mgborg_emulator/tests/test_gradient.py
2024-06-14 16:04:42 +02:00

198 lines
6.9 KiB
Python

import aquila_borg as borg
import configparser
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
import itertools
import h5py as h5
import os
import sys
import contextlib
from tqdm import tqdm
sys.path.insert(0, '../mgborg_emulator/')
import likelihood
import forwards
import utils
run_test = True
# run_test = False
epsilon = 1e-2
# Create a context manager to suppress stdout
@contextlib.contextmanager
def suppress_stdout():
with open(os.devnull, 'w') as devnull:
old_stdout = sys.stdout
sys.stdout = devnull
try:
yield
finally:
sys.stdout = old_stdout
def compare_gradients(
ag_lh_auto_real: np.ndarray,
ag_lh_auto_imag: np.ndarray,
ag_lh_num_real: np.ndarray,
ag_lh_num_imag: np.ndarray,
plot_step: int,
filename: str="gradients.png",
) -> None:
"""
Comparison of an autodiff adjoint gradient of the likelihood against a
numerical one evaluated with finite differences.
Args:
- ag_lh_auto_real (np.ndarray): Real part of the adjoint gradient (autodiff)
- ag_lh_auto_imag (np.ndarray): Imaginary part of the adjoint gradient (autodiff)
- ag_lh_num_real (np.ndarray): Real part of the adjoint gradient (numerical)
- ag_lh_num_imag (np.ndarray): Imaginary part of the adjoint gradient (numerical)
- plot_step (int): How frequently to sample the arrays
- filename (str): Name of the file to save the figure
"""
# Plot colors
colors = {
"red": "#ba3d3b",
"blue": "#3d5792",
}
fig, axs = plt.subplots(2, 2, figsize=(10, 7))
# Real part
axs[0,0].axhline(0.0, color="black", linestyle=":")
axs[0,0].plot(ag_lh_num_real[::plot_step], c=colors["blue"], label="Finite differences")
axs[0,0].plot(ag_lh_auto_real[::plot_step], "o", c=colors["red"], ms=3, label="Autodiff")
axs[0,0].yaxis.get_major_formatter().set_powerlimits((-2, 2))
axs[0,0].set_ylabel("Real part")
axs[0,0].legend()
axs[0,1].plot(ag_lh_num_real[::plot_step],
ag_lh_auto_real[::plot_step] - ag_lh_num_real[::plot_step],
"o",
c=colors["red"],
ms=3
)
x = axs[0,1].get_xlim()
axs[0,1].axhline(y=0, color='k')
axs[0,1].set_xlabel("Numerical")
axs[0,1].set_ylabel("Autodiff - Numerical (real)")
# Imaginary part
axs[1,0].axhline(0.0, color="black", linestyle=":")
axs[1,0].plot(ag_lh_num_imag[::plot_step][4:], c=colors["blue"], label="Finite differences")
axs[1,0].plot(ag_lh_auto_imag[::plot_step][4:], "o", c=colors["red"], ms=3, label="Autodiff")
axs[1,0].yaxis.get_major_formatter().set_powerlimits((-2, 2))
axs[1,0].set_ylabel("Imaginary part")
axs[1,0].set_xlabel("Voxel ID")
axs[1,1].plot(ag_lh_num_imag[::plot_step],
ag_lh_auto_imag[::plot_step] - ag_lh_num_imag[::plot_step],
".",
c=colors["red"]
)
x = axs[1,1].get_xlim()
axs[1,1].axhline(y=0, color='k')
axs[1,1].set_xlabel("Numerical")
axs[1,1].set_ylabel("Autodiff - Numerical (imag)")
fig.suptitle("Adjoint gradient of the likelihood w.r.t. initial conditions")
fig.tight_layout()
fig.subplots_adjust(hspace=0.)
path = "../figs/"
fig.savefig(path + filename, bbox_inches="tight")
ini_file = '../conf/basic_ini.ini'
# Input box
box_in = borg.forward.BoxModel()
config = configparser.ConfigParser()
config.read(ini_file)
box_in.L = (float(config['system']['L0']), float(config['system']['L1']), float(config['system']['L2']))
box_in.N = (int(config['system']['N0']), int(config['system']['N1']), int(config['system']['N2']))
box_in.xmin = (float(config['system']['corner0']), float(config['system']['corner1']), float(config['system']['corner2']))
# Setup BORG forward model and likelihood
model = likelihood.build_gravity_model(None, box_in, ini_file=ini_file)
cosmo = utils.get_cosmopar(ini_file)
model.setCosmoParams(cosmo)
fwd_param = forwards.NullForward(box_in)
mylike = likelihood.GaussianLikelihood(model, fwd_param, ini_file)
# Create mock data
state = borg.likelihood.MarkovState()
mylike.initializeLikelihood(state)
mylike.updateCosmology(cosmo)
s_hat = np.fft.rfftn(np.random.randn(*box_in.N)) / box_in.Ntot ** (0.5)
mylike.generateMockData(s_hat, state)
# Compute density field
output_density = np.zeros(box_in.N)
mylike.fwd.forwardModel_v2(s_hat)
print('SUM START', output_density.sum())
mylike.fwd.getDensityFinal(output_density)
print('SUM NOW', output_density.sum())
L = mylike.logLikelihoodComplex(s_hat, None)
print(L)
quit()
# Autodiff
autodiff_gradient = mylike.gradientLikelihoodComplex(s_hat)
print(autodiff_gradient.min(), autodiff_gradient.max(), np.sum(np.isfinite(autodiff_gradient)), np.prod(autodiff_gradient.shape))
# Finite differences
if run_test:
s_hat_epsilon = s_hat.copy()
num_gradient = np.zeros(s_hat.shape, dtype=np.complex128)
for i, j, k in tqdm(
itertools.product(*map(range, [box_in.N[0], box_in.N[1], box_in.N[2] // 2 + 1])),
total=box_in.N[0] * box_in.N[1] * (box_in.N[2] // 2 + 1),
mininterval=1,
):
# +/- epsilon
s_hat_epsilon[i, j, k] = s_hat[i, j, k] + epsilon
with suppress_stdout():
L = mylike.logLikelihoodComplex(s_hat_epsilon, None)
s_hat_epsilon[i, j, k] = s_hat[i, j, k] - epsilon
with suppress_stdout():
L -= mylike.logLikelihoodComplex(s_hat_epsilon, None)
QQ = L / (2.0 * epsilon)
# +/- i * epsilon
s_hat_epsilon[i, j, k] = s_hat[i, j, k] + 1j * epsilon
with suppress_stdout():
L = mylike.logLikelihoodComplex(s_hat_epsilon, None)
s_hat_epsilon[i, j, k] = s_hat[i, j, k] - 1j * epsilon
with suppress_stdout():
L -= mylike.logLikelihoodComplex(s_hat_epsilon, None)
QQ = QQ + L * 1j / (2.0 * epsilon)
s_hat_epsilon[i, j, k] = s_hat[i, j, k]
num_gradient[i, j, k] = QQ
with h5.File(f"gradients_{box_in.N}.h5", mode="w") as ff:
ff["scalars/gradient_array_lh"] = autodiff_gradient
ff["scalars/gradient_array_lh_ref"] = num_gradient
ff["scalars/gradient_array_prior"] = np.zeros_like(autodiff_gradient)
ff["scalars/gradient_array_prior_ref"] = np.zeros_like(autodiff_gradient)
slice_step = 2
plot_step = 2
with h5.File(f'gradients_{box_in.N}.h5', 'r') as f:
ag_lh_auto_real = f["scalars"]["gradient_array_lh"][::slice_step, :, :].flatten().real
ag_lh_auto_imag = f["scalars"]["gradient_array_lh"][::slice_step, :, :].flatten().imag
ag_lh_num_real = f["scalars"]["gradient_array_lh_ref"][::slice_step, :, :].flatten().real
ag_lh_num_imag = f["scalars"]["gradient_array_lh_ref"][::slice_step, :, :].flatten().imag
compare_gradients(
ag_lh_auto_real,
ag_lh_auto_imag,
ag_lh_num_real,
ag_lh_num_imag,
plot_step,
f'gradient_test_{box_in.N[0]}.png',
)