165 lines
5.3 KiB
Python
165 lines
5.3 KiB
Python
import aquila_borg as borg
|
|
import configparser
|
|
import numpy as np
|
|
import matplotlib.pyplot as plt
|
|
|
|
import borg_velocity.likelihood as likelihood
|
|
import borg_velocity.forwards as forwards
|
|
import borg_velocity.utils as utils
|
|
|
|
ini_file = '../conf/basic_ini.ini'
|
|
test_scaling = True
|
|
test_sigma8 = True
|
|
test_omegam = True
|
|
test_alpha = True
|
|
test_muA = True
|
|
|
|
# Input box
|
|
box_in = borg.forward.BoxModel()
|
|
config = configparser.ConfigParser()
|
|
config.read(ini_file)
|
|
box_in.L = (float(config['system']['L0']), float(config['system']['L1']), float(config['system']['L2']))
|
|
box_in.N = (int(config['system']['N0']), int(config['system']['N1']), int(config['system']['N2']))
|
|
box_in.xmin = (float(config['system']['corner0']), float(config['system']['corner1']), float(config['system']['corner2']))
|
|
|
|
# Setup BORG forward model and likelihood
|
|
model = likelihood.build_gravity_model(None, box_in, ini_file=ini_file)
|
|
cosmo = utils.get_cosmopar(ini_file)
|
|
model.setCosmoParams(cosmo)
|
|
fwd_param = forwards.NullForward(box_in)
|
|
fwd_vel = likelihood.fwd_vel
|
|
mylike = likelihood.VelocityBORGLikelihood(model, fwd_param, fwd_vel, ini_file)
|
|
|
|
# Create mock data
|
|
state = borg.likelihood.MarkovState()
|
|
mylike.initializeLikelihood(state)
|
|
mylike.updateCosmology(cosmo)
|
|
s_hat = np.fft.rfftn(np.random.randn(*box_in.N)) / box_in.Ntot ** (0.5)
|
|
mylike.generateMockData(s_hat, state)
|
|
|
|
scale = 1.0
|
|
L = mylike.logLikelihoodComplex(scale * s_hat, None)
|
|
print(L)
|
|
|
|
quit()
|
|
|
|
if test_scaling:
|
|
all_scale = np.linspace(0.5, 1.5, 100)
|
|
all_lkl = np.empty(all_scale.shape)
|
|
for i, scale in enumerate(all_scale):
|
|
all_lkl[i] = mylike.logLikelihoodComplex(scale * s_hat, None)
|
|
fid_lkl = mylike.logLikelihoodComplex(s_hat, None)
|
|
all_lkl -= fid_lkl
|
|
all_lkl = np.exp(-all_lkl)
|
|
|
|
fig, ax = plt.subplots(1, 1, figsize=(5,5))
|
|
ax.plot(all_scale, all_lkl)
|
|
ax.axhline(y=0, color='k')
|
|
ax.axvline(x=1, color='k')
|
|
ax.set_xlabel(r'$\hat{s}$ scaling')
|
|
ax.set_ylabel(r'$\mathcal{L}$')
|
|
ax.set_xlim(all_scale.min(), all_scale.max())
|
|
fig.tight_layout()
|
|
fig.savefig('../figs/scaling_test.png')
|
|
fig.clf()
|
|
plt.close(fig)
|
|
|
|
# Test sigma8
|
|
if test_sigma8:
|
|
all_sigma8 = np.linspace(0.5, 1.2, 40)
|
|
all_lkl = np.empty(all_sigma8.shape)
|
|
cosmo_true = mylike.fwd.getCosmoParams()
|
|
cosmo = mylike.fwd.getCosmoParams()
|
|
for i, sigma8 in enumerate(all_sigma8):
|
|
cosmo.sigma8 = sigma8
|
|
mylike.updateCosmology(cosmo)
|
|
all_lkl[i] = mylike.logLikelihoodComplex(s_hat, None)
|
|
mylike.updateCosmology(cosmo_true)
|
|
fid_lkl = mylike.logLikelihoodComplex(s_hat, None)
|
|
all_lkl -= fid_lkl
|
|
all_lkl = np.exp(-all_lkl)
|
|
|
|
fig, ax = plt.subplots(1, 1, figsize=(5,5))
|
|
ax.plot(all_sigma8, all_lkl)
|
|
ax.axhline(y=0, color='k')
|
|
ax.axvline(x=cosmo_true.sigma8, color='k')
|
|
ax.set_xlabel(r'$\sigma_8$')
|
|
ax.set_ylabel(r'$\mathcal{L}$')
|
|
fig.tight_layout()
|
|
fig.savefig('../figs/sigma8_test.png')
|
|
fig.clf()
|
|
plt.close(fig)
|
|
|
|
|
|
# Test sigma8
|
|
if test_omegam:
|
|
all_omegam = np.linspace(0.1, 0.6, 40)
|
|
all_lkl = np.empty(all_omegam.shape)
|
|
cosmo_true = mylike.fwd.getCosmoParams()
|
|
cosmo = mylike.fwd.getCosmoParams()
|
|
for i, omegam in enumerate(all_omegam):
|
|
cosmo.omega_m = omegam
|
|
mylike.updateCosmology(cosmo)
|
|
all_lkl[i] = mylike.logLikelihoodComplex(s_hat, None)
|
|
mylike.updateCosmology(cosmo_true)
|
|
fid_lkl = mylike.logLikelihoodComplex(s_hat, None)
|
|
all_lkl -= fid_lkl
|
|
all_lkl = np.exp(-all_lkl)
|
|
|
|
fig, ax = plt.subplots(1, 1, figsize=(5,5))
|
|
ax.plot(all_omegam, all_lkl)
|
|
ax.axhline(y=0, color='k')
|
|
ax.axvline(x=cosmo_true.omega_m, color='k')
|
|
ax.set_xlabel(r'$\Omega_{\rm m}$')
|
|
ax.set_ylabel(r'$\mathcal{L}$')
|
|
fig.tight_layout()
|
|
fig.savefig('../figs/omegam_test.png')
|
|
fig.clf()
|
|
plt.close(fig)
|
|
|
|
# Test bias model
|
|
if test_alpha:
|
|
all_alpha = np.linspace(-2.0, 5.0, 50)
|
|
all_lkl = np.empty(all_alpha.shape)
|
|
for i, alpha in enumerate(all_alpha):
|
|
mylike.fwd_param.setModelParams({'alpha0':alpha})
|
|
all_lkl[i] = mylike.logLikelihoodComplex(s_hat, None)
|
|
mylike.fwd_param.setModelParams({'alpha0':mylike.alpha[0]})
|
|
fid_lkl = mylike.logLikelihoodComplex(s_hat, None)
|
|
all_lkl -= fid_lkl
|
|
all_lkl = np.exp(-all_lkl)
|
|
|
|
fig, ax = plt.subplots(1, 1, figsize=(5,5))
|
|
ax.plot(all_alpha, all_lkl)
|
|
ax.axhline(y=0, color='k')
|
|
ax.axvline(x=mylike.alpha[0], color='k')
|
|
ax.set_xlabel(r'$\alpha_0$')
|
|
ax.set_ylabel(r'$\mathcal{L}$')
|
|
fig.tight_layout()
|
|
fig.savefig('../figs/alpha_test.png')
|
|
fig.clf()
|
|
plt.close(fig)
|
|
|
|
|
|
# Test bias model
|
|
if test_muA:
|
|
all_muA = np.linspace(0.95, 1.05, 50)
|
|
all_lkl = np.empty(all_muA.shape)
|
|
for i, muA in enumerate(all_muA):
|
|
mylike.fwd_param.setModelParams({'mua0':muA})
|
|
all_lkl[i] = mylike.logLikelihoodComplex(s_hat, None)
|
|
mylike.fwd_param.setModelParams({'mua0':mylike.muA[0]})
|
|
fid_lkl = mylike.logLikelihoodComplex(s_hat, None)
|
|
all_lkl -= fid_lkl
|
|
all_lkl = np.exp(-all_lkl)
|
|
|
|
fig, ax = plt.subplots(1, 1, figsize=(5,5))
|
|
ax.plot(all_muA, all_lkl)
|
|
ax.axhline(y=0, color='k')
|
|
ax.axvline(x=mylike.muA[0], color='k')
|
|
ax.set_xlabel(r'$\mu_0$')
|
|
ax.set_ylabel(r'$\mathcal{L}$')
|
|
fig.tight_layout()
|
|
fig.savefig('../figs/muA_test.png')
|
|
fig.clf()
|
|
plt.close(fig)
|