xe87bfd8a #x902920f9 #x2ec9719b)
(fftw_mpi_rdft2_serial_register 0 #x10bdd #x10bdd #x0 #x4ee85eaa #x68518300 #x99d7298f #x8e84c365)
(fftw_dft_r2hc_register 0 #x10bdd #x10bdd #x0 #xbe8bb67c #x0147d50a #xd6a7d883 #xaba02422)
(fftw_rdft2_thr_vrank_geq1_register 0 #x10bdd #x10bdd #x0 #x851f9a4b #x19b2c27b #xed08cfa9 #x4bb3370b)
(fftw_rdft2_rank_geq2_register 0 #x10bdd #x10bdd #x0 #x658ee741 #x13268820 #x59089f57 #x487d6156)
(fftw_codelet_t1_16 0 #x10bdd #x10bdd #x0 #x8d3a0404 #x4ced2878 #xd7b0010b #x343f82db)
(fftw_rdft_rank0_register 3 #x10bdd #x10bdd #x0 #xb076fe66 #xe428602a #xff6bd3c3 #xf198ea92)
(fftw_dft_vrank_geq1_register 0 #x10bdd #x10bdd #x0 #xb26542a9 #x6f11da3d #xcc2f3b11 #xf58ffaf3)
(fftw_dft_r2hc_register 0 #x10bdd #x10bdd #x0 #x19986bf9 #x1b1c9f9a #xbfa313e4 #x8089c52d)
(fftw_codelet_n1_8 0 #x10bdd #x10bdd #x0 #xd47121ba #x8509d296 #xda71f68f #x32819f4c)
(fftw_dft_thr_vrank_geq1_register 0 #x10bdd #x10bdd #x0 #x676d367b #x9d081048 #x84d35015 #xadb7f14f)
(fftw_codelet_n1_8 0 #x10bdd #x10bdd #x0 #x96b8529e #xb560f141 #x58923d7d #x29e83836)
(fftw_rdft2_rank_geq2_register 0 #x10bdd #x10bdd #x0 #xafd851da #x99c0aebd #x0230e6a1 #x4dc1a835)
(fftw_dft_vrank_geq1_register 0 #x10bdd #x10bdd #x0 #x9d85b3d1 #x9fe51a73 #x90554ee0 #xae9d884a)
(fftw_rdft2_rank_geq2_register 0 #x10bdd #x10bdd #x0 #x432cb311 #x3851b42e #xe2a123c6 #xe40063b1)
(fftw_dft_thr_vrank_geq1_register 0 #x10bdd #x10bdd #x0 #x3b11e766 #xcac44a9a #xebe02560 #xf4741891)
(fftw_rdft2_thr_vrank_geq1_register 0 #x10bdd #x10bdd #x0 #x1e5b754b #xc1ee385c #x32bb8ea2 #x03c0f524)
(fftw_codelet_r2cb_128 2 #x10bdd #x10bdd #x0 #x3537951e #x3fde8ce2 #x944269f6 #xe658bdf2)
(fftw_rdft2_rank_geq2_register 0 #x10bdd #x10bdd #x0 #x87a70733 #x168e4628 #x5985aa94 #x15260cc8)
(fftw_codelet_n1_8 0 #x10bdd #x10bdd #x0 #x808c2c0b #xbc5616e2 #xc7cd6770 #x7d6b57c8)
(fftw_dft_thr_vrank_geq1_register 0 #x10bdd #x10bdd #x0 #xc5735095 #x158eb2be #x520352f6 #x7c5ad18a)
(fftw_dft_buffered_register 1 #x10bdd #x10bdd #x0 #x1bb138e5 #x126b4895 #x84639765 #xc6e16ed2)
(fftw_mpi_rdft2_serial_register 0 #x10bdd #x10bdd #x0 #xb92bad75 #xe367ef0e #x7081a83c #x6bca5b81)
(fftw_rdft2_thr_vrank_geq1_register 0 #x10bdd #x10bdd #x0 #x85be544a #x6ec428e5 #x464a9e59 #x2d009947)
(fftw_rdft2_rank_geq2_register 0 #x10bdd #x10bdd #x0 #xd82cc4f0 #x264fda99 #x5da09515 #xaf7ad82a)
(fftw_codelet_r2cf_8 2 #x10bdd #x10bdd #x0 #x2b8efd4b #xf9271562 #x58810e69 #x2a843b48)
(fftw_mpi_rdft2_serial_register 0 #x10bdd #x10bdd #x0 #x64e50173 #xb27777d0 #xab348092 #xbcf5cef7)
(fftw_dft_thr_vrank_geq1_register 0 #x10bdd #x10bdd #x0 #xdfbe0f99 #x9b0e292d #x4a5c0b38 #x807ed5d9)
(fftw_codelet_n1_8 0 #x10bdd #x10bdd #x0 #x786bb47e #xf1901331 #x7f050641 #xf40ac495)
(fftw_dft_thr_vrank_geq1_register 0 #x10bdd #x10bdd #x0 #xe414074e #xb5f6c556 #x331a5df5 #x42b72bfe)
(fftw_dft_vrank_geq1_register 0 #x10bdd #x10bdd #x0 #x1c43a133 #x3a02cc9a #x06061ea2 #x8bd59400)
(fftw_codelet_n1_8 0 #x10bdd #x10bdd #x0 #x8780ffa9 #x5043b17e #xf6b31f7c #x09308bf3)
(fftw_rdft_rank0_register 3 #x10bdd #x10bdd #x0 #x0a7949d7 #x8e617643 #x1dc37829 #xb9c99559)
(fftw_codelet_n1_8 0 #x10bdd #x10bdd #x0 #x6cd039b7 #x416fd217 #x9a1f1005 #xae8b516f)
(fftw_codelet_r2cf_128 2 #x10bdd #x10bdd #x0 #x01ed1f43 #x9eb2a8be #x54a463f4 #x4065bd8c)
(fftw_dft_buffered_register 1 #x10bdd #x10bdd #x0 #x8cb4c207 #xbbe7f9d8 #x6142bd03 #x1fef6cbd)
(fftw_codelet_t1_16 0 #x10bdd #x10bdd #x0 #x07493f2d #xdbff69bf #xc99ae69c #x99aebe87)
(fftw_mpi_rdft2_serial_register 0 #x10bdd #x10bdd #x0 #x12333882 #x58ed4c26 #x2573fe73 #x58166349)
(fftw_dft_vrank_geq1_register 0 #x10bdd #x10bdd #x0 #x55dc834f #xe6778f48 #x5fb9338e #xb26105c2)
(fftw_codelet_n1_16 0 #x10bdd #x10bdd #x0 #x31243853 #xcd3ffac1 #x216a5369 #xbed877e1)
(fftw_codelet_n1_8 0 #x10bdd #x10bdd #x0 #x07538465 #x05c872d2 #x2e3a8015 #x2c1d6fb3)
(fftw_codelet_t1_8 0 #x10bdd #x10bdd #x0 #xe1c49a16 #x6e50ae21 #x6a60b5f7 #x922c9861)
(fftw_rdft2_rank_geq2_register 0 #x10bdd #x10bdd #x0 #xd747290f #x47e022d8 #x5f66ed62 #x0703deff)
(fftw_rdft2_thr_vrank_geq1_register 0 #x10bdd #x10bdd #x0 #x6e5782da #xff8f0cb7 #xb7b3553d #xff227114)
(fftw_dft_nop_register 0 #x10bdd #x10bdd #x0 #x54333caa #x860f0b6a #xeeb1b4b0 #xbc1bf503)
(fftw_dft_nop_register 0 #x10bdd #x10bdd #x0 #x329f88d1 #x8b794130 #x1d6cd482 #x226d9d8c)
(fftw_dft_nop_register 0 #x10bdd #x10bdd #x0 #xcaa1aff4 #x76b5ab1f #xa1c4e63a #x795533ee)
(fftw_dft_r2hc_register 0 #x10bdd #x10bdd #x0 #xed14e8ff #x6a3fa4af #xcf6bc976 #x9ed6862b)
(fftw_rdft2_rank_geq2_register 0 #x10bdd #x10bdd #x0 #xf68eeb4b #x9707c500 #xea967ca2 #x94317695)
(fftw_dft_thr_vrank_geq1_register 0 #x10bdd #x10bdd #x0 #x8e7540ba #xdf13a27a #xc5dfd29d #xcc18c450)
(fftw_dft_thr_vrank_geq1_register 0 #x10bdd #x10bdd #x0 #x4d5128a3 #x2c886ce4 #xae533803 #xd036a3e3)
(fftw_codelet_t1_16 0 #x10bdd #x10bdd #x0 #xec8d8b00 #x73468233 #xfd711f80 #x8216811f)
(fftw_rdft2_rank_geq2_register 0 #x10bdd #x10bdd #x0 #x69620706 #x1630ea0a #x7845ac91 #x107c1ea6)
(fftw_dft_vrank_geq1_register 0 #x10bdd #x10bdd #x0 #xfa2f8f06 #x1e602e94 #x45491c98 #xb72edccf)
(fftw_dft_buffered_register 1 #x10bdd #x10bdd #x0 #x9d8339bb #x21e617a3 #x19bcf6ec #x843e58c6)
(fftw_dft_r2hc_register 0 #x10bdd #x10bdd #x0 #x2b1407ee #x9181dd05 #x70f5ba55 #x9d03e54b)
(fftw_dft_buffered_register 1 #x10bdd #x10bdd #x0 #xb5a35887 #x56e26ed1 #x50fc7926 #x21aa2465)
(fftw_rdft2_thr_vrank_geq1_register 0 #x10bdd #x10bdd #x0 #xde80c147 #x2f2b1766 #x646a051f #xbce0e7ea)
(fftw_dft_nop_register 0 #x10bdd #x10bdd #x0 #xa211000f #x16096f47 #x8977fda7 #x5859feab)
(fftw_codelet_r2cb_8 2 #x10bdd #x10bdd #x0 #xcc33ac01 #x3a093b70 #xce721838 #xe388f482)
)

198
tests/test_gradient.py Normal file
View file

@ -0,0 +1,198 @@
import aquila_borg as borg
import configparser
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
import itertools
import h5py as h5
import os
import sys
import contextlib
from tqdm import tqdm
sys.path.insert(0, '../mgborg_emulator/')
import likelihood
import forwards
import utils
run_test = True
# run_test = False
epsilon = 1e-2
# Create a context manager to suppress stdout
@contextlib.contextmanager
def suppress_stdout():
with open(os.devnull, 'w') as devnull:
old_stdout = sys.stdout
sys.stdout = devnull
try:
yield
finally:
sys.stdout = old_stdout
def compare_gradients(
ag_lh_auto_real: np.ndarray,
ag_lh_auto_imag: np.ndarray,
ag_lh_num_real: np.ndarray,
ag_lh_num_imag: np.ndarray,
plot_step: int,
filename: str="gradients.png",
) -> None:
"""
Comparison of an autodiff adjoint gradient of the likelihood against a
numerical one evaluated with finite differences.
Args:
- ag_lh_auto_real (np.ndarray): Real part of the adjoint gradient (autodiff)
- ag_lh_auto_imag (np.ndarray): Imaginary part of the adjoint gradient (autodiff)
- ag_lh_num_real (np.ndarray): Real part of the adjoint gradient (numerical)
- ag_lh_num_imag (np.ndarray): Imaginary part of the adjoint gradient (numerical)
- plot_step (int): How frequently to sample the arrays
- filename (str): Name of the file to save the figure
"""
# Plot colors
colors = {
"red": "#ba3d3b",
"blue": "#3d5792",
}
fig, axs = plt.subplots(2, 2, figsize=(10, 7))
# Real part
axs[0,0].axhline(0.0, color="black", linestyle=":")
axs[0,0].plot(ag_lh_num_real[::plot_step], c=colors["blue"], label="Finite differences")
axs[0,0].plot(ag_lh_auto_real[::plot_step], "o", c=colors["red"], ms=3, label="Autodiff")
axs[0,0].yaxis.get_major_formatter().set_powerlimits((-2, 2))
axs[0,0].set_ylabel("Real part")
axs[0,0].legend()
axs[0,1].plot(ag_lh_num_real[::plot_step],
ag_lh_auto_real[::plot_step] - ag_lh_num_real[::plot_step],
"o",
c=colors["red"],
ms=3
)
x = axs[0,1].get_xlim()
axs[0,1].axhline(y=0, color='k')
axs[0,1].set_xlabel("Numerical")
axs[0,1].set_ylabel("Autodiff - Numerical (real)")
# Imaginary part
axs[1,0].axhline(0.0, color="black", linestyle=":")
axs[1,0].plot(ag_lh_num_imag[::plot_step][4:], c=colors["blue"], label="Finite differences")
axs[1,0].plot(ag_lh_auto_imag[::plot_step][4:], "o", c=colors["red"], ms=3, label="Autodiff")
axs[1,0].yaxis.get_major_formatter().set_powerlimits((-2, 2))
axs[1,0].set_ylabel("Imaginary part")
axs[1,0].set_xlabel("Voxel ID")
axs[1,1].plot(ag_lh_num_imag[::plot_step],
ag_lh_auto_imag[::plot_step] - ag_lh_num_imag[::plot_step],
".",
c=colors["red"]
)
x = axs[1,1].get_xlim()
axs[1,1].axhline(y=0, color='k')
axs[1,1].set_xlabel("Numerical")
axs[1,1].set_ylabel("Autodiff - Numerical (imag)")
fig.suptitle("Adjoint gradient of the likelihood w.r.t. initial conditions")
fig.tight_layout()
fig.subplots_adjust(hspace=0.)
path = "../figs/"
fig.savefig(path + filename, bbox_inches="tight")
ini_file = '../conf/basic_ini.ini'
# Input box
box_in = borg.forward.BoxModel()
config = configparser.ConfigParser()
config.read(ini_file)
box_in.L = (float(config['system']['L0']), float(config['system']['L1']), float(config['system']['L2']))
box_in.N = (int(config['system']['N0']), int(config['system']['N1']), int(config['system']['N2']))
box_in.xmin = (float(config['system']['corner0']), float(config['system']['corner1']), float(config['system']['corner2']))
# Setup BORG forward model and likelihood
model = likelihood.build_gravity_model(None, box_in, ini_file=ini_file)
cosmo = utils.get_cosmopar(ini_file)
model.setCosmoParams(cosmo)
fwd_param = forwards.NullForward(box_in)
mylike = likelihood.GaussianLikelihood(model, fwd_param, ini_file)
# Create mock data
state = borg.likelihood.MarkovState()
mylike.initializeLikelihood(state)
mylike.updateCosmology(cosmo)
s_hat = np.fft.rfftn(np.random.randn(*box_in.N)) / box_in.Ntot ** (0.5)
mylike.generateMockData(s_hat, state)
# Compute density field
output_density = np.zeros(box_in.N)
mylike.fwd.forwardModel_v2(s_hat)
print('SUM START', output_density.sum())
mylike.fwd.getDensityFinal(output_density)
print('SUM NOW', output_density.sum())
L = mylike.logLikelihoodComplex(s_hat, None)
print(L)
quit()
# Autodiff
autodiff_gradient = mylike.gradientLikelihoodComplex(s_hat)
print(autodiff_gradient.min(), autodiff_gradient.max(), np.sum(np.isfinite(autodiff_gradient)), np.prod(autodiff_gradient.shape))
# Finite differences
if run_test:
s_hat_epsilon = s_hat.copy()
num_gradient = np.zeros(s_hat.shape, dtype=np.complex128)
for i, j, k in tqdm(
itertools.product(*map(range, [box_in.N[0], box_in.N[1], box_in.N[2] // 2 + 1])),
total=box_in.N[0] * box_in.N[1] * (box_in.N[2] // 2 + 1),
mininterval=1,
):
# +/- epsilon
s_hat_epsilon[i, j, k] = s_hat[i, j, k] + epsilon
with suppress_stdout():
L = mylike.logLikelihoodComplex(s_hat_epsilon, None)
s_hat_epsilon[i, j, k] = s_hat[i, j, k] - epsilon
with suppress_stdout():
L -= mylike.logLikelihoodComplex(s_hat_epsilon, None)
QQ = L / (2.0 * epsilon)
# +/- i * epsilon
s_hat_epsilon[i, j, k] = s_hat[i, j, k] + 1j * epsilon
with suppress_stdout():
L = mylike.logLikelihoodComplex(s_hat_epsilon, None)
s_hat_epsilon[i, j, k] = s_hat[i, j, k] - 1j * epsilon
with suppress_stdout():
L -= mylike.logLikelihoodComplex(s_hat_epsilon, None)
QQ = QQ + L * 1j / (2.0 * epsilon)
s_hat_epsilon[i, j, k] = s_hat[i, j, k]
num_gradient[i, j, k] = QQ
with h5.File(f"gradients_{box_in.N}.h5", mode="w") as ff:
ff["scalars/gradient_array_lh"] = autodiff_gradient
ff["scalars/gradient_array_lh_ref"] = num_gradient
ff["scalars/gradient_array_prior"] = np.zeros_like(autodiff_gradient)
ff["scalars/gradient_array_prior_ref"] = np.zeros_like(autodiff_gradient)
slice_step = 2
plot_step = 2
with h5.File(f'gradients_{box_in.N}.h5', 'r') as f:
ag_lh_auto_real = f["scalars"]["gradient_array_lh"][::slice_step, :, :].flatten().real
ag_lh_auto_imag = f["scalars"]["gradient_array_lh"][::slice_step, :, :].flatten().imag
ag_lh_num_real = f["scalars"]["gradient_array_lh_ref"][::slice_step, :, :].flatten().real
ag_lh_num_imag = f["scalars"]["gradient_array_lh_ref"][::slice_step, :, :].flatten().imag
compare_gradients(
ag_lh_auto_real,
ag_lh_auto_imag,
ag_lh_num_real,
ag_lh_num_imag,
plot_step,
f'gradient_test_{box_in.N[0]}.png',
)

58
tests/timing_stats_0.txt Normal file
View file

@ -0,0 +1,58 @@
ARES version a9c88f3e8f91e04ec7c84eaea3b11ac5546aa6a5 modules
Cumulative timing spent in different context
--------------------------------------------
Context, Total time (seconds)
[/home/bartlett/borg/libLSS/physics/forward_model.cpp]void LibLSS::ForwardModel::setCosmoParams(const CosmologicalParameters &) 39 2.96271
[/home/bartlett/borg/libLSS/physics/chain_forward_model.cpp]virtual void LibLSS::ChainForwardModel::forwardModel_v2(ModelInput<3>) 1 2.54629
[/home/bartlett/borg/libLSS/physics/forwards/borg_lpt.cpp]virtual void LibLSS::BorgLptModel<>::updateCosmo() [CIC = LibLSS::ClassicCloudInCell<double, false, true>] 4 0.882557
lightcone computation 1 0.878502
[/home/bartlett/borg/libLSS/physics/cosmo.cpp]void LibLSS::Cosmology::precompute_com2a() 1 0.678918
[/home/bartlett/borg/libLSS/physics/forwards/transfer_class.cpp]virtual void LibLSS::ForwardClass::updateCosmo() 4 0.593989
[/home/bartlett/borg/libLSS/physics/class_cosmo.cpp]LibLSS::ClassCosmo::ClassCosmo(const CosmologicalParameters &, unsigned int, double, std::string, unsigned int, const std::map<std::string, std::string> &) 1 0.482735
[/home/bartlett/borg/libLSS/physics/forwards/primordial_as.cpp]std::shared_ptr<BORGForwardModel> build_primordial_as(std::shared_ptr<MPI_Communication>, const BoxModel &, const PropertyProxy &) 1 0.222871
[/home/bartlett/borg/libLSS/physics/forwards/transfer_class.cpp]std::shared_ptr<BORGForwardModel> build_class(std::shared_ptr<MPI_Communication>, const BoxModel &, const PropertyProxy &) 1 0.202131
BORG LPT MODEL 1 0.193024
BORG forward model 1 0.191335
lpt_ic 1 0.186872
[/home/bartlett/borg/libLSS/physics/cosmo.cpp]void LibLSS::Cosmology::precompute_d_plus() 1 0.174369
[/home/bartlett/borg/libLSS/physics/forwards/lpt/borg_fwd_lpt.cpp]virtual void LibLSS::BorgLptModel<>::getDensityFinal(ModelOutput<3>) [CIC = LibLSS::ClassicCloudInCell<double, false, true>] 1 0.0468955
Classic CIC projection 1 0.0429608
FFTW_Manager::execute_c2r 3 0.0177956
[/home/bartlett/borg/libLSS/physics/forwards/borg_lpt.cpp]std::shared_ptr<BORGForwardModel> build_borg_lpt(std::shared_ptr<MPI_Communication>, const BoxModel &, const PropertyProxy &) [Grid = LibLSS::ClassicCloudInCell<double, false, true>] 1 0.0122158
BorgLptModel::BorgLptModel 1 0.0117337
[/home/bartlett/borg/libLSS/tools/hermiticity_fixup.cpp]LibLSS::Hermiticity_fixer<double, 3>::Hermiticity_fixer(Mgr_p) [T = double, Nd = 3] 1 0.00922349
[/home/bartlett/borg/libLSS/tools/mpi/ghost_planes.hpp]void LibLSS::GhostPlanes<std::complex<double>, 2>::setup(MPI_Communication *, PlaneList &&, PlaneSet &&, DimList &&, size_t) [T = std::complex<double>, Nd = 2, PlaneList = std::set<long> &, PlaneSet = std::set<long> &, DimList = std::array<long, 2> &] 1 0.00915645
FFTW_Manager::create_r2c_plan 3 0.00870736
[/home/bartlett/borg/python/pyforward.cpp]void transfer_in(std::shared_ptr<BORGForwardModel::DFT_Manager> &, T &, U &, bool) [T = boost::multi_array_ref<std::complex<double>, 3>, U = pybind11::detail::unchecked_reference<std::complex<double>, 3>] 1 0.00718587
dispatch_plane_map 1 0.00579799
FFTW_Manager::create_c2r_plan 2 0.00561102
[/home/bartlett/borg/libLSS/physics/forward_model.cpp]void LibLSS::BORGForwardModel::setupDefault() 1 0.00491136
[/home/bartlett/borg/libLSS/physics/forwards/primordial_as.cpp]virtual void LibLSS::ForwardPrimordial_As::updateCosmo() 8 0.00461581
[/home/bartlett/borg/libLSS/physics/forwards/primordial_as.cpp]void LibLSS::ForwardPrimordial_As::updatePower() 4 0.00431693
[/home/bartlett/borg/libLSS/samplers/core/gridLikelihoodBase.cpp]LibLSS::GridDensityLikelihoodBase<3>::GridDensityLikelihoodBase(MPI_Communication *, const GridSizes &, const GridLengths &) [Dims = 3] 1 0.0029058
[/home/bartlett/borg/libLSS/physics/hermitic.hpp]virtual void LibLSS::ForwardHermiticOperation::getDensityFinal(ModelOutput<3>) 1 0.00258788
[/home/bartlett/borg/libLSS/physics/forwards/particle_balancer/balanceinfo.hpp]void LibLSS::BalanceInfo::allocate(MPI_Communication *, size_t) 1 0.00160495
BORGForwardModel::setup 9 0.00148339
Initializing peer system 15 0.00125319
[/home/bartlett/borg/libLSS/physics/forwards/adapt_generic_bias.cpp]void (anonymous namespace)::bias_registrator() 1 0.0011465
[/home/bartlett/borg/libLSS/physics/class_cosmo.cpp]void LibLSS::ClassCosmo::retrieve_Tk(const double) 2 0.00064302
[/home/bartlett/borg/libLSS/physics/class_cosmo.cpp]void LibLSS::ClassCosmo::reinterpolate(const array_ref_1d &, const array_ref_1d &, LibLSS::auto_interpolator<double> &) 6 0.000562291
[/home/bartlett/borg/libLSS/tools/hermiticity_fixup.cpp]void LibLSS::Hermiticity_fixer<double, 3>::forward(CArrayRef &) [T = double, Nd = 3] 1 0.00051675
[/home/bartlett/borg/libLSS/physics/model_io.cpp]virtual LibLSS::detail_output::ModelOutputBase<3>::~ModelOutputBase() [Nd = 3, Super = LibLSS::detail_model::ModelIO<3>] 14 0.000265913
[/home/bartlett/borg/libLSS/tools/hermiticity_fixup.cpp]typename std::enable_if<Dim != 1, void>::type fix_plane(Mgr &, Ghosts &&, CArray &&, size_t *) [rank = 0UL, Mgr = LibLSS::FFTW_Manager<double, 3>, Ghosts = (lambda at /home/bartlett/borg/libLSS/tools/hermiticity_fixup.cpp:212:7), CArray = boost::detail::multi_array::multi_array_view<std::complex<double>, 2>, Dim = 2UL] 1 0.000250649
gather_peer_by_plane 1 0.00023947
[/home/bartlett/borg/libLSS/tools/hermiticity_fixup.cpp]typename std::enable_if<Dim != 1, void>::type fix_plane(Mgr &, Ghosts &&, CArray &&, size_t *) [rank = 0UL, Mgr = LibLSS::FFTW_Manager<double, 3>, Ghosts = (lambda at /home/bartlett/borg/libLSS/tools/hermiticity_fixup.cpp:218:7), CArray = boost::detail::multi_array::multi_array_view<std::complex<double>, 2>, Dim = 2UL] 1 0.000165529
[/home/bartlett/borg/libLSS/physics/model_io.cpp]void LibLSS::detail_output::ModelOutputBase<3>::transfer(ModelOutputBase<Nd, Super> &&) [Nd = 3, Super = LibLSS::detail_model::ModelIO<3>] 9 7.3155e-05
ghost synchronize 1 3.1071e-05
[/home/bartlett/borg/libLSS/physics/model_io/base.hpp]void LibLSS::detail_model::ModelIO<3>::transfer(ModelIO<Nd> &&) [Nd = 3] 30 2.4868e-05
[/home/bartlett/borg/libLSS/physics/forwards/transfer_class.cpp]virtual void LibLSS::ForwardClass::forwardModel_v2(ModelInput<3>) 1 1.2496e-05
[/home/bartlett/borg/libLSS/physics/model_io.cpp]virtual void LibLSS::detail_output::ModelOutputBase<3>::close() [Nd = 3, Super = LibLSS::detail_model::ModelIO<3>] 14 1.2394e-05
[/home/bartlett/borg/libLSS/physics/forwards/primordial_as.cpp]virtual void LibLSS::ForwardPrimordial_As::forwardModel_v2(ModelInput<3>) 1 1.231e-05
[/home/bartlett/borg/libLSS/physics/forwards/transfer_class.cpp]virtual void LibLSS::ForwardClass::setModelParams(const ModelDictionnary &) 1 9.429e-06
[/home/bartlett/borg/libLSS/physics/model_io.cpp]void LibLSS::detail_input::ModelInputBase<3>::setRequestedIO(PreferredIO) [Nd = 3, Super = LibLSS::detail_model::ModelIO<3>] 5 3.766e-06
[/home/bartlett/borg/libLSS/physics/model_io.cpp]void LibLSS::detail_output::ModelOutputBase<3>::setRequestedIO(PreferredIO) [Nd = 3, Super = LibLSS::detail_model::ModelIO<3>] 4 3.162e-06
[/home/bartlett/borg/libLSS/physics/model_io.cpp]void LibLSS::detail_input::ModelInputBase<3>::needDestroyInput() [Nd = 3, Super = LibLSS::detail_model::ModelIO<3>] 1 2.173e-06
particle distribution 1 1.5e-06
[/home/bartlett/borg/libLSS/physics/forward_model.cpp]virtual void LibLSS::ForwardModel::setModelParams(const ModelDictionnary &) 1 1.258e-06

BIN
weights/d2d_borg.pt Normal file

Binary file not shown.