Add VELMASS analysis scripts

This commit is contained in:
Deaglan Bartlett 2024-11-29 09:44:19 +01:00
parent 6cde261fcf
commit 7ce772730a
8 changed files with 695 additions and 293 deletions

View file

@ -20,16 +20,16 @@ bias_sampler_blocked= true
nmean_sampler_blocked= true
sigma8_sampler_blocked = true
omega_m_sampler_blocked = true
muA_sampler_blocked = true
alpha_sampler_blocked = true
lam_sampler_blocked = true
sig_v_sampler_blocked = true
bulk_flow_sampler_blocked = true
muA_sampler_blocked = false
alpha_sampler_blocked = false
lam_sampler_blocked = false
sig_v_sampler_blocked = false
bulk_flow_sampler_blocked = false
ares_heat = 1.0
[mcmc]
number_to_generate = 15000
warmup_model = 0
warmup_model = 500
warmup_cosmo = 0
random_ic = false
init_random_scaling = 0.1

Binary file not shown.

After

Width:  |  Height:  |  Size: 171 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 100 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 94 KiB

View file

@ -30,7 +30,13 @@
" try:\n",
" yield\n",
" finally:\n",
" sys.stdout = old_stdout"
" sys.stdout = old_stdout\n",
" \n",
"from analysis import (\n",
" get_mcmc_steps, load_param_samples, get_truths,\n",
" crop_field, compute_ensemble_mean_field, \n",
" get_mock_field, get_spectra, get_both_fields,\n",
" get_likelihood_values)"
]
},
{
@ -41,290 +47,7 @@
"tags": []
},
"outputs": [],
"source": [
"def get_mcmc_steps(dirname, nframe, iter_max, iter_min=0):\n",
" \"\"\"\n",
" Obtain evenly-spaced sample of MCMC steps to make movie from\n",
" \"\"\"\n",
" all_mcmc = glob.glob(dirname + '/mcmc_*.h5')\n",
" x = [m[len(dirname + '/mcmc_'):-3] for m in all_mcmc]\n",
" all_mcmc = np.sort([int(m[len(dirname + '/mcmc_'):-3]) for m in all_mcmc])\n",
" if iter_max >= 0:\n",
" all_mcmc = all_mcmc[all_mcmc <= iter_max]\n",
" all_mcmc = all_mcmc[all_mcmc >= iter_min]\n",
" if nframe > 0:\n",
" max_out = max(all_mcmc)\n",
" min_out = min(all_mcmc)\n",
" step = max(int((max_out - min_out+1) / nframe), 1)\n",
" all_mcmc = all_mcmc[::step]\n",
" if max_out not in all_mcmc:\n",
" all_mcmc = np.concatenate([all_mcmc, [max_out]])\n",
" return all_mcmc\n",
"\n",
"def load_param_samples(ini_name, dirname, nframe, iter_max, iter_min):\n",
" \n",
" config = configparser.ConfigParser()\n",
" config.read(ini_name)\n",
" to_sample = []\n",
" for k,v in config['block_loop'].items():\n",
" if v.strip() == 'false':\n",
" i = k.index('_sampler')\n",
" if k[:i] not in ['hades', 'bias', 'nmean']:\n",
" to_sample.append(k[:i])\n",
" \n",
" print(\"TO SAMPLE\", to_sample)\n",
" nsamp = int(config['run']['nsamp'])\n",
" new_to_sample = []\n",
" for s in to_sample:\n",
" if s in ['omega_m', 'sigma8', 'sig_v']:\n",
" new_to_sample.append(s)\n",
" elif s == 'bulk_flow':\n",
" for d in ['_x', '_y', '_z']:\n",
" new_to_sample.append(f'{s}{d}')\n",
" else:\n",
" for i in range(nsamp):\n",
" new_to_sample.append(f'{s}{i}')\n",
" \n",
" # This is desired list to sample\n",
" to_sample = new_to_sample\n",
" \n",
" # Which steps to use\n",
" all_mcmc = get_mcmc_steps(dirname, nframe, iter_max, iter_min=iter_min)\n",
" \n",
" sampler = config['sampling']['algorithm'].lower()\n",
" samples = np.empty((len(to_sample),len(all_mcmc)))\n",
" \n",
" print('MY SAMPLER IS', sampler)\n",
" \n",
" if sampler == 'slice': \n",
"\n",
" for i in tqdm(range(len(all_mcmc))):\n",
" with h5.File(f'{dirname}/mcmc_{all_mcmc[i]}.h5', 'r') as f:\n",
" for j, s in enumerate(to_sample):\n",
" if 'model_params_' + s in f['scalars'].keys():\n",
" samples[j,i] = f['scalars/model_params_' + s][:][0]\n",
" elif 'model_params_cosmology.' + s in f['scalars'].keys():\n",
" samples[j,i] = f['scalars/model_params_cosmology.' + s][:][0]\n",
" elif s == 'sig_v':\n",
" samples[j,i] = float(config['model'][s])\n",
" elif s.startswith('bulk_flow'):\n",
" if s[-1] == 'x':\n",
" samples[j,i] = np.array(ast.literal_eval(config['model']['bulk_flow']))[0]\n",
" elif s[-1] == 'y':\n",
" samples[j,i] = np.array(ast.literal_eval(config['model']['bulk_flow']))[1]\n",
" elif s[-1] == 'z':\n",
" samples[j,i] = np.array(ast.literal_eval(config['model']['bulk_flow']))[2]\n",
" else:\n",
" raise NotImplementedError\n",
" else:\n",
" if s in config[f'cosmology'].keys():\n",
" samples[j,i] = float(config['cosmology'][s])\n",
" else:\n",
" print(\"NOT THERE\")\n",
" samples[j,i] = float(config[f'sample_{s[-1]}'][s[:-1]]) \n",
" \n",
" elif sampler in ['hmc', 'mvslice', 'transformedblackjax', 'blackjax']:\n",
" \n",
" if sampler in ['hmc', 'transformedblackjax']:\n",
" key_name = 'attributes'\n",
" key_name = 'model_params'\n",
" elif sampler in ['mvslice', 'blackjax']:\n",
" key_name = 'model_paramsattributes'\n",
" \n",
" # Get order in which model parameters are stored\n",
" if os.path.isfile(f'{dirname}/model_params.txt'):\n",
" with open(f'{dirname}/model_params.txt', 'r') as file:\n",
" model_params = [line.strip() for line in file]\n",
" else:\n",
" model_params = []\n",
" \n",
" print(model_params)\n",
" \n",
" for i in tqdm(range(len(all_mcmc))):\n",
" with h5.File(f'{dirname}/mcmc_{all_mcmc[i]}.h5', 'r') as f:\n",
" if key_name in f['scalars'].keys():\n",
" data = f[f'scalars/{key_name}'][:]\n",
" else:\n",
" data = None\n",
" for j, s in enumerate(to_sample):\n",
" if s in model_params:\n",
" samples[j,i] = data[model_params.index(s)]\n",
" elif 'model_params_cosmology.' + s in f['scalars'].keys():\n",
" samples[j,i] = f['scalars/model_params_cosmology.' + s][:][0]\n",
" elif s == 'sig_v':\n",
" samples[j,i] = float(config['model'][s])\n",
" elif s in config[f'cosmology'].keys():\n",
" samples[j,i] = float(config['cosmology'][s])\n",
" elif s.startswith('bulk_flow'):\n",
" idx = {'x':0, 'y':1, 'z':2}\n",
" idx = idx[s[-1]]\n",
" samples[j,i] = np.array(ast.literal_eval(config['model']['bulk_flow']))[idx]\n",
" else:\n",
" samples[j,i] = float(config[f'sample_{s[-1]}'][s[:-1]]) \n",
" else:\n",
" raise NotImplementedError\n",
"\n",
" return to_sample, all_mcmc, samples\n",
"\n",
"\n",
"def get_truths(ini_name, to_sample):\n",
" \n",
" config = configparser.ConfigParser()\n",
" config.read(ini_name)\n",
" \n",
" truths = [None] * len(to_sample)\n",
" \n",
" for i, s in enumerate(to_sample):\n",
" if s in config[f'cosmology'].keys():\n",
" truths[i] = float(config['cosmology'][s])\n",
" elif s == 'sig_v':\n",
" truths[i] = float(config['model'][s])\n",
" elif s.startswith('bulk_flow'):\n",
" idx = {'x':0, 'y':1, 'z':2}\n",
" idx = idx[s[-1]]\n",
" truths[i] = np.array(ast.literal_eval(config['model']['bulk_flow']))[idx]\n",
" else:\n",
" truths[i] = float(config[f'sample_{s[-1]}'][s[:-1]]) \n",
" \n",
" return truths\n",
"\n",
"\n",
"def crop_field(ini_name, field):\n",
" \n",
" config = configparser.ConfigParser()\n",
" config.read(ini_name)\n",
" Rmax = float(config['mock']['R_max'])\n",
" xmin = float(config['system']['corner0'])\n",
" L = float(config['system']['L0'])\n",
" N = int(config['system']['N0'])\n",
" x = np.linspace(xmin, xmin+L, N)\n",
" m = np.abs(x) < Rmax\n",
" L = x[m].max() - x[m].min()\n",
" \n",
" return field[m][:, m][:, :, m], L\n",
"\n",
"\n",
"def compute_ensemble_mean_field(ini_name, dirname, nframe, iter_max, iter_min, cut_field=True):\n",
" \"\"\"\n",
" Compute the mean and std deviation of the inferred density field\n",
" \"\"\"\n",
"\n",
" print('Computing ensemble mean field')\n",
" \n",
" # Which steps to use\n",
" all_mcmc = get_mcmc_steps(dirname, nframe, iter_max, iter_min=iter_min)\n",
"\n",
" #COMPUTE THE MEAN-DENSITY FIELD\n",
" for i in tqdm(range(len(all_mcmc))):\n",
" idx = all_mcmc[i]\n",
" with h5.File(dirname + \"/mcmc_%d.h5\" % idx,'r') as mcmc_file:\n",
" temp_field = np.array(mcmc_file['scalars/BORG_final_density'][...],dtype=np.float64)\n",
" if i == 0:\n",
" mean_field = np.array(np.full(temp_field.shape,0),dtype=np.float64)\n",
" std_field = np.array(np.full(temp_field.shape,0),dtype=np.float64)\n",
" mean_field += temp_field\n",
" std_field += temp_field*temp_field\n",
" mean_field = mean_field/np.float64(len(all_mcmc))\n",
" std_field = std_field/np.float64(len(all_mcmc)) # < delta^2 >\n",
" std_field = np.sqrt(std_field - mean_field **2) # < delta^2 > - < delta >^2\n",
" \n",
" # Cut the density field if needed\n",
" if cut_field:\n",
" mean_field, _ = crop_field(ini_name, mean_field)\n",
" std_field, _ = crop_field(ini_name, std_field)\n",
" \n",
" return mean_field, std_field\n",
"\n",
"\n",
"def get_mock_field(ini_name, dirname, which_field='delta', cut_field=True):\n",
" with h5.File(f'{dirname}/mock_data.h5', 'r') as f:\n",
" if which_field == 'delta':\n",
" dens = f['scalars/BORG_final_density'][:]\n",
" elif which_field == 'ics':\n",
" dens = f['scalars/s_field'][:]\n",
" if cut_field:\n",
" dens, L = crop_field(ini_name, dens)\n",
" else:\n",
" config = configparser.ConfigParser()\n",
" config.read(ini_name)\n",
" L = float(config['system']['L0'])\n",
" return dens, L\n",
"\n",
"\n",
"def get_spectra(ini_file, dirname, nframe, iter_max, iter_min, which_field='delta', cut_field=True):\n",
" \n",
" # Which steps to use\n",
" all_mcmc = get_mcmc_steps(dirname, nframe, iter_max, iter_min=iter_min)\n",
" \n",
" if which_field == 'delta':\n",
" MAS = \"CIC\"\n",
" elif which_field == 'ics':\n",
" MAS = None\n",
" else:\n",
" raise NotImplementedError\n",
" \n",
" # Compute original power spectrum\n",
" delta1, boxsize = get_mock_field(ini_name, dirname, which_field=which_field, cut_field=cut_field)\n",
" print(\"BOXSIZE\", boxsize)\n",
" Pk = PKL.Pk(delta1.astype(np.float32), boxsize, axis=0, MAS=MAS, threads=1, verbose=True)\n",
" k = Pk.k3D\n",
" Pk_true = Pk.Pk[:,0]\n",
" \n",
" # Get other spectra\n",
" all_pk = np.zeros((len(all_mcmc), len(k)))\n",
" all_r = np.zeros((len(all_mcmc), len(k)))\n",
" for i in tqdm(range(len(all_mcmc))):\n",
" idx = all_mcmc[i]\n",
" with h5.File(dirname + \"/mcmc_%d.h5\" % idx,'r') as mcmc_file:\n",
" if which_field == 'delta':\n",
" delta2= np.array(mcmc_file['scalars/BORG_final_density'][...],dtype=np.float64)\n",
" elif which_field == 'ics':\n",
" delta2 = np.array(mcmc_file['scalars/s_field'][...],dtype=np.float64)\n",
" else:\n",
" raise NotImplementedError\n",
" if cut_field:\n",
" delta2, _ = crop_field(ini_name, delta2)\n",
" with suppress_stdout():\n",
" Pk = PKL.XPk([delta1.astype(np.float32),delta2.astype(np.float32)], boxsize, axis=0, MAS=[MAS, MAS], threads=1)\n",
" all_pk[i,:] = Pk.Pk[:,0,1] #monopole of field 2\n",
" all_r[i,:] = Pk.XPk[:,0,0] / np.sqrt(Pk.Pk[:,0,1] * Pk.Pk[:,0,0])\n",
" \n",
" return k, Pk_true, all_pk, all_r\n",
"\n",
"\n",
"def get_both_fields(ini_file, dirname, step, which_field='delta', cut_field=True):\n",
" \n",
" # Mock\n",
" delta1, boxsize = get_mock_field(ini_name, dirname, which_field=which_field, cut_field=cut_field)\n",
" \n",
" # Step\n",
" with h5.File(dirname + \"/mcmc_%d.h5\" % step,'r') as mcmc_file:\n",
" if which_field == 'delta':\n",
" delta2= np.array(mcmc_file['scalars/BORG_final_density'][...],dtype=np.float64)\n",
" elif which_field == 'ics':\n",
" delta2 = np.array(mcmc_file['scalars/s_field'][...],dtype=np.float64)\n",
" else:\n",
" raise NotImplementedError\n",
" if cut_field:\n",
" delta2, _ = crop_field(ini_name, delta2)\n",
" \n",
" return delta1, delta2\n",
"\n",
"\n",
"def get_likelihood_values(dirname, nframe, iter_max, iter_min):\n",
" \n",
" all_mcmc = get_mcmc_steps(dirname, nframe, iter_max, iter_min=iter_min)\n",
" \n",
" all_logL = np.zeros(len(all_mcmc))\n",
" all_logprior = np.zeros(len(all_mcmc))\n",
" for i in tqdm(range(len(all_mcmc))):\n",
" with h5.File(f'{dirname}/mcmc_{all_mcmc[i]}.h5', 'r') as f:\n",
" s_hat = f['scalars/s_hat_field'][:]\n",
" all_logL[i] = f['scalars/hmc_Elh'][:]\n",
" all_logprior[i] = f['scalars/hmc_Eprior'][:]\n",
" \n",
" return all_logL, all_logprior"
]
"source": []
},
{
"cell_type": "markdown",

File diff suppressed because one or more lines are too long

420
notebooks/analysis.py Normal file
View file

@ -0,0 +1,420 @@
import numpy as np
import glob
import configparser
import h5py as h5
import ast
import Pk_library as PKL
import os
from tqdm import tqdm
import sys
from contextlib import contextmanager
@contextmanager
def suppress_stdout():
with open(os.devnull, 'w') as devnull:
old_stdout = sys.stdout
sys.stdout = devnull
try:
yield
finally:
sys.stdout = old_stdout
def get_mcmc_steps(dirname, nframe, iter_max, iter_min=0):
"""
Obtain evenly-spaced sample of MCMC steps to make movie from
"""
all_mcmc = glob.glob(dirname + '/mcmc_*.h5')
x = [m[len(dirname + '/mcmc_'):-3] for m in all_mcmc]
all_mcmc = np.sort([int(m[len(dirname + '/mcmc_'):-3]) for m in all_mcmc])
if iter_max >= 0:
all_mcmc = all_mcmc[all_mcmc <= iter_max]
all_mcmc = all_mcmc[all_mcmc >= iter_min]
if nframe > 0:
max_out = max(all_mcmc)
min_out = min(all_mcmc)
step = max(int((max_out - min_out+1) / nframe), 1)
all_mcmc = all_mcmc[::step]
if max_out not in all_mcmc:
all_mcmc = np.concatenate([all_mcmc, [max_out]])
return all_mcmc
def load_param_samples(ini_name, dirname, nframe, iter_max, iter_min):
config = configparser.ConfigParser()
config.read(ini_name)
to_sample = []
for k,v in config['block_loop'].items():
if v.strip() == 'false':
i = k.index('_sampler')
if k[:i] not in ['hades', 'bias', 'nmean']:
to_sample.append(k[:i])
print("TO SAMPLE", to_sample)
nsamp = int(config['run']['nsamp'])
new_to_sample = []
for s in to_sample:
if s in ['omega_m', 'sigma8', 'sig_v']:
new_to_sample.append(s)
elif s == 'bulk_flow':
for d in ['_x', '_y', '_z']:
new_to_sample.append(f'{s}{d}')
else:
for i in range(nsamp):
new_to_sample.append(f'{s}{i}')
# This is desired list to sample
to_sample = new_to_sample
# Which steps to use
all_mcmc = get_mcmc_steps(dirname, nframe, iter_max, iter_min=iter_min)
sampler = config['sampling']['algorithm'].lower()
samples = np.empty((len(to_sample),len(all_mcmc)))
print('MY SAMPLER IS', sampler)
if sampler == 'slice':
for i in tqdm(range(len(all_mcmc))):
with h5.File(f'{dirname}/mcmc_{all_mcmc[i]}.h5', 'r') as f:
for j, s in enumerate(to_sample):
if 'model_params_' + s in f['scalars'].keys():
samples[j,i] = f['scalars/model_params_' + s][:][0]
elif 'model_params_cosmology.' + s in f['scalars'].keys():
samples[j,i] = f['scalars/model_params_cosmology.' + s][:][0]
elif s == 'sig_v':
samples[j,i] = float(config['model'][s])
elif s.startswith('bulk_flow'):
if s[-1] == 'x':
samples[j,i] = np.array(ast.literal_eval(config['model']['bulk_flow']))[0]
elif s[-1] == 'y':
samples[j,i] = np.array(ast.literal_eval(config['model']['bulk_flow']))[1]
elif s[-1] == 'z':
samples[j,i] = np.array(ast.literal_eval(config['model']['bulk_flow']))[2]
else:
raise NotImplementedError
else:
if s in config[f'cosmology'].keys():
samples[j,i] = float(config['cosmology'][s])
else:
print("NOT THERE")
samples[j,i] = float(config[f'sample_{s[-1]}'][s[:-1]])
elif sampler in ['hmc', 'mvslice', 'transformedblackjax', 'blackjax']:
if sampler in ['hmc', 'transformedblackjax']:
key_name = 'attributes'
key_name = 'model_params'
elif sampler in ['mvslice', 'blackjax']:
key_name = 'model_paramsattributes'
# Get order in which model parameters are stored
if os.path.isfile(f'{dirname}/model_params.txt'):
with open(f'{dirname}/model_params.txt', 'r') as file:
model_params = [line.strip() for line in file]
else:
model_params = []
print(model_params)
for i in tqdm(range(len(all_mcmc))):
with h5.File(f'{dirname}/mcmc_{all_mcmc[i]}.h5', 'r') as f:
if key_name in f['scalars'].keys():
data = f[f'scalars/{key_name}'][:]
else:
data = None
for j, s in enumerate(to_sample):
if s in model_params:
samples[j,i] = data[model_params.index(s)]
elif 'model_params_cosmology.' + s in f['scalars'].keys():
samples[j,i] = f['scalars/model_params_cosmology.' + s][:][0]
elif s == 'sig_v':
samples[j,i] = float(config['model'][s])
elif s in config[f'cosmology'].keys():
samples[j,i] = float(config['cosmology'][s])
elif s.startswith('bulk_flow'):
idx = {'x':0, 'y':1, 'z':2}
idx = idx[s[-1]]
samples[j,i] = np.array(ast.literal_eval(config['model']['bulk_flow']))[idx]
else:
samples[j,i] = float(config[f'sample_{s[-1]}'][s[:-1]])
else:
raise NotImplementedError
return to_sample, all_mcmc, samples
def get_truths(ini_name, to_sample):
config = configparser.ConfigParser()
config.read(ini_name)
truths = [None] * len(to_sample)
for i, s in enumerate(to_sample):
if s in config[f'cosmology'].keys():
truths[i] = float(config['cosmology'][s])
elif s == 'sig_v':
truths[i] = float(config['model'][s])
elif s.startswith('bulk_flow'):
idx = {'x':0, 'y':1, 'z':2}
idx = idx[s[-1]]
truths[i] = np.array(ast.literal_eval(config['model']['bulk_flow']))[idx]
else:
truths[i] = float(config[f'sample_{s[-1]}'][s[:-1]])
return truths
def crop_field(ini_name, field):
config = configparser.ConfigParser()
config.read(ini_name)
Rmax = float(config['mock']['R_max'])
xmin = float(config['system']['corner0'])
L = float(config['system']['L0'])
N = int(config['system']['N0'])
x = np.linspace(xmin, xmin+L, N)
m = np.abs(x) < Rmax
L = x[m].max() - x[m].min()
return field[m][:, m][:, :, m], L
def compute_ensemble_mean_field(ini_name, dirname, nframe, iter_max, iter_min, cut_field=True):
"""
Compute the mean and std deviation of the inferred density field
"""
print('Computing ensemble mean field')
# Which steps to use
all_mcmc = get_mcmc_steps(dirname, nframe, iter_max, iter_min=iter_min)
#COMPUTE THE MEAN-DENSITY FIELD
for i in tqdm(range(len(all_mcmc))):
idx = all_mcmc[i]
with h5.File(dirname + "/mcmc_%d.h5" % idx,'r') as mcmc_file:
temp_field = np.array(mcmc_file['scalars/BORG_final_density'][...],dtype=np.float64)
if i == 0:
mean_field = np.array(np.full(temp_field.shape,0),dtype=np.float64)
std_field = np.array(np.full(temp_field.shape,0),dtype=np.float64)
mean_field += temp_field
std_field += temp_field*temp_field
mean_field = mean_field/np.float64(len(all_mcmc))
std_field = std_field/np.float64(len(all_mcmc)) # < delta^2 >
std_field = np.sqrt(std_field - mean_field **2) # < delta^2 > - < delta >^2
# Cut the density field if needed
if cut_field:
mean_field, _ = crop_field(ini_name, mean_field)
std_field, _ = crop_field(ini_name, std_field)
return mean_field, std_field
def get_mock_field(ini_name, dirname, which_field='delta', cut_field=True):
with h5.File(f'{dirname}/mock_data.h5', 'r') as f:
if which_field == 'delta':
dens = f['scalars/BORG_final_density'][:]
elif which_field == 'ics':
dens = f['scalars/s_field'][:]
if cut_field:
dens, L = crop_field(ini_name, dens)
else:
config = configparser.ConfigParser()
config.read(ini_name)
L = float(config['system']['L0'])
return dens, L
def get_velmass_field(ini_file, field_type):
"""
Load the true field from the Velmass directory.
Uses the ini file given in dirname
field_type can be one of 'delta', 'vx', 'vy', 'vz', 'ics'
"""
config = configparser.ConfigParser()
config.read(ini_file)
dirname = config['mock']['velmass_dirname']
if field_type == 'ics':
f = np.load('/data101/bartlett/fsigma8/VELMASS/velmass_density.npy')
else:
if field_type == 'delta':
key = 'd'
else:
key = field_type
f = np.load(dirname + '/../density.npz')[key]
if field_type == 'delta':
f = f / np.mean(f) - 1
return f
def get_velmass_Lbox(ini_file):
"""
Load the true box length from the Velmass directory.
Uses the ini file given in dirname
"""
config = configparser.ConfigParser()
config.read(ini_file)
velmass_dirname = config['mock']['velmass_dirname']
# Get box size
with open(velmass_dirname + '/auto-rockstar.cfg') as f:
data = [r for r in f]
Lbox = [r for r in data if r.startswith('BOX_SIZE')][0].strip()
Lbox = float(Lbox.split('=')[1])
return Lbox
def get_borg_Lbox(ini_file):
"""
Load the box length used by BORG
Uses the ini file given in dirname
"""
config = configparser.ConfigParser()
config.read(ini_file)
Lbox = float(config['system']['L0'])
return Lbox
def get_borg_N(ini_file):
"""
Load the box length used by BORG
Uses the ini file given in dirname
"""
config = configparser.ConfigParser()
config.read(ini_file)
N = int(config['system']['N0'])
return N
def get_borg_Rmax(ini_file):
"""
Load the Rmax used by BORG
Uses the ini file given in dirname
"""
config = configparser.ConfigParser()
config.read(ini_file)
R_max = float(config['mock']['R_max'])
return R_max
def get_borg_corner(ini_file):
"""
Load the corner used by BORG
Uses the ini file given in dirname
"""
config = configparser.ConfigParser()
config.read(ini_file)
corn = float(config['system']['corner0'])
return corn
def crop_velmass_to_borg(ini_file, field_type):
"""
Load the true field from the Velmass directory.
Then crop the field to only contain the region used by BORG
Uses the ini file given in dirname
field_type can be one of 'delta', 'vx', 'vy', 'vz', or 'ics'
"""
true_field = get_velmass_field(ini_file, field_type)
Lbox_true = get_velmass_Lbox(ini_file)
Lbox_borg = get_borg_Lbox(ini_file)
N = true_field.shape[0]
imin = int((1 - Lbox_borg / Lbox_true) * N / 2)
imax = int((1 + Lbox_borg / Lbox_true) * N / 2)
true_field = true_field[imin:imax,imin:imax,imin:imax]
return true_field
def get_spectra(ini_name, dirname, nframe, iter_max, iter_min, which_field='delta', cut_field=True, mock_type='borg'):
# Which steps to use
all_mcmc = get_mcmc_steps(dirname, nframe, iter_max, iter_min=iter_min)
if which_field == 'delta':
MAS = "CIC"
elif which_field == 'ics':
MAS = None
else:
raise NotImplementedError
# Compute original power spectrum
if mock_type == 'borg':
delta1, boxsize = get_mock_field(ini_name, dirname, which_field=which_field, cut_field=cut_field)
elif mock_type == 'velmass':
delta1 = crop_velmass_to_borg(ini_name, which_field)
if cut_field:
delta1, boxsize = crop_field(ini_name, delta1)
else:
boxsize = get_borg_Lbox(ini_name)
else:
raise NotImplementedError
print("BOXSIZE", boxsize)
Pk = PKL.Pk(delta1.astype(np.float32), boxsize, axis=0, MAS=MAS, threads=1, verbose=True)
k = Pk.k3D
Pk_true = Pk.Pk[:,0]
# Get other spectra
all_pk = np.zeros((len(all_mcmc), len(k)))
all_r = np.zeros((len(all_mcmc), len(k)))
for i in tqdm(range(len(all_mcmc))):
idx = all_mcmc[i]
with h5.File(dirname + "/mcmc_%d.h5" % idx,'r') as mcmc_file:
if which_field == 'delta':
delta2= np.array(mcmc_file['scalars/BORG_final_density'][...],dtype=np.float64)
elif which_field == 'ics':
delta2 = np.array(mcmc_file['scalars/s_field'][...],dtype=np.float64)
else:
raise NotImplementedError
if cut_field:
delta2, _ = crop_field(ini_name, delta2)
with suppress_stdout():
Pk = PKL.XPk([delta1.astype(np.float32),delta2.astype(np.float32)], boxsize, axis=0, MAS=[MAS, MAS], threads=1)
all_pk[i,:] = Pk.Pk[:,0,1] #monopole of field 2
all_r[i,:] = Pk.XPk[:,0,0] / np.sqrt(Pk.Pk[:,0,1] * Pk.Pk[:,0,0])
return k, Pk_true, all_pk, all_r
def get_both_fields(ini_name, dirname, step, which_field='delta', cut_field=True, mock_type='borg'):
# Mock
if mock_type == 'borg':
delta1, boxsize = get_mock_field(ini_name, dirname, which_field=which_field, cut_field=cut_field)
elif mock_type == 'velmass':
delta1 = crop_velmass_to_borg(ini_name, which_field)
if cut_field:
delta1, boxsize = crop_field(ini_name, delta1)
else:
boxsize = get_borg_Lbox(ini_name)
else:
raise NotImplementedError
# Step
with h5.File(dirname + "/mcmc_%d.h5" % step,'r') as mcmc_file:
if which_field == 'delta':
delta2= np.array(mcmc_file['scalars/BORG_final_density'][...],dtype=np.float64)
elif which_field == 'ics':
delta2 = np.array(mcmc_file['scalars/s_field'][...],dtype=np.float64)
else:
raise NotImplementedError
if cut_field:
delta2, _ = crop_field(ini_name, delta2)
return delta1, delta2
def get_likelihood_values(dirname, nframe, iter_max, iter_min):
all_mcmc = get_mcmc_steps(dirname, nframe, iter_max, iter_min=iter_min)
all_logL = np.zeros(len(all_mcmc))
all_logprior = np.zeros(len(all_mcmc))
for i in tqdm(range(len(all_mcmc))):
with h5.File(f'{dirname}/mcmc_{all_mcmc[i]}.h5', 'r') as f:
s_hat = f['scalars/s_hat_field'][:]
all_logL[i] = f['scalars/hmc_Elh'][:]
all_logprior[i] = f['scalars/hmc_Eprior'][:]
return all_logL, all_logprior

View file

@ -1,5 +1,5 @@
#!/bin/bash
#SBATCH --job-name=velmass_ics
#SBATCH --job-name=velmass_ics_model
#SBATCH --nodes=1
#SBATCH --exclusive
#SBATCH --ntasks=40
@ -28,7 +28,7 @@ set -e
# Path variables
BORG=/data101/bartlett/build_borg/tools/hades_python/hades_python
RUN_DIR=/data101/bartlett/fsigma8/borg_velocity/velmass_ics
RUN_DIR=/data101/bartlett/fsigma8/borg_velocity/velmass_ics_model
mkdir -p $RUN_DIR
cd $RUN_DIR