Change ReduceLROnPlateau to CyclicLR

This commit is contained in:
Yin Li 2019-12-03 17:40:08 -05:00
parent 0211eed0ec
commit bf3fe86afe

View file

@ -88,7 +88,9 @@ def gpu_worker(local_rank, args):
#momentum=args.momentum,
#weight_decay=args.weight_decay
)
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer)
#scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer)
scheduler = torch.optim.CyclicLR(optimizer, base_lr=args.lr * 1e-2,
max_lr=args.lr)
if args.load_state:
state = torch.load(args.load_state, map_location=args.device)
@ -117,11 +119,11 @@ def gpu_worker(local_rank, args):
for epoch in range(args.start_epoch, args.epochs):
train_sampler.set_epoch(epoch)
train(epoch, train_loader, model, criterion, optimizer, args)
train(epoch, train_loader, model, criterion, optimizer, scheduler, args)
val_loss = validate(epoch, val_loader, model, criterion, args)
scheduler.step(val_loss)
#scheduler.step(val_loss)
if args.rank == 0:
args.logger.close()
@ -145,7 +147,7 @@ def gpu_worker(local_rank, args):
destroy_process_group()
def train(epoch, loader, model, criterion, optimizer, args):
def train(epoch, loader, model, criterion, optimizer, scheduler, args):
model.train()
for i, (input, target) in enumerate(loader):
@ -161,6 +163,9 @@ def train(epoch, loader, model, criterion, optimizer, args):
loss.backward()
optimizer.step()
if scheduler is not None:
scheduler.step()
batch = epoch * len(loader) + i + 1
if batch % args.log_interval == 0:
all_reduce(loss)