Begin testing TFR likelihood
2
.gitignore
vendored
|
@ -169,3 +169,5 @@ tests/*.h5
|
|||
*fft_wisdom*
|
||||
*allocation_stats*
|
||||
scripts/out_files
|
||||
tests/*.npy
|
||||
tests/vel_data
|
||||
|
|
|
@ -275,7 +275,6 @@ class VelocityBORGLikelihood(borg.likelihood.BaseLikelihood):
|
|||
self.saved_s_hat = s_hat.copy()
|
||||
self.logLikelihoodComplex(s_hat, False)
|
||||
|
||||
|
||||
def loadMockData(self, state: borg.likelihood.MarkovState) -> None:
|
||||
|
||||
myprint('Loading previously made mock data')
|
||||
|
@ -400,13 +399,19 @@ class VelocityBORGLikelihood(borg.likelihood.BaseLikelihood):
|
|||
# myprint('Done')
|
||||
|
||||
if not skip_density:
|
||||
|
||||
myprint('Getting density field now')
|
||||
|
||||
# Run BORG density field
|
||||
output_density = np.zeros((N,N,N))
|
||||
self.fwd.forwardModel_v2(s_hat)
|
||||
self.fwd.getDensityFinal(output_density)
|
||||
|
||||
myprint('Getting velocity field now')
|
||||
|
||||
# Get velocity field
|
||||
output_velocity = self.fwd_vel.getVelocityField()
|
||||
|
||||
else:
|
||||
output_density = self.delta.copy()
|
||||
output_velocity = self.vel.copy()
|
||||
|
|
|
@ -29,8 +29,8 @@ ares_heat = 1.0
|
|||
|
||||
[mcmc]
|
||||
number_to_generate = 15000
|
||||
warmup_model = 500
|
||||
warmup_cosmo = 0
|
||||
warmup_model = 200
|
||||
warmup_cosmo = 800
|
||||
random_ic = false
|
||||
init_random_scaling = 0.1
|
||||
bignum = 1e20
|
||||
|
@ -56,13 +56,14 @@ mvlam_bulk_flow = 20
|
|||
mvlam_sig_v = 10
|
||||
|
||||
[model]
|
||||
gravity = lpt
|
||||
gravity = cola
|
||||
forcesampling = 4
|
||||
supersampling = 2
|
||||
velocity = CICModel
|
||||
af = 1.0
|
||||
ai = 0.05
|
||||
nsteps = 20
|
||||
smooth_R = 4
|
||||
smooth_R = 4.
|
||||
bias_epsilon = 1e-7
|
||||
interp_order = 1
|
||||
rsmooth = 8.
|
||||
|
|
BIN
figs/corner_velmass.png
Normal file
After Width: | Height: | Size: 3 MiB |
Before Width: | Height: | Size: 171 KiB After Width: | Height: | Size: 172 KiB |
Before Width: | Height: | Size: 100 KiB After Width: | Height: | Size: 100 KiB |
BIN
figs/pk_gravity_models_test.png
Normal file
After Width: | Height: | Size: 29 KiB |
BIN
figs/pk_velmass_delta.png
Normal file
After Width: | Height: | Size: 80 KiB |
Before Width: | Height: | Size: 94 KiB After Width: | Height: | Size: 103 KiB |
BIN
figs/trace_velmass.png
Normal file
After Width: | Height: | Size: 381 KiB |
|
@ -1,11 +1,9 @@
|
|||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"id": "40ad2d23-227d-4101-a195-f3b70fe0e33b",
|
||||
"cell_type": "raw",
|
||||
"id": "274fbd8b-2272-443c-b71d-4fcbc8946167",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import numpy as np\n",
|
||||
"import matplotlib.pyplot as plt\n",
|
||||
|
|
|
@ -327,11 +327,12 @@ def crop_velmass_to_borg(ini_file, field_type):
|
|||
return true_field
|
||||
|
||||
|
||||
def get_spectra(ini_name, dirname, nframe, iter_max, iter_min, which_field='delta', cut_field=True, mock_type='borg'):
|
||||
def get_spectra(ini_name, dirname, nframe, iter_max, iter_min, which_field='delta', cut_field=True, mock_type='borg', MAS=''):
|
||||
|
||||
# Which steps to use
|
||||
all_mcmc = get_mcmc_steps(dirname, nframe, iter_max, iter_min=iter_min)
|
||||
|
||||
if MAS == '':
|
||||
if which_field == 'delta':
|
||||
MAS = "CIC"
|
||||
elif which_field == 'ics':
|
||||
|
@ -350,6 +351,11 @@ def get_spectra(ini_name, dirname, nframe, iter_max, iter_min, which_field='delt
|
|||
boxsize = get_borg_Lbox(ini_name)
|
||||
else:
|
||||
raise NotImplementedError
|
||||
|
||||
# Turn to overdensity
|
||||
if which_field == 'delta':
|
||||
delta1 = (1. + delta1) / (1. + delta1).mean() - 1.
|
||||
|
||||
print("BOXSIZE", boxsize)
|
||||
Pk = PKL.Pk(delta1.astype(np.float32), boxsize, axis=0, MAS=MAS, threads=1, verbose=True)
|
||||
k = Pk.k3D
|
||||
|
|
|
@ -23,11 +23,11 @@ BUILD_DIR=/data101/bartlett/build_borg/
|
|||
|
||||
cd $BORG_DIR
|
||||
# git pull
|
||||
# rm -rf $BUILD_DIR
|
||||
rm -rf $BUILD_DIR
|
||||
#bash build.sh --c-compiler $(which x86_64-conda_cos6-linux-gnu-gcc) --cxx-compiler $(which x86_64-conda_cos6-linux-gnu-g++) --python --hades-python --build-dir $BUILD_DIR
|
||||
bash build.sh --c-compiler $(which x86_64-conda_cos6-linux-gnu-gcc) --cxx-compiler $(which x86_64-conda_cos6-linux-gnu-g++) --python=$(which python3) --install-system-python --hades-python --use-system-hdf5 --build-dir /data101/bartlett/build_borg/
|
||||
cd $BUILD_DIR
|
||||
#make -j 32
|
||||
make -j 14
|
||||
|
||||
|
||||
exit 0
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
#!/bin/bash
|
||||
#SBATCH --job-name=velmass_ics_model
|
||||
#SBATCH --job-name=velmass_ics_model_cola
|
||||
#SBATCH --nodes=1
|
||||
#SBATCH --exclusive
|
||||
#SBATCH --ntasks=40
|
||||
|
@ -21,14 +21,15 @@ module load cuda/12.6
|
|||
source /home/bartlett/.bashrc
|
||||
source /home/bartlett/anaconda3/etc/profile.d/conda.sh
|
||||
conda deactivate
|
||||
conda activate borg_env
|
||||
# conda activate borg_env
|
||||
conda activate borg_new
|
||||
|
||||
# Kill job if there are any errors
|
||||
set -e
|
||||
|
||||
# Path variables
|
||||
BORG=/data101/bartlett/build_borg/tools/hades_python/hades_python
|
||||
RUN_DIR=/data101/bartlett/fsigma8/borg_velocity/velmass_ics_model
|
||||
RUN_DIR=/data101/bartlett/fsigma8/borg_velocity/velmass_ics_model_cola_v3
|
||||
|
||||
mkdir -p $RUN_DIR
|
||||
cd $RUN_DIR
|
||||
|
@ -42,9 +43,9 @@ set -x
|
|||
|
||||
# Run BORG
|
||||
INI_FILE=/home/bartlett/fsigma8/borg_velocity/conf/velmass_ini.ini
|
||||
cp $INI_FILE ini_file.ini
|
||||
$BORG INIT ini_file.ini
|
||||
# $BORG RESUME ini_file.ini
|
||||
# cp $INI_FILE ini_file.ini
|
||||
# $BORG INIT ini_file.ini
|
||||
$BORG RESUME ini_file.ini
|
||||
|
||||
conda deactivate
|
||||
|
||||
|
|
360
tests/TFR_tests.ipynb
Normal file
195
tests/gravity_models.py
Normal file
|
@ -0,0 +1,195 @@
|
|||
import aquila_borg as borg
|
||||
import numpy as np
|
||||
import configparser
|
||||
import borg_velocity.utils as utils
|
||||
from borg_velocity.utils import myprint
|
||||
import borg_velocity.forwards as forwards
|
||||
import Pk_library as PKL
|
||||
import matplotlib.pyplot as plt
|
||||
import symbolic_pofk.syrenhalofit as syrenhalofit
|
||||
|
||||
def build_gravity_model(state: borg.likelihood.MarkovState, box: borg.forward.BoxModel, ini_file=None, gravity='lpt') -> borg.forward.BaseForwardModel:
|
||||
"""
|
||||
Builds the gravity model and returns the forward model chain.
|
||||
|
||||
Args:
|
||||
- state (borg.likelihood.MarkovState): The Markov state object to be used in the likelihood.
|
||||
- box (borg.forward.BoxModel): The input box model.
|
||||
- ini_file (str, default=None): The location of the ini file. If None, use borg.getIniConfigurationFilename()
|
||||
|
||||
Returns:
|
||||
borg.forward.BaseForwardModel: The forward model.
|
||||
|
||||
"""
|
||||
|
||||
myprint(f"Building gravity model {gravity}")
|
||||
|
||||
if ini_file is None:
|
||||
myprint("Reading from configuration file: " + borg.getIniConfigurationFilename())
|
||||
config = configparser.ConfigParser()
|
||||
config.read(borg.getIniConfigurationFilename())
|
||||
else:
|
||||
myprint("Reading from configuration file: " + ini_file)
|
||||
config = configparser.ConfigParser()
|
||||
config.read(ini_file)
|
||||
ai = float(config['model']['ai'])
|
||||
af = float(config['model']['af'])
|
||||
supersampling = int(config['model']['supersampling'])
|
||||
print('Supersampling:', supersampling)
|
||||
|
||||
if gravity in ['pm', 'cola']:
|
||||
forcesampling = int(config['model']['forcesampling'])
|
||||
forcesampling = 2
|
||||
print('FORCESAMPLING:', forcesampling)
|
||||
|
||||
# Setup forward model
|
||||
chain = borg.forward.ChainForwardModel(box)
|
||||
chain.addModel(borg.forward.models.HermiticEnforcer(box))
|
||||
|
||||
# CLASS transfer function
|
||||
chain @= borg.forward.model_lib.M_PRIMORDIAL_AS(box)
|
||||
transfer_class = borg.forward.model_lib.M_TRANSFER_CLASS(box, opts=dict(a_transfer=1.0))
|
||||
transfer_class.setModelParams({"extra_class_arguments":{'YHe':'0.24'}})
|
||||
chain @= transfer_class
|
||||
|
||||
if gravity == 'linear':
|
||||
raise NotImplementedError(gravity)
|
||||
elif gravity == 'lpt':
|
||||
mod = borg.forward.model_lib.M_LPT_CIC(
|
||||
box,
|
||||
opts=dict(a_initial=af,
|
||||
a_final=af,
|
||||
do_rsd=False,
|
||||
supersampling=supersampling,
|
||||
lightcone=False,
|
||||
part_factor=1.01,))
|
||||
elif gravity == '2lpt':
|
||||
mod = borg.forward.model_lib.M_2LPT_CIC(
|
||||
box,
|
||||
opts=dict(a_initial=af,
|
||||
a_final=af,
|
||||
do_rsd=False,
|
||||
supersampling=supersampling,
|
||||
lightcone=False,
|
||||
part_factor=1.01,))
|
||||
elif gravity == 'pm':
|
||||
mod = borg.forward.model_lib.M_PM_CIC(
|
||||
box,
|
||||
opts=dict(a_initial=af,
|
||||
a_final=af,
|
||||
do_rsd=False,
|
||||
supersampling=supersampling,
|
||||
part_factor=1.01,
|
||||
forcesampling=forcesampling,
|
||||
pm_start_z=1/ai - 1,
|
||||
pm_nsteps=int(config['model']['nsteps']),
|
||||
tcola=False))
|
||||
elif gravity == 'cola':
|
||||
mod = borg.forward.model_lib.M_PM_CIC(
|
||||
box,
|
||||
opts=dict(a_initial=af,
|
||||
a_final=af,
|
||||
do_rsd=False,
|
||||
supersampling=supersampling,
|
||||
part_factor=1.01,
|
||||
forcesampling=forcesampling,
|
||||
pm_start_z=1/ai - 1,
|
||||
pm_nsteps=int(config['model']['nsteps']),
|
||||
tcola=True))
|
||||
else:
|
||||
raise NotImplementedError(gravity)
|
||||
|
||||
mod.accumulateAdjoint(True)
|
||||
chain @= mod
|
||||
|
||||
# Cosmological parameters
|
||||
if ini_file is None:
|
||||
cpar = utils.get_cosmopar(borg.getIniConfigurationFilename())
|
||||
else:
|
||||
cpar = utils.get_cosmopar(ini_file)
|
||||
chain.setCosmoParams(cpar)
|
||||
|
||||
# This is the forward model for the model parameters
|
||||
fwd_param = borg.forward.ChainForwardModel(box)
|
||||
mod_null = forwards.NullForward(box)
|
||||
fwd_param.addModel(mod_null)
|
||||
fwd_param.setCosmoParams(cpar)
|
||||
|
||||
# This is the forward model for velocity
|
||||
velmodel_name = config['model']['velocity']
|
||||
velmodel = getattr(borg.forward.velocity, velmodel_name)
|
||||
if velmodel_name == 'LinearModel':
|
||||
fwd_vel = velmodel(box, mod, af)
|
||||
elif velmodel_name == 'CICModel':
|
||||
rsmooth = float(config['model']['rsmooth']) # Mpc/h
|
||||
fwd_vel = velmodel(box, mod, rsmooth)
|
||||
else:
|
||||
fwd_vel = velmodel(box, mod)
|
||||
|
||||
return chain
|
||||
|
||||
ini_file = '../conf/velmass_ini.ini'
|
||||
|
||||
# Setup config
|
||||
config = configparser.ConfigParser()
|
||||
config.read(ini_file)
|
||||
|
||||
# Cosmology
|
||||
cosmo = utils.get_cosmopar(ini_file)
|
||||
|
||||
# Input box
|
||||
box_in = borg.forward.BoxModel()
|
||||
box_in.L = (float(config['system']['L0']), float(config['system']['L1']), float(config['system']['L2']))
|
||||
box_in.N = (int(config['system']['N0']), int(config['system']['N1']), int(config['system']['N2']))
|
||||
# box_in.N = (128, 128, 128)
|
||||
# box_in.N = (256, 256, 256)
|
||||
box_in.xmin = (float(config['system']['corner0']), float(config['system']['corner1']), float(config['system']['corner2']))
|
||||
|
||||
# Make some initial conditions
|
||||
s_hat = np.fft.rfftn(np.random.randn(*box_in.N)) / box_in.Ntot ** (0.5)
|
||||
s_real = np.fft.irfftn(s_hat, norm="ortho")
|
||||
|
||||
all_gravity = ['lpt', '2lpt', 'pm', 'cola']
|
||||
all_dens = [None] * len(all_gravity)
|
||||
all_pk = [None] * len(all_gravity)
|
||||
|
||||
fig, ax = plt.subplots(1, 1, figsize=(6,4))
|
||||
|
||||
for i, gravity in enumerate(all_gravity):
|
||||
# Run BORG density field
|
||||
output_density = np.zeros(box_in.N)
|
||||
fwd_model = build_gravity_model(None, box_in, ini_file=ini_file, gravity=gravity)
|
||||
fwd_model.forwardModel_v2(s_hat)
|
||||
fwd_model.getDensityFinal(output_density)
|
||||
all_dens[i] = output_density.copy()
|
||||
|
||||
Pk = PKL.Pk(all_dens[i].astype(np.float32), box_in.L[0], axis=0, MAS='CIC', threads=1, verbose=True)
|
||||
all_pk[i] = (Pk.k3D.copy(), Pk.Pk[:,0].copy())
|
||||
|
||||
ax.loglog(all_pk[i][0], all_pk[i][1], label=gravity)
|
||||
|
||||
# Load VELMASS field
|
||||
dirname = config['mock']['velmass_dirname']
|
||||
field = np.load(dirname + '/../density.npz')['d']
|
||||
field = field / np.mean(field) - 1
|
||||
with open(dirname + '/auto-rockstar.cfg') as f:
|
||||
data = [r for r in f]
|
||||
Lbox = [r for r in data if r.startswith('BOX_SIZE')][0].strip()
|
||||
Lbox = float(Lbox.split('=')[1])
|
||||
print('VELMASS box', Lbox)
|
||||
Pk = PKL.Pk(field.astype(np.float32), Lbox, axis=0, MAS='CIC', threads=1, verbose=True)
|
||||
m = Pk.k3D > all_pk[-1][0].min()
|
||||
ax.loglog(Pk.k3D[m], Pk.Pk[m,0], label='velmass')
|
||||
|
||||
# Syren
|
||||
k = Pk.k3D[m]
|
||||
pk_syrenhalofit = syrenhalofit.run_halofit(k,
|
||||
cosmo.sigma8, cosmo.omega_m, cosmo.omega_b, cosmo.h, cosmo.n_s, 1.0,
|
||||
emulator='fiducial', extrapolate=True, which_params='Bartlett', add_correction=True)
|
||||
ax.loglog(k, pk_syrenhalofit, label='syren')
|
||||
ymin = max(ax.get_ylim()[0], 1e1)
|
||||
ax.set_ylim(ymin, None)
|
||||
ax.legend()
|
||||
fig.tight_layout()
|
||||
fig.savefig('../figs/pk_gravity_models_test.png', facecolor='white', bbox_inches='tight')
|
||||
plt.close(fig)
|
BIN
tests/likelihood_forwards.png
Normal file
After Width: | Height: | Size: 58 KiB |
249
tests/likelihood_forwards.py
Normal file
|
@ -0,0 +1,249 @@
|
|||
import borg_velocity.likelihood as likelihood
|
||||
import borg_velocity.forwards as forwards
|
||||
import borg_velocity.utils as utils
|
||||
from borg_velocity.utils import myprint
|
||||
|
||||
import aquila_borg as borg
|
||||
import configparser
|
||||
import h5py as h5
|
||||
import numpy as np
|
||||
from tqdm import tqdm
|
||||
import glob
|
||||
import os
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
dirname = '/data101/bartlett/fsigma8/borg_velocity/velmass_ics'
|
||||
ini_file = f'{dirname}/ini_file.ini'
|
||||
|
||||
wdir = os.getcwd()
|
||||
os.chdir(dirname)
|
||||
|
||||
def get_mcmc_steps(nframe, iter_max, iter_min=0):
|
||||
"""
|
||||
Obtain evenly-spaced sample of MCMC steps to make movie from
|
||||
"""
|
||||
all_mcmc = glob.glob(dirname + '/mcmc_*.h5')
|
||||
x = [m[len(dirname + '/mcmc_'):-3] for m in all_mcmc]
|
||||
all_mcmc = np.sort([int(m[len(dirname + '/mcmc_'):-3]) for m in all_mcmc])
|
||||
if iter_max >= 0:
|
||||
all_mcmc = all_mcmc[all_mcmc <= iter_max]
|
||||
all_mcmc = all_mcmc[all_mcmc >= iter_min]
|
||||
if nframe > 0:
|
||||
max_out = max(all_mcmc)
|
||||
min_out = min(all_mcmc)
|
||||
step = max(int((max_out - min_out+1) / nframe), 1)
|
||||
all_mcmc = all_mcmc[::step]
|
||||
if max_out not in all_mcmc:
|
||||
all_mcmc = np.concatenate([all_mcmc, [max_out]])
|
||||
return all_mcmc
|
||||
|
||||
|
||||
@borg.registerGravityBuilder
|
||||
def build_gravity_model(gravity: str, state: borg.likelihood.MarkovState, box: borg.forward.BoxModel, ini_file=None) -> borg.forward.BaseForwardModel:
|
||||
"""
|
||||
Builds the gravity model and returns the forward model chain.
|
||||
|
||||
Args:
|
||||
- gravity (str): Which gravity model to use (in ['pm', 'cola', 'lpt', '2lpt']
|
||||
- state (borg.likelihood.MarkovState): The Markov state object to be used in the likelihood.
|
||||
- box (borg.forward.BoxModel): The input box model.
|
||||
- ini_file (str, default=None): The location of the ini file. If None, use borg.getIniConfigurationFilename()
|
||||
|
||||
Returns:
|
||||
borg.forward.BaseForwardModel: The forward model.
|
||||
|
||||
"""
|
||||
|
||||
global chain, fwd_param, fwd_vel
|
||||
myprint("Building gravity model")
|
||||
|
||||
if ini_file is None:
|
||||
myprint("Reading from configuration file: " + borg.getIniConfigurationFilename())
|
||||
config = configparser.ConfigParser()
|
||||
config.read(borg.getIniConfigurationFilename())
|
||||
else:
|
||||
myprint("Reading from configuration file: " + ini_file)
|
||||
config = configparser.ConfigParser()
|
||||
config.read(ini_file)
|
||||
ai = float(config['model']['ai'])
|
||||
af = float(config['model']['af'])
|
||||
supersampling = int(config['model']['supersampling'])
|
||||
|
||||
if gravity in ['pm', 'cola']:
|
||||
if 'forcesampling' in config['model']:
|
||||
forcesampling = int(config['model']['forcesampling'])
|
||||
else:
|
||||
myprint('Could not find forcesampling, so will set to 4')
|
||||
forcesampling = 4
|
||||
|
||||
# Setup forward model
|
||||
chain = borg.forward.ChainForwardModel(box)
|
||||
chain.addModel(borg.forward.models.HermiticEnforcer(box))
|
||||
|
||||
# CLASS transfer function
|
||||
chain @= borg.forward.model_lib.M_PRIMORDIAL_AS(box)
|
||||
transfer_class = borg.forward.model_lib.M_TRANSFER_CLASS(box, opts=dict(a_transfer=1.0))
|
||||
transfer_class.setModelParams({"extra_class_arguments":{'YHe':'0.24'}})
|
||||
chain @= transfer_class
|
||||
|
||||
if gravity == 'linear':
|
||||
raise NotImplementedError(gravity)
|
||||
elif gravity == 'lpt':
|
||||
mod = borg.forward.model_lib.M_LPT_CIC(
|
||||
box,
|
||||
opts=dict(a_initial=af,
|
||||
a_final=af,
|
||||
do_rsd=False,
|
||||
supersampling=supersampling,
|
||||
lightcone=False,
|
||||
part_factor=1.01,))
|
||||
elif gravity == '2lpt':
|
||||
mod = borg.forward.model_lib.M_2LPT_CIC(
|
||||
box,
|
||||
opts=dict(a_initial=af,
|
||||
a_final=af,
|
||||
do_rsd=False,
|
||||
supersampling=supersampling,
|
||||
lightcone=False,
|
||||
part_factor=1.01,))
|
||||
elif gravity == 'pm':
|
||||
mod = borg.forward.model_lib.M_PM_CIC(
|
||||
box,
|
||||
opts=dict(a_initial=af,
|
||||
a_final=af,
|
||||
do_rsd=False,
|
||||
supersampling=supersampling,
|
||||
part_factor=1.01,
|
||||
forcesampling=forcesampling,
|
||||
pm_start_z=1/ai - 1,
|
||||
pm_nsteps=int(config['model']['nsteps']),
|
||||
tcola=False))
|
||||
elif gravity == 'cola':
|
||||
mod = borg.forward.model_lib.M_PM_CIC(
|
||||
box,
|
||||
opts=dict(a_initial=af,
|
||||
a_final=af,
|
||||
do_rsd=False,
|
||||
supersampling=supersampling,
|
||||
part_factor=1.01,
|
||||
forcesampling=forcesampling,
|
||||
pm_start_z=1/ai - 1,
|
||||
pm_nsteps=int(config['model']['nsteps']),
|
||||
tcola=True))
|
||||
else:
|
||||
raise NotImplementedError(gravity)
|
||||
|
||||
mod.accumulateAdjoint(True)
|
||||
chain @= mod
|
||||
|
||||
# Cosmological parameters
|
||||
if ini_file is None:
|
||||
cpar = utils.get_cosmopar(borg.getIniConfigurationFilename())
|
||||
else:
|
||||
cpar = utils.get_cosmopar(ini_file)
|
||||
chain.setCosmoParams(cpar)
|
||||
|
||||
# This is the forward model for the model parameters
|
||||
fwd_param = borg.forward.ChainForwardModel(box)
|
||||
mod_null = forwards.NullForward(box)
|
||||
fwd_param.addModel(mod_null)
|
||||
fwd_param.setCosmoParams(cpar)
|
||||
|
||||
# This is the forward model for velocity
|
||||
velmodel_name = config['model']['velocity']
|
||||
velmodel = getattr(borg.forward.velocity, velmodel_name)
|
||||
if velmodel_name == 'LinearModel':
|
||||
fwd_vel = velmodel(box, mod, af)
|
||||
elif velmodel_name == 'CICModel':
|
||||
rsmooth = float(config['model']['rsmooth']) # Mpc/h
|
||||
fwd_vel = velmodel(box, mod, rsmooth)
|
||||
else:
|
||||
fwd_vel = velmodel(box, mod)
|
||||
|
||||
return chain
|
||||
|
||||
|
||||
def build_likelihood(gravity, box_in, ini_file):
|
||||
|
||||
global fwd_vel
|
||||
|
||||
model = build_gravity_model(gravity, None, box_in, ini_file=ini_file)
|
||||
cosmo = utils.get_cosmopar(ini_file)
|
||||
model.setCosmoParams(cosmo)
|
||||
fwd_param = forwards.NullForward(box_in)
|
||||
mylike = likelihood.VelocityBORGLikelihood(model, fwd_param, fwd_vel, ini_file)
|
||||
|
||||
# Load the mock data
|
||||
mylike.loadMockData(None)
|
||||
|
||||
return mylike
|
||||
|
||||
ref_gravity = 'lpt'
|
||||
ref_gravity = '2lpt'
|
||||
|
||||
|
||||
# Input box
|
||||
box_in = borg.forward.BoxModel()
|
||||
config = configparser.ConfigParser()
|
||||
config.read(ini_file)
|
||||
box_in.L = (float(config['system']['L0']), float(config['system']['L1']), float(config['system']['L2']))
|
||||
box_in.N = (int(config['system']['N0']), int(config['system']['N1']), int(config['system']['N2']))
|
||||
box_in.xmin = (float(config['system']['corner0']), float(config['system']['corner1']), float(config['system']['corner2']))
|
||||
|
||||
# Setup BORG forward model and likelihood
|
||||
cola_like = build_likelihood('cola', box_in, ini_file)
|
||||
lpt_like = build_likelihood(ref_gravity, box_in, ini_file)
|
||||
|
||||
# Load some MCMC samples and see how they compare
|
||||
nframe = 100
|
||||
iter_min = 1000
|
||||
iter_max = -1
|
||||
all_mcmc = get_mcmc_steps(nframe, iter_max, iter_min=iter_min)
|
||||
|
||||
all_lpt_like = np.empty(len(all_mcmc))
|
||||
all_cola_like = np.empty(len(all_mcmc))
|
||||
|
||||
for i, mcmc in enumerate(all_mcmc):
|
||||
myprint(f'\nStarting MCMC {i+1} of {len(all_mcmc)}: {mcmc}')
|
||||
|
||||
# Load an s_hat from file
|
||||
with h5.File(f'{dirname}/mcmc_{mcmc}.h5', 'r') as f:
|
||||
s_hat = f['scalars/s_hat_field'][:]
|
||||
all_lpt_like[i] = lpt_like.logLikelihoodComplex(s_hat, None)
|
||||
all_cola_like[i] = cola_like.logLikelihoodComplex(s_hat, None)
|
||||
|
||||
fig, axs = plt.subplots(1, 2, figsize=(15,4))
|
||||
cmap = plt.cm.spring
|
||||
markersize = 50
|
||||
|
||||
# # Remove first point
|
||||
# all_lpt_like = all_lpt_like[1:]
|
||||
# all_cola_like = all_cola_like[1:]
|
||||
# all_mcmc = all_mcmc[1:]
|
||||
|
||||
# Normalise by the minimum value
|
||||
lmin = all_lpt_like.min()
|
||||
all_lpt_like -= lmin
|
||||
all_cola_like -= lmin
|
||||
|
||||
sc0 = axs[0].scatter(all_lpt_like, all_cola_like, c=all_mcmc, cmap=cmap, marker='.', s=markersize)
|
||||
xlim = axs[0].get_xlim()
|
||||
axs[0].plot(xlim, xlim, color='k')
|
||||
axs[0].set_xlim(xlim)
|
||||
cbar = fig.colorbar(sc0, ax=axs[0], location='right', aspect=40)
|
||||
cbar.set_label("MCMC Step")
|
||||
|
||||
sc1 = axs[1].scatter(all_lpt_like, all_cola_like - all_lpt_like, c=all_mcmc, cmap=cmap, marker='.', s=markersize)
|
||||
axs[1].axhline(0, color='k')
|
||||
cbar = fig.colorbar(sc1, ax=axs[1], location='right', aspect=40)
|
||||
cbar.set_label("MCMC Step")
|
||||
|
||||
for ax in axs:
|
||||
ax.set_xlabel(f'{ref_gravity} Log-Likelihood')
|
||||
axs[0].set_ylabel('COLA Log-Likelihood')
|
||||
axs[1].set_ylabel(f'COLA Log-Likelihood - {ref_gravity} Log-Likelihood')
|
||||
|
||||
# fig.align_xlabels()
|
||||
# fig.align_ylabels()
|
||||
# fig.tight_layout()
|
||||
fig.savefig(f'{wdir}/likelihood_forwards.png', facecolor='white', bbox_inches='tight')
|
393
tests/tfr_inference.py
Normal file
|
@ -0,0 +1,393 @@
|
|||
import aquila_borg as borg
|
||||
import numpy as np
|
||||
from astropy.coordinates import SkyCoord
|
||||
import astropy.units as apu
|
||||
import astropy.constants
|
||||
from astropy.cosmology import LambdaCDM
|
||||
import pandas as pd
|
||||
from scipy.interpolate import interp1d
|
||||
import jax.numpy as jnp
|
||||
import jax.scipy.special
|
||||
|
||||
import numpyro
|
||||
import numpyro.distributions as dist
|
||||
from jax import lax
|
||||
|
||||
import borg_velocity.poisson_process as poisson_process
|
||||
import borg_velocity.projection as projection
|
||||
|
||||
# Output stream management
|
||||
cons = borg.console()
|
||||
myprint = lambda x: cons.print_std(x) if type(x) == str else cons.print_std(repr(x))
|
||||
|
||||
def build_gravity_model(box, cpar, ai=0.05, af=1.0, nsteps=20, forcesampling=4, supersampling=2, rsmooth=4.0, gravity='lpt', velmodel_name='CICModel'):
|
||||
"""
|
||||
Builds the gravity model and returns the forward model chain.
|
||||
|
||||
Args:
|
||||
- box (borg.forward.BoxModel): Box within which to run simulation
|
||||
- cpar (borg.cosmo.CosmologicalParameters): Cosmological parameters to use
|
||||
- ai (float, default=0.05): Scale factor to begin simulation
|
||||
- af (float, default=1.0): Scale factor to end simulation
|
||||
- nsteps (int, default=20): Number of steps to use in the simulation
|
||||
- forcesampling (int, default=4): Sampling factor for force evaluations
|
||||
- supersampling (int, default=2): Supersampling factor of particles
|
||||
- rsmooth (float, default=4.0): Smoothing scale for velocity field (Mpc/h)
|
||||
- gravity (str, default='lpt'): Which gravity model to use
|
||||
- velmodel_name (str, default='CICModel'): Which velocity estimator to use
|
||||
|
||||
Returns:
|
||||
- chain (borg.forward.BaseForwardModel): The forward model for density
|
||||
- fwd_vel (borg.forward.VelocityBase): The forward model for velocity
|
||||
|
||||
"""
|
||||
|
||||
myprint(f"Building gravity model {gravity}")
|
||||
|
||||
# Setup forward model
|
||||
chain = borg.forward.ChainForwardModel(box)
|
||||
chain.addModel(borg.forward.models.HermiticEnforcer(box))
|
||||
|
||||
# CLASS transfer function
|
||||
chain @= borg.forward.model_lib.M_PRIMORDIAL_AS(box)
|
||||
transfer_class = borg.forward.model_lib.M_TRANSFER_CLASS(box, opts=dict(a_transfer=1.0))
|
||||
transfer_class.setModelParams({"extra_class_arguments":{'YHe':'0.24'}})
|
||||
chain @= transfer_class
|
||||
|
||||
if gravity == 'linear':
|
||||
raise NotImplementedError(gravity)
|
||||
elif gravity == 'lpt':
|
||||
mod = borg.forward.model_lib.M_LPT_CIC(
|
||||
box,
|
||||
opts=dict(a_initial=af,
|
||||
a_final=af,
|
||||
do_rsd=False,
|
||||
supersampling=supersampling,
|
||||
lightcone=False,
|
||||
part_factor=1.01,))
|
||||
elif gravity == '2lpt':
|
||||
mod = borg.forward.model_lib.M_2LPT_CIC(
|
||||
box,
|
||||
opts=dict(a_initial=af,
|
||||
a_final=af,
|
||||
do_rsd=False,
|
||||
supersampling=supersampling,
|
||||
lightcone=False,
|
||||
part_factor=1.01,))
|
||||
elif gravity == 'pm':
|
||||
mod = borg.forward.model_lib.M_PM_CIC(
|
||||
box,
|
||||
opts=dict(a_initial=af,
|
||||
a_final=af,
|
||||
do_rsd=False,
|
||||
supersampling=supersampling,
|
||||
part_factor=1.01,
|
||||
forcesampling=forcesampling,
|
||||
pm_start_z=1/ai - 1,
|
||||
pm_nsteps=nsteps,
|
||||
tcola=False))
|
||||
elif gravity == 'cola':
|
||||
mod = borg.forward.model_lib.M_PM_CIC(
|
||||
box,
|
||||
opts=dict(a_initial=af,
|
||||
a_final=af,
|
||||
do_rsd=False,
|
||||
supersampling=supersampling,
|
||||
part_factor=1.01,
|
||||
forcesampling=forcesampling,
|
||||
pm_start_z=1/ai - 1,
|
||||
pm_nsteps=nsteps,
|
||||
tcola=True))
|
||||
else:
|
||||
raise NotImplementedError(gravity)
|
||||
|
||||
mod.accumulateAdjoint(True)
|
||||
chain @= mod
|
||||
|
||||
# Cosmological parameters
|
||||
chain.setCosmoParams(cpar)
|
||||
|
||||
# This is the forward model for velocity
|
||||
velmodel = getattr(borg.forward.velocity, velmodel_name)
|
||||
if velmodel_name == 'LinearModel':
|
||||
fwd_vel = velmodel(box, mod, af)
|
||||
elif velmodel_name == 'CICModel':
|
||||
fwd_vel = velmodel(box, mod, rsmooth)
|
||||
else:
|
||||
fwd_vel = velmodel(box, mod)
|
||||
|
||||
return chain, fwd_vel
|
||||
|
||||
|
||||
def get_fields(L, N, xmin, gravity='lpt', velmodel_name='CICModel'):
|
||||
"""
|
||||
Obtain a density and velocity field to use for mock
|
||||
|
||||
Args:
|
||||
- L (float): Box length (Mpc/h)
|
||||
- N (int): Number of grid cells per side
|
||||
- xmin (float): Coordinate of corner of the box (Mpc/h)
|
||||
- gravity (str, default='lpt'): Which gravity model to use
|
||||
- velmodel_name (str, default='CICModel'): Which velocity estimator to use
|
||||
|
||||
Returns:
|
||||
- cpar (borg.cosmo.CosmologicalParameters): Cosmological parameters to use
|
||||
- output_density (np.ndarray): Over-density field
|
||||
- output_velocity (np.ndarray): Velocity field
|
||||
|
||||
"""
|
||||
|
||||
# Setup box and cosmology
|
||||
cpar = borg.cosmo.CosmologicalParameters()
|
||||
cpar.default()
|
||||
box = borg.forward.BoxModel()
|
||||
box.L = (L, L, L)
|
||||
box.N = (N, N, N)
|
||||
box.xmin = (xmin, xmin, xmin)
|
||||
|
||||
# Get forward models
|
||||
fwd_model, fwd_vel = build_gravity_model(box, cpar, gravity=gravity, velmodel_name=velmodel_name)
|
||||
|
||||
# Make some initial conditions
|
||||
s_hat = np.fft.rfftn(np.random.randn(*box.N)) / box.Ntot ** (0.5)
|
||||
|
||||
# Obtain density and velocity fields
|
||||
output_density = np.zeros(box.N)
|
||||
fwd_model.forwardModel_v2(s_hat)
|
||||
fwd_model.getDensityFinal(output_density)
|
||||
output_velocity = fwd_vel.getVelocityField()
|
||||
|
||||
return cpar, output_density, output_velocity
|
||||
|
||||
|
||||
def create_mock(Nt, L, xmin, cpar, dens, vel, Rmax, alpha, mthresh,
|
||||
a_TFR, b_TFR, sigma_TFR, sigma_m, sigma_eta,
|
||||
hyper_eta_mu, hyper_eta_sigma, sigma_v, interp_order=1, bias_epsilon=1e-7):
|
||||
|
||||
# Initialize lists to store valid positions and corresponding sig_mu values
|
||||
all_xtrue = np.empty((3, Nt))
|
||||
all_mobs = np.empty(Nt)
|
||||
all_etaobs = np.empty(Nt)
|
||||
|
||||
# Counter for accepted positions
|
||||
accepted_count = 0
|
||||
|
||||
# Cosmology object needed for z <-> r
|
||||
cosmo = LambdaCDM(H0 = cpar.h * 100, Om0 = cpar.omega_m, Ode0 = cpar.omega_q)
|
||||
|
||||
# Precompute redshift-distance mapping
|
||||
z_grid = np.logspace(-4, -1, 10000) # Covers z ~ 0 to 0.1
|
||||
dL_grid = cosmo.luminosity_distance(z_grid).value # Luminosity distances in Mpc
|
||||
|
||||
# Create an interpolation function: distance -> redshift
|
||||
dL_to_z = interp1d(dL_grid, z_grid, kind="cubic", fill_value="extrapolate")
|
||||
|
||||
# Bias model
|
||||
phi = (1. + dens + bias_epsilon) ** alpha
|
||||
|
||||
# Only use centre of box
|
||||
x = np.linspace(xmin, xmin + L, dens.shape[0]+1)
|
||||
i0 = np.argmin(np.abs(x + Rmax))
|
||||
i1 = np.argmin(np.abs(x - Rmax))
|
||||
L_small = x[i1] - x[i0]
|
||||
xmin_small = x[i0]
|
||||
phi_small = phi[i0:i1, i0:i1, i0:i1]
|
||||
|
||||
# Loop until we have Nt valid positions
|
||||
while accepted_count < Nt:
|
||||
|
||||
# Generate positions (comoving)
|
||||
xtrue = poisson_process.sample_3d(phi_small, Nt, L_small, (xmin_small, xmin_small, xmin_small))
|
||||
|
||||
# Convert to RA, Dec, Distance (comoving)
|
||||
rtrue = np.sqrt(np.sum(xtrue** 2, axis=0)) # Mpc/h
|
||||
c = SkyCoord(x=xtrue[0], y=xtrue[1], z=xtrue[2], representation_type='cartesian')
|
||||
RA = c.spherical.lon.degree
|
||||
Dec = c.spherical.lat.degree
|
||||
r_hat = np.array(SkyCoord(ra=RA*apu.deg, dec=Dec*apu.deg).cartesian.xyz)
|
||||
|
||||
# Compute cosmological redshift
|
||||
# zcosmo = z_at_value(cosmo.comoving_distance, rtrue * apu.Mpc / cpar.h).value
|
||||
zcosmo = dL_to_z(rtrue / cpar.h)
|
||||
|
||||
# Compute luminosity distance
|
||||
# DO I NEED TO DO /h???
|
||||
dL = (1 + zcosmo) * rtrue / cpar.h # Mpc/h
|
||||
|
||||
# Compute true distance modulus
|
||||
mutrue = 5 * np.log10(dL) + 25
|
||||
|
||||
# Sample true linewidth (eta) from its prior
|
||||
etatrue = hyper_eta_mu + hyper_eta_sigma * np.random.randn(Nt)
|
||||
|
||||
# Obtain muTFR from mutrue using the intrinsic scatter
|
||||
muTFR = mutrue + sigma_TFR * np.random.randn(Nt)
|
||||
|
||||
# Obtain apparent magnitude from the TFR
|
||||
mtrue = muTFR + (a_TFR + b_TFR * etatrue)
|
||||
|
||||
# Scatter true observed apparent magnitudes and linewidths
|
||||
mobs = mtrue + sigma_m * np.random.randn(Nt)
|
||||
etaobs = etatrue + sigma_eta * np.random.randn(Nt)
|
||||
|
||||
# Apply apparement magnitude cut
|
||||
m = mobs <= mthresh
|
||||
mobs = mobs[m]
|
||||
etaobs = etaobs[m]
|
||||
xtrue = xtrue[:,m]
|
||||
|
||||
# Calculate how many valid positions we need to reach Nt
|
||||
remaining_needed = Nt - accepted_count
|
||||
selected_count = min(xtrue.shape[1], remaining_needed)
|
||||
|
||||
# Append only the needed number of valid positions
|
||||
all_xtrue[:,accepted_count:accepted_count+selected_count] = xtrue[:,:selected_count]
|
||||
all_mobs = mobs[:selected_count]
|
||||
all_etaobs = etaobs[:selected_count]
|
||||
|
||||
# Update the accepted count
|
||||
accepted_count += selected_count
|
||||
|
||||
myprint(f'\tMade {accepted_count} of {Nt}')
|
||||
|
||||
# Get the radial component of the peculiar velocity at the positions of the objects
|
||||
myprint('Obtaining peculiar velocities')
|
||||
tracer_vel = projection.interp_field(
|
||||
vel,
|
||||
np.expand_dims(all_xtrue, axis=2),
|
||||
L,
|
||||
np.array([xmin, xmin, xmin]),
|
||||
interp_order
|
||||
) # km/s
|
||||
myprint('Radial projection')
|
||||
vr_true = np.squeeze(projection.project_radial(
|
||||
tracer_vel,
|
||||
np.expand_dims(all_xtrue, axis=2),
|
||||
np.zeros(3,)
|
||||
)) # km/s
|
||||
|
||||
# Obtain total redshift
|
||||
vr_noised = vr_true + sigma_v * np.random.randn(Nt)
|
||||
zCMB = (1 + zcosmo) * (1 + vr_noised / astropy.constants.c.to('km/s').value) - 1
|
||||
|
||||
return zCMB, all_mobs, all_etaobs, all_xtrue
|
||||
|
||||
|
||||
def estimate_data_parameters():
|
||||
|
||||
"""
|
||||
ID 2MASS XSC ID name (HHMMSSss+DDMMSSs)
|
||||
RAdeg Right ascension (J2000)
|
||||
DEdeg Declination (J2000)
|
||||
cz2mrs Heliocentric redshift from the 2MRS (km/s)
|
||||
Kmag NIR magnitudes in the K band from the 2MRS (mag)
|
||||
Hmag NIR magnitudes in the H band from the 2MRS (mag)
|
||||
Jmag NIR magnitudes in the J band from the 2MRS (mag)
|
||||
e_Kmag Error of the NIR magnitudes in K band from the (mag)
|
||||
e_Hmag Error of the NIR magnitudes in H band from the (mag)
|
||||
e_Jmag Error of the NIR magnitudes in J band from the (mag)
|
||||
WHIc Corrected HI width (km/s)
|
||||
e_WHIc Error of corrected HI width (km/s)
|
||||
"""
|
||||
|
||||
columns = ['ID', 'RAdeg', 'DEdeg', 'cz2mrs', 'Kmag', 'Hmag', 'Jmag', 'e_Kmag', 'e_Hmah', 'e_Jmag', 'WHIc', 'e_WHIc']
|
||||
fname = '/data101/bartlett/fsigma8/PV_data/2MASS/table1.dat'
|
||||
df = pd.read_csv(fname, sep='\s+', names=columns)
|
||||
|
||||
sigma_m = np.median(df['e_Kmag'])
|
||||
|
||||
eta = np.log10(df['WHIc']) - 2.5
|
||||
sigma_eta = np.median(df['e_WHIc'] / df['WHIc'] / np.log(10))
|
||||
|
||||
hyper_eta_mu = np.median(eta)
|
||||
hyper_eta_sigma = (np.percentile(eta, 84) - np.percentile(eta, 16)) / 2
|
||||
|
||||
return sigma_m, sigma_eta, hyper_eta_mu, hyper_eta_sigma
|
||||
|
||||
|
||||
|
||||
def likelihood(a_TFR, b_TFR, sigma_TFR, eta_true, m_true):
|
||||
|
||||
loglike = 0
|
||||
|
||||
# Apparent magnitude terms
|
||||
norm = 0.5 * (1 + jax.scipy.special.erf((mthresh - m_true) / (jnp.sqrt(2) * sigma_m)))
|
||||
loglike +=
|
||||
0.5 * jnp.sum((mobs - m_true) ** 2 / sigma_m ** 2)
|
||||
+ jnp.sum(jnp.log(norm))
|
||||
+ Nt * 0.5 * jnp.log(2 * jnp.pi * sigma_m ** 2)
|
||||
|
||||
# Linewidth terms
|
||||
loglike +=
|
||||
0.5 * jnp.sum((etaobs - eta_true) ** 2 / sigma_eta ** 2)
|
||||
+ Nt * 0.5 * jnp.log(2 * jnp.pi * sigma_eta ** 2)
|
||||
|
||||
# Peculiar velocity terms
|
||||
|
||||
return
|
||||
|
||||
|
||||
def likelihood_model():
|
||||
|
||||
# TO DO: Sort out these priors
|
||||
a_TFR = numpyro.sample("a_TFR", dist.Uniform(*alpha_prior))
|
||||
b_TFR = numpyro.sample("b_TFR", dist.Uniform(*alpha_prior))
|
||||
sigma_TFR = numpyro.sample("sigma_TFR", dist.Uniform(*alpha_prior))
|
||||
|
||||
eta_true = numpyro.sample("eta_true", dist.Normal(mean, sigma), sample_shape=(Nt,))
|
||||
m_true = numpyro.sample("m_true", dist.Normal(mean, sigma), sample_shape=(Nt,))
|
||||
|
||||
numpyro.sample("obs", TFRLikelihood(a_TFR, b_TFR, sigma_TFR, eta_true, m_true))
|
||||
|
||||
return
|
||||
|
||||
|
||||
class TFRLikelihood(dist.Distribution):
|
||||
support = dist.constraints.real
|
||||
|
||||
def __init__(self, a_TFR, b_TFR, sigma_TFR, eta_true, m_true):
|
||||
self.a_TFR, self.b_TFR, self.sigma_TFR, self.eta_true, self.m_true = dist.util.promote_shapes(a_TFR, b_TFR, sigma_TFR, eta_true, m_true)
|
||||
batch_shape = lax.broadcast_shapes(
|
||||
jnp.shape(a_TFR),
|
||||
jnp.shape(b_TFR),
|
||||
jnp.shape(sigma_TFR),
|
||||
jnp.shape(eta_true),
|
||||
jnp.shape(m_true),
|
||||
)
|
||||
super(TFRLikelihood, self).__init__(batch_shape = batch_shape)
|
||||
|
||||
def sample(self, key, sample_shape=()):
|
||||
raise NotImplementedError
|
||||
|
||||
def log_prov(self, value)
|
||||
return likelihood(self.a_TFR, self.b_TFR, self.sigma_TFR, self.eta_true, self.m_true)
|
||||
|
||||
|
||||
def main():
|
||||
|
||||
# Get some parameters from the data
|
||||
sigma_m, sigma_eta, hyper_eta_mu, hyper_eta_sigma = estimate_data_parameters()
|
||||
|
||||
# Other parameters to use
|
||||
L = 500.0
|
||||
N = 64
|
||||
xmin = -L/2
|
||||
Rmax = 100
|
||||
Nt = 2000
|
||||
alpha = 1.4
|
||||
mthresh = 11.25
|
||||
a_TFR = -23
|
||||
b_TFR = -8.2
|
||||
sigma_TFR = 0.3
|
||||
sigma_v = 150
|
||||
|
||||
cpar, dens, vel = get_fields(L, N, xmin)
|
||||
|
||||
zCMB, mobs, etaobs, xtrue = create_mock(
|
||||
Nt, L, xmin, cpar, dens, vel, Rmax, alpha, mthresh,
|
||||
a_TFR, b_TFR, sigma_TFR, sigma_m, sigma_eta,
|
||||
hyper_eta_mu, hyper_eta_sigma, sigma_v)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
144
tests/velocity_bug.py
Normal file
|
@ -0,0 +1,144 @@
|
|||
import aquila_borg as borg
|
||||
import numpy as np
|
||||
|
||||
# Output stream management
|
||||
cons = borg.console()
|
||||
myprint = lambda x: cons.print_std(x) if type(x) == str else cons.print_std(repr(x))
|
||||
|
||||
def build_gravity_model(box: borg.forward.BoxModel, gravity='lpt', velmodel_name='LinearModel') -> borg.forward.BaseForwardModel:
|
||||
"""
|
||||
Builds the gravity model and returns the forward model chain.
|
||||
|
||||
Args:
|
||||
- box (borg.forward.BoxModel): The input box model.
|
||||
- gravity (str, default='lpt'): The gravity model to use.
|
||||
- velmodel_name (str, default='LinearModel'): The velocity model to use.
|
||||
|
||||
Returns:
|
||||
- chain (borg.forward.BaseForwardModel): The forward model.
|
||||
- fwd_vel (borg.forward.BaseForwardModel): The forward model for velocities.
|
||||
|
||||
"""
|
||||
|
||||
myprint(f"Building gravity model {gravity}")
|
||||
|
||||
ai = 0.05
|
||||
af = 1.0
|
||||
supersampling = 2
|
||||
forcesampling = 4
|
||||
rsmooth = 4. # Mpc/h
|
||||
nsteps = 20
|
||||
|
||||
# Setup forward model
|
||||
chain = borg.forward.ChainForwardModel(box)
|
||||
chain.addModel(borg.forward.models.HermiticEnforcer(box))
|
||||
|
||||
# CLASS transfer function
|
||||
chain @= borg.forward.model_lib.M_PRIMORDIAL_AS(box)
|
||||
transfer_class = borg.forward.model_lib.M_TRANSFER_CLASS(box, opts=dict(a_transfer=1.0))
|
||||
transfer_class.setModelParams({"extra_class_arguments":{'YHe':'0.24'}})
|
||||
chain @= transfer_class
|
||||
|
||||
if gravity == 'linear':
|
||||
raise NotImplementedError(gravity)
|
||||
elif gravity == 'lpt':
|
||||
mod = borg.forward.model_lib.M_LPT_CIC(
|
||||
box,
|
||||
opts=dict(a_initial=af,
|
||||
a_final=af,
|
||||
do_rsd=False,
|
||||
supersampling=supersampling,
|
||||
lightcone=False,
|
||||
part_factor=1.01,))
|
||||
elif gravity == '2lpt':
|
||||
mod = borg.forward.model_lib.M_2LPT_CIC(
|
||||
box,
|
||||
opts=dict(a_initial=af,
|
||||
a_final=af,
|
||||
do_rsd=False,
|
||||
supersampling=supersampling,
|
||||
lightcone=False,
|
||||
part_factor=1.01,))
|
||||
elif gravity == 'pm':
|
||||
mod = borg.forward.model_lib.M_PM_CIC(
|
||||
box,
|
||||
opts=dict(a_initial=af,
|
||||
a_final=af,
|
||||
do_rsd=False,
|
||||
supersampling=supersampling,
|
||||
part_factor=1.01,
|
||||
forcesampling=forcesampling,
|
||||
pm_start_z=1/ai - 1,
|
||||
pm_nsteps=nsteps,
|
||||
tcola=False))
|
||||
elif gravity == 'cola':
|
||||
mod = borg.forward.model_lib.M_PM_CIC(
|
||||
box,
|
||||
opts=dict(a_initial=af,
|
||||
a_final=af,
|
||||
do_rsd=False,
|
||||
supersampling=supersampling,
|
||||
part_factor=1.01,
|
||||
forcesampling=forcesampling,
|
||||
pm_start_z=1/ai - 1,
|
||||
pm_nsteps=nsteps,
|
||||
tcola=True))
|
||||
else:
|
||||
raise NotImplementedError(gravity)
|
||||
|
||||
mod.accumulateAdjoint(True)
|
||||
chain @= mod
|
||||
|
||||
# Cosmological parameters
|
||||
cpar = borg.cosmo.CosmologicalParameters()
|
||||
cpar.default()
|
||||
chain.setCosmoParams(cpar)
|
||||
|
||||
# This is the forward model for velocity
|
||||
velmodel = getattr(borg.forward.velocity, velmodel_name)
|
||||
if velmodel_name == 'LinearModel':
|
||||
fwd_vel = velmodel(box, mod, af)
|
||||
elif velmodel_name == 'CICModel':
|
||||
fwd_vel = velmodel(box, mod, rsmooth)
|
||||
else:
|
||||
fwd_vel = velmodel(box, mod)
|
||||
|
||||
return chain, fwd_vel
|
||||
|
||||
|
||||
def get_velocity(fwd: borg.forward.BaseForwardModel, fwd_vel: borg.forward.BaseForwardModel, s_hat: np.ndarray):
|
||||
|
||||
N = s_hat.shape[0]
|
||||
output_density = np.zeros((N,N,N))
|
||||
fwd.forwardModel_v2(s_hat)
|
||||
myprint("getting density")
|
||||
fwd.getDensityFinal(output_density)
|
||||
myprint("getting velocity")
|
||||
output_velocity = fwd_vel.getVelocityField()
|
||||
|
||||
return output_velocity
|
||||
|
||||
|
||||
# Input box
|
||||
box_in = borg.forward.BoxModel()
|
||||
box_in.L = (500.0, 500.0, 500.0)
|
||||
box_in.N = (64, 64, 64)
|
||||
box_in.xmin = (-250.0, -250.0, -250.0)
|
||||
|
||||
# Make some initial conditions
|
||||
s_hat = np.fft.rfftn(np.random.randn(*box_in.N)) / box_in.Ntot ** (0.5)
|
||||
s_real = np.fft.irfftn(s_hat, norm="ortho")
|
||||
|
||||
for gravity in ['lpt', '2lpt', 'pm', 'cola']:
|
||||
|
||||
print(f'\nGravity: {gravity}')
|
||||
|
||||
fwd, fwd_vel = build_gravity_model(box_in, gravity=gravity, velmodel_name='LinearModel')
|
||||
v = get_velocity(fwd, fwd_vel, s_hat)
|
||||
print('Linear', v.mean(), v.std(), v.shape)
|
||||
np.save(f'vel_linear_{gravity}.npy', v)
|
||||
|
||||
fwd, fwd_vel = build_gravity_model(box_in, gravity=gravity, velmodel_name='CICModel')
|
||||
v = get_velocity(fwd, fwd_vel, s_hat)
|
||||
print('CIC', v.mean(), v.std(), v.shape)
|
||||
np.save(f'vel_cic_{gravity}.npy', v)
|