Revert scheduler to ReduceLROnPlateau

This commit is contained in:
Yin Li 2019-12-08 20:58:46 -05:00
parent 34b8c62c76
commit f2e9af6d5f

View file

@ -88,9 +88,8 @@ def gpu_worker(local_rank, args):
#momentum=args.momentum,
#weight_decay=args.weight_decay
)
#scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer)
scheduler = torch.optim.lr_scheduler.CyclicLR(optimizer,
base_lr=args.lr * 1e-2, max_lr=args.lr, cycle_momentum=False)
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer,
factor=0.1, verbose=True)
if args.load_state:
state = torch.load(args.load_state, map_location=args.device)
@ -123,7 +122,7 @@ def gpu_worker(local_rank, args):
val_loss = validate(epoch, val_loader, model, criterion, args)
#scheduler.step(val_loss)
scheduler.step(val_loss)
if args.rank == 0:
args.logger.close()
@ -163,8 +162,8 @@ def train(epoch, loader, model, criterion, optimizer, scheduler, args):
loss.backward()
optimizer.step()
if scheduler is not None:
scheduler.step()
#if scheduler is not None: # for batch scheduler
#scheduler.step()
batch = epoch * len(loader) + i + 1
if batch % args.log_interval == 0: