Fix DistributedDataParallel model save and load during training, leave testing for later

This commit is contained in:
Yin Li 2019-12-08 21:00:51 -05:00
parent f2e9af6d5f
commit 437126e296

View file

@ -94,7 +94,7 @@ def gpu_worker(local_rank, args):
if args.load_state:
state = torch.load(args.load_state, map_location=args.device)
args.start_epoch = state['epoch']
model.load_state_dict(state['model'])
model.module.load_state_dict(state['model'])
optimizer.load_state_dict(state['optimizer'])
scheduler.load_state_dict(state['scheduler'])
torch.set_rng_state(state['rng'].cpu()) # move rng state back
@ -129,7 +129,7 @@ def gpu_worker(local_rank, args):
state = {
'epoch': epoch + 1,
'model': model.state_dict(),
'model': model.module.state_dict(),
'optimizer' : optimizer.state_dict(),
'scheduler' : scheduler.state_dict(),
'rng' : torch.get_rng_state(),