Add testing

This commit is contained in:
Yin Li 2019-12-01 18:53:38 -05:00
parent bcf95275f3
commit 0211eed0ec
11 changed files with 252 additions and 73 deletions

View file

@ -21,11 +21,22 @@ def add_common_args(parser):
parser.add_argument('--out-channels', type=int, required=True,
help='number of output or target channels')
parser.add_argument('--norms', type=str_list, help='comma-sep. list '
'of normalization functions from map2map.data.norms')
'of normalization functions from data.norms')
parser.add_argument('--criterion', default='MSELoss',
help='model criterion from torch.nn')
parser.add_argument('--load-state', default='', type=str,
help='path to load model, optimizer, rng, etc.')
parser.add_argument('--batches', default=1, type=int,
help='mini-batch size, per GPU in training or in total in testing')
parser.add_argument('--loader-workers', default=0, type=int,
help='number of data loading workers, per GPU in training or '
'in total in testing')
parser.add_argument('--pad-or-crop', default=0, type=int_tuple,
help='pad (>0) or crop (<0) the input data; '
'can be a int or a 6-tuple (by a comma-sep. list); '
'can be asymmetric to align the data with downsample '
'and upsample convolutions; '
'padding assumes periodic boundary condition')
def add_train_args(parser):
@ -39,12 +50,8 @@ def add_train_args(parser):
help='comma-sep. list of glob patterns for validation input data')
parser.add_argument('--val-tgt-patterns', type=str_list, required=True,
help='comma-sep. list of glob patterns for validation target data')
parser.add_argument('--epochs', default=128, type=int,
parser.add_argument('--epochs', default=1024, type=int,
help='total number of epochs to run')
parser.add_argument('--batches-per-gpu', default=8, type=int,
help='mini-batch size per GPU')
parser.add_argument('--loader-workers-per-gpu', default=4, type=int,
help='number of data loading workers per GPU')
parser.add_argument('--augment', action='store_true',
help='enable training data augmentation')
parser.add_argument('--optimizer', default='Adam',
@ -74,3 +81,13 @@ def add_test_args(parser):
def str_list(s):
return s.split(',')
def int_tuple(t):
t = t.split(',')
t = tuple(int(i) for i in t)
if len(t) == 1:
t = t[0]
elif len(t) != 6:
raise ValueError('pad or crop size must be int or 6-tuple')
return t

View file

@ -3,7 +3,7 @@ import numpy as np
import torch
from torch.utils.data import Dataset
from . import norms
from .norms import import_norm
class FieldDataset(Dataset):
@ -14,12 +14,15 @@ class FieldDataset(Dataset):
Likewise `tgt_patterns` is for target fields.
Input and target samples of all fields are matched by sorting the globbed files.
Input fields can be padded (>0) or cropped (<0) with `pad_or_crop`.
Padding assumes periodic boundary condition.
Data augmentations are supported for scalar and vector fields.
`normalize` can be a list of callables to normalize each field.
`norms` can be a list of callables to normalize each field.
"""
def __init__(self, in_patterns, tgt_patterns, augment=False,
normalize=None, **kwargs):
def __init__(self, in_patterns, tgt_patterns, pad_or_crop=0, augment=False,
norms=None):
in_file_lists = [sorted(glob(p)) for p in in_patterns]
self.in_files = list(zip(* in_file_lists))
@ -29,23 +32,31 @@ class FieldDataset(Dataset):
assert len(self.in_files) == len(self.tgt_files), \
'input and target sample sizes do not match'
if isinstance(pad_or_crop, int):
pad_or_crop = (pad_or_crop,) * 6
assert isinstance(pad_or_crop, tuple) and len(pad_or_crop) == 6, \
'pad or crop size must be int or 6-tuple'
self.pad_or_crop = np.array((0,) * 2 + pad_or_crop).reshape(4, 2)
self.augment = augment
self.normalize = normalize
if self.normalize is not None:
assert len(in_patterns) == len(self.normalize), \
if norms is not None:
assert len(in_patterns) == len(norms), \
'numbers of normalization callables and input fields do not match'
# self.__dict__.update(kwargs)
norms = [import_norm(norm) for norm in norms if isinstance(norm, str)]
self.norms = norms
def __len__(self):
return len(self.in_files)
def __getitem__(self, idx):
in_fields = [torch.from_numpy(np.load(f)).to(torch.float32)
for f in self.in_files[idx]]
tgt_fields = [torch.from_numpy(np.load(f)).to(torch.float32)
for f in self.tgt_files[idx]]
in_fields = [np.load(f) for f in self.in_files[idx]]
tgt_fields = [np.load(f) for f in self.tgt_files[idx]]
padcrop(in_fields, self.pad_or_crop) # with numpy
in_fields = [torch.from_numpy(f).to(torch.float32) for f in in_fields]
tgt_fields = [torch.from_numpy(f).to(torch.float32) for f in tgt_fields]
if self.augment:
flip_axes = torch.randint(2, (3,), dtype=torch.bool)
@ -59,18 +70,8 @@ class FieldDataset(Dataset):
perm3d(in_fields, perm_axes)
perm3d(tgt_fields, perm_axes)
if self.normalize is not None:
def get_norm(path):
path = path.split('.')
norm = norms
while path:
norm = norm.__dict__[path.pop(0)]
return norm
for norm, ifield, tfield in zip(self.normalize, in_fields, tgt_fields):
if isinstance(norm, str):
norm = get_norm(norm)
if self.norms is not None:
for norm, ifield, tfield in zip(self.norms, in_fields, tgt_fields):
norm(ifield)
norm(tfield)
@ -80,6 +81,22 @@ class FieldDataset(Dataset):
return in_fields, tgt_fields
def padcrop(fields, width):
for i, x in enumerate(fields):
if (width >= 0).all():
x = np.pad(x, width, mode='wrap')
elif (width <= 0).all():
x = x[...,
-width[1, 0] : width[1, 1],
-width[2, 0] : width[2, 1],
-width[3, 0] : width[3, 1],
]
else:
raise NotImplementedError('mixed pad-and-crop not supported')
fields[i] = x
def flip3d(fields, axes):
for i, x in enumerate(fields):
if x.size(0) == 3: # flip vector components
@ -90,6 +107,7 @@ def flip3d(fields, axes):
fields[i] = x
def perm3d(fields, axes):
for i, x in enumerate(fields):
if x.size(0) == 3: # permutate vector components

View file

@ -1 +1,10 @@
from importlib import import_module
from . import cosmology
def import_norm(path):
mod, func = path.rsplit('.', 1)
mod = import_module('.' + mod, __name__)
func = getattr(mod, func)
return func

View file

@ -10,4 +10,4 @@ def main():
if args.mode == 'train':
train.node_worker(args)
elif args.mode == 'test':
pass
test.test(args)

View file

@ -4,15 +4,6 @@ import torch.nn as nn
from .conv import ConvBlock, ResBlock, narrow_like
class DownBlock(ConvBlock):
def __init__(self, in_channels, out_channels, seq='BADBA'):
super().__init__(in_channels, out_channels, seq=seq)
class UpBlock(ConvBlock):
def __init__(self, in_channels, out_channels, seq='BAUBA'):
super().__init__(in_channels, out_channels, seq=seq)
class UNet(nn.Module):
def __init__(self, in_channels, out_channels):
super().__init__()

View file

@ -1,8 +1,58 @@
import os
import numpy as np
import torch
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from .data import FieldDataset
from .models import UNet, narrow_like
def test(args):
test_dataset = FieldDataset(
in_patterns=args.test_in_patterns,
tgt_patterns=args.test_tgt_patterns,
augment=False,
norms=args.norms,
pad_or_crop=args.pad_or_crop,
)
test_loader = DataLoader(
test_dataset,
batch_size=args.batches,
shuffle=False,
num_workers=args.loader_workers,
)
model = UNet(args.in_channels, args.out_channels)
criterion = torch.nn.__dict__[args.criterion]()
device = torch.device('cpu')
state = torch.load(args.load_state, map_location=device)
from collections import OrderedDict
model_state = OrderedDict()
for k, v in state['model'].items():
model_k = k.replace('module.', '', 1) # FIXME
model_state[model_k] = v
model.load_state_dict(model_state)
print('model state at epoch {} loaded from {}'.format(
state['epoch'], args.load_state))
del state
model.eval()
with torch.no_grad():
for i, (input, target) in enumerate(test_loader):
output = model(input)
if args.pad_or_crop > 0: # FIXME
output = narrow_like(output, target)
else:
target = narrow_like(target, output)
loss = criterion(output, target)
print('sample {} loss: {}'.format(i, loss))
if args.norms is not None:
norm = test_dataset.norms[0] # FIXME
norm(output, undo=True)
np.savez('{}.npz'.format(i), input=input.numpy(),
output=output.numpy(), target=target.numpy())

View file

@ -1,6 +1,5 @@
import os
import shutil
import torch
from torch.multiprocessing import spawn
from torch.distributed import init_process_group, destroy_process_group, all_reduce
@ -46,15 +45,16 @@ def gpu_worker(local_rank, args):
in_patterns=args.train_in_patterns,
tgt_patterns=args.train_tgt_patterns,
augment=args.augment,
normalize=args.norms,
norms=args.norms,
pad_or_crop=args.pad_or_crop,
)
train_sampler = DistributedSampler(train_dataset, shuffle=True)
train_loader = DataLoader(
train_dataset,
batch_size=args.batches_per_gpu,
batch_size=args.batches,
shuffle=False,
sampler=train_sampler,
num_workers=args.loader_workers_per_gpu,
num_workers=args.loader_workers,
pin_memory=True
)
@ -62,15 +62,16 @@ def gpu_worker(local_rank, args):
in_patterns=args.val_in_patterns,
tgt_patterns=args.val_tgt_patterns,
augment=False,
normalize=args.norms,
norms=args.norms,
pad_or_crop=args.pad_or_crop,
)
val_sampler = DistributedSampler(val_dataset, shuffle=False)
val_loader = DataLoader(
val_dataset,
batch_size=args.batches_per_gpu,
batch_size=args.batches,
shuffle=False,
sampler=val_sampler,
num_workers=args.loader_workers_per_gpu,
num_workers=args.loader_workers,
pin_memory=True
)
@ -90,17 +91,17 @@ def gpu_worker(local_rank, args):
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer)
if args.load_state:
checkpoint = torch.load(args.load_state, map_location=args.device)
args.start_epoch = checkpoint['epoch']
model.load_state_dict(checkpoint['model'])
optimizer.load_state_dict(checkpoint['optimizer'])
scheduler.load_state_dict(checkpoint['scheduler'])
torch.set_rng_state(checkpoint['rng'].cpu()) # move rng state back
state = torch.load(args.load_state, map_location=args.device)
args.start_epoch = state['epoch']
model.load_state_dict(state['model'])
optimizer.load_state_dict(state['optimizer'])
scheduler.load_state_dict(state['scheduler'])
torch.set_rng_state(state['rng'].cpu()) # move rng state back
if args.rank == 0:
min_loss = checkpoint['min_loss']
print('checkpoint of epoch {} loaded from {}'.format(
checkpoint['epoch'], args.load_state))
del checkpoint
min_loss = state['min_loss']
print('checkpoint at epoch {} loaded from {}'.format(
state['epoch'], args.load_state))
del state
else:
args.start_epoch = 0
if args.rank == 0:
@ -125,7 +126,7 @@ def gpu_worker(local_rank, args):
if args.rank == 0:
args.logger.close()
checkpoint = {
state = {
'epoch': epoch + 1,
'model': model.state_dict(),
'optimizer' : optimizer.state_dict(),
@ -134,8 +135,8 @@ def gpu_worker(local_rank, args):
'min_loss': min_loss,
}
filename='checkpoint.pth'
torch.save(checkpoint, filename)
del checkpoint
torch.save(state, filename)
del state
if min_loss is None or val_loss < min_loss:
min_loss = val_loss
@ -152,7 +153,7 @@ def train(epoch, loader, model, criterion, optimizer, args):
target = target.to(args.device, non_blocking=True)
output = model(input)
target = narrow_like(target, output)
target = narrow_like(target, output) # FIXME pad
loss = criterion(output, target)
@ -167,7 +168,6 @@ def train(epoch, loader, model, criterion, optimizer, args):
if args.rank == 0:
args.logger.add_scalar('loss/train', loss.item(), global_step=batch)
# f'max GPU mem: {torch.cuda.max_memory_allocated()} allocated, {torch.cuda.max_memory_cached()} cached')
def validate(epoch, loader, model, criterion, args):
model.eval()
@ -180,7 +180,7 @@ def validate(epoch, loader, model, criterion, args):
target = target.to(args.device, non_blocking=True)
output = model(input)
target = narrow_like(target, output)
target = narrow_like(target, output) # FIXME pad
loss += criterion(output, target)
@ -189,6 +189,4 @@ def validate(epoch, loader, model, criterion, args):
if args.rank == 0:
args.logger.add_scalar('loss/val', loss.item(), global_step=epoch+1)
# f'max GPU mem: {torch.cuda.max_memory_allocated()} allocated, {torch.cuda.max_memory_cached()} cached')
return loss.item()

View file

@ -0,0 +1,48 @@
#!/bin/bash
#SBATCH --job-name=dis2dis-test
#SBATCH --output=%x-%j.out
#SBATCH --error=%x-%j.err
#SBATCH --partition=ccm
#SBATCH --exclusive
#SBATCH --nodes=1
#SBATCH --mem=0
#SBATCH --time=1-00:00:00
hostname; pwd; date
module load gcc openmpi2
module load cuda/10.1.243_418.87.00 cudnn/v7.6.2-cuda-10.1
source $HOME/anaconda3/bin/activate torch
export OMP_NUM_THREADS=$SLURM_CPUS_ON_NODE
echo OMP_NUM_THREADS = $OMP_NUM_THREADS
data_root_dir="/mnt/ceph/users/yinli/Quijote"
in_dir="linear"
tgt_dir="nonlin"
test_dirs="0" # FIXME
files="dis/128x???.npy"
in_files="$files"
tgt_files="$files"
srun m2m.py test \
--test-in-patterns "$data_root_dir/$in_dir/$test_dirs/$in_files" \
--test-tgt-patterns "$data_root_dir/$tgt_dir/$test_dirs/$tgt_files" \
--in-channels 3 --out-channels 3 --norms cosmology.dis \
--batches 1 --loader-workers 0 --pad-or-crop 40 \
--load-state best_model.pth
date

View file

@ -11,7 +11,7 @@
#SBATCH --exclusive
#SBATCH --nodes=2
#SBATCH --mem=0
#SBATCH --time=2-00:00:00
#SBATCH --time=7-00:00:00
hostname; pwd; date
@ -46,7 +46,7 @@ srun m2m.py train \
--val-in-patterns "$data_root_dir/$in_dir/$val_dirs/$in_files" \
--val-tgt-patterns "$data_root_dir/$tgt_dir/$val_dirs/$tgt_files" \
--in-channels 3 --out-channels 3 --norms cosmology.dis --augment \
--epochs 128 --batches-per-gpu 4 --loader-workers-per-gpu 4
--epochs 1024 --batches 3 --loader-workers 3 --lr 0.0002
# --load-state checkpoint.pth

View file

@ -0,0 +1,48 @@
#!/bin/bash
#SBATCH --job-name=vel2vel-test
#SBATCH --output=%x-%j.out
#SBATCH --error=%x-%j.err
#SBATCH --partition=ccm
#SBATCH --exclusive
#SBATCH --nodes=1
#SBATCH --mem=0
#SBATCH --time=1-00:00:00
hostname; pwd; date
module load gcc openmpi2
module load cuda/10.1.243_418.87.00 cudnn/v7.6.2-cuda-10.1
source $HOME/anaconda3/bin/activate torch
export OMP_NUM_THREADS=$SLURM_CPUS_ON_NODE
echo OMP_NUM_THREADS = $OMP_NUM_THREADS
data_root_dir="/mnt/ceph/users/yinli/Quijote"
in_dir="linear"
tgt_dir="nonlin"
test_dirs="0" # FIXME
files="vel/128x???.npy"
in_files="$files"
tgt_files="$files"
srun m2m.py test \
--test-in-patterns "$data_root_dir/$in_dir/$test_dirs/$in_files" \
--test-tgt-patterns "$data_root_dir/$tgt_dir/$test_dirs/$tgt_files" \
--in-channels 3 --out-channels 3 --norms cosmology.vel \
--batches 1 --loader-workers 0 --pad-or-crop 40 \
--load-state best_model.pth
date

View file

@ -11,7 +11,7 @@
#SBATCH --exclusive
#SBATCH --nodes=2
#SBATCH --mem=0
#SBATCH --time=2-00:00:00
#SBATCH --time=7-00:00:00
hostname; pwd; date
@ -46,7 +46,7 @@ srun m2m.py train \
--val-in-patterns "$data_root_dir/$in_dir/$val_dirs/$in_files" \
--val-tgt-patterns "$data_root_dir/$tgt_dir/$val_dirs/$tgt_files" \
--in-channels 3 --out-channels 3 --norms cosmology.vel --augment \
--epochs 128 --batches-per-gpu 4 --loader-workers-per-gpu 4
--epochs 1024 --batches 3 --loader-workers 3 --lr 0.0002
# --load-state checkpoint.pth