Combine input and output figures

This commit is contained in:
Yin Li 2020-03-01 15:40:53 -05:00
parent a46746287a
commit 75b1c19dcd
2 changed files with 31 additions and 25 deletions

View file

@ -1,4 +1,5 @@
from math import log2, log10, ceil
import warnings
import torch
import numpy as np
import matplotlib
@ -9,36 +10,38 @@ from matplotlib.cm import ScalarMappable
def fig3d(*fields, size=64, cmap=None, norm=None):
fields = [f.detach().cpu().numpy() if isinstance(f, torch.Tensor) else f
for f in fields]
fields = [field.detach().cpu().numpy() if isinstance(field, torch.Tensor)
else field for field in fields]
assert all(isinstance(f, np.ndarray) for f in fields)
assert all(isinstance(field, np.ndarray) for field in fields)
nc = fields[-1].shape[0]
nc = max(field.shape[0] for field in fields)
nf = len(fields)
colorbar_frac = 0.15 / (0.85 * nc + 0.15)
fig, axes = plt.subplots(nc, nf, squeeze=False, figsize=(4 * nf, 4 * nc * (1 + colorbar_frac)))
fig, axes = plt.subplots(nc, nf, squeeze=False,
figsize=(4 * nf, 4 * nc * (1 + colorbar_frac)))
def quantize(x):
return 2 ** round(log2(x), ndigits=1)
for f in range(nf):
all_non_neg = (fields[f] >= 0).all()
all_non_pos = (fields[f] <= 0).all()
for f, field in enumerate(fields):
all_non_neg = (field >= 0).all()
all_non_pos = (field <= 0).all()
if cmap is None:
if all_non_neg:
cmap_ = 'viridis'
elif all_non_pos:
raise NotImplementedError
warnings.warn('no implementation for all non-positive values')
cmap_ = None
else:
cmap_ = 'RdBu_r'
else:
cmap_ = cmap
if norm is None:
l2, l1, h1, h2 = np.percentile(fields[f], [2.5, 16, 84, 97.5])
l2, l1, h1, h2 = np.percentile(field, [2.5, 16, 84, 97.5])
w1, w2 = (h1 - l1) / 2, (h2 - l2) / 2
if all_non_neg:
@ -47,7 +50,8 @@ def fig3d(*fields, size=64, cmap=None, norm=None):
else:
norm_ = LogNorm(vmin=quantize(0.5 * l2), vmax=quantize(2 * h2))
elif all_non_pos:
raise NotImplementedError
warnings.warn('no implementation for all non-positive values')
norm_ = None
else:
if w1 > 0.1 * w2:
vlim = quantize(2.5 * w1)
@ -58,8 +62,10 @@ def fig3d(*fields, size=64, cmap=None, norm=None):
else:
norm_ = norm
for c in range(nc):
axes[c, f].imshow(fields[f][c, 0, :size, :size], cmap=cmap_, norm=norm_)
for c in range(field.shape[0]):
axes[c, f].imshow(field[c, 0, :size, :size], cmap=cmap_, norm=norm_)
for c in range(field.shape[0], nc):
axes[c, f].axis('off')
plt.colorbar(ScalarMappable(norm=norm_, cmap=cmap_), ax=axes[:, f],
orientation='horizontal', fraction=colorbar_frac, pad=0.05)

View file

@ -357,12 +357,12 @@ def train(epoch, loader, model, criterion, optimizer, scheduler,
skip_chan = 0
if args.adv and epoch >= args.adv_start and args.cgan:
skip_chan = sum(args.in_chan)
logger.add_figure('fig/epoch/train/in', fig3d(input[-1]),
global_step =epoch+1)
logger.add_figure('fig/epoch/train/out',
fig3d(output[-1, skip_chan:], target[-1, skip_chan:],
output[-1, skip_chan:] - target[-1, skip_chan:]),
global_step =epoch+1)
logger.add_figure('fig/epoch/train', fig3d(
input[-1],
output[-1, skip_chan:],
target[-1, skip_chan:],
output[-1, skip_chan:] - target[-1, skip_chan:],
), global_step=epoch+1)
return epoch_loss
@ -433,12 +433,12 @@ def validate(epoch, loader, model, criterion, adv_model, adv_criterion,
skip_chan = 0
if args.adv and epoch >= args.adv_start and args.cgan:
skip_chan = sum(args.in_chan)
logger.add_figure('fig/epoch/val/in', fig3d(input[-1]),
global_step =epoch+1)
logger.add_figure('fig/epoch/val/out',
fig3d(output[-1, skip_chan:], target[-1, skip_chan:],
output[-1, skip_chan:] - target[-1, skip_chan:]),
global_step =epoch+1)
logger.add_figure('fig/epoch/val', fig3d(
input[-1],
output[-1, skip_chan:],
target[-1, skip_chan:],
output[-1, skip_chan:] - target[-1, skip_chan:],
), global_step=epoch+1)
return epoch_loss