Fix unstable training by limiting pytorch version to 1.1

This commit is contained in:
Yin Li 2019-12-08 21:02:08 -05:00
parent 437126e296
commit 11c9caa1e2
7 changed files with 18 additions and 27 deletions

View file

@ -48,7 +48,7 @@ def test(args):
loss = criterion(output, target)
print('sample {} loss: {}'.format(i, loss))
print('sample {} loss: {}'.format(i, loss.item()))
if args.norms is not None:
norm = test_dataset.norms[0] # FIXME

View file

@ -48,7 +48,8 @@ def gpu_worker(local_rank, args):
norms=args.norms,
pad_or_crop=args.pad_or_crop,
)
train_sampler = DistributedSampler(train_dataset, shuffle=True)
#train_sampler = DistributedSampler(train_dataset, shuffle=True)
train_sampler = DistributedSampler(train_dataset)
train_loader = DataLoader(
train_dataset,
batch_size=args.batches,
@ -65,7 +66,8 @@ def gpu_worker(local_rank, args):
norms=args.norms,
pad_or_crop=args.pad_or_crop,
)
val_sampler = DistributedSampler(val_dataset, shuffle=False)
#val_sampler = DistributedSampler(val_dataset, shuffle=False)
val_sampler = DistributedSampler(val_dataset)
val_loader = DataLoader(
val_dataset,
batch_size=args.batches,
@ -112,9 +114,9 @@ def gpu_worker(local_rank, args):
if args.rank == 0:
args.logger = SummaryWriter()
hparam = {k: v if isinstance(v, (int, float, str, bool, torch.Tensor))
else str(v) for k, v in vars(args).items()}
args.logger.add_hparams(hparam_dict=hparam, metric_dict={})
#hparam = {k: v if isinstance(v, (int, float, str, bool, torch.Tensor))
# else str(v) for k, v in vars(args).items()}
#args.logger.add_hparams(hparam_dict=hparam, metric_dict={})
for epoch in range(args.start_epoch, args.epochs):
train_sampler.set_epoch(epoch)
@ -125,7 +127,8 @@ def gpu_worker(local_rank, args):
scheduler.step(val_loss)
if args.rank == 0:
args.logger.close()
print(end='', flush=True)
args.logger.flush()
state = {
'epoch': epoch + 1,