Fix global_step in tensorboard summary to start from 1

This commit is contained in:
Yin Li 2019-11-30 22:12:47 -05:00
parent 9d4b5daae3
commit bcf95275f3

View file

@ -160,7 +160,7 @@ def train(epoch, loader, model, criterion, optimizer, args):
loss.backward()
optimizer.step()
batch = epoch * len(loader) + i
batch = epoch * len(loader) + i + 1
if batch % args.log_interval == 0:
all_reduce(loss)
loss /= args.world_size
@ -187,7 +187,7 @@ def validate(epoch, loader, model, criterion, args):
all_reduce(loss)
loss /= len(loader) * args.world_size
if args.rank == 0:
args.logger.add_scalar('loss/val', loss.item(), global_step=epoch)
args.logger.add_scalar('loss/val', loss.item(), global_step=epoch+1)
# f'max GPU mem: {torch.cuda.max_memory_allocated()} allocated, {torch.cuda.max_memory_cached()} cached')