csiborgtools/notebooks/flow/flow_los.ipynb
Richard Stiskalek 8d49aa071b
More LOS (#137)
* Switch to CB2

* Update for extrapolation

* Add 'nan' extrapolation

* Update nb

* Update submits

* Add Rmax to the models

* Update nb

* Add print statement

* Update script settings

* Update flow model to new method

* Update printing

* Update path

* Update so that it works

* Update nb

* Update submit

* Add Rmin for hollow bulk flows

* Update script

* Update script

* Update scripts back

* Update scripts back

* Fix normalization bug

* Update script

* pep8
2024-07-25 11:48:37 +01:00

132 KiB

In [1]:
import numpy as np
%matplotlib notebook
import matplotlib.pyplot as plt
try:
    import csiborgtools
except ModuleNotFoundError:
    import sys
    sys.path.append("../")
    import csiborgtools
import utils
%load_ext autoreload
%autoreload 2

import joblib
from os.path import join
In [2]:
from astropy.cosmology import FlatLambdaCDM, z_at_value
from astropy import units
In [6]:
Nsim = 9844
Nsnap = 1016
# data, box = utils.load_processed(Nsim, Nsnap)
data, box = utils.load_processed(Nsim, Nsnap)
In [10]:
X = np.vstack([data["peak_{}".format(p)] for p in ("x", "y", "z")]).T
In [12]:
from sklearn.neighbors import NearestNeighbors
In [13]:
neighbors = NearestNeighbors()
In [14]:
neighbors.fit(X)
Out[14]:
NearestNeighbors()
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
NearestNeighbors()
In [19]:
p = X[0, :]

neighbors.kneighbors(p.reshape(-1,3))
Out[19]:
(array([[0.        , 0.00441153, 0.00459373, 0.00568435, 0.00596298]]),
 array([[   0,  186,  513,  130, 1795]]))
In [16]:

Out[16]:
array([-0.04183578, -0.21976852, -0.05943659])
In [8]:
data["peak_y"]
Out[8]:
array([-0.21976852, -0.15894653, -0.16384361, ..., -0.23763191,
       -0.23351993, -0.23352051])
In [ ]:

In [ ]:

In [ ]:
zcosmo = box.box2cosmoredshift(data["dist"])
z
In [ ]:
zpec = box.box2pecredshift(*[data[p] for p in ["vx", "vy", "vz", "peak_x", "peak_y", "peak_z"]])
zobs = box.box2obsredshift(*[data[p] for p in ["vx", "vy", "vz", "peak_x", "peak_y", "peak_z"]])
In [ ]:
m = zcosmo < 0.05

plt.figure()

# plt.scatter(zcosmo[m], zcosmo[m] - zobs[m], s=0.05)
plt.scatter(zcosmo[m], zpec[m], s=0.05, rasterized=True)
t = np.linspace(0, zcosmo[m].max())

plt.axhline(0, c="red", ls="--")

plt.xlabel(r"$z_{\rm cosmo}$")
plt.ylabel(r"$z_{\rm pec}$")
plt.tight_layout()
plt.savefig("../plots/redshift.png", dpi=450)
plt.show()
In [ ]:

In [ ]:

In [ ]:

In [ ]:

In [ ]:
data[""]
In [ ]:

In [ ]:

In [ ]:

In [ ]:
cosmo = FlatLambdaCDM(H0=70, Om0=0.3, Ob0=0.05)

cosmo.comoving_distance()

x = 10000 * units.Mpc

z_at_value(cosmo.comoving_distance, x)
In [ ]:
from astropy import constants
In [ ]:
constants.c.value * 1e-8
In [ ]:
n_sims = csiborgtools.io.get_csiborg_ids("/mnt/extraspace/hdesmond")
In [ ]:
np.where(n_sims == 7660)
In [ ]:
for n_sim in n_sims:
    simpath = csiborgtools.io.get_sim_path(n_sim)
    maxsnap = csiborgtools.io.get_maximum_snapshot(simpath)
    box = csiborgtools.units.BoxUnits(maxsnap, simpath)
    print(maxsnap, box._aexp)
In [ ]:

In [ ]:

In [ ]:

In [ ]:
simpath = csiborgtools.io.get_sim_path(7660)
In [ ]:
simpath
In [ ]:
box = csiborgtools.units.BoxUnits(999, simpath)
In [ ]:
box._aexp
In [ ]:

In [ ]:

In [ ]:
planck = utils.load_planck2015(200)
mcxc = utils.load_mcxc(200)

indxs = csiborgtools.io.match_planck_to_mcxc(planck, mcxc)
In [ ]:
groups = utils.load_2mpp_groups()

Nsim = 9844
Nsnap = 1016

data = utils.load_processed(Nsim, Nsnap)
In [ ]:

In [ ]:
plt.figure()

m = data["m500"] > 1e13
plt.scatter(data["ra"][m], data["dec"][m], label="CSiBORG", s=3)
plt.scatter(groups["RA"], groups["DEC"], label="2M++ galaxy groups", s=3, marker="x")



plt.show()
In [ ]:

In [ ]:

In [ ]:
RAcoma = (12 +  59/60 + 48.7 / 60**2) * 15
DECcoma = 27 + 58 / 60 + 50 / 60**2


RAvirgo = (12 + 27 / 60) * 15
DECvirgo = 12 + 43/60



plt.figure()


plt.scatter(mcxc["RAdeg"], mcxc["DEdeg"], label="MCXC")
plt.scatter(planck["RA"], planck["DEC"], label="Plank",s=8, c="red")

plt.scatter(RAcoma, DECcoma, label="Coma", s=30, marker="x")
plt.scatter(RAvirgo, DECvirgo, label="Virgo", s=30, marker="x")

plt.legend(framealpha=0.5)
plt.xlabel("RA")
plt.ylabel("DEC")
plt.title("Clusters below 200 Mpc")
plt.savefig("../plots/clusters_radec.png", dpi=450)

plt.show()
In [ ]:

In [ ]:

In [ ]:
plt.figure()

plt.scatter(mcxc["COMDIST"], mcxc["M500"], label="MCXC")
# yerr = np.vstack([planck["MSZ"] - planck["MSZ_ERR_LOW"],
#                   planck["MSZ_ERR_UP"] - planck["MSZ"]])
yerr = np.vstack([planck["MSZ_ERR_LOW"], planck["MSZ_ERR_UP"]])
plt.errorbar(planck["COMDIST"], planck["MSZ"], yerr, label="Plank", fmt=" ", capsize=3, color="red")

plt.yscale("log")
plt.legend()
plt.title("Clusters below 200 Mpc")
plt.xlabel(r"$D_{\rm c} / \mathrm{Mpc}$")
plt.ylabel(r"$M_{\rm 500c} / M_\odot$")
# plt.savefig("../plots/clusters_mass_dist.png", dpi=450)

plt.show()
In [ ]:
d["RAdeg"]
In [ ]:

In [ ]:

In [ ]:
d.dtype.names
In [ ]:
d["Cat"]
In [ ]:
type(d["MCXC"])
In [ ]:
np.asanyarray(["aasdasdaasdasdasdad", "bsdfadadfasddsgasdg"]).dtype
In [ ]:

In [ ]:
d["MCXC"]
In [ ]:

In [ ]:
plt.figure()
# plt.scatter(d["RAdeg"], d["DEdeg"], s=1)
plt.scatter(d["z"], d["M500"], s=1)

plt.yscale("log")
plt.show()
In [ ]:

In [ ]:

In [ ]:
Nsim = 9844
Nsnap = 1016

data = utils.load_processed(Nsim, Nsnap)
In [ ]:
bins = np.arange(11.8, 15.4, 0.2)


plt.figure()
x, mu, std = csiborgtools.match.number_density(data, "m200", bins, 200, True)
plt.errorbar(x, mu, std, capsize=4, label=r"$M_{200c}$")

x, mu, std = csiborgtools.match.number_density(data, "m500", bins, 200, True)
plt.errorbar(x, mu, std, capsize=4, label=r"$M_{500c}$")

x, mu, std = csiborgtools.match.number_density(data, "totpartmass", bins, 200, True)
plt.errorbar(x, mu, std, capsize=4, label=r"$M_{\rm tot}$")

x, mu, std = csiborgtools.match.number_density(data, "mass_mmain", bins, 200, True)
plt.errorbar(x, mu, std, capsize=4, label=r"$M_{\rm mmain}$")

plt.legend()

plt.yscale("log")
plt.xscale("log")

plt.ylabel(r"$\phi / (\mathrm{Mpc}^{-3})~\mathrm{dex}$")
plt.xlabel(r"$M_{\rm x}$")
plt.tight_layout()
plt.savefig("../plots/HMF.png", dpi=450)
plt.show()
In [ ]:
nfw = csiborgtools.fits.NFWProfile()
m200_nfw = nfw.enclosed_mass(data["r200"], data["Rs"], data["rho0"])



plt.figure()

plt.scatter(data["m200"], m200_nfw, s=1)
t = np.linspace(1e11, 1e15)
plt.plot(t, t, c="red", ls="--", lw=1.5)
plt.xscale("log")
plt.yscale("log")

plt.xlabel(r"$M_{200c}$")
plt.ylabel(r"$M_{\mathrm{NFW}, 200c}$")
plt.tight_layout()
plt.savefig("../plots/enclosed_vs_nfw.png", dpi=450)
plt.show()
In [ ]:

In [ ]:
logm200 = np.log10(data["m200"])
conc = data["conc"]

N = 10
bins = np.linspace(logm200.min(), logm200.max(), N)
x = [0.5*(bins[i] + bins[i + 1]) for i in range(N-1)]
y = np.full((N - 1, 3), np.nan)
for i in range(N - 1):
    mask = (logm200 >= bins[i]) & (logm200 < bins[i + 1]) & np.isfinite(conc)
    y[i, :] = np.percentile(conc[mask], [14, 50, 84])


    
    
fig, axs = plt.subplots(nrows=2, sharex=True, figsize=(6.4, 6.4 * 1))
fig.subplots_adjust(hspace=0)
axs[0].plot(x, y[:, 1], c="red", marker="o")
axs[0].fill_between(x, y[:, 0], y[:, 2], color="red", alpha=0.25)
axs[1].hist(logm200, bins="auto", log=True)

for b in bins:
    for i in range(2):
        axs[i].axvline(b, c="orange", lw=0.5)

axs[0].set_ylim(2, 10)
axs[1].set_xlabel(r"$M_{200c}$")
axs[0].set_ylabel(r"$c_{200c}$")
axs[1].set_ylabel(r"Counts")

plt.tight_layout(h_pad=0)
plt.savefig("../plots/mass_concentration.png", dpi=450)
plt.show()
In [ ]: