mirror of
https://github.com/Richard-Sti/csiborgtools.git
synced 2024-12-23 02:58:01 +00:00
fdb0df8d4c
* Move paths to a separate file * Add mmain reader * Add a verbosity flag * Fix imports * Fix bug * Rename files * Return ultimate parents * Add script to generate mmain * Remove mmain path * edit path * Add mmain path * Change function name * Rename function * Turn off verbose * Fix list requirement * Edit init match paths * Fix init pathing * Edit paths docs * Edit dumpdir name * Rename path * Fix split paths * Remove unused import * Add comment * Update readme * remove read mmain * Rename haloatalogue * Fix minor bugs * Update nbs * Add create directory option * Move split jobs * Move spliot jobs * Remove splitting * Add import * Edit script * Deeper split folder * Fix paths bug * Rename catalogue * Rename Catalogue * Add new clumpread * Edit paths * add knn paths * Update commenting * Update imports * Add more conversions * Update temp file * Add a note * Add catalogue * Cooment * Update TODO * Update script * add nb * Update * pep8 * edit paths & pep8 * Fix knn auto paths * add paths docs * Add auto and cross knn paths * Add new paths * Simplify tpcf reading * pep8 patch * update readme * Update progress * pep8 * pep8 * pep8 * pep8 * pep8 * pep8 * pep8 * pep8 * pep8 * pep8 * pep8 * pep8 * pep8 * pep8 * pep8 * Pep 8 and restructure * add lambda spin * add clump and halo * add checks * Edit halo profile fit * Update gitignore * backup script
2220 lines
686 KiB
Text
2220 lines
686 KiB
Text
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 1,
|
|
"id": "5a38ed25",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2023-04-12T14:25:46.519408Z",
|
|
"start_time": "2023-04-12T14:25:03.003304Z"
|
|
},
|
|
"scrolled": true
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"import sys\n",
|
|
"import joblib\n",
|
|
"from glob import glob\n",
|
|
"from tqdm import tqdm\n",
|
|
"import numpy as np\n",
|
|
"import matplotlib.pyplot as plt\n",
|
|
"from sklearn.neighbors import NearestNeighbors\n",
|
|
"import yaml\n",
|
|
"import scienceplots\n",
|
|
"\n",
|
|
"sys.path.append(\"../\")\n",
|
|
"import csiborgtools\n",
|
|
"\n",
|
|
"%matplotlib widget \n",
|
|
"%load_ext autoreload\n",
|
|
"%autoreload 2"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 2,
|
|
"id": "3d39187a",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2023-04-12T14:25:46.554959Z",
|
|
"start_time": "2023-04-12T14:25:46.521474Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"with open('../scripts/knn_auto.yml', 'r') as file:\n",
|
|
" config = yaml.safe_load(file)\n",
|
|
"\n",
|
|
"paths = csiborgtools.read.CSiBORGPaths(**csiborgtools.paths_glamdring)\n",
|
|
"knnreader = csiborgtools.read.kNNCDFReader()\n",
|
|
"\n",
|
|
"auto_folder = \"/mnt/extraspace/rstiskalek/csiborg/knn/auto/\"\n",
|
|
"cross_folder = \"/mnt/extraspace/rstiskalek/csiborg/knn/cross/\"\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 28,
|
|
"id": "430044b3",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2023-04-09T22:38:52.737953Z",
|
|
"start_time": "2023-04-09T22:38:51.453058Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"rp, wp = reader.read(\"mass002_spinlow\", folder)\n",
|
|
"wp = reader.mean_wp(wp)\n",
|
|
"\n",
|
|
"rp2, wp2 = reader.read(\"mass002_spinhigh\", folder)\n",
|
|
"wp2 = reader.mean_wp(wp2)\n",
|
|
"\n",
|
|
"rp3, wp3 = reader.read(\"mass002_spinmedian_perm\", folder)\n",
|
|
"wp3 = reader.mean_wp(wp3)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "c05b4db6",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"\n",
|
|
"connect ECONNRFUSED"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 33,
|
|
"id": "9a07acc5",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2023-04-09T22:40:07.043102Z",
|
|
"start_time": "2023-04-09T22:40:06.448027Z"
|
|
}
|
|
},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"application/javascript": "/* Put everything inside the global mpl namespace */\n/* global mpl */\nwindow.mpl = {};\n\nmpl.get_websocket_type = function () {\n if (typeof WebSocket !== 'undefined') {\n return WebSocket;\n } else if (typeof MozWebSocket !== 'undefined') {\n return MozWebSocket;\n } else {\n alert(\n 'Your browser does not have WebSocket support. ' +\n 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n 'Firefox 4 and 5 are also supported but you ' +\n 'have to enable WebSockets in about:config.'\n );\n }\n};\n\nmpl.figure = function (figure_id, websocket, ondownload, parent_element) {\n this.id = figure_id;\n\n this.ws = websocket;\n\n this.supports_binary = this.ws.binaryType !== undefined;\n\n if (!this.supports_binary) {\n var warnings = document.getElementById('mpl-warnings');\n if (warnings) {\n warnings.style.display = 'block';\n warnings.textContent =\n 'This browser does not support binary websocket messages. ' +\n 'Performance may be slow.';\n }\n }\n\n this.imageObj = new Image();\n\n this.context = undefined;\n this.message = undefined;\n this.canvas = undefined;\n this.rubberband_canvas = undefined;\n this.rubberband_context = undefined;\n this.format_dropdown = undefined;\n\n this.image_mode = 'full';\n\n this.root = document.createElement('div');\n this.root.setAttribute('style', 'display: inline-block');\n this._root_extra_style(this.root);\n\n parent_element.appendChild(this.root);\n\n this._init_header(this);\n this._init_canvas(this);\n this._init_toolbar(this);\n\n var fig = this;\n\n this.waiting = false;\n\n this.ws.onopen = function () {\n fig.send_message('supports_binary', { value: fig.supports_binary });\n fig.send_message('send_image_mode', {});\n if (fig.ratio !== 1) {\n fig.send_message('set_device_pixel_ratio', {\n device_pixel_ratio: fig.ratio,\n });\n }\n fig.send_message('refresh', {});\n };\n\n this.imageObj.onload = function () {\n if (fig.image_mode === 'full') {\n // Full images could contain transparency (where diff images\n // almost always do), so we need to clear the canvas so that\n // there is no ghosting.\n fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n }\n fig.context.drawImage(fig.imageObj, 0, 0);\n };\n\n this.imageObj.onunload = function () {\n fig.ws.close();\n };\n\n this.ws.onmessage = this._make_on_message_function(this);\n\n this.ondownload = ondownload;\n};\n\nmpl.figure.prototype._init_header = function () {\n var titlebar = document.createElement('div');\n titlebar.classList =\n 'ui-dialog-titlebar ui-widget-header ui-corner-all ui-helper-clearfix';\n var titletext = document.createElement('div');\n titletext.classList = 'ui-dialog-title';\n titletext.setAttribute(\n 'style',\n 'width: 100%; text-align: center; padding: 3px;'\n );\n titlebar.appendChild(titletext);\n this.root.appendChild(titlebar);\n this.header = titletext;\n};\n\nmpl.figure.prototype._canvas_extra_style = function (_canvas_div) {};\n\nmpl.figure.prototype._root_extra_style = function (_canvas_div) {};\n\nmpl.figure.prototype._init_canvas = function () {\n var fig = this;\n\n var canvas_div = (this.canvas_div = document.createElement('div'));\n canvas_div.setAttribute(\n 'style',\n 'border: 1px solid #ddd;' +\n 'box-sizing: content-box;' +\n 'clear: both;' +\n 'min-height: 1px;' +\n 'min-width: 1px;' +\n 'outline: 0;' +\n 'overflow: hidden;' +\n 'position: relative;' +\n 'resize: both;'\n );\n\n function on_keyboard_event_closure(name) {\n return function (event) {\n return fig.key_event(event, name);\n };\n }\n\n canvas_div.addEventListener(\n 'keydown',\n on_keyboard_event_closure('key_press')\n );\n canvas_div.addEventListener(\n 'keyup',\n on_keyboard_event_closure('key_release')\n );\n\n this._canvas_extra_style(canvas_div);\n this.root.appendChild(canvas_div);\n\n var canvas = (this.canvas = document.createElement('canvas'));\n canvas.classList.add('mpl-canvas');\n canvas.setAttribute('style', 'box-sizing: content-box;');\n\n this.context = canvas.getContext('2d');\n\n var backingStore =\n this.context.backingStorePixelRatio ||\n this.context.webkitBackingStorePixelRatio ||\n this.context.mozBackingStorePixelRatio ||\n this.context.msBackingStorePixelRatio ||\n this.context.oBackingStorePixelRatio ||\n this.context.backingStorePixelRatio ||\n 1;\n\n this.ratio = (window.devicePixelRatio || 1) / backingStore;\n\n var rubberband_canvas = (this.rubberband_canvas = document.createElement(\n 'canvas'\n ));\n rubberband_canvas.setAttribute(\n 'style',\n 'box-sizing: content-box; position: absolute; left: 0; top: 0; z-index: 1;'\n );\n\n // Apply a ponyfill if ResizeObserver is not implemented by browser.\n if (this.ResizeObserver === undefined) {\n if (window.ResizeObserver !== undefined) {\n this.ResizeObserver = window.ResizeObserver;\n } else {\n var obs = _JSXTOOLS_RESIZE_OBSERVER({});\n this.ResizeObserver = obs.ResizeObserver;\n }\n }\n\n this.resizeObserverInstance = new this.ResizeObserver(function (entries) {\n var nentries = entries.length;\n for (var i = 0; i < nentries; i++) {\n var entry = entries[i];\n var width, height;\n if (entry.contentBoxSize) {\n if (entry.contentBoxSize instanceof Array) {\n // Chrome 84 implements new version of spec.\n width = entry.contentBoxSize[0].inlineSize;\n height = entry.contentBoxSize[0].blockSize;\n } else {\n // Firefox implements old version of spec.\n width = entry.contentBoxSize.inlineSize;\n height = entry.contentBoxSize.blockSize;\n }\n } else {\n // Chrome <84 implements even older version of spec.\n width = entry.contentRect.width;\n height = entry.contentRect.height;\n }\n\n // Keep the size of the canvas and rubber band canvas in sync with\n // the canvas container.\n if (entry.devicePixelContentBoxSize) {\n // Chrome 84 implements new version of spec.\n canvas.setAttribute(\n 'width',\n entry.devicePixelContentBoxSize[0].inlineSize\n );\n canvas.setAttribute(\n 'height',\n entry.devicePixelContentBoxSize[0].blockSize\n );\n } else {\n canvas.setAttribute('width', width * fig.ratio);\n canvas.setAttribute('height', height * fig.ratio);\n }\n canvas.setAttribute(\n 'style',\n 'width: ' + width + 'px; height: ' + height + 'px;'\n );\n\n rubberband_canvas.setAttribute('width', width);\n rubberband_canvas.setAttribute('height', height);\n\n // And update the size in Python. We ignore the initial 0/0 size\n // that occurs as the element is placed into the DOM, which should\n // otherwise not happen due to the minimum size styling.\n if (fig.ws.readyState == 1 && width != 0 && height != 0) {\n fig.request_resize(width, height);\n }\n }\n });\n this.resizeObserverInstance.observe(canvas_div);\n\n function on_mouse_event_closure(name) {\n return function (event) {\n return fig.mouse_event(event, name);\n };\n }\n\n rubberband_canvas.addEventListener(\n 'mousedown',\n on_mouse_event_closure('button_press')\n );\n rubberband_canvas.addEventListener(\n 'mouseup',\n on_mouse_event_closure('button_release')\n );\n rubberband_canvas.addEventListener(\n 'dblclick',\n on_mouse_event_closure('dblclick')\n );\n // Throttle sequential mouse events to 1 every 20ms.\n rubberband_canvas.addEventListener(\n 'mousemove',\n on_mouse_event_closure('motion_notify')\n );\n\n rubberband_canvas.addEventListener(\n 'mouseenter',\n on_mouse_event_closure('figure_enter')\n );\n rubberband_canvas.addEventListener(\n 'mouseleave',\n on_mouse_event_closure('figure_leave')\n );\n\n canvas_div.addEventListener('wheel', function (event) {\n if (event.deltaY < 0) {\n event.step = 1;\n } else {\n event.step = -1;\n }\n on_mouse_event_closure('scroll')(event);\n });\n\n canvas_div.appendChild(canvas);\n canvas_div.appendChild(rubberband_canvas);\n\n this.rubberband_context = rubberband_canvas.getContext('2d');\n this.rubberband_context.strokeStyle = '#000000';\n\n this._resize_canvas = function (width, height, forward) {\n if (forward) {\n canvas_div.style.width = width + 'px';\n canvas_div.style.height = height + 'px';\n }\n };\n\n // Disable right mouse context menu.\n this.rubberband_canvas.addEventListener('contextmenu', function (_e) {\n event.preventDefault();\n return false;\n });\n\n function set_focus() {\n canvas.focus();\n canvas_div.focus();\n }\n\n window.setTimeout(set_focus, 100);\n};\n\nmpl.figure.prototype._init_toolbar = function () {\n var fig = this;\n\n var toolbar = document.createElement('div');\n toolbar.classList = 'mpl-toolbar';\n this.root.appendChild(toolbar);\n\n function on_click_closure(name) {\n return function (_event) {\n return fig.toolbar_button_onclick(name);\n };\n }\n\n function on_mouseover_closure(tooltip) {\n return function (event) {\n if (!event.currentTarget.disabled) {\n return fig.toolbar_button_onmouseover(tooltip);\n }\n };\n }\n\n fig.buttons = {};\n var buttonGroup = document.createElement('div');\n buttonGroup.classList = 'mpl-button-group';\n for (var toolbar_ind in mpl.toolbar_items) {\n var name = mpl.toolbar_items[toolbar_ind][0];\n var tooltip = mpl.toolbar_items[toolbar_ind][1];\n var image = mpl.toolbar_items[toolbar_ind][2];\n var method_name = mpl.toolbar_items[toolbar_ind][3];\n\n if (!name) {\n /* Instead of a spacer, we start a new button group. */\n if (buttonGroup.hasChildNodes()) {\n toolbar.appendChild(buttonGroup);\n }\n buttonGroup = document.createElement('div');\n buttonGroup.classList = 'mpl-button-group';\n continue;\n }\n\n var button = (fig.buttons[name] = document.createElement('button'));\n button.classList = 'mpl-widget';\n button.setAttribute('role', 'button');\n button.setAttribute('aria-disabled', 'false');\n button.addEventListener('click', on_click_closure(method_name));\n button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n\n var icon_img = document.createElement('img');\n icon_img.src = '_images/' + image + '.png';\n icon_img.srcset = '_images/' + image + '_large.png 2x';\n icon_img.alt = tooltip;\n button.appendChild(icon_img);\n\n buttonGroup.appendChild(button);\n }\n\n if (buttonGroup.hasChildNodes()) {\n toolbar.appendChild(buttonGroup);\n }\n\n var fmt_picker = document.createElement('select');\n fmt_picker.classList = 'mpl-widget';\n toolbar.appendChild(fmt_picker);\n this.format_dropdown = fmt_picker;\n\n for (var ind in mpl.extensions) {\n var fmt = mpl.extensions[ind];\n var option = document.createElement('option');\n option.selected = fmt === mpl.default_extension;\n option.innerHTML = fmt;\n fmt_picker.appendChild(option);\n }\n\n var status_bar = document.createElement('span');\n status_bar.classList = 'mpl-message';\n toolbar.appendChild(status_bar);\n this.message = status_bar;\n};\n\nmpl.figure.prototype.request_resize = function (x_pixels, y_pixels) {\n // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n // which will in turn request a refresh of the image.\n this.send_message('resize', { width: x_pixels, height: y_pixels });\n};\n\nmpl.figure.prototype.send_message = function (type, properties) {\n properties['type'] = type;\n properties['figure_id'] = this.id;\n this.ws.send(JSON.stringify(properties));\n};\n\nmpl.figure.prototype.send_draw_message = function () {\n if (!this.waiting) {\n this.waiting = true;\n this.ws.send(JSON.stringify({ type: 'draw', figure_id: this.id }));\n }\n};\n\nmpl.figure.prototype.handle_save = function (fig, _msg) {\n var format_dropdown = fig.format_dropdown;\n var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n fig.ondownload(fig, format);\n};\n\nmpl.figure.prototype.handle_resize = function (fig, msg) {\n var size = msg['size'];\n if (size[0] !== fig.canvas.width || size[1] !== fig.canvas.height) {\n fig._resize_canvas(size[0], size[1], msg['forward']);\n fig.send_message('refresh', {});\n }\n};\n\nmpl.figure.prototype.handle_rubberband = function (fig, msg) {\n var x0 = msg['x0'] / fig.ratio;\n var y0 = (fig.canvas.height - msg['y0']) / fig.ratio;\n var x1 = msg['x1'] / fig.ratio;\n var y1 = (fig.canvas.height - msg['y1']) / fig.ratio;\n x0 = Math.floor(x0) + 0.5;\n y0 = Math.floor(y0) + 0.5;\n x1 = Math.floor(x1) + 0.5;\n y1 = Math.floor(y1) + 0.5;\n var min_x = Math.min(x0, x1);\n var min_y = Math.min(y0, y1);\n var width = Math.abs(x1 - x0);\n var height = Math.abs(y1 - y0);\n\n fig.rubberband_context.clearRect(\n 0,\n 0,\n fig.canvas.width / fig.ratio,\n fig.canvas.height / fig.ratio\n );\n\n fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n};\n\nmpl.figure.prototype.handle_figure_label = function (fig, msg) {\n // Updates the figure title.\n fig.header.textContent = msg['label'];\n};\n\nmpl.figure.prototype.handle_cursor = function (fig, msg) {\n fig.rubberband_canvas.style.cursor = msg['cursor'];\n};\n\nmpl.figure.prototype.handle_message = function (fig, msg) {\n fig.message.textContent = msg['message'];\n};\n\nmpl.figure.prototype.handle_draw = function (fig, _msg) {\n // Request the server to send over a new figure.\n fig.send_draw_message();\n};\n\nmpl.figure.prototype.handle_image_mode = function (fig, msg) {\n fig.image_mode = msg['mode'];\n};\n\nmpl.figure.prototype.handle_history_buttons = function (fig, msg) {\n for (var key in msg) {\n if (!(key in fig.buttons)) {\n continue;\n }\n fig.buttons[key].disabled = !msg[key];\n fig.buttons[key].setAttribute('aria-disabled', !msg[key]);\n }\n};\n\nmpl.figure.prototype.handle_navigate_mode = function (fig, msg) {\n if (msg['mode'] === 'PAN') {\n fig.buttons['Pan'].classList.add('active');\n fig.buttons['Zoom'].classList.remove('active');\n } else if (msg['mode'] === 'ZOOM') {\n fig.buttons['Pan'].classList.remove('active');\n fig.buttons['Zoom'].classList.add('active');\n } else {\n fig.buttons['Pan'].classList.remove('active');\n fig.buttons['Zoom'].classList.remove('active');\n }\n};\n\nmpl.figure.prototype.updated_canvas_event = function () {\n // Called whenever the canvas gets updated.\n this.send_message('ack', {});\n};\n\n// A function to construct a web socket function for onmessage handling.\n// Called in the figure constructor.\nmpl.figure.prototype._make_on_message_function = function (fig) {\n return function socket_on_message(evt) {\n if (evt.data instanceof Blob) {\n var img = evt.data;\n if (img.type !== 'image/png') {\n /* FIXME: We get \"Resource interpreted as Image but\n * transferred with MIME type text/plain:\" errors on\n * Chrome. But how to set the MIME type? It doesn't seem\n * to be part of the websocket stream */\n img.type = 'image/png';\n }\n\n /* Free the memory for the previous frames */\n if (fig.imageObj.src) {\n (window.URL || window.webkitURL).revokeObjectURL(\n fig.imageObj.src\n );\n }\n\n fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n img\n );\n fig.updated_canvas_event();\n fig.waiting = false;\n return;\n } else if (\n typeof evt.data === 'string' &&\n evt.data.slice(0, 21) === 'data:image/png;base64'\n ) {\n fig.imageObj.src = evt.data;\n fig.updated_canvas_event();\n fig.waiting = false;\n return;\n }\n\n var msg = JSON.parse(evt.data);\n var msg_type = msg['type'];\n\n // Call the \"handle_{type}\" callback, which takes\n // the figure and JSON message as its only arguments.\n try {\n var callback = fig['handle_' + msg_type];\n } catch (e) {\n console.log(\n \"No handler for the '\" + msg_type + \"' message type: \",\n msg\n );\n return;\n }\n\n if (callback) {\n try {\n // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n callback(fig, msg);\n } catch (e) {\n console.log(\n \"Exception inside the 'handler_\" + msg_type + \"' callback:\",\n e,\n e.stack,\n msg\n );\n }\n }\n };\n};\n\n// from https://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\nmpl.findpos = function (e) {\n //this section is from http://www.quirksmode.org/js/events_properties.html\n var targ;\n if (!e) {\n e = window.event;\n }\n if (e.target) {\n targ = e.target;\n } else if (e.srcElement) {\n targ = e.srcElement;\n }\n if (targ.nodeType === 3) {\n // defeat Safari bug\n targ = targ.parentNode;\n }\n\n // pageX,Y are the mouse positions relative to the document\n var boundingRect = targ.getBoundingClientRect();\n var x = e.pageX - (boundingRect.left + document.body.scrollLeft);\n var y = e.pageY - (boundingRect.top + document.body.scrollTop);\n\n return { x: x, y: y };\n};\n\n/*\n * return a copy of an object with only non-object keys\n * we need this to avoid circular references\n * https://stackoverflow.com/a/24161582/3208463\n */\nfunction simpleKeys(original) {\n return Object.keys(original).reduce(function (obj, key) {\n if (typeof original[key] !== 'object') {\n obj[key] = original[key];\n }\n return obj;\n }, {});\n}\n\nmpl.figure.prototype.mouse_event = function (event, name) {\n var canvas_pos = mpl.findpos(event);\n\n if (name === 'button_press') {\n this.canvas.focus();\n this.canvas_div.focus();\n }\n\n var x = canvas_pos.x * this.ratio;\n var y = canvas_pos.y * this.ratio;\n\n this.send_message(name, {\n x: x,\n y: y,\n button: event.button,\n step: event.step,\n guiEvent: simpleKeys(event),\n });\n\n /* This prevents the web browser from automatically changing to\n * the text insertion cursor when the button is pressed. We want\n * to control all of the cursor setting manually through the\n * 'cursor' event from matplotlib */\n event.preventDefault();\n return false;\n};\n\nmpl.figure.prototype._key_event_extra = function (_event, _name) {\n // Handle any extra behaviour associated with a key event\n};\n\nmpl.figure.prototype.key_event = function (event, name) {\n // Prevent repeat events\n if (name === 'key_press') {\n if (event.key === this._key) {\n return;\n } else {\n this._key = event.key;\n }\n }\n if (name === 'key_release') {\n this._key = null;\n }\n\n var value = '';\n if (event.ctrlKey && event.key !== 'Control') {\n value += 'ctrl+';\n }\n else if (event.altKey && event.key !== 'Alt') {\n value += 'alt+';\n }\n else if (event.shiftKey && event.key !== 'Shift') {\n value += 'shift+';\n }\n\n value += 'k' + event.key;\n\n this._key_event_extra(event, name);\n\n this.send_message(name, { key: value, guiEvent: simpleKeys(event) });\n return false;\n};\n\nmpl.figure.prototype.toolbar_button_onclick = function (name) {\n if (name === 'download') {\n this.handle_save(this, null);\n } else {\n this.send_message('toolbar_button', { name: name });\n }\n};\n\nmpl.figure.prototype.toolbar_button_onmouseover = function (tooltip) {\n this.message.textContent = tooltip;\n};\n\n///////////////// REMAINING CONTENT GENERATED BY embed_js.py /////////////////\n// prettier-ignore\nvar _JSXTOOLS_RESIZE_OBSERVER=function(A){var t,i=new WeakMap,n=new WeakMap,a=new WeakMap,r=new WeakMap,o=new Set;function s(e){if(!(this instanceof s))throw new TypeError(\"Constructor requires 'new' operator\");i.set(this,e)}function h(){throw new TypeError(\"Function is not a constructor\")}function c(e,t,i,n){e=0 in arguments?Number(arguments[0]):0,t=1 in arguments?Number(arguments[1]):0,i=2 in arguments?Number(arguments[2]):0,n=3 in arguments?Number(arguments[3]):0,this.right=(this.x=this.left=e)+(this.width=i),this.bottom=(this.y=this.top=t)+(this.height=n),Object.freeze(this)}function d(){t=requestAnimationFrame(d);var s=new WeakMap,p=new Set;o.forEach((function(t){r.get(t).forEach((function(i){var r=t instanceof window.SVGElement,o=a.get(t),d=r?0:parseFloat(o.paddingTop),f=r?0:parseFloat(o.paddingRight),l=r?0:parseFloat(o.paddingBottom),u=r?0:parseFloat(o.paddingLeft),g=r?0:parseFloat(o.borderTopWidth),m=r?0:parseFloat(o.borderRightWidth),w=r?0:parseFloat(o.borderBottomWidth),b=u+f,F=d+l,v=(r?0:parseFloat(o.borderLeftWidth))+m,W=g+w,y=r?0:t.offsetHeight-W-t.clientHeight,E=r?0:t.offsetWidth-v-t.clientWidth,R=b+v,z=F+W,M=r?t.width:parseFloat(o.width)-R-E,O=r?t.height:parseFloat(o.height)-z-y;if(n.has(t)){var k=n.get(t);if(k[0]===M&&k[1]===O)return}n.set(t,[M,O]);var S=Object.create(h.prototype);S.target=t,S.contentRect=new c(u,d,M,O),s.has(i)||(s.set(i,[]),p.add(i)),s.get(i).push(S)}))})),p.forEach((function(e){i.get(e).call(e,s.get(e),e)}))}return s.prototype.observe=function(i){if(i instanceof window.Element){r.has(i)||(r.set(i,new Set),o.add(i),a.set(i,window.getComputedStyle(i)));var n=r.get(i);n.has(this)||n.add(this),cancelAnimationFrame(t),t=requestAnimationFrame(d)}},s.prototype.unobserve=function(i){if(i instanceof window.Element&&r.has(i)){var n=r.get(i);n.has(this)&&(n.delete(this),n.size||(r.delete(i),o.delete(i))),n.size||r.delete(i),o.size||cancelAnimationFrame(t)}},A.DOMRectReadOnly=c,A.ResizeObserver=s,A.ResizeObserverEntry=h,A}; // eslint-disable-line\nmpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Left button pans, Right button zooms\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-arrows\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\\nx/y fixes axis\", \"fa fa-square-o\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o\", \"download\"]];\n\nmpl.extensions = [\"eps\", \"jpeg\", \"pgf\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\", \"webp\"];\n\nmpl.default_extension = \"png\";/* global mpl */\n\nvar comm_websocket_adapter = function (comm) {\n // Create a \"websocket\"-like object which calls the given IPython comm\n // object with the appropriate methods. Currently this is a non binary\n // socket, so there is still some room for performance tuning.\n var ws = {};\n\n ws.binaryType = comm.kernel.ws.binaryType;\n ws.readyState = comm.kernel.ws.readyState;\n function updateReadyState(_event) {\n if (comm.kernel.ws) {\n ws.readyState = comm.kernel.ws.readyState;\n } else {\n ws.readyState = 3; // Closed state.\n }\n }\n comm.kernel.ws.addEventListener('open', updateReadyState);\n comm.kernel.ws.addEventListener('close', updateReadyState);\n comm.kernel.ws.addEventListener('error', updateReadyState);\n\n ws.close = function () {\n comm.close();\n };\n ws.send = function (m) {\n //console.log('sending', m);\n comm.send(m);\n };\n // Register the callback with on_msg.\n comm.on_msg(function (msg) {\n //console.log('receiving', msg['content']['data'], msg);\n var data = msg['content']['data'];\n if (data['blob'] !== undefined) {\n data = {\n data: new Blob(msg['buffers'], { type: data['blob'] }),\n };\n }\n // Pass the mpl event to the overridden (by mpl) onmessage function.\n ws.onmessage(data);\n });\n return ws;\n};\n\nmpl.mpl_figure_comm = function (comm, msg) {\n // This is the function which gets called when the mpl process\n // starts-up an IPython Comm through the \"matplotlib\" channel.\n\n var id = msg.content.data.id;\n // Get hold of the div created by the display call when the Comm\n // socket was opened in Python.\n var element = document.getElementById(id);\n var ws_proxy = comm_websocket_adapter(comm);\n\n function ondownload(figure, _format) {\n window.open(figure.canvas.toDataURL());\n }\n\n var fig = new mpl.figure(id, ws_proxy, ondownload, element);\n\n // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n // web socket which is closed, not our websocket->open comm proxy.\n ws_proxy.onopen();\n\n fig.parent_element = element;\n fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n if (!fig.cell_info) {\n console.error('Failed to find cell for figure', id, fig);\n return;\n }\n fig.cell_info[0].output_area.element.on(\n 'cleared',\n { fig: fig },\n fig._remove_fig_handler\n );\n};\n\nmpl.figure.prototype.handle_close = function (fig, msg) {\n var width = fig.canvas.width / fig.ratio;\n fig.cell_info[0].output_area.element.off(\n 'cleared',\n fig._remove_fig_handler\n );\n fig.resizeObserverInstance.unobserve(fig.canvas_div);\n\n // Update the output cell to use the data from the current canvas.\n fig.push_to_output();\n var dataURL = fig.canvas.toDataURL();\n // Re-enable the keyboard manager in IPython - without this line, in FF,\n // the notebook keyboard shortcuts fail.\n IPython.keyboard_manager.enable();\n fig.parent_element.innerHTML =\n '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n fig.close_ws(fig, msg);\n};\n\nmpl.figure.prototype.close_ws = function (fig, msg) {\n fig.send_message('closing', msg);\n // fig.ws.close()\n};\n\nmpl.figure.prototype.push_to_output = function (_remove_interactive) {\n // Turn the data on the canvas into data in the output cell.\n var width = this.canvas.width / this.ratio;\n var dataURL = this.canvas.toDataURL();\n this.cell_info[1]['text/html'] =\n '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n};\n\nmpl.figure.prototype.updated_canvas_event = function () {\n // Tell IPython that the notebook contents must change.\n IPython.notebook.set_dirty(true);\n this.send_message('ack', {});\n var fig = this;\n // Wait a second, then push the new image to the DOM so\n // that it is saved nicely (might be nice to debounce this).\n setTimeout(function () {\n fig.push_to_output();\n }, 1000);\n};\n\nmpl.figure.prototype._init_toolbar = function () {\n var fig = this;\n\n var toolbar = document.createElement('div');\n toolbar.classList = 'btn-toolbar';\n this.root.appendChild(toolbar);\n\n function on_click_closure(name) {\n return function (_event) {\n return fig.toolbar_button_onclick(name);\n };\n }\n\n function on_mouseover_closure(tooltip) {\n return function (event) {\n if (!event.currentTarget.disabled) {\n return fig.toolbar_button_onmouseover(tooltip);\n }\n };\n }\n\n fig.buttons = {};\n var buttonGroup = document.createElement('div');\n buttonGroup.classList = 'btn-group';\n var button;\n for (var toolbar_ind in mpl.toolbar_items) {\n var name = mpl.toolbar_items[toolbar_ind][0];\n var tooltip = mpl.toolbar_items[toolbar_ind][1];\n var image = mpl.toolbar_items[toolbar_ind][2];\n var method_name = mpl.toolbar_items[toolbar_ind][3];\n\n if (!name) {\n /* Instead of a spacer, we start a new button group. */\n if (buttonGroup.hasChildNodes()) {\n toolbar.appendChild(buttonGroup);\n }\n buttonGroup = document.createElement('div');\n buttonGroup.classList = 'btn-group';\n continue;\n }\n\n button = fig.buttons[name] = document.createElement('button');\n button.classList = 'btn btn-default';\n button.href = '#';\n button.title = name;\n button.innerHTML = '<i class=\"fa ' + image + ' fa-lg\"></i>';\n button.addEventListener('click', on_click_closure(method_name));\n button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n buttonGroup.appendChild(button);\n }\n\n if (buttonGroup.hasChildNodes()) {\n toolbar.appendChild(buttonGroup);\n }\n\n // Add the status bar.\n var status_bar = document.createElement('span');\n status_bar.classList = 'mpl-message pull-right';\n toolbar.appendChild(status_bar);\n this.message = status_bar;\n\n // Add the close button to the window.\n var buttongrp = document.createElement('div');\n buttongrp.classList = 'btn-group inline pull-right';\n button = document.createElement('button');\n button.classList = 'btn btn-mini btn-primary';\n button.href = '#';\n button.title = 'Stop Interaction';\n button.innerHTML = '<i class=\"fa fa-power-off icon-remove icon-large\"></i>';\n button.addEventListener('click', function (_evt) {\n fig.handle_close(fig, {});\n });\n button.addEventListener(\n 'mouseover',\n on_mouseover_closure('Stop Interaction')\n );\n buttongrp.appendChild(button);\n var titlebar = this.root.querySelector('.ui-dialog-titlebar');\n titlebar.insertBefore(buttongrp, titlebar.firstChild);\n};\n\nmpl.figure.prototype._remove_fig_handler = function (event) {\n var fig = event.data.fig;\n if (event.target !== this) {\n // Ignore bubbled events from children.\n return;\n }\n fig.close_ws(fig, {});\n};\n\nmpl.figure.prototype._root_extra_style = function (el) {\n el.style.boxSizing = 'content-box'; // override notebook setting of border-box.\n};\n\nmpl.figure.prototype._canvas_extra_style = function (el) {\n // this is important to make the div 'focusable\n el.setAttribute('tabindex', 0);\n // reach out to IPython and tell the keyboard manager to turn it's self\n // off when our div gets focus\n\n // location in version 3\n if (IPython.notebook.keyboard_manager) {\n IPython.notebook.keyboard_manager.register_events(el);\n } else {\n // location in version 2\n IPython.keyboard_manager.register_events(el);\n }\n};\n\nmpl.figure.prototype._key_event_extra = function (event, _name) {\n // Check for shift+enter\n if (event.shiftKey && event.which === 13) {\n this.canvas_div.blur();\n // select the cell after this one\n var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n IPython.notebook.select(index + 1);\n }\n};\n\nmpl.figure.prototype.handle_save = function (fig, _msg) {\n fig.ondownload(fig, null);\n};\n\nmpl.find_output_cell = function (html_output) {\n // Return the cell and output element which can be found *uniquely* in the notebook.\n // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n // IPython event is triggered only after the cells have been serialised, which for\n // our purposes (turning an active figure into a static one), is too late.\n var cells = IPython.notebook.get_cells();\n var ncells = cells.length;\n for (var i = 0; i < ncells; i++) {\n var cell = cells[i];\n if (cell.cell_type === 'code') {\n for (var j = 0; j < cell.output_area.outputs.length; j++) {\n var data = cell.output_area.outputs[j];\n if (data.data) {\n // IPython >= 3 moved mimebundle to data attribute of output\n data = data.data;\n }\n if (data['text/html'] === html_output) {\n return [cell, data, j];\n }\n }\n }\n }\n};\n\n// Register the function which deals with the matplotlib target/channel.\n// The kernel may be null if the page has been refreshed.\nif (IPython.notebook.kernel !== null) {\n IPython.notebook.kernel.comm_manager.register_target(\n 'matplotlib',\n mpl.mpl_figure_comm\n );\n}\n",
|
|
"text/plain": [
|
|
"<IPython.core.display.Javascript object>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"\n",
|
|
" <div style=\"display: inline-block;\">\n",
|
|
" <div class=\"jupyter-widgets widget-label\" style=\"text-align: center;\">\n",
|
|
" Figure\n",
|
|
" </div>\n",
|
|
" <img src='' width=800.0/>\n",
|
|
" </div>\n",
|
|
" "
|
|
],
|
|
"text/plain": [
|
|
"Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"cols = plt.rcParams[\"axes.prop_cycle\"].by_key()[\"color\"]\n",
|
|
"\n",
|
|
"plt.figure()\n",
|
|
"# for i in range(4):\n",
|
|
"plt.plot(rp, wp[:, 0], c=cols[0], label=\"Below median spin\")\n",
|
|
"plt.fill_between(rp, wp[:, 0] - wp[:, 1], wp[:, 0] + wp[:, 1], color=cols[0], alpha=0.3)\n",
|
|
"\n",
|
|
"plt.plot(rp2, wp2[:, 0], c=cols[1], label=\"Above median spin\")\n",
|
|
"plt.fill_between(rp2, wp2[:, 0] - wp2[:, 1], wp2[:, 0] + wp2[:, 1], color=cols[1], alpha=0.3)\n",
|
|
"\n",
|
|
"plt.plot(rp3, wp3[:, 0], c=cols[2], label=\"Randomised spin\")\n",
|
|
"plt.fill_between(rp3, wp3[:, 0] - wp3[:, 1], wp3[:, 0] + wp3[:, 1], color=cols[2], alpha=0.3)\n",
|
|
"\n",
|
|
"plt.legend()\n",
|
|
"plt.xscale(\"log\")\n",
|
|
"plt.xlabel(r\"$r~[\\mathrm{Mpc}]$\")\n",
|
|
"plt.ylabel(r\"$\\xi(r)$\")\n",
|
|
"plt.tight_layout()\n",
|
|
"plt.savefig(\"../plots/tpcf_spin.png\", dpi=450)\n",
|
|
"plt.show()\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 5,
|
|
"id": "3d39187a",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2023-04-12T14:25:46.878788Z",
|
|
"start_time": "2023-04-12T14:25:46.556378Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"with open('../scripts/knn_auto.yml', 'r') as file:\n",
|
|
" config = yaml.safe_load(file)\n",
|
|
"\n",
|
|
"paths = csiborgtools.read.CSiBORGPaths()\n",
|
|
"knnreader = csiborgtools.read.kNNCDFReader()\n",
|
|
"\n",
|
|
"auto_folder = \"/mnt/extraspace/rstiskalek/csiborg/knn/auto/\"\n",
|
|
"cross_folder = \"/mnt/extraspace/rstiskalek/csiborg/knn/cross/\"\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 37,
|
|
"id": "d46e176f",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2023-04-12T14:51:22.432093Z",
|
|
"start_time": "2023-04-12T14:49:45.843753Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"rs, cdf = knnreader.read(\"mass001_spinlow\", auto_folder, rmin=0.5, rmax=50)\n",
|
|
"pk = knnreader.mean_prob_k(cdf)\n",
|
|
"\n",
|
|
"\n",
|
|
"rs, cdf = knnreader.read(\"mass001_spinhigh\", auto_folder, rmin=0.5, rmax=50)\n",
|
|
"pk2 = knnreader.mean_prob_k(cdf)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 39,
|
|
"id": "09015847",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2023-04-12T14:51:47.023893Z",
|
|
"start_time": "2023-04-12T14:51:46.404156Z"
|
|
}
|
|
},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"application/javascript": "/* Put everything inside the global mpl namespace */\n/* global mpl */\nwindow.mpl = {};\n\nmpl.get_websocket_type = function () {\n if (typeof WebSocket !== 'undefined') {\n return WebSocket;\n } else if (typeof MozWebSocket !== 'undefined') {\n return MozWebSocket;\n } else {\n alert(\n 'Your browser does not have WebSocket support. ' +\n 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n 'Firefox 4 and 5 are also supported but you ' +\n 'have to enable WebSockets in about:config.'\n );\n }\n};\n\nmpl.figure = function (figure_id, websocket, ondownload, parent_element) {\n this.id = figure_id;\n\n this.ws = websocket;\n\n this.supports_binary = this.ws.binaryType !== undefined;\n\n if (!this.supports_binary) {\n var warnings = document.getElementById('mpl-warnings');\n if (warnings) {\n warnings.style.display = 'block';\n warnings.textContent =\n 'This browser does not support binary websocket messages. ' +\n 'Performance may be slow.';\n }\n }\n\n this.imageObj = new Image();\n\n this.context = undefined;\n this.message = undefined;\n this.canvas = undefined;\n this.rubberband_canvas = undefined;\n this.rubberband_context = undefined;\n this.format_dropdown = undefined;\n\n this.image_mode = 'full';\n\n this.root = document.createElement('div');\n this.root.setAttribute('style', 'display: inline-block');\n this._root_extra_style(this.root);\n\n parent_element.appendChild(this.root);\n\n this._init_header(this);\n this._init_canvas(this);\n this._init_toolbar(this);\n\n var fig = this;\n\n this.waiting = false;\n\n this.ws.onopen = function () {\n fig.send_message('supports_binary', { value: fig.supports_binary });\n fig.send_message('send_image_mode', {});\n if (fig.ratio !== 1) {\n fig.send_message('set_device_pixel_ratio', {\n device_pixel_ratio: fig.ratio,\n });\n }\n fig.send_message('refresh', {});\n };\n\n this.imageObj.onload = function () {\n if (fig.image_mode === 'full') {\n // Full images could contain transparency (where diff images\n // almost always do), so we need to clear the canvas so that\n // there is no ghosting.\n fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n }\n fig.context.drawImage(fig.imageObj, 0, 0);\n };\n\n this.imageObj.onunload = function () {\n fig.ws.close();\n };\n\n this.ws.onmessage = this._make_on_message_function(this);\n\n this.ondownload = ondownload;\n};\n\nmpl.figure.prototype._init_header = function () {\n var titlebar = document.createElement('div');\n titlebar.classList =\n 'ui-dialog-titlebar ui-widget-header ui-corner-all ui-helper-clearfix';\n var titletext = document.createElement('div');\n titletext.classList = 'ui-dialog-title';\n titletext.setAttribute(\n 'style',\n 'width: 100%; text-align: center; padding: 3px;'\n );\n titlebar.appendChild(titletext);\n this.root.appendChild(titlebar);\n this.header = titletext;\n};\n\nmpl.figure.prototype._canvas_extra_style = function (_canvas_div) {};\n\nmpl.figure.prototype._root_extra_style = function (_canvas_div) {};\n\nmpl.figure.prototype._init_canvas = function () {\n var fig = this;\n\n var canvas_div = (this.canvas_div = document.createElement('div'));\n canvas_div.setAttribute(\n 'style',\n 'border: 1px solid #ddd;' +\n 'box-sizing: content-box;' +\n 'clear: both;' +\n 'min-height: 1px;' +\n 'min-width: 1px;' +\n 'outline: 0;' +\n 'overflow: hidden;' +\n 'position: relative;' +\n 'resize: both;'\n );\n\n function on_keyboard_event_closure(name) {\n return function (event) {\n return fig.key_event(event, name);\n };\n }\n\n canvas_div.addEventListener(\n 'keydown',\n on_keyboard_event_closure('key_press')\n );\n canvas_div.addEventListener(\n 'keyup',\n on_keyboard_event_closure('key_release')\n );\n\n this._canvas_extra_style(canvas_div);\n this.root.appendChild(canvas_div);\n\n var canvas = (this.canvas = document.createElement('canvas'));\n canvas.classList.add('mpl-canvas');\n canvas.setAttribute('style', 'box-sizing: content-box;');\n\n this.context = canvas.getContext('2d');\n\n var backingStore =\n this.context.backingStorePixelRatio ||\n this.context.webkitBackingStorePixelRatio ||\n this.context.mozBackingStorePixelRatio ||\n this.context.msBackingStorePixelRatio ||\n this.context.oBackingStorePixelRatio ||\n this.context.backingStorePixelRatio ||\n 1;\n\n this.ratio = (window.devicePixelRatio || 1) / backingStore;\n\n var rubberband_canvas = (this.rubberband_canvas = document.createElement(\n 'canvas'\n ));\n rubberband_canvas.setAttribute(\n 'style',\n 'box-sizing: content-box; position: absolute; left: 0; top: 0; z-index: 1;'\n );\n\n // Apply a ponyfill if ResizeObserver is not implemented by browser.\n if (this.ResizeObserver === undefined) {\n if (window.ResizeObserver !== undefined) {\n this.ResizeObserver = window.ResizeObserver;\n } else {\n var obs = _JSXTOOLS_RESIZE_OBSERVER({});\n this.ResizeObserver = obs.ResizeObserver;\n }\n }\n\n this.resizeObserverInstance = new this.ResizeObserver(function (entries) {\n var nentries = entries.length;\n for (var i = 0; i < nentries; i++) {\n var entry = entries[i];\n var width, height;\n if (entry.contentBoxSize) {\n if (entry.contentBoxSize instanceof Array) {\n // Chrome 84 implements new version of spec.\n width = entry.contentBoxSize[0].inlineSize;\n height = entry.contentBoxSize[0].blockSize;\n } else {\n // Firefox implements old version of spec.\n width = entry.contentBoxSize.inlineSize;\n height = entry.contentBoxSize.blockSize;\n }\n } else {\n // Chrome <84 implements even older version of spec.\n width = entry.contentRect.width;\n height = entry.contentRect.height;\n }\n\n // Keep the size of the canvas and rubber band canvas in sync with\n // the canvas container.\n if (entry.devicePixelContentBoxSize) {\n // Chrome 84 implements new version of spec.\n canvas.setAttribute(\n 'width',\n entry.devicePixelContentBoxSize[0].inlineSize\n );\n canvas.setAttribute(\n 'height',\n entry.devicePixelContentBoxSize[0].blockSize\n );\n } else {\n canvas.setAttribute('width', width * fig.ratio);\n canvas.setAttribute('height', height * fig.ratio);\n }\n canvas.setAttribute(\n 'style',\n 'width: ' + width + 'px; height: ' + height + 'px;'\n );\n\n rubberband_canvas.setAttribute('width', width);\n rubberband_canvas.setAttribute('height', height);\n\n // And update the size in Python. We ignore the initial 0/0 size\n // that occurs as the element is placed into the DOM, which should\n // otherwise not happen due to the minimum size styling.\n if (fig.ws.readyState == 1 && width != 0 && height != 0) {\n fig.request_resize(width, height);\n }\n }\n });\n this.resizeObserverInstance.observe(canvas_div);\n\n function on_mouse_event_closure(name) {\n return function (event) {\n return fig.mouse_event(event, name);\n };\n }\n\n rubberband_canvas.addEventListener(\n 'mousedown',\n on_mouse_event_closure('button_press')\n );\n rubberband_canvas.addEventListener(\n 'mouseup',\n on_mouse_event_closure('button_release')\n );\n rubberband_canvas.addEventListener(\n 'dblclick',\n on_mouse_event_closure('dblclick')\n );\n // Throttle sequential mouse events to 1 every 20ms.\n rubberband_canvas.addEventListener(\n 'mousemove',\n on_mouse_event_closure('motion_notify')\n );\n\n rubberband_canvas.addEventListener(\n 'mouseenter',\n on_mouse_event_closure('figure_enter')\n );\n rubberband_canvas.addEventListener(\n 'mouseleave',\n on_mouse_event_closure('figure_leave')\n );\n\n canvas_div.addEventListener('wheel', function (event) {\n if (event.deltaY < 0) {\n event.step = 1;\n } else {\n event.step = -1;\n }\n on_mouse_event_closure('scroll')(event);\n });\n\n canvas_div.appendChild(canvas);\n canvas_div.appendChild(rubberband_canvas);\n\n this.rubberband_context = rubberband_canvas.getContext('2d');\n this.rubberband_context.strokeStyle = '#000000';\n\n this._resize_canvas = function (width, height, forward) {\n if (forward) {\n canvas_div.style.width = width + 'px';\n canvas_div.style.height = height + 'px';\n }\n };\n\n // Disable right mouse context menu.\n this.rubberband_canvas.addEventListener('contextmenu', function (_e) {\n event.preventDefault();\n return false;\n });\n\n function set_focus() {\n canvas.focus();\n canvas_div.focus();\n }\n\n window.setTimeout(set_focus, 100);\n};\n\nmpl.figure.prototype._init_toolbar = function () {\n var fig = this;\n\n var toolbar = document.createElement('div');\n toolbar.classList = 'mpl-toolbar';\n this.root.appendChild(toolbar);\n\n function on_click_closure(name) {\n return function (_event) {\n return fig.toolbar_button_onclick(name);\n };\n }\n\n function on_mouseover_closure(tooltip) {\n return function (event) {\n if (!event.currentTarget.disabled) {\n return fig.toolbar_button_onmouseover(tooltip);\n }\n };\n }\n\n fig.buttons = {};\n var buttonGroup = document.createElement('div');\n buttonGroup.classList = 'mpl-button-group';\n for (var toolbar_ind in mpl.toolbar_items) {\n var name = mpl.toolbar_items[toolbar_ind][0];\n var tooltip = mpl.toolbar_items[toolbar_ind][1];\n var image = mpl.toolbar_items[toolbar_ind][2];\n var method_name = mpl.toolbar_items[toolbar_ind][3];\n\n if (!name) {\n /* Instead of a spacer, we start a new button group. */\n if (buttonGroup.hasChildNodes()) {\n toolbar.appendChild(buttonGroup);\n }\n buttonGroup = document.createElement('div');\n buttonGroup.classList = 'mpl-button-group';\n continue;\n }\n\n var button = (fig.buttons[name] = document.createElement('button'));\n button.classList = 'mpl-widget';\n button.setAttribute('role', 'button');\n button.setAttribute('aria-disabled', 'false');\n button.addEventListener('click', on_click_closure(method_name));\n button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n\n var icon_img = document.createElement('img');\n icon_img.src = '_images/' + image + '.png';\n icon_img.srcset = '_images/' + image + '_large.png 2x';\n icon_img.alt = tooltip;\n button.appendChild(icon_img);\n\n buttonGroup.appendChild(button);\n }\n\n if (buttonGroup.hasChildNodes()) {\n toolbar.appendChild(buttonGroup);\n }\n\n var fmt_picker = document.createElement('select');\n fmt_picker.classList = 'mpl-widget';\n toolbar.appendChild(fmt_picker);\n this.format_dropdown = fmt_picker;\n\n for (var ind in mpl.extensions) {\n var fmt = mpl.extensions[ind];\n var option = document.createElement('option');\n option.selected = fmt === mpl.default_extension;\n option.innerHTML = fmt;\n fmt_picker.appendChild(option);\n }\n\n var status_bar = document.createElement('span');\n status_bar.classList = 'mpl-message';\n toolbar.appendChild(status_bar);\n this.message = status_bar;\n};\n\nmpl.figure.prototype.request_resize = function (x_pixels, y_pixels) {\n // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n // which will in turn request a refresh of the image.\n this.send_message('resize', { width: x_pixels, height: y_pixels });\n};\n\nmpl.figure.prototype.send_message = function (type, properties) {\n properties['type'] = type;\n properties['figure_id'] = this.id;\n this.ws.send(JSON.stringify(properties));\n};\n\nmpl.figure.prototype.send_draw_message = function () {\n if (!this.waiting) {\n this.waiting = true;\n this.ws.send(JSON.stringify({ type: 'draw', figure_id: this.id }));\n }\n};\n\nmpl.figure.prototype.handle_save = function (fig, _msg) {\n var format_dropdown = fig.format_dropdown;\n var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n fig.ondownload(fig, format);\n};\n\nmpl.figure.prototype.handle_resize = function (fig, msg) {\n var size = msg['size'];\n if (size[0] !== fig.canvas.width || size[1] !== fig.canvas.height) {\n fig._resize_canvas(size[0], size[1], msg['forward']);\n fig.send_message('refresh', {});\n }\n};\n\nmpl.figure.prototype.handle_rubberband = function (fig, msg) {\n var x0 = msg['x0'] / fig.ratio;\n var y0 = (fig.canvas.height - msg['y0']) / fig.ratio;\n var x1 = msg['x1'] / fig.ratio;\n var y1 = (fig.canvas.height - msg['y1']) / fig.ratio;\n x0 = Math.floor(x0) + 0.5;\n y0 = Math.floor(y0) + 0.5;\n x1 = Math.floor(x1) + 0.5;\n y1 = Math.floor(y1) + 0.5;\n var min_x = Math.min(x0, x1);\n var min_y = Math.min(y0, y1);\n var width = Math.abs(x1 - x0);\n var height = Math.abs(y1 - y0);\n\n fig.rubberband_context.clearRect(\n 0,\n 0,\n fig.canvas.width / fig.ratio,\n fig.canvas.height / fig.ratio\n );\n\n fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n};\n\nmpl.figure.prototype.handle_figure_label = function (fig, msg) {\n // Updates the figure title.\n fig.header.textContent = msg['label'];\n};\n\nmpl.figure.prototype.handle_cursor = function (fig, msg) {\n fig.rubberband_canvas.style.cursor = msg['cursor'];\n};\n\nmpl.figure.prototype.handle_message = function (fig, msg) {\n fig.message.textContent = msg['message'];\n};\n\nmpl.figure.prototype.handle_draw = function (fig, _msg) {\n // Request the server to send over a new figure.\n fig.send_draw_message();\n};\n\nmpl.figure.prototype.handle_image_mode = function (fig, msg) {\n fig.image_mode = msg['mode'];\n};\n\nmpl.figure.prototype.handle_history_buttons = function (fig, msg) {\n for (var key in msg) {\n if (!(key in fig.buttons)) {\n continue;\n }\n fig.buttons[key].disabled = !msg[key];\n fig.buttons[key].setAttribute('aria-disabled', !msg[key]);\n }\n};\n\nmpl.figure.prototype.handle_navigate_mode = function (fig, msg) {\n if (msg['mode'] === 'PAN') {\n fig.buttons['Pan'].classList.add('active');\n fig.buttons['Zoom'].classList.remove('active');\n } else if (msg['mode'] === 'ZOOM') {\n fig.buttons['Pan'].classList.remove('active');\n fig.buttons['Zoom'].classList.add('active');\n } else {\n fig.buttons['Pan'].classList.remove('active');\n fig.buttons['Zoom'].classList.remove('active');\n }\n};\n\nmpl.figure.prototype.updated_canvas_event = function () {\n // Called whenever the canvas gets updated.\n this.send_message('ack', {});\n};\n\n// A function to construct a web socket function for onmessage handling.\n// Called in the figure constructor.\nmpl.figure.prototype._make_on_message_function = function (fig) {\n return function socket_on_message(evt) {\n if (evt.data instanceof Blob) {\n var img = evt.data;\n if (img.type !== 'image/png') {\n /* FIXME: We get \"Resource interpreted as Image but\n * transferred with MIME type text/plain:\" errors on\n * Chrome. But how to set the MIME type? It doesn't seem\n * to be part of the websocket stream */\n img.type = 'image/png';\n }\n\n /* Free the memory for the previous frames */\n if (fig.imageObj.src) {\n (window.URL || window.webkitURL).revokeObjectURL(\n fig.imageObj.src\n );\n }\n\n fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n img\n );\n fig.updated_canvas_event();\n fig.waiting = false;\n return;\n } else if (\n typeof evt.data === 'string' &&\n evt.data.slice(0, 21) === 'data:image/png;base64'\n ) {\n fig.imageObj.src = evt.data;\n fig.updated_canvas_event();\n fig.waiting = false;\n return;\n }\n\n var msg = JSON.parse(evt.data);\n var msg_type = msg['type'];\n\n // Call the \"handle_{type}\" callback, which takes\n // the figure and JSON message as its only arguments.\n try {\n var callback = fig['handle_' + msg_type];\n } catch (e) {\n console.log(\n \"No handler for the '\" + msg_type + \"' message type: \",\n msg\n );\n return;\n }\n\n if (callback) {\n try {\n // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n callback(fig, msg);\n } catch (e) {\n console.log(\n \"Exception inside the 'handler_\" + msg_type + \"' callback:\",\n e,\n e.stack,\n msg\n );\n }\n }\n };\n};\n\n// from https://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\nmpl.findpos = function (e) {\n //this section is from http://www.quirksmode.org/js/events_properties.html\n var targ;\n if (!e) {\n e = window.event;\n }\n if (e.target) {\n targ = e.target;\n } else if (e.srcElement) {\n targ = e.srcElement;\n }\n if (targ.nodeType === 3) {\n // defeat Safari bug\n targ = targ.parentNode;\n }\n\n // pageX,Y are the mouse positions relative to the document\n var boundingRect = targ.getBoundingClientRect();\n var x = e.pageX - (boundingRect.left + document.body.scrollLeft);\n var y = e.pageY - (boundingRect.top + document.body.scrollTop);\n\n return { x: x, y: y };\n};\n\n/*\n * return a copy of an object with only non-object keys\n * we need this to avoid circular references\n * https://stackoverflow.com/a/24161582/3208463\n */\nfunction simpleKeys(original) {\n return Object.keys(original).reduce(function (obj, key) {\n if (typeof original[key] !== 'object') {\n obj[key] = original[key];\n }\n return obj;\n }, {});\n}\n\nmpl.figure.prototype.mouse_event = function (event, name) {\n var canvas_pos = mpl.findpos(event);\n\n if (name === 'button_press') {\n this.canvas.focus();\n this.canvas_div.focus();\n }\n\n var x = canvas_pos.x * this.ratio;\n var y = canvas_pos.y * this.ratio;\n\n this.send_message(name, {\n x: x,\n y: y,\n button: event.button,\n step: event.step,\n guiEvent: simpleKeys(event),\n });\n\n /* This prevents the web browser from automatically changing to\n * the text insertion cursor when the button is pressed. We want\n * to control all of the cursor setting manually through the\n * 'cursor' event from matplotlib */\n event.preventDefault();\n return false;\n};\n\nmpl.figure.prototype._key_event_extra = function (_event, _name) {\n // Handle any extra behaviour associated with a key event\n};\n\nmpl.figure.prototype.key_event = function (event, name) {\n // Prevent repeat events\n if (name === 'key_press') {\n if (event.key === this._key) {\n return;\n } else {\n this._key = event.key;\n }\n }\n if (name === 'key_release') {\n this._key = null;\n }\n\n var value = '';\n if (event.ctrlKey && event.key !== 'Control') {\n value += 'ctrl+';\n }\n else if (event.altKey && event.key !== 'Alt') {\n value += 'alt+';\n }\n else if (event.shiftKey && event.key !== 'Shift') {\n value += 'shift+';\n }\n\n value += 'k' + event.key;\n\n this._key_event_extra(event, name);\n\n this.send_message(name, { key: value, guiEvent: simpleKeys(event) });\n return false;\n};\n\nmpl.figure.prototype.toolbar_button_onclick = function (name) {\n if (name === 'download') {\n this.handle_save(this, null);\n } else {\n this.send_message('toolbar_button', { name: name });\n }\n};\n\nmpl.figure.prototype.toolbar_button_onmouseover = function (tooltip) {\n this.message.textContent = tooltip;\n};\n\n///////////////// REMAINING CONTENT GENERATED BY embed_js.py /////////////////\n// prettier-ignore\nvar _JSXTOOLS_RESIZE_OBSERVER=function(A){var t,i=new WeakMap,n=new WeakMap,a=new WeakMap,r=new WeakMap,o=new Set;function s(e){if(!(this instanceof s))throw new TypeError(\"Constructor requires 'new' operator\");i.set(this,e)}function h(){throw new TypeError(\"Function is not a constructor\")}function c(e,t,i,n){e=0 in arguments?Number(arguments[0]):0,t=1 in arguments?Number(arguments[1]):0,i=2 in arguments?Number(arguments[2]):0,n=3 in arguments?Number(arguments[3]):0,this.right=(this.x=this.left=e)+(this.width=i),this.bottom=(this.y=this.top=t)+(this.height=n),Object.freeze(this)}function d(){t=requestAnimationFrame(d);var s=new WeakMap,p=new Set;o.forEach((function(t){r.get(t).forEach((function(i){var r=t instanceof window.SVGElement,o=a.get(t),d=r?0:parseFloat(o.paddingTop),f=r?0:parseFloat(o.paddingRight),l=r?0:parseFloat(o.paddingBottom),u=r?0:parseFloat(o.paddingLeft),g=r?0:parseFloat(o.borderTopWidth),m=r?0:parseFloat(o.borderRightWidth),w=r?0:parseFloat(o.borderBottomWidth),b=u+f,F=d+l,v=(r?0:parseFloat(o.borderLeftWidth))+m,W=g+w,y=r?0:t.offsetHeight-W-t.clientHeight,E=r?0:t.offsetWidth-v-t.clientWidth,R=b+v,z=F+W,M=r?t.width:parseFloat(o.width)-R-E,O=r?t.height:parseFloat(o.height)-z-y;if(n.has(t)){var k=n.get(t);if(k[0]===M&&k[1]===O)return}n.set(t,[M,O]);var S=Object.create(h.prototype);S.target=t,S.contentRect=new c(u,d,M,O),s.has(i)||(s.set(i,[]),p.add(i)),s.get(i).push(S)}))})),p.forEach((function(e){i.get(e).call(e,s.get(e),e)}))}return s.prototype.observe=function(i){if(i instanceof window.Element){r.has(i)||(r.set(i,new Set),o.add(i),a.set(i,window.getComputedStyle(i)));var n=r.get(i);n.has(this)||n.add(this),cancelAnimationFrame(t),t=requestAnimationFrame(d)}},s.prototype.unobserve=function(i){if(i instanceof window.Element&&r.has(i)){var n=r.get(i);n.has(this)&&(n.delete(this),n.size||(r.delete(i),o.delete(i))),n.size||r.delete(i),o.size||cancelAnimationFrame(t)}},A.DOMRectReadOnly=c,A.ResizeObserver=s,A.ResizeObserverEntry=h,A}; // eslint-disable-line\nmpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Left button pans, Right button zooms\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-arrows\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\\nx/y fixes axis\", \"fa fa-square-o\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o\", \"download\"]];\n\nmpl.extensions = [\"eps\", \"jpeg\", \"pgf\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\", \"webp\"];\n\nmpl.default_extension = \"png\";/* global mpl */\n\nvar comm_websocket_adapter = function (comm) {\n // Create a \"websocket\"-like object which calls the given IPython comm\n // object with the appropriate methods. Currently this is a non binary\n // socket, so there is still some room for performance tuning.\n var ws = {};\n\n ws.binaryType = comm.kernel.ws.binaryType;\n ws.readyState = comm.kernel.ws.readyState;\n function updateReadyState(_event) {\n if (comm.kernel.ws) {\n ws.readyState = comm.kernel.ws.readyState;\n } else {\n ws.readyState = 3; // Closed state.\n }\n }\n comm.kernel.ws.addEventListener('open', updateReadyState);\n comm.kernel.ws.addEventListener('close', updateReadyState);\n comm.kernel.ws.addEventListener('error', updateReadyState);\n\n ws.close = function () {\n comm.close();\n };\n ws.send = function (m) {\n //console.log('sending', m);\n comm.send(m);\n };\n // Register the callback with on_msg.\n comm.on_msg(function (msg) {\n //console.log('receiving', msg['content']['data'], msg);\n var data = msg['content']['data'];\n if (data['blob'] !== undefined) {\n data = {\n data: new Blob(msg['buffers'], { type: data['blob'] }),\n };\n }\n // Pass the mpl event to the overridden (by mpl) onmessage function.\n ws.onmessage(data);\n });\n return ws;\n};\n\nmpl.mpl_figure_comm = function (comm, msg) {\n // This is the function which gets called when the mpl process\n // starts-up an IPython Comm through the \"matplotlib\" channel.\n\n var id = msg.content.data.id;\n // Get hold of the div created by the display call when the Comm\n // socket was opened in Python.\n var element = document.getElementById(id);\n var ws_proxy = comm_websocket_adapter(comm);\n\n function ondownload(figure, _format) {\n window.open(figure.canvas.toDataURL());\n }\n\n var fig = new mpl.figure(id, ws_proxy, ondownload, element);\n\n // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n // web socket which is closed, not our websocket->open comm proxy.\n ws_proxy.onopen();\n\n fig.parent_element = element;\n fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n if (!fig.cell_info) {\n console.error('Failed to find cell for figure', id, fig);\n return;\n }\n fig.cell_info[0].output_area.element.on(\n 'cleared',\n { fig: fig },\n fig._remove_fig_handler\n );\n};\n\nmpl.figure.prototype.handle_close = function (fig, msg) {\n var width = fig.canvas.width / fig.ratio;\n fig.cell_info[0].output_area.element.off(\n 'cleared',\n fig._remove_fig_handler\n );\n fig.resizeObserverInstance.unobserve(fig.canvas_div);\n\n // Update the output cell to use the data from the current canvas.\n fig.push_to_output();\n var dataURL = fig.canvas.toDataURL();\n // Re-enable the keyboard manager in IPython - without this line, in FF,\n // the notebook keyboard shortcuts fail.\n IPython.keyboard_manager.enable();\n fig.parent_element.innerHTML =\n '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n fig.close_ws(fig, msg);\n};\n\nmpl.figure.prototype.close_ws = function (fig, msg) {\n fig.send_message('closing', msg);\n // fig.ws.close()\n};\n\nmpl.figure.prototype.push_to_output = function (_remove_interactive) {\n // Turn the data on the canvas into data in the output cell.\n var width = this.canvas.width / this.ratio;\n var dataURL = this.canvas.toDataURL();\n this.cell_info[1]['text/html'] =\n '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n};\n\nmpl.figure.prototype.updated_canvas_event = function () {\n // Tell IPython that the notebook contents must change.\n IPython.notebook.set_dirty(true);\n this.send_message('ack', {});\n var fig = this;\n // Wait a second, then push the new image to the DOM so\n // that it is saved nicely (might be nice to debounce this).\n setTimeout(function () {\n fig.push_to_output();\n }, 1000);\n};\n\nmpl.figure.prototype._init_toolbar = function () {\n var fig = this;\n\n var toolbar = document.createElement('div');\n toolbar.classList = 'btn-toolbar';\n this.root.appendChild(toolbar);\n\n function on_click_closure(name) {\n return function (_event) {\n return fig.toolbar_button_onclick(name);\n };\n }\n\n function on_mouseover_closure(tooltip) {\n return function (event) {\n if (!event.currentTarget.disabled) {\n return fig.toolbar_button_onmouseover(tooltip);\n }\n };\n }\n\n fig.buttons = {};\n var buttonGroup = document.createElement('div');\n buttonGroup.classList = 'btn-group';\n var button;\n for (var toolbar_ind in mpl.toolbar_items) {\n var name = mpl.toolbar_items[toolbar_ind][0];\n var tooltip = mpl.toolbar_items[toolbar_ind][1];\n var image = mpl.toolbar_items[toolbar_ind][2];\n var method_name = mpl.toolbar_items[toolbar_ind][3];\n\n if (!name) {\n /* Instead of a spacer, we start a new button group. */\n if (buttonGroup.hasChildNodes()) {\n toolbar.appendChild(buttonGroup);\n }\n buttonGroup = document.createElement('div');\n buttonGroup.classList = 'btn-group';\n continue;\n }\n\n button = fig.buttons[name] = document.createElement('button');\n button.classList = 'btn btn-default';\n button.href = '#';\n button.title = name;\n button.innerHTML = '<i class=\"fa ' + image + ' fa-lg\"></i>';\n button.addEventListener('click', on_click_closure(method_name));\n button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n buttonGroup.appendChild(button);\n }\n\n if (buttonGroup.hasChildNodes()) {\n toolbar.appendChild(buttonGroup);\n }\n\n // Add the status bar.\n var status_bar = document.createElement('span');\n status_bar.classList = 'mpl-message pull-right';\n toolbar.appendChild(status_bar);\n this.message = status_bar;\n\n // Add the close button to the window.\n var buttongrp = document.createElement('div');\n buttongrp.classList = 'btn-group inline pull-right';\n button = document.createElement('button');\n button.classList = 'btn btn-mini btn-primary';\n button.href = '#';\n button.title = 'Stop Interaction';\n button.innerHTML = '<i class=\"fa fa-power-off icon-remove icon-large\"></i>';\n button.addEventListener('click', function (_evt) {\n fig.handle_close(fig, {});\n });\n button.addEventListener(\n 'mouseover',\n on_mouseover_closure('Stop Interaction')\n );\n buttongrp.appendChild(button);\n var titlebar = this.root.querySelector('.ui-dialog-titlebar');\n titlebar.insertBefore(buttongrp, titlebar.firstChild);\n};\n\nmpl.figure.prototype._remove_fig_handler = function (event) {\n var fig = event.data.fig;\n if (event.target !== this) {\n // Ignore bubbled events from children.\n return;\n }\n fig.close_ws(fig, {});\n};\n\nmpl.figure.prototype._root_extra_style = function (el) {\n el.style.boxSizing = 'content-box'; // override notebook setting of border-box.\n};\n\nmpl.figure.prototype._canvas_extra_style = function (el) {\n // this is important to make the div 'focusable\n el.setAttribute('tabindex', 0);\n // reach out to IPython and tell the keyboard manager to turn it's self\n // off when our div gets focus\n\n // location in version 3\n if (IPython.notebook.keyboard_manager) {\n IPython.notebook.keyboard_manager.register_events(el);\n } else {\n // location in version 2\n IPython.keyboard_manager.register_events(el);\n }\n};\n\nmpl.figure.prototype._key_event_extra = function (event, _name) {\n // Check for shift+enter\n if (event.shiftKey && event.which === 13) {\n this.canvas_div.blur();\n // select the cell after this one\n var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n IPython.notebook.select(index + 1);\n }\n};\n\nmpl.figure.prototype.handle_save = function (fig, _msg) {\n fig.ondownload(fig, null);\n};\n\nmpl.find_output_cell = function (html_output) {\n // Return the cell and output element which can be found *uniquely* in the notebook.\n // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n // IPython event is triggered only after the cells have been serialised, which for\n // our purposes (turning an active figure into a static one), is too late.\n var cells = IPython.notebook.get_cells();\n var ncells = cells.length;\n for (var i = 0; i < ncells; i++) {\n var cell = cells[i];\n if (cell.cell_type === 'code') {\n for (var j = 0; j < cell.output_area.outputs.length; j++) {\n var data = cell.output_area.outputs[j];\n if (data.data) {\n // IPython >= 3 moved mimebundle to data attribute of output\n data = data.data;\n }\n if (data['text/html'] === html_output) {\n return [cell, data, j];\n }\n }\n }\n }\n};\n\n// Register the function which deals with the matplotlib target/channel.\n// The kernel may be null if the page has been refreshed.\nif (IPython.notebook.kernel !== null) {\n IPython.notebook.kernel.comm_manager.register_target(\n 'matplotlib',\n mpl.mpl_figure_comm\n );\n}\n",
|
|
"text/plain": [
|
|
"<IPython.core.display.Javascript object>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"<img src=\"\" width=\"640\">"
|
|
],
|
|
"text/plain": [
|
|
"<IPython.core.display.HTML object>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"cols = plt.rcParams[\"axes.prop_cycle\"].by_key()[\"color\"]\n",
|
|
"\n",
|
|
"\n",
|
|
"plt.figure()\n",
|
|
"plt.title(r\"Solid: high $\\lambda$, dashed: low $\\lambda$\")\n",
|
|
"# plt.plot(rs, np.nansum(pk, axis=0)[:, 0], c=cols[k])\n",
|
|
"# plt.plot(rs, np.nansum(pk_perm, axis=0)[:, 0], c=cols[k], ls=\"--\")\n",
|
|
"for k in range(1, 5):\n",
|
|
" plt.plot(rs, pk[k, :, 0], c=cols[k], label=r\"$k = {}$\".format(k))\n",
|
|
" plt.plot(rs, pk2[k, :, 0], c=cols[k], ls=\"--\")\n",
|
|
"# plt.plot(rs, pk_perm[k, :, 0], c=cols[k], ls=\"--\")\n",
|
|
"# plt.fill_between(rs, pk[k, :, 0] - pk[k, :, 1], pk[k, :, 0] + pk[k, :, 1])\n",
|
|
"\n",
|
|
"# plt.plot(rs, np.sum(pk, axis=0)[:, 0])\n",
|
|
"\n",
|
|
"plt.xscale(\"log\")\n",
|
|
"plt.ylabel(r\"$P(k | r)$\")\n",
|
|
"plt.xlabel(r\"$r~[\\mathrm{Mpc}]$\")\n",
|
|
"plt.legend()\n",
|
|
"\n",
|
|
"plt.savefig(\"../plots/autoknn.png\", dpi=450)\n",
|
|
"plt.show()\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 32,
|
|
"id": "1279a8cb",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2023-04-12T14:39:14.994393Z",
|
|
"start_time": "2023-04-12T14:38:38.593354Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"rs, cross = knnreader.read(\"mass001\", cross_folder, rmin=1, rmax=50)\n",
|
|
"# pk = knnreader.mean_prob_k(cdf)\n",
|
|
"\n",
|
|
"rs, cdf = knnreader.read(\"mass001_random\", auto_folder, rmin=1, rmax=50)\n",
|
|
"pk = knnreader.mean_prob_k(cdf)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 35,
|
|
"id": "9e0185ce",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2023-04-12T14:48:35.806517Z",
|
|
"start_time": "2023-04-12T14:48:35.106183Z"
|
|
}
|
|
},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"application/javascript": "/* Put everything inside the global mpl namespace */\n/* global mpl */\nwindow.mpl = {};\n\nmpl.get_websocket_type = function () {\n if (typeof WebSocket !== 'undefined') {\n return WebSocket;\n } else if (typeof MozWebSocket !== 'undefined') {\n return MozWebSocket;\n } else {\n alert(\n 'Your browser does not have WebSocket support. ' +\n 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n 'Firefox 4 and 5 are also supported but you ' +\n 'have to enable WebSockets in about:config.'\n );\n }\n};\n\nmpl.figure = function (figure_id, websocket, ondownload, parent_element) {\n this.id = figure_id;\n\n this.ws = websocket;\n\n this.supports_binary = this.ws.binaryType !== undefined;\n\n if (!this.supports_binary) {\n var warnings = document.getElementById('mpl-warnings');\n if (warnings) {\n warnings.style.display = 'block';\n warnings.textContent =\n 'This browser does not support binary websocket messages. ' +\n 'Performance may be slow.';\n }\n }\n\n this.imageObj = new Image();\n\n this.context = undefined;\n this.message = undefined;\n this.canvas = undefined;\n this.rubberband_canvas = undefined;\n this.rubberband_context = undefined;\n this.format_dropdown = undefined;\n\n this.image_mode = 'full';\n\n this.root = document.createElement('div');\n this.root.setAttribute('style', 'display: inline-block');\n this._root_extra_style(this.root);\n\n parent_element.appendChild(this.root);\n\n this._init_header(this);\n this._init_canvas(this);\n this._init_toolbar(this);\n\n var fig = this;\n\n this.waiting = false;\n\n this.ws.onopen = function () {\n fig.send_message('supports_binary', { value: fig.supports_binary });\n fig.send_message('send_image_mode', {});\n if (fig.ratio !== 1) {\n fig.send_message('set_device_pixel_ratio', {\n device_pixel_ratio: fig.ratio,\n });\n }\n fig.send_message('refresh', {});\n };\n\n this.imageObj.onload = function () {\n if (fig.image_mode === 'full') {\n // Full images could contain transparency (where diff images\n // almost always do), so we need to clear the canvas so that\n // there is no ghosting.\n fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n }\n fig.context.drawImage(fig.imageObj, 0, 0);\n };\n\n this.imageObj.onunload = function () {\n fig.ws.close();\n };\n\n this.ws.onmessage = this._make_on_message_function(this);\n\n this.ondownload = ondownload;\n};\n\nmpl.figure.prototype._init_header = function () {\n var titlebar = document.createElement('div');\n titlebar.classList =\n 'ui-dialog-titlebar ui-widget-header ui-corner-all ui-helper-clearfix';\n var titletext = document.createElement('div');\n titletext.classList = 'ui-dialog-title';\n titletext.setAttribute(\n 'style',\n 'width: 100%; text-align: center; padding: 3px;'\n );\n titlebar.appendChild(titletext);\n this.root.appendChild(titlebar);\n this.header = titletext;\n};\n\nmpl.figure.prototype._canvas_extra_style = function (_canvas_div) {};\n\nmpl.figure.prototype._root_extra_style = function (_canvas_div) {};\n\nmpl.figure.prototype._init_canvas = function () {\n var fig = this;\n\n var canvas_div = (this.canvas_div = document.createElement('div'));\n canvas_div.setAttribute('tabindex', '0');\n canvas_div.setAttribute(\n 'style',\n 'border: 1px solid #ddd;' +\n 'box-sizing: content-box;' +\n 'clear: both;' +\n 'min-height: 1px;' +\n 'min-width: 1px;' +\n 'outline: 0;' +\n 'overflow: hidden;' +\n 'position: relative;' +\n 'resize: both;' +\n 'z-index: 2;'\n );\n\n function on_keyboard_event_closure(name) {\n return function (event) {\n return fig.key_event(event, name);\n };\n }\n\n canvas_div.addEventListener(\n 'keydown',\n on_keyboard_event_closure('key_press')\n );\n canvas_div.addEventListener(\n 'keyup',\n on_keyboard_event_closure('key_release')\n );\n\n this._canvas_extra_style(canvas_div);\n this.root.appendChild(canvas_div);\n\n var canvas = (this.canvas = document.createElement('canvas'));\n canvas.classList.add('mpl-canvas');\n canvas.setAttribute(\n 'style',\n 'box-sizing: content-box;' +\n 'pointer-events: none;' +\n 'position: relative;' +\n 'z-index: 0;'\n );\n\n this.context = canvas.getContext('2d');\n\n var backingStore =\n this.context.backingStorePixelRatio ||\n this.context.webkitBackingStorePixelRatio ||\n this.context.mozBackingStorePixelRatio ||\n this.context.msBackingStorePixelRatio ||\n this.context.oBackingStorePixelRatio ||\n this.context.backingStorePixelRatio ||\n 1;\n\n this.ratio = (window.devicePixelRatio || 1) / backingStore;\n\n var rubberband_canvas = (this.rubberband_canvas = document.createElement(\n 'canvas'\n ));\n rubberband_canvas.setAttribute(\n 'style',\n 'box-sizing: content-box;' +\n 'left: 0;' +\n 'pointer-events: none;' +\n 'position: absolute;' +\n 'top: 0;' +\n 'z-index: 1;'\n );\n\n // Apply a ponyfill if ResizeObserver is not implemented by browser.\n if (this.ResizeObserver === undefined) {\n if (window.ResizeObserver !== undefined) {\n this.ResizeObserver = window.ResizeObserver;\n } else {\n var obs = _JSXTOOLS_RESIZE_OBSERVER({});\n this.ResizeObserver = obs.ResizeObserver;\n }\n }\n\n this.resizeObserverInstance = new this.ResizeObserver(function (entries) {\n var nentries = entries.length;\n for (var i = 0; i < nentries; i++) {\n var entry = entries[i];\n var width, height;\n if (entry.contentBoxSize) {\n if (entry.contentBoxSize instanceof Array) {\n // Chrome 84 implements new version of spec.\n width = entry.contentBoxSize[0].inlineSize;\n height = entry.contentBoxSize[0].blockSize;\n } else {\n // Firefox implements old version of spec.\n width = entry.contentBoxSize.inlineSize;\n height = entry.contentBoxSize.blockSize;\n }\n } else {\n // Chrome <84 implements even older version of spec.\n width = entry.contentRect.width;\n height = entry.contentRect.height;\n }\n\n // Keep the size of the canvas and rubber band canvas in sync with\n // the canvas container.\n if (entry.devicePixelContentBoxSize) {\n // Chrome 84 implements new version of spec.\n canvas.setAttribute(\n 'width',\n entry.devicePixelContentBoxSize[0].inlineSize\n );\n canvas.setAttribute(\n 'height',\n entry.devicePixelContentBoxSize[0].blockSize\n );\n } else {\n canvas.setAttribute('width', width * fig.ratio);\n canvas.setAttribute('height', height * fig.ratio);\n }\n /* This rescales the canvas back to display pixels, so that it\n * appears correct on HiDPI screens. */\n canvas.style.width = width + 'px';\n canvas.style.height = height + 'px';\n\n rubberband_canvas.setAttribute('width', width);\n rubberband_canvas.setAttribute('height', height);\n\n // And update the size in Python. We ignore the initial 0/0 size\n // that occurs as the element is placed into the DOM, which should\n // otherwise not happen due to the minimum size styling.\n if (fig.ws.readyState == 1 && width != 0 && height != 0) {\n fig.request_resize(width, height);\n }\n }\n });\n this.resizeObserverInstance.observe(canvas_div);\n\n function on_mouse_event_closure(name) {\n /* User Agent sniffing is bad, but WebKit is busted:\n * https://bugs.webkit.org/show_bug.cgi?id=144526\n * https://bugs.webkit.org/show_bug.cgi?id=181818\n * The worst that happens here is that they get an extra browser\n * selection when dragging, if this check fails to catch them.\n */\n var UA = navigator.userAgent;\n var isWebKit = /AppleWebKit/.test(UA) && !/Chrome/.test(UA);\n if(isWebKit) {\n return function (event) {\n /* This prevents the web browser from automatically changing to\n * the text insertion cursor when the button is pressed. We\n * want to control all of the cursor setting manually through\n * the 'cursor' event from matplotlib */\n event.preventDefault()\n return fig.mouse_event(event, name);\n };\n } else {\n return function (event) {\n return fig.mouse_event(event, name);\n };\n }\n }\n\n canvas_div.addEventListener(\n 'mousedown',\n on_mouse_event_closure('button_press')\n );\n canvas_div.addEventListener(\n 'mouseup',\n on_mouse_event_closure('button_release')\n );\n canvas_div.addEventListener(\n 'dblclick',\n on_mouse_event_closure('dblclick')\n );\n // Throttle sequential mouse events to 1 every 20ms.\n canvas_div.addEventListener(\n 'mousemove',\n on_mouse_event_closure('motion_notify')\n );\n\n canvas_div.addEventListener(\n 'mouseenter',\n on_mouse_event_closure('figure_enter')\n );\n canvas_div.addEventListener(\n 'mouseleave',\n on_mouse_event_closure('figure_leave')\n );\n\n canvas_div.addEventListener('wheel', function (event) {\n if (event.deltaY < 0) {\n event.step = 1;\n } else {\n event.step = -1;\n }\n on_mouse_event_closure('scroll')(event);\n });\n\n canvas_div.appendChild(canvas);\n canvas_div.appendChild(rubberband_canvas);\n\n this.rubberband_context = rubberband_canvas.getContext('2d');\n this.rubberband_context.strokeStyle = '#000000';\n\n this._resize_canvas = function (width, height, forward) {\n if (forward) {\n canvas_div.style.width = width + 'px';\n canvas_div.style.height = height + 'px';\n }\n };\n\n // Disable right mouse context menu.\n canvas_div.addEventListener('contextmenu', function (_e) {\n event.preventDefault();\n return false;\n });\n\n function set_focus() {\n canvas.focus();\n canvas_div.focus();\n }\n\n window.setTimeout(set_focus, 100);\n};\n\nmpl.figure.prototype._init_toolbar = function () {\n var fig = this;\n\n var toolbar = document.createElement('div');\n toolbar.classList = 'mpl-toolbar';\n this.root.appendChild(toolbar);\n\n function on_click_closure(name) {\n return function (_event) {\n return fig.toolbar_button_onclick(name);\n };\n }\n\n function on_mouseover_closure(tooltip) {\n return function (event) {\n if (!event.currentTarget.disabled) {\n return fig.toolbar_button_onmouseover(tooltip);\n }\n };\n }\n\n fig.buttons = {};\n var buttonGroup = document.createElement('div');\n buttonGroup.classList = 'mpl-button-group';\n for (var toolbar_ind in mpl.toolbar_items) {\n var name = mpl.toolbar_items[toolbar_ind][0];\n var tooltip = mpl.toolbar_items[toolbar_ind][1];\n var image = mpl.toolbar_items[toolbar_ind][2];\n var method_name = mpl.toolbar_items[toolbar_ind][3];\n\n if (!name) {\n /* Instead of a spacer, we start a new button group. */\n if (buttonGroup.hasChildNodes()) {\n toolbar.appendChild(buttonGroup);\n }\n buttonGroup = document.createElement('div');\n buttonGroup.classList = 'mpl-button-group';\n continue;\n }\n\n var button = (fig.buttons[name] = document.createElement('button'));\n button.classList = 'mpl-widget';\n button.setAttribute('role', 'button');\n button.setAttribute('aria-disabled', 'false');\n button.addEventListener('click', on_click_closure(method_name));\n button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n\n var icon_img = document.createElement('img');\n icon_img.src = '_images/' + image + '.png';\n icon_img.srcset = '_images/' + image + '_large.png 2x';\n icon_img.alt = tooltip;\n button.appendChild(icon_img);\n\n buttonGroup.appendChild(button);\n }\n\n if (buttonGroup.hasChildNodes()) {\n toolbar.appendChild(buttonGroup);\n }\n\n var fmt_picker = document.createElement('select');\n fmt_picker.classList = 'mpl-widget';\n toolbar.appendChild(fmt_picker);\n this.format_dropdown = fmt_picker;\n\n for (var ind in mpl.extensions) {\n var fmt = mpl.extensions[ind];\n var option = document.createElement('option');\n option.selected = fmt === mpl.default_extension;\n option.innerHTML = fmt;\n fmt_picker.appendChild(option);\n }\n\n var status_bar = document.createElement('span');\n status_bar.classList = 'mpl-message';\n toolbar.appendChild(status_bar);\n this.message = status_bar;\n};\n\nmpl.figure.prototype.request_resize = function (x_pixels, y_pixels) {\n // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n // which will in turn request a refresh of the image.\n this.send_message('resize', { width: x_pixels, height: y_pixels });\n};\n\nmpl.figure.prototype.send_message = function (type, properties) {\n properties['type'] = type;\n properties['figure_id'] = this.id;\n this.ws.send(JSON.stringify(properties));\n};\n\nmpl.figure.prototype.send_draw_message = function () {\n if (!this.waiting) {\n this.waiting = true;\n this.ws.send(JSON.stringify({ type: 'draw', figure_id: this.id }));\n }\n};\n\nmpl.figure.prototype.handle_save = function (fig, _msg) {\n var format_dropdown = fig.format_dropdown;\n var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n fig.ondownload(fig, format);\n};\n\nmpl.figure.prototype.handle_resize = function (fig, msg) {\n var size = msg['size'];\n if (size[0] !== fig.canvas.width || size[1] !== fig.canvas.height) {\n fig._resize_canvas(size[0], size[1], msg['forward']);\n fig.send_message('refresh', {});\n }\n};\n\nmpl.figure.prototype.handle_rubberband = function (fig, msg) {\n var x0 = msg['x0'] / fig.ratio;\n var y0 = (fig.canvas.height - msg['y0']) / fig.ratio;\n var x1 = msg['x1'] / fig.ratio;\n var y1 = (fig.canvas.height - msg['y1']) / fig.ratio;\n x0 = Math.floor(x0) + 0.5;\n y0 = Math.floor(y0) + 0.5;\n x1 = Math.floor(x1) + 0.5;\n y1 = Math.floor(y1) + 0.5;\n var min_x = Math.min(x0, x1);\n var min_y = Math.min(y0, y1);\n var width = Math.abs(x1 - x0);\n var height = Math.abs(y1 - y0);\n\n fig.rubberband_context.clearRect(\n 0,\n 0,\n fig.canvas.width / fig.ratio,\n fig.canvas.height / fig.ratio\n );\n\n fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n};\n\nmpl.figure.prototype.handle_figure_label = function (fig, msg) {\n // Updates the figure title.\n fig.header.textContent = msg['label'];\n};\n\nmpl.figure.prototype.handle_cursor = function (fig, msg) {\n fig.canvas_div.style.cursor = msg['cursor'];\n};\n\nmpl.figure.prototype.handle_message = function (fig, msg) {\n fig.message.textContent = msg['message'];\n};\n\nmpl.figure.prototype.handle_draw = function (fig, _msg) {\n // Request the server to send over a new figure.\n fig.send_draw_message();\n};\n\nmpl.figure.prototype.handle_image_mode = function (fig, msg) {\n fig.image_mode = msg['mode'];\n};\n\nmpl.figure.prototype.handle_history_buttons = function (fig, msg) {\n for (var key in msg) {\n if (!(key in fig.buttons)) {\n continue;\n }\n fig.buttons[key].disabled = !msg[key];\n fig.buttons[key].setAttribute('aria-disabled', !msg[key]);\n }\n};\n\nmpl.figure.prototype.handle_navigate_mode = function (fig, msg) {\n if (msg['mode'] === 'PAN') {\n fig.buttons['Pan'].classList.add('active');\n fig.buttons['Zoom'].classList.remove('active');\n } else if (msg['mode'] === 'ZOOM') {\n fig.buttons['Pan'].classList.remove('active');\n fig.buttons['Zoom'].classList.add('active');\n } else {\n fig.buttons['Pan'].classList.remove('active');\n fig.buttons['Zoom'].classList.remove('active');\n }\n};\n\nmpl.figure.prototype.updated_canvas_event = function () {\n // Called whenever the canvas gets updated.\n this.send_message('ack', {});\n};\n\n// A function to construct a web socket function for onmessage handling.\n// Called in the figure constructor.\nmpl.figure.prototype._make_on_message_function = function (fig) {\n return function socket_on_message(evt) {\n if (evt.data instanceof Blob) {\n var img = evt.data;\n if (img.type !== 'image/png') {\n /* FIXME: We get \"Resource interpreted as Image but\n * transferred with MIME type text/plain:\" errors on\n * Chrome. But how to set the MIME type? It doesn't seem\n * to be part of the websocket stream */\n img.type = 'image/png';\n }\n\n /* Free the memory for the previous frames */\n if (fig.imageObj.src) {\n (window.URL || window.webkitURL).revokeObjectURL(\n fig.imageObj.src\n );\n }\n\n fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n img\n );\n fig.updated_canvas_event();\n fig.waiting = false;\n return;\n } else if (\n typeof evt.data === 'string' &&\n evt.data.slice(0, 21) === 'data:image/png;base64'\n ) {\n fig.imageObj.src = evt.data;\n fig.updated_canvas_event();\n fig.waiting = false;\n return;\n }\n\n var msg = JSON.parse(evt.data);\n var msg_type = msg['type'];\n\n // Call the \"handle_{type}\" callback, which takes\n // the figure and JSON message as its only arguments.\n try {\n var callback = fig['handle_' + msg_type];\n } catch (e) {\n console.log(\n \"No handler for the '\" + msg_type + \"' message type: \",\n msg\n );\n return;\n }\n\n if (callback) {\n try {\n // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n callback(fig, msg);\n } catch (e) {\n console.log(\n \"Exception inside the 'handler_\" + msg_type + \"' callback:\",\n e,\n e.stack,\n msg\n );\n }\n }\n };\n};\n\nfunction getModifiers(event) {\n var mods = [];\n if (event.ctrlKey) {\n mods.push('ctrl');\n }\n if (event.altKey) {\n mods.push('alt');\n }\n if (event.shiftKey) {\n mods.push('shift');\n }\n if (event.metaKey) {\n mods.push('meta');\n }\n return mods;\n}\n\n/*\n * return a copy of an object with only non-object keys\n * we need this to avoid circular references\n * https://stackoverflow.com/a/24161582/3208463\n */\nfunction simpleKeys(original) {\n return Object.keys(original).reduce(function (obj, key) {\n if (typeof original[key] !== 'object') {\n obj[key] = original[key];\n }\n return obj;\n }, {});\n}\n\nmpl.figure.prototype.mouse_event = function (event, name) {\n if (name === 'button_press') {\n this.canvas.focus();\n this.canvas_div.focus();\n }\n\n // from https://stackoverflow.com/q/1114465\n var boundingRect = this.canvas.getBoundingClientRect();\n var x = (event.clientX - boundingRect.left) * this.ratio;\n var y = (event.clientY - boundingRect.top) * this.ratio;\n\n this.send_message(name, {\n x: x,\n y: y,\n button: event.button,\n step: event.step,\n modifiers: getModifiers(event),\n guiEvent: simpleKeys(event),\n });\n\n return false;\n};\n\nmpl.figure.prototype._key_event_extra = function (_event, _name) {\n // Handle any extra behaviour associated with a key event\n};\n\nmpl.figure.prototype.key_event = function (event, name) {\n // Prevent repeat events\n if (name === 'key_press') {\n if (event.key === this._key) {\n return;\n } else {\n this._key = event.key;\n }\n }\n if (name === 'key_release') {\n this._key = null;\n }\n\n var value = '';\n if (event.ctrlKey && event.key !== 'Control') {\n value += 'ctrl+';\n }\n else if (event.altKey && event.key !== 'Alt') {\n value += 'alt+';\n }\n else if (event.shiftKey && event.key !== 'Shift') {\n value += 'shift+';\n }\n\n value += 'k' + event.key;\n\n this._key_event_extra(event, name);\n\n this.send_message(name, { key: value, guiEvent: simpleKeys(event) });\n return false;\n};\n\nmpl.figure.prototype.toolbar_button_onclick = function (name) {\n if (name === 'download') {\n this.handle_save(this, null);\n } else {\n this.send_message('toolbar_button', { name: name });\n }\n};\n\nmpl.figure.prototype.toolbar_button_onmouseover = function (tooltip) {\n this.message.textContent = tooltip;\n};\n\n///////////////// REMAINING CONTENT GENERATED BY embed_js.py /////////////////\n// prettier-ignore\nvar _JSXTOOLS_RESIZE_OBSERVER=function(A){var t,i=new WeakMap,n=new WeakMap,a=new WeakMap,r=new WeakMap,o=new Set;function s(e){if(!(this instanceof s))throw new TypeError(\"Constructor requires 'new' operator\");i.set(this,e)}function h(){throw new TypeError(\"Function is not a constructor\")}function c(e,t,i,n){e=0 in arguments?Number(arguments[0]):0,t=1 in arguments?Number(arguments[1]):0,i=2 in arguments?Number(arguments[2]):0,n=3 in arguments?Number(arguments[3]):0,this.right=(this.x=this.left=e)+(this.width=i),this.bottom=(this.y=this.top=t)+(this.height=n),Object.freeze(this)}function d(){t=requestAnimationFrame(d);var s=new WeakMap,p=new Set;o.forEach((function(t){r.get(t).forEach((function(i){var r=t instanceof window.SVGElement,o=a.get(t),d=r?0:parseFloat(o.paddingTop),f=r?0:parseFloat(o.paddingRight),l=r?0:parseFloat(o.paddingBottom),u=r?0:parseFloat(o.paddingLeft),g=r?0:parseFloat(o.borderTopWidth),m=r?0:parseFloat(o.borderRightWidth),w=r?0:parseFloat(o.borderBottomWidth),b=u+f,F=d+l,v=(r?0:parseFloat(o.borderLeftWidth))+m,W=g+w,y=r?0:t.offsetHeight-W-t.clientHeight,E=r?0:t.offsetWidth-v-t.clientWidth,R=b+v,z=F+W,M=r?t.width:parseFloat(o.width)-R-E,O=r?t.height:parseFloat(o.height)-z-y;if(n.has(t)){var k=n.get(t);if(k[0]===M&&k[1]===O)return}n.set(t,[M,O]);var S=Object.create(h.prototype);S.target=t,S.contentRect=new c(u,d,M,O),s.has(i)||(s.set(i,[]),p.add(i)),s.get(i).push(S)}))})),p.forEach((function(e){i.get(e).call(e,s.get(e),e)}))}return s.prototype.observe=function(i){if(i instanceof window.Element){r.has(i)||(r.set(i,new Set),o.add(i),a.set(i,window.getComputedStyle(i)));var n=r.get(i);n.has(this)||n.add(this),cancelAnimationFrame(t),t=requestAnimationFrame(d)}},s.prototype.unobserve=function(i){if(i instanceof window.Element&&r.has(i)){var n=r.get(i);n.has(this)&&(n.delete(this),n.size||(r.delete(i),o.delete(i))),n.size||r.delete(i),o.size||cancelAnimationFrame(t)}},A.DOMRectReadOnly=c,A.ResizeObserver=s,A.ResizeObserverEntry=h,A}; // eslint-disable-line\nmpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Left button pans, Right button zooms\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-arrows\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\\nx/y fixes axis\", \"fa fa-square-o\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o\", \"download\"]];\n\nmpl.extensions = [\"eps\", \"jpeg\", \"pgf\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\", \"webp\"];\n\nmpl.default_extension = \"png\";/* global mpl */\n\nvar comm_websocket_adapter = function (comm) {\n // Create a \"websocket\"-like object which calls the given IPython comm\n // object with the appropriate methods. Currently this is a non binary\n // socket, so there is still some room for performance tuning.\n var ws = {};\n\n ws.binaryType = comm.kernel.ws.binaryType;\n ws.readyState = comm.kernel.ws.readyState;\n function updateReadyState(_event) {\n if (comm.kernel.ws) {\n ws.readyState = comm.kernel.ws.readyState;\n } else {\n ws.readyState = 3; // Closed state.\n }\n }\n comm.kernel.ws.addEventListener('open', updateReadyState);\n comm.kernel.ws.addEventListener('close', updateReadyState);\n comm.kernel.ws.addEventListener('error', updateReadyState);\n\n ws.close = function () {\n comm.close();\n };\n ws.send = function (m) {\n //console.log('sending', m);\n comm.send(m);\n };\n // Register the callback with on_msg.\n comm.on_msg(function (msg) {\n //console.log('receiving', msg['content']['data'], msg);\n var data = msg['content']['data'];\n if (data['blob'] !== undefined) {\n data = {\n data: new Blob(msg['buffers'], { type: data['blob'] }),\n };\n }\n // Pass the mpl event to the overridden (by mpl) onmessage function.\n ws.onmessage(data);\n });\n return ws;\n};\n\nmpl.mpl_figure_comm = function (comm, msg) {\n // This is the function which gets called when the mpl process\n // starts-up an IPython Comm through the \"matplotlib\" channel.\n\n var id = msg.content.data.id;\n // Get hold of the div created by the display call when the Comm\n // socket was opened in Python.\n var element = document.getElementById(id);\n var ws_proxy = comm_websocket_adapter(comm);\n\n function ondownload(figure, _format) {\n window.open(figure.canvas.toDataURL());\n }\n\n var fig = new mpl.figure(id, ws_proxy, ondownload, element);\n\n // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n // web socket which is closed, not our websocket->open comm proxy.\n ws_proxy.onopen();\n\n fig.parent_element = element;\n fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n if (!fig.cell_info) {\n console.error('Failed to find cell for figure', id, fig);\n return;\n }\n fig.cell_info[0].output_area.element.on(\n 'cleared',\n { fig: fig },\n fig._remove_fig_handler\n );\n};\n\nmpl.figure.prototype.handle_close = function (fig, msg) {\n var width = fig.canvas.width / fig.ratio;\n fig.cell_info[0].output_area.element.off(\n 'cleared',\n fig._remove_fig_handler\n );\n fig.resizeObserverInstance.unobserve(fig.canvas_div);\n\n // Update the output cell to use the data from the current canvas.\n fig.push_to_output();\n var dataURL = fig.canvas.toDataURL();\n // Re-enable the keyboard manager in IPython - without this line, in FF,\n // the notebook keyboard shortcuts fail.\n IPython.keyboard_manager.enable();\n fig.parent_element.innerHTML =\n '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n fig.close_ws(fig, msg);\n};\n\nmpl.figure.prototype.close_ws = function (fig, msg) {\n fig.send_message('closing', msg);\n // fig.ws.close()\n};\n\nmpl.figure.prototype.push_to_output = function (_remove_interactive) {\n // Turn the data on the canvas into data in the output cell.\n var width = this.canvas.width / this.ratio;\n var dataURL = this.canvas.toDataURL();\n this.cell_info[1]['text/html'] =\n '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n};\n\nmpl.figure.prototype.updated_canvas_event = function () {\n // Tell IPython that the notebook contents must change.\n IPython.notebook.set_dirty(true);\n this.send_message('ack', {});\n var fig = this;\n // Wait a second, then push the new image to the DOM so\n // that it is saved nicely (might be nice to debounce this).\n setTimeout(function () {\n fig.push_to_output();\n }, 1000);\n};\n\nmpl.figure.prototype._init_toolbar = function () {\n var fig = this;\n\n var toolbar = document.createElement('div');\n toolbar.classList = 'btn-toolbar';\n this.root.appendChild(toolbar);\n\n function on_click_closure(name) {\n return function (_event) {\n return fig.toolbar_button_onclick(name);\n };\n }\n\n function on_mouseover_closure(tooltip) {\n return function (event) {\n if (!event.currentTarget.disabled) {\n return fig.toolbar_button_onmouseover(tooltip);\n }\n };\n }\n\n fig.buttons = {};\n var buttonGroup = document.createElement('div');\n buttonGroup.classList = 'btn-group';\n var button;\n for (var toolbar_ind in mpl.toolbar_items) {\n var name = mpl.toolbar_items[toolbar_ind][0];\n var tooltip = mpl.toolbar_items[toolbar_ind][1];\n var image = mpl.toolbar_items[toolbar_ind][2];\n var method_name = mpl.toolbar_items[toolbar_ind][3];\n\n if (!name) {\n /* Instead of a spacer, we start a new button group. */\n if (buttonGroup.hasChildNodes()) {\n toolbar.appendChild(buttonGroup);\n }\n buttonGroup = document.createElement('div');\n buttonGroup.classList = 'btn-group';\n continue;\n }\n\n button = fig.buttons[name] = document.createElement('button');\n button.classList = 'btn btn-default';\n button.href = '#';\n button.title = name;\n button.innerHTML = '<i class=\"fa ' + image + ' fa-lg\"></i>';\n button.addEventListener('click', on_click_closure(method_name));\n button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n buttonGroup.appendChild(button);\n }\n\n if (buttonGroup.hasChildNodes()) {\n toolbar.appendChild(buttonGroup);\n }\n\n // Add the status bar.\n var status_bar = document.createElement('span');\n status_bar.classList = 'mpl-message pull-right';\n toolbar.appendChild(status_bar);\n this.message = status_bar;\n\n // Add the close button to the window.\n var buttongrp = document.createElement('div');\n buttongrp.classList = 'btn-group inline pull-right';\n button = document.createElement('button');\n button.classList = 'btn btn-mini btn-primary';\n button.href = '#';\n button.title = 'Stop Interaction';\n button.innerHTML = '<i class=\"fa fa-power-off icon-remove icon-large\"></i>';\n button.addEventListener('click', function (_evt) {\n fig.handle_close(fig, {});\n });\n button.addEventListener(\n 'mouseover',\n on_mouseover_closure('Stop Interaction')\n );\n buttongrp.appendChild(button);\n var titlebar = this.root.querySelector('.ui-dialog-titlebar');\n titlebar.insertBefore(buttongrp, titlebar.firstChild);\n};\n\nmpl.figure.prototype._remove_fig_handler = function (event) {\n var fig = event.data.fig;\n if (event.target !== this) {\n // Ignore bubbled events from children.\n return;\n }\n fig.close_ws(fig, {});\n};\n\nmpl.figure.prototype._root_extra_style = function (el) {\n el.style.boxSizing = 'content-box'; // override notebook setting of border-box.\n};\n\nmpl.figure.prototype._canvas_extra_style = function (el) {\n // this is important to make the div 'focusable\n el.setAttribute('tabindex', 0);\n // reach out to IPython and tell the keyboard manager to turn it's self\n // off when our div gets focus\n\n // location in version 3\n if (IPython.notebook.keyboard_manager) {\n IPython.notebook.keyboard_manager.register_events(el);\n } else {\n // location in version 2\n IPython.keyboard_manager.register_events(el);\n }\n};\n\nmpl.figure.prototype._key_event_extra = function (event, _name) {\n // Check for shift+enter\n if (event.shiftKey && event.which === 13) {\n this.canvas_div.blur();\n // select the cell after this one\n var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n IPython.notebook.select(index + 1);\n }\n};\n\nmpl.figure.prototype.handle_save = function (fig, _msg) {\n fig.ondownload(fig, null);\n};\n\nmpl.find_output_cell = function (html_output) {\n // Return the cell and output element which can be found *uniquely* in the notebook.\n // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n // IPython event is triggered only after the cells have been serialised, which for\n // our purposes (turning an active figure into a static one), is too late.\n var cells = IPython.notebook.get_cells();\n var ncells = cells.length;\n for (var i = 0; i < ncells; i++) {\n var cell = cells[i];\n if (cell.cell_type === 'code') {\n for (var j = 0; j < cell.output_area.outputs.length; j++) {\n var data = cell.output_area.outputs[j];\n if (data.data) {\n // IPython >= 3 moved mimebundle to data attribute of output\n data = data.data;\n }\n if (data['text/html'] === html_output) {\n return [cell, data, j];\n }\n }\n }\n }\n};\n\n// Register the function which deals with the matplotlib target/channel.\n// The kernel may be null if the page has been refreshed.\nif (IPython.notebook.kernel !== null) {\n IPython.notebook.kernel.comm_manager.register_target(\n 'matplotlib',\n mpl.mpl_figure_comm\n );\n}\n",
|
|
"text/plain": [
|
|
"<IPython.core.display.Javascript object>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"<img src=\"\" width=\"640\">"
|
|
],
|
|
"text/plain": [
|
|
"<IPython.core.display.HTML object>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"cols = plt.rcParams[\"axes.prop_cycle\"].by_key()[\"color\"]\n",
|
|
"\n",
|
|
"plt.figure()\n",
|
|
"for i in range(1, 6):\n",
|
|
" plt.plot(rs, cross[0, i, :], c=cols[i], label=r\"k = {}\".format(i))\n",
|
|
" \n",
|
|
" plt.plot(rs, pk[i, :, 0], c=cols[i], ls=\"--\")\n",
|
|
"\n",
|
|
"plt.axvline(2.65 / 0.705, c=\"red\", ls=\"--\")\n",
|
|
"plt.xlabel(r\"$r~[\\mathrm{Mpc}]$\")\n",
|
|
"plt.ylabel(r\"Cross-correlation\")\n",
|
|
"plt.xscale(\"log\")\n",
|
|
"plt.legend()\n",
|
|
"plt.tight_layout()\n",
|
|
"plt.savefig(\"../plots/knncross.png\", dpi=450)\n",
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "df973ed4",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2023-04-08T15:08:50.076207Z",
|
|
"start_time": "2023-04-08T15:08:46.683983Z"
|
|
},
|
|
"scrolled": false
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"\n",
|
|
"\n",
|
|
"plt.figure()\n",
|
|
"\n",
|
|
"\n",
|
|
"k = 2\n",
|
|
"\n",
|
|
"rs, mu, std = mean_auto(k, \"mass_003_spinhigh\")\n",
|
|
"rs, mu_perm, std_perm = mean_auto(k, \"mass003_spinlow\")\n",
|
|
"z = mu / mu_perm\n",
|
|
"deltaz = z * np.sqrt((std / mu)**2 + (std_perm / mu_perm)**2)\n",
|
|
"plt.plot(rs, z, c=cols[0])\n",
|
|
"plt.fill_between(rs, z - deltaz, z + deltaz, color=cols[0], alpha=0.3)\n",
|
|
"\n",
|
|
"\n",
|
|
"# rs, mu, std = mean_auto(k, \"mass001_spinhigh\")\n",
|
|
"# rs, mu_perm, std_perm = mean_auto(k, \"mass001_spinhigh_perm\")\n",
|
|
"# z = mu / mu_perm\n",
|
|
"# deltaz = z * np.sqrt((std / mu)**2 + (std_perm / mu_perm)**2)\n",
|
|
"# plt.plot(rs, z, c=cols[1])\n",
|
|
"# plt.fill_between(rs, z - deltaz, z + deltaz, color=cols[1], alpha=0.3)\n",
|
|
"\n",
|
|
"\n",
|
|
"plt.axhline(1, c=\"black\", ls=\"--\")\n",
|
|
"# plt.fill_between(rs, mu - std, mu + std, color=cols[2], alpha=0.3)\n",
|
|
"\n",
|
|
"plt.xscale(\"log\")\n",
|
|
"# plt.yscale(\"log\")\n",
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "7f500800",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2023-04-08T14:11:02.568517Z",
|
|
"start_time": "2023-04-08T14:11:00.406477Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"# rs, corr = knnreader.read_auto(\"mass001_spinmedian_cross\", folder, rmin=0.5)\n",
|
|
"# rs, corr_perm = knnreader.read_auto(\"mass001_spinmedian_cross_perm\", folder, rmin=0.5)\n",
|
|
"\n",
|
|
"# rs, cdf_low = knnreader.read_auto(\"mass001_spinmedian_cross_perm\", folder, rmin=0.5)\n",
|
|
"rs, cdf_high = knnreader.read_auto(\"mass001_spinmedian_cross_perm\", folder, rmin=0.5)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "6565101a",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2023-04-08T14:04:17.514165Z",
|
|
"start_time": "2023-04-08T14:04:15.555281Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "84729726",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2023-04-08T15:04:01.025738Z",
|
|
"start_time": "2023-04-08T15:03:56.792105Z"
|
|
},
|
|
"scrolled": false
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"plt.figure()\n",
|
|
"rs, mu, std = mean_auto(0, \"mass001_spinlow\")\n",
|
|
"plt.plot(rs, mu, c=cols[0])\n",
|
|
"plt.fill_between(rs, mu - std, mu + std, color=cols[0], alpha=0.5)\n",
|
|
"\n",
|
|
"rs, mu, std = mean_auto(0, \"mass001_spinlow_perm\")\n",
|
|
"plt.plot(rs, mu, c=cols[1])\n",
|
|
"plt.fill_between(rs, mu - std, mu + std, color=cols[1], alpha=0.5)\n",
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "0f85f943",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2023-04-08T14:11:05.066794Z",
|
|
"start_time": "2023-04-08T14:11:04.362662Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"prk_low = knnreader.prk(rs, cdf_low)\n",
|
|
"prk_high = knnreader.prk(rs, cdf_high)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "5c862e8b",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2023-04-08T14:11:07.074775Z",
|
|
"start_time": "2023-04-08T14:11:05.148559Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"k = 0\n",
|
|
"\n",
|
|
"plt.figure()\n",
|
|
"\n",
|
|
"for i in range(101):\n",
|
|
" plt.plot(rs, prk_low[i, k, :], lw=0.1, c=cols[0])\n",
|
|
" plt.plot(rs, prk_high[i, k, :], lw=0.1, c=cols[1])\n",
|
|
"\n",
|
|
" \n",
|
|
"rs, mu, std = mean_auto(0, \"mass001\")\n",
|
|
"plt.plot(rs, mu, c=cols[2])\n",
|
|
"plt.fill_between(rs, mu - std, mu + std, color=cols[2], alpha=0.5)\n",
|
|
"\n",
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "6682fa88",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2023-04-08T14:59:29.041395Z",
|
|
"start_time": "2023-04-08T14:59:24.875903Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"rs, corr = knnreader.read_auto(\"mass001_spinmedian_cross\", folder, rmin=0.5)\n",
|
|
"rs, corrperm = knnreader.read_auto(\"mass001_spinmedian_cross_perm\", folder, rmin=0.5)\n",
|
|
"\n",
|
|
"# rs, corr_low = knnreader.read_auto(\"mass001_spinlow_cross_perm\", folder, rmin=0.5)\n",
|
|
"# rs, corr_high = knnreader.read_auto(\"mass001_spinhigh_cross_perm\", folder, rmin=0.5)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "298f28b6",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2023-04-08T14:59:47.556944Z",
|
|
"start_time": "2023-04-08T14:59:47.103398Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"k = 2\n",
|
|
"plt.figure()\n",
|
|
"for i in range(101):\n",
|
|
" plt.plot(rs, corr[i, k, :], lw=0.1, c=cols[0])\n",
|
|
" plt.plot(rs, corrperm[i, k, :], lw=0.1, c=cols[1])\n",
|
|
"# plt.plot(rs, corr[i, k, :] - corrperm[i, k, :], lw=0.1, c=cols[0])\n",
|
|
"# plt.plot(rs, , lw=0.1, c=cols[1])\n",
|
|
" \n",
|
|
"plt.xscale(\"log\")\n",
|
|
"plt.yscale(\"log\")\n",
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "a28d0290",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2023-04-08T13:59:25.401233Z",
|
|
"start_time": "2023-04-08T13:59:25.157683Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"k = 0\n",
|
|
"\n",
|
|
"plt.figure()\n",
|
|
"for i in range(101):\n",
|
|
" plt.plot(rs, corr[i, k, :], c=cols[0], lw=0.1)\n",
|
|
" \n",
|
|
" \n",
|
|
"for i in range(101):\n",
|
|
" plt.plot(rs, corr_perm[i, k, :], c=cols[1], lw=0.1)\n",
|
|
"\n",
|
|
"plt.xscale(\"log\")\n",
|
|
"plt.yscale(\"log\")\n",
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "e86ce611",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2023-04-08T09:30:44.330451Z",
|
|
"start_time": "2023-04-08T09:30:44.295713Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"mean_prk.shape"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "fe9a0ef3",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "de17207d",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "e4cbad0c",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "fe11b032",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "491be45e",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "f19accd3",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2023-04-07T16:51:43.224223Z",
|
|
"start_time": "2023-04-07T16:51:35.597574Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"cols = plt.rcParams[\"axes.prop_cycle\"].by_key()[\"color\"]\n",
|
|
"\n",
|
|
"\n",
|
|
"plt.figure()\n",
|
|
"\n",
|
|
"rs, cdf = knnreader.read_auto(\"mass001_spinlow\", folder, rmin=0.5)\n",
|
|
"pk = knnreader.prob_kvolume(cdf, rs, True)\n",
|
|
"for i in range(101):\n",
|
|
" plt.plot(rs, pk[i, 5, :], lw=0.1, c=cols[0])\n",
|
|
" \n",
|
|
" \n",
|
|
"rs, cdf = knnreader.read_auto(\"mass001_spinhigh\", folder, rmin=0.5)\n",
|
|
"pk = knnreader.prob_kvolume(cdf, rs, True)\n",
|
|
"for i in range(101):\n",
|
|
" plt.plot(rs, pk[i, 5, :], lw=0.1, c=cols[1]) \n",
|
|
" \n",
|
|
" \n",
|
|
"rs, cdf = knnreader.read_auto(\"mass001_spinhigh_perm\", folder, rmin=0.5)\n",
|
|
"pk = knnreader.prob_kvolume(cdf, rs, True)\n",
|
|
"for i in range(101):\n",
|
|
" plt.plot(rs, pk[i, 5, :], lw=0.1, c=cols[2])\n",
|
|
"\n",
|
|
"# plt.xscale(\"log\")\n",
|
|
"\n",
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "5f735b44",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "a273df53",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "900fd4f8",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "01974708",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2023-04-07T12:20:08.521290Z",
|
|
"start_time": "2023-04-07T12:20:05.258954Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"cat = csiborgtools.read.ClumpsCatalogue(7444, paths, min_mass=1e12, max_dist=155/0.705)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "47c494f6",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "86f02695",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2023-04-07T11:51:11.124583Z",
|
|
"start_time": "2023-04-07T11:51:11.094094Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"x = \"\"\n",
|
|
"for key in auto_config.keys():\n",
|
|
" x += key + \" \""
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "62d9e837",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2023-04-07T11:51:12.533128Z",
|
|
"start_time": "2023-04-07T11:51:12.499981Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"x"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "db6fc6e4",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2023-04-07T10:28:20.801576Z",
|
|
"start_time": "2023-04-07T10:28:20.766160Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"auto_config"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "8fdcfb01",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2023-04-07T10:21:14.858309Z",
|
|
"start_time": "2023-04-07T10:21:14.826448Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"auto_folder = \"/mnt/extraspace/rstiskalek/csiborg/knn/auto/\"\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "1b5f37af",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2023-04-07T12:20:38.019809Z",
|
|
"start_time": "2023-04-07T12:20:37.987281Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"np.log10(cat[\"totpartmass\"].min())"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "b5b2df40",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2023-04-07T11:13:18.959385Z",
|
|
"start_time": "2023-04-07T11:13:13.072536Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"cols = plt.rcParams[\"axes.prop_cycle\"].by_key()[\"color\"]\n",
|
|
"\n",
|
|
"\n",
|
|
"plt.figure()\n",
|
|
"rs, cdf = knnreader.read_auto(\"004\", auto_folder)\n",
|
|
"pk = knnreader.prob_kvolume(cdf, rs, normalise=True)\n",
|
|
"for i in range(101):\n",
|
|
" plt.plot(rs, pk[i, 0, :], c=cols[0], lw=0.1)\n",
|
|
"\n",
|
|
"\n",
|
|
"rs, cdf = knnreader.read_auto(\"005\", auto_folder)\n",
|
|
"pk = knnreader.prob_kvolume(cdf, rs, normalise=True)\n",
|
|
"for i in range(101):\n",
|
|
" plt.plot(rs, pk[i, 0, :], c=cols[1], lw=0.1)\n",
|
|
"\n",
|
|
" \n",
|
|
"rs, cdf = knnreader.read_auto(\"001\", auto_folder)\n",
|
|
"pk = knnreader.prob_kvolume(cdf, rs, normalise=True)\n",
|
|
"for i in range(101):\n",
|
|
" plt.plot(rs, pk[i, 0, :], c=cols[2], lw=0.1)\n",
|
|
"\n",
|
|
"# plt.xscale(\"log\")\n",
|
|
"# plt.yscale(\"log\")\n",
|
|
"\n",
|
|
"\n",
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "85c65eef",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "20ecf551",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "6ac70147",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2023-04-07T09:47:03.873611Z",
|
|
"start_time": "2023-04-07T09:47:01.794363Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"cat = csiborgtools.read.ClumpsCatalogue(7444, paths)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "b77b1377",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2023-04-07T07:49:23.539504Z",
|
|
"start_time": "2023-04-07T07:45:50.514216Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"from tqdm import trange\n",
|
|
"x = np.full((len(ics), 3), np.nan)\n",
|
|
"for i in trange(len(ics)):\n",
|
|
" cat = csiborgtools.read.ClumpsCatalogue(ics[i], paths, max_dist=155 / 0.705)\n",
|
|
" for j, th in enumerate([1e12, 1e13, 1e14]):\n",
|
|
" mask = cat[\"totpartmass\"] > th\n",
|
|
" x[i, j] = np.nanmedian(cat[\"lambda200c\"][mask])"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "e55d821d",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2023-04-07T07:51:55.598449Z",
|
|
"start_time": "2023-04-07T07:51:55.567861Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"np.mean(x[:, 2]), np.std(x[:, 2])"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "3bae7373",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2023-04-07T11:12:14.971055Z",
|
|
"start_time": "2023-04-07T11:12:14.938117Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"cdf.shape"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "127cb78e",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "8368d476",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"np.nanmedian()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "f6b5a68c",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2023-04-06T17:59:09.028319Z",
|
|
"start_time": "2023-04-06T17:59:08.953783Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"plt.figure()\n",
|
|
"\n",
|
|
"plt.scatter(cat[\"m200\"], cat[\"lambda200c\"], s=1)\n",
|
|
"\n",
|
|
"plt.xscale(\"log\")\n",
|
|
"plt.yscale(\"log\")\n",
|
|
"\n",
|
|
"\n",
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "2eb1c2e4",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "9a79dde6",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2023-04-05T13:42:26.370674Z",
|
|
"start_time": "2023-04-05T13:42:22.862756Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"files = glob(\"/mnt/extraspace/rstiskalek/csiborg/knn/auto/*\")\n",
|
|
"\n",
|
|
"ks = [0, 1, 2, 3, 4, 5, 6, 7]\n",
|
|
"rs, cdf, thresholds = knnreader.read(files, ks, rmin=0.01, rmax=100)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "88de6882",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2023-04-05T13:42:26.943147Z",
|
|
"start_time": "2023-04-05T13:42:26.372382Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"pk = knnreader.prob_kvolume(cdf, rs, True)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "dbb11ba2",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2023-04-05T13:43:45.754506Z",
|
|
"start_time": "2023-04-05T13:43:38.953908Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"cols = plt.rcParams[\"axes.prop_cycle\"].by_key()[\"color\"]\n",
|
|
"\n",
|
|
"plt.figure()\n",
|
|
"n = 1\n",
|
|
"for k in range(7):\n",
|
|
" plt.plot(rs, np.mean(pk[:, n, k, :], axis=0), c=cols[k], label=r\"$k = {}$\".format(k))\n",
|
|
" for i in range(101):\n",
|
|
" plt.plot(rs, pk[i, n, k, :], c=cols[k], lw=0.05)\n",
|
|
"\n",
|
|
"plt.legend(frameon=False)\n",
|
|
"plt.xlabel(r\"$r~\\left[\\mathrm{Mpc}\\right]$\")\n",
|
|
"plt.ylabel(r\"$P\\left(k | V = 4 \\pi r^3 / 3\\right)$\")\n",
|
|
"# plt.savefig(\"../plots/test.png\", dpi=450)\n",
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "6999c90d",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "20bbeb54",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2023-04-03T17:10:30.078450Z",
|
|
"start_time": "2023-04-03T17:10:29.171089Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"n = 2\n",
|
|
"k = 1\n",
|
|
"\n",
|
|
"x = cdf[:, n, k - 1, :] - cdf[:, n, k, :]\n",
|
|
"\n",
|
|
"plt.figure()\n",
|
|
"for i in range(101):\n",
|
|
" plt.plot(rs, x[i, :])\n",
|
|
"\n",
|
|
"plt.xscale(\"log\")\n",
|
|
"\n",
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "86091fcc",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2023-04-03T17:13:07.495144Z",
|
|
"start_time": "2023-04-03T17:13:06.635811Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"files = knnreader.cross_files(7444, \"/mnt/extraspace/rstiskalek/csiborg/knn/cross/\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "c0917bd5",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2023-04-03T17:13:11.011391Z",
|
|
"start_time": "2023-04-03T17:13:07.496523Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"ks = [0, 1, 2, 3, 4, 5, 6, 7]\n",
|
|
"rs, cross, threshold = knnreader.read(files, ks, rmin=0.5)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "beba86db",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2023-04-03T17:13:11.152680Z",
|
|
"start_time": "2023-04-03T17:13:11.013209Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"n = 0\n",
|
|
"k = 1\n",
|
|
"\n",
|
|
"plt.figure()\n",
|
|
"for i in range(100):\n",
|
|
" plt.plot(rs, cross[i, n, k - 1, :] - cross[i, n, k, :])\n",
|
|
"\n",
|
|
"plt.xscale(\"log\")\n",
|
|
"plt.axvline(2.65 / 0.705)\n",
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "adf96c3b",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2023-04-03T14:25:45.275844Z",
|
|
"start_time": "2023-04-03T14:25:44.855207Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"\"/mnt/extraspace/hdesmond/ramses_out_7444/output_00950/clump_00950.dat\""
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "8179c3e0",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "f803105a",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "55544ddd",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "3c7add55",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "75a5e6f7",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "7b6d813b",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "19115f4c",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "4218b673",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2023-04-01T08:27:07.868868Z",
|
|
"start_time": "2023-04-01T08:27:04.088778Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"cat1 = csiborgtools.read.ClumpsCatalogue(7444, min_mass=1e13, max_dist=155 / 0.705)\n",
|
|
"cat2 = csiborgtools.read.ClumpsCatalogue(7468, min_mass=1e13, max_dist=155 / 0.705)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "5ff7a1b6",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2023-04-01T08:27:07.923418Z",
|
|
"start_time": "2023-04-01T08:27:07.870519Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"knncdf = csiborgtools.match.kNN_CDF()\n",
|
|
"\n",
|
|
"\n",
|
|
"knn1 = NearestNeighbors()\n",
|
|
"knn1.fit(cat1.positions)\n",
|
|
"\n",
|
|
"knn2 = NearestNeighbors()\n",
|
|
"knn2.fit(cat2.positions)\n",
|
|
"\n",
|
|
"# rs, cdf = knncdf(knn, nneighbours=2, Rmax=155 / 0.705, rmin=0.01, rmax=100,\n",
|
|
"# nsamples=int(1e6), neval=int(1e4), random_state=42, batch_size=int(1e6))"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "88a31951",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2023-04-01T08:46:56.273595Z",
|
|
"start_time": "2023-04-01T08:46:56.088408Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"!ls /mnt/extraspace/rstiskalek/csiborg/knn/cross/knncdf_7444_7468.p"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "b7c2d465",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2023-04-01T10:05:26.294670Z",
|
|
"start_time": "2023-04-01T10:05:25.954223Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"from glob import glob"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "6083fcbe",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2023-04-01T10:05:52.758709Z",
|
|
"start_time": "2023-04-01T10:05:52.705627Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"files = glob(\"/mnt/extraspace/rstiskalek/csiborg/knn/cross/*\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "6d6b9d57",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2023-04-01T10:06:00.023427Z",
|
|
"start_time": "2023-04-01T10:05:59.645149Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "980f74df",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2023-04-01T10:12:49.924557Z",
|
|
"start_time": "2023-04-01T10:12:49.714545Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"cols = plt.rcParams[\"axes.prop_cycle\"].by_key()[\"color\"]\n",
|
|
"\n",
|
|
"plt.figure()\n",
|
|
"for file in files:\n",
|
|
" d = joblib.load(file)\n",
|
|
" mask = d[\"rs\"] > 0.1\n",
|
|
" plt.plot(d[\"rs\"][mask], d[\"corr_0\"][0, mask], c=cols[0], lw=0.4)\n",
|
|
"\n",
|
|
"plt.xscale(\"log\")\n",
|
|
"plt.axvline(2.65 / 0.705, lw=0.8, c=\"red\", ls=\"--\")\n",
|
|
"# plt.yscale(\"log\")\n",
|
|
"\n",
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "997e8f91",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "25936419",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2023-04-01T08:51:11.896378Z",
|
|
"start_time": "2023-04-01T08:51:11.865150Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"5500 / comb(5, 3)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "043a93ff",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2023-04-01T08:50:37.181588Z",
|
|
"start_time": "2023-04-01T08:50:36.718438Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"plt.figure()\n",
|
|
"plt.plot(d[\"rs\"], d[\"corr_0\"][1, :])\n",
|
|
"plt.plot(d[\"rs\"], d[\"corr_1\"][1, :])\n",
|
|
"plt.plot(d[\"rs\"], d[\"corr_2\"][1, :])\n",
|
|
"\n",
|
|
"# plt.yscale(\"log\")\n",
|
|
"# plt.xscale(\"log\")\n",
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "279d8e58",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "d08b0dc3",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2023-04-01T08:27:19.271922Z",
|
|
"start_time": "2023-04-01T08:27:07.925222Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"# rs, cdf = knncdf(knn1, nneighbours=2, Rmax=155 / 0.705, rmin=0.01, rmax=100,\n",
|
|
"# nsamples=int(1e6), neval=int(1e4), random_state=42, batch_size=int(1e6))\n",
|
|
"\n",
|
|
"rs, cdf0, cdf1, joint_cdf = knncdf.joint(knn1, knn2, nneighbours=8, Rmax=155 / 0.705,\n",
|
|
" rmin=0.01, rmax=100, nsamples=int(1e6), neval=int(1e4),\n",
|
|
" random_state=42, batch_size=int(1e6))"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "0866fe23",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2023-04-01T08:27:19.436097Z",
|
|
"start_time": "2023-04-01T08:27:19.397998Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"cdf0 = knncdf.clipped_cdf(cdf0)\n",
|
|
"cdf1 = knncdf.clipped_cdf(cdf1)\n",
|
|
"joint_cdf = knncdf.clipped_cdf(joint_cdf)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "b0649b7e",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2023-04-01T08:27:59.413449Z",
|
|
"start_time": "2023-04-01T08:27:59.244281Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"corr = knncdf.joint_to_corr(cdf0, cdf1, joint_cdf)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "b4d28785",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2023-04-01T08:33:12.811065Z",
|
|
"start_time": "2023-04-01T08:33:12.386639Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"ics = [7444, 7468, 7492, 7516, 7540, 7564, 7588, 7612, 7636, 7660, 7684,\n",
|
|
" 7708, 7732, 7756, 7780, 7804, 7828, 7852, 7876, 7900, 7924, 7948,\n",
|
|
" 7972, 7996, 8020, 8044, 8068, 8092, 8116, 8140, 8164, 8188, 8212,\n",
|
|
" 8236, 8260, 8284, 8308, 8332, 8356, 8380, 8404, 8428, 8452, 8476,\n",
|
|
" 8500, 8524, 8548, 8572, 8596, 8620, 8644, 8668, 8692, 8716, 8740,\n",
|
|
" 8764, 8788, 8812, 8836, 8860, 8884, 8908, 8932, 8956, 8980, 9004,\n",
|
|
" 9028, 9052, 9076, 9100, 9124, 9148, 9172, 9196, 9220, 9244, 9268,\n",
|
|
" 9292, 9316, 9340, 9364, 9388, 9412, 9436, 9460, 9484, 9508, 9532,\n",
|
|
" 9556, 9580, 9604, 9628, 9652, 9676, 9700, 9724, 9748, 9772, 9796,\n",
|
|
" 9820, 9844]"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "aaac3eff",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2023-04-01T08:34:00.873304Z",
|
|
"start_time": "2023-04-01T08:34:00.842613Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"from scipy.special import comb\n",
|
|
"\n",
|
|
"from itertools import combinations\n",
|
|
"# for subset in itertools.combinations(stuff, L):"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "042fe713",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2023-04-01T08:34:21.387439Z",
|
|
"start_time": "2023-04-01T08:34:21.325627Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"list(combinations(ics, 2))"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "762ec153",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "8c43f012",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2023-04-01T08:33:18.308219Z",
|
|
"start_time": "2023-04-01T08:33:18.275965Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"comb()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "aaca64f3",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "9fb9e08e",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2023-04-01T08:28:35.326570Z",
|
|
"start_time": "2023-04-01T08:28:35.158664Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"plt.figure()\n",
|
|
"\n",
|
|
"# plt.plot(rs, knncdf.peaked_cdf(cdf0[0, :]))\n",
|
|
"# plt.plot(rs, knncdf.peaked_cdf(cdf1[0, :]))\n",
|
|
"# plt.plot(rs, knncdf.peaked_cdf(joint_cdf[0, :]))\n",
|
|
"for i in range(8):\n",
|
|
" plt.plot(rs, corr[i, :])\n",
|
|
"\n",
|
|
"\n",
|
|
"# plt.yscale(\"log\")\n",
|
|
"# plt.xscale(\"log\")\n",
|
|
"plt.axvline(2.65 / 0.705, c=\"red\", ls=\"--\")\n",
|
|
"\n",
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "f295a0f9",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "0d5f3d02",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2023-04-01T07:20:34.202874Z",
|
|
"start_time": "2023-04-01T07:20:28.353637Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"dist1, dist2 = knncdf.joint(knn1, knn2, nneighbours=2, Rmax=155 / 0.705, rmin=0.01, rmax=100,\n",
|
|
" nsamples=int(1e6), neval=int(1e4), random_state=42, batch_size=int(1e6))"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "a76c8124",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2023-04-01T07:20:41.074933Z",
|
|
"start_time": "2023-04-01T07:20:41.041448Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "127b91a8",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "8b9a8cf0",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "a1825f00",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2023-04-01T06:01:29.388586Z",
|
|
"start_time": "2023-04-01T06:01:29.321025Z"
|
|
},
|
|
"scrolled": false
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"plt.figure()\n",
|
|
"plt.plot(rs, knncdf.peaked_cdf(cdf[0, :]))\n",
|
|
"\n",
|
|
"plt.yscale(\"log\" )\n",
|
|
"plt.xscale(\"log\")\n",
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "289549a0",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2023-03-31T22:55:20.690887Z",
|
|
"start_time": "2023-03-31T22:55:20.656550Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"mask"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "7a8c5202",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2023-03-31T22:54:52.330633Z",
|
|
"start_time": "2023-03-31T22:54:52.299548Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "46f54897",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2023-03-31T22:54:25.138813Z",
|
|
"start_time": "2023-03-31T22:54:25.105044Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"dist"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "58806ab9",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "c59b3a19",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "e345945c",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2023-03-31T09:35:49.059172Z",
|
|
"start_time": "2023-03-31T09:35:42.817291Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"m1 = (rs > 1) & (rs < 35)\n",
|
|
"\n",
|
|
"fig, axs = plt.subplots(ncols=3, figsize=(6.4 * 1.5, 4.8), sharey=True)\n",
|
|
"fig.subplots_adjust(wspace=0)\n",
|
|
"for k in range(3):\n",
|
|
" for n in range(len(ics)):\n",
|
|
" m = m1 & (cdfs[n, k, :] > 1e-3)\n",
|
|
" axs[k].plot(rs[m], cdfs[n, k, m], c=\"black\", lw=0.05)\n",
|
|
"\n",
|
|
" axs[k].set_xscale(\"log\")\n",
|
|
" axs[k].set_yscale(\"log\")\n",
|
|
" axs[k].set_title(r\"$k = {}$\".format(k))\n",
|
|
" axs[k].set_xlabel(r\"$r~\\left[\\mathrm{Mpc}\\right]$\")\n",
|
|
"\n",
|
|
"axs[0].set_ylabel(r\"Peaked CDF\")\n",
|
|
"\n",
|
|
"plt.tight_layout(w_pad=0)\n",
|
|
"fig.savefig(\"../plots/peaked_cdf.png\", dpi=450)\n",
|
|
"fig.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "9f8786c0",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2023-03-31T09:50:10.103650Z",
|
|
"start_time": "2023-03-31T09:50:02.221741Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"m = (rs > 0.5) & (rs < 35)\n",
|
|
"\n",
|
|
"fig, axs = plt.subplots(ncols=3, figsize=(6.4 * 1.5, 4.8), sharey=True)\n",
|
|
"fig.subplots_adjust(wspace=0)\n",
|
|
"for k in range(3):\n",
|
|
" mu = np.nanmean(cdfs[:, k, :], axis=0)\n",
|
|
"\n",
|
|
" for n in range(len(ics)):\n",
|
|
" axs[k].plot(rs[m], (cdfs[n, k, :] / mu)[m], c=\"black\", lw=0.1)\n",
|
|
"\n",
|
|
" axs[k].set_ylim(0.5, 1.5)\n",
|
|
" axs[k].axhline(1, ls=\"--\", c=\"red\", zorder=0)\n",
|
|
" axs[k].axvline(2.65 / 0.705, ls=\"--\", c=\"red\", zorder=0)\n",
|
|
" axs[k].set_xscale(\"log\")\n",
|
|
" axs[k].set_xlabel(r\"$r~\\left[\\mathrm{Mpc}\\right]$\")\n",
|
|
" axs[k].set_title(r\"$k = {}$\".format(k))\n",
|
|
" \n",
|
|
"axs[0].set_ylabel(r\"Relative peaked CDF\")\n",
|
|
"plt.tight_layout(w_pad=0)\n",
|
|
"fig.savefig(\"../plots/peaked_cdf_ratios.png\", dpi=450)\n",
|
|
"fig.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "2f64cec1",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2023-03-30T15:46:31.532259Z",
|
|
"start_time": "2023-03-30T15:46:30.977449Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"plt.figure()\n",
|
|
"k = 2\n",
|
|
"mu = np.nanmean(cdfs[:, k, :], axis=0)\n",
|
|
"# plt.plot(rs, mu, c=\"black\")\n",
|
|
"for i in range(len(ics)):\n",
|
|
" plt.plot(rs, cdfs[i, k, :] / mu)\n",
|
|
"\n",
|
|
"\n",
|
|
"plt.ylim(0.75, 1.25)\n",
|
|
"plt.axhline(1, ls=\"--\", c=\"black\")\n",
|
|
"plt.xscale(\"log\")\n",
|
|
"# plt.yscale(\"log\")\n",
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "a6784766",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "b416efb3",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "e650fe2c",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "1311187d",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "03e49a11",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2023-03-30T14:58:29.937514Z",
|
|
"start_time": "2023-03-30T14:58:29.530552Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"x.shape"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "24578cba",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "b0024bbf",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "6dc55410",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2023-03-30T14:41:24.290602Z",
|
|
"start_time": "2023-03-30T14:41:16.204679Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"dist0, __ = knn0.kneighbors(X, 3)\n",
|
|
"distx, __ = knnx.kneighbors(X, 3)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "11508c3c",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2023-03-30T14:41:24.560538Z",
|
|
"start_time": "2023-03-30T14:41:24.292674Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"x0, y0 = knncdf.peaked_cdf_from_samples(dist0[:, 0], 0.5, 20, neval=10000)\n",
|
|
"xx, yx = knncdf.peaked_cdf_from_samples(distx[:, 0], 0.5, 20, neval=10000)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "404501ad",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2023-03-30T14:41:24.598933Z",
|
|
"start_time": "2023-03-30T14:41:24.562062Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"distx[:, 0].min()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "43e08969",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2023-03-30T14:46:10.262865Z",
|
|
"start_time": "2023-03-30T14:46:09.486658Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"plt.figure()\n",
|
|
"plt.plot(x0, y0)\n",
|
|
"plt.plot(xx, yx)\n",
|
|
"\n",
|
|
"plt.yscale(\"log\")\n",
|
|
"plt.xscale(\"log\")\n",
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "39547a75",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "9e160b38",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2023-03-30T13:02:02.033125Z",
|
|
"start_time": "2023-03-30T13:02:00.674878Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"plt.figure()\n",
|
|
"\n",
|
|
"for i in range(3):\n",
|
|
" plt.plot(*knncdf.cdf_from_samples(dist0[:, i], 1, 25))\n",
|
|
" plt.plot(*knncdf.cdf_from_samples(distx[:, i], 1, 25))\n",
|
|
"\n",
|
|
"# plt.xlim(0.5, 25)\n",
|
|
"\n",
|
|
"plt.yscale(\"log\")\n",
|
|
"plt.xscale(\"log\")\n",
|
|
"plt.xlabel(r\"$r~\\left[\\mathrm{Mpc}\\right]$\")\n",
|
|
"\n",
|
|
"\n",
|
|
"\n",
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "4bfb65d8",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "4703d81c",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2023-03-30T12:13:35.958444Z",
|
|
"start_time": "2023-03-30T12:13:35.924241Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"x = dist[:, 0]\n",
|
|
"q = np.linspace(0, 100, int(x.size / 5))\n",
|
|
"\n",
|
|
"p = np.percentile(x, q)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "b054c6df",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2023-03-30T12:16:50.052225Z",
|
|
"start_time": "2023-03-30T12:16:50.020395Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"y = np.sort(x)\n",
|
|
"\n",
|
|
"yy = np.arange(y.size) / y.size"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "5445c964",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2023-03-30T12:16:53.599925Z",
|
|
"start_time": "2023-03-30T12:16:53.521266Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"plt.figure()\n",
|
|
"plt.plot(p, q / 100)\n",
|
|
"\n",
|
|
"plt.plot(y, yy)\n",
|
|
"\n",
|
|
"# plt.yscale(\"log\")\n",
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "87fe5874",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "fb0ad6b9",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2023-03-30T12:03:34.387625Z",
|
|
"start_time": "2023-03-30T12:03:34.290961Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"plt.figure()\n",
|
|
"plt.hist(dist[:, 0], bins=\"auto\", histtype=\"step\")\n",
|
|
"plt.hist(dist[:, 1], bins=\"auto\", histtype=\"step\")\n",
|
|
"plt.hist(dist[:, 2], bins=\"auto\", histtype=\"step\")\n",
|
|
"\n",
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "c2aba833",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "6f70f238",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "03bcb191",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2023-03-30T11:38:04.906150Z",
|
|
"start_time": "2023-03-30T11:38:04.758107Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"plt.figure()\n",
|
|
"plt.hist(cat0[\"dec\"], bins=\"auto\")\n",
|
|
"\n",
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "e5ad4722",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2023-03-30T11:53:23.004853Z",
|
|
"start_time": "2023-03-30T11:53:22.971967Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"gen = np.random.default_rng(22)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "785b530a",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2023-03-30T11:53:23.330397Z",
|
|
"start_time": "2023-03-30T11:53:23.296612Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"gen.normal()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "b3d3b5e6",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "464b606d",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2023-03-30T11:36:13.649124Z",
|
|
"start_time": "2023-03-30T11:36:12.995693Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"theta = np.linspace( t, np.pi, 100)\n",
|
|
"\n",
|
|
"plt.figure()\n",
|
|
"plt.plot(theta, np.sin(theta))\n",
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "c29049f5",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "cd2a3295",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "af9abf04",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2023-03-30T11:10:11.104389Z",
|
|
"start_time": "2023-03-30T11:10:11.070499Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"X = np.array([-3.9514747, -0.6966991, 2.97158]).reshape(1, -1)\n",
|
|
"\n",
|
|
"X"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "e181b3c3",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2023-03-30T11:32:17.840355Z",
|
|
"start_time": "2023-03-30T11:32:17.351883Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"dist, indxs = knn0.kneighbors(X, n_neighbors=1)\n",
|
|
"\n",
|
|
"dist, indxs"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "d38fd960",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2023-03-30T11:10:18.182326Z",
|
|
"start_time": "2023-03-30T11:10:18.145629Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"cat0.positions[indxs]"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "a16ddc2f",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "bbbe8fb6",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "759a0149",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "312c96c9",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "b097637b",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "2ced23cb",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "be26cbcc",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "venv_galomatch",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.8.0"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 5
|
|
}
|