main #2

Merged
Deaglan Bartlett merged 2 commits from main into mosman_changes 2025-04-17 09:14:25 +00:00
6 changed files with 517 additions and 1 deletions

View file

@ -100,6 +100,8 @@ def get_spectra(ini_name, dirname, mcmc_steps, which_field='BORG_final_density',
MAS = "CIC"
elif which_field == 'ics':
MAS = None
elif which_field.startwith('BORG_final_velocity'):
MAS = "CIC"
else:
raise NotImplementedError

418
example1.py Normal file
View file

@ -0,0 +1,418 @@
import aquila_borg as borg
import numpy as np
import numbers
import jaxlib
import jax.numpy as jnp
import jax
import configparser
# Output stream management
cons = borg.console()
def myprint(x):
if isinstance(x, str):
cons.print_std(x)
else:
cons.print_std(repr(x))
def get_cosmopar(ini_file):
"""
Extract cosmological parameters from an ini file
Args:
:ini_file (str): Path to the ini file
Returns:
:cpar (borg.cosmo.CosmologicalParameters): Cosmological parameters
"""
config = configparser.ConfigParser()
config.read(ini_file)
cpar = borg.cosmo.CosmologicalParameters()
cpar.default()
cpar.fnl = float(config['cosmology']['fnl'])
cpar.omega_k = float(config['cosmology']['omega_k'])
cpar.omega_m = float(config['cosmology']['omega_m'])
cpar.omega_b = float(config['cosmology']['omega_b'])
cpar.omega_q = float(config['cosmology']['omega_q'])
cpar.h = float(config['cosmology']['h100'])
cpar.sigma8 = float(config['cosmology']['sigma8'])
cpar.n_s = float(config['cosmology']['n_s'])
cpar.w = float(config['cosmology']['w'])
cpar.wprime = float(config['cosmology']['wprime'])
cpar = compute_As(cpar)
return cpar
def compute_As(cpar):
"""
Compute As given values of sigma8
Args:
:cpar (borg.cosmo.CosmologicalParameters): Cosmological parameters with wrong As
Returns:
:cpar (borg.cosmo.CosmologicalParameters): Cosmological parameters with updated As
"""
# requires BORG-CLASS
if not hasattr(borg.cosmo, 'ClassCosmo'):
raise ImportError(
"BORG-CLASS is required to compute As, but is not installed.")
sigma8_true = jnp.copy(cpar.sigma8)
cpar.sigma8 = 0
cpar.A_s = 2.3e-9
k_max, k_per_decade = 10, 100
extra_class = {}
extra_class['YHe'] = '0.24'
cosmo = borg.cosmo.ClassCosmo(cpar, k_per_decade, k_max, extra=extra_class)
cosmo.computeSigma8()
cos = cosmo.getCosmology()
cpar.A_s = (sigma8_true/cos['sigma_8'])**2*cpar.A_s
cpar.sigma8 = sigma8_true
print('Updated cosmology:', cpar)
return cpar
class MyLikelihood(borg.likelihood.BaseLikelihood):
"""
HADES likelihood class
"""
def __init__(self, fwd: borg.forward.BaseForwardModel,
fwd_vel: borg.forward.BaseForwardModel,
ini_fname: str):
self.fwd = fwd
self.fwd_vel = fwd_vel
# Read the ini file
self.ini_fname = ini_fname
self.config = configparser.ConfigParser()
self.config.read(ini_fname)
self.N = [int(self.config['system'][f'N{i}']) for i in range(3)] # Number of grid points per side
self.L = [float(self.config['system'][f'L{i}']) for i in range(3)] # Box size lenght Mpc/h
self.sigma_dens = float(self.config['mock']['sigma_dens']) # Density scatter
self.sigma_vel = float(self.config['mock']['sigma_vel']) # Velocity scatter
myprint(f"Likelihood initialized with {self.N} grid points and box size {self.L} Mpc/h")
super().__init__(fwd, self.N, self.L)
# Set up cosmoligical parameters
cpar = get_cosmopar(ini_fname)
self.updateCosmology(cpar)
# Gradient of the likelihood
self.grad_like = jax.grad(self.dens2like, argnums=(0, 1))
def updateCosmology(self, cosmo: borg.cosmo.CosmologicalParameters) -> None:
cpar = compute_As(cosmo)
self.fwd.setCosmoParams(cpar)
def updateMetaParameters(self, state: borg.likelihood.MarkovState) -> None:
"""
Update the meta parameters of the sampler (not sampled) from the MarkovState.
Args:
- state (borg.likelihood.MarkovState): The state object to be used in the likelihood.
"""
cosmo = state['cosmology']
cpar = compute_As(cosmo)
self.fwd.setCosmoParams(cpar)
def initializeLikelihood(self, state: borg.likelihood.MarkovState) -> None:
"""
Initialize the likelihood function.
Args:
- state (borg.likelihood.MarkovState): The state object to be used in the likelihood.
"""
myprint("Init likelihood")
state.newArray3d("BORG_final_density", *self.fwd.getOutputBoxModel().N, True)
state.newArray3d("BORG_final_velocity_x", *self.fwd.getOutputBoxModel().N, True)
state.newArray3d("BORG_final_velocity_y", *self.fwd.getOutputBoxModel().N, True)
state.newArray3d("BORG_final_velocity_z", *self.fwd.getOutputBoxModel().N, True)
# Could load real data
# We'll generate mock data which has its own function
def generateMockData(self, s_hat:np.ndarray, state: borg.likelihood.MarkovState) -> None:
"""
Generates mock data by simulating the forward model with the given white noise
Args:
- s_hat (np.ndarray): The input (initial) white noise field.
- state (borg.likelihood.MarkovState): The Markov state object to be used in the likelihood.
"""
myprint('Making mock from BORG')
# Get density field from the initial conditions
# Could replace with any (better) simulation here
# This version is self-consistnet
dens = np.zeros(self.fwd.getOutputBoxModel().N)
myprint('Running forward model')
myprint(self.fwd.getCosmoParams())
self.fwd.forwardModel_v2(s_hat)
self.fwd.getDensityFinal(dens)
state["BORG_final_density"][:] = dens
self.true_dens = dens.copy()
# Get velocity field
vel = self.fwd_vel.getVelocityField()
self.true_vel = vel.copy()
# Add some scatter
myprint('Adding scatter')
self.obs_dens = self.true_dens + np.random.randn(*self.true_dens.shape) * self.sigma_dens
self.obs_vel = self.true_vel + np.random.randn(*self.true_vel.shape) * self.sigma_vel
# Compute the likelihood and print it
myprint('From mock')
self.saved_s_hat = s_hat.copy()
self.logLikelihoodComplex(s_hat, False)
self.commitAuxiliaryFields(state)
myprint('Done')
def dens2like(self, output_density: np.ndarray, output_velocity: np.ndarray) -> float:
"""
Compute the likelihood from the density field
Args:
- output_density (np.ndarray): The density field to be used in the likelihood.
- output_velocity (np.ndarray): The velocity field to be used in the likelihood.
Returns:
- float: The likelihood value.
"""
# Compute the likelihood from the density field
# This is a simple Gaussian likelihood
# Could be replaced with any other likelihood
diff = output_density - self.obs_dens
diff_vel = output_velocity - self.obs_vel
like = 0.5 * jnp.sum(diff**2) / (self.sigma_dens**2)
like += 0.5 * jnp.sum(diff_vel**2) / (self.sigma_vel**2)
return like
def logLikelihoodComplex(self, s_hat:np.ndarray, gradientIsNext:bool):
# myprint('Getting density field now')
# Get the density field from the forward model
dens = np.zeros(self.fwd.getOutputBoxModel().N)
self.fwd.forwardModel_v2(s_hat)
self.fwd.getDensityFinal(dens)
# Get the velocity field from the forward model
vel = self.fwd_vel.getVelocityField()
L = self.dens2like(dens, vel)
if isinstance(L, numbers.Number) or isinstance(L, jaxlib.xla_extension.ArrayImpl):
myprint(f"var(s_hat): {np.var(s_hat)}, Call to logLike: {L}")
self.delta = dens.copy()
self.vel = vel.copy()
return L
def gradientLikelihoodComplex(self, s_hat:np.ndarray):
# Run BORG density field
output_density = np.zeros(self.N)
self.fwd.forwardModel_v2(s_hat)
self.fwd.getDensityFinal(output_density)
# Run BORG velocity field
vel = self.fwd_vel.getVelocityField()
# Compute the gradient of the likelihood
# d logL / d dens, d logL / d vel
dens_gradient, vel_gradient = self.grad_like(output_density, vel)
# Now get d logL / d s_hat
dens_gradient = np.array(dens_gradient, dtype=np.float64)
vel_gradient = np.array(vel_gradient, dtype=np.float64)
self.fwd_vel.computeAdjointModel(vel_gradient)
self.fwd.adjointModel_v2(dens_gradient)
mygrad_hat = np.zeros(s_hat.shape, dtype=np.complex128)
self.fwd.getAdjointModel(mygrad_hat)
self.fwd.clearAdjointGradient()
return mygrad_hat
def commitAuxiliaryFields(self, state: borg.likelihood.MarkovState) -> None:
"""
Commits the final density field to the Markov state.
Args:
- state (borg.state.State): The state object containing the final density field.
"""
self.updateCosmology(self.fwd.getCosmoParams())
self.dens2like(self.delta, self.vel)
state["BORG_final_density"][:] = self.delta.copy()
state["BORG_final_velocity_x"][:] = self.vel[0].copy()
state["BORG_final_velocity_y"][:] = self.vel[1].copy()
state["BORG_final_velocity_z"][:] = self.vel[2].copy()
@borg.registerGravityBuilder
def build_gravity_model(state: borg.likelihood.MarkovState, box: borg.forward.BoxModel, ini_fname=None) -> borg.forward.BaseForwardModel:
"""
Builds the gravity model and returns the forward model chain.
Args:
- state (borg.likelihood.MarkovState): The Markov state object to be used in the likelihood.
- box (borg.forward.BoxModel): The input box model.
- ini_file (str, default=None): The location of the ini file. If None, use borg.getIniConfigurationFilename()
Returns:
borg.forward.BaseForwardModel: The forward model.
"""
global chain, fwd_vel
myprint("Building gravity model")
if ini_fname is None:
ini_fname=borg.getIniConfigurationFilename()
config = configparser.ConfigParser()
config.read(ini_fname)
# READ FROM INI FILE
which_model = config['gravity']['which_model']
ai = float(config['gravity']['ai']) # Initial scale factor
af = float(config['gravity']['af']) # Final scale factor
supersampling = int(config['gravity']['supersampling'])
forcesampling = int(config['gravity']['forcesampling'])
nsteps = int(config['gravity']['nsteps']) # Number of steps in the PM solver
chain = borg.forward.ChainForwardModel(box)
# Make sure that the initial conditions are real in position space
chain.addModel(borg.forward.models.HermiticEnforcer(box))
# CLASS transfer function
chain @= borg.forward.model_lib.M_PRIMORDIAL_AS(box)
transfer_class = borg.forward.model_lib.M_TRANSFER_CLASS(box, opts=dict(a_transfer=1.0))
transfer_class.setModelParams({"extra_class_arguments":{'YHe':'0.24'}}) # helps deals with errors with primordial physics in CLASS for weird cosmologies
chain @= transfer_class
# Gravity model
if which_model == 'lpt':
mod = borg.forward.model_lib.M_LPT_CIC(
box,
opts=dict(a_initial=af,
a_final=af,
do_rsd=False,
supersampling=supersampling,
lightcone=False,
part_factor=1.01,))
elif which_model == '2lpt':
mod = borg.forward.model_lib.M_2LPT_CIC(
box,
opts=dict(a_initial=af,
a_final=af,
do_rsd=False,
supersampling=supersampling,
lightcone=False,
part_factor=1.01,))
elif which_model == 'pm':
mod = borg.forward.model_lib.M_PM_CIC(
box,
opts=dict(a_initial=af,
a_final=af,
pm_start_z=1/ai - 1,
do_rsd=False,
supersampling=supersampling,
forcesampling=forcesampling,
lightcone=False,
part_factor=1.01,
pm_nsteps=nsteps, # Number of steps in the PM solver
tcola=False
))
elif which_model == 'cola':
mod = borg.forward.model_lib.M_PM_CIC(
box,
opts=dict(a_initial=af,
a_final=af,
pm_start_z=1/ai - 1,
do_rsd=False,
supersampling=supersampling,
forcesampling=forcesampling,
lightcone=False,
part_factor=1.01,
pm_nsteps=nsteps, # Number of steps in the PM solver
tcola=True
))
else:
raise ValueError(f"Unknown model {which_model}")
mod.accumulateAdjoint(True)
chain @= mod
# Cosmological parameters
cpar = get_cosmopar(borg.getIniConfigurationFilename())
print('Setting cosmo params', cpar)
chain.setCosmoParams(cpar)
# Set the forward model for velocities
vel_model = config['velocity']['which_model']
if vel_model == 'linear':
fwd_vel = borg.forward.velocity.LinearModel(box, mod, af)
elif vel_model == 'cic':
rsmooth = float(config['velocity']['rsmooth'])
fwd_vel = borg.forward.velocity.CICModel(box, mod, rsmooth)
elif vel_model == 'sic':
fwd_vel = borg.forward.velocity.SICModel(box, mod)
else:
raise ValueError(f"Unknown model {vel_model}")
return chain
@borg.registerSamplerBuilder
def build_sampler(state: borg.likelihood.MarkovState, info: borg.likelihood.LikelihoodInfo, loop: borg.samplers.MainLoop):
"""
Builds the sampler and returns the main loop.
Args:
- state (borg.likelihood.MarkovState): The Markov state object to be used in the likelihood.
- info (borg.likelihood.LikelihoodInfo): The likelihood info object to be used in the likelihood.
- loop (borg.samplers.MainLoop): The main loop object to be used in the likelihood.
Returns:
borg.samplers.MainLoop: The main loop.
"""
# Here you can add cosmology sampling, model parameter sampling, etc.
# For now, we'll just sample the initial conditions so don't need to do anything
return []
@borg.registerLikelihoodBuilder
def build_likelihood(state: borg.likelihood.MarkovState, info: borg.likelihood.LikelihoodInfo) -> borg.likelihood.BaseLikelihood:
"""
Builds the likelihood and returns the likelihood object.
Args:
- state (borg.likelihood.MarkovState): The Markov state object to be used in the likelihood.
- info (borg.likelihood.LikelihoodInfo): The likelihood info object to be used in the likelihood.
Returns:
borg.likelihood.BaseLikelihood: The likelihood object.
"""
myprint("Building likelihood")
global likelihood
likelihood = MyLikelihood(chain, fwd_vel, borg.getIniConfigurationFilename())
return likelihood

69
ini_example1.ini Normal file
View file

@ -0,0 +1,69 @@
[system]
console_output = borg_log
VERBOSE_LEVEL = 2
N0 = 64
N1 = 64
N2 = 64
L0 = 500.0
L1 = 500.0
L2 = 500.0
corner0 = -250.0
corner1 = -250.0
corner2 = -250.0
NUM_MODES = 100
test_mode = true
seed_cpower = true
[block_loop]
hades_sampler_blocked = false
bias_sampler_blocked= true
ares_heat = 1.0
[mcmc]
number_to_generate = 1
random_ic = false
init_random_scaling = 0.1
[hades]
algorithm = HMC
max_epsilon = 0.01
max_timesteps = 50
mixing = 1
[python]
likelihood_path = /home/bartlett/borg_examples/example1.py
[run]
run_type = mock
NCAT = 0
[cosmology]
omega_r = 0
fnl = 0
omega_k = 0
omega_m = 0.315
omega_b = 0.049
omega_q = 0.685
h100 = 0.68
sigma8 = 0.81
n_s = 0.97
w = -1
wprime = 0
beta = 1.5
z0 = 0
[mock]
sigma_dens = 1.
sigma_vel = 100
[gravity]
which_model = lpt
ai = 0.05
af = 1.0
supersampling = 2
forcesampling = 2
nsteps = 20
[velocity]
which_model = cic
rsmooth = 8.

View file

@ -21,7 +21,7 @@ RUN_DIR=/data101/bartlett/borg_examples/example0
mkdir -p $RUN_DIR
cd $RUN_DIR
INI_FILE=/home/bartlett/borg_examples/ini_file.ini
INI_FILE=/home/bartlett/borg_examples/ini_example0.ini
cp $INI_FILE ini_file.ini
$BORG INIT ini_file.ini

27
run_example1.sh Executable file
View file

@ -0,0 +1,27 @@
#!/bin/sh
# Modules
module purge
module restore myborg
module load cuda/12.6
# Environment
source /home/bartlett/.bashrc
source /home/bartlett/anaconda3/etc/profile.d/conda.sh
conda deactivate
conda activate borg_new
# Kill job if there are any errors
set -e
# Path variables
BORG=/data101/bartlett/build_borg/tools/hades_python/hades_python
RUN_DIR=/data101/bartlett/borg_examples/example1
mkdir -p $RUN_DIR
cd $RUN_DIR
INI_FILE=/home/bartlett/borg_examples/ini_example1.ini
cp $INI_FILE ini_file.ini
$BORG INIT ini_file.ini